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A B S T R A C T

The varying proportions of tree and herbaceous cover in the grassland and savanna biomes of Southern Africa
determine their capacity to provide ecosystem services. The asynchronous phenologies e.g. annual NDVI profiles
of grasses and trees in these semi-arid landscapes provide an opportunity to estimate percentage tree-cover by
determining the period of maximum contrast between grasses and trees. First, a 16-day NDVI time series was
generated from MODIS NDVI data, i.e. MOD13A2 16-day NDVI composite data. Secondly, percentage tree-cover
data for 100 sample polygons (4× 4) pixels for areas that have not undergone change in tree cover between
2001 and 2018 were derived using high resolution Google Earth imagery. Next, a time series consisting of the
coefficients of determination (R2) for the NDVI/tree-cover linear regression were computed for the 100 poly-
gons. Lastly, a threshold R2> 0.5 was used to determine the optimal period of the year for mapping tree-cover. It
emerged that the narrow period from Julian day 161–177 (June 10–26) was the most consistent period with
R2> 0.5 in the region. 18 tree-cover maps (2001–2018) were generated using linear regression model coeffi-
cients derived from Julian day 161 for each year. Kendall correlation coefficient (tau) was used to determine
areas of significant (p < 0.05 and p < 0.01) increasing or decreasing trend in tree-cover. Areas (polygons) that
showed increasing tree-cover appeared to be more widespread in the trend map as compared to areas of de-
creasing tree-cover. An accuracy assessment of the map of increasing tree-cover was conducted using Google
Earth high resolution images. Out of 330 and 200 mapped polygons verified using p < 0.05 and 0.01
thresholds, respectively, 180 (54% accuracy) and 132 (65% accuracy) showed evidence of tree recruitment.
Farm abandonment appeared to have been the most important factor contributing to increasing tree-cover in the
region.

1. Introduction

Grassland and savanna biomes in South Africa cover about 60% of
the land Wessels et al., 2011. The varying proportions of tree and
herbaceous cover in these biomes determine their ability to provide
ecosystem services including grazing and browsing resources, food,
medicine and habitats to important wild fauna (Ramoelo et al., 2012;
Scholes and Archer, 1997). The variability of grass and trees-cover is
controlled by a number of environmental and anthropogenic factors.
For example, increasing levels of anthropogenic CO2 are expected to
favour tree growth (Kgope et al., 2010; Buitenwerf et al., 2012). The
consequence of this could be the expansion of woodlands into grass
dominated systems, a phenomenon known as bush or woody en-
croachment. Human activities including deforestation, overgrazing,

fencing-off of land for wildlife conservation, clearing of land for agri-
culture or farm abandonment are equally changing the dynamics of
trees and grasses or forest cover in the region (Mograbi et al., 2017).
Skowno et al. (2017) have reported a net increase in the extent of
woodlands in South Africa between 1990 and 2013 at the expense of
grasslands, most of this occurring in the savanna biome. The increasing
tree cover in the South African savanna threatens the grazing potential
of this system by suppressing the productivity of herbaceous plant
species and reducing land accessibility by livestock and wildlife
(Buitenwerf et al., 2012). Lesoli et al. (2013) have argued that perfor-
mance measures, monitoring and adaptive management are necessary
to control bush encroachment.

Remote sensing is now a popular means of establishing long-term
spatio-temporal patterns of forest cover at the regional to continental
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scale (Defries et al., 2000; Shimada et al., 2014). However, there is no
remote sensing system for periodic monitoring of bush encroachment in
South Africa and in Southern Africa as a whole. To this point, the study
by Skowno et al. (2017) is the most comprehensive mapping of bush
encroachment in South Africa. The study was however limited in
temporal resolution as it made use of land cover maps for only two
years in a 23 years period; land-cover maps of 1990 and 2013. More-
over, the land-cover maps were obtained from another source; Geo
Terra Image Pty Ltd. Skowno et al. (2017) considered woodlands as
areas having a tree-cover percentage of greater than 20% because of
poor classification of sparse woodlands in the land-cover maps. It
should be noted the above threshold of woodlands is not consistent with
the definition of forest by the Food and Agricultural Organisation’s
FAO, which defines forest as an area of tree-cover greater than 10% and
of more than 0.5 ha.

Several other studies have reported poor accuracies of woodland
classification in Southern Africa (Sedano et al., 2005; Gong et al., 2013;
Fritz et al., 2010) in existing global tree-cover maps (Hansen et al.,
2000; Loveland et al., 2000; Friedl et al., 2002; Tateishi et al., 2011).
For example, Sedano et al. (2005) established errors of greater than
50% in the Miombo woodlands in Mozambique for the Moderate Re-
solution Imaging spectrometer MODIS - MOD12Q1 land- cover product
and concluded that global land-cover products lack the detail needed
for resource management at the national and provincial level. In the
first ever 30m resolution global land-cover map produced from Landsat
TM data by Gong et al. (2013), the lowest classification accuracy for
woodlands was observed in the Southern half of Africa. Sexton et al.
(2013) observed a systematic bias in tree-cover prediction, char-
acterised by over prediction in sparsely cover areas and under-predic-
tion in dense tree-cover area after validation of the Vegetation Con-
tinuous Fields Tree-Cover data in Southern Africa. In part, the low
classification accuracy of open woodlands in Southern African in the
global forest maps could be attributed to classification errors resulting
from high within-class variability (Landgrebe, 1997; Cho et al., 2010)
because of the wide definition of forest (10–100% tree cover) according
to the FAO’s definition.. The problem of high within-forest class var-
iation can be mitigated by initially considering several classes of
woodlands from sparse to dense which could be later merged into one
class as in Skowno et al. (2017) and as recommended by Cho et al.
(2010). High classification errors for the open woodland class could
also occur if the training data used for the classification is biased to-
wards dense forest areas. Another drawback of determining forest or
woody-cover change through the land-cover classification approach is
that it is generally time consuming and therefore not practical for as-
sessing contiguous trends e.g. yearly forest-cover change.

An alternative method to the ‘land-cover classification’ approach for
assessing forest-cover change is the continuous mapping approach.
Continuous mapping of percentage tree-cover usually involves the use
of parametric or non-parametric regression to relate tree-cover per-
centage with predictor variables derived from remote sensing data
(Kobayashi et al., 2016). The tree-cover map can then be categorised
into the desired number of forest classes. Kobayashi et al. (2016) used a
regression tree algorithm with MODIS data to produce a global tree-
cover percentage map and reported improved accuracies when com-
pared to two existing global tree-cover datasets. The most commonly
used remote sensing predictor is the Normalised Difference Vegetation
Index (NDVI) (Scanlon et al., 2002; Yang et al., 2012). There are
however a number of challenges involved with the use of NDVI for tree-
cover assessment; (i) NDVI varies across the growing season from the
start to the end of the season, rendering the use of images for different
periods impractical in tree-cover assessment; (ii) cloud cover presents a
huge challenge, (iii) grass and soil background reflectance affects the
reflected signal from trees and (iv) NDVI saturates at high canopy
cover. The most viable alternative to improving tree cover assessment
at the broad landscape is the use of Radio Detector and Ranging
(RADAR) sensors as they make use of microwaves which penetrate

clouds (Naidoo et al., 2016) and are sensitive to the structure of the
vegetation. However, the lack of long-term time series of freely avail-
able RADAR data has limited their application in establishing con-
tiguous long-term trends in tree-cover. Light Detection and Ranging
LiDAR data provides the best opportunity for accurate mapping of tree-
cover (Naidoo et al., 2016). However, the paucity of spaceborne LiDAR
data has stymied its application for regional forest or tree-cover as-
sessment.

Gong et al. (2013) suggested that improvement of land cover as-
sessment from frequently available image would depend on the selec-
tion of data from suitable seasons and atmospheric condition, and on
the development of new algorithms. In a study of land surface phe-
nology (LSP) in the grassland and savanna biomes of South Africa, Cho
et al. (2017) established differing patterns of LSP for grass and tree
dominated areas. For example, tree-dominated areas showed a longer
growing season and largely determine the period corresponding to the
end of the growing season. The asynchronous phenologies of grasses
and trees in the semi-arid landscapes of Southern Africa provide an
opportunity to determine the optimal date or period for tree-cover as-
sessment. Gaughan et al. (2013) recognised the importance of phe-
nology in mapping tree-cover in Southern African savanna and derived
a methodology that made use of NDVI green-up phenological metrics to
estimate tree-cover. Cho et al. (2017) however found out that across a
much broader savanna landscape, the end of growing season metrics
showed a higher relationship with tree-cover than green-up metrics.
Furthermore, Gaughan et al. (2013) argued that the tree-grass contrasts
in Southern African savannas are highest in the dry season July-October
when trees retain green biomass but grasses have senesced. The above
assertion may not be true across the semi-arid savannas because many
tree species in these systems are deciduous and are without leaves
during the months of July-October. The current study is premised on
the assumption that the optimal period for tree-cover estimation in the
semi-arid savannas in Southern Africa could occur after the grasses
have senesced and before the onset of leaf shedding by the trees. The
exact period has not been determined. Therefore, the aim of this study
was to determine the optimal period of the year for estimating tree-
cover from MODIS NDVI time series and hence to establish a rapid
procedure for assessing long-term changes in tree-cover in the grassland
and savanna biomes of South Africa.

2. Material and methods

2.1. Study area

The study area consists of MODIS tile h20v11, clipped to South
African boundaries (Fig.1). The region falls between latitude 22° - 29 °S
and longitude 22° - 32 °E. Two main biomes dominate this MODIS tile,
namely the savanna and grassland (Mucina, et al. 2006). The MOD13A2
16-day composite NDVI at 250m resolution data from 1 Jan 2001 to 10
June 2018 were downloaded from the USGS explorer website.

2.2. Tree-cover percentage training data

The method to estimate tree-cover percentage was described in Cho
et al. (2017). 150 random polygons 4 by 4 pixels or 1000m by 1000m
were created on the MODIS image scene, converted to keyhole markup
language (kml) file format and overlaid on Google Earth high resolution
image in the Google Earth software (Google Inc). Only polygons that
have not undergone changes in tree-cover from 2001 to recent times
(generally 2016–2018) were retained for the study. This was achieved
by examining historical images of each polygon. Plantation forest, crop
fields and settlements were not included. Furthermore, only images
acquired during the summer months (November to April) were used
because tree canopy cover in the savanna is known to vary with season.
The first 100 polygons that were assessed for tree-cover were used in
the study. Three-band (red-green-blue) raster image scenes JPEG
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Fig. 1. Biomes of South Africa A Mucina and Rutherford (2006) and 100 random plots selected to analyse the relationship between NDVI and percentage tree cover B.

Fig. 2. Validation of increasing tree cover map using Google Earth imagery. 1green= evidence of increasing tree-cover and 0 yellow=no evidence of change in tree
cover. White polygons denote areas with significant increasing trend in tree-cover (p<0.05) increasing trend in tree-cover (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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format of the selected polygons were saved in Google Earth and later
imported into ENVI software (ITT Visual information solutions), where
they were classified into two classes (tree and non-tree) using minimum
distance supervised classification. The tree-cover percentage per
polygon was computed as a ratio of the area of the tree-class to the total
area of the polygon.

2.3. NDVI vs tree-cover relationship and determining the best dates for tree-
cover assessment

The MOD13A2 NDVI time series data was smoothened using a
Savitzky-Golay (Savitzky and Golay, 1964) smoothing filter (using a 3
window filter and a 5th order polynomial function). Subsequently, a
time series of the coefficients of determination R2 between NDVI and
tree-cover percentage was established for each 16-day composite
MODIS NDVI data. To determine the best period for tree-cover

assessment, we first ranked the R2 from the highest to the lowest value.
Secondly, only dates corresponding to R2> 0.5 were considered for
further analysis. The average, Median and mode dates with R2> 0.5
were then determined. The statistical analysis revealed Julian days 161
June 10 and 177 June 26 as the most frequent (the mode) date and
median dates with high R2 between the NDVI and tree-cover. A tree-
cover prediction model for each year was established using a linear
regression analysis between NDVI of Julian day 161 and tree-cover
percentage. Bootstrapped regression analyses with 30 replicates were
conducted to determine the linear regression model coefficients, cali-
bration model R2, and standard errors (SE) of calibration and predic-
tion. That is, the bootstrapping process involved random sampling with
replacement of 2/3 and 1/3 of the data for the calibration and vali-
dation models, respectively.

Fig. 3. Coefficient of determination R-sq between NDVI and tree cover overlaid on 16-day composite NDVI time series.

Table 1
Bootstrapped 30 bootstrap samples linear regression model coefficients and accuracies for the regression between NDVI and tree cover percentage for 100 plots.

Year linear model: y=a+bx coefficients Calibration model standard error Calibration model R2 Model validation 30 bootstrap samples

a b Mean SE ±95% CI Mean R2 ±95% CI Mean SE ±95% CI

2001 −39.7583 0.0176 16.44 0.15 0.58 0.01 17.23 0.44
2002 −34.3645 0.0192 16.43 0.21 0.58 0.01 16.08 0.63
2003 −30.1024 0.0179 18.09 0.24 0.49 0.01 18.55 0.65
2004 −28.6479 0.0148 17.20 0.20 0.53 0.01 17.52 0.54
2005 −30.2968 0.0177 18.60 0.27 0.45 0.02 19.07 0.76
2006 −37.0047 0.0173 16.89 0.21 0.55 0.01 16.62 0.61
2007 −31.2410 0.0183 16.85 0.14 0.55 0.01 17.51 0.40
2008 −29.9520 0.0166 18.80 0.20 0.45 0.01 18.90 0.57
2009 −36.5464 0.0177 16.63 0.15 0.56 0.01 17.42 0.45
2010 −42.2027 0.0172 15.70 0.20 0.61 0.01 15.51 0.57
2011 −35.4115 0.0170 17.28 0.25 0.51 0.01 18.68 0.66
2012 −39.0064 0.0209 16.92 0.17 0.55 0.01 16.82 0.49
2013 −29.2562 0.0159 16.33 0.16 0.58 0.01 16.66 0.44
2014 −37.3127 0.0178 16.39 0.21 0.56 0.01 16.28 0.60
2015 −33.2049 0.0182 17.17 0.20 0.54 0.01 17.53 0.61
2016 −35.7633 0.0174 17.25 0.25 0.53 0.01 17.35 0.71
2017 −31.7576 0.0158 17.54 0.25 0.50 0.01 18.05 0.71
2018 −31.3059 0.0144 17.08 0.25 0.53 0.02 18.44 0.72
Average −34.0631 0.0173 17.09 0.21 0.54 0.012 17.45 0.59
± 95% CI 1.8551 0.0007 0.37 0.02 0.02 0.00 0.47 0.05
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Fig. 4. Scatter plot between observed and predicted tree-cover for the various years.2001–2018.
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2.4. Trend analysis of tree-cover percentage 2001–2018

The non-parametric Kendall rank statistical test was used to assess
the significance of any increasing or decreasing trend in tree cover-over
percentage in the 18 year period for each pixel. The Kendall rank cor-
relation coefficient or tau ranges from -1 and 1, with values greater and
less than zero indicating increasing and decreasing trend, respectively.
An IDL Interactive Data Language script was written to compute the tau
and associated p-values for each pixel in the stack of 18 tree-cover
maps. In order to delineate pixels that showed increasing or decreasing
tree-cover, we explored two scenarios of p-values i.e. significance le-
vels; ‘p < 0.05′ and ‘p < 0.01′. The delineated pixels generally oc-
curred in clusters. They were then vectorised as polygons in ENVI,
saved as shapefiles and later converted into the kml file format.

2.5. Accuracy assessment of tree-cover trends

The accuracy of predicted trends in tree-cover was assessed using
Google Earth high resolution images. A significant trend in increasing
tree-cover may result from two kinds of processes, namely tree re-
cruitment and expanding canopies of existing trees (i.e. increasing leaf
area index). While a significant trend of decreasing tree-cover could
occur from gradual thinning of the woodland from activities such as
wood harvesting, tree felling by elephant or bush fires. We only thor-
oughly assessed the accuracy of polygons mapped as showing sig-
nificant increasing trend in tree-cover because this was a more wide-
spread process as compared to the decreasing tree-cover trend. A
100 km resolution grid was manually created on the Google Earth scene
of the study area to guide the accuracy assessment process (Fig. 2).
Carefully, moving from one grid cell to the other, we looked for

evidence of increasing tree-cover amongst the polygons using the his-
torical sliding bar of Google Earth. The accuracy assessment was limited
to the identification of visible signs of tree recruitment in the mapped
polygons. It was difficult to assess increasing tree-cover which may
result from increasing tree LAI or densification of the tree canopy.
Furthermore, we avoided very small polygons and where high resolu-
tion historical images were not available. The numbers one (1) and Zero
(0) were respectively assigned to polygons that showed evidence of tree
recruitment and no evidence of tree recruitment. The prediction accu-
racy was assessed as a ratio of the total number of ones to the total
number of polygons assessed.

3. Results

3.1. Determining the optimal period of the year for tree-cover assessment

The NDVI time series and the resulting of NDVI/tree-cover regres-
sion R2s showed asynchronous profiles or patterns (Fig. 3). The two
profiles peak at different times of the year. The NDVI profile generally
lags behind the R2 profile by about three months. For example, the
NDVI growing season curve (July to June) generally peaks in the month
of February, while the R2 curve peaks in early June. Statistical analysis
of dates with the R2>0.5 for each year revealed Julian day 161 or
June 10 as the most frequent period i.e. the mode date with R2> 0.5
between NDVI and tree-cover percentage. Julian day 177 or June 26
was identified as the median date. We therefore concluded that the
narrow period window from June 10–26 of only 16 days is the optimal
period for assessing tree-cover percentage in the semi-arid grassland
and savanna biomes of South Africa.

Fig. 5. Trend analysis of tree-cover change 2001–2018 using Kendall correlation analysis. A=Kendall Tau coefficient, B = p-values and C= threshold of p < 0.05
highlighting the areas of significant increasing or decreasing tree-cover percentage.
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3.2. Mapping tree-cover percentage for each year

Before we proceeded to map tree-cover for each year, we first ex-
plored whether a multivariate regression approach such as Random
Forest (RF) involving all seven bands of MODIS visible to SWIR bands
for Julian day 161 would improve on the NDVI/tree-cover linear re-
gression results. The MOD15A images (500m resolution) were used in
this case. The accuracies of the RF regression models were rather lower
than those of the linear regression involving NDVI. For example, the

2010 data yielded a calibration model standard error SE of
17.96 ± 0.92 (± 95% CI) as compared to SE= 17.02 ± 0.37
(± 95% CI) for the NDVI/tree-cover linear regression model, and a
validation SE=20.86 ± 1.25 (± 95% CI) compared to
SE= 17.45 ± 0.59 (± 95% CI) for the NDVI model. The lower accu-
racy of the MODIS 500m image might be due to the coarser resolution
of the image. Only the full results of the NDVI/tree-cover linear re-
gression models are represented in Table 1. We therefore used the
bootstrapped linear regression model coefficients involving NDVI
shown in Table 1 to produce tree-cover maps for all 18 years. The mean
R2 for the calibration models was 0.54 ± 0.02. As could be observed
from the 18 scatter plots between the observed and predicted tree-cover
data Fig. 4, there were systematic biases in the estimation of tree-cover,
whereby low values were predicted high and high values predicted low.
In general, tree-cover values below 10% were generally predicted with
a positive bias by about 10 order of magnitude i.e. SE of +10%. This
would imply that predicted tree-cover values of below 20% would
generally be considered as areas of sparse woody cover i.e. below 10%
of actual tree-cover or non-forest according to the FAO definition of
forest.

3.3. Assessing tree-cover change 2001−2018

Using a ‘p < 0.05′ significance level for the Kendall correlation
(Fig. 5), we found evidence of tree recruitment in 180 polygons out of a
total of 330 polygons assessed, corresponding to an accuracy of 54%.
While for the ‘p < 0.01′ scenario, we found evidence of tree recruit-
ment in 132 out of 200 polygons assessed accuracy=65%. This

Fig. 6. Google Earth image scene showing increased in tree-cover in agricultural landscapes.

Fig. 7. Tree-cover profiles of an area in the Kruger National Park that showed
significant decreasing trend in tree-cover between 2001 and 2018. The area was
burnt in the winter of 2008.
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Fig. 8. Landsat TM5images 2007, 2008, 2009 and 2010 of an area in the Kruger National Park that showed significant decreasing trend in tree-cover between 2001
and 2018. A fire scar can be observed in 2008.

Fig. 9. Areas of significant p < 0.05 increasing or decreasing trend in NDVI derived from Kendall correlation analysis.
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improved accuracy using the ‘p < 0.01′ threshold was not achieved
without some consequences, as 48 polygons that showed evidence of
tree recruitment under the ‘p < 0.05′ scenario were omitted. Most of
the tree recruitment is occurring in the province of Limpopo and could
be largely attributed to farm abandonment as observed from the Google
Earth high resolution scenes e.g. Fig. 6

Significant decreasing tree-cover trends were observed in some
large polygons in the Kruger National Park. The time series of the
predicted tree-cover for this area Fig. 7 showed some strong irregular
patterns though with an overall significant negative trend in tree cover.
We further investigated the area using Landsat 5 TM images and ob-
served that the sharp decrease in tree-cover observed in 2009 for ex-
ample might have been caused by bush fire in the preceding year 2008
as a burnt scar can be observed in the 2008 image Fig. 8. A similar
phenomenon was observed between 2004 and 2005.

It would be noted that it was worthwhile to convert the NDVI maps
of Julian day 161 to tree-cover maps in order to assess increasing or
decreasing trends in tree-cover for the 18 years period because similar
analysis with NDVI yielded poor results. The NDVI trend analysis tends
to show general trends in vegetation cover as significant trends could be
observed in the grassland biome that are not related to increasing or
decreasing tree-cover Fig. 9.

4. Discussion

Understanding the spatio-temporal dynamics of tree-cover in the
savannas of Africa is critical for managing these ecosystems to sustain
the provision of several key ecosystem services. The semi-arid savannas
in Southern Africa are highly heterogeneous in space and time and
challenging to map (Gaughan et al., 2013). In this study, we have ex-
plored the seasonal variability of vegetation green density using NDVI
time series data with the aim of identifying the optimal period of the
year for tree-cover estimation in the semi-arid savannas of Southern
Africa. The assumption of the existence of an optimal period for tree
cover assessment was rooted in the fact that several studies have shown
that trees and grasses in Southern African savannas show asynchronous
phenological profiles from the start to the end of the growing season
(Archibald and Scholes, 2007; Chidumayo, 2001; Cho et al., 2017). For
example, Cho et al. (2017) showed that the day corresponding to the
end of the growing season in these systems explained 40% of the var-
iance in tree-cover. It was therefore logical to assume that a period
exists when the green contrast between the grasses and trees is highest
and that such a period would be optimal for tree-cover assessment using
NDVI, which is a measure of green density.

An optimal period exists for estimating tree-cover percentage in the
semi-arid grassland and savanna biomes of South Africa from NDVI and
the period is actually a narrow window from June 10–26 of just 16
days. This period is a month later than the period identified as the end
of the growing season (May 9) for tree dominated areas in the same
study area (Cho et al., 2017). June marks the beginning of leaf shedding
by most deciduous and semi-deciduous trees and by July most decid-
uous trees are without leaves (Janecke and Smit, 2011). The proportion
of deciduous trees in a pixel might have an influence on the model
accuracy. Studies of tree-cover assessment in South Africa have hardly
taken note of the narrow window of dates within which this important
vegetation parameter can be accurately assessed using commonly
available multispectral images. The good news is that the rarity of cloud
cover in the month of June in the summer rainfall biomes of Southern
African makes it largely possible to acquire cloud-free images during
this narrow window of opportunity to assess tree-cover. However, ir-
rigated fields and wetland areas could be wrongly predicted as having
high tree-cover in June.

Using an optimal period to estimate tree-cover from NDVI did not
mitigate some of the inherent shortcoming of the index in the Southern
African savannas generally characterised by low tree cover. Only about
have of the variance in tree-cover was explained by NDVI for all the

years mean R2=0.54. The linear regression models still performed
poorly in estimating low tree-cover and saturated at high canopy cover.
Even the use of a non-parametric multi-band regression algorithm,
Random Forest in our case did not improve on the NDVI results. Naidoo
et al. (2016) observed similar accuracies for estimating tree-cover in
autumn in the South African Savanna using Landsat TM imagery e.g.
R2s of 0.34, 0.46, 0.50 and 0.65 for 23/05–2007, 07/04/2008, 12/05/
2009 and 29/04/2009, respectively. Yang et al. (2012) obtained an
R2=0.6 for estimating tree cover in the semi-arid woodlands of Na-
vada, USA using Landsat TM data. The availability of Sentinel-2, a new
high resolution and freely available multispectral sensor with bands in
the visible to short-wave infrared and more importantly in red-edge
region offer promise for resolving the saturation problem of NDVI
(Mutanga et al., 2004; Cho et al., 2009) and should be investigated.
Furthermore, the availability of Sentinel-1 data will address the lack of
time series of freely available RADAR data.

Google Earth high resolution images were very instrumental in this
study, both for obtaining training data and in the validation of tree
recruitment. There is however no complete wall-to-wall coverage of
high resolution images for each year, which hindered the accuracy
assessment of the tree-cover change maps. Appropriate high resolution
images for every year could also be instrumental in assessing increase in
tree-cover resulting from expansion of canopy cover or decreasing tree
cover resulting from gradual thinning of the forest. We observed that
tree recruitment is common in the province of Limpopo because of farm
abandonment. Blair et al. (2018) have reported widespread cropland
abandonment in the region between 1950 and 2010. They reported that
farmers in the region attributed farm abandonment to rainfall varia-
bility and droughts. Increasing bush density in the savanna reduces land
accessibility by wildlife and livestock and might also negatively affect
the rangeland carrying capacity because of increased competition be-
tween trees and herbaceous vegetation for light, water and nutrients.
On the other hand, increasing tree cover could increase the landscape’s
resilience to the impacts of droughts.

5. Conclusions

The most important conclusions from the study are:

- The narrow window between June 10 and 26 is the optimal period
for assessing tree-cover percentage in the semi-arid grassland and
savanna biomes of South Africa from optical remote sensing data.

- Farm abandonment appears to have been the most important factor
contributing to increasing tree-cover change in the savanna land-
scape in South Africa.

This study shows that timing of image acquisition in the semi-arid
biome of South Africa is critical for accurate assessment of tree-cover as
only a narrow window of opportunity exist to achieve accurate as-
sessment. Furthermore, the method proposed in this study can be ap-
propriate for long-term assessment of tree-cover trends as opposed to
short-term assessment given the modest accuracy recorded with the use
of NDVI. The study needs to be extended to cover all of the Southern
Africa in order to ascertain the optimal dates for tree-cover assessment
in entire semi-arid biomes of Southern Africa.
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