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Abstract In this paper we consider discrete growth-decay-fragmentation equa-
tions that describe the size-distribution of clusters that can undergo splitting,
growth and decay. The clusters can be for instance animal groups that can
split but can also grow, or decrease in size due to birth or death of individuals
in the group, or chemical particles where the growth and decay can be due to
surface deposition or erosion. We prove that for a large class of such problems
the solution semigroup is analytic and compact and thus has the asynchronous
exponential growth property; that is, the long term behaviour of any solution
is given by a scalar exponential function multiplied by a vector, called the
stable population distribution, that are independent on the initial conditions.
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1 Introduction

Coagulation and fragmentation models that describe the processes of objects
forming larger clusters or, conversely, splitting into smaller fragments, have
received a lot of attention over several decades due to their importance in
chemical engineering and other fields of science and technology, see e.g. [22,44].
One of the most efficient approaches to modelling dynamics of such processes
is through the kinetic (rate) equation which describes the evolution of the
distribution of interacting clusters with respect to their size/mass. The first
model of this kind, consisting of an infinite system of ordinary differential
equations, was derived by Smoluchowski, [42,43], to describe pure coagulation
in the discrete case; that is, if the ratio of the mass of the basic building block
(monomer) to the mass of a typical cluster is positive, and thus the size of a
cluster is a finite multiple of the masses of the monomers. In many applications,
however, it turned out to be advantageous to allow clusters to be composed
of particles of any size x > 0. This leads to the continuous integro-differential
equation that was derived by Müller in the pure coagulation case, [34], and
extended to a coagulation–fragmentation version in [31].

In the last few decades it has been observed that also living organisms
form clusters or split into subgroups depending on circumstances, see e.g. [18,
28,35,36] for modelling concerning larger animals, or [2,29] for phytoplankton
models. It turns out that also the process of cell division may be modelled
within the same framework, see e.g. [13,14,38,40]. What was not always fully
recognized in some papers mentioned above was that the living matter has
its own vital dynamics; that is, in addition to forming or breaking clusters,
individuals within them are born or die, leading to the growth or decay of
the clusters, and so the latter processes must be adequately represented in
the models. In the continuous case, the birth and death processes are incor-
porated into the model by adding an appropriate first order transport term,
analogously to the age or size structured McKendrick model, see [2,8,10,13,
38]. On the other hand, in the discrete case the vital processes are modelled
by adding the classical birth-and-death terms to the Smoluchowski equation.
Note that e.g. the pure birth terms (or pure death terms) can be obtained
by the Euler discretization of the first order differential operator of the con-
tinuous case, while the full birth-and-death problem can be thought of as the
discretization of the diffusion operator.

One of the most important problems in the analysis of dynamical systems
is to determine their long term behaviour and hence this aspect of the the-
ory of growth–fragmentation equations has received much attention. The first
systematic mathematical study of the binary cell division model was carried
out using semigroup theory in [19]; the semigroup approach was significantly
extended to more general models in [33]. Recently a number of results have
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been obtained by the General Relative Entropy (or related) methods that lead
to convergence of solutions in spaces weighted by the eigenvector of the adjoint
problem, see e.g. [6,20,21,30,32,38,39].

All above results concern growth–fragmentation models with continuous
size distribution. Recently it has been observed, however, that a large class of
discrete fragmentation equations has much better properties than their con-
tinuous counterparts, especially when considered in spaces where sufficiently
high moments of solutions are finite. In particular, the fragmentation oper-
ator in such spaces generates a compact analytic semigroup. In this paper,
we explore these ideas for the full growth-decay-fragmentation equation and
show, in particular, that under natural assumptions on the coefficients of the
problem the growth-decay-fragmentation semigroup is analytic, compact and
irreducible and thus has the asynchronous exponential growth (AEG) prop-
erty, see [4]; that is its long term behaviour of solutions is given by the scalar
exponential function eλt, where λ is the dominant eigenvalue (and the spectral
bound) of the fragmentation operator, multiplied by the strictly positive eigen-
vector belonging to this eigenvalue, called the stable population distribution.
The word asynchronous comes from the fact that the behaviour of solutions
is ‘not synchronized’ with the initial conditions.

The paper is organized as follows. In Section 2 we introduce the model.
Sections 3 and 4 contain the results on the solvability of the problem. We use
the perturbation method and thus the way in which the right hand side of the
equation is split is of utmost importance. We found that first considering the
subdiagonal part (Section 3) and treating the full equation as a perturbation
of the subdiagonal part by remaining part, being a positive operator, by using
the Kato perturbation theorem (Section 4) provides the best results. In the
Appendix we provide a description of an alternative method, in which we split
the equations in a seemingly more natural way, considering the processes of
growth and decay separately from the independent process of fragmentation,
and then using the Trotter–Kato representation formula to prove the existence
of the solution semigroup. We find that this approach produces weaker results
due to worse properties of the growth-decay semigroup. Finally, in Section 5 we
show that the growth-decay-fragmentation semigroup has the AEG property
and in Section 6 we provide some examples and numerical illustrations of the
theoretical results obtained in the earlier sections.

2 The model

We consider a collection of clusters of sizes n ∈ N; that is, consisting of
n monomers (cells, individuals,. . . ), described by their size specific density
f = (fn)n∈N. We assume that the number of monomers in each cluster can
change by, say, a cell division (with the daughter cell staying in the cluster)
or its death. In an inanimate scenario, this can happen by the deposition of
a particle from the solute or, conversely, by its dissolution. If we assume that
the probability of a more than one birth or death event in a cluster hap-
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pening simultaneously is negligible, then the process can be modelled by the
classical birth-and-death system of equations, see e.g. [29, p. 1199], though
in this setting it should be remembered that the birth or death in a cluster
leads to its growth or decay and the latter is the subject of the modelling
process. We note that in the case of continuous size distribution the growth
process is modelled by the first order differential operator with respect to size,
f → −∂x(gf), where g is the growth rate, see e.g. [8], whose Euler discretiza-
tion with step-size 1 at x = n is g(n)f(n) − g(n + 1)f(n + 1). Similarly, the
decay operator f → ∂x(df) can be discretized as −d(n)f(n)+d(n+1)f(n+1)
and, using a central difference scheme, the diffusion operator f → ∂x(D∂xf)
yields D(n+ 1)f(n+ 1)− (D(n+ 1) +D(n))f(n) +D(n)f(n− 1).

We further assume that the clusters can split into several smaller clusters.
Combining both processes, we arrive at the following system of equations:

df1
dt

= −g1f1 + d2f2 +

∞∑
i=2

aib1,ifi,

dfn
dt

= gn−1fn−1 − (an + gn + dn)fn + dn+1fn+1 +

∞∑
i=n+1

aibn,ifi, n ≥ 2,

fn(0) = f inn , n ≥ 1, (1)

or

df

dt
= G−f + (A+ G0 +D0)f +D+f +ΞAf = Gf +Df +Af + Bf
= Gf +Df + Ff,

f(0) = f in, (2)

where f = (fn)n∈N is the vector whose components fn give the numbers of
n-clusters; the operator

A = diag(−an)n≥1, a1 = 0, an > 0, n ≥ 2,

gives the rates at which the clusters of mass n undergo splitting;

G0 = diag(−gn)n≥1, gn ≥ 0, n ≥ 1,

is the growth rate;

D0 = diag(−dn)n≥1, d1 = 0, dn ≥ 0, n ≥ 2,

is the death rate; G−,D+ are, respectively, the left and right shifts of G and
D; that is

G−f = (0, g1f1, . . . gnfn, . . .), D+f = (d2f2, . . . dnfn, . . .),

Ξ = (bn,i)1≤n<i,i≥2 is the daughter distribution function, also called the frag-
mentation kernel, that gives the numbers of i-clusters resulting from splitting
of a mass n parent and

G = G− + G0, D = D+ +D0, B = ΞA, F = A+ B.
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Coefficients bn,i, 1 ≤ n < i, i ≥ 2, are nonnegative numbers satisfying

i−1∑
n=1

nbn,i = i. (3)

The total mass of the ensemble is given by

M(t) =

∞∑
n=1

nfn(t), t ≥ 0; (4)

then it is known, see e.g. [7,11], that in the pure fragmentation case (G = D =
0) the mass is conserved, M(t) =

∑∞
i=1 nfn(0), t ≥ 0.

Later, we shall use the fact that (1) can be written as the pure growth-
fragmentation model

df1
dt

= −g1f1 +

∞∑
i=2

aib1,ifi,

dfn
dt

= gn−1fn−1 − (gn + an)fn +

∞∑
i=n+1

aibn,ifi, n ≥ 2,

fn(0) = f inn , n ≥ 1, (5)

where an = an + dn, n ≥ 2, (with a1 = 0) and

bn,i =

{
an+1bn,n+1+dn+1

an+1+dn+1
, i = n+ 1,

aibn,i
ai+di

, i ≥ n+ 2.
(6)

We note that the fragmentation part of this model no longer is conservative
as

i−1∑
n=1

nbn,i = i

(
1− di

i(ai + di)

)
, i ≥ 2, (7)

so it corresponds to the model with the so-called discrete mass-loss with mass-
loss fraction λn = dn/n(an+dn), see [15,24], mathematically analysed in [41].

The analysis of the pure fragmentation equation most often is carried out
in the space X1 := `11 in which the norm of a nonnegative f gives the total
mass of the ensemble. However, it is much better to consider (1) in the spaces
with finite higher moments, Xm := `1m, with the norm

‖f‖[m] =

∞∑
n=1

nm|fn|, m ≥ 1. (8)

In the sequel, for any infinite diagonal matrix P = diag(pn)n≥1, we define the
operator Pm in Xm by Pmf = Pf on D(Pm) = {f ∈ Xm; Pf ∈ Xm}.
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3 Analysis of the subdiagonal part

In this section, we shall consider the simplified problem corresponding to the
subdiagonal part of (5),

df

dt
= Kf = G−f + (A+ G0 +D0)f, f(0) = f in. (9)

Denote for brevity T = A+ G0 + D0 and consider the operator (Tm, D(Tm))
defined, as above, by Tmf = T f on D(Tm) = {f ∈ Xm; T f ∈ Xm}. Then
G−m = G−|D(Tm) is a well defined positive operator in Xm and we can apply
the substochastic semigroup theory, [9], to K|D(Tm) = Tm + G−m. Let Km,max

denote the maximal extension of Km; that is, Km,maxf = T f + G−f on

D(Km,max) =
{
f ∈ Xm;

∞∑
n=2

nm|anfn + dnfn + gnfn − gn−1fn−1| <∞
}
.

Theorem 1 1. If

lim inf
n→∞

(
an + dn − gn

(n+ 1)m − nm
nm

)
> −∞, (10)

then there is an extension Km of Tm+G−m that generates a quasicontractive
(of type G(1, ω) for some ω ∈ R) positive semigroup on Xm and, moreover,
Km = Km,max. The resolvent R(λ,Km) for λ > ω is given by

[R(λ,Km)f ]n =

n∑
i=1

fi
λ+ θn

n−1∏
j=i

gj
λ+ θj

, n ≥ 1, (11)

where θ1 = g1 and θn = gn + dn + an, n ≥ 1.
2. If there is m′ > m such that1

lim inf
n→∞

n(an + dn)

gn
≥ m′, (12)

then (10) is satisfied. Moreover, D(Km) = D(Am) ∩ D(D0
m) ∩ D(Gm),

where Gm = G|D(Gm) with

D(Gm) =
{
f ∈ Xm;

∞∑
n=2

|gnfn − gn−1fn−1| <∞
}
, (13)

and (Km, D(Km)) = (Tm +G−m, D(Tm)).

1 In (12) and everywhere below, it is assumed that the numerical coefficients like an, dn,
gn, e.t.c. take their values in the extended half line R̄+ = [0,∞) ∪ {+∞}, where for any
a ∈ (0,∞), we let a

0
= ∞. In particular, according to this convention for a nonnegative

sequence (gn)n≥0, with gn = 0, n ≥ n0, (12) holds for any finite m′ ≥ 0.



Discrete growth-decay-fragmentation equation 7

3. If (12) is satisfied, then R(λ,Km), λ > ω, is compact provided

lim inf
n→∞

(an + dn) =∞ (14)

and either
∞∑
n=1

1

λ0 + θn
<∞, or lim

n→∞
n

λ0 + θn
= 0, (15)

for some fixed λ0 > ω.
4. If

lim inf
n→∞

an + dn
gn

> 0, (16)

then Km = G−m + Tm = G−m + G0
m + D0

m + Am and (GKm(t))t≥0 is an
analytic semigroup. If additionally (14) is satisfied, then (GKm(t))t≥0 is
compact.

Proof ad 1.) As in (5), we denote an = an + dn, n ≥ 1. Note that by virtue of
(10), an − n−mgn((n + 1)m − nm) ≥ α > −∞ for n ≥ 1. Then, if α < 0, for
f ∈ D(Tm)+, we have

∞∑
n=1

nm[(Tm +G−m)f ]n = −
∞∑
n=1

nmfn

(
an − gn

(n+ 1)m − nm
nm

)

= −
∞∑
n=1

nmfn

(
an − gn

(n+ 1)m − nm
nm

− α
)
− α

∞∑
n=1

nmfn

= −c1(f) + c0(f), (17)

where c0 is a bounded functional on Xm and c1 is nonnegative. If α ≥ 0, we
set α = 0 in the formulae above. Thus, as in [9, Proposition 9.29], there is
an extension Km ⊃ G−m + Tm generating a smallest quasicontractive (with
the growth rate ω ≥ 0 not exceeding ‖c0‖) positive semigroup. By [9, Theo-
rem 6.20], Km ⊂ Km,max. However, in view of the two-diagonal structure of
Km,max, for λ > ω it is immediate that Ker(λI − Km,max) = {0}, hence [9,
Lemma 3.50 & Proposition 3.52] gives Km = Km,max.

Let λ > ω. We use the formula, see [9, Proposition 9.29],

R(λ,Km)f =

∞∑
k=0

R(λ, Tm)[G−mR(λ, Tm)]kf, f ∈ Xm, λ > ω. (18)

Since R(λ, Tm) is represented by the matrix R(λ) = diag
(

1
λ+θn

)
n≥1

, and G−m

is represented by G−, we have R(λ)[G−R(λ)]k = (γ
(k)
ij )i,j∈N, where

γ
(k)
ij =

 1
λ+θi

i−1∏
l=j

gl
λ+θl

, i ≥ k + 1, j = i− k,

0, otherwise.



8 J. Banasiak, L.O. Joel, S. Shindin

Since the convergence in Xm implies the coordinate-wise convergence, we see
that for each n the component [R(λ,Km)f ]n of the series (18) terminates after
n terms and hence the resolvent is given by (11).

ad 2.) Since c1 extends to D(Km)+ and c0 is bounded in Xm, for f ∈ D(Km)+
we can write

∞∑
n=1

nm[(Tm +G−m)f ]n=− lim
l→∞

(
l∑

n=1

nmfn

(
an − gn

(n+ 1)m − nm
nm

)
− lmglfl

)
= c0(f)− c1(f) + lim

l→∞
lmglfl (19)

and hence the last limit exists. Further, we have

c1(f) =

∞∑
n=1

nmfn

(
−α+ an − gn

(n+ 1)m − nm
nm

)

≥
∞∑
n=1

nmfnan

(
1− gn

nan

(
m+O

(
1

n

)))
,

as −α > 0 (otherwise we set α = 0). If (12) is satisfied, then (possibly adjusting
n0 from the previous part of the proof) for n ≥ n0

1− gn
nan

(
m+O

(
1

n

))
≥ 1− m

m′
+

gn
nan

O

(
1

n

)
≥ c′ > 0

on account of m′ > m and gn/nan ≤ 1/m′. Since c1 extends to D(Km)+
by monotonic limits, we argue as in [7, Theorem 2.1] that any f ∈ D(Km) is
summable with the weights (nman)n≥1 and hence, by (12), it is also summable
with the weight (nm−1gn)n≥1. Therefore, in particular, D(Km) ⊂ D(Am) ∩
D(D0

m) and hence alsoD(Km) ⊂ D(Gm) holds by the definition ofD(Kmax,m).
The converse inclusion is obvious. Further, by (19), liml→∞ lmglfl exists, and
thus it must be 0. Indeed, otherwise lmglfl > c for some c > 0 and large l
contradicting the summability of (nm−1gn)n≥1. But then (19) implies that Km

is honest, hence (Km, D(Km)) = (Tm +G−m, D(Tm)) by [9, Corollary 6.14].

ad 3.) Though not strictly necessary, the estimates of the norm of the resolvent
are instructive and used also further down. To simplify the calculations, instead

of ‖ · ‖[m], we employ the norm ‖f‖∗ :=
∑∞
n=1

Γ (n+m)
Γ (n) |fn| that is equivalent

to ‖ · ‖[m] by virtue of the Gautschi inequality

cmn
m ≤ Γ (n+m)

Γ (n)
= Cmn

m, n ≥ 1, (20)

which holds uniformly for all n ≥ 1, and a fixed m > 0, with absolute constants
0 < cm < Cm, see e.g. [27].
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Let f ∈ Xm and λ > ω. Then, changing the order of summation,

‖R(λ,Km)f‖∗ ≤
∞∑
i=1

|fi|
∞∑
n=i

Γ (n+m)

Γ (n)

1

λ+ θn

n−1∏
j=i

gj
λ+ θj

=
1

λ− ω
∞∑
i=1

|fi|
∞∑
n=i

Γ (n+m)

Γ (n)

(
λ− ω + gn
λ+ θn

− gn
λ+ θn

)n−1∏
j=i

gj
λ+ θj

≤ 1

λ− ω
∞∑
i=1

|fi|
∞∑
n=i

Γ (n+m)

Γ (n)

n−1∏
j=i

gj
λ+ θj

−
n∏
j=i

gj
λ+ θj

 .

(21)

The internal sum can be written as

lim
N→∞

N∑
n=i

Γ (n+m)

Γ (n)

n−1∏
j=i

gj
λ+ θj

−
n∏
j=i

gj
λ+ θj

 (22)

=
Γ (i+m)

Γ (i)
+ lim
N→∞

 N∑
n=i+1

Γ (n+m)

Γ (n)

n−1∏
j=i

gj
λ+ θj

−
N∑
n=i

Γ (n+m)

Γ (n)

n∏
j=i

gj
λ+ θj


and then the last term can be transformed as

lim
N→∞

 N∑
n=i+1

Γ (n+m− 1)

Γ (n− 1)

n−1∏
j=i

gj
λ+ θj

+ m

N∑
n=i+1

Γ (n+m− 1)

Γ (n)

n−1∏
j=i

gj
λ+ θj

−
N∑
n=i

Γ (n+m)

Γ (n)

n∏
j=i

gj
λ+ θj


= lim
N→∞

m N∑
n=i+1

Γ (n+m− 1)

Γ (n)

n−1∏
j=i

gj
λ+ θj

− Γ (N +m)

Γ (N)

N∏
j=i

gj
λ+ θj

 .

Using (12), for sufficiently large j we have

gj
λ+ θj

=
gj

λ+ gj + (aj + dj)
≤ jgj
λj + (j +m′)gj

≤ j

m′ + j
, (23)

hence

0 ≤ lim sup
N→∞

Γ (N +m)

Γ (N)

N∏
j=i

gj
λ+ θj

≤ lim sup
N→∞

Γ (N +m)

Γ (N)

Γ (N + 1)Γ (i+m′)
Γ (N +m′ + 1)Γ (i)

= lim sup
N→∞

N

N +m′
Γ (N +m)Γ (i+m′)
Γ (N +m′)Γ (i)

= 0,
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on account of the Gautschi inequality, see (20). Thus, (22) can be estimated
from above by

Γ (i+m)

Γ (i)
+m

∞∑
n=i+1

Γ (n+m− 1)

Γ (n)

n−1∏
j=i

j

j +m′

=
Γ (i+m)

Γ (i)
+m

∞∑
n=i+1

Γ (n+m− 1)Γ (i+m′)
Γ (i)Γ (n+m′)

=
Γ (i+m)

Γ (i)
+m

∞∑
n=i+1

Γ (n+m− 1)

Γ (i)Γ (n− i) B(n− i,m′ + i), (24)

where B is the Beta function. The sum above can be computed explicitly.
Indeed, using integral representation for the Beta function, the Taylor series
expansion

(1− t)−m−i =

∞∑
n=i+1

Γ (n+m− 1)

Γ (n− i)Γ (m+ i)
tn−i−1, |t| < 1,

that converges pointwise in the interval (−1, 1), nonnegativity of the partial
sums of the above series in [0, 1) and the Lebesgue dominated convergence
theorem, we obtain

∞∑
n=i+1

Γ (n+m− 1)

Γ (i)Γ (n− i)

∫ 1

0

(1− t)m′+i−1tn−i−1dt

=
Γ (m+ i)

Γ (i)

∫ 1

0

(
(1− t)m′+i−1

∞∑
n=i+1

Γ (n+m− 1)

Γ (n− i)Γ (m+ i)
tn−i−1

)
dt

=
Γ (m+ i)

Γ (i)

∫ 1

0

(1− t)m′−m−1dt =
Γ (m+ i)

Γ (i)

1

m′ −m.

Substituting the above into (24) and returning to (21), we obtain

‖R(λ,Km)f‖∗ ≤
m′

m′ −m
1

λ− ω ‖f‖∗. (25)

To prove the compactness, we fix some λ0 > ω and consider the projections

PNf = (f1, f2, . . . , fN , 0, . . .), N ≥ 1. (26)

Since PNR(λ0,Km) is an operator with finite dimensional range, it is compact.
We consider

‖PN−1R(λ0,Km)f −R(λ0,Km)f‖∗ ≤
∞∑
n=N

Γ (n+m)

Γ (n)

n−1∑
i=1

|fi|
λ0 + θn

n−1∏
j=i

gj
λ0 + θj

=

N−1∑
i=1

|fi|SN,i +

∞∑
i=N

|fi|Si+1,i, (27)
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where

Sl,i =

∞∑
n=l

Γ (n+m)

Γ (n)

1

λ0 + θn

n−1∏
j=i

gj
λ0 + θj

.

Now,

Si+1,i =

∞∑
n=i+1

Γ (n+m)

Γ (n)

1

λ0 + θn

n−1∏
j=i

gj
λ0 + θj

≤
(

sup
k≥i+1

a−1k

) ∞∑
n=i

Γ (n+m)

Γ (n)

an
λ0 + θn

n−1∏
j=i

gj
λ0 + θj

≤
(

sup
k≥i+1

a−1k

) ∞∑
n=i

Γ (n+m)

Γ (n)

(
1− gn

λ0 + θn

) n−1∏
j=i

gj
λ0 + θj

=
(

sup
k≥i+1

a−1k

) ∞∑
n=i

Γ (n+m)

Γ (n)

n−1∏
j=i

gj
λ0 + θj

−
n∏
j=i

gj
λ0 + θj


≤
(

sup
k≥i+1

a−1k

) m′

m′ −m
Γ (i+m)

Γ (i)
,

where we used the estimates for (21). Hence

∞∑
i=N

|fi|Si+1,i ≤
(

sup
k≥N+1

a−1k

) m′

m′ −m
∞∑
i=N

|fi|
Γ (i+m)

Γ (i)

≤
(

sup
k≥N+1

a−1k

) m′

m′ −m‖f‖∗ (28)

and, by (14), this term tends to 0 as N → ∞, uniformly on the unit ball of
Xm.

Since, by (23),

n∏
j=i

gj
λ0 + θj

≤
n∏
j=i

j

j +m′
≤

n∏
j=i

j

j +m
=
Γ (n)Γ (i+m)

Γ (i)Γ (n+m)

n

n+m
,

we have

SN,i =

∞∑
n=N

Γ (n+m)

Γ (n)

1

λ0 + θn

n−1∏
j=i

gj
λ0 + θj

≤ Γ (i+m)

Γ (i)

∞∑
n=N

1

λ0 + θn

n− 1

n− 1 +m
≤ Γ (i+m)

Γ (i)

∞∑
n=N

1

λ0 + θn
.

Hence
N−1∑
i=1

|fi|SN,i ≤
( ∞∑
n=N

1

λ0 + θn

) ∞∑
i=1

|fi|
Γ (i+m)

Γ (i)
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and, using the first option of (15) and combining the above estimate with (28),
we see that

lim
N→∞

PN−1R(λ0,Km) = R(λ0,Km)

in the uniform operator norm. Therefore R(λ0,Km) is compact.
To use the second option of (15), first we re-write the formula for SN,i as

SN,i =

∞∑
n=N

Γ (n+m)

Γ (n)

1

λ0 + θn

n−1∏
j=i

gj
λ0 + θj

≤ Γ (i+m′)
Γ (i)

∞∑
n=N

1

λ0 + θn

Γ (n+m)

Γ (n+m′)
.

Then, using again the Gautschi inequality, for large i and N > i we can write

Γ (i+m′)
Γ (i)

∞∑
n=N

1

λ0 + θn

Γ (n+m)

Γ (n+m′)
≤ CimNm′−m

∞∑
n=N

nm−m
′

λ0 + θn
,

for some constant C, since m′ − m > 0. Now, by assumption, nm−m
′

λ0+θn
is

summable (as λ + θn ≥ cn, for some c > 0 and large values of n, while

m − m′ < 0), hence
∞∑
n=N

nm−m
′

λ0+θn
converges to 0 as N → ∞. Since Nm−m′

monotonically converges to 0, we can use the Stolz–Cesáro theorem. We have

lim
N→∞

Nm′−m
∞∑
n=N

nm−m
′

λ0 + θn
=

1

m′ −m lim
N→∞

N + 1

λ0 + θN
= 0,

by assumption, hence we see that

N−1∑
i=1

|fi|SN,i ≤
(
Nm′−m

∞∑
n=N

nm−m
′

λ0 + θn

) ∞∑
i=1

|fi|im

and for the fixed λ0 the thesis follows as above. The general case λ > ω, follows
from this and the standard resolvent identity R(λ,Km) = R(λ0,Km) + (λ0 −
λ)R(λ0,Km)R(λ,Km).

ad 4.) By (16), gn ≤ C(an + dn) for large n and some C > 0, hence (12)
holds and thus also the thesis of 2. Moreover, (16) implies

D(Am) ∩D(D0
m) ⊂ D(G0

m) ⊂ D(Tm)

and hence, by 2.), D(Km) ⊂ D(Tm). Since Km is an extension of (Tm +
G−m, D(Tm)), we see that Km = Tm + G−m, but then we also have Km =
Am + D0

m + G0
m + G−m. Further, since (Tm, D(Tm)) is a diagonal operator,

it generates an analytic semigroup and hence (Km, D(Tm)) also generates an
analytic semigroup by the Arendt–Rhandi theorem, [3].
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Now, the assumption on gn allows for a simpler proof of the compactness
without the need for (15). By virtue of the above and [9, Theorem 4.3], I −
G−mR(λ, Tm) is invertible and

R(λ, Tm +G−m) = R(λ, Tm)[I −G−mR(λ, Tm)]−1.

In view of the last identity, it suffices to show that R(λ, Tm) is compact for
some λ > 0. However, the latter is immediate, for by virtue of (14), R(λ, Tm)
is the uniform limit of finite rank operators. ut

Remark 1 We note that (16) also allows to apply the Miyadera perturbation
theorem, see e.g. [25, Theorem III.3.16]. Indeed, if (16) is satisfied, then we
can find n0 such that for n ≥ n0 + 1

(n+ 1)mgn
nm(gn + an)

≤ q < 1

and then ω > 0 such that

max
1≤n≤n0

(n+ 1)mgn
nm(gn + an + ω)

≤ q < 1.

Since the generation for Tm + G−m is equivalent to that for Tm + G−m − ωI,
[9, Lemma 4.15], the Miyadera condition for Tm +G−m − ωI and f ∈ D(Tm)+
reads∫ δ

0

‖G−mGTm(t)f‖[m]dt =

∞∑
n=1

(n+ 1)mgn(1− e−(gn+an+ω)δ)

nm(gn + an + ω)
nmfn

≤
n0∑
n=1

(n+ 1)mgn
nm(gn + an + ω)

nmfn +

∞∑
n=n0+1

(n+ 1)mgn
nm(gn + an)

nmfn

≤ q‖f‖[m].

At the same time, if an/gn → 0 as n→∞, then gn/(an + gn)→ 1 and the
above estimate is not available.

4 Growth-fragmentation equation

We introduce the following notation, see [7],

∆(m)
n := nm − b(m)

n := nm −
n−1∑
k=1

kmbk,n, n ≥ 2, m ≥ 0. (29)

Then, for n ≥ 2,

∆(0)
n = 1− b01 ≤ 0, ∆(1)

n = 0, ∆(m)
n ≥ 0, m > 1. (30)

Further, let us recall the notation θ1 = g1 and θn = an + gn + dn, n ≥ 2.
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Theorem 2 1. Let (12) be satisfied. If for some m′ > m > 1

lim inf
n→∞

an
an

∆
(m)
n

nm
>

m

m′
(31)

holds, where as before an = an + dn, then

(Ym, D(Km)) = (Km +D+
m +Bm, D(Km))

= (Tm +G−m +D+
m +Bm, D(Tm)) (32)

generates a positive semigroup in Xm. If additionally (14) and (15) are
satisfied, R(λ, Ym) is compact for sufficiently large λ.

2. If for some m > 1

lim inf
n→∞

an
θn

∆
(m)
n

nm
> 0 (33)

holds, then

(Um, D(Tm)) = (Am +Gm +Dm +Bm, D(Tm)) = (Ym, D(Ym)), (34)

where D(Tm) = D(Am + G0
m + D0

m), generates a positive, analytic semi-
group in Xk for any k ≥ m.

Proof ad 1.) Using the same ideas as in the proof of Theorem 1, part 1, for the
full operator with the aid of f ∈ D(Km)+ ⊂ D(Am)+ ∩D(D0

m)+ and (13), we
obtain
∞∑
n=1

nm[(Km +D+
m +Bm)f ]n =

∞∑
n=1

nm[(Am +Dm +Bm)f ]n +

∞∑
n=1

nm[Gmf ]n.

Now, using the convention that g0f0 = 0,

∞∑
n=1

nm[Gmf ]n = lim
l→∞

l∑
n=1

nm(gn−1fn−1 − gnfn)

= lim
l→∞

(

l∑
n=1

((n+ 1)m − nm)gnfn − (l + 1)mgl+1fl+1)

=

∞∑
n=1

((n+ 1)m − nm)gnfn,

by the proof of Theorem 1, part 2. Hence

∞∑
n=1

nm[(Km +D+
m +Bm)f ]n =

∞∑
n=1

ann
mfn

(((
1 +

1

n

)m
− 1

)
gn
an

−an
an

(
1− 1

nm

n−1∑
k=1

kmbk,n

)
− dn

an

(
1−

(
1− 1

n

)m))

=: −
∞∑
n=1

Λnann
mfn. (35)
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Thus, if Λn ≥ 0 for large n, then there is an extension (Ym, D(Ym)) of (Km +
D+
m +Bm, D(Am)∩D(D0

m)∩D(Gm)) generating a positive semigroup. Since

Λn =
an
an

∆
(m)
n

nm
+
dn
an
O

(
1

n

)
− gn
nan

(
m+O

(
1

n

))
,

where both dn
an
O
(
1
n

)
and gn

nan
O
(
1
n

)
converge to zero due to the boundedness

of dn/an and gn
nan
≤ 1

m′ + εn, with εn → 0+ as n → ∞ (see (12)), we have
Λn ≥ Λ > 0 for some Λ and large n, provided (31) is satisfied. We observe
that, in view of (29) and the trivial inequality an

an
≤ 1, Λ ≤ 1 so that 1 < m <

m′ is a necessary condition for (31) to hold. Hence, if (31) holds, D(Ym) ⊂
D(Am) ∩D(D0

m). Then, since D(Bm), D(D+
m) ⊂ D(Am) ∩D(D0

m) and Ym is
a restriction of the maximal operator, D(Ym) ⊂ D(Gm) and hence the first
part of (32) is proved. To prove the second part, we note that (Km, D(Km)) =

(Tm +G−m, D(Tm)). Since Km + D+
m + Bm is the generator, it is closed and

thus

(Tm +G−m +D+
m +Bm, D(Tm)) ⊂ (Km +D+

m +Bm, D(Km))

= (Km +D+
m +Bm, D(Km)). (36)

On the other hand, D(Km) ⊂ D(D0
m) ∩ D(Am) = D(D+

m) ∩ D(Bm), hence
D+
m+Bm is Km-bounded by [9, Lemma 4.1 & Theorem 2.65]. Let f ∈ D(Km).

Then f = limn→∞ fn with fn ∈ D(Tm) and limn→∞Kmfn = limn→∞(Tm +
G−m)fn = Kmf . By Km-boundedness, ((D+

m +Bm)fn)n∈N converges. By (36),
Tm +G−m +D+

m +Bm is closable and hence

Kmf+D+
mf+Bmf = lim

n→∞
(Tm+G−m+D+

m+Bm)fn = (Tm +G−m +D+
m +Bm)f.

Thus

Km +D+
m +Bm ⊂ Tm +G−m +D+

m +Bm

and (32) follows.

The compactness of R(λ, Ym) follows from

R(λ, Ym) = R(λ,Km)[I − (Bm +D+
m)R(λ,Km)]−1,

where the second term on the right hand side is a bounded operator by D(Bm+
D+
m) = D(Am) ∩ D(D0

m) ⊃ D(Km). Thus the proof of the compactness of
R(λ, Ym) follows as in item 4.) of Theorem 1.

ad 2.) By [7, Theorem 2.1], if (33) holds for some m0, then it holds for any
m ≥ m0. Hence, we can fix an m for which (33) holds. Then, for f ∈ D(Tm) =
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D(Am +G0
m +D0

m) = D(Am) ∩D(G0
m) ∩D(D0

m), we obtain

∞∑
n=1

nm[(Gm +Dm +Am +Bm)f ]n =

∞∑
n=1

θnn
mfn

(((
1 +

1

n

)m
− 1

)
gn
θn

−an
θn

(
1− 1

nm

n−1∑
k=1

kmbk,n

)
− dn
θn

(
1−

(
1− 1

n

)m))

=: −
∞∑
n=1

θnn
mfnΘn.

Then we proceed as above. Since

Θn =
an
θn

∆
(m)
n

nm
+
dn
θn
O

(
1

n

)
− gn
θn
O

(
1

n

)
,

where the terms gn
θn
O
(
1
n

)
and dn

θn
O
(
1
n

)
converge to zero due to the bounded-

ness of gn/θn and dn/θn, Θn ≥ c > 0 for large n if and only if (33) is satisfied.
Hence (Um, D(Tm)) := (Gm +Dm +Am +Bm, D(Am +G0

m +D0
m)) generates

an analytic semigroup as the positive perturbation of the diagonal operator
(Tm, D(Tm)). However, by the closedness,

(Am +Gm +Dm +Bm, D(Am +G0
m +D0

m))

= (Tm +G−m +D+
m +Bm, D(Tm))

= (Tm +G−m +D+
m +Bm, D(Tm)) = (Ym, D(Ym)).

ut

Remark 2 We note that (33) implies that both an
θn

and
∆(m)
n

nm must be bounded
away from 0 and thus, in particular, (16) is satisfied so that (GKm(t))t≥0
and the pure fragmentation semigroup is analytic and, provided (14) holds,
compact in its own right.

5 Asynchronous exponential growth

Proposition 1 If assumptions (14) and (33) are satisfied, then the semigroup
(GUm(t))t≥0 is analytic and compact.

Proof By (34), (GUm(t))t≥0 can be considered to be generated as the pertur-
bation Um = Tm + (G−m + D+

m + Bm) so, as in the proof of Theorem 1.4,
R(λ, Tm)Xm ⊂ D(Um) implies

R(λ,Um) = R(λ, Tm)(I − (G−m +D+
m +Bm)R(λ, Tm))−1,

where, by

(λI − Tm)R(λ,Um) = (I − (G−m +D+
m +Bm)R(λ, Tm))−1,
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the operator (I−(G−m+D+
m+Bm)R(λ, Tm))−1 is bounded. Hence, R(λ,Um) is

compact, provided R(λ, Tm) is compact and that was proved in Theorem 1.4.
Since (GUm(t))t≥0 is analytic, its compactness follows from [25, Theorem
II.4.29]. ut

Proposition 2 The semigroup (GUm(t))t≥0 is irreducible if and only if gn > 0
for all n ≥ 1.

Proof N ecessity. If gn0 = 0 for some n0 ≥ 1, then the closed n0-dimensional
subspace of Xm, spanned by the canonical vectros en = (δi,n)i≥1, 1 ≤ n ≤ n0
is invariant under the action of the generator (Um, D(Tm)) and hence the
semigroup (GUm(t))t≥0 is not irreducible.

Sufficiency. By [16, Proposition 7.6] it suffices to show that R(λ,Um)en > 0
for all n ≥ 1 and for some fixed λ > s(Um). To simplify the calculations, we
use the representation

(Um, D(Tm)) = (Km +D+
m +Bm, D(Tm)) =: (Km + Bm, D(Tm)),

(see (34), corresponding to (5) and (6)), which combined with the resolvent
formula from [9, Proposition 9.29] (compare (18)), gives

R(λ,Um)f =

∞∑
k=0

R(λ,Km)[BmR(λ,Km)]kf, f ∈ Xm, λ > s(Um). (37)

Let n0 ≥ 1 be fixed. From (37) and (11), we infer[
R(λ,Um)en0

]
n
≥
[
R(λ,Km)(I + BmR(λ,Km))en0

]
n

=

n∑
i=1

1

λ+ θn

n−1∏
k=i

gk
λ+ θk

δi,n0 +

∞∑
j=i+1

ajbi,j

(
j∑
s=1

δs,n0

λ+ θj

j−1∏
l=s

gl
λ+ θl

) .

In view of our assumptions, the last formula indicates that
[
R(λ,Um)en0

]
n
>

0, provided n ≥ n0. Moreover, for n0 > 1,[
R(λ,Km)BmR(λ,Km))en0

]
n0−1

=

n0−1∑
i=1

1

λ+ θn0−1

n0−2∏
k=i

gk
λ+ θk

 ∞∑
j=i+1

ajbi,j
1

λ+ θj

j−1∏
l=n0

gl
λ+ θl

 > 0 (38)

for, if not, then

bi,n0
= 0, 1 ≤ i ≤ n0 − 1,

as all other terms and multipliers are positive. This contradicts (7) that re-
quires

n0−1∑
i=1

ibi,n0 = n0 −
dn0

an0
+ dn0

> 0, n0 > 1.
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Thus, if n0 = 2, then
[
R(λ,Um)en0

]
n
> 0 for n ≥ 1. If n0 > 2, then we

consider the third term in (37), evaluated at en0 ,

R(λ,Km)[BmR(λ,Km)]2en0 = R(λ,Km)Bm[R(λ,Km)BmR(λ,Km)en0 ]

= R(λ,Km)BmΦ,

where Φ = (φn)n≥1 is a sequence with φn > 0 for n ≥ n0 − 1. Since in the
proof of (38) we only used the fact that R(λ,Km)Bm acted on a sequence with
a positive n0 entry, we see in the same way that

[R(λ,Km)[BmR(λ,Km)]2en0
]n0−2 > 0.

Repeating the argument, for n0 > k we have[
R(λ,Km)[BmR(λ,Km]ken0

]
n0−k > 0, 1 ≤ k ≤ n0 − 1

and hence R(λ,Um)en0
> 0. Since any f ∈ Xm,+, f 6= 0, is bounded from

below by a finite linear combination of elements from {en}n≥1, we conclude
that R(λ,Um), and hence (GUm(t))t≥0, are irreducible. ut

Thus [26, Theorem VI.3.5] yields the following result.

Theorem 3 Assume that gn > 0, n ≥ 1 and (14) and (33) are satisfied. Then
there exist a strictly positive e ∈ Xm, a strictly positive h ∈ X∗m, M ≥ 1 and
ε > 0 such that for any f in ∈ Xn and t ≥ 0

‖e−s(Um)tGUm(t)f in − 〈h, f in〉e‖[m] ≤Me−εt. (39)

6 Examples

Example 1 To illustrate the above result, consider the growth-fragmentation
problem

df1
dt

= −g1f1 +

∞∑
i=2

aib1,ifi,

dfn
dt

= gn−1fn−1 − (an + gn)fn, n ≥ 2

fn(0) = f inn , n ≥ 1, (40)

where

bn,i =

{
i for n = 1,
0 otherwise;

that is, any particle breaks down into monomers. Since dn = 0 for all n, we
take any unbounded (an)n∈N and (gn)n∈N satisfying (14) and

γan ≤ gn ≤ gan, n ≥ 2 (41)
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for some γ ≤ g. We note that in this settings ∆
(m)
n = nm − n and (33) holds

for any m > 1. Hence, the semigroup (GUm(t))t≥0 that solves (40) is analytic
and compact in Xm for any m > 1 and Theorem 3 holds. Moreover,

λf1 = −g1f1 +

∞∑
i=2

aib1,ifi,

λfn = gn−1fn−1 − (an + gn)fn, n ≥ 2 (42)

can be explicitly solved. Indeed, let λ ≥ 0 and, starting from the second
equation, we get

fn,λ =
g1f1,λ

λ+ gn + an

n−1∏
j=2

gj
λ+ gj + aj

, n ≥ 2

and
∞∑
n=2

anb1,nfn,λ = g1f1,λ

∞∑
n=2

ann

λ+ an + gn

n−1∏
j=2

gj
λ+ gj + aj

.

Now, by (41) (see (16)),
gj

λ+gj+aj
≤ c = g

1+g < 1 and thus,

∞∑
n=2

ann

λ+ an + gn

n−1∏
j=2

gj
λ+ gj + aj

≤
∞∑
n=2

ncn−2 <∞. (43)

Hence, after dividing by g1f1,λ 6= 0, the first equation in (42) takes the form

ψ(λ) :=
λ+ g1
g1

=

∞∑
n=2

ann

λ+ an + gn

n−1∏
j=2

gj
λ+ gj + aj

=: φ(λ)

and the eigenvalue problem reduces to the algebraic equation ψ(λ) = φ(λ).
By (43), the series defining φ is uniformly convergent on [0,∞), hence φ is
continuous there and

φ(0) =

∞∑
n=2

ann

gn

n∏
j=2

gj
gj + aj

.

Using (41), we have, for q = γ
1+γ ,

φ(0) ≥ 1

g

∞∑
n=2

nqn−1 =
1

g

d

dq

∞∑
n=2

qn =
1

g

d

dq

q2

1− q =
1

g

2q − q2
(1− q)2 =

1

g

(
1

(1− q)2 − 1

)
;

that is,

φ(0) ≥ (γ + 1)2 − 1

g
> 1

provided
g + 1 < (γ + 1)2 ≤ (g + 1)2, (44)
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where the second inequality follows from γ ≤ g, implied by (41). We see
that, in particular, if γ = g; that is, gn = gan, then (44) is satisfied. Also,
limλ→∞ φ(λ) = 0. On the other hand, ψ(0) = 1 and limλ→∞ ψ(λ) = +∞.
Since φ is decreasing and ψ is increasing, there is exactly one λ0 > 0 for which
(42) has a solution (with arbitrary f1 that can be set to 1). Moreover, we see
that

∞∑
n=1

ann
mfn,λ = g1

∞∑
n=2

ann
m

λ+ an + gn

n−1∏
j=2

gj
λ+ gj + aj

≤ g1
∞∑
n=2

nmcn−2 <∞,

and thus fλ0
= (fn,λ0

)n∈N is the Perron eigenvector of the generator Um.

Example 2 The dominant eigenvalue λ0 can be explicitly found in certain
cases. Let us consider general problem (1) with gn = rn, dn = 0 for all n ∈ N
and some r > 0 and with other coefficients satisfying the assumptions of The-
orem 3. Let fλ = (fn,λ)n∈N ∈ D(Um) satisfy

λf1,λ = −rf1,λ +

∞∑
i=2

aib1,ifi,λ,

λfn,λ = r(n− 1)fn−1,λ − (an + rn)fn,λ +

∞∑
i=n+1

aibn,ifi,λ, n ≥ 2. (45)

Multiplying the n-th equation by n and summing them, we obtain

λ

∞∑
n=1

nfn,λ = r

∞∑
n=1

nfn,λ.

The above is satisfied if either λ = r or
∞∑
n=1

nfn,λ = 0. Since we know that

the Perron eigenvector must be positive, we obtain that λ0 = r is the Perron
eigenvalue. As a byproduct, we see that any eigenvector fλ belonging to an

eigenvalue λ 6= r must satisfy
∞∑
n=1

nfn,λ = 0.

To conclude, let us consider the transposed matrix

UT =



−g1 g1 0 0 0 . . .
a2b1,2 −(g2 + a2) g2 0 0 . . .
a3b1,3 a3b2,3 −g3 + a3 g3 0 . . .

...
...

...
...

...
...

anb1,n anb2,n . . . −(gn + an) gn . . .
...

...
...

...
...

...


.

Let U∗m be the adjoint to Um acting in X∗m = {(vn)n∈N ; sup
n∈N

n−m|vn| < ∞}
and let f∗ ∈ D(U∗m). Then, by definition

〈U∗mf∗, f〉 = 〈f∗, Umf〉, f ∈ D(Um).
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Taking f = (δn,N )n∈N, we see that

[U∗mf
∗]N = 〈f∗, Umf〉 =

N−1∑
n=1

f∗naNbn,N − (gN + aN )f∗N + gNf
∗
N+1 = [UT f∗]N

hence U∗m is a restriction of UT to D(U∗m) ⊂ D(U∗m,max) = {f ∈ X∗m : UT f ∈
X∗m}. On the other hand, let f∗ ∈ D(U∗m,max), f ∈ D(Um). Then, since D(Um)
is a weighted l1 space,

⋃∞
N=1 PND(Um), where PN is the projection defined in

(26), is a core for Um. Using the fact that UmPND(Um) is finite dimensional,
for each N

〈UT f∗, PNf〉 = 〈f∗, UmPNf〉 = 〈U∗mf∗, PNf〉
and hence, passing to the limit with N → ∞, f∗ ∈ D(U∗m). Thus U∗m = UT
with D(U∗m) = D(U∗m,max).

Using the assumption that gn = rn, we see that h = (1, 2, . . . , n, . . .) ∈
D(U∗m) for any m ≥ 1 and

U∗mh = rh.

Thus, by Theorem 3,

Um(t)f in = ert

( ∞∑
n=1

nf inn

)
e+O(er

′t)

for some r′ < r, where e is the Perron eigenvector with unit mass; that is
e = fλ0

/
∑∞
n=1 nfn,λ0

.

To illustrate the formulas derived in the last two examples, we let m = 2,
r = 1, an = 2n, f inn = δn,1010 and integrate (40) numerically in the time in-
terval t ∈ [0, 20]. As evident from Fig. 1, the solution f(t) very quickly settles
to its asymptotic limit 〈h, f in〉e (see the top-right diagram), while in complete
agreement with Theorem 3, the deviation ‖e−rtGUm(t)f in − 〈h, f in〉e‖[m] de-
creases exponentially as t increases (see the bottom-left diagram).

A crucial role in the analysis is played by (33). It ensures that most of
the mass of the daughter particles is concentrated in smaller particles, [7]. A
large class of fragmentation kernels, that can be considered to be a discrete
equivalent of the homogeneous kernels in continuous fragmentation, satisfying
(33) is presented in the next example.

Example 3 Assume that bk,n can be written as

bk,n = ζ(n)h

(
k

n

)
, 1 ≤ k ≤ n− 1, n ∈ N, (46)

where h is a Riemann integrable function on [0, 1] and ζ(n) is an appropriate
sequence that ensures that (3) is satisfied. By (3), we have

1 = ζ(n)(n− 1)

n−1∑
k=1

k

n
h

(
k

n

)
1

n− 1
.
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Fig. 1 The long time behavior of (40). The semigroup solution f(t) = GUm (t)f in

of (40) (top-left); the asymptotic error e−s(Um)tf(t) − 〈h, f in〉e (top-right); the asymp-
totic mass distribution 〈h, f in〉e (bottom-left) and the evolution of the asymptotic error
‖e−s(Um)tf(t)− 〈h, f in〉e‖[m], for t ≥ 1 (bottom-right).

Since
k − 1

n− 1
≤ k

n
≤ k

n− 1

for 1 ≤ k ≤ n, we have

lim
n→∞

n∑
k=1

k

n
h

(
k

n

)
1

n− 1
=

∫ 1

0

zh(z)dz

and thus

lim
n→∞

(n− 1)ζ(n) =
1∫ 1

0
zh(z)dz

.

Therefore

lim
n→∞

n−1∑
k=1

(
k

n

)p
bk,n = lim

n→∞
ζ(n)(n− 1)

n−1∑
k=1

(
k

n

)p
h

(
k

n

)
1

n− 1

=

∫ 1

0
zph(z)dz∫ 1

0
zh(z)dz

< 1.
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Thus

lim inf
n→∞

∆
(p)
n

np
= lim
n→∞

np −
n−1∑
k=1

kpbk,n

np
> 0

and hence (33) is satisfied.

We note that (46) is obviously satisfied by the binary uniform fragmenta-
tion

bn,i =
2

i− 1
, n = 1, . . . , i− 1.

Another example is offered by the binary fragmentation written in terms of a
symmetric infinite matrix (ψi,j)i,j≥1 as

dfn
dt

= −1

2
fn

n−1∑
i=1

ψi,n−i +

∞∑
i=n+1

ψn,i−nfi, n ≥ 1,

see [5,17,44]. Translating into our notation, we get

bn,i =
ψn,i−n
ai

, an =
1

2

n−1∑
i=1

ψi,n−i, i ≥ 2, 1 ≤ n ≤ i− 1.

Typical cases in the polymer degradation are ψi,j = (i+ j)β and ψi,j = (ij)β .
The first case gives an = 1

2n
β(n− 1) and bn,i = 2

i−1 and hence it is a uniform

binary fragmentation (see the long time behavior of GUm(t)f in, with m = 2,
β = 1

10 , gn = dn = n1+β and f inn = δ10,n10, in Fig. 2). In the second case, we
have

bn,i =
nβ(i− n)β

ai
=
i2β

ai

(n
i

)β (
1− n

i

)β
and (46) is satisfied with ζ(n) = n2β

an
and h(z) = zβ(1− z)β .

A typical qualitative behavior of GUm(t)f in, with m = 2, β = 1
10 , dn =

gn = n1+β and f inn = δ10,n10, is shown in Fig. 3.

Example 4 On the other hand, the fragmentation process given by

b1,2 = 2, and b1,i = bi−1,i = 1,

bn,i = 0, i ≥ 2, 2 ≤ n ≤ i− 2, (47)

obviously does not satisfy (33) and, in fact, the corresponding semigroup is
neither analytic, nor compact, see [7].
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Fig. 2 The long time behavior of (1), ψi,j = (i + j)β . The semigroup solution f(t) =

GUm (t)f in of (1) (top-left); the asymptotic error e−s(Um)tf(t) − 〈h, f in〉e (top-right); the
asymptotic mass distribution 〈h, f in〉e (bottom-left) and the evolution of the asymptotic
error ‖e−s(Um)tf(t)− 〈h, f in〉e‖[m], for t ≥ 1 (bottom-right).

7 Appendix: an alternative view at the model

In Theorem 1, we have seen a regularizing role played by the diagonal operator
induced by A even in the case not involving the full fragmentation operator.
In many applications, however, (1) models a combination of two independent
processes – the birth-and-death process and the fragmentation process and it
is important to investigate when they exist irrespective of each other. In other
words, we consider (1) as

d

dt
f = Gf +Df + Ff, f(0) = f in. (48)

The pure birth-and-death problem

d

dt
f = Vf = Gf +Df, f(0) = f in (49)

has been extensively analysed in the space X0, see e.g. [9, Chapter 7]. Its
behaviour in Xm creates, however, unexpected challenges.
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Fig. 3 The long time behavior of (1), ψi,j = (ij)β . The semigroup solution f(t) =

GUm (t)f in of (1) (top-left); the asymptotic error e−s(Um)tf(t) − 〈h, f in〉e (top-right); the
asymptotic mass distribution 〈h, f in〉e (bottom-left) and the evolution of the asymptotic
error ‖e−s(Um)tf(t)− 〈h, f in〉e‖[m], for t ≥ 1 (bottom-right).

Example 5 If there is C such that

gn ≤ Cn, n ≥ 1, (50)

then there is a realization of the growth expression G that generates a C0-
semigroup in Xm. Indeed, this again follows from the Kato–Voigt theorem.
We consider G as the perturbation of G0 by G−; that is, we introduce G0

m =
G0|D(G0

m), with

D(G0
m) = {f ∈ Xm; G0f ∈ Xm}.

Then, as in (17), for f ∈ D(G0
m),

∞∑
n=1

nm[(G0
m +G−m)f ]n =

∞∑
n=0

nmfn

(
gn

(n+ 1)m − nm
nm

)
≤ C ′‖f‖[m], (51)

for some constant C ′. Hence, there is an extension of G0
m + G−m generating a

C0-semigroup in Xm. On the other hand, if for some c, C > 0

cnq ≤ gn ≤ Cnq, n ≥ 1, q > 1, (52)
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then there is no realisation of G with resolvent bounded in Xm with q ≤ m+1.
Indeed, the resolvent of the generator, if it exists, must be given by (11),

[Rλf ]n =

n∑
i=1

fi
λ+ gn

n−1∏
j=i

gj
λ+ gj

, n ≥ 1. (53)

Let us fix λ. Then
n−1∏
j=i

gj
λ+ gj

≥ gλ :=

∞∏
j=1

gj
λ+ gj

,

where gλ 6= 0, and, for f ∈ Xm,+,

‖Rλf‖[m] =

∞∑
n=1

nm
n∑
i=1

fi
λ+ gn

n−1∏
j=i

gj
λ+ gj

=

∞∑
i=1

fi

∞∑
n=i

nm

λ+ gn

n−1∏
j=i

gj
λ+ gj

≥ gλ
∞∑
i=1

fi

∞∑
n=i

nm

(λ+ gn)
≥ gλC−1

∞∑
i=1

fi

∞∑
n=i

1

nq−m
.

Hence Rλ is not bounded if (52) is satisfied and hence, in particular, there is
no realisation of G generating a C0-semigroup in Xm. We note that for q = 2
and m = 1 we have a discrete version of the nonexistence result obtained in
[12, Remark 2].

Let us return to the full birth-and-death model (48). As before, we introduce
V 0
m + V 1

m := G0
m +D0

m +G−m +D+
m on

D(V 0
m) = {f ∈ Xm; (G0 +D0)f ∈ Xm}.

We have

Theorem 4 1. If

lim sup
n→∞

Γn ≤ C (54)

for some constant C ∈ R, where

Γn = gn

((
1 +

1

n

)m
− 1

)
− dn

(
1−

(
1− 1

n

)m)
,

then there is an extension Vm of V 0
m+V 1

m that generates a quasicontractive
semigroup (GVm(t))t≥0 on Xm.

2. Condition (54) is satisfied if either
a) (50) holds, or

b) lim sup
n→∞

dn
gn

> 1 and dn = O(n2), or

c)
dn
gn
≥ 1 +

m′ − 1

n
for sufficiently large n and m′ > m.

3. If any of the conditions of point 2. is satisfied, then Vm = V 0
m + V 1

m.
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Proof Statement 1. of the theorem follows in a standard way as an application
of the Kato–Voigt theorem as for f ∈ D(V 0

m)+ we have

∞∑
n=1

nm[(G0
m +D0

m +G−m +D+
m)f ]n =

∞∑
n=1

nmfnΓn.

For statement 2. we observe that(
1 +

1

n

)m
− 1 =

m

n
+
m(m− 1)

2n2
+O

(
1

n3

)
,

1−
(

1− 1

n

)m
=
m

n
− m(m− 1)

2n2
+O

(
1

n3

)
.

Thus, if 2a) is satisfied, then the positive part of Γn is bounded. If 2b) is
satisfied, then

Γn ≤ dn
(
m(m− 1)

n2
+O

(
1

n3

))
for sufficiently large n and hence again Γn is bounded from above. Finally, if
2c) is satisfied, then

Γn ≤ gn
((

m(m− 1)

n2
+O

(
1

n3

))
− m′ − 1

n

(
m

n
− m(m− 1)

2n2
+O

(
1

n3

)))
=
gn
n2

(
m(m−m′) +O

(
1

n

))
and hence Γn is negative for large n and thus also bounded from above.

To prove the last statement, we use the approach of [9, Theorem 7.11],
based on the extension technique, see [9, Theorem 6.22]. Let f ∈ D(Vm)+.
Then

∞∑
n=1

nm(−(gn + dn)fn + gn−1fn−1 + dn+1fn+1)

=

∞∑
k=1

kmfkΓk + lim
n→∞

(−gnfn + dn+1fn+1)nm, (55)

where the limit exists. For honesty, it suffices to prove that for any f ∈ D(Vm)+

lim
n→∞

(−gnfn + dn+1fn+1)nm ≥ 0.

Assume, to the contrary, that for some 0 ≤ f ∈ D(Vm)+, the limit is negative
so that there exists b > 0 such that

(−gnfn + dn+1fn+1)nm ≤ −b, (56)

for all n ≥ n0 with large enough n0. Thus, for n ≥ n0 we obtain by induction
that for arbitrary k

fn ≥
b

gn

 k∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 .
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Because k is arbitrary, we obtain

fn ≥
b

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 , n ≥ n0.

Thus, if
∞∑
n=1

nm

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 = +∞ (57)

(where we put
∏0
j=1 · = 1) is satisfied, then

∑∞
n=0 n

mfn = +∞ which contra-
dicts f ∈ D(Vm)+.

Now, if (50) is satisfied, we have

∞∑
n=1

nm

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 ≥ ∞∑
n=1

1

gn
= +∞.

Similarly, if assumption 2.b) is satisfied, we have

∞∑
n=1

nm

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 ≥ ∞∑
n=1

nm

gn

( ∞∑
i=n

1

im

)
≥ C

∞∑
n=1

1

n
= +∞,

where we used the integral estimate for the inner sum. Finally, if 2.c) is satis-
fied, we can write

∞∑
n=1

nm

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

dn+j
gn+j

 ≥ ∞∑
n=1

nm

gn

 ∞∑
i=0

1

(n+ i)m

i∏
j=1

(
1 +

m′ − 1

n+ j

) .

Now, as in the proof of Theorem 1, by the Stirling formula,

i∏
j=1

(
1 +

m′ − 1

n+ j

)
=
Γ (n+ i+m′)Γ (n+ 1)

Γ (n+m′)Γ (n+ i+ 1)
= O

((
n+ i+m′

n+m′

)m′−1)

and the inner series diverges if the second condition of 2.c) is satisfied. ut
By [7, Theorem 2.1], under standard assumptions on the fragmentation

coefficients Fm = Am +Bm generates a quasicontractive (GFm(t))t≥0.

Theorem 5 Assume the conditions of Theorem 2, item 1. and of Theorem 4,
item 3. are satisfied. Then Ym = Vm + Fm and

GYm(t)f = lim
n→∞

(
GVm

(
t

n

)
GFm

(
t

n

))n
f, f ∈ Xm, (58)

uniformly on bounded time intervals.
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Proof First, we observe that D(Vm) ∩ D(Fm) ⊃ D(G0
m) ∩ D(D0

m) ∩ D(A0
m)

and the latter is dense in Xm. Next, we see that

[λI − (Vm + Fm)]D(Vm) ∩D(Am)

⊃ [λI − (Vm + Fm)]D(G0
m) ∩D(D0

m) ∩D(Am)

= [λI − (Tm +G−m +D+
m +Bm)]D(Tm).

Since (Tm +G−m +D+
m +Bm, D(Tm)) is the generator a semigroup, [λI −

(Tm + G−m + D+
m + Bm)]D(Tm) is dense in Xm for sufficiently large λ. In-

deed, if f ∈ Xm, then f = (λI − Tm +G−m +D+
m +Bm)u for some u ∈

D(Tm +G−m +D+
m +Bm) and u = limn→∞ un with un ∈ D(Tm) and

lim
n→∞

(Tm +G−m +D+
m +Bm)un = Tm +G−m +D+

m +Bmu.

But then f = limn→∞(λun − (Tm + G−m + D+
m + Bm)un); that is, f ∈

[λI − (Tm +G−m +D+
m +Bm)]D(Tm).

Since both (GVm(t))t≥0 and (GFm(t))t≥0 are quasicontractive, [37, Corol-
lary 3.5.5] implies that Vm + Fm is the generator of a quasicontractive semi-
group. Now

λI − Ym = λI − Tm +G−m +D+
m +Bm

= λI − (D0
m +D+

m +G−m +G0
m) + (Am +Bm) ⊂ λI − Vm + Fm

and, since both Ym and Vm + Fm are generators, we must have Ym = Vm + Fm.
Then (58) follows from [37, Corollary 3.5.5]. ut
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