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Abstract 

The focus of this thesis is the development and solution of problems that simultaneously 

involve the planning of the location of facilities and transportation decisions from such 

facilities to consumers. This has been termed integrated distribution planning problems with 

practical application in logistics and manufacturing. In this integration, different planning 

horizons of short, medium and long terms are involved with the possibility of reaching sub-

optimal decisions being likely when the planning horizons are considered separately. 

Two categories of problems were considered under the integrated distribution models. The 

first is referred to as the Step-Fixed Charge Location and Transportation Problem (SFCLTP). 

The second is termed the Fixed Charge Solid Location and Transportation Problem 

(FCSLTP). In these models, the facility location problem is considered to be a strategic or 

long term decision. The short to medium-term decisions considered are the Step-Fixed 

Charge Transportation Problem (SFCTP) and the Fixed Charge Solid Transportation Problem 

(FCSTP). Both SFCTP and FCSTP are different extensions to the classical transportation 

problem, requiring a trade-off between fixed and variable costs along the transportation 

routes to minimize total transportation costs. 

Linearization and subsequent local improvement search techniques were developed to solve 

the SFCLTP. The first search technique involved the development of a hands-on solution 

including a numerical example. In this solution technique, linearization was employed as the 

primal solution, following which structured perturbation logic was developed to improve on 

the initial solution. The second search technique proposed also utilized the linearization 

principle as a base solution in addition to some heuristics to construct transportation 

problems. The resulting transportation problems were solved to arrive at a competitive 

solution as regards effectiveness (solution value) compared to those obtainable from standard 

solvers such as CPLEX. 

The FCSLTP is formulated and solved using the CPLEX commercial optimization suite.  A 

Lagrange Relaxation Heuristic (LRH) and a Hybrid Genetic Algorithm (GA) solution of the 

FCSLTP are presented as alternative solutions. Comparative studies between the FCSTP and 

the FCSLTP formulation are also presented. The LRH is demonstrated with a numerical 

example and also extended to hopefully generate improved upper bounds. The CPLEX 

solution generated better lower bounds and upper bound when compared with the extended 

LRH.  However, it was observed that as problem size increased, the solution time of CPLEX 

increased exponentially. The FCSTP was recommended as a possible starting solution for 

solving the FCSLTP. This is due to a lower solution time and its feasible solution generation 

illustrated through experimentation.  

The Hybrid Genetic Algorithm (HGA) developed integrates cost relaxation, greedy heuristic 

and a modified stepping stone method into the GA framework to further explore the solution 

search space. Comparative studies were also conducted to test the performance of the HGA 

solution with the classical Lagrange heuristics developed and CPLEX. Results obtained 

suggests that the performance of HGA is competitive with that obtainable from a commercial 

solver such as CPLEX.  
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1.1   Background and Motivation for Integrated Distribution Problems 

Data-driven decisions have become necessary for organizations that seek a competitive 

advantage over other similar organizations today (Tian et al., 2019). These decisions are often 

based on small to large sizes of data captured from the day to day operations of the business  

(Muñuzuri et al., 2019). Also, Halldórsson (2019) noted that decision making is very 

important in business planning problems such as production planning, sales and operations 

planning as well as in logistics planning. Business decisions are commonly categorized as 

operational, tactical and strategic. Operational decisions include day to day business 

decisions of fulfilling customer orders, supplier and vendor management, while tactical 

decisions could deal with making policies on  establishing distribution channels (e.g. route 

planning), inventory management and supplier determination. Strategic decisions, on the 

other hand, involve activities such as facility location, employee recruitment, etc. The 

decisions are of various planning horizons of short-term, medium-term and long-term. An 

integrated problem results when these different planning horizons are jointly considered. 

Therefore, a global solution which reduces the chances of global sub-optimality consequent 

to the individual local optimisations arising from individual consideration of the different 

planning horizons would be required to tackle the integrated problems.  

 

1.2   Selected Distribution Problems  

The distribution problems considered in this study are concerned with the movement of items 

between sources and destinations.  These problems are essentially transportation problems in 

which decisions have to be made on the quantities of items to be moved from one location to 

a particular destination.  The distribution or transportation problems considered in this thesis 

are the transportation problem with a staircase cost structure (referred to as the step-fixed 

charge transportation problem) and the multi-index transportation problem (also referred to as 

the fixed charge solid transportation problem). 

1.2.1    Step-fixed charge transportation problem 

The Step-Fixed Charge Transportation Problem (SFCTP) can be classified under network 

design problems with nonconvex piecewise linear cost structure. Besides, the problem is 

defined as having a cost structure which considers more than one fixed charge in the route 

planning decisions and thereby showing economies of scale in the cost structure.  In the 

SFCTP, the cost structure essentially behaves like a staircase or step function and it extends 

from the FCTP. This problem-type is relevant in our modern world and is easily observed in 

the logistic industry such as postage companies, courier companies, delivery companies and 

shipping companies.  In these companies, incremental discounts, full truck consignment or 

less-than-full truck consignment are usually used to determine their business pricings. The 

relevance of this model in imposing taxes or determining subscription fees of utilizing 

services has also been established. The main problem in step-fixed charge and transportation 
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models is to determine the quantity of items to ship from a fixed set of locations to a fixed set 

of destinations under more than one route fixed cost requirement to minimize the total of 

fixed and variable transportation costs. The cost objective function basically distinguishes the 

FCTP from the SFCTP. 

1.2.2   Fixed charge solid transportation problem 

This problem is an extension of the Solid Transportation Problem (STP) described as a multi-

index simple transportation problem. Since this problem is a variant of the simple 

transportation problem, it can also be categorized under network design problems. 

Applications of STP have been noted both in production and distribution systems. Its 

significance has been noted in raw material and blending transportation model. Also, its 

importance has been established in creating a shipment plan that assists operational managers 

to simultaneously select from different transportation sources and also determine the number 

of products to move from production or warehouse locations to decrease the total 

transportation costs. In the Fixed Charge Solid Transportation Problem (FCSTP), a single 

fixed cost is considered in the route planning decisions. Additionally, the main problem is 

that of determining the quantity of items to move from a set of fixed locations to a set of 

fixed destinations, while selecting from a set of potential transportation sources to minimize 

the total of fixed and variable transportation costs.  

 

1.3   Overview of Model Formulations 

Integrated facility location and transportation models can also be categorized under network 

design models. Network design models consist of several integrated models which are often 

used in the operations and management of a company’s supply chain.  Examples of some 

basic network design models already established in the literature are the general 

transportation problems, fixed charge problems and facility location problems. A key aspect 

of network design models is the structure of the objective function. These structures can 

either have a linear, piecewise linear (concave), or staircase cost structure. Integrated facility 

location and transportation problems as considered in this thesis have continuous and discrete 

variables in the cost structure with the standard transportation problem-type constraints of 

moving items from source to destination. Also, the piecewise linear transportation problem 

and the fixed charge solid transportation problem when considered in the context of facility 

location have been categorized as an integrated facility location and transportation problem in 

this thesis. The decision in facility location models is usually to choose from a set of potential 

capacitated sources or locations, an optimal set of sources from which products or services 

will originate. Both problems mentioned earlier, therefore share a commonality of integrating 

facility location decisions into a growing field of transportation problem variants.  The basic 

difference between the two problems is that unlike the piecewise linear transportation 

problem, the fixed charge solid transportation problem considers that resources such as 

transportation mediums (or conveyances)  can be limited and should be considered in the 

source to destination distribution decisions. Figure 1-1 and 1-2 below present a schematic 
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representation of the two problems being considered in this thesis without loss of 

generalization. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

1.4   Overview of Solution Methods  

Network design models have generally been solved using exact solution approaches and 

heuristic solution methods. This thesis considers both exact and heuristic solution methods in 

the solution of the integrated facility location and transportation problem. This problem can 

also be categorized as a mixed-integer problem due to the facility location fixed costs and the 

presence of one or more fixed costs in the transportation term of the objective function. 

1.4.1   Exact solution approach 

Exact solution methods such as branch and bound, branch and cut are known to guarantee 

optimality in providing a solution to the mixed-integer problems. However, exact solution 

methods can become inefficient when solving certain optimization problems such as the NP-

hard (Non-deterministic Polynomial-time) problems. Optimization problems are classified as 

Demand 

points  
Potential 

facilities   

Break 

points  

Potential 

facilities   

Conveyance                  

types 

Demand 

points  

Figure 1-1 Illustration of the problems solved in Chapter 3 

Figure 1-2  Illustration of the problems solved in Chapters 4 and 5 
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NP-hard if the computational time increases exponentially as problem sizes increase. 

Network design problems with fixed charges are optimization problems usually regarded as 

NP-hard.  

Exact solution methods are currently being incorporated into the solver engines of standard 

optimization software such as the IBM ILOG CPLEX, LINGO, and AMPL etc.  As observed 

in the operations research literature, the IBM CPLEX has been the most common and widely 

used optimization software when considering exact solutions. Bixby (2002) stated that over-

the-years research into algorithm and machine speed (memory) had helped to improve the 

solving power of the IBM ILOG CPLEX. According to Lima (2010), the CPLEX uses the 

branch and cut method to solve Mixed-Integer Problems (MIP). The Branch and Cut 

algorithm is based on the branch and bound algorithm, problem pre-processing and probing 

techniques, and the addition of cutting planes.  The pre-processing and probing steps ensure 

problem reduction, reformulation and the fixing of variables to observe any improvements in 

the solution bounds. The processing and probing techniques for reducing the number of 

feasible solutions have been discussed by Savelsbergh (1994) and Wolsey et al. (1998). 

1.4.2   Heuristic solution approach 

Heuristics are solution methods that do not guarantee optimality but provide a good and 

acceptable solution to the optimization problem considered. Few resources such as 

computation time and computer memory are often utilized by heuristics when providing 

solutions. Besides, the inefficiencies of exact solutions for solving large problem sizes in a 

reasonable time have increased the research into the development of heuristics. Genova and 

Guliashki (2011) generally classified heuristics into the constructive and local improvement 

types. They referred to constructive heuristics as greedy heuristics which uses the problem 

data to generate a sequential solution and often reports no solution until the heuristics 

terminate. On the other hand, they described local improvement heuristics as providing a 

solution without necessarily reaching the termination of the problem. They further stated that 

local improvement heuristics search out a feasible solution, to begin with while searching the 

problem neighbourhood of any improvement in the current solution. Heuristics generally 

have a good possibility of terminating at a local optima solution. 

Another class of heuristics have gained popularity over the years. These are called 

metaheuristics. Metaheuristics unlike heuristics usually are not problem-specific and can be 

applied to several optimization problems. Fernandes et al. (2014) established that 

metaheuristics are general frameworks constructed to ensure heuristics are perturbed out of 

any local optima. Metaheuristic implementation could be population-based such as the 

nature-inspired Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Scatter 

Search (SS) and single solution based metaheuristics such as Simulated Annealing (SA) and 

Tabu Search (TS).   
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1.5   Aim and Scope 

 Firstly, this research seeks to develop models that integrate facility location into 

transportation problem variants such as the step-fixed charge transportation problem 

and the fixed charge solid transportation problem.  

 Secondly, the research seeks to develop a range of solution heuristics that can 

generate good upper and lower bounds to solve the identified integrated distribution 

problems. These solution heuristics utilize both the classical relaxation approaches 

and the modern solution search framework. Furthermore, comparative studies are also 

conducted to assess the performance of the heuristics developed when compared with 

possible exact solutions obtainable with standard solvers.  

The basic assumptions for the formulation of each model developed are presented in Chapters 

3, 4 and 5. However, a summary of assumptions is restated below. 

A single planning period is considered which is often annual. A two-echelon problem of 

source to destination which identifies the distribution cases from point to point is modelled.  

The point to point scenarios considered can either be plants (sources) to distribution centres 

(destinations), plants to customers, or distribution centres to customers. In addition, a single 

item is being distributed between the echelons to capture the flow of resources between the 

points. The parameters considered such as the costs and capacities are known ahead of the 

optimization and randomly generated from a uniformly distributed data having a lower and 

upper limit. The lower and upper limits utilized are selected from the literature and shown to 

give a good sense of the parameters encountered in reality. For the step-fixed charge 

distribution case, a two step-fixed charge is presented without loss of generality, as this 

solution can easily extend to multi step-fixed charge cases. 

 

1.6   Structure of the Thesis 

This section discusses the different chapters making up this thesis.    

Chapter 1 presents background with some motivations on the integrated distribution problem 

of facility location and transportation. The problem structure and type of solutions considered 

under integrated facility location and transportation problem are discussed in this section. The 

chapter ends with the general aims and limitations of all the models considered under the 

integrated facility location and transportation problem.   

Chapter 2 reviews the fundamental models for the facility location problems and the 

transportation problems studied in this thesis.  A comprehensive review of related works on 

existing models that integrate facility location and such transportation problems are also 

presented. Furthermore, the exact solutions considered and heuristic solutions developed to 

solve these problems are discussed. A summary of the research gap identified in the literature 
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is presented. Finally, the motivations for the models and solution techniques developed in this 

thesis are also established in this section. 

In chapter 3, two model formulations for the facility location and step-fixed charge 

transportation problem are presented. The basic differences in both formulations are on the 

modelling of the objective functions and the improved solution methods discussed.  The first 

improved solution presents a hands-on method at arriving at a good solution. The second 

method shows more computation efforts and consisted of comparative studies with solutions 

obtained from standard solvers. No superiority exists between the different formulations 

which both have their initial solutions based on the linear programming relaxation.  

In chapter 4, another integrated facility location and distribution problem described as Fixed 

Charge Solid Location and Transportation Problem (FCSLTP) is formulated and solved. This 

chapter is also segmented into two subchapters (4a and 4b). Subchapter 4a presents a small-

sized numerical example to show the workings of a Lagrange relaxation heuristic to solve the 

FCSLTP. In subchapter 4b the FCSLTP optimization problem is presented and solved using 

the CPLEX commercial optimization suite. An extension of the Lagrange relaxation heuristic 

developed in subchapter 4a is proposed as an alternative solution. Computational studies are 

done to determine the performance of the CPLEX and Lagrange relaxation heuristic. The 

FCSLTP and the FCSTP formulations are further compared 

Chapter 5 presents a hybrid metaheuristic solution to solve the FCSLTP.  The hybrid solution 

integrates a greedy heuristic based on cost relaxation and a modified stepping stone method 

into the genetic algorithm framework. Genetic algorithm is used to determine the best 

combination of facilities to open, while the allocations into open facilities are done using a 

greedy heuristic. Furthermore, allocations made are consolidated using a modified stepping 

stone.   Some comparative studies are shown to test the performance of the solution method.   

The research study is concluded in Chapter 6 by summarizing and restating the major 

contributions of the models and solutions developed as presented in earlier chapters. In 

addition, future perspectives on possible extensions of these models and solutions proposed 

are also presented. 
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2.1    Related Facility Location Models 

The optimization problems presented by Kuehn and Hamburger (1963), Ray (1966) and Sá 

(1969) are among the early models developed in the discrete facility location literature.  

Kuehn and Hamburger (1963) presented a facility location model where the decision was to 

sequentially determine the number and location of large scale warehouses. His model also 

involved perturbation through selected locations for possible improvements. Ray (1966) 

described facility location as a plant location problem where a fixed cost or fixed charge 

problem is associated with each plant or sources and the amount shipped from any selected or 

“open” location varies nonlinearly with the quantity shipped. He presented a pure integer 

formulation of the problem and solved it using the branch and bound solution method. Sá 

(1969) presented a facility location model and termed it as a capacitated plant location 

problem. Given marginal production or location costs and linear transportation costs, he 

decided to select from potential projects that solve demand requirements.  He modelled the 

problem as a MIP and solved it using both exact and approximate solutions.  

The application and use of the mixed-integer models to represent facility location models 

instead of the pure integer models were introduced by (Elson, 1972). He concluded that 

continued use of such MIP models would remain valid in future location models to be 

developed. Nauss (1978) solved the classical Facility Location Problem (FLP). The FLP was 

represented with fixed and variable cost objectives, demand and supply constraints. His 

model included the supply and demand capacities, fixed costs for opening facilities and unit 

transportation costs to supply customers. A Lagrangian relaxation method was proposed to 

solve the problem.   

Neebe (1978) distinguished between the p-median location problem and the classical or 

Capacitated Warehouse Location Problem (CWLP).  He noted that CWLP could be obtained 

from p-median location problem by removing the p-median constraint and replacing with the 

fixed cost of each supply points. His model essentially was on solving a p-median 

transportation problem and a Lagrangian relaxation method was developed to provide good 

lower bounds to be used in the branch and bound problem. Rosing et al. (1979) also 

distinguished between the plant location problem and the P-median problem. The major 

difference presented was that the facilities costs are included in plant location problem 

objective and the numbers of facilities to be opened are included in the constraints of p-

median problems. 

Guignard and Spielberg (1979) presented a Mixed Plant Location Problem (MPLP) which 

was an extension of the classical FLP discussed by Neebe (1978). The extension was on the 

inclusion of inequality constraints that impose an upper bound on the number of items 

shipped from plant 𝑖  to customer 𝑗 . In addition, they included constraints imposing 

restrictions on the amount of open or closed plants to be selected from the possible set of 

plants. Their model was solved using a greedy heuristic.  

In the models described above, facility location problems were captioned as either a plant 

location or warehouse location problem. Since the establishment of models that represent 
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plant location problems, variants of such models have emerged. Kelly and Khumawala 

(1982) discussed the capacitated warehouse location problem in which economies of scale 

(nonlinear cost) are associated with the fixed cost at the warehouse site. Cornuéjols et al. 

(1983) described the uncapacitated FLP in which no supply capacities are associated with the 

fixed facilities.  An integer model formulation was presented. Krarup and Pruzan (1983), in 

their review paper, identified four problems that have been formulated and discussed under 

location problems. They mentioned the Simple Plant Location Problem (SPLP), p-median 

problem, p-center problem and the quadratic problem. The p-median problem and p-center 

problem were described by them as being easily transformed into the SPLP.  It was also 

noted that the SPLP attracted more attention based on its generic contribution to many 

complex decision problems. The generic contribution of SPLP as they noted meant that other 

models such as nonlinear, dynamic and multiproduct models could be formulated based on 

the SPLP. The SPLP was also reported to be NP-hard and several heuristics were discussed to 

solve the problem. Klincewicz and Luss (1986) presented an FLP where not more than one 

facility is assigned to each customer and termed it as a single source constraint problem. They 

formulated the FLP as an integer programming problem. 

Sridharan (1995) presented an exhaustive review paper on the Capacitated Facility Location 

Problem (CFLP). They described the basic problem being solved as determining a subset of 

potential facilities such that the total of fixed and transportation costs are minimized, while 

also ensuring that supply and demand capacities are not violated. They stated that the SPLP 

presented by Krarup and Pruzan (1983) was an uncapacitated FLP. They further expressed 

that the SPLP could be extended to the CPLP by including capacities of locations in the 

problem.  

Since the comprehensive review submitted by Sridharan (1995), the CPLP has been utilized 

as a basis for the development of new facility location models. A significant amount of 

papers was found on the various extensions made to the capacitated facility location problem. 

Reference to the works of Revelle and Laporte (1996), Tragantalerngsak et al. (2000), Wu et 

al. (2006) , Correia et al. (2010), Ulukan and Demircioğlu (2015), Gadegaard et al. (2017)  

and Srinivasan and Khan (2018) out of many others have shown the integration of new 

objective functions, constraint type and scenarios to the development of the CPLP. In 

addition, the development of efficient solution heuristics, have also been complementary to 

the development of new models. Ulukan and Demircioğlu (2015) presented a comprehensive 

review on discrete facility location problems and variants, with exact, heuristic and 

metaheuristic solution methods. The CPLP and its variants were also reported to have had a 

large application in distribution planning systems and supply chain network design models. 

Integrated distribution problems, in which facility location decisions form an integral part, 

have been noted in the literature and occur both in production and distribution systems.  Wu 

et al. (2017) presented the facility location problem with plant size and selection model. They 

simultaneously considered an optimization model of plant locations and sizes, with product 

flows through depot locations and the consumers. Puga and Tancrez (2017) developed a 

location inventory model and considered the joint optimization of location, allocation and 

inventory decisions for a large supply chain network. Hiassat et al. (2017) presented a 
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location inventory and routing model where the decision was to jointly determine the location 

and quantity of warehouses, inventory level, and routes for perishable products. Veenstra et 

al. (2018) optimized facility location and routing problems simultaneously in health care 

logistics where the decision was to determine which drug lockers to open, the routing of 

patients to both open and unopen drug lockers. Also, Amiri et al. (2018)  considered 

integrating time windows in their off/onshore supply vessel while determining the location of 

warehouse and marine transportation simultaneously. The recent work of these authors 

among several others have shown the growing emphasis of integrating facility location 

decisions into new and existing production and distribution systems. Recently, Fauzan and 

Hisjam (2019) considered the capacity and location of health care facilities to meet demand. 

The problem was formulated as an integer programming problem defined as a model of 

capacitated hierarchical maximal covering. 

 

2.2   Related Transportation Models 

The classical transportation problem was originally described by Hitchcock (1941). This 

problem is being solved using the transportation tableaux and considers only the unit variable 

cost (no fixed charges) in deciding the optimum shipping patterns arising in the distribution 

network between sources and destinations. However, the reality of fixed charge problems in 

business decisions as indicated by Hirsch and Dantzig (1968) have resulted in the emergence 

of variants of the transportation problem which removes the assumption of no fixed charge in 

the transportation routes. This subsection reviews the base fixed charge transportation 

problem, the emergence of the SFCTP and the FCSTP. 

2.2.1   Fixed and step-fixed charge transportation models 

A special structure of the fixed charge problem was studied by Balinski (1961). This problem 

consisted of fixed and variable costs of transportation. Gray (1971) also considered the same 

problem and established it as a variant of the standard transportation problem which 

considers fixed costs and variable costs along transportation routes. The objective was that of 

minimizing the total of fixed and variable costs. They developed an exact solution that 

decomposed the problem into a master integer and series of transportation problems. It was 

observed that an optimal solution to the FCTP exists at extreme points of the constraint sets. 

Walker (1976) also confirmed the FCTP to be special consideration of fixed cost or fixed 

charge problem in transportation problems.  They expressed the concave structure of the 

objective function of models involving fixed charges and also acknowledge the possibility of 

the linearized solution suggested by Balinski (1961).    

Barr et al. (1981) described the FCTP as a network design problem with fixed charges on 

each arc (routes). They studied FCTP with fixed charges on some of the transportation routes 

(or arcs). This was termed uncapacitated FCTP. The similarity of the FCTP to a special case 

of the plant location problem with a concave cost was established by them. Sandrock (1988) 
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considered a related FCTP in which fixed charges are associated with sources or locations 

and not on the usual routes.  They provided hands-on heuristics to solve the problem. 

Since the establishment of the FCTP, the development of both exact methods and solution 

heuristics has been a major contribution to this problem area. Palekar et al. (1990) developed 

a conditional penalty method to reduce the branch and bound enumeration techniques for 

solving the FCTP. They noted the FCTP to be NP-hard and also observed that problems with 

very large or very small fixed to supply capacity ratio were much harder to solve than the 

intermediate problem. Lamar and Wallace (1997) further improved on the condition penalty 

as reported by Palekar et al. (1990).  A hybrid solution of tabu search metaheuristic and a 

local search technique based on the simplex method was implemented by Sun et al. (1998) to 

solve the FCTP. 

Kim and Pardalos (1999) considered an FCTP modelled as a network problem of nodes and 

arcs. This consisted of one index notation (𝑗) that represented the transportation routes or 

flows unlike the typical FCTP with (𝑖, 𝑗) notation of source to destination. This problem was 

termed Fixed Charge Network Flow Problem (FCNFP) and was also stated to be NP-hard.  

Their solution was based on a recursive gradient linearization approach. Their solution was 

based on a proof of an existing LP problem whose optimal solution is equivalent to the 

optimal solution of the FCNFP.  

A fixed charge network flow problem with more than one fixed charge on the arcs of the 

network was described by Kim and Pardalos (2000) as a Piecewise Linear Network Flow 

Problem (PLNFP). This problem was found to be NP-hard. They also described the 

occurrence of the PLNFP in logistics, transportation and the academic use of approximating a 

smooth non-convex function was highlighted. They modified their previous FCNFP gradient 

linearization method to solve the PLNFP which they established as being an FCNFP 

comprising of multiple arcs. Croxton et al. (2003) studied the incremental, multiple-choice 

and convex combination formulation of PLNFP. The three formulations were termed 

nonconvex piecewise linear minimization problems. They showed the equivalence of the 

three formulations concerning each model having an LP relaxation approximating the lower 

convex envelope.  Kowalski and Lev (2008) discussed a special PLNFP with a source to 

destination notation (𝑖, 𝑗)  in which the objective function behaves like a step function and 

called it the Step Fixed Charge and Transportation Problem (SFCTP).  

Since the SFCTP was considered to be an extension of the NP-hard FCTP, it has been 

described as being an NP-super hard problem. The SFCTP was solved using an extension of 

the linearization technique suggested by (Balinski, 1961). A metaheuristic to solve the 

SFCTP called the Mutation Artificial Immune algorithm (MAI) was developed by El-

Sherbiny (2012). They observed the good possibility of MAI searching for the feasible 

solution domain better than the existing linearized cost approach. Altassan et al. (2013) 

improved on the initial linearized solution of  Kowalski and Lev (2008) for the SFCTP. They 

suggested three equations for the relaxed cost matrix to capture the scenarios of above and 

below breakpoint load distribution. Christensen and Labbé (2015) considered another 

formulation of SFCTP which was referred to as a piecewise linear transportation problem. 
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They proposed an exact solution which was based on Dantzig-Wolfe reformulation and the 

addition of upper bound inequalities. They compared the efficiency of their solution to using 

a commercial solver such as the CPLEX solver. Yousefi et al. (2018b) researched on an 

FCTP with discounts or price breaks both on the route fixed cost and the variable cost. They 

proposed both heuristic and metaheuristic solution techniques to solve the problem. Balaji et 

al. (2019) recently studied an FCTP in which truckload constraint is considered. In their 

model, the possibility of shipment lot exceeding conveyance capacity thereby increasing the 

amount of fixed charge incurred is factored in. The problem was solved using a GA and 

Simulated Annealing.   

2.2.2   Fixed charge solid transportation problem 

Haley (1962) considered an extended transportation problem which they referred to as a 

multi-index transportation problem. This was stated to be different from the usual 

transportation problem of having two (2) major indices for the numbers of sources and 

destinations. They suggested a practical illustration for the problem such as the determination 

of the minimum cost of operation of a manufacturer having 𝑛 -factories, producing 𝑚 -

different soaps to be distributed to 𝑝-different customers. They solved the problem using an 

adapted Modified Distribution (MODI) method for solving the classical transportation 

problem.  

An extension to the solid transportation problem in which a fixed charge or cost is associated 

was discussed by  Basu et al. (1994). This was termed solid fixed-charge transportation 

problem. Since their description of this problem, several variants and extensions of the Fixed 

Charge Solid Transportation Problem (FCSTP) have been considered in the literature. Yang 

and Liu (2007) studied a non-deterministic FCSTP with the objective of minimizing both 

transportation cost and time. They solved the problem using goal programming. Ojha et al. 

(2010) considered the FCSTP in which the variable costs, fixed cost and vehicle costs are 

discounted. This was solved using a genetic algorithm. A fixed charge solid transportation 

problem in which the model parameters such as supply, demand and conveyance capacities 

are considered uncertain variables was modelled by Zhang et al. (2016). This was solved 

using a hybrid metaheuristic. 

Halder et al. (2017) presented a special extension to the FCSTP with a maximization 

objective. They considered a scenario involving damage and substitute items when data such 

as variable transportation cost, route fixed cost and conveyance capacities are fuzzy and 

crisp. An extension to the deterministic fixed charge solid transportation problem having 

more than one fixed costs associated with the conveyance capacities was studied by Sanei et 

al. (2017). They made conclusions that since the FCTP and SFCTP have been considered to 

be NP-hard problems, the SFCSTP and implicitly the FCSTP which are extensions of both 

SFCTP and FCTP are NP-super hard problems. They employed Lagrange relaxation heuristic 

to solve the SFCTP. 
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2.3   Related Integrated Facility Location and Transportation Models  

Melkote and Daskin (2001) introduced a combined facility location and fixed charge 

transportation problem which was termed Capacitated Facility Location and Network Design 

Problem (CFLNDP). They cited the NP-hard nature of the problem with practical application 

in telecommunication, power transmission and distribution. The objective of the formulation 

was to minimize total network transportation cost which comprised unit travel cost, location 

cost of facilities and the route fixed charge or link construction cost. They solved the problem 

by proposing valid inequalities such as flow conservation, number of facilities and upper 

bound limits on routes to strengthen the LP relaxation of the problem. 

Another integrated facility location with fixed charge transportation problem was studied by 

Correia et al. (2010). This problem was referred to as the capacitated location problem with 

modular distribution costs. In their formulation there existed different modules or fixed costs 

with corresponding capacities on each source to the destination link. They presented a 

traditional and discretized formulation of the problem. The discretized formulation 

considered a specific quantity of products or items being shipped through the source to 

destination route. The basic problem that was solved in both formulations was that of 

minimizing total distribution costs which consisted of facilities location costs, route fixed 

costs per module and variable cost between source and destination. They concluded that the 

discretized formulation could produce valid inequalities and better LP relaxation than that of 

the traditional formulation. 

In the network design problems with piecewise linear cost function studies presented by 

Christensen (2013), they considered an integrated formulation of facility location with more 

than one fixed charge present on the transportation routes. This integrated problem was 

named Capacitated Facility Location Problem with Piecewise Linear Transportation Costs 

(CFLP with PLTC). They established that the piecewise linear transportation cost function in 

the facility location context had been given little consideration in literature unlike piecewise 

linear cost structure in production. It was noted that the piecewise linear structure was similar 

to that of the step function or staircase cost structure. Two models of the CFLP with PLTC 

were formulated. The first was similar to a multi-item facility location and step-fixed charge 

transportation problem. The second model also referred to as the discretised CFLP with 

PLTC was an extension of  Correia et al. (2010) capacitated location problem with modular 

distribution costs. They added valid inequalities into CFLP with PLTC formulation and 

solved the problem using Lagrange relaxation heuristics. Recently, Das et al. (2019) studied 

an integrated facility location and solid transportation problems without fixed charges. They 

described the problem as solid transportation-p-facility location problem (ST-p-FLP). They 

developed to solution methods to solve this problem, namely a locate-allocate heuristic and 

an approximate heuristic 
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2.4   Solution Methods 

This subsection reviews the solution methods used in this thesis. The solution methods 

considered are based on Linear Programming (LP) relaxation, Lagrangian Relaxation 

Heuristic (LRH) and Genetic Algorithm (GA). These methods have been adapted and 

implemented to solve the integrated facility location and transportation problems. 

2.4.1   Linear programming relaxation method 

Linear programming relaxation can be used as a starting or initial solution when dealing with 

network design and 0-1 mixed-integer problems. This initial solution oftentimes generates a 

lower bound to which an improved solution will be desired to resolve the relaxed 0-1 integer 

variables.  In addition, various authors have established the existence of certain LP problems 

that closely approximates the equivalent mixed-integer problems in the literature. 

Balinski (1961) developed a linearization technique to solve the 0-1 mixed-integer 

formulation of the FCTP. His method was described by Walker (1976) and Barr et al. (1981) 

as a rough approximation solution which would need additional improvement. Barr et al. 

(1981) further described the underlying assumption used by Balinski (1961) in applying the 

linearization as the requirement of a demand point being satisfied by a single-origin due to 

fewer supply points than demand points. Linear relaxation solutions have been used by 

Palekar et al. (1990) and Lamar and Wallace (1997) to obtain lower bounds on which they 

built their improved conditional penalty techniques in a branch and bound solution for the 

FCTP. Kim and Pardalos (1999) applied LP relaxation in their dynamic slope scaling 

procedure (DSSP) to solve the FCNFP. They showed proof of the existence of an LP problem 

that has the same optimal solution as the FCNFP within the same feasible domain.  It was 

further suggested that their method could be applied to problems with concave piecewise 

linear objective functions. A modification to the DSSP  in solving piecewise linear network 

flow problems was presented by Kim and Pardalos (2000). Melkote and Daskin (2001) 

studied the use of additional valid inequalities to strengthen the LP relaxation of their 

integrated facility location and network design problems.  

Adlakha and Kowalski (2003) presented a single step perturbation method to improve on the 

initial solution of Balinski (1961) which was an LP relaxation to solve FCTP. They also 

suggested a similar solution for a concave function problem having transportation-type 

constraints.  Croxton et al. (2007) improved on the LP relaxation of their basic model to solve 

the piecewise linear capacitated network flow problem. They also justified the use of an LP 

approach due to the LP relaxation approximating the piecewise linear cost function by its 

lower convex envelope. The lower convex envelope was defined as the line joining the origin 

to the maximum demand point for a graph of cost function against demand flow. It was also 

stressed that the lower convex approximation was poor and the need to improve on the 

solution was necessary. Their improvement was based on providing valid upper bound 

inequality for the load distribution. Kowalski and Lev (2008) also considered the lower 

convex principle and extended the linearization approach suggested in Adlakha and Kowalski 

(2003) for transportation problems in which the objective function behaved like a step or 
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staircase. They suggested some upward or downward shift of load patterns to further improve 

on the initial linearized solution.  

Figure 2-1 below illustrates the lower convex envelope in a graph of cost function 𝑔(𝑋) 

against a flow quantity 𝑋 for a concave (nonconvex) function.  Also, Figure 2-2 below shows 

improvements on using the lower convex principle to solve a step-fixed charge transportation 

problem with non- convex with a breakpoint at 𝐴  and Maximum flow at 𝑀. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Altassan et al. (2013) improved on the linearized solution approach for solving SFCTP. They 

presented initial solutions to address the particular cases of loads being equal to or above 

breakpoints of the SFCTP requirement which they showed Kowalski and Lev (2008) did not 

consider.  In the dynamic programming solution presented for solving the single-sink, fixed-

charge transportation problem presented by Christensen (2013), their initial solutions were 

based on the use of heuristics and variable pegging on the LP relaxation of the problem. They 

suggested improvement heuristics such as the actual cost recalculation technique, least cost 
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17 
 

addition technique and largest cost reduction technique. These were used to calculate upper 

bounds to the original problem using the LP relaxation as a basis. Yousefi et al. (2018b) 

considered solving FCTP using linearization by developing four different cost linearization 

techniques based on the cost and capacity parameters of the problem. They, however, did not 

present any improvement procedure to the approximate solutions obtained.  

2.4.2   Lagrange relaxation heuristic method 

Fisher (1981) discussed Lagrange relaxation as better lower bound generating an alternative 

method to the linear programming relaxation during Branch and bound solutions and that it 

could also provide a good feasible solution when solving combinatorial optimization 

problems. He noted that the selection of the constraints and determination of the Lagrange 

multiplier values to be used during the relaxation influenced the simplicity or difficulty of the 

relaxation problem. He also indicated that the value of the Lagrange multiplier could be 

obtained using the multiplier adjustment method, sub-gradient method and simplex column 

generation method. It was also mentioned that the ease of programming the sub-gradient 

method and its vast use, made it widely accepted in the determination of either optimal or 

near-optimal Lagrange multiplier from the Lagrangian dual problem. They concluded by 

discussing that a structured perturbation of the Lagrange relaxation solution in some instances 

could provide a feasible solution to the original problem.  This was termed a Lagrangian 

Relaxation Heuristic (LRH).  

Both Christofides and Beasley (1983) and Cornuéjols et al. (1983) applied the sub-gradient 

optimization in the Lagrange relaxation solution of the capacitated warehouse location and 

uncapacitated FLP respectively. A good lower bound generating capacity was reported in 

both cases. Klincewicz and Luss (1986) considered the LRH in solving an FLP where a 

single facility ships to each customer. To obtain the Lagrange relaxation of the original 

problem, they dualized the supply feasibility constraint and obtained an uncapacitated 

problem as a result. They used a dual ascent algorithm, an add-heuristic and a final 

improvement heuristic to arrive at the best feasible solution to the original problem.  

Guignard and Kim (1987) and Cornuéjols et al. (1991) both studied a different method of 

applying Lagrange relaxation which involved creating more than one sub-problems from the 

original problem and still retain the original constraints. Cornuéjols et al. (1991) referred to 

this Lagrange decomposition method as variable splitting. Both authors showed proof of how 

the variable splitting methods could provide bounds that can be as good as the conventional 

Lagrange relaxation bounds. Cornuéjols et al. (1991) further provided more insight into the 

complexity of using different constraints for the Lagrange relaxation of CPLP. A linkage 

constraint such as the type that links the continuous variable to the binary variable in a CPLP 

was shown to produce a Strongly NP-hard problem when used in the Lagrange relaxation 

process. 

Since the works of the authors presented above, The LRH has been implemented either as a 

whole solution approach or a base solution on which improvement heuristics are built to 

solve new problems. Sridharan (1995) in their review of solutions for the CPLP discussed the 

Lagrange heuristic and variable splitting methods. They suggested greedy heuristics such as 
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the “add” or “drop” procedure to provide feasible upper bounds during the lower bound 

generating Lagrange relaxation method. Holmberg and Ling (1996) extended the Lagrange 

relaxation and sub-gradient optimization method to solve FLP with a staircase or step 

production costs. Holmberg and Ling (1996) discussed a Lagrange relaxation heuristic which 

incorporated a repeated matching algorithm into a branch and bound algorithm to solve an 

FLP variant. Tragantalerngsak et al. (2000) used a branch and bound based on Lagrangian 

relaxation and sub-gradient optimization to solve a two-echelon FLP. Ghiani et al. (2002) 

used the LRH to solve a plant location problem having facilities with both characteristics of 

fixed costs and capacities in the same region or site. They emphasized that the upper and 

lower bound generating capacity of the Lagrange heuristics as being a suitable reason for its 

continued usage. This observation was also noted by Fisher (2004) and they also gave a 

comprehensive review of the workings of the sub-gradient optimization method using the 

generalized assignment problem. The sub-gradient method was defined as a modification of 

the gradient method in which gradients are substituted with sub-gradients. Below is  a brief 

review on the workings of the sub-gradient method as presented by Fisher (2004).  

Given an optimization primal problem with an objective function (𝑍), i.e.  min  𝑍 , with 

constraints  (𝐴𝑥 –  𝑏 ) selected to participate in the Lagrange relaxation process. A is a matrix 

and   A∈ 𝑅+,  b is a vector and  B∈ 𝑅+ ,  𝑅 is a real number.  

The Lagrange relaxation of any of the constraints is given as 𝑍𝐷(𝑢). Where ( 𝑢)  is the 

Lagrange multiplier. The next step is the determination of the optimal or near-optimal 

Lagrange multiplier from the dual problem  𝑍𝐷 = max 𝑍𝐷(𝑢) . The  𝑘- feasible solutions to 

(𝑢) i.e. ( 𝑢𝑘  ) are determined through the iterative process   𝑢𝑘+1 =  𝑢𝑘 + 𝑡𝑘  (𝐴𝑥𝑘  –  𝑏) .  

Where 𝐴𝑥𝑘  –  𝑏  is regarded as the sub-gradient at 𝑢𝑘 ,   𝑥𝑘  is an optimal solution of the 

Lagrange relaxation of  𝑍  i.e.  𝑍𝐷(𝑢𝑘),  𝑡𝑘 is step size and such that 𝑡𝑘  ≥ 0. 

The near-optimal or optimal  𝑢𝑘 is obtained when  𝑍𝐷(𝑢𝑘) → 𝑍𝐷.  This is possible as 𝑡𝑘 → 0 

and        ∑ (𝑡𝑖  → ∞)𝑘
𝑖=0 . The scalar step 𝑡𝑘  is well defined in the literature. 

The LRH was also used as a base solution for implementing metaheuristics by Chen and Ting 

(2008) and Li et al. (2009) to solve a facility location problem variant. Christensen (2013) 

proposed a Lagrange heuristic in addition to other solution techniques such as the addition of 

valid inequalities and pegging of variables to solve two models of the CFLP with PLTC. The 

relaxed problem from their Lagrange relaxation, which was obtained by relaxing the demand 

constraint, was decomposed into a master integer problem and mixed-integer sub-problem. 

The master problem was reformulated as a knapsack problem with inequalities added to 

resolve any infeasibilities and solved using CPLEX, variable pegging and through the use of 

primal heuristics. Due to the similarity in structure with some existing problems in the 

literature, the dynamic program was employed to solve the sub-problem. Nezhad et al. (2013) 

also used the Lagrange relaxation heuristic and they considered relaxing a constraint linking 

two binary variables. They admitted that this special constraint was hard to solve but it, 

however, ensured that the original problem was decomposed into easily solvable sub-
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problems. They noted the possibility of generating infeasible solutions when solving the sub-

problems obtained and the need to introduce inequalities that can restore feasibilities. 

Ulukan and Demircioğlu (2015), Wu et al. (2017)  and Sanei et al. (2017) presented recent 

studies and applications of the LRH.  Ulukan and Demircioğlu (2015) in their review of 

discrete FLP, showed the number of LRH methods that have been successfully applied to 

variants of problems in this class. Wu et al. (2017) applied hybrid Lagrange heuristic to solve 

an FLP variant. The application of LRH in a solid transportation problem variant with fixed 

charges and no consideration for facility location problem was considered in the studies of 

Sanei et al. (2017). They decomposed the LRH of the original problem into easier sub-

problems that had to be solved independently. They also noted the possibility of generating 

infeasibilities when merging solutions of the sub-problems. Through mathematical 

deductions and also using sub-gradient optimization to update the Lagrange multipliers, an 

efficient solution was proposed for the FCSTP. 

2.4.3   Genetic algorithm implementation for transportation problem variants 

and facility location problems 

One of the popular evolutionary search techniques employed to solve NP-hard combinatorial 

problems is the Genetic Algorithm. Vignaux and Michalewicz (1991) described the GA as a 

probabilistic algorithm which begins with randomly generated feasible solutions called 

populations and dynamically perturbs towards better solutions through mimicking the genetic 

evolution process of nature. The basic operations such as the genetic representation of 

solutions, evaluation function identification, crossover operations, and mutation operations 

were discussed as necessary in a GA solution replication process. They introduced a matrix 

representation of the population of solutions (chromosomes) to solve the basic transportation 

problem. This was further suggested as an alternative to the classical binary representation of 

chromosomes, which become inadequate to represent nonlinear problems such as fixed 

charge problems during the GA implementation. 

Ho and Ji (2005) developed a GA to solve an extended linear transportation problem known 

as the general transportation or machine loading problem. A matrix representation was also 

used to represent the chromosomes (feasible solutions) of the problem. The chromosomes 

were generated using heuristics in the initialization phase. The roulette wheel approach of 

selecting chromosomes to participate in the crossover operations was used. Furthermore, their 

crossover operations and mutation operations were achieved using user-defined crossover and 

mutation rates. 

Gen et al. (2006) used the GA for an extended transportation problem having two stages and 

modelled as a p-median FLP. They discussed other methods of representing the 

chromosomes of network optimization problems. Some of the methods include the edge-

based encoding, vertex-based encoding and edge-vertex based encoding. They proposed a 

priority-based encoding to prevent the infeasibility results of an earlier prüfer number 

representation discussed by Gottlieb et al. (2001). A one cut point crossover operation known 
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as the weight mapping crossover, with an insert and swap mutation method was implemented 

in their GA. 

A comparison of the effectiveness and efficiency of the GA with some other metaheuristics 

such as the tabu search and simulated annealing was studied by Arostegui Jr et al. (2006). 

This comparison was done using variants of FLP such as the CFLP. A matrix representation 

was used and the crossover operation was based on a single cross over point. The mutation 

operation was randomly achieved using a mutate probability. Conclusively, the GA was 

observed to perform better for specific problem types and objective functions. 

Another extended transportation problem having two stages, with fixed charges was solved 

using GA by Jawahar and Balaji (2009). They also utilized the matrix representation and 

generated their population of chromosomes using some allocation heuristics such as least 

equivalent variable cost. The roulette wheel method was used to select chromosomes to 

participate in the crossover operation.  A summary of their roulette wheel selection is 

described below in Table 2-1. A two-point crossing over operation was proposed while the 

mutation operation was achieved using a probability rate to ensure the genes lost can be 

reintroduced into the chromosomes. 

 

Table 2-1  Sample Roulette wheel selection (Jawahar and Balaji (2009)) 

 

 

The GA has also been hybridized with other local search heuristics to strengthen the diversity 

of the search procedure. Lai et al. (2010) implemented a hybrid GA to solve capacitated plant 

location problems. The GA was developed to solve the master integer problem generated 

when using benders decomposition algorithm. The binary representation was utilized since 

the decision variables of the master problem were binary integers (0 and 1). They also 

utilized the single-point crossover method and discussed the basic mutation operation of 

using mutation rates and a complex type referred to as Gen Jam. 

A  comprehensive review of the use of metaheuristic to solve linear integer problems was 

presented by Genova and Guliashki (2011). They noted the power of metaheuristics such as 

Given Chromosomes (solution)  𝑐  , in population size (𝑝𝑜𝑝 𝑠𝑖𝑧𝑒)  
with objective value ( 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 (𝑐) ) 

𝑝(𝑐) =    
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 (𝑐)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒(𝑐)𝑃𝑜𝑝 𝑠𝑖𝑧𝑒
𝑐=1

⁄  

Probability of selecting each chromosome 𝑝(𝑐): 

𝑐𝑝(𝑐) =  ∑ 𝑝(𝑐)

𝑐

𝑐=1

 

Cumulative probability of selection of a chromosome 𝑐𝑝(𝑐) : 

𝑐𝑝(𝑐 − 1) < 𝑅 ≤  𝑐𝑝(𝑐)   

Generation of random numbers  𝑅   (0 <  𝑅 ≤  1)  such that 

chromosome 𝑐 is selected under the condition: 
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the GA as being able to prevent solutions from being trapped in local optima, due to their 

multi-dimensional search strategies when compared to other classical heuristics. They also 

observed the solution generating capacity of the GA to be based on the genetic operators and 

also pointed out a heuristic hybridization advantage of the GA.  

Antony et al. (2011) studied a hybrid GA for solving a single-stage FCTP. Heuristics were 

used to generate their population of chromosomes and to improve on the chromosomes 

obtained. An improvement technique discussed was a stepping stone method of increasing 

the number of basic cells or genes of the chromosomes.  They also presented a review of the 

various chromosome representation types that have been proposed to solve fixed charge 

transportation problems. The differences were based on the number of genes involved in the 

chromosomes. They showed the matrix representation as possessing the highest number of 

genes representing the transportation problem i.e.   𝑚 ×  𝑛 . The prüfer number had the least 

representation i.e.  𝑚 +  𝑛 − 2.  The roulette wheel was also used in selecting chromosomes 

for crossover. However, no mutation was done. Their solution approach was also extended to 

solve two-stage FCTP as implemented in Antony Arokia Durai Raj and Rajendran (2012). 

Jawahar and Balaji (2012) extended their earlier GA to solve a multi-period fixed charge 

distribution problem. However, their chromosomes representation was based on a 

permutation schedule. Fernandes et al. (2014) also proposed a GA to solve a two-stage 

capacitated facility location problem.  Heuristics were also used to generate chromosomes 

such as in Jawahar and Balaji (2012) with the chromosomes represented as binary integers. 

Both the CFLP and variants of the transportation problems have been solved independently 

using hybrid GA as discussed by Rahmani and MirHassani (2014), Ulukan and Demircioğlu 

(2015), Calvete et al. (2016) and Guo et al. (2017). An HGA with another evolutionary 

algorithm known as the firefly was utilized by Rahmani and MirHassani (2014) to solve 

CFLP. Ulukan and Demircioğlu (2015) on the other hand presented a review of discrete FLP 

with the growing use of hybrid evolutionary algorithm as compared to hybrid classical 

solution methods. Calvete et al. (2016) studied a hybrid GA while incorporating a network 

simplex algorithm to solve a two-stage transportation problem. A hybrid evolutionary 

algorithm was also implemented by Guo et al. (2017). They considered the use of GA with a 

fitness approximation and other local search heuristics. 

The use of the GA to solve integrated distribution problems that extends the base distribution 

problem by incorporating  other optimization decisions such as location planning, inventory 

management, price breaks  was described by Ojha et al. (2010), Hiassat et al. (2017)  Yousefi 

et al. (2018a) and Balaji et al. (2019).  A  GA to solve integrated solid transportation problem 

with route fixed charge, vehicle cost and price discounts was considered by Ojha et al. 

(2010). They studied this global optimization problem to emphasize the challenges some 

organizations are confronted with while creating values for their customers. Furthermore, 

they suggested the use of real number representation for their chromosomes as against the 

binary representation due to the non-linearity’s involved in such problems. The roulette 

wheel method was used to select chromosomes for the cross over operation while they 

ensured an arithmetic crossover that prevents infeasibilities of new chromosomes or offspring 
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from being utilized. The mutation was randomly done within the range of feasible solutions. 

Hiassat et al. (2017)  on the other hand implemented a GA to solve an integrated location-

inventory routing problem with perishable products. Their chromosome representation was 

presented as an array of numbers that consisted of the different optimization decision 

considered. They also used the roulette wheel method for crossover operations, the single 

cross over point and the swap technique for mutation. Yousefi et al. (2018b) compared the 

GA and Simulated Annealing and linearized heuristics in solving FCTP with incremental 

discounts. The GA was shown to perform better than the other solution techniques. In 

addition, Yousefi et al. (2018a) also utilized  GA to solve an extended version of FCTP with 

incremental discounts. They used priority-based encoding scheme for their chromosome 

representation and employed similar genetic operations of crossover and mutation as 

described by earlier authors for the new population generation. Balaji et al. (2019) extended 

their previous GA model in Jawahar and Balaji (2009) to solve a FCTP with the introduction 

of truckload constraints. 

2.4.4   Standard solver (IBM ILOG Suite) method 

IBM ILOG optimization suite consists of a set of tools for developing personalized 

optimizations programs that use the IBM customized solvers. This consists of the IBM ILOG 

Optimization Programming Language (OPL), the IBM ILOG Optimization Decision 

Manager (ODM) and Optimization engines such as the IBM ILOG CPLEX for mathematical 

programming and IBM ILOG Constraint Programming (CP) optimizer. According to Studio 

(2016), IBM ILOG CPLEX has embedded in it among others the C, C# and Java 

programming language libraries, that can solve Linear Programming(LP) and similar 

problems such as MIP. Lima (2010) gave a range on the typical mathematical programming 

problems solvable by IBM ILOG CPLEX. This includes amongst others the LP, MIP, Mixed-

Integer Quadratic Programming (MIQP), Quadratic Constrained Programming (QCP). They 

further noted that the major solvers used are the Simplex optimizers, Barrier optimizers and 

the mixed-integer Optimizers. These solvers could be invoked concurrently or individually to 

solve the optimization problems.  He (2012) described the IBM ILOG CPLEX as helpful for 

building user-defined search heuristics. A key function that helps user-defined heuristics to 

be developed using the IBM ILOG suite was described by Studio (2016) as the Concert 

Technology and the Callable Library. They defined Concert Technology as a set of libraries 

that allow programmers to embed CPLEX optimizers in Java, C++, or .NET applications. 

The Callable library, on the other hand, allows programmers to embed CPLEX optimizers in 

applications that can call the C programming language functions. 

Some of the search heuristic implementations in this research work was written in the Java 

programming language and based on the IBM ILOG concert technology for Java users. The 

Concert technology for Java was used to model and solve the Original MIP problems and 

also used to solve some linear programming formulations encountered in this thesis.  
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2.5     Summary of Research Gap 

Research in the separate fields of facility location and transportation problems have been well 

conducted. These have been both in model formulation and solution technique development. 

However, the field of integrated facility location and transportation problems is gradually 

receiving attention with a leading work from Melkote and Daskin (2001).  Other studies such 

as the works of Correia et al. (2010) and Christensen (2013) which appeared to have 

discussed integrated facility location and transportation problems have not considered an 

integrated facility location and transportation problem in which transport conveyances are 

considered. The recent work of Das et al. (2019) which appeared to have discussed an 

integrated facility location problem with transport conveyances have not considered the 

reality of fixed charges in their models.  

Solution techniques which apply a state of the art technique such as hybrid metaheuristic as 

against classical solution methods have not been utilized to solve integrated facility location 

and transportation problem in the literature. A classical solution method known as the 

Lagrange relaxation heuristic is also extended to solve this problem. In addition, a structured 

perturbation logic based on linear relaxations has also not been used to solve the facility 

location and step-fixed charge transportation model as considered in this thesis. The models 

and solution techniques in this thesis are proposed to fill these research gaps. A summary of 

the gaps and how they have been addressed in the different chapters of this research work is 

presented in Table 2-2 below. 
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Table 2-2   Research gap analysis 

Selected Authors Problem Characteristics  Solution    
Method 

  

  Variable 
cost 

Route 
fixed 
cost 

Route 
Step-
fixed 
cost 

Facility 
Location 
fixed 
cost 

Conveyance 
constraint 

Type Class 

Adlakha and 
Kowalski (2008) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Linear 
Programming 
Relaxation 

Heuristics 

Elsherbiny and 
Alhamali (2013) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Artificial 
Immune 
Vs LINGO 

Meta-
Heuristics 

Correia et al. 
(2010) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Model + Valid 
In equalities + 
LP relaxation 
In CPLEX 

Heuristics 

Christensen 
(2013) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Lagrange+ 
Valid 
inequality 
addition 
vs CPLEX 

Heuristics 

Sani et al. 
(2017) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Lagrange 
Heuristic 
Vs CPLEX 

Heuristics 

Das et al. (2019)  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

locate-allocate 
heuristic 

Heuristics 

Chapter 3   
 

 

 
 

 

 
 

 

 
 

 

 
 

 

LP relaxation + 
Valid 
inequality 
+Location 
heuristic Vs 
CPLEX 

Heuristics 

Chapter 4    

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Lagrange 
Heuristic 
Vs CPLEX 

Heuristics 

Chapter 5  
 

 
 

 
 

 
 

 
 

Genetic 
Algorithm 
+greedy 
heuristic + 
Modified 
stepping stone 

Meta-
Heuristics 
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2.6   Conclusion 

A good number of models and solution methodologies which are formulated to tackle recent 

NP-hard optimization problems are modifications and extensions of some base models and 

solution techniques as described above. The linear programming relaxation or lower convex 

envelope solution have been used as a starting solution for network design problems such as 

nonconvex piecewise linear transportation problems. However, for piecewise linear cost 

structure formulations such as the integrated capacitated facility location and step-fixed 

charge transportation problem, the linear programming relaxation requires the development 

of improved solution techniques which can further drive the initial solution to optimal or 

near-optimal solutions. 

The Lagrange relaxation heuristic which employs the sub-gradient method has been shown as 

an alternative starting or complete solution to CFLP variants. The LRH can help to generate 

lower and upper bounds to the problem being considered. Also, LRH allows the inclusion of 

improvement heuristics that narrows the solution search pace for faster and optimal or near-

optimal solutions. Therefore, in order to solve NP-hard problem such as the integrated 

capacitated facility location and fixed charge solid transportation problem, extending the 

LRH with the inclusion of primal heuristics becomes a research area requiring exploration. 

Lastly, the use of hybrid heuristics which combines metaheuristics and improvement heuristic 

methods has formed a new method of solving complex optimization problems. Metaheuristic 

frameworks such as the GA have been shown in the literature to possess effective abilities of 

preventing optimization problems from getting stuck in a local optima which classical 

relaxation approaches may not prevent. A substantial amount of research exists in the 

literature when solving network design problems using classical and metaheuristic solutions. 

Therefore, research into hybrid metaheuristic solutions to solve facility location network 

design problems as compared is an area requiring some considerable research input. 
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Chapter 3 

 

Solving the Capacitated Step-Fixed charge and Facility 

Location Problem 
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Chapter 3.1    

 

On the Capacitated Step-fixed charge and Facility location 

problem: A row perturbation heuristic 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this subchapter has been published in Applied Mathematics and 

Information Sciences Journal. 
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3.1.1   Introduction  

The main objective in this chapter is about minimizing the traditional distribution problem 

cost of a source to a destination where a minimum number of facilities with known capacities 

have to be chosen from amongst other competing capacitated facilities or locations with fixed 

location costs in order to ship an item through routes with step-fixed costs. This SFCTLP 

emanates also as a variant of the SFCTP in like fashion as the SFCTP and SFCSTP. The 

formulation of, and reviewing known starting initial solutions for solving the SFCTP is 

earlier presented before discussing the integrated model for the SFCTLP, followed by a 

solution heuristic and then a numerical example. 

3.1.2   SFCTP model formulation  

The classical TP and its variants such as FCTP, SFCTP, SFCSTP are described as  𝑚 

suppliers and 𝑛 demand point distribution problems, where  𝑚 denotes the number of sources 

(factories, warehouses or distribution centers) and 𝑛 refers to the number of customers or 

demand points. There are supply and demand requirements which often are represented as 

capacities 𝑆𝑖 and demand 𝐷𝑗   for each source 𝑖  and demand point 𝑗 respectively over a known 

time period. The  𝑚 suppliers incur a unit transportation cost 𝑐𝑖𝑗  per unit distance and a fixed 

charge ℎ𝑖𝑗  whenever a transportation route is opened (utilized for shipping) under constraints 

of supply capacity meeting a typical demand of transportation algorithm.  

 

There are more than one fixed charges in the route (𝑖, 𝑗)  when Step-fixed charges are 

considered. In the SFCSTP, the fixed charges are represented by the vehicle cost of 

conveying different volumes of the load. While, in SFCTP, the fixed charges may be incurred 

either through duties, taxes or vehicle costs of different volumes transported. The number of 

fixed charges depends on the number of breakpoints in the step function desired. In this case, 

two steps of fixed charges, ℎ𝑖𝑗1 and ℎ𝑖𝑗2, are considered without loss of generality. The fixed 

charge ℎ𝑖𝑗1  is incurred when a route is opened and termed as 𝐻𝑖𝑗1  in the objective function 

and the second ℎ𝑖𝑗2  is incurred when the shipment load (or transported unit) exceeds an 

amount  𝐴𝑖𝑗 , and termed as 𝐻𝑖𝑗2  in the objective function also.  𝐴𝑖𝑗  is referred to as the 

breakpoint and may be fixed or varying per route (𝑖, 𝑗)  depending on the model under 

consideration. When there is load distribution in any route i.e.  𝑥𝑖𝑗 ≥ 0, ℎ𝑖𝑗1  is incurred. 

While ℎ𝑖𝑗2   is incurred when 𝑥𝑖𝑗 ≥ 𝐴𝑖𝑗. 

 

The standard mathematical model for the SFCTP is represented below: 

Min Z =  

      

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ ∑ ∑ 𝑔𝑖𝑗𝑘ℎ𝑖𝑗𝑘        

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

                                       (3.1) 

                         

Subject to 
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∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 =      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 … 𝑚                                               (3.2) 

 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                   (3.3) 

 

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 =      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛        (3.4) 

 

Where 𝑔𝑖𝑗1  =  {
1      𝑥𝑖𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,   𝑔𝑖𝑗2    =  {

1    𝑥𝑖𝑗 >  𝐴𝑖𝑗  

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        

𝑦𝑖 =   0 𝑜𝑟 1                                                                                              
𝑥𝑖𝑗  ≥ 0                                                                                                       

 

Altassan et al. (2013) noted that the solution methods of the SFCTP depend on the breakpoint 

position i.e. if 𝐴𝑖𝑗 <  min (𝑆𝑖 , 𝐷𝑗  )  or 𝐴𝑖𝑗 ≥  min (𝑆𝑖 , 𝐷𝑗  ) . If 𝐴𝑖𝑗 ≥  min (𝑆𝑖 , 𝐷𝑗  ) , the 

optimal solution to the SFCTP is an optimal solution to FCTP . The SFCTP solution heuristic 

of Kowalski and Lev (2008) and the SFCTLP heuristic presented in this subchapter work 

through building a relaxed cost matrix which are modifications of Balinski (1961) relaxation 

for the FCTP.  In the model presented in this subchapter, the binary integer 𝑧𝑖𝑗  associated 

with the fixed charges ℎ𝑖𝑗  (standard SFCTP model above) or  𝐻𝑖𝑗  (in the model presented 

below) is replaced by  𝑥𝑖𝑗 𝑀𝑖𝑗⁄    where 𝑀𝑖𝑗  =  min (𝑆𝑖 , 𝐷𝑗  ). Thus a relaxed cost matrix is 

formed. Kowalski and Lev (2008) followed in a similar fashion to obtain a first relaxed cost 

matrix 𝐶𝑖𝑗 =  𝑐𝑖𝑗  +
ℎ𝑖𝑗1 + ℎ𝑖𝑗2 

𝑀𝑖𝑗
  or 𝐶𝑖𝑗 =  𝑐𝑖𝑗  +

𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗
  and second relaxed cost matrix 

𝐶𝑖𝑗 =  𝑐𝑖𝑗  +
 ℎ𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    or   𝐶𝑖𝑗 =  𝑐𝑖𝑗  +

 𝐻𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
   .  

  

To improve their initial solution of SFCTP,  Kowalski and Lev (2008) demonstrated that the 

number of  basic variables for a near-optimal solution of the SFCTP having two steps (or 

tiers)  can be greater than(𝑚 + 𝑛 − 1) that is traditionally expected for a classical TP. They 

considered a minimization model of the step-fixed charge problem and presented a numerical 

example to support their claim. They also noted that for a two-tier or two step-fixed charge 

problem where the load distribution 𝑥𝑖𝑗  is such that 𝑥𝑖𝑗 ≤ 𝐴𝑖𝑗 or 𝑥𝑖𝑗 > 𝐴𝑖𝑗 , perturbation 

moves would result in above or below 𝐴𝑖𝑗  distribution. This is quite logical as it expected 

that some optimal load values would occur at the breakpoints.  They also established that 

using the transportation problem would create solutions with (𝑚 + 𝑛 − 1)  or less to which a 

particular perturbation would be needed to redistribute the load units to take advantage of the 

fixed charges along the routes. In Figure 3-1 and 3-2  below, the cost objective pattern with 

different fixed cost values and the expected linearization as illustrated by Kowalski and Lev 

(2008) are shown. 

 

 
 
 



30 
 

 

Figure 3-1 Two-step linearization and relaxation Structure (Kowalski and Lev, 2008) 

 

 

Figure 3-2  Linearization and relaxation structure when Hi j1 < Hi j2 
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Altassan et al. (2013) however showed the limitation of the second relaxed cost in the works 

of  Kowalski and Lev (2008) when 𝑀𝑖𝑗 ≤ 𝐴𝑖𝑗  with 𝐶𝑖𝑗 (relaxed cost) not giving a positive 

result. They further proposed three formulas for calculating relaxed cost (𝐶𝑖𝑗 ) which are 

based on firstly whether 𝐴𝑖𝑗 < 𝑀𝑖𝑗 or  𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗, secondly on  𝐴𝑖𝑗  being included or not in 

the formula and thirdly on the number of 𝑀𝑖𝑗 − 𝐴𝑖𝑗  shipments done. They used  𝑓𝑖𝑗1   and   

𝑓𝑖𝑗2  as their route fixed cost in their formulas as represented below.  

 

The first one was given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  + 
𝑓𝑖𝑗1 +𝑓𝑖𝑗2 

𝑀𝑖𝑗
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)        3.5(a) 

 

The second was given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  +  
𝑓𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)         3.5(b) 

 

The third given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  +
𝑓𝑖𝑗2 

𝐴𝑖𝑗
+  

𝑓𝑖𝑗1 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)        3.5(c) 

 

 From their analyses, they concluded that the first formula gave the best approximation when 

compared to Balinski (1961) and Kowalski and Lev (2008) and they also made suggestions as 

to using the other formulas as better starting solutions for the SFCTP. 

3.1.3   SFCTLP problem structure and formulation 

Two methods are utilized for the linearization and relaxation of the initial solution 

development of SFCLTP. The first procedure is as described by Balinski (1961), Kowalski 

and Lev (2008) and Altassan et al. (2013) which employs the transportation model variable 

cost structure to form a relaxed cost matrix.  The motivations for using linearization are 

described in section 2.4.1. The reason is basically due to the existence of certain LP problems 

that closely approximates the equivalent mixed-integer problems in the literature. Although, 

these LP problems still require some perturbations to obtain better results for mixed-integer 

problems. 

As discussed in earlier sections, the position of 𝐴𝑖𝑗  i.e.  𝐴𝑖𝑗 <  𝑀𝑖𝑗  or 𝐴𝑖𝑗 ≥  𝑀𝑖𝑗   in 

developing the relaxed or reduced transportation cost matrix would affect the SFCTP solution 

found. It is also noted that the breakpoint position i.e. 𝐴𝑖𝑗 <  𝑀𝑖𝑗  or 𝐴𝑖𝑗 ≥  𝑀𝑖𝑗  for any 

problem involving a two-tier fixed-charge cost on a route would affect the relaxation and 

perturbation pattern when seeking for a solution heuristic. Therefore, the model of Balinski 

(1961), Kowalski and Lev (2008) and more importantly the second formula by Altassan et al. 

(2013) have been extended by creating the starting SFCTP part of the problem using 
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𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

ℎ𝑖𝑗1 

𝑀𝑖𝑗
               𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  + 
ℎ𝑖𝑗1 +ℎ𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)     3.5(d) 

A summation of route fixed costs ℎ𝑖𝑗1 + ℎ𝑖𝑗2  or (𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 ) instead of ℎ𝑖𝑗2  (𝐻𝑖𝑗2 ) alone 

have been used to account for incurring the fixed cost ℎ𝑖𝑗1  (𝐻𝑖𝑗1 ) whenever a route is opened 

before ℎ𝑖𝑗2  is incurred due to the breakpoint 𝐴𝑖𝑗 .  Also, ℎ𝑖𝑗   instead of  𝑓𝑖𝑗  has been used in 

the route fixed costs. The second procedure develops an average relaxation method, as 

indicated by equation (3.14) below. This second method relaxes the location variable 𝑦𝑖  by 

creating an average location variable value 𝑦𝑖
𝑎 for all the competing locations. Through some 

perturbation techniques developed on the initial solution, better solutions are obtained.   

This problem solved is stated as the Capacitated Facility Location with Step- Fixed Charges 

along the transportation routes i.e. Step- Fixed Charge Transportation and Location Problem 

(SFCTLP). 

Model assumptions 

The following assumptions are made in formulating the SFCLTP model: 

1. Deterministic input 

2. One stage or two-echelon problem  

3. Two step-fixed charge cost   

4. Single period and single item distribution problem. 

 Model Parameters:  

𝑖      : Index for sources (plants, locations or row)  

𝑚    : Number of sources (plants, warehouses etc.)  

𝑛     : Number of destinations (or demand point)  

𝑗      : Index for demands (destinations or columns)   

𝑘     :  Index for Levels or (number of steps)  

 𝑐𝑖𝑗  : The unit cost of shipment on route (𝑖, 𝑗)  

𝑆𝑖    : Capacity for each location 𝑖 

ℎ𝑖𝑗1 : the First level fixed cost on route(𝑖, 𝑗)  

ℎ𝑖𝑗2 : the Second level fixed cost on route(𝑖, 𝑗) 

𝐻𝑖𝑗1 : First level step-fixed cost based on load distribution  

𝐻𝑖𝑗2 : Second level step-fixed cost based on load distribution  

 𝑥𝑖𝑗  : Allocation variable (or load distributions) along the route (𝑖, 𝑗) 

𝑦𝑖    : Location variable for plant or source (0 or 1) 

𝑔𝑖𝑗1  : Step-fixed charge variable (determining first or second level of fixed cost) 

𝑧𝑖𝑗   : Fixed charge variable in the objective function (0 or 1)   

𝐴𝑖𝑗   : The breakpoint for  the fixed costs along the route (𝑖, 𝑗) 
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Mathematical Model (Objective function and Constraints): 

(Objective function) 

Minimize   Z   =   

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗    + ∑ 𝐹𝑖 𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗         

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

              (3.6a) 

                                                                                              

      Where:    

       

∑ ∑ 𝐻𝑖𝑗1  

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ 𝑔𝑖𝑗1ℎ𝑖𝑗1  

𝑛

𝑗=1

𝑚

𝑖=1

 

 

∑ ∑ 𝐻𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ 𝑔𝑖𝑗2ℎ𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

 

∴ 

∑ ∑ 𝐻𝑖𝑗1  +  ∑ ∑ 𝐻𝑖𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

 =   ∑ ∑ 𝑔𝑖𝑗1ℎ𝑖𝑗1  + ∑ ∑ 𝑔𝑖𝑗2ℎ𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑛

𝑗=1

𝑚

𝑖=1

 

 

 Where: 

 𝑔𝑖𝑗1  =  {
1      𝑥𝑖𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,   𝑔𝑖𝑗2    =  {

1    𝑥𝑖𝑗 >  𝐴𝑖𝑗  

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 =   ∑ ∑ 𝐻𝑖𝑗1  𝑧𝑖𝑗 + ∑ ∑ 𝐻𝑖𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

 𝑧𝑖𝑗 

 

Subject to (constraints): 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 ≤      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 … 𝑚                                                   (3.7) 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                       (3.8) 

     

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛            (3.9)  

 

𝑥𝑖𝑗  ≥ 0                                                                                                      (3.10𝑎)    

𝑦𝑖  = 0 𝑜𝑟 1      𝑧𝑖𝑗  = 0 𝑜𝑟 1                                                         (3.10b) 
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Equation (3.6a) is the objective function.  The first term is a variable cost, the second term is 

the facility location cost and the third term is the route step-fixed charge cost. Equation (3.7) 

is the supply capacity constraint of each location or sources. Equation (3.8) is the demand 

constraint to be met.  Equation (3.9) is the aggregate constraint for supply and demand 

balance. Equation (3.10a) refers to the non-negativity constraint and (3.10b) refer to the 

binary integer constraints. 

3.1.4   Solution method 

The solution method presented iterates through the steps and rules below in seeking an 

improved solution: 

Step 1:  An initial solution is developed by linearization and relaxation of the binary variables 

(𝑦𝑖  𝑎𝑛𝑑 𝑧𝑖𝑗 )   in the model problem.  

Step 2:  A lower bound for SFCTLP is calculated.   

Step 3:  Improving the initial solution through a structured perturbation procedure referred to 

as Row Perturbation Heuristic (RPH) 

 

The RPH works through improving the initial solution method by iterating through the 

following well-established procedures of moving to a good low-cost solution efficiently. 

Christensen (2013) discussed how the use of some of the rules below can drive towards a 

reduced cost solution. 

(a) Least cost rule 

(b) Utilization rule 

(c) Fixed cost elimination  rule (Location fixed cost and route selection fixed cost) 

(d) Feasibility rule  

 

The heuristic uses the least cost rule to determine which sources to open and where to 

allocate capacities. Moreover, it allocates load units to reduce the number of fixed costs 

incurred i.e. facility location cost and route fixed costs by pushing load units to already open 

sources, closing unneeded locations in the process and also moving away from the higher tier 

fixed cost. Feasibility rule is been used to ensure capacity and demand constraints are 

satisfied during the load redistribution. 

 

Initial Solution  

This is achieved through the linearization and relaxation of integer (binary) variables i.e. the 

facility location 𝑦𝑖  and fixed charge selection 𝑧𝑖𝑗  variables. A Relaxed Transportation 

Problem (RTP) is thus formed as a result.  

Using the relaxation of integer variables described earlier: Where:   𝑧𝑖𝑗  =  𝑥𝑖𝑗 𝑀𝑖𝑗⁄  and 

𝑀𝑖𝑗 = min (𝑆𝑖 , 𝐷𝑗  ) 

Using equation (3.9), the minimum supply requirement implies that: 

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                         (3.11)      
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A new location variable 𝑦𝑖
𝑎 , which is the average of   ∑ 𝑦𝑖

𝑚
𝑖=1  to help relax the location 

variable 𝑦𝑖 is developed.  Thus equation (3.11) is restated as 

 

∑ 𝑆𝑖

𝑚

𝑖=1

 𝑦𝑖
𝑎  = ∑ 𝐷𝑗

𝑛

𝑗=1

                                                                                                  (3.12) 

 

∴    

∑ 𝑆𝑖

𝑚

𝑖=1

 𝑦𝑖
𝑎  = ∑ ∑ 𝑥𝑖𝑗    

𝑛

𝑗=1

𝑚

𝑖=1

                                                                                        (3.13) 

∴   

 

𝑦𝑖
𝑎   =     

∑ ∑ 𝑥𝑖𝑗     𝑛
𝑗=1

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

                                                                                         (3.14) 

 

Substituting  𝑦𝑖
𝑎    for  𝑦𝑖  and      𝑧𝑖𝑗  =  𝑥𝑖𝑗 𝑀𝑖𝑗⁄   equation (3.6a) is transformed as: 

Minimize   𝑍𝑅1=   

 

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ 𝐹𝑖 𝑦𝑖
𝑎

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘

𝑥𝑖𝑗

𝑀𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

                                        (3.6b) 

 

Substituting equation (3.14) in  (3.6b) gives: 

 

Minimize  𝑍𝑅1 =   

 

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ 𝐹𝑖   [
∑ ∑ 𝑥𝑖𝑗     𝑛

𝑗=1
𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

] 

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘

𝑥𝑖𝑗

𝑀𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

           (3.6c) 

 

𝑍𝑅1    =  

 

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
∑ 𝐻𝑖𝑗𝑘

2
𝑘=1

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

  𝑥𝑖𝑗                                                                   (3.6𝑑) 

 

Therefore  

𝑍𝑅1  =  ∑ ∑[ 𝐶𝑖𝑗]

𝑛

𝑗=1

𝑚

𝑖=1

  𝑥𝑖𝑗                                                                                              (3.6𝑒)  

Where;  

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
∑ 𝐻𝑖𝑗𝑘

2
𝑘=1

𝑀𝑖𝑗
      ∀ (𝑖, 𝑗)                                                          (3.15)  
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However, considering the breakpoint analyses made in section 3.1.3, earlier, equation (3.15) 

would be limited. Therefore using equation (3.5d), equation (3.6d) can further be stated as   

𝑍𝑅2    =  

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗                                   𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗        ∀(𝑖, 𝑗)  

or 

 ∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗 − 𝐴𝑖𝑗 
    ]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗              𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗            ∀(𝑖, 𝑗)             (3.6𝑓) 

 

From equation (3.6f) above, the cost matrix from which the transportation tableau will be 

constructed is given as: 

 

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
      ∀ (𝑖, 𝑗)      𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗                                                  (3.16𝑎) 

or  

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗 − 𝐴𝑖𝑗 
      ∀ (𝑖, 𝑗)           𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗                                (3.16𝑏) 

 

The linear Equation (3.6f) above can be solved using an optimal solution technique for 

transportation model (e.g. method of Modified U-V distribution method). This is present in 

optimization transportation software such as Tora. 

 

The load distribution obtained from the relaxed cost  𝑍𝑅2  in equation (3.6f) is used in 

calculating 𝑍 in equation (3.6a) and would be termed the current best solution(Z𝐶𝐵). After 

this, necessary perturbations following the  rules presented earlier, are employed to arrive at 

another Z which is compared to the initial  Z𝐶𝐵 .  Comparing the values of Z𝐶𝐵  and  𝑍 , If  

Z𝐶𝐵 ≤ 𝑍  keep  (Z𝐶𝐵) as the current best, otherwise i.e. Z𝐶𝐵 > 𝑍,  therefore 𝑍 is termed as the 

current best.  

 

Lower bound calculations 

Using equation (3.5a) and the average location variable 𝑦𝑖
𝑎  in equation (3.14),  Altassan et 

al. (2013) best starting solution for  SFCTP  has been extended. The SFCLTP lower bound is 

thus calculated below.   

𝑍𝐿𝐵  =  

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗                                 𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗        ∀(𝑖, 𝑗)  

 

or 
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      ∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗             𝑖𝑓      𝐴𝑖𝑗 < 𝑀𝑖𝑗        ∀(𝑖, 𝑗)           (3.6𝑔) 

 

 Solution   Improvement    (using The RPH proposed): 

The 𝑥𝑖𝑗  allocations obtained from the optimal solution of equation (3.6f) is further perturbed 

using structured combinations of the least cost preference, high utilization of open locations 

and systematic elimination of fixed cost either by closing an open location or by preventing 

the use of high fixed charge along the routes. The perturbation technique aims at getting a 

better solution while using the rules stated in section 3.1.4 as a guide. The Perturbation moves 

are a top-down load re-distribution along a column of each row to ensure that feasibility in 

demand is attained as described in the (4 × 4) transportation tableau in Figure 3-3 below. 

𝑆𝑖  (location capacity), 𝐷𝑖  (Demand capacity). The last column represents relaxed cost 

summation along a row. 

 

Figure 3-3 Sample perturbation moves 

 

From equation (3.6a) above, it is observed that there are three cost terms in the objective 

function namely;  

(1) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗  

(2) Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖   )  

(3) Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  ) 2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 .  

 

The degree of the values obtained for each of the terms would determine the solution 

procedure and perturbation technique to be used.  The following scenarios out of several 

possible ones for the structured perturbation logic are therefore noted: 
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(a)   𝑉𝑐   ≫   𝐿𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐      (Variable cost having the largest value);  

(b)   𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐      (Location cost having the largest value); 

(c)   𝑆𝑓𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑 𝐿𝑐       (Step-fixed cost having the largest value); 

(d)   𝑉𝑐   ≅   𝐿𝑐   ≅   𝑆𝐹𝑐         (The three terms being approximately equal) 

 

The Summarized perturbation procedure is given below; 

 

1. Using the linearization in (3.6f) to obtain the starting solution and initial load distribution. 

The 𝑍 obtained is termed the current best (Z𝐶𝐵). 

 

2. (a) Calculate the values of the major terms of the objective function i.e. 𝑉𝑐, 𝐿𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  

(b.1) If     𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐   go to step (3),  

(b.2) Else If   𝑆𝑓𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑 𝐿𝑐 go to step (4). 

(b.3) Else go to Step 1 and exit Procedure. 

 

3. (a.1) For location cost reduction (𝐿𝑐)  if dummy rows are obtained from step (1) 

    (a.2) Yes: ignore row and capacity in calculation. Else go to Step (3b.1) 

    (b.1) Check if  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −  ∑ 𝐷𝑗

𝑛
𝑗=1  ≥  min (𝑆𝑖=1 ⋯𝑚), excluding 𝑖 =  𝑑𝑢𝑚𝑚𝑦 𝑟𝑜𝑤. 

    (b.2)  If true proceed to 3c.1, 

    (b.3)  Else if  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0   Stop and exit procedure. Return Z𝐶𝐵  

    (b.4) Else go to Step 3h. 

    (c.1)  Identify whether rows or locations with partially utilized capacities are available 

    (c.2) arrange in the order of decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚   where 𝐶𝑖𝑗  →    

relaxed cost matrix (Break ties arbitrarily and select largest.) 

    (d.1) Identify rows or locations with fully utilized capacities and arrange in the order of 

decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚   where 𝐶𝑖𝑗  → relaxed cost matrix (Break 

ties).If yes go to (3e.1).  If none go to Step (3g). 

    (e.1) Is there an 𝑋𝑖𝑗 with maximum 𝐶𝑖𝑗  position according to the row identified in Step 

(3d.1)? 

    (e.2)Yes: Remove allocations starting with maximum 𝐶𝑖𝑗 position  from open and allocated 

𝑋𝑖𝑗 positions of the fully utilized rows as identified in Step3(d.1) or ( as per  partially 

utilized row as in step (3g) ) and add into position (𝑖, 𝑗)  of  the partially utilized rows in 

decreasing order  of ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 to balance the row capacity (break 

ties as step3c).  

   (e.3)  No: maximum position has no load then move to next in rank of 𝐶𝑖𝑗, (break ties 

arbitrarily )  

    (f) Repeat step 3(e) until allocations have been completely removed in the fully or partially 

utilized row identified as per step (3e).  Go to Step (3h) 

     (g) Arrange the partially utilized location or row capacity in an order of decreasing 

∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚, ( break ties as in Step3c)  and select Maximum. Repeat 

Steps (3e) to (3f). 
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     (h.1) Use the current load distribution to calculate 𝑍(𝑛𝑒𝑤). Compare the values of Z𝐶𝐵  

and  𝑍(𝑛𝑒𝑤)  

(h.2) If  𝑍(𝑛𝑒𝑤) <  Z𝐶𝐵   𝑍 is termed as the current best and go to Step (1).  

(h.3) If otherwise i.e. 𝑍 (𝑛𝑒𝑤) >   Z𝐶𝐵,  Stop and exit procedure. 

4   (a.1) For the Step-fixed charge cost reduction, check if any dummy rows? 

(a.2) Delete any dummy rows or unutilized locations obtained in step 1. 

(b.1) Identify if rows or locations with partially utilized capacities are available 

(b.2) Arrange in the order of increasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚  where 𝐶𝑖𝑗  →  

relaxed cost matrix (Break ties arbitrarily).  

(c) Identify rows and locations with fully utilized capacity and arrange in the order of 

increasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 . (Break ties as in Step4b).  

If none go to Step (3b). 

(d.1)  Check If  there are open and allocated 𝑥𝑖𝑗  positions greater than  𝐴𝑖𝑗  within the 

largest row as identified by step (4c) at maximum 𝐶𝑖𝑗 position?  

(d.2.) No: If the maximum position has no load move to next in rank of 𝐶𝑖𝑗 

(d.3) Yes:  Check if un-allocated position𝑠 𝑥𝑖𝑗 of the row as identified by step (4b.1) can 

accommodate the move.  

(d.3.1)  No: If current capacity cannot accommodate the reallocation, move to the next 

ranked partially utilized capacity row according to  Step(4b.1) Proceed till the identified 

 𝑥𝑖𝑗 position in step(4d.1) or ( 4g) has been redistributed in a single step of 𝐴𝑖𝑗 . If no 

partially utilized row with availability go to Step (3b). 

    (d.3.2) Yes: Redistribute ( 𝐴𝑖𝑗 ) identified at Step(4.d.1) starting with the 𝑥𝑖𝑗  with at 

maximum 𝐶𝑖𝑗 position  

    (f.) Repeat Step (4b) to (4d) until moves already taken are about to be repeated or till a 

position   𝑥𝑖𝑗 − 𝐴𝑖𝑗  after using step (4d or 4g) becomes 𝑥𝑖𝑗  . Use the current load 

distribution to calculate  𝑍 . go to Step (3b). 

 

 RPH Flow Chart Description 

A flow chart showing the perturbation steps described above and how they iterate to improve 

the starting solution is presented in Figure 3-4 below. The flow chart symbols utilized have 

the same meaning as standard flow chart symbols. RPH iterative procedure as shown in the 

flow chart uses the initial solution to determine quickly whether location Fixed cost 

elimination or upper-tier route fixed cost elimination would be appropriate to achieve an 

overall cost reduction. The load redistribution using the order of decreasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   

from the fully allocated routes during Location fixed cost elimination aims to reduce cost 

from high-cost arcs or routes. Furthermore, reducing cost by value 𝐴𝑖𝑗  from maximum 𝐶𝑖𝑗  

position at Step 4 prevents incurring upper-tier route fixed cost. Also, load redistribution into 

locations with increasing order of ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚  in step 4 ensures lower-cost routes are 

utilized before higher ones. The flow chart also has the capacity to quickly arrive at a current 

best solution depending on the problem structure encountered while checking the condition 

 (∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0) and using the exit procedure of Step (2b.3). 
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Figure 3-4  Flow chart on row perturbation heuristic improving initial solution 
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3.1.5   Numerical example  

Given the Supply and demand capacities, unit costs and fixed charges as in Table 3-1 and 3-2  

below ( adapted from Kowalski and Lev (2008)), the workings of RPH are illustrated. 

Table 3-1  Supply, demand, location (set up) costs and unit cost parameters 

i 
𝑺𝒊 𝑭𝒊 j = 1 

 

2 3 4 

 
  𝑐𝑖𝑗 

1 
25 100 1 3 1 3 

2 
25 200 2 2 3 2 

3 
25 250 2 1 2 1 

4 
25 150 1 3 1 3 

𝑫𝒋 
10 30 20 15 

 

Table 3-2  Two-tier fixed charges on route  𝒊, 𝒋 

i 
𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 

1 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

2 
10 ; 30 10 ; 20 10 ;  20 10 ; 20 

3 
10 ; 20 10 ;  30 10 ;  10 10 ;  30 

4 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

 
j =1 2 3 4 

 

The breakpoint 𝐴𝑖𝑗 = 5  (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) through route 𝑖, 𝑗 

 

From equation 6(a) to 10(b) it is noted that; 

If    𝑥𝑖𝑗 > 0  𝑎𝑛𝑑 ≤ 5 , 𝑔𝑖𝑗1 = 1 , 𝑔𝑖𝑗2 = 0,   𝑎𝑛𝑑 𝑧𝑖𝑗 = 1   

Therefore: 𝐻𝑖𝑗1  𝑧𝑖𝑗 +  𝐻𝑖𝑗2  𝑧𝑖𝑗 = 𝑔𝑖𝑗1ℎ𝑖𝑗1𝑧𝑖𝑗 +  𝑔𝑖𝑗2ℎ𝑖𝑗2𝑧𝑖𝑗 = (1) × ℎ𝑖𝑗1 × (1) + (0) ×

ℎ𝑖𝑗2 × (1)= 𝐻𝑖𝑗1  𝑧𝑖𝑗 

 

If    𝑥𝑖𝑗 > 0  𝑎𝑛𝑑 > 5 , 𝑔𝑖𝑗1 = 1 𝑎𝑛𝑑  𝑔𝑖𝑗2 = 1, 𝑧𝑖𝑗 = 1   

Therefore: 𝐻𝑖𝑗1  𝑧𝑖𝑗 +  𝐻𝑖𝑗2  𝑧𝑖𝑗 = 𝑔𝑖𝑗1ℎ𝑖𝑗1 +  𝑔𝑖𝑗2ℎ𝑖𝑗2 = (1) × ℎ𝑖𝑗 × (1) + (1) × ℎ𝑖𝑗2 × (1) 

= 𝐻𝑖𝑗1  𝑧𝑖𝑗 + 𝐻𝑖𝑗2  𝑧𝑖𝑗  
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If 𝑖𝑓  𝑥𝑖𝑗 = 0, 𝑧𝑖𝑗 = 0,    Therefore: 

𝐻𝑖𝑗1  𝑧𝑖𝑗 + 𝐻𝑖𝑗2  𝑧𝑖𝑗 = 0 

For (𝑖, 𝑗) position (1,1) 𝑀11 = 10, and 𝐴11 = 5  thus  𝐴11  < 𝑀11 

From equation (3.16a and 3.16b) above  Equation 3.16b is selected  

 

𝐶11 =  [𝑐11 +
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
+

ℎ111+ ℎ112

𝑀11 − 𝐴11
]  

 

𝐶11 =  [1 +
100 + 200 + 250 + 150

25 + 25 + 25 + 25
+

10 + 20 

10 − 5
] = 14   

 

For all (𝑖, 𝑗) position,  𝐴𝑖𝑗  < 𝑀𝑖𝑗 Equation 3.16b is selected for 𝐶11, 𝐶12. . . 𝐶𝑚𝑛 

𝐶𝑖𝑗  relaxed cost matrix for  𝐶11, 𝐶12. . . 𝐶𝑚𝑛 is given in Table 3-3 below; 

 

Table 3-3   𝐶𝑖𝑗  relaxed cost matrix 

 

 

 

 

14 

 

11 
 

10.67 
 

12 

 

17 

 

10.5 
 

12 
 

12 

 

15 

 

10 
 

10.33 
 

12 

 

14 

 

11 
 

10.67 
 

12 

 

Initial solution 

Tora software which uses the modified u-v distribution method of solving linear 

transportation models was used to solve the cost matrix above (as a balanced problem) 

optimally to give the initial solution of the SFCLTP (𝑍𝑅2) represented in Table 3-4 below. 
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Table 3-4  Optimal load distribution using the relaxed cost matrix 

 

            5 

14 

0 
 

11 
0 

10.67 

0 

12 

20 

0   25 

0 

17 

5 

10.5 

0 

12 

15 

12 

5 

0    25 

0 

15 

 25 

10 

0 

10.33 

0 

12 

0 

0    25 

5 14 

 0 

11 

20 

10.67 

0 

12 

0 

0    25 

10 
 

30 

 

20 

 

15 

 

25 

 

 

For the lower bound value for SFCLTP (𝑍𝐿𝐵), the cost matrix below was obtained from the 

relaxed unit cost in equation (3.6g) like the relaxed costs of (3.16a and 3.16b). The load 

distributions after solving optimally with Tora software are presented Table 3-5 below. 

 

Table 3-5   Optimal load distribution for lower bound determination 

 

10 

11 

0 
 

10.8 
15 

10 

0 

11.33 

0 

0   25 

0 

13 

5 

10.2 

0 

11.5 

15 

11 

5 

0    25 

0 

12 

 25 

9.6 

0 

10 

0 

10.67 

0 

0    25 

0 

11 

 0 

10.8 

5 

10 

0 

11.33 

20 

0    25 

10 
 

30 

 

20 

 

15 

 

25 
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Using equation (3.6f) above; 

𝑍𝑅2   =    (14 × 5) + (14 × 5) + (10.5 × 5) + (10 × 25) + (10.67 × 20) + (12 × 15)   

=    835.9 

Using equation (3.6e) for the lower bound calculation, 

𝑍𝐿𝐵     =    (11 × 10) + (10.2 × 5) + (9.6 × 25) + (10 × 5) + (10 × 15) + (11 × 15)   

=    766 

Using the load distribution for both 𝑍𝑅2  and  𝑍𝐿𝐵    and equation (3.6a) for calculating 𝑍  for 

𝑍𝑅2  and  𝑍𝐿𝐵    which is represented as Z (𝑍𝑅2)  and Z (𝑍𝐿𝐵) respectively, 

Z (𝑍𝑅2) =    (14 × 5) + (14 × 5) + (10.5 × 5) + (10 × 25) + (10.67 × 20)

+ (12 × 15) + (100 + 200 + 250 + 150)

+ (10 + 10 + 10 + 40 + 40 + 30) =   935 

 

Z (𝑍𝐿𝐵) =     (1 × 10) + (2 × 5) + (1 × 25) + (1 × 15) + (1 × 5) + (2 × 15)

+ (100 + 200 + 250 + 150) + (10 + 30 + 10 + 40 + 40 + 30) =   955 

 

Therefore the current best solution (Z𝐶𝐵)  for the SFCLTP Z (𝑍𝑅2) =    935 with a lower 

bound  𝑍𝐿𝐵 =  766  

 

 Improved solution (Using RPH) 

In order to apply RPH solution heuristic, the initial solution 𝑍𝑅2  matrix is labelled row and 

column-wise as in Table 3-6 below: 

 

Table 3-6 Row and Column labelling of initial solution to apply RPH 

 

 

From lower bound calculation section and using the initial solution Z (𝑍𝑅2), it is noted that 

optimum objective function cost and current best ( Z𝐶𝐵) = 935. 

Step (1)   Current best ( Z𝐶𝐵) = 935. 

Column1  Column 2 Column 3 Column 4 Dummy  A  

14 5 
11.33 

0 

10.67 

0 

12 

0 

0 

20 

  25 47.67 Row1 

17 0 
10.5 

5 

12 

0 

12 

15 

0 

5 

   25 51.5 Row2 

15 0 
10 

 25 

10.33 

0 

12 

0 

0 

0 

   25 47.33 Row3 

14 5 
11 

0 

10.67 

20 

12 

0 

0 

0 

   25 47.67 Row4 

10 
 

30 

 

20 

 

15 

 

25 
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Step (2a) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗 = 95 

                Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖  ) = 700 

                Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  )   2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 = 140 

Step (2b.1) Therefore since  𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  → Step 3 

Step (3a.1) No dummy rows → Step (3b.1) 

Step (3b.1) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1  ≥ min(𝑆𝑖=1 ⋯𝑚) 𝑖. 𝑒 100 − 75 = 25 → Step (3c.1) 

Step (3c.1) Row 1 and Row 2 are partially utilized→ Step (3c.2). 

Step (3c.2) Arranging in decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 

In decreasing order gives (Row 2, Row1).  Row 2 selected as having the largest 

 ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚  

Step (3d.1) Row 3 and Row 4 are fully utilized. 

In order of decreasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 (Row4, Row3). Row 4 is selected 

→Step (3e.1). The Row selection is shown in Table 3-7 below: 

 

Table 3-7 Row selection for perturbation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step (3e.1) Row 4, has 𝑋41 = 5 at largest 𝐶𝑖𝑗 = 𝐶43 and also load at 𝑋43 = 20 →Step (3e.2). 

Step (3e.2) Remove allocation at 𝑋41 = 5 and add to the position 𝑋21 

Remove allocation at 𝑋43 = 20 also, but no capacity to accommodate move at the 

position 𝑋21. Row 1 is selected next in the decreasing order to receive 𝑋43 = 20 

→Step (3f). 

Step (3f). Allocations have been fully removed go to →Step (3h). 

Step (3h.1).  While current best Z𝐶𝐵 = 935.  New load distribution is given in Table 3-8 

below: 

 

 

14 
5 

0 

11.33 

 

10.67 

0 

12 

0 

47.67 25 Partially 

utilized 

17 0 
10.5 

5 

12 

0 

12 

15 

51.5 25 Partially 

utilized & 

selected 

15 0 
10 

25 

10.33 

0 

12 

0 

47.33 25 Fully utilized 

14 5 
11 

0 

10.67 

20 

12 

0 

47.67 25 Fully utilized 

& selected 

10 
 

30 

 

20 

 

15 
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Table 3-8 Load distribution after Applying RPH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z (𝑛𝑒𝑤) =    (1 × 5) + (2 × 5) + (2 × 5) + (1 × 25) + (1 × 20) + (2 × 15)

+ (100 + 200 + 250) + (10 + 10 + 10 + 40 + 40 + 30) =   790 

 

Step (3h.2).  𝑍(𝑛𝑒𝑤) <  Z𝐶𝐵   𝑍(𝑛𝑒𝑤) is termed as the current best and go to Step (1).  

Step (1)    Current best ( Z𝐶𝐵) = 790. 

Step (2a) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗 = 100 

                Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖  ) = 550 

                 Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  )   2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 = 140 

Step(2b.1) Therefore since  𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  → Step 3 

Step(3a.1) Dummy row at Row 4.→ Step(3a.2) 

Step(3a.2) Ignore row in calculation capacity. → Step 3b.1 

Step(3b.1) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1  ≥ min(𝑆𝑖=1 ⋯𝑚) 𝑖. 𝑒 75 − 75 = 0 →Step (3b.2) 

Step(3b.2) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0  i. 𝑒 75 − 75 = 0  

                    Stop and exit procedure 

Return Z ( Z𝐶𝐵) = 790 

Therefore Z (RPH) = 790 

 

3.1.6   Discussion of solutions obtained 

For the numerical examples in section 3.1.5 above, using the recast/ relaxed cost matrix as 

stated in equation (3.16a) and (3.16b) 𝑍𝑅2 = 835.9. Also, the lower bound calculation from 

equation (3.6g) gives 𝑍𝐿𝐵 = 766. In this example, the relaxed value i.e.  𝑍𝑅2 gave an upper 

bound to the objective function 𝑍( 𝑍𝑅2)  = 935 obtained by equation (3.6a).  From Figures 3-

1 and 3-2, it is noted that the ideal relaxed cost matrix is linear in the objective function and 

should give a lower bound to the SFCLTP objective function. Furthermore, there could be 

instances where the relaxation type used, could give an upper bound at the breakpoint as seen 

14 
5 

0 

11.33 

 

10.67 

20 

12 

0 

25 

17 5 
10.5 

5 

12 

0 

12 

15 

25 

15 0 
10 

25 

10.33 

0 

12 

0 

25 

14 0 
11 

0 

10.67 

0 

12 

0 

25 

10 
 

30 

 

20 

 

15 
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in Figure 3-2. The lower bound 𝑍𝐿𝐵   gave the minimum out of   𝑍𝐿𝐵  , 𝑍2,  𝑍( 𝑍𝐿𝐵) and 

𝑍( 𝑍𝑅2).  However,  the load distribution of  𝑍𝑅2 gave a better starting solution for RPH. 

The starting solution for the numerical example 𝑍( 𝑍𝑅2)  is 935. However, the solution 

heuristic gave an improved objective value Z (RPH) = 790 with all constraints satisfied. 

Using RPH solution, location (Row 4) out of the four competing locations with equal supply 

capacities but different setup costs is closed as unprofitable for shipping through the fixed 

charges and transportation costs. RPH thus uses a structured combination of Fixed location 

cost elimination, cheap route variable cost and load consolidation at lower-tier route fixed 

cost to drive towards an improved solution while also ensuring the feasibility of all 

constraints are satisfied.  

3.1.7   Perspective  

An integrated model that combines the fixed location cost and step-fixed charge 

transportation cost has been proposed in this subchapter. This has been termed Step-Fixed 

charge Location and Transportation Problem (SFCLTP). In this model, the Fixed charge 

Transportation Problem of Balinski (1961) has been extended. Moreover, the linearization 

and relaxation method developed by Kowalski and Lev (2008)  and Altassan et al. (2013) 

have been extended using the normal Transportation Tableau as a starting solution.  Through 

a perturbation technique that uses the variable transportation cost, fixed facility location cost, 

and step- fixed charge cost along the selected route in deciding the perturbation moves, better 

solutions than the optimal solution obtained from the relaxed transportation problem was 

progressively attained. These solutions are considered good enough, and the heuristic has 

been termed Row perturbation Heuristics (RPH). Future directions on the model presented 

could be on applying single solution metaheuristics such as simulated annealing, Tabu search 

or population metaheuristics such as genetic algorithm, particle swarm optimization to 

evaluate the relative effectiveness and efficiency of RPH to these metaheuristics.  Lastly, 

initial solutions that do not use the relaxation and linearization which have been employed 

and better improvement solutions for SFCLTP could be investigated on. 
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Chapter 3.2 

 

On the Capacitated Step-fixed Charge Transportation and 

Facility Location Problem: A Local search heuristic 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this Chapter was presented and has been published in the conference 

proceedings of the International Conference on Industrial Engineering and Operations 

Management (IEOM) in Pretoria. 
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3.2.1 Introduction  

In this subchapter, the SFCLTP which has been described to be NP-hard is studied and 

consequently an LP-based relaxation heuristic to solve the problem is developed. Two fixed 

charges in the route without loss of generality have been considered. Furthermore, more valid 

inequality and equality approximations to the model of Christensen (2013) is introduced. The 

LP relaxation heuristic developed adapts the principle of linearized cost by Kim and Pardalos 

(2000). The solution begins with some violation of the supply capacities but through the 

minimum total demand flow cost from a source to all destinations for feasible locations, a 

simple transportation problem is developed that ensures the demand and supply constraints 

are met. The results of some problem instances solved based on the LP heuristic in 

comparison to those obtained from using the CPLEX concert technology are presented.  

3.2.2 Base model formulation for SFCLTP 

The one stage or two echelons SFCTP and SFCLTP are described as 𝑚  suppliers and 𝑛 

demand point distribution problems, where  𝑚 connotes the number of sources (factories or 

distribution centers) and   𝑛  refers to the number of customers, demand or sink points. There 

are capacities and demand for each source or locations and demand point respectively over a 

time period, usually annual. The 𝑚 suppliers incur a unit transportation cost per unit distance. 

In addition, there is more than one fixed charge in the route, link or arc depending on the 

number of breakpoints in the transportation routes. The SFCLTP further consists of fixed 

location costs attached to several potential locations to which the cheapest locations that 

satisfy the problem constraints are to be selected. Christensen (2013) presented a 

mathematical model for the MultiChoice Model (MCM) of the CFLP with PLC which forms 

a base for the SFCLTP presented in this subchapter: 𝑥𝑖𝑗𝑙 is a variable defined as the flow on 

mode 𝑙 between facility 𝑖 and customer 𝑗. While a binary variable 𝑣𝑖𝑗𝑙, selects if the earlier 

mentioned mode is used with a one and zero otherwise. 𝐹𝑖 represents the facility fixed cost at 

each facility 𝑖, with a binary variable 𝑦𝑖 determining if a facility is used or not.  The variable 

cost between facility 𝑖 and customer 𝑗 based on the mode 𝑙 is given as (𝑐𝑖𝑗𝑙). The fixed cost 

between facility 𝑖 and customer 𝑗 based on the mode 𝑙 is given as 𝑔𝑖𝑗𝑙. 

Min Z   =  

∑ ∑ ∑(𝑐𝑖𝑗𝑙𝑥𝑖𝑗𝑙 + 𝑔𝑖𝑗𝑙𝑣𝑖𝑗𝑙) + ∑ 𝐹𝑖  𝑦𝑖

𝑛

𝑖=1

  

𝑞

𝑙=1

𝑚

𝑗=1

𝑛

𝑖=1

                                        (3.17)    

                                                                                              

Subject to (constraints): 

∑ ∑ 𝑥𝑖𝑗𝑙  

𝑞

𝑙=1

𝑛

𝑖=1

 =      𝐷𝑗              ∀  𝑗                                                              (3.18) 

∑ 𝑣𝑖𝑗𝑙  

𝑞

𝑙=1

       ≤     1           ∀ (𝑖, 𝑗 )                                                             (3.19)   
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∑ ∑ 𝑥𝑖𝑗𝑟  

𝑞

𝑙=1

𝑚

𝑗=1

 ≤      𝑆𝑖𝑦𝑖              ∀  𝑖                                                            (3.20) 

𝑥𝑖𝑗𝑙  ≤ 𝐿𝑖𝑗𝑙  𝑣𝑖𝑗𝑙          ∀ (𝑖, 𝑗, 𝑙 )                                                                   (3.21)   

𝑥𝑖𝑗𝑙  ≥ 𝐿𝑖𝑗𝑙  𝑣𝑖𝑗𝑙          ∀ (𝑖, 𝑗, 𝑙 )                                                                   (3.22)   

𝑥𝑖𝑗𝑙  ≥   0                                                                              (3.23) 

𝑦𝑖   ∈    { 0,1}            ∀  𝑖                                                           (3.24) 

 𝑣𝑖𝑗𝑙  ∈    { 0,1}            ∀ (𝑖, 𝑗, 𝑙 )                                                               (3.25) 

 

Equation (3.17) is the total cost minimization objective function representing location and 

transportation cost. Equation (3.18) represents the compulsory demand capacity. Equation 

(3.19) enforces one transportation mode between each pair of source and destination.  

Equation (3.20) represents supply capacity not being exceeded. Equation (3.21) ensures an 

upper bound on the load distribution, while Equation (3.22) enforces a lower bound on 

distribution. Equation (3.23) refers to the non-negativity constraint while equations (3.24 and 

3.25) refer to the binary constraints. 

3.2.3  Problem structure and formulation for SFCLTP 

For the linearization and relaxation of the solution for the SFCLTP, a valid inequality 

constraint for the breakpoint as used in the work of Sanei et al. (2017) was introduced to the 

model of Christensen (2013) to further strengthen the LP lower bound relaxation. Secondly, 

the Balinski (1961) method of binary variable relaxation which Kowalski and Lev (2008) and 

Altassan et al. (2013) employed in relaxing their binary fixed charge variables was also 

employed. This method uses some constraints in the problem to relax the binary constraints 

in the cost objective term. This is a general approach commonly employed for LP relaxations. 

 Model Assumptions 

The following assumptions made in this model are similar to those discussed in section 3.1.3: 

Model Parameters 

𝑖      : Index for the set of Sources (Plants, Warehouses etc.) 

𝑗      : Index for the set of Destinations (Customers, Warehouses, depots etc. )   

𝑚    : Number of sources (or plants)  

𝑛     : Number of destinations (or demand point)  

𝑐𝑖𝑗   : The unit cost of shipment on route (𝑖, 𝑗)  

𝑆𝑖    :  Supply Capacity for Source 𝑖 
𝐷𝑗   : Demand Capacity for Destination 𝑗 

𝐻𝑖𝑗 : the First level fixed cost  

𝐼𝑖𝑗   : The second level fixed cost  

𝐴𝑖𝑗  : Breakpoint for selecting the route fixed charges 

 

Decision variables 

𝑥𝑖𝑗   : Allocations (or load distributions) along the route (𝑖, 𝑗) 

𝑦𝑖    :  Location variable for plant or source (0 or 1) 
𝑔𝑖𝑗   :  Binary fixed charge variable before the breakpoint  
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𝑧𝑖𝑗   :  Binary fixed charge variable after the breakpoint   

 

Objective function of the Original Problem: 

Minimize   𝑍𝑂   =   

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗    + ∑ 𝐹𝑖 𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ 𝐻𝑖𝑗  

𝑛

𝑗=1

𝑚

𝑖=1

𝑔𝑖𝑗  +   ∑ ∑ 𝐼𝑖𝑗  𝑧𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

             (3.26) 

                                                                                              

Subject to (constraints): 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 ≤      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 … 𝑚                                                                (3.27) 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                                    (3.28) 

     

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                         (3.29)  

𝑥𝑖𝑗  ≤ 𝑀𝑖𝑗  𝑔𝑖𝑗          ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                                                ( 3.30)    

𝑥𝑖𝑗 − 𝐴𝑖𝑗  ≤ 𝑀𝑖𝑗𝑧𝑖𝑗  ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                                               (3.31)    

𝑥𝑖𝑗  ≥ 0                                                                                                                     (3.32𝑎)    

𝑦𝑖  = 0 𝑜𝑟 1     𝑧𝑖𝑗  = 0 𝑜𝑟 1        𝑔𝑖𝑗  = 0 𝑜𝑟 1                                          (3.32b) 

 𝑔𝑖𝑗  =  {
1      𝑥𝑖𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,   𝑧𝑖𝑗     =  {

1    𝑥𝑖𝑗 >  𝐴𝑖𝑗  

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                              (3.32c) 

𝑀𝑖𝑗 = min( 𝑆𝑖, 𝐷𝑗)  ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛       

    

Equation (3.26) is the objective function.  The first term is a variable cost, the second term is 

the facility location cost and the third term is the route step-fixed charge cost. Equation (3.27) 

is the supply capacity constraint of each location or sources which should not be exceeded. 

Equation (3.28) is the demand constraint of each customer which must be met.  Equation 

(3.29) is the aggregate constraint for supply and demand balance. Equation (3.30) is a 

constraint that ensures that an upper bound on the load distribution before the breakpoint is 

established. Equation (3.31) is a constraint that ensures that a lower bound on the load 

distribution after the breakpoint is established. Equation (3.32a) refers to the non-negativity 

constraint while Equation (3.32b) refers to the binary integer constraints. Equation (3.32c) 

ensures the objective function selects the fixed charges based on the breakpoints. 

3.2.4 Solution method  

As indicated in earlier sections, the solution method presented in this work is based on 

linearizing the cost objective function through the relaxation of some of the constraints. The 

relaxed constraints are used in the objective function to relax the location 𝑦𝑖   and the route 

fixed charge  𝑔𝑖𝑗 and  𝑧𝑖𝑗 variables. Figure 3-1 in section 3.1.2 represents the linearization 

cost structure of the objective function 𝑍𝑂 before and after linearization. The linearized model 
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is solved to optimality as the first transportation problem and a lower bound to the SFCLTP is 

obtained from the result of the first transportation problem solution.  The linearized cost 

solution obtained, however, may produce some supply capacity infeasibilities at the sources, 

which have to be resolved before the desired solutions are obtained. The LP heuristic 

presented, resolves the supply infeasibilities by identifying the combination of potential 

sources that meet the demand. Using the linearized cost version of equation (3.26) and 

assuming total flow of the entire demand load from a source (𝑖) and all destinations(𝑗), the 

total flow for each of the sources (𝑖 = 1 … 𝑚) is computed. Croxton et al. (2007) suggested 

that the LP relaxation of the cost objective function would give an approximation of the 

original problem with the “lower convex envelope” when the total flow on each route is used 

in the computation. Finally, combination(s) of the sources (𝑖 ) that meet all the demand 

∑ 𝐷𝑗
𝑛
𝑗=1       ∀  𝑗 = 1 … 𝑛  with the least-cost combination using the linearized version of cost 

equation (3.26) is selected for the final transportation problem. To solve the final 

transportation problem, the relaxed cost combination of 𝑐𝑖𝑗,𝐻𝑖𝑗  𝑎𝑛𝑑 𝐼𝑖𝑗  is used to determine 

the final load distribution ( 𝑥𝑖𝑗) to be used in equation (3.26). 

 

Linearized Cost Solution  

The principle of linearized cost as used by Kim and Pardalos (2000) is adapted for the 

linearization to solve the first transportation problem.  Constraints (3.27), (3.30) and (3.31)   

are selected respectively, an equality upper bound is placed on them and they are used in 

relaxing the fixed location cost and fixed charge variables, 𝑦𝑖 , 𝑔𝑖𝑗  and 𝑧𝑖𝑗  respectively in the 

objective function equation (3.17).    

The constraints given by (3.27), (3.30) and (3.31) are transformed respectively into  

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

=      𝑆𝑖𝑦𝑖              ∀  𝑖 = 1 … 𝑚                                                                         (3.33)   

   𝑥𝑖𝑗 𝑀𝑖𝑗⁄  =  𝑔𝑖𝑗                                                                                                              (3.34)  

(𝑥𝑖𝑗 − 𝐴𝑖𝑗)/ 𝑀𝑖𝑗 = 𝑧𝑖𝑗                                                                                                    (3.35)  

Equation (3.33) is substituted into the aggregate constraint of equation (3.29) above to obtain   

∑ 𝑆𝑖(
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑆𝑖

𝑚

𝑖=1

)  ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                  (3.36)      

 

Substituting equation  (3.33)  (3.34) and (3.35) into the objective function (equation (3.26)) 

and using the derived equation (3.36) would give a linear programming problem model of the 

original problem and given as:   

 

Min 𝑍𝐿𝑃𝑂 = 

 

∑(𝐹𝑖  
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑆𝑖

𝑚

𝑖=1

) + ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗    +    ∑ ∑ 𝐻𝑖𝑗  

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗

𝑀𝑖𝑗
 +   ∑ ∑ 𝐼𝑖𝑗  

𝑥𝑖𝑗 − 𝐴𝑖𝑗

𝑀𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

      (3.37) 
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Subject to  

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                                             (3.38) 

∑ 𝑆𝑖(
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑆𝑖

𝑚

𝑖=1

)  ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛                   (3.39) 

 

𝑥𝑖𝑗  ≥ 0                                                                                                                              (3.40) 

 

Equation (3.37) could also be restated as  

 𝑍𝐿𝑃0 = 

∑(𝐹𝑖  
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑆𝑖

𝑚

𝑖=1

) + ∑ ∑(𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

+
𝐻𝑖𝑗

𝑀𝑖𝑗
+

𝐼𝑖𝑗

𝑀𝑖𝑗
 ) 𝑥𝑖𝑗   −   ∑ ∑ 𝐼𝑖𝑗  

𝐴𝑖𝑗

𝑀𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                (3.41) 

 

Equations (3.37) to (3.40) give a linear programming problem which can be solved to 

optimality by any known optimal linear programming solver. 

 

a. Resolution of Linearization Infeasibility and  Final Transportation Problem   

It is noted that in the solution of the new relaxed model represented by equation (3.37) to 

(3.40), there could be supply infeasibilities due to constraints (3.38) and (3.39) not strictly 

enforcing the supply requirements. These supply infeasibilities are resolved through the 

heuristic presented below: 

Step 1:  Select individuals or groups of potential sources (  𝑖 ∈ 𝑚  )   such that 

 ∑ 𝑆𝑖 𝑦𝑖
𝑚
𝑖=1   ≥ ∑ 𝐷𝑗

𝑛
𝑗=1   

Step 2:  For the individuals or groups selected, Use equation (3.41) only to calculate 

𝑍𝐿𝑃0
𝑖   ∀  𝑖 = 1 … 𝑚,  where the load distribution is given as  𝑥𝑖𝑗 ∶  𝑥𝑖𝑗 =   𝐷𝑗   ∀  𝑗 = 1 … 𝑛 . 

(thus  𝑍𝐿𝑃0
1  is calculated using 𝑥11,    𝑥12,  𝑥13, … . . 𝑥1𝑛, ) 

Step 3: From the individuals or groups of 𝑖  ∈ 𝑚   selected in step 1, choose the minimum  

𝑍𝐿𝑃0
𝑖   or combinations of  𝑍𝐿𝑃0

𝑖  ( ∑ 𝑍𝐿𝑃0
𝑖𝑚

𝑖 ) if groups are selected. It is noted that 𝑍𝐿𝑃0
𝑖  values 

could be positive or negative depending on the problem parameters. This is evident by the 

third term in equation (3.41) which has the possibility of making the equation negative. If the 

combinations of  𝑍𝐿𝑃0
𝑖  are positive the minimum value is selected. However if the 

combinations of 𝑍𝐿𝑃0
𝑖   are negative values the minimum absolute value is selected. 

Step 4:   Solve the transportation problem created by using the sources selected in Step 3 and 

the relaxed cost combination of ( 𝑐𝑖𝑗 +
𝐻𝑖𝑗

𝑀𝑖𝑗
+

𝐼𝑖𝑗

𝑀𝑖𝑗
 ) subject to simple demand and supply 

constraints to obtain the load distribution 𝑥𝑖𝑗  for equation (3.26). The transportation problem 

to be solved is given as   

 

𝑀𝑖𝑛 𝑍𝐹  =  

∑ ∑(𝑐𝑖𝑗 +
𝐻𝑖𝑗

𝑀𝑖𝑗
+

𝐼𝑖𝑗

𝑀𝑖𝑗
)

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗                                     (3.42) 
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∑ 𝑥𝑖𝑗

𝑛

𝑗=1

≤      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 … 𝑚                      (3.43)                         

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                         (3.44) 

 

𝑥𝑖𝑗  ≥ 0                                                                          (3.45) 

 

Step 5:  Using the value of  𝑍𝑂, compare the load distribution 𝑥𝑖𝑗 obtained by solving the 

transportation model given by equation (3.35) to (3.38)  by any feasible approach such as the  

North-West Corner (NWC)  method and optimally using Simplex or the Modified u-v 

distribution method known as (Modi). Select the minimum  𝑍𝑂 obtained by the methods. 

 

The Least Cost (LC) approach of solving the transportation problems ensures that maximum 

allocations are made to the minimum relaxed cost position, while NWC approach ensures that 

allocations are made to the least cost positions from a northwest corner of the transportation 

tableau. An optimal transportation cost solution using the Modified u-v distribution method 

or Modi would perform dual variable (u and v) analysis and ensure that 𝑚 + 𝑛 − 1 variable 

positions are occupied. 

3.2.5   Numerical solution and computation study  

This section consists of the numerical computation done using a random problem size of (4× 

4). Furthermore, computation studies were done to further gain insight into the heuristic 

performance when compared to the standard MILP solver such as CPLEX. 

 

Numerical Example 

In order to explain the workings of the LP-based heuristic presented under section 3.2.4, the 

problem created by  Kowalski and Lev (2008) has been adapted. The problem is represented 

in Tables (3-9) and (3-10) below and the solution is also presented below.  

Table 3-9  Supply, demand, location (set up) costs and unit cost parameters 

  i 
𝑆𝑖 𝐹𝑖 j = 1 

 

2 3 4 

 
  𝑐𝑖𝑗 

1 
25 100 1 3 1 3 

2 
25 200 2 2 3 2 

3 
25 250 2 1 2 1 

4 
25 150 1 3 1 3 

𝐷𝑗  
10 30 20 15 
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Table 3-10  Two-tier fixed charges on the route ( 𝑖, 𝑗) 

i 
𝐻𝑖𝑗 , 𝐼𝑖𝑗 𝐻𝑖𝑗 , 𝐼𝑖𝑗 𝐻𝑖𝑗 , 𝐼𝑖𝑗 𝐻𝑖𝑗 , 𝐼𝑖𝑗 

1 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

2 
10 ; 30 10 ; 20 10 ;  20 10 ; 20 

3 
10 ; 20 10 ;  30 10 ;  10 10 ;  30 

4 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

 
j =1 2 3 4 

The breakpoint 𝐴𝑖𝑗 = 5  (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) through route 𝑖, 𝑗 

 From section 3.2.4, using the linearized cost model represented by equation (3.37) to (3.40) 

the value of  𝑍𝐿𝑃𝑂 = 488.75  is obtained 

 

 

25 
 

10 30 20 15 

25 0 0 0 0 

25 0 0 0 0 

25 0 0 0 0 

 

10 30 20 15 

 

This clearly gives an infeasible solution as noted in section 3.2.4. 

Step 1:  

Using the first step of the heuristic, the combinations of locations is obtained and used to 

resolve the infeasible solution obtained above. The combinations of the locations are (1,2,3),  

(1,2,4), (1,3,4),  (2,3,4) and (1,2,3,4) as having ∑ 𝑆𝑖 𝑦𝑖
𝑚
𝑖=1   ≥ ∑ 𝐷𝑗

𝑛
𝑗=1  

However, it is clear that the combination of (1,2,3,4) would not be cost-saving based on the 

extra fixed location cost. 

Step 2:  

The objective value 𝑍𝐿𝑃0
𝑖  for the four sources is computed (no optimization is done here): 

𝑍𝐿𝑃0
1  is calculated using 𝑥11,    𝑥12,  𝑥13,𝑥14,  = 488.75 

𝑍𝐿𝑃0
2  is calculated using 𝑥21,    𝑥22,  𝑥23,𝑥24, =  794.5 

𝑍𝐿𝑃0
3  is calculated using 𝑥31,    𝑥32,  𝑥33,𝑥34, =   867.75 

𝑍𝐿𝑃0
4  is calculated using 𝑥11,    𝑥12,  𝑥13,𝑥14, =      638.57 

The location (1,2,3) gives a sum of ( 488.75+794.5+867.75) = 2151 

Similarly locations   (1,2,4), (1,3,4),  (2,3,4)  gives 1921.82, 1995.07 and 2300.82 

respectively.  

 

 

 
 
 



56 
 

Step3: 

Since the combinations of 𝑍𝐿𝑃0
𝑖  are positive, the minimum value is selected. The location 

(1,2,4) possesses the minimum sum of linearized cost and thereby chosen. 

 

Step 4: 

The relaxed cost combination of 𝑐𝑖𝑗 +
𝐻𝑖𝑗

𝑀𝑖𝑗
+

𝐼𝑖𝑗

𝑀𝑖𝑗
  given below is used as the new unit cost to  

solve the second transportation problem given by equation (3.42) to (3.45) to obtain the final 

load distribution to be used to calculate 𝑍𝑂  in equation (3.26) above. The relaxed cost 

combination matrix is presented below. 

 

4 3.8 3 5.166667 

6 3.2 4.5 3.416667 

5 2.6 3 2.166667 

4 3.8 3 5.166667 

Step 5:  

The Load distribution obtained when Transportation problem (3.42) to (3.45) is solved 

optimally and using the least-cost approach 𝑍𝐹 = 259.25  𝑎𝑛𝑑 𝑍𝑂 = 750  is presented below. 

 

 

25 
 

10 15 0 0 

25 0 10 0 15 

25 0 0 0 0 
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Using the Northwest corner approach for solving the transportation problem 3.42 to 3.45 

gives 

𝑍𝐹 = 276.95 𝑎𝑛𝑑 𝑍𝑂 = 720. This is shown below. 

 

 

 

25 
 

10 0 0 15 

25 0 25 0 0 

25 0 0 0 0 
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The CPLEX Values obtained for 𝑍𝑂 are given below.  𝑍𝑂 = 710 
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25 0 25 0 0 

25 0 0 0 0 
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 Computation study 

To further gain a little insight into the performance of this LP-based heuristic in relation to 

the solution provided by CPLEX, a small scale computation study was done. This study was 

however based on the objective values of the problem alone, though articles in this field 

would also compare the runtime of the different solution methods. The primary interest in 

this subchapter is to observe the trend of the objective values for the little pilot study. The 

SFCLTP model was coded using the Java Eclipse environment with the CPLEX 12.8 concert 

technology as the MILP solver. The LP heuristic was partly coded in Java and the 

transportation optimizations were solved with Microsoft excel solver and TORA software. A 

total of 25 randomly generated problems were solved. These problems were classified under 

two sets of problem instances. The first set of problem instances had two problem sizes (4×4 

and 7×7) with 5 problems solved for each size. The LP-based heuristic was solved using the 

NWC to obtain the final load distribution according to the LP heuristic step 5.  

 

For the second set of problems, three problem sizes (6×4, 8×5 and 9×7) were considered with 

5 problem instances generated under each size. The step 5 of the LP-based heuristic was 

however solved using the NWC, LC and optimally using the modified u-v distribution 

method (Modi) in TORA optimization software to obtain the final load distribution.  This was 

done to further gain an insight into the performance of the feasible transportation methods 

and optimal transportation method at arriving at the final load distribution. Table 3-11 below 

shows the parameter range used for the random problem generation. The orders of magnitude 

of the parameters utilized for the range have been selected to reflect the reality of the 

proportions of the parameters compared to one another.  
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Table 3-11  Data range used for the small scale computation study 

Problem  size (No. of 

Instances) 

Parameter Range of values Breakpoint  per 

problem size 

4×4  (5) 
𝐹𝑖 
 

𝑐𝑖𝑗 

 

𝑆𝑖 
 

𝐷𝑗  

 

𝐻𝑖𝑗 

 

𝐼𝑖𝑗 

100 − 550  
 

1 − 10 
 

10 − 100 
 

5 − 50 
 

10 − 30 
 

10 − 30 

𝐴𝑖𝑗 = 5  

 

 

7 × 7  (5) 
𝐴𝑖𝑗 = 5 

6 × 4  (5) 
𝐴𝑖𝑗 = 5 

8 × 5  (5) 
𝐴𝑖𝑗 = 10 

9 × 7  (5) 
𝐴𝑖𝑗 = 25 

 

The mean value and the 5 different problem instances of the CPLEX and LP heuristic (using 

NWC solution) generated are shown in Table 3-12 below. Also, the percentage mean 

difference have been included to show the gap obtained from the CPLEX values. The larger 

the mean percentage, the poorer the results of the LP heuristic as compared to CPLEX values. 

Similarly to Table 3-12, Table 3-13 below presents the results obtained using the northwest 

corner, least cost and modified u-v distribution method using only the mean values of the 

different 5 problem instances generated.  

Table 3-12:  First set of results obtained 

Problem Size 
Instance  

No 

CPLEX 

(𝑍𝑂) 

 LP 

heuristic 

 (𝑍𝑂) 

(NWC) 

%  mean 

Difference 

LP heuristic 

and CPLEX 

4×4 

 

 

 

Mean values   

1 

2 

3 

4 

5 

( 𝑍𝑂
̅̅̅̅ ) 

710 

735 

705 

685 

580 

683 

720 

735 

710 

725 

610 

700 

2.4% 

7×7   

 

 

 

Mean values    

1 

2 

3 

4 

5 

( 𝑍𝑂
̅̅̅̅ ) 

1315 

1425 

1610 

1910 

1755 

1603 

1315 

1480 

1620 

1920 

1765 

1620 

1.0% 
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Table 3-13   Second set of results obtained 

Problem 

Size 

Mean 

CPLEX 

(𝑍𝑂
̅̅̅̅ ) 

Value 

Mean 

LP heuristic 

 (𝑍𝑂
̅̅̅̅ )(NWC) 

Mean  

LP 

heuristic 

 (𝑍𝑂
̅̅̅̅ ) 

(LC) 

Mean 

LP 

heuristic 

 (𝑍𝑂
̅̅̅̅ ) 

(Modi) 

%  mean 

difference 

LP-NWC 

and 

CPLEX 

%  mean 

difference 

LP-LC 

and 

CPLEX 

%  mean 

difference 

LP-Modi 

and 

CPLEX 

6×4 
1665 1915 1810 1731 15.01% 8.70% 3.96% 

8×5 
2471 2964 2514 2494 19.95% 1.74% 0.93% 

9×7 
2961 3392 3102 3015 14.56% 4.76% 1.82% 

 

3.2.6 Discussion of solutions obtained 

From the results of the little computation study conducted, it is easily seen that the CPLEX 

solution outperformed the LP-based heuristic as per the individual instances and mean values 

considered both in Tables 3-12 and 3-13. Results obtained for the first set of problems as per 

Table 13, shows the mean objective value gap difference of 2.4% and 1.0% respectively.  A 

quick analysis using the paired t-test of means for the (4×4) problem size at 0.05 level of 

significance gave a p-value of 0.09130, showing there is not quite statistical significance in 

the difference of the means obtained, while the second and larger problem size (7×7) gave a 

p-value of 0.15440 showing no statistical significance in the difference of means. This further 

shows that the LP heuristic may have the possibility of having very good solutions as the 

problem size increases. Furthermore, it is observed that the NWC used to obtain the final 

distribution load for the LP heuristic had a good performance of being close to a 0% 

difference.  

 

However, in the second set of problems as presented in Table 3-13, the NWC performance 

was consistently worse when compared to LC and Modi.  This shows that for certain problem 

structures the NWC could quickly obtain good results. The LP-based heuristic using the Modi 

and LC distributes the load using the minimum relaxed cost of the problem parameters, while 

NWC does not.  The LP-Modi in problem size (8×5) obtained the best mean difference of 

0.93%. Showing it has the likelihood of generating good results irrespective of problem size 

and parameter structure. Finally, the numerical problem considered showed the possibility of 

having near solutions to the CPLEX values when a minimum value among the NWC, LC and 

Modi is used for the final load distribution of the LP-based heuristic. 

3.2.7 Conclusion and future directions  

This subchapter considered the Facility Location (FL) and Step-Fixed Charge Transportation 

Problem (SFCTP). A Linear Programming (LP) based heuristic was developed which was 

decomposed into two major transportation problems. The relaxed objective function of the 

first transportation problem in equation (3.41) was used in selecting the combinations of 

locations to be considered for the final transportation problem. In addition, solving the first 

transportation problem could help in generating a good lower bound for other computation 
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methods such as Lagrange relaxations.  A Numerical solution was presented to show the 

workings of the heuristic while a small scale pilot computation study was done to gain a little 

insight into the heuristic performance as regards the objective value obtained. Two sets of 

problem sizes were considered. The first set of problem sizes was solved using the NWC 

method as a solution method for the final transportation problem. The statistical results 

obtained showed a little or no significant differences in the mean values of the CPLEX 

solution and the LP-based heuristic with increase in problem size. However, the NWC 

method lagged behind the LC and Modi methods for the second set of problem sizes. The 

Modi method for the final transportation problem was superior in all the problem instances of 

the second set of problems. The optimal distribution pattern of the Modi method (minimum 

cost) seemed to have a strong link to the good results obtained.  

 

Few sized problems have been considered in chapter 3.  As problem size increase the linear 

relaxation and perturbation techniques are expected to converge faster to good and 

approximate solutions. This is expectedly due to the polynomial growth order of linearization 

employed within the solution technique and also due to the structured perturbation technique 

which possesses the capacity to terminate quickly. In addition, the linearization technique 

reduces the solution search space to provide approximate solutions in a polynomial growth 

manner. 

 

Conclusively, large scale computation study still have to be conducted to gain proper insight 

into the performance of the heuristic under different parameter ranges and also due to the 

reason that exact methods which may be obtainable using the solution methods present in the 

CPLEX optimization studio could become inefficient as the problem size increases. Also, 

comparing the runtimes of the different solution methods would also need to be considered 

for an efficient study. Finally, a comparative study between this LP-based heuristic and 

solution methods such as the Lagrangian relaxation heuristic, metaheuristics such as genetic 

algorithm, tabu search and hybrid solutions which uses both LP-based relaxation and 

metaheuristics would be possible areas for exploring. 
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Chapter 4 

 

Facility Location and Fixed-charge Solid Transportation 

Problem 
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Chapter 4.1 

 

On the Facility Location and Fixed Charge Solid Transportation 

Problem:  A Lagrange relaxation heuristic 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this subchapter was presented and has been published in the 

conference proceedings of the International Conference on Industrial Engineering and 

Operations Management (IEOM) in Pretoria 
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4.1.1   Introduction 

In this subchapter, an integrated distribution problem between the Facility Location Problem 

(FLP) and the Fixed Charge Solid Transportation Problem (FCSTP) is considered. As noted 

in chapter 2, most FLPs are formulated as pure integer problems and most TPs as mixed-

integer problems. The Facility Location Problem and Fixed Charge Solid Transportation 

Problem considered in this subchapter is formulated as a mixed-integer problem to show the 

desired product quantities been distributed by the selected conveyances between the 𝑚 

sources and 𝑛 destinations. By doing this, more decisions can be taken by the operational 

personnel involved in decision making. This problem has been termed Fixed Charge Solid 

Location and Transportation Problem (FCSLTP). The objective for the FCSLTP is to find the 

optimal locations amongst several competing locations (e.g. Warehouses, depots) to 

distribute products at a unit cost to meet customers’ orders by selecting from competing 

capacitated conveyances or transport mediums under route fixed charges. Furthermore, the 

LHR  method presented by Sanei et al. (2017) has been adapted to solve the FCSLTP and 

also compared it with the solution obtainable by a standard general-purpose solver such as the 

IBM CPLEX. Figure 4-1 below shows a schematic representation of the FCSLTP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 4.1.2   Mathematical formulation and structure for FCSLTP 

As indicated earlier, the FCSLTP is formulated as a mixed-integer problem, with 𝑚- sources, 

𝑛- destinations, 𝑎- conveyances. The FCSTP model as presented by Sanei et al. (2017) has 

been adapted to include the fixed cost of facility location which is seemingly not present in 

Customer 1 

Customer 3 

Customer 4 

Transport 

Medium 1  

Transport 

Medium 2  

Warehouse 1 

Infeasible Location 

and routes 

Warehouse 2 

Customer 2 

Warehouse 3 

Figure 4-1  Schematic representation of FLP and FCSTP 

Customer 4 
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his formulation. The location cost is necessary to build an integrated model of various fixed 

cost planning horizons.  

 

Assumptions for model development of FCSLTP 

The following assumptions were considered in the model presented:  

1. Deterministic input. 

2. One stage or two-echelon problem.  

3. Fixed location cost and fixed charge route cost. 

4. One Planning period and single item distribution problem.  

 

a. Parameters For Model Formulation:  

Below are the optimization parameters and variables used in the model formulation. 

Deterministic parameters 

 𝑖:  Index for sources or location (warehouses, depots etc.) 

 𝑗: Index for destinations (customers, other warehouses etc.) 

𝑟 : Index for conveyances (or Transportation mediums) 

𝑚 : Number of sources  

𝑛 : Number of destinations 

𝑎 : Number of conveyances 

𝑐𝑖𝑗𝑟 : Variable cost of shipment on the route (𝑖, 𝑗) using conveyance 𝑟. 

𝑆𝑖 : Capacity at source 𝑖  

𝐷𝑗  : Demand at Destination j  

𝑇𝑟 : Capacity based on the conveyance  𝑟 

𝐹𝑖 :  Fixed-charge location cost  

𝐻𝑖𝑗𝑟 : Fixed cost incurred on shipping through route (𝑖, 𝑗) based on the conveyance  𝑟 .  

Decision Variables: 

𝑥𝑖𝑗𝑟 : Quantity of products transported from source (𝑖) to destination (𝑗) using conveyance (𝑟) 

𝑦𝑖 :    Location variable for selecting sources 

𝑦𝑖𝑗𝑟 : Fixed-charge variable in selecting which conveyance is utilized on the route (𝑖, 𝑗)  

Objective Function: 

Original Problem (OP) 

Min (OP):  

∑ 𝐹𝑖  𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥𝑖𝑗𝑟      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑦𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

  

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                          (4.1)    

                                                                                              

Subject to  

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

 ≤      𝑆𝑖𝑦𝑖              ∀  𝑖 = 1 … 𝑚                                                        (4.2) 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                             (4.3) 

     

 
 
 



65 
 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                             (4.4) 

𝑥𝑖𝑗𝑟   ≤   𝑀𝑖𝑗𝑟 𝑦𝑖𝑗𝑟        ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛,   ∀  𝑟 = 1 … 𝑎        (4.5a) 

𝑀𝑖𝑗𝑟 = min (𝑆𝑖, 𝐷𝑗 , 𝑇𝑟  )                    

𝑦𝑖𝑗𝑟  =  {
1      𝑥𝑖𝑗𝑟  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    ∀  𝑖 = 1 … 𝑚,     𝑗 = 1 … 𝑛 ,    ∀  𝑟 = 1 … 𝑎           (4.5b) 

𝑥𝑖𝑗𝑟  ≥ 0            ∀  𝑖 = 1 … 𝑚,     𝑗 = 1 … 𝑛, ∀  𝑟 = 1 … 𝑎                                  (4.6)    

𝑦𝑖  = 0 𝑜𝑟 1    ∀  𝑖 = 1 … 𝑚                    (4.7a) 

 𝑦𝑖𝑗𝑟  = 0 𝑜𝑟 1   ∀  𝑖 = 1 … 𝑚,     𝑗 = 1 … 𝑛, ∀  𝑟 = 1 … 𝑎                        (4.7b)                                    

Equation (4.1) is the objective function. The first term is the facility location cost, the second 

term is the route variable cost per conveyance type and the third term is the route fixed-

charge cost per conveyance type. Equation (4.2) is the supply capacity constraint of each 

location or sources. Equation (4.3) is the demand constraint to be met. Equation (4.4) is the 

conveyance capacity constraint. Equations (4.5a and 4.5b) are the route fixed-charge 

requirement constraints. Equation (4.6) refers to the non-negativity constraint for the 

continuous variables. Equation (4.7a) refers to the binary integer constraints for selecting 

open locations. Equation (4.7b) refers to the binary integer constraints for selecting open 

routes. 

 

b. Lower bound formulation of  FCSLTP 

As noted in earlier sections of this subchapter, the LRH works through the Lagrangian 

relaxation of some difficult constraints in the OP that makes it difficult to solve. Often, these 

constraints consist of the integer constraints such as in the OP above. These constraints make 

the optimization problem NP-hard in nature. Constraints (4.2) and (4.5a) have been selected 

to apply the Lagrangian multipliers ( 𝜆𝑖 𝑖. 𝑒 ∑ 𝜆𝑖
𝑚
𝑖   and β𝑖𝑗𝑟  𝑖. 𝑒 ∑ ∑ ∑ β𝑖𝑗𝑟

𝑎
𝑟=1

𝑛
𝑗=1

𝑚
𝑖=1 ) 

respectively. These constraints have been shown by Cornuéjols et al. (1991) to give a strong 

lower bound though it may be computationally intensive. The Lagrangian multipliers used 

are such that each 𝜆𝑖  ≥ 0 and each β𝑖𝑗𝑟  ≥ 0 in like fashion as Sanei et al. (2017). The 

Lagrangian Relaxation of the Original Problem (LR of OP) is given below: 

 

LR of OP (𝜆, β) = 

Minimize  

∑ 𝐹𝑖  𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥𝑖𝑗𝑟      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑦𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 +  ∑ 𝜆𝑖

𝑚

𝑖=1

 (

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

− 𝑆𝑖𝑦𝑖) + 

 

∑ ∑ ∑ β𝑖𝑗𝑟( 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑟  −   𝑀𝑖𝑗𝑟 𝑦𝑖𝑗𝑟 ) 
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=   Minimize 

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖  + ∑ ∑ ∑  (𝑐𝑖𝑗𝑟 + β𝑖𝑗𝑟) 𝑥𝑖𝑗𝑟  +

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑚

𝑖=1

∑ ∑ ∑(𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)𝑦𝑖𝑗𝑟   + 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 

  

∑(𝜆𝑖

𝑚

𝑖=1

∗ ∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

)                                                                                                                    ( 4.8) 

Subject to  

Constraints (4.3), (4.4),(4.5b) (4.6) and  (4.7) 

 

The Lagrangian relaxation of the Original problem i.e. LR of OP (𝜆, β) is decomposed into 

two sub-problems    ( SP1  and   SP 2 ). 

 

First Sub-problem  i.e. SP1 of OP (𝜆, β) : 

Minimize  

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖  + ∑ ∑ ∑(𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)𝑦𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                                                             (4.9) 

𝑚

𝑖=1

 

 

Subject to  

𝑦𝑖  = 0 𝑜𝑟 1  ,    𝑦𝑖𝑗𝑟  = 0 𝑜𝑟 1                                                                                                     (4.10) 

 

Second Sub-problem i.e.  SP2 of OP (𝜆, β): 

Minimize 

∑ ∑ ∑  (𝑐𝑖𝑗𝑟 + β𝑖𝑗𝑟) 𝑥𝑖𝑗𝑟  +

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

∑(𝜆𝑖

𝑚

𝑖=1

∗ ∑ ∑ 𝑥𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

)                                                       (4.11) 

Subject to  

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                                                   (4.12) 

 

∑ ∑ 𝑥𝑖𝑗𝑟 

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                                                   (4.13)  

𝑥𝑖𝑗𝑟  ≥ 0                                                                                                                                           (4.14)    

 

It is noted that SP2 of OP is a Linear Programming (LP) problem and could be easily solved 

to optimality using a general-purpose solver such as CPLEX. 

For  SP1 of OP which is a pure integer programming problem,  two scenarios are noted below 

which can lead to arriving at the optimal values  𝑦 𝑖
∗ 𝑎𝑛𝑑  𝑦 𝑖𝑗𝑟

∗    

Scenario 1: When (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  < 0  and  (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟) < 0, these imply negative values, 

therefore 

The best minimum will be arrived at when 𝑦 𝑖
∗  = 1 𝑎𝑛𝑑  𝑦 𝑖𝑗𝑟

∗ = 1   respectively. 
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Scenario 2: When (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  > 0  and  (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)> 0, this implies positive values, 

therefore, 

The best minimum will be arrived at when 𝑦 𝑖
∗  = 0 𝑎𝑛𝑑  𝑦 𝑖𝑗𝑟

∗ = 0   respectively 

To arrive at the LRH Lower bound, the following procedure below is followed; 

1. Compute  SP2 of OP to generate the optimal 𝑥 𝑖𝑗𝑟
∗  and 𝑆𝑃2∗ 

2. For SP1 of OP,   For all 𝑖 =  1 … m,  if (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  < 0  then 𝑦 𝑖
∗  = 1 

            Else  𝑦 𝑖
∗  = 0 

3. For SP1 of OP,   For all 𝑖 =  1 … m, j = 1. . n, r = 1 … a  , if  (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟 ) < 0       

then 𝑦 𝑖𝑗𝑟
∗  = 1 

Else  𝑦 𝑖𝑗𝑟
∗  = 0 

4. Compute the optimal value for SP1 of OP i.e.   𝑆𝑃1∗ 

 

Where  𝑆𝑃1∗ =  

               Minimize: 

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖
∗  + ∑ ∑ ∑   (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 𝑦𝑖𝑗𝑟
∗

𝑚

𝑖=1

                                                        (4.15) 

 

 

5. The LB is given as 𝑆𝑃1∗ +  𝑆𝑃2∗  

 

c.  Upper bound formulation of  FCSLTP 

In the solution of SP1 of OP to arrive at 𝑆𝑃1∗ according to equation 4.15, since the 𝑥 𝑖𝑗𝑟
∗  

values are not directly considered in the selection of the 𝑦 𝑖
∗  and 𝑦 𝑖𝑗𝑟

∗  some possible 

contradictions or infeasibilities would have to be resolved or perturbed through. This will 

ensure feasibility as noted by Fisher (1981) and also Implemented by Sanei et al. (2017). The 

resolution of the contradictions is used in generating an upper bound to be used in the LRH. 

These possible six (6) contradictions are identified and given below; 

 

1. Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 0    

2. Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 1 

3. Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 0 

4. Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ =  1 

5. Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 1 

6. Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 0 

 

The following procedure can be used in resolving the contradictions: 

  For all 𝑖 =  1 … m, (𝑦 𝑖
∗)  and For  all  𝑖 =  1 … m, j = 1. . n, r = 1 … a, (𝑦 𝑖𝑗𝑟

∗ ) 

1 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 0   then set  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 1    

2 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 1   then set  𝑦 𝑖

∗ = 1    

3 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 0   then set  𝑦 𝑖𝑗𝑟

∗ = 1 
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4 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 1   then set  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 0 

5 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 0   and  𝑦 𝑖𝑗𝑟
∗ = 1   then and  𝑦 𝑖𝑗𝑟

∗ = 0 

6 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 1   and  𝑦 𝑖𝑗𝑟
∗ = 0   then set  𝑦 𝑖

∗ = 0    

 

Using the values of   𝑦 𝑖
∗  , 𝑦 𝑖𝑗𝑟

∗    and 𝑥 𝑖𝑗𝑟
∗    in equation (4.1) above and after resolving any 

infeasibilities as indicated above, the upper bound (UB) is obtained. 

UB of OP  =  

∑ 𝐹𝑖  𝑦 𝑖
∗

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥 𝑖𝑗𝑟
∗      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑦 𝑖𝑗𝑟

∗   

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                                             (4.16)

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 

 

4.1.3   Lagrange relaxation heuristic procedure 

The UB of OP and LR of OP (𝜆, β) are the first requirements for the computation of this 

heuristic procedure.  Following this is the sub-gradient optimization method which is widely 

used in determining the necessary Lagrange multipliers for the iterations.  The parameters 

required for the termination procedure and sub-gradient optimization are listed below; 

1. A value (ε) that is user-determined (or pre-specified) for algorithm termination. It is 

usually small-sized positive number such that(𝑈𝐵𝐵𝑒𝑠𝑡 )– ( 𝐿𝐵𝐵𝑒𝑠𝑡 ) ≤ ε . The term 

𝑈𝐵𝐵𝑒𝑠𝑡 refers to the best Upper Bound (UB) and while   𝐿𝐵𝐵𝑒𝑠𝑡  is the best Lower 

Bound (LB). 

2. Step size for Lagrange multipliers (𝜆 𝑎𝑛𝑑 β) generation is given as 𝜃𝑡. The symbol 𝑡 

refers to the iteration number. 

𝜃𝑡 =
𝛿 [(𝑈𝐵𝐵𝑒𝑠𝑡 )– ( 𝐿𝐵𝐵𝑒𝑠𝑡 )]

∑ (∑ ∑ 𝑥𝑖𝑗𝑟
𝑡  𝑎

𝑟=1
𝑛
𝑗=1 − 𝑆𝑖𝑦𝑖

𝑡)𝑚
𝑖

2
+ ∑ ∑ ∑ ( 𝑎

𝑟=1
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗𝑟

𝑡  −   𝑀𝑖𝑗𝑟 𝑦𝑖𝑗𝑟
𝑡 )  2

 

 

3.  A value (𝛿 ) is chosen from the interval (0, 2) as normally used in the sub-gradient 

procedure.  When  𝑡 ≥ 𝑡𝑚𝑎𝑥 ,  𝛿 = 𝛿 /2. 𝑡𝑚𝑎𝑥 is the number of maximum iterations 

allowed per  𝛿 used. In this subchapter, a termination condition of  𝛿 = 0 for the LRH 

has been included. 

4. 𝑈𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙,  𝐿𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙  are the initial values for the Upper Bound and Lower bound 

respectively.  

5.  𝜆𝑖
𝑡 and  β𝑖𝑗𝑟

𝑡   refer to the Lagrange multipliers at the iteration number 𝑡. The initial 

Lagrange multiplier chosen are  𝜆𝑖
𝑡 = 𝜆𝑖

∗ and  β𝑖𝑗𝑟
𝑡 = β𝑖𝑗𝑟

∗  

 

Iterative steps for LRH: 

Step 1   Initialize using the parameters (ε, t,  𝑡𝑚𝑎𝑥 ,   𝜆𝑖
𝑡 = 𝜆𝑖

∗, β𝑖𝑗𝑟
𝑡 = β𝑖𝑗𝑟

∗  , 𝑈𝐵𝑡 = 𝑈𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 

𝐿𝐵𝑡 =  𝐿𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝛿 = 2 ) 

(𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡 = (𝐿𝐵 𝑜𝑓 𝑂𝑃)∗ =  𝑆𝑃1∗ + 𝑆𝑃2∗ 

(𝑈𝐵 𝑜𝑓 𝑂𝑃)𝑡 = (𝑈𝐵 𝑜𝑓 𝑂𝑃)∗ 

Step 2   Solve (𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡  =  𝑆𝑃1𝑡 +  𝑆𝑃2𝑡 
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 𝐿𝐵𝐵𝑒𝑠𝑡  =   𝑚𝑎𝑥 [(𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡, 𝐿𝐵𝑡, 0 )] 

Step 3 Find a feasible solution to the Upper bound from (𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡 i.e. (𝑈𝐵 𝑜𝑓 𝑂𝑃)𝑡 

𝑈𝐵𝐵𝑒𝑠𝑡  =   𝑚𝑖𝑛 [(𝑈𝐵 𝑜𝑓 𝑂𝑃)𝑡, 𝑈𝐵𝑡)] 

Step 4   if  (𝑈𝐵𝐵𝑒𝑠𝑡 ) – ( 𝐿𝐵𝐵𝑒𝑠𝑡 ) ≤ ε, Terminate the heuristic.  Else 

Step 5   Update the Lagrange Multipliers 

 𝜆𝑖
𝑡+1 = 𝜆𝑖

𝑡 + 𝜃𝑡  (∑ ∑ 𝑥𝑖𝑗𝑟
𝑡  

𝑎

𝑟=1

𝑛

𝑗=1

− 𝑆𝑖𝑦𝑖
𝑡  )                ∀   𝑖 ∈ 𝑚 

 𝜆𝑖
𝑡+1 = 𝑀𝑎𝑥 (𝜆𝑖

𝑡+1, 0) 

 β𝑖𝑗𝑟
𝑡+1 = β𝑖𝑗𝑟

𝑡 + 𝜃𝑡  (𝑥𝑖𝑗𝑟
𝑡  −   𝑀𝑖𝑗𝑟 𝑦𝑖𝑗𝑟

𝑡  )                ∀   𝑖 ∈ 𝑚,  𝑗 ∈ 𝑛, 𝑟 ∈ 𝑎 

 β𝑖𝑗𝑟
𝑡+1 = 𝑀𝑎𝑥 (β𝑖𝑗𝑟

𝑡+1, 0) 

Step 6   if no improvement in 𝐿𝐵𝐵𝑒𝑠𝑡  at  𝑡 ≥ 𝑡𝑚𝑎𝑥 , then 𝛿= 𝛿/2  

               set 𝑡 =  0           (termination and restart condition) 

   

Step 7   if  𝛿 = 0   (The Heuristic is terminated and  𝑈𝐵𝐵𝑒𝑠𝑡 is selected) 

Step 8   Else  𝑡 =  𝑡 + 1 (Go to Step 2). 

 

Numerical Computation  

In order to show the workings of the solution method of this nature, data is usually randomly 

generated for various instances of problem sizes following some known probability 

distribution and coded using some programming languages. A hands-on example of the 

Lagrange relaxation heuristic to further explain the procedures and observations to note when 

performing such computations is presented. 

The generic model problem size consists of (𝑚)  location binary variables, (𝑚 × 𝑛 × 𝑎) 

shipment continuous variables and  (𝑚 × 𝑛 × 𝑎) fixed charge binary variables. Furthermore, 

we have used standard general-purpose optimizer software such as IBM CPLEX version 12.8 

which is enabled with a default Mixed-Integer Linear Programming (MILP) solver to 

compare with the solution obtained with the LRH. 

 

Data generation  

The data parameters utilized are of two types. These are the parameters for the FCSLTP and 

that used in running the LRH. Part of the interest in this chapter is in showing the workings of 

LRH for good comprehension of the user. Therefore a small-sized sample problem that fits 

the model parameters has been included. The following values have been used for the 

Lagrange Heuristic parameters: 

ε = 0.01, 𝑈𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = +∞, 𝐿𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  −∞, 𝑡𝑚𝑎𝑥 = 5, 𝑡 = 0 

 

Numerical example: 

Number of sources       𝑚 (1 … 𝑖) = 3  

Number of destinations 𝑛 (1 … 𝑗) =  2  

Number of Conveyances 𝑎 (1 … 𝑟)  =  2   

A numerical example is described in Table 4-1 and 4-2 below. 
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Table 4-1  Location fixed charges, supply and demand capacities, Unit cost per quantity 

shipped per conveyances 

   𝑟= 1 𝑟= 2 

𝑖 𝐹𝑖 𝑆𝑖 𝑐𝑖𝑗1 𝑐𝑖𝑗2 

1 150 25 1 3 3 2 

2 250 30 2 2 2 1 

3 200 40 2 1 1 3 

𝐷𝑗  20 15 20 15 

𝑇𝑟 10 25 

 

Table 4-2  Route fixed charges per conveyances 

 𝑟= 1 𝑟= 2 

𝑖 𝐻𝑖𝑗1 𝐻𝑖𝑗2 

1 6 4 8 6 

2 8 6 6 8 

3 6 8 6 4 

𝑗 1 2 1 2 

 

 

Numerical solution 

To begin the LRH solution, the initial values for the Lagrange multipliers 𝜆𝑖
𝑡 = 𝜆𝑖

∗  and  

β𝑖𝑗𝑟
𝑡 = 𝛽𝑖

∗  need to be determined. From equation (4.15) and using the non-negativity 

constraints for the Lagrange multiplier, it is observed that the values of  𝜆𝑖
∗ to arrive at a 

minimum value of the objective function can either be zero or  a positive value of magnitude 

sufficiently greater than  
𝐹𝑖

𝑆𝑖
 .  For the numerical example computation, 𝜆𝑖 = 0  (∀𝑖 = 1 … 3 ) 

is used for the first LRH trial run and 𝜆𝑖
∗ = (4 ∗

𝐹3

𝑆3
) = 20     (∀𝑖 = 1 … 3)  for the second LRH 

trial run.  

Similarly for the second set of Lagrange multipliers i.e.  𝛽𝑖𝑗𝑟
∗  , and also using equation (4.15), 

it is observed that 𝛽𝑖𝑗𝑟
∗  could either be fixed at zero (0) or a positive number of magnitude 

greater than  
 𝐻𝑖𝑗𝑟

 𝑀𝑖𝑗𝑟
.  For both the First and Second trial runs, 𝛽𝑖𝑗𝑟

∗  = 1     (∀𝑖 = 1 … 3, 𝑗 =

1 … 2, 𝑟 = 1 … 2 )  have been used. This is because all the  
 𝐻𝑖𝑗𝑟

 𝑀𝑖𝑗𝑟
  in the numerical example 

computations are positive values between 0 and 1.  In all the first and second runs for the 

LRH 𝑡𝑚𝑎𝑥 = 5  was fixed. The results can be seen in Tables 4-3 and 4-4 below. The symbol 

𝑢  in Table 4-3 and 4-4 refers to the count of iterations done irrespective of restarting the 

heuristic  (𝛿 = 𝛿/2 ) as per the heuristic procedure.  
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Table 4-3  LRH computation for initial Lagrange values  𝝀𝒊
∗ = 𝟎 𝒂𝒏𝒅 𝜷𝒊𝒋𝒓

∗ = 𝟏( First run ) 

𝑢 t δ θ (𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡 𝐿𝐵𝐵𝑒𝑠𝑡 (𝑈𝐵 𝑜𝑓 𝑂𝑃)𝑡 𝑈𝐵𝐵𝑒𝑠𝑡 (𝑈𝐵𝐵𝑒𝑠𝑡)
− (𝐿𝐵𝐵𝑒𝑠𝑡) 

1 0 2  -4 0 655 655 655 

2 1 0.95855 -15 0 507 507 507 

3 2 1.19294 -76.4707 0 465 465 465 

4 3 3.38182 -77.4707 0 465 465 465 

5 4 3.38182 -77.4707 0 465 465 465 

6 5 3.38182 -77.4707 0 465 465 465 

restart 

7 0 1 1.6909 -80.1177 0 465 465 465 

restart 

8 0 0.5 0.84545 -80.1177 0 465 465 465 

restart 

9 0 0.25 0.422725 -80.1177 0 465 465 465 

restart 

10 0 0.125 0.211363 -80.1177 0 465 465 465 

restart 

11 41 0.0625 0.105681 -80.1177 0 465 465 465 

 

 

Table 4-4 LH computation for initial Lagrange values  𝝀𝒊
∗ = 𝟐𝟎 𝒂𝒏𝒅 𝜷𝒊𝒋𝒓

∗ = 𝟏(Second run) 

𝑢 t δ θ (𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡 𝐿𝐵𝐵𝑒𝑠𝑡 (𝑈𝐵 𝑜𝑓 𝑂𝑃)𝑡 𝑈𝐵𝐵𝑒𝑠𝑡 (𝑈𝐵𝐵𝑒𝑠𝑡)
− (𝐿𝐵𝐵𝑒𝑠𝑡) 

1 0 2  -604 0 655 655 655 

2 1 0.95273 -5 0 263 263 263 

3 2 3.50667 -148.909 0 551 263 263 

4 3 0.50095 -232 0 527 263 263 

5 4 0.50095 -236.523 0 327 263 263 

6 5 10.52 -1482.48 0 463 263 263 

restart 

7 0 1 0.55368 

 

-80.1177 0 465 263 263 

restart 

8 0 0.5 0.27684 -80.1177 0 465 263 263 

restart 

9 0 0.25 0.13842 -80.1177 0 465 263 263 

 

 

It is noted in the LRH results shown in Table 4-3 above that (𝐿𝐵 𝑜𝑓 𝑂𝑃)𝑡   and   𝐿𝐵𝐵𝑒𝑠𝑡  

failed to improve after the count = 6, for which 𝑡 =  5 ( 𝑡𝑚𝑎𝑥). Hence the solution was 

restarted. Unfortunately, no better Lower bound solution was obtained on using the sub-

gradient rule of  𝛿 =
𝛿

2
 .  Similarly in Table 4-4 above,   𝐿𝐵𝐵𝑒𝑠𝑡    values failed to increase 

above zero(0) with the  values of  (𝑈𝐵𝐵𝑒𝑠𝑡) − (𝐿𝐵𝐵𝑒𝑠𝑡) becoming constant  as both  δ and θ 
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reduced significantly, tending towards zero(0). The LRH search iteration was terminated in 

both the first and second trial runs using the condition that 𝛿 =  0.  

4.1.4   Discussion of solutions obtained 

The Original Problem was coded into IBM CPLEX version 12.8 and solved with the default 

Mixed-Integer Linear Programming (MILP) Solver. Table 4-5 below shows the results 

obtained for the decision variables under the different solution methods. The variables not 

shown were equal to zero (0) in the solution obtained.  It can be well observed in Table 4-5 

below that the LRH for the second trial run gave the lowest value of 263.  The value (263) 

was obtained only due to the violation of one of the constraints used for the Lagrange 

Relaxation. This is a constraint (4.5a) i.e.  𝑥𝑖𝑗𝑟   ≤   𝑀𝑖𝑗𝑟  𝑦𝑖𝑗𝑟 . The violation was at  𝑥 312
∗ =

20  and such that 𝑥 312
∗  > (𝑀312 = 15). This violation was most likely due to the non-

inclusion of possible infeasibility contradiction of the term 𝑥 𝑖𝑗𝑟
∗   >   𝑀𝑖𝑗𝑟 𝑦𝑖𝑗𝑟   for  𝑥 𝑖𝑗𝑟

∗  > 0 

under Upper bound formulation of FCSTLP. By the infeasibility of constraint (4.5a), a lower 

bound was obtained. In addition, the different LRH values of  𝜆𝑖
∗ and 𝛽𝑖𝑗𝑟

∗  used as the starting 

solution for the Lagrange multipliers show how these values could help in the final lower 

bound or optimal solution reached by the heuristic. A simple infeasibility resolution of the 

lower bound solution obtained by LRH (second trial) to satisfy the constraint (4.5a ) while 

also satisfying demand constraints would result in the value obtained by the CPLEX values. 

 

 

Table 4-5 Decision variables result (O.P.) 

Method Solver 

Characteristic 
𝑀𝑖𝑛 (𝑂. 𝑃. ) 𝑥𝑖𝑗𝑟 𝑦𝑖 𝑦𝑖𝑗𝑟 

CPLEX Default MILP 

solver 
284 𝑥311 = 5    

𝑥321 = 5       
𝑥312 = 15       
𝑥322 = 10 

𝑦1 = 0 

𝑦2 = 0 

𝑦3 = 1 

𝑦311 = 1    

𝑦321 = 1       
𝑦312 = 1       
𝑦322 = 1 

LRH (First 

run) 

Lower bound 

 𝜆𝑖
∗ =

0 𝑎𝑛𝑑 𝛽𝑖𝑗𝑟
∗ = 1  

465 𝑥111 = 10    

𝑥212 = 10       
𝑥222 = 15       
 

𝑦1 = 1 

𝑦2 = 1 

𝑦3 = 0 

𝑦111 = 1    

𝑦212 = 1       
𝑦222 = 1      

LRH 

(Second 

trial) 

Lower bound 

𝜆𝑖
∗ = 20 𝑎𝑛𝑑 𝛽𝑖𝑗𝑟

∗

= 1 

263 𝑥321 = 10    

𝑥312 = 20       
𝑥322 = 5       
 

𝑦1 = 0 

𝑦2 = 0 

𝑦3 = 1 

𝑦321 = 1    

𝑦312 = 1       
𝑦322 = 1      

Resolved 

LRH 

(Second 

trial) 

Infeasibility 

𝜆𝑖
∗ = 20 𝑎𝑛𝑑 𝛽𝑖𝑗𝑟

∗

= 1 

284 𝑥311 = 5    

𝑥321 = 5       
𝑥312 = 15       
𝑥322 = 10 

𝑦1 = 0 

𝑦2 = 0 

𝑦3 = 1 

𝑦311 = 1    

𝑦321 = 1       
𝑦312 = 1       
𝑦322 = 1 

 Values of  𝑥𝑖𝑗𝑟, 𝑦𝑖𝑗𝑟 not shown in the table equals 0 in the solution. 
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4.1.5   Conclusion and future direction 

The use of Lagrangian Relaxation Heuristic (LRH) in solving facility location and fixed 

charge solid transportation problem has been considered in this subchapter. The lower bound 

solution obtained for the LRH (second trial) was better compared to the value obtained for 

LRH (First trial) when the respective values obtained were compared to the CPLEX values. 

The results of the LRH could still result in a lower bound as was the case of the LRH(second 

trial) if possible infeasibility contradictions of the upper bound formulations are not well 

captured.  For the LRH (second trial), a careful perturbation to satisfy one of the violated 

constraints would result in the CPLEX values obtained.   

 

Few sized problems have been considered in this subchapter for illustration purpose.  As 

problem size increase, the solution time is not expected to grow proportionately with the 

Lagrange relaxation heuristic developed. This is due to the decomposition, mathematical 

deductions and greedy heuristics employed.  These solution techniques reduce the search 

space and nodes being explored to seek an approximate solution. Terminating conditions of 

the heuristic also make a fast convergence of solution possible. To further test the 

performance of the LRH compared to the values obtainable from standard optimization 

software, extensive computations for various problem sizes and instances still have to be 

considered. It is also worth to note that a structured perturbation technique could be 

employed to resolve the possible LRH lower bound infeasibility. Furthermore during the 

LRH process, metaheuristics such as genetic algorithm, simulated annealing could be used to 

search for a better upper bound obtained, in case the solution fails to improve before the 

terminating conditions are reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



74 
 

Chapter 4.2 

 

Solving the Fixed charge Solid Location and Transportation 

Problem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of this subchapter has been accepted for publication by the Journal of 

Industrial and Management Optimization. 
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4.2.1   Introduction 

In this subchapter, a distribution problem that simultaneously optimizes facility location and 

fixed charge solid transportation problem is presented. This has been termed Fixed Charge 

Solid Location and Transportation Problem (FCSLTP). The objective of the FCSLTP is to 

minimize total transportation and location costs by determining the optimal allocations from 

open locations through open routes by a set of conveyances.  In order to solve this problem 

the CPLEX mixed-integer program dynamic solver which utilizes the branch and cut 

algorithm to search for optimality is utilized. Furthermore, an attempt is made to compare the 

performance of an alternative solution method against the CPLEX by extending Sanei et al. 

(2017) LRH feasibility resolution pattern. In addition, FCSLTP and FCSTP are compared in 

terms of the total cost. This is done to determine if there are any possible cost savings and the 

magnitude of cost savings obtained when an optimal number of facilities are opened 

(FCSLTP) compared to opening all facilities (FCSTP).  Figure 4-2 below describes the  

FCSLTP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    

 

4.2.2   Mathematical model of FCSLTP 

The FCSLTP is formulated as a Mixed-Integer Programming (MIP) problem, with 𝑚 - 

sources, 𝑛- destinations, and 𝑎- conveyances. The model of FCSTP as presented by Sanei et 

al. (2017) has been extended to include fixed costs of facility location. In their FCSTP a 

single product is to be shipped through a set of locations to a number of demand points using 

a set of transport mediums. The capacity of each location to supply products in FCSTP is 

simply determined by the route fixed and variable costs, and also the problem capacities. 

Transport 

Medium 2  

Transport 

Medium 1  Destination 2 

Plant/Location 3 

Destination 4 

1 

Destination 3 

1 

Destination 1 

1 

Plant/Location 2 

Plant/Location 1 

Infeasible Location 

and routes 

4 

Figure 4-2 Schematic representation of FCSLTP 
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However, in the FCSLTP, fixed location costs, route fixed and variable route costs and 

problem capacities are simultaneously used in determining whether the locations will be 

opened or closed for shipment. 

 

Model assumptions for the FCSLTP 

The assumptions made in the model formulation are similar to that of section 4.1.2:  

 

Model Development Parameters and Variables for FCSLTP:  

The parameters and variables used in the model formulation are given below. 

 Parameters 

 𝑖:  Index for sources or locations (plants, warehouses, depots etc.) 

 𝑗: Index for destinations (customers, other warehouses etc.) 

𝑟 : Index for conveyances (or Transportation mediums) 

𝑚 : Number of sources  

𝑛 : Number of destinations 

𝑎 : Number of conveyances 

𝑐𝑖𝑗𝑟 : Variable cost of shipment on the route (𝑖, 𝑗) using conveyance 𝑟. 

𝑆𝑖 : Capacity of source 𝑖      ∀  𝑖 = 1 … 𝑚. 

𝐷𝑗  : Demand at Destination j    ∀  𝑗 = 1 … 𝑛. 

𝑇𝑟 : Conveyance capacity for the conveyance  𝑟   ∀ 𝑟 = 1 … 𝑎 

𝐹𝑖 :  Fixed cost of opening the facility at location𝑖. 

𝐻𝑖𝑗𝑟 : Fixed-charge cost incurred for shipping through route (𝑖, 𝑗) based on the conveyance  𝑟.  

Decision Variables: 

𝑥𝑖𝑗𝑟: Quantity of products transported from source (𝑖) to destination (𝑗) using conveyance (𝑟). 

𝑦𝑖 :    Location variable for setting source (𝑖) as either opened or closed. 

𝑧𝑖𝑗𝑟 : Fixed-charge variable in selecting whether conveyance(𝑟), is utilized or not on the 

route(𝑖,j).  

A mathematical model of the FCSTP is described below. 

𝑚𝑖𝑛   ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥𝑖𝑗𝑟      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑧𝑖𝑗𝑟   

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

  

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                              (4.17)    

                                                                                              

Subject to  

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

 ≤      𝑆𝑖             ∀  𝑖 = 1 … 𝑚                                                    (4.18) 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                     (4.19) 

     

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                     (4.20) 

      

𝑥𝑖𝑗𝑟  ≥ 0                                                                                                             (4.21𝑎)   
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𝑧𝑖𝑗𝑟  =  {
1      𝑥𝑖𝑗𝑟  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                          (4.21b) 

 

Equation (4.17) is the objective function. The first term is the route variable cost per 

conveyance type and the second term is the route fixed-charge cost per conveyance type. 

Equation (4.18) is the supply capacity constraint ensuring no supply preference for selected 

locations. Equation (4.19) is the demand constraint to be met at each destination. Equation 

(4.20) is the conveyance capacity constraint. Equation (4.21a) refers to the non-negativity 

constraint for the continuous variables and Equation (4.21b) refers to the binary constraints 

for the route fixed charge requirement. 

 

Objective Function  for FCSLTP: 

Original Problem (OP) 

Min (OP):  

 

∑ 𝐹𝑖  𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥𝑖𝑗𝑟      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑧𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

  

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                          (4.22)    

                                                                                              

Subject to  

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

 ≤      𝑆𝑖𝑦𝑖              ∀  𝑖 = 1 … 𝑚                                                        (4.23) 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                             (4.24) 

     

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                             (4.25) 

 

𝑥𝑖𝑗𝑟   ≤   𝑀𝑖𝑗𝑟 𝑧𝑖𝑗𝑟        ∀  𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛,   ∀  𝑟 = 1 … 𝑎          (4.26) 

 

𝑀𝑖𝑗𝑟 = min (𝑆𝑖, 𝐷𝑗 , 𝑇𝑟  )                    

 

𝑥𝑖𝑗𝑟  ≥ 0                                                                                                                   (4.27𝑎)  

   

𝑧𝑖𝑗𝑟  =  {
1      𝑥𝑖𝑗𝑟  > 0 

0     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                              (4.27b) 

 

𝑦𝑖 = 0 𝑜𝑟 1                                    (4.27c) 

 

Equation (4.22) is the objective function. The first term is the facility location cost, the 

second term is the route variable cost per conveyance type and the third term is the route 

fixed-charge cost per conveyance type. Equation (4.23) is the supply capacity constraint of 
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each location or source with preference given to selected locations. Equation (4.24) is the 

demand constraint to be met at each destination. Equation (4.25) is the conveyance capacity 

constraint. Equation (4.26) refers to an upper bound limit on the continuous variables. It also 

represents a valid inequality for hopefully improving the solution to the FCSLTP.  Equation 

(4.27a) refers to the non-negativity constraint for the continuous variables. Equations (4.27b 

and 4.27c) refer to the binary constraint for route fixed charge and facility location 

requirement. 

4.2.3   Solution Approaches 

As earlier indicated, the FCSLTP and the FCSTP are optimization problems with the 

presence of fixed charges. Optimization problems with fixed charges have been noted by 

Christensen (2013) to be classified under NP-hard network design problems.  Usually, these 

NP-hard problems have a time complexity which makes computational time increase 

exponentially as problem size increase. In order to solve these NP-hard network design 

problems, solution techniques such as the branch and bound, branch and cut can be 

implemented from commercial optimization programmes such as CPLEX, LINGO, AMPL 

etc. These solution techniques are generally known in the optimization literature to possess a 

significant capacity in obtaining optimal solutions. An attempt is made to seek optimal 

solutions to the FCSLTP using the CPLEX optimization tool.  

 

Unfortunately, MIP optimization tools such as CPLEX may be costly to acquire for some 

category of users and practitioners. In some cases, the commercial solver may not be quickly 

available to some others requiring urgent solutions to combinatorial problems such as the 

FCSLTP. This category of users will mostly desire a solution technique which may not 

guarantee an optimal solution but can help obtain good solutions within appreciable bounds. 

As a result, a solution technique known as the Lagrange relaxation heuristic has been 

developed to provide a solution to the FCSLTP. This technique can also help provide the user 

with an understanding of how feasible solutions to such combinatorial problems are achieved. 

(A) Solving the FCSLTP using CPLEX 

According to Studio (2016), the IBM ILOG CPLEX is a commercial development platform 

for modelling and solving combinatorial problems. Some combinatorial problems such as 

Linear Programming (LP),  MIP, and Mixed-Integer Quadratic Problem (MIQP) have been 

noted to be solvable using CPLEX (Lima, 2010). The quality of solutions provided by 

CPLEX has been noted by (Lima, 2010)  to depend on the problem type and size being 

solved. The  FCSLTP is formulated as a MIP and solved using the MIP dynamic optimizer 

tool of the CPLEX. The dynamic optimizer tool has the capacity to serially launch a variety 

of exact solutions to solve a MIP. In order to solve a minimization MIP, the dynamic 

optimizer uses the continuous relaxation of integrality constraints to obtain a lower bound 

from which different cuts are applied to improve on the lower bounds obtained.  Some cuts 

used are the mixed-integer rounding cuts, cover cuts and Gomory fractional cut (Studio, 

2016). Readers are being referred to Wolsey et al. (1998) on the formulation and application 

of some of these cuts.  The Branch and Cut algorithm is essentially used by CPLEX to obtain 

its solution to combinatorial problems. 
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(B)  Solving the FCSLTP using Lagrange relaxation heuristic method 

An attempt in this section is made to develop an alternative solution method to using CPLEX 

known as the Lagrange relaxation heuristic. Equation (4.26) is included as a valid inequality 

to possibly arrive at a good solution to the Lagrange relaxation.  In order to use the Lagrange 

relaxation heuristic, constraints (4.23) and (4.26) have been selected for the application of the 

Lagrangian multipliers (𝜆𝑖 𝑖. 𝑒 ∑ 𝜆𝑖
𝑚
𝑖   and β𝑖𝑗𝑟  𝑖. 𝑒 ∑ ∑ ∑ β𝑖𝑗𝑟  𝑎

𝑟=1
𝑛
𝑗=1

𝑚
𝑖=1 ) respectively. These 

constraints are similar to that used by Cornuéjols et al. (1991) to give a strong lower bound.  

Moreover, dualizing such constraints as in equation (4.23) and (4.26)  have been noted by 

Nezhad et al. (2013) to leave the OP with a structure that is easy to exploit in finding a 

solution. In addition, non-negative Lagrangian multipliers (𝜆𝑖  ≥ 0 and β𝑖𝑗𝑟  ≥ 0) have been 

utilized to help generate a lower bound. The Lagrangian Relaxation of the Original Problem 

(LR of OP) is given as: 

 

LR of OP (𝜆, β) = 

Minimize  

∑ 𝐹𝑖  𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥𝑖𝑗𝑟      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑧𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 +  ∑ 𝜆𝑖

𝑚

𝑖=1

 (

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

− 𝑆𝑖𝑦𝑖) + 

 

∑ ∑ ∑ β𝑖𝑗𝑟( 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗𝑟  −   𝑀𝑖𝑗𝑟 𝑧𝑖𝑗𝑟 ) 

 

This can be equivalently written as:  

 

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖  + ∑ ∑ ∑  (𝑐𝑖𝑗𝑟 + β𝑖𝑗𝑟) 𝑥𝑖𝑗𝑟  +

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑚

𝑖=1

∑ ∑ ∑(𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)𝑧𝑖𝑗𝑟   + 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 

  

∑(𝜆𝑖

𝑚

𝑖=1

∗ ∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑛

𝑗=1

)                                                                                                               (4.28) 

 

Subject to  

Constraints (4.24), (4.25) and (4.27a)  

 

Decomposition Method for LR of OP (𝝀, 𝛃) 

The solution to the original problem (OP) starts with the decomposition of the Lagrangian 

relaxation of the original problem. The decomposition is done based on the separation of the 

continuous variable  𝑥𝑖𝑗𝑟  and the binary variables 𝑦𝑖 𝑎𝑛𝑑 𝑧𝑖𝑗𝑟 . This is to utilize the easy 

problem structures created. This decomposition allows for an easy solution to the original 

problems through simpler methods of solving the individual sub-problems and aggregating 

them into one piece. The decomposition into two major sub-problems is given below. 
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The Lagrangian relaxation of the Original problem i.e. LR of OP (𝜆, β) is decomposed into 

two sub-problems (SP1  and   SP 2 ). 

First Sub-problem i.e. SP1 of OP (𝜆, β) : 

Minimize  

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖  + ∑ ∑ ∑(𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)𝑧𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                                                    (4.29) 

𝑚

𝑖=1

 

 

Subject to  

𝑦𝑖  = 0 𝑜𝑟 1  ,    𝑧𝑖𝑗𝑟  = 0 𝑜𝑟 1                                                                                              (4.30) 

 

Second Sub-problem  i.e.  SP2 of OP (𝜆, β): 

Minimize 

∑ ∑ ∑  (𝑐𝑖𝑗𝑟 + β𝑖𝑗𝑟) 𝑥𝑖𝑗𝑟  +

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

∑(𝜆𝑖

𝑚

𝑖=1

∗ ∑ ∑ 𝑥𝑖𝑗𝑟 

𝑎

𝑟=1

𝑛

𝑗=1

)                                                    (4.31) 

 

Subject to: 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                                             (4.32) 

 

∑ ∑ 𝑥𝑖𝑗𝑟  

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                                             (4.33)  

 

𝑥𝑖𝑗𝑟  ≥ 0                                                                                                                                      (4.34)    

 

Aggregation Method for SP1 of OP (𝝀, 𝛃) and SP2 of OP (𝝀, 𝛃) 

Following the decomposition, the sub-problems SP1 of OP (𝜆, β) and SP2 of OP (𝜆, β) 

created are coupled. The aggregation is based on methods that can generate the lower bounds 

and upper bounds necessary for utilization in the iterations of the Lagrange relaxation 

heuristic. The first step is to determine the lower bound to be used in the Lagrange relaxation. 

Thereafter the upper bound is formulated through identified infeasibility resolutions. 

 

Lower bound formulation for LRH 

The continuous nature of the variable of LR of OP (𝜆, β) i.e SP2 of OP gives an LP problem 

which could be easily solved to optimality using a general-purpose solver such as TORA, 

Microsoft Excel solver and CPLEX. The integer variable aspect of SP1 of OP gives a pure 

integer programming problem and is solved using mathematical deductions and scenarios to 

arrive at possible values  𝑦 𝑖
∗ 𝑎𝑛𝑑  𝑧 𝑖𝑗𝑟

∗   for these integers.  
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Scenario 1:  This considers the fact that a minimization problem is being solved and thus 

makes efforts to obtain the best location and route fixed charge under the following 

conditions listed: 

(1) If the term  (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  <  0, which imply a negative term, the best integer variable 

will be obtained when  𝑦 𝑖
∗  = 1. 

(2) If the term (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟) < 0, which also imply a negative term, the best integer 

variables will be obtained when  𝑧 𝑖𝑗𝑟
∗ = 1. 

 

Scenario 2: Similarly to scenario1, when considering a minimization problem, the listed 

conditions are also observed. 

1. If the term (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  > 0  this implies positive values, therefore, the best integer 

variables will be obtained  when 𝑦 𝑖
∗  = 0. 

2. If the term (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)> 0, this also implies positive values, therefore, the best 

integer variables will be obtained when   𝑧 𝑖𝑗𝑟
∗ = 0. 

 

To arrive at the LRH Lower bound, the procedure below is followed; 

1 Compute  SP2 of OP to generate the optimal 𝑥 𝑖𝑗𝑟
∗  and  𝑆𝑃2∗ of OP (𝜆, β): 

2 For SP1 of OP,   For all 𝑖 =  1 … m,  if (𝐹𝑖   − 𝜆𝑖 𝑆𝑖)  < 0  then 𝑦 𝑖
∗  = 1 

          Else  𝑦 𝑖
∗  = 0. 

3 For SP1 of OP,   For all 𝑖 =  1 … m, j = 1. . . n, r = 1 … a  , if  (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟) < 0       

then 𝑧 𝑖𝑗𝑟
∗  = 1 

Else  𝑧 𝑖𝑗𝑟
∗  = 0 

4 Compute the optimal value for SP1 of OP i.e.   𝑆𝑃1∗ 

 

Where  𝑆𝑃1∗ =  

               

∑(𝐹𝑖   − 𝜆𝑖 𝑆𝑖)𝑦𝑖
∗  + ∑ ∑ ∑   (𝐻𝑖𝑗𝑟−β𝑖𝑗𝑟𝑀𝑖𝑗𝑟)

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

 𝑧𝑖𝑗𝑟
∗

𝑚

𝑖=1

                                                 (4.35) 

 

 

5 The 𝐿𝐵 𝑜𝑓 𝑂𝑃 is given as 𝑆𝑃1∗ +  𝑆𝑃2∗  

 

Upper bound formulation for LRH 

In order to determine the upper bound to be used in the LRH, the method of resolving 

feasibility contradictions as used also by Sanei et al. (2017) is extended. In the solution of 

SP1 of OP to arrive at 𝑆𝑃1∗  according to equation (4.35), since the 𝑥 𝑖𝑗𝑟
∗  values are not 

directly considered in the selection of 𝑦 𝑖
∗  and 𝑧 𝑖𝑗𝑟

∗  some possible contradictions or 

infeasibilities would have to be resolved. This will ensure feasibility as noted by Fisher 

(1981). The resolution of the contradictions is used in generating an upper bound to be used 

in the LRH. 

These possible seven (8) contradictions are identified and given below; 
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1 Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 0    

2 Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 1 

3 Given that 𝑥 𝑖𝑗𝑟
∗  > 0 ,  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 0 

4 Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ =  1 

5 Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 1 

6 Given that 𝑥 𝑖𝑗𝑟
∗ = 0 ,  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 0 

7. Given that  𝑥 𝑖𝑗𝑟
∗ >  𝑀𝑖𝑗𝑟   

8.  ∑ ∑ 𝑥𝑖𝑗𝑟  𝑎
𝑟=1

𝑛
𝑗=1  >    𝑆𝑖𝑦𝑖      ∀  𝑖 = 1 … 𝑚 . 

 

The following procedure can be used in resolving these contradictions respectively 

 

  For all  𝑖 =  1 … m, (𝑦 𝑖
∗)  and For  all  𝑖 =  1 … m, j = 1. . n, r = 1 … a, (𝑧 𝑖𝑗𝑟

∗ ) 

1 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 0   then set  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 1    

2 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 1   then set  𝑦 𝑖

∗ = 1    

3 If  𝑥 𝑖𝑗𝑟
∗  > 0 , and  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 0   then set  𝑧 𝑖𝑗𝑟

∗ = 1 

4 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 1   then set  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 0 

5 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 0   and  𝑧 𝑖𝑗𝑟
∗ = 1   then and  𝑧 𝑖𝑗𝑟

∗ = 0 

6 If  𝑥 𝑖𝑗𝑟
∗ = 0 , and  𝑦 𝑖

∗ = 1   and  𝑧 𝑖𝑗𝑟
∗ = 0   then set  𝑦 𝑖

∗ = 0    

7 To resolve this contradiction a constraint to SP2 of OP (𝜆, β)  i.e 𝑥 𝑖𝑗𝑟
∗ ≤  𝑀𝑖𝑗𝑟 is 

added. 

8 An attempt is made to resolve any possible supply infeasibility by load shifting from 

open locations with capacity overload into open locations with capacity underload in 

the order of increasing relaxation cost given as :  

(   
𝐹𝑖     

𝑆𝑖
+ ∑ ∑(

 𝐻𝑖𝑗𝑟    

𝑀𝑖𝑗𝑟
+ 𝑐𝑖𝑗𝑟) )  

𝑎

𝑟=1

𝑛

𝑗=1

    ∀  𝑖 = 1 … 𝑚 

If there are no open locations with available capacities, new locations are opened to 

receive load shifting in the order of increasing relaxation cost. 

The load shifting is done between locations within the same conveyance capacity 

constraints (randomly selected) to maintain the feasibility of equation (4.33). 

A high relaxation cost shows a possibility of high supply cost from that location and a 

high possibility of closing the location. 

 

After resolving the eight (8) possible infeasibilities as indicated above, the values of   𝑦 𝑖
∗  , 

𝑧 𝑖𝑗𝑟
∗    and 𝑥 𝑖𝑗𝑟

∗    obtained in equation (6) to arrive at the upper bound (UB) are utilized. 

 

UB of OP =  

∑ 𝐹𝑖  𝑦 𝑖
∗

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑗𝑟𝑥 𝑖𝑗𝑟
∗      + ∑ ∑ ∑ 𝐻𝑖𝑗𝑟𝑧 𝑖𝑗𝑟

∗   

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1

                                         (4.36)

𝑎

𝑟=1

𝑛

𝑗=1

𝑚

𝑖=1
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Lagrange Relaxation Heuristic using the Sub-gradient Optimization procedure 

The workings of the sub-gradient optimization for developing the Lagrange relaxation 

heuristic are similar to that presented in section 4.1.3.  

4.2.4   Computational Study  

In order to assess the effectiveness (objective value of OP) of using CPLEX and the LRH 

developed, a number of experiments using reference problems obtained in the literature were 

conducted. The Original problem (OP) and the LRH were coded on ECLIPSE development 

platform using Java and IBM ILOG Concert Technology Library. IBM CPLEX 12.8 was 

used as both the MIP solver and LP solver. In addition, a windows 8.1 operating system with 

6GB Random Access Memory (RAM) has been used for the computation experiments. The 

original problem (OP) was solved using the MIP dynamic solver of CPLEX which basically 

uses the Branch and Cut algorithm to search the solution space for optimality. In addition, the 

lower and upper bounds and optimality gap obtainable by both CPLEX and the LRH are 

presented.  

 

Data generation for the Lagrange Relaxation Heuristic and Benchmark data 

The following values have been randomly selected for the Lagrange Heuristic initial 

parameters: ε = 0.01, 𝑈𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1𝑒𝑥𝑝. 9,  𝐿𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  0 ,  𝑡𝑚𝑎𝑥 = 10, 𝑡 = 2 . A search for 

benchmark data for the facility location and fixed solid transportation problem has not been 

successful. Therefore, the benchmark data used for the fixed solid transportation problem of 

Sanei et al. (2017) have been extended by including the facility location fixed cost in the data 

supplied. 

 

 Data generation for the problem sizes 

The Benchmark data used by Sanei et al. (2017) basically considers uniformly distributed 

data randomly generated as integers in a unit square coordinate U[a, b].  The uniform 

distribution is used to ensure a constant probability of selecting values randomly within the 

interval. The letter “a” refers to the lower cost limit and “b” is termed the upper-cost limit. 

They specified the supply capacity, demand capacity, conveyance capacity, unit costs and 

route fixed charge.  For the facility location cost, the method of generating facility location 

cost instances from the supply capacities considered in the facility location literature as used 

by  Gadegaard et al. (2017), Fischetti et al. (2016) and Guastaroba and Speranza (2014) has 

been used. In this method, the facility location cost is calculated using  𝐹𝑖 = 𝑈(0,90) +

 √𝑆𝑖   𝑈(100,110). A total of 50 problem instances were solved across 10 different problem 

sizes generated as presented in Table 4-6 below.  The data distribution used in generating the 

parameters is also given subsequently in Table 4-7 below.  
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Table 4-6  Problem sizes and number of instances used for experimentation 

 Problem 

Size No 

 Problem 

Size 

 

No of 

instance 

1 5×5×2 5 

2 5×8×2 5 

3 7×10×2 5 

4 8×8×2 5 

5 10×10×3 5 

6 10×20×3 5 

7 15×30×4 5 

8 20×20×5 5 

9 25×38×8 5 

10 35×42×9 5 

 

 

Table 4-7  Parameter distribution used for experimentation 

Parameter Distribution  

𝑺𝒊     U(200, 400) 

𝑫𝒋    U(50, 100) 

𝑻𝒓     U(800, 1800) 

𝒄𝒊𝒋𝒓   U(20, 150) 

𝑯𝒊𝒋𝒓  U(200, 600) 

𝑭𝒊 =

𝑼(𝟎, 𝟗𝟎) + √𝑺𝒊 𝑼(𝟏𝟎𝟎, 𝟏𝟏𝟎)   

𝑴𝒊𝒋𝒓 = 𝐦𝐢𝐧(𝑺𝒊, 𝑫𝒋, 𝑻𝒓) 

 

4.2.5   Experimentation and Results 

The following tests were conducted in  the computational study conducted 

a) Using the problem sizes 1 to 6 in Table 4-7, the mean lower bounds, mean upper 

bounds, and gap% obtainable by both methods were computed. A selection of the 

better solution method as regards best optimality gap (gap% ) was done and used for 

further comparing the FCSLTP and FCSTP.  

gap% is defined as follows: 

gap% = (
𝑈𝐵𝑆𝑚 − 𝐿𝐵𝑆𝑚

𝐿𝐵𝑆𝑚
) × 100 

𝑈𝐵𝑆𝑚 =  Best upper bound found by CPLEX and LRH 

𝐿𝐵𝑠𝑚 =   Best lower bound found by either CPLEX or LRH 
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b) Comparative study of FCSLTP and FCSTP to investigate possible cost savings 

resulting from either formulation. Comparing both the FCSLTP and the FCSTP seems 

to provide a biased comparison because they both have different objective functions. 

An FCSTP makes an assumption that all locations are opened for shipment, while this 

may not hold for the FCSLTP.  An FCSTP with total supply matching total demand is 

termed as balanced with all locations opened. However, when solving an unbalanced 

FCSTP with total supply capacity greater than total demand requirement, the 

possibility of having locations without any allocation exits. Unbalanced transportation 

problems seem to show more real-world applications than balanced transportation 

problems. This may due to the competition of resources in meeting demand 

requirements, demand uncertainties that require inventory keeping at various locations 

or unplanned disruptions that limits supply capacities. Therefore, when in-active 

locations of an FCSTP are closed, possible cost savings are made and the assumption 

that all locations are opened does not hold.   

Based on these observations, an equivalent FCSLTP is defined from an FCSTP and 

termed it as FCSTP-EQ. This is done by computing normally the FCSTP without the 

facility location constraint and the facility location costs. Subsequently, the load 

distributions obtained are used to compute the equivalent facility location costs and 

added to the FCSTP objective function.  This procedure is shown in Figure 4-3 below. 

 

 

 

  Compute the load distribution  𝑥𝑖𝑗𝑟  using FCSTP model formulation 

If   locations have ∑ ∑ 𝑥𝑖𝑗𝑟 𝑎
𝑟=1

𝑛
𝑗=1  >    0     ∀  𝑖 = 1 … 𝑚 ,. 

Compute facility location decision variable 𝑦𝑖 = 1 

  Else   

             𝑦𝑖 = 0 

            If    𝑥𝑖𝑗𝑟  ≥ 0      ∀    𝑖 = 1 … 𝑚, ∀  𝑗 = 1 … 𝑛,   ∀  𝑟 = 1 … 𝑎           

                    𝑧𝑖𝑗𝑟  = 1 

            Else  

           𝑧𝑖𝑗𝑟  = 0 

 

 using  𝑥𝑖𝑗𝑟 , 𝑧𝑖𝑗𝑟  and 𝑦𝑖  Compute objective function FCSLTP   ( equation 4.22) 

 

 

Figure 4-3  Procedure for computing the FCSTP-EQ 

 

Under experimentation (a), results from Table 4-8 below show that for the Six (6) problems 

considered, the CPLEX solution obtained better mean lower bounds per problem size 

compared to the LRH. In addition, the mean upper bounds obtained by CPLEX solution were 

superior compared to the LRH. This is also supported by the gap% representing the 
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optimality gap obtained in Table 4-9. The superior lower bounds achieved by CPLEX have 

been used to compute the optimality gap as shown in Table 4-9. The worst gap%   obtained 

by CPLEX solution for the problem sizes considered was 0.1% while that of the LRH was 

15.98%. The superior performance as displayed by CPLEX is likely connected to the several 

cutting planes solutions of improving the lower bounds obtained from the initial linear 

relaxations as earlier indicated in section 4.2.3. On the other hand, the LRH is an alternative 

option developed but have not obtained significant results when compared with the quality of 

solutions obtainable using CPLEX.  The best optimality gap obtained using the LRH for the 

problem sizes considered was 3.62 %. Therefore, based on the superior performance of 

CPLEX   solution for the problem sizes considered, the CPLEX optimization tool is used for 

a comparative study between the FCSTP-EQ and FCSLTP. 

 

 

 

Table 4-8  Mean values for best Lower bound and upper bound computation per solution 

method 

Problem 

Size No. 

Problem 

Size  

𝒎 × 𝒏

× 𝒂 

Total 

Problem 

Instances 

 

mean 

𝑳𝑩𝑳𝑹𝑯 

(best) 

mean 

𝑼𝑩𝑳𝑹𝑯 

(best) 

mean 

𝑳𝑩𝑪𝑷𝑳𝑬𝑿 

(best) 

mean 

𝑼𝑩𝑪𝑷𝑳𝑬𝑿 

(best) 

 

1 5×5×2 5 10879.80 

 

18505.79 

 

17859.01 

 

17860.29 

 

 

2 5×8×2 5 17322.20 

 

28333.22 

 

25534.45 

 

26333.42 

 

 

3 8×8×2 5 15736.80 

 

29614.83 

 

25534.45 

 

25667.43 

 

 

4 7×10×2 5 22063.60 

 

35494.88 

 

33925.34 

 

33925.34 

 

 

5 10×10×3 5 18764.20 

 

34423.95 

 

29758.67 

 

29758.67 

 

 

6 10×20×3 5 39061.60 

 

62065.47 

 

58664.97 

 

58813.86 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



87 
 

Table 4-9  Mean Gap% of each solution method using the best mean lower bound (CPLEX) 

Problem 

Size No. 

Problem 

Size  

𝒎 × 𝒏 × 𝒂 

mean 

𝑳𝑩𝑪𝑷𝑳𝑬𝑿 

(best) 

 Gap% 

LRH 

Gap % 

CPLEX 

 

1 5×5×2 17859.01 

 

3.62%  0.007% 

2 5×8×2 25534.45 

 

7.72% 0.1% 

3 8×8×2 25534.45 

 

15.98% 0.05% 

4 7×10×2 33925.34 

 

4.63% 0.00% 

5 10×10×3 29758.67 

 

15.68% 0.00% 

6 10×20×3 58664.97 

 

5.8% 0.03% 

 

 

 

Under experimentation (b) the equivalent FCSLTP developed (using the FCSTP) described 

as FCSTP-EQ (Figure 4-3 above) and the original formulation (equations 4.22 - 4.27c) 

termed as the FCSLTP were compared. A computation time limit of 9000 seconds to obtain 

solutions was placed. Table 4-10 below shows the results obtained.  It was observed that the 

original formulation (FCSLTP) performed considerably better than the FCSTP-EQ through 

the 10 different problem sizes considered. Problems Size (10) in particular showed a 25% 

reduction in total costs when using the FCSLTP formulation. Figure 4-4 below shows a trend 

of the increase in cost savings as the problem size increased, with the lowest cost savings at 

3% in the smallest sized problem (1) and 25% in the largest problem size (10).  This trend is 

possibly connected to the increase in solution search space of the FCSTP-EQ formulation 

when compared with the FCSLTP as problem size increased. The feasible solution search 

space of FCSTP-EQ is wider due to less limitation on the number of locations to open for 

shipment. In addition, the FCSTP-EQ obtains its load distribution assuming all locations are 

opened for shipment. Although during actual allocations, there are possibilities of some 

locations not shipping to any destinations, therefore requiring the need for closure of such in-

active location as done in the FCSTP-EQ computation. 

 

It was also observed that when solving the FCSLTP, the FCSTP formulation could possibly 

be used as an initial feasible solution. The percentage total cost savings obtained (Table 4-10 

below) between FCSLTP and FCSTP-EQ could also be interpreted as an optimality gap when 

using the FCSTP as starting solution to compute the FCSLTP. In addition, the run time of 

FCSTP is much lower compared to the FCSLTP as shown in Figure 4-5 below. This is 

expected although the magnitude of difference may not be easily quantified unless 

experimentally conducted. The reduction in computation time of FCSTP is likely due to the 

reduced number of computations required to be performed compared to the FCSLTP 

formulation. Therefore, the reduced time could be an insight into the development of a hybrid 
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improvement solution or heuristic using the FCSTP as a basis to solve the original 

formulation of FCSLTP. The run time of FCSLTP using CPLEX shows significant 

exponential time complexity than the FCSTP for larger problem sizes. Figure 4-5 presents a 

comparison between the mean run time of the FCSTP and the FCSLTP as problem size 

increase.   

 

 

Table 4-10  Comparison between the FCSTP EQ and FCSLTP using CPLEX under 9000secs 

computation time 

 

Problem 

No 

Problem 

Size 

𝒎 × 𝒏 × 𝒂 

Total no. 

of 

Instances 

𝑭𝑪𝑺𝑻𝑷  

EQ 

mean 

𝑭𝑪𝑺𝑳𝑻𝑷 

mean 

 Cost 

Difference 

 % Cost 

Difference 

1 5×5×2 5 18480.39 

 

17860.29 

 

620.10 

 

3% 

 

2 5×8×2 5 28333.22 

 

26333.42 

 

1999.80 

 

8% 

3 8×8×2 5 29064.07 

 

25667.43 

 

3396.64 

 

13% 

4 7×10×2 5 35807.10 

 

33925.34 

 

1881.76 

 

6% 

 

5 10×10×3 5 32147.15 

 

29758.67 

 

2388.48 

 

8% 

 

6 

 

7 

 

8 

 

9 

 

10 

 

10×20×3 

 

15×30×4 

 

20×20×5 

 

25×38×8 

 

35×42×9  

 

5 

 

5 

 

5 

 

5 

 

5 

62797.43 

 

85778.98 

 

61498.56 

 

106532.31 

 

120932.51 

 

 

58813.86 

 

77653.71 

 

50054.12 

 

89098.73 

 

96508.73 

 

3983.57 

 

8125.27 

 

11444.44 

 

17433.58 

 

24,423.78 

 

7% 

 

10% 

 

23% 

 

20% 

 

25% 
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Figure 4-4  FCSLTP and FCSTP-EQ 

 

 

 

 

 

Figure 4-5  Solution time of FCSLTP and FCSTP 
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4.2.6   Conclusion and Future Direction 

 

 An optimization problem that integrates facility location decisions into a distribution 

problem known as the Fixed Charge Solid Transportation Problem (FCSTP) has been 

studied. This problem was termed Fixed Charge Solid Location and Transportation Problem 

(FCSLTP) and was solved using CPLEX optimization tool. An LRH was developed as an 

alternative solution for users who possibly may not have access to commercial optimization 

solvers for certain MIP due to costs or other constraints. The LRH was compared to the 

CPLEX solution. Results obtained presents CPLEX solution as more effective with regard to 

a lower optimality gap for all the problem sizes considered. However, the LRH could still 

give some solutions within an optimization gap of 4%. 

 

A formulation of FCSLTP using the load distribution obtained from FCSTP was discussed 

and termed an equivalent FCSLTP (FCSTP-EQ). The basic motivation for this formulation 

was stated as the possibility of some locations turning out to be in-active for shipping out 

when solving an unbalanced FCSTP and the cost savings obtained when such locations are 

closed.  The FCSTP-EQ was compared to the original formulation of FCSLTP denoted as 

FCSLTP. Using total cost as a measure of comparison, the FCSLTP formulation presented 

better cost savings compared to the FCSTP-EQ. This possibly was attributed to a narrower 

feasible solution search space used by the FCSLTP as compared to the FCSTP-EQ. The 

percentage total cost difference was also interpreted as an optimality gap between FCSLTP 

and FCSTP-EQ.  Based on the cost savings or optimality gap obtained, the load distribution 

of an FCSTP was considered as a feasible starting solution to solving the FCSLTP for larger 

problem sizes. This is further supported by the very low solution time obtained when solving 

an FCSTP as compared to the FCSLTP for larger problem sizes.  Suggested improvement for 

using the FCSTP as a starting solution might be the requirement of a hybrid improvement 

heuristic to obtain improved upper bounds within the solution time limit of the FCSLTP.  

 

Possible extensions to improve the quality of solution of the LRH can be strengthening the 

upper bound search using other heuristics or possible metaheuristics such as genetic 

algorithm and/or simulated annealing. Metaheuristics have the capacity to further increase the 

solution search space and make the hybrid solution become very competitive with solution 

methods obtainable in commercial optimization tools such as in CPLEX. As noted in the 

experiments, the time complexity of CPLEX solution is exponential as the problem size 

increase. Consequently, this might strengthen the reason for a search for an efficient 

alternative solution method.  
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Chapter 5 

 

Hybrid Genetic Algorithm Solution of the facility location 

and fixed charge solid transportation problem 
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5.1   Introduction 

 

In this chapter, a variant of the FCSTP, referred to as the Fixed Charge Solid Location and 

Transportation Problem (FCSLTP) is considered. In addition, a hybrid metaheuristic solution 

is proposed. This hybrid metaheuristic uses the GA process to select a combination of 

feasible facility locations while allocation from the feasible locations is achieved using a 

constructive greedy heuristic. An improvement heuristic termed modified stepping stone 

algorithm has been used. This was used to further consolidate load distribution for cost 

reduction and improve the search for a better solution. In order to test the effectiveness 

(objective function) and efficiency (solution time) of the hybrid GA method, a comparison 

was with the solutions provided by CPLEX, a commercial solver. 

 

5.2   Model Formulation 

 

The FCSLTP is modelled as a mixed-integer linear programming problem consisting of 𝑚 

feasible sources or locations, 𝑛 destinations or customers, and 𝑎  conveyances or transport 

sources. The FCSLTP basically differs from the FCSTP discussed by Sanei et al. (2017)  in 

that location costs, location capacities, route costs and route capacities are simultaneously 

used in determining whether locations will be open or closed when servicing customers. 

Moreover, the model formulation and assumptions considered are similar to those presented 

in Oyewole and Adetunji (2018) and rehashed in this chapter. The FCSLTP seeks to 

minimize total transportation and location costs by determining the optimal allocations from 

selected open locations through open routes via a set of conveyances. 

5.2.1   Model parameters 

 𝑖:  Index for sources or facility locations (warehouses, depots etc.) 

 𝑗: Index for destinations (customers, other warehouses etc.) 

𝑟 : Index for conveyances (or Transportation mediums) 

𝑚 : Number of sources  

𝑛 : Number of destinations 

𝑎 : Number of conveyances 

𝑐𝑖𝑟𝑗 : Variable cost of shipment from source 𝑖 through conveyance 𝑟 to destination 𝑗. 

𝑆𝑖 : Capacity at source 𝑖. 

𝐷𝑗  : Demand at Destination  𝑗 . 

𝑇𝑟 : Capacity of conveyance  𝑟. 

𝐹𝑖 :  fixed charge for keeping a facility location open. 

𝐻𝑖𝑟𝑗 : Fixed cost (fixed charge) incurred for shipping from source 𝑖 through conveyance 𝑟 to 

destination 𝑗. 

Decision Variables: 

𝑥𝑖𝑟𝑗: Quantity of products transported from source 𝑖 through conveyance 𝑟 to destination 𝑗. 

𝑦𝑖 :    Variable indicating which facility location is opened. 
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𝑧𝑖𝑟𝑗 : Variable indicating which conveyance means is utilized en route (𝑖, 𝑗 ). 

Objective Function (minimum cost function): 

Minimize (𝑍) =  

∑ 𝐹𝑖  𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝑐𝑖𝑟𝑗𝑥𝑖𝑟𝑗      + ∑ ∑ ∑ 𝐻𝑖𝑟𝑗𝑧𝑖𝑟𝑗  

𝑛

𝑗=1

𝑎

𝑟=1

𝑚

𝑖=1

  

𝑛

𝑗=1

𝑎

𝑟=1

𝑚

𝑖=1

                   (5.1)    

                                                                                              

Subject to  

∑ ∑ 𝑥𝑖𝑟𝑗  

𝑛

𝑗=1

𝑎

𝑟=1

 ≤      𝑆𝑖𝑦𝑖              ∀  𝑖 = 1 … 𝑚                                                 (5.2) 

∑ ∑ 𝑥𝑖𝑟𝑗  

𝑎

𝑟=1

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 … 𝑛                                                     (5.3) 

∑ ∑ 𝑥𝑖𝑟𝑗  

𝑛

𝑗=1

𝑚

𝑖=1

 ≤      𝑇𝑟             ∀ 𝑟 = 1 … 𝑎                                                      (5.4) 

     

𝑥𝑖𝑟𝑗  ≥ 0           ∀  𝑖 = 1 … 𝑚 , ∀  𝑗 = 1 … 𝑛 , ∀ 𝑟 = 1 … 𝑎                       (5.5)   

𝑧𝑖𝑟𝑗  =  {
1      𝑥𝑖𝑟𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    ∀  𝑖 = 1 … 𝑚 , ∀  𝑗 = 1 … 𝑛 , ∀ 𝑟 = 1 … 𝑎    (5.6a) 

𝑦𝑖  = 0 𝑜𝑟 1             ∀  𝑖 = 1 … 𝑚                                           (5.6b) 

 

Equation (5.1) is the objective or the cost function, which to be minimized. The first term 

computes the total facility location cost, the second term computes the total route variable 

cost and the third term computes the route total fixed charge. Equation (5.2) is the supply 

capacity constraint of each facility location or sources. It also ensures that the capacities of 

closed facilities are not utilized. Equation (5.3) is the demand constraint indicating the 

destination demands should be met. Equation (5.4) is the conveyance capacity constraint. It 

ensures that the capacities of selected conveyances are not exceeded. Equation (5.5) refers to 

the non-negativity constraint for the continuous variables and Equations 5.6a and 5.6b are 

binary constraints indicating whether a facility is opened or not and whether a conveyance is 

selected or not. 
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5.3   Genetic Algorithm 

 

The Genetic Algorithm(GA)  is a multi-dimensional search strategy defined by Fernandes et 

al. (2014) as a framework that imitates the evolutionary principle of nature to provide 

solutions to NP-hard combinatorial problems. The GA has also been viewed as a probabilistic 

or stochastic search technique due to the probability rates normally associated with the 

genetic operations involved in producing solutions during the search process. As noted by 

Jawahar et al. (2012) and  Pérez-Salazar et al. (2015), the successful implementation of the 

GA depends on the user-defined solution representations, initialization, genetic operations 

and terminating conditions. The solution representation basically is concerned with how to 

encode and decode the feasible solution of the combinatorial problem taking part in the 

genetic operations. These feasible solutions are usually referred to as chromosomes. In 

addition, the representation of each individual variable type making up the chromosomes (i.e. 

genes) has to be properly captured. This is because optimization variables could either be 

continuous, binary or integer.  The representation types used have been noted by several 

authors to determine how sensitive the GA will be in converging to the solution desired. The 

Genetic operations consist of the chromosome selection method, crossover operation and 

mutation operation used to ensure necessary diversity in the search process. The stages of the 

GA implementation include initialization, crossover, mutation and termination. 

 

Initialization 

The initialization conditions include the determination of the desired fitness function 

(objective function) for the GA procedure, chromosome representation, initial population size 

and the terminating condition of the GA, including the number of generations.   

 Crossover operation 

The aim of the crossover is to generate and promote the replication of good solutions               

(chromosomes) while rejecting the bad ones. Before crossover is performed, chromosomes 

are selected using some assigned probabilities known as the crossover rate. The roulette 

wheel technique is a popular selection technique used in the literature to achieve the selection 

(Jawahar and Balaji (2009),  Ojha et al. (2010), Pérez-Salazar et al. (2015)). The crossover 

operation ensures the reproduction of new offspring or children solution from parent 

solutions.  Different cross over operation types have been discussed in the literature as noted 

by Jawahar and Balaji (2009). These are either based on a single point or two-point 

crossovers such as the partially mapped crossover and the ordinal mapped crossover.  

Mutation operation 

The mutation operation involves perturbation of some of the genes (variables) of a 

chromosome, based on some assigned probabilities known as the mutation rate. Genes are 

also randomly selected using a user-defined mutation rate. The mutation operation or gene 

replacement essentially gives the GA its power of arriving at other new solutions not possible 

with the crossover and have the potential of being better than existing solutions. 
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Termination 

Terminating conditions usually involve the stopping criteria normally employed in 

optimization problems such as the number of desired iterations and optimization time desired. 

For the GA the number of generations employed can also be utilized as a stopping criterion. 

5.3.1   Solution representation 

Choosing a suitable representation for the candidate solutions of the original problem has 

been considered by several authors to be based on the optimization problem structure and the 

ease of performing the genetic operations of the GA. The matrix and vector (binary) 

representation were discussed by Vignaux and Michalewicz (1991). A Priority-based 

encoding was proposed by Gen et al. (2006). This was to prevent likely infeasibility during 

genetic operations observed with the prüfer number technique of representing chromosomes 

discussed by Gottlieb et al. (2001).  Antony et al. (2011), while discussing solutions to a 𝑚-

number of sources and 𝑛 -number of destinations FCTP, underscored the differences between 

the matrix, permutation, prüfer number and direct representation. The differences were based 

on the number of genes involved in the chromosomes. They showed the matrix representation 

as possessing the highest number of genes representing the transportation problem which is  

𝑚 ×  𝑛  , while the prüfer number had the least i.e.  𝑚 +  𝑛 − 2 . A hybrid chromosome 

representation that presents both the continuous and the binary variables of the original 

mixed-integer problems as an array was discussed by Pérez-Salazar et al. (2015) and Hiassat 

et al. (2017). 

In this chapter, a vector of binary numbers is used to represent the facility locations while a 

matrix of continuous numbers is used to represent the candidate solution, which is essentially 

the allocated quantity from the facility locations (sources) and to the points of demand            

(destinations). A typical matrix representation used for a sample feasible solution to an 

original problem with 3 candidate facility locations, 4 demand destinations and two 

conveyances is shown in Figure 5.1 below. The facility location vectors are encoded as the 

GA chromosomes and manipulated through the various GA operations while the constructive 

greedy heuristics and improvement modified stepping stone heuristics work on the allocation 

matrix. The allocation (shown in Figure 5.1) is made based on the result from the GA 

operations on the facility location vector (as shown in Figure 5.2). The fixed charges are 

incurred when the continuous variable part of equation (5.1) is non-zero. 
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Figure 5-1 Typical candidate solution representation for a 3-source, 4-destination and 2- 

conveyance problem 

 

Figure 5-2   Sample chromosome representation for an FCSLTP with 3 sources 

In Figure 5.2 above, a value of zero allocated to the second source(𝒊 = 𝟐) means there can 

be no load allocation to the matrix member of that row. 

5.3.2   Initialization 

Fitness function 

The fitness function to be used in the GA is the objective function of the original problem.  

This is same as equation (5.1) above.   

Initial population and candidate feasible solution generation  

Given the location fixed cost 𝐹𝑖   of dimension ( 𝑚 ), route fixed cost 𝐻𝑖𝑟𝑗  of dimension 

(𝑚 × 𝑎 ×  𝑛), variable cost 𝑐𝑖𝑟𝑗 of dimension (𝑚 × 𝑎 ×  𝑛), population size (𝑝) and number 

of generation (𝑔), the generation of the candidate feasible solutions to the original problem 

( 𝑐1 … 𝑐𝑝) and the initial population of chromosomes are described below and illustrated in 

Figures 5-3 and 5-4 below respectively. 

1. Random generation of the combination of facilities or locations that possess sufficient 

capacity to meet demand. A selection of 𝑦𝑖  ( 𝑖 = 1 … 𝑚)  is made such that the 

feasibility   ∑ 𝑆𝑖 𝑦𝑖
𝑚
𝑖=1  ≥ ∑ 𝐷𝑗  𝑛

𝑗=1  is checked and uniqueness of each combination of 

facilities is ensured. A matrix (𝑚 ×  𝑝) is created to store each feasible combination 

of the facilities and checked for uniqueness of each solution. The matrix (𝑚 ×  𝑝)  is 

also referred to as the population of chromosomes in this chapter and represented in 

Figure 5-4 below.  

2. Creation of a Relaxed Average Variable Cost (RAVC) matrix of dimension (𝑚 × 𝑎 ×

 𝑛). This is based on the integration of the route fixed cost, the variable cost of the 
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problem and minimum of all capacities and it is used to allocate capacities.  This is 

similar to the least equivalence variable cost discussed by Jawahar and Balaji (2009). 

The RAVC is stated as  

 

𝑅𝐴𝑉𝐶 (𝑖𝑟𝑗) =  
 𝑅𝑜𝑢𝑡𝑒 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 (𝐻𝑖𝑟𝑗) 

min(𝑆𝑖, 𝐷𝑗 , 𝑇𝑟)
+ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 (𝑐𝑖𝑟𝑗)                   (5.7) 

 

3. Creation of the matrix of candidate feasible allocation (Illustrated with Figure 5-3 

below). A three-dimension matrix of dimension  (𝑚𝑎 × 𝑛 ×  𝑝) is created. This is 

called the candidate feasible solution allocation matrix. The procedure for creating the 

three-dimensional matrix is stated below. 

(a) From the earlier two-dimension matrix (𝑚 ×  𝑝)  of feasible combinations of 

facilities (chromosomes), select each feasible chromosome (𝑚 ) from the (𝑝) rows 

of population. 

(b)  Compute the RAVC as stated above to obtain the matrix(𝑚 × 𝑎 ×  𝑛). 

(c) Apply the constructive greedy heuristic (illustrated with Figure 5-5 below) to 

make the initial allocation. The greedy heuristic utilizes the 𝑚 rows of the matrix 

obtained in step (3a) above and the RAVC computed in step (3b) above to allocate 

into the first layer of the candidate feasible solution three-dimensional matrix 

(𝑚𝑎 × 𝑛 ×  1). 

(d)  Use the improvement heuristic (the modified stepping stone algorithm) 

(illustrated in Figure 5.6 below). This is based on the actual route fixed cost and 

variable cost matrix, to improve allocations obtained in step(3c) above.  This gives 

the initial candidate feasible solution (candidate solution , 𝑐 = 1 ) of 

dimension (𝑚𝑎 × 𝑛 ×  1).  

Anthony (2011) proposed a stepping stone method which attempts to increase the 

number of current basic variables (current solution) of the initial solution by 

exploring the possibilities of non-basic variables or other feasible solutions 

entering the basis. However, the modified stepping stone method consolidates on 

basic variable positions only. This is done in order to check for possible cost 

savings through route fixed cost and variable cost trade-off by either eliminating 

route fixed costs and/or possible reduction in variable costs subject to capacity re-

allocation. 

(e) Repeat step (3a) to (3d) for all the candidate feasible solution ( 𝑐1 … 𝑐𝑝)  to obtain 

the candidate feasible three-dimension matrix (𝑚𝑎 × 𝑛 ×  𝑝). 

4. Computation of the candidate feasible solution fitness function using the actual cost 

parameters and the allocation of the three-dimensional matrix obtained in step (3e) 

above. 
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Figure 5-3   Candidate feasible solution allocation matrix (𝒎𝒂 × 𝒏 ×  𝒑)  

 

 

 

Figure 5-4 Sample populations of Chromosomes (𝒎 ×  𝒑) 
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Greedy allocation heuristic 

For every entry of demand, 𝒋 = 𝟏: 𝒏 ,  

  find the minimum RAVC from (𝒊 = 𝟏 ∶ 𝒎𝒂) 

 While demand (𝒋)  >  𝟎 

  If   𝑻𝒓 >  𝟎  and  𝑺𝒊 >  𝟎  

        𝒙𝒊𝒓𝒋 = allocation =  𝐦𝐢𝐧 (𝑺𝒊, 𝑫𝒋, 𝑻𝒓)   

                              Subtract  𝒙𝒊𝒓𝒋  from  𝑫𝒋 

        Subtract  𝒙𝒊𝒓𝒋  from 𝑺𝒊 

        Subtract  𝒙𝒊𝒓𝒋  from 𝑻𝒓 

                      Else  

                                Move to the next minimum RAVC (𝒊 = 𝟏 ∶ 𝒎𝒂) 

 

                      End if 

    Update 𝒋: 𝒋 = 𝒋 + 𝟏 

End for 

 

 

Figure 5-5 Greedy heuristic to populate Initial solution 

 

Improvement Heuristic (Modified stepping stone method) 

A set of acronyms are defined below in the modified stepping stone method for 

comprehension purposes and presented below. 

𝑖  𝑟 𝑎𝑛𝑑 𝑗  are already defined under section 5.2.1 above. 

𝑚 𝑛  𝑎𝑛𝑑  𝑎  is as stated in the original problem in section 5.2.1  above. 

Define source indices  (𝑖 𝑎𝑛𝑑 𝑢) ∶     𝑖 <  𝑢 ≤   𝑚  

Define destination indices   (𝑗 𝑎𝑛𝑑 𝑝) ∶    𝑗 <   𝑝 <   𝑛  

Define conveyance indices   (𝑟 𝑎𝑛𝑑 𝑣)  ∶    𝑟 <   𝑣 <   𝑎 

 𝑥𝑖,𝑟,𝑗 =>  Variable allocation at positon (𝑖𝑟𝑗). (Similarly for 𝑥𝑖𝑟𝑝 , 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗 ) 

𝐻𝑖𝑗𝑟  =>  Route fixed cost at position (𝑖𝑟𝑗).( Similarly for 𝐻𝑖𝑟𝑝 , 𝐻𝑢𝑣𝑝 , 𝐻𝑢𝑣𝑗 ) 

min_alloc =>  Minimum  of  allocation.  

variable_cost change at position (𝑖𝑟𝑗)= (𝑐𝑖𝑟𝑗 +  𝑐𝑢𝑣𝑝 )  − ( 𝑐𝑖𝑟𝑝 +  𝑐𝑢𝑣𝑗) 

(based on  𝑥𝑖𝑟𝑗, 𝑥𝑖𝑟𝑝 , 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗    and Illustrated in Figure 5-7)  

The improvement heuristic is illustrated in Figure 5-6 below, while an Illustration of the 

selection of variables for the improvement heuristic (modified stepping stone consolidation) 

is presented in Figure 5-7 below. 
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Improvement Heuristic (Modified stepping stone method) 

For every source(𝑖 = 1, 𝑟 = 1) 𝑡𝑜 (𝑖 = 𝑚, 𝑟 = 𝑎) 
    Source = source 1 

    For every destination 𝑗 = 1: 𝑛 − 1,    if 𝑥𝑖𝑟𝑗  >  0  

          Source, Destination = source1, dest 1 

         (# Source, Destination combination  is explained in Figure 7 below #) 

          If for any destination 𝑝 > 𝑗,   𝑥𝑖𝑟𝑝 >  0  

              Source, Destination = source 1, dest 2 

              If for any source (𝑢 > 𝑖 𝑎𝑛𝑑 𝑣 >= 𝑟) OR source (𝑢 >= 𝑖 𝑎𝑛𝑑 𝑣 > 𝑟),   𝑥𝑢𝑣𝑝 >  0   

                 Source, Destination = source 2, dest 2 

                     If  𝑥𝑢𝑣𝑗 > 0  

                        Source, Destination = source 2, dest 1 

Find  𝑚𝑖𝑛_𝑎𝑙𝑙𝑜𝑐 =  𝑚𝑖𝑛 (𝑥𝑖𝑟𝑗, 𝑥𝑖𝑟𝑝, 𝑥𝑢𝑣𝑝 , 𝑥𝑢𝑣𝑗) 

                        If 𝐻𝑖𝑟𝑗 < variable_cost change (check 1) THEN 

                             (consolidation step1) 

                             𝑥𝑖𝑟𝑗 =  𝑥𝑖𝑟𝑗 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                             𝑥𝑢𝑣𝑝 =  𝑥𝑢𝑣𝑝 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                            

                             𝑥𝑖𝑟𝑝 =  𝑥𝑖𝑟𝑝 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

                             𝑥𝑢𝑣𝑗 =  𝑥𝑢𝑣𝑗 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

(Repeat check1 for fixed costs positions 𝐻𝑖𝑟𝑝, 𝐻𝑢𝑣𝑝 and 𝐻𝑢𝑣𝑗   and  apply   

the pattern of consolidation step1 if true) 

 

                         ELSE  If  𝐻𝑖𝑟𝑗 > variable_cost change  (check 2)THEN 

                                 (consolidation step2) 

                              𝑥𝑖𝑟𝑝 =  𝑥𝑖𝑟𝑝 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                              𝑥𝑢𝑣𝑗 =  𝑥𝑢𝑣𝑗 − 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐                              

                              𝑥𝑖𝑟𝑗 =  𝑥𝑖𝑟𝑗 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐  

                              𝑥𝑢 𝑣𝑝 =  𝑥𝑢 𝑣𝑝 + 𝑚𝑖𝑛 _𝑎𝑙𝑙𝑜𝑐         

(Repeat check2 for fixed cost positions  𝐻𝑖𝑟𝑝, 𝐻𝑢𝑣𝑝 and 𝐻𝑢𝑣𝑗     And apply  

the pattern  of consolidation step2 if true) 

 

  Else   (no improvement for cost position  𝑖𝑟𝑗) 

 

 

Figure 5-6 Improvement heuristic (modified stepping stone procedure). 
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Figure 5-7 Selection of variables for load consolidation 

 

5.3.3   Generation of new population 

The generation of new chromosomes is discussed in this section. An emphasis is put on the 

best fit solution over the weak solutions during the crossover and mutation operations as also 

indicated by  Jawahar and Balaji (2009) and Balaji et al. (2019) in their solution. As 

described in section 5.3.2 the generation of the initial population utilizes random search in 

generating a combination of facilities such that ∑ 𝑆𝑖 𝑦𝑖
𝑚
𝑖=1  ≥ ∑ 𝐷𝑗  𝑛

𝑗=1 . The random search is 

implemented for the binary facility location term in this chapter and stored in matrix of 

dimension (𝑚 ×  𝑝) as shown in Figure 5-4 above. 

Inputs for new population 

The new population generation function takes as input the following 

a) The parent matrix (𝑚 ×  𝑝) generated in section 5.3.2 above. 

b) A vector of sort index of chromosomes (𝑚 ×  𝑝)   in increasing order of cost for each 

chromosome (dimension𝑝). 

c) The crossover rate (𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒) 

d) The mutation rate (𝑚𝑢𝑡 𝑟𝑎𝑡𝑒) 

e) The source and demand capacities corresponding to the matrix (𝑚 ×  𝑝). 

Genetic operations procedure 

The matrix of the old facilities opened (parent) contains 𝑝 chromosomes, each chromosome 

being a set of binary values indicating which supply points were opened or closed. This 

matrix was crossed over and mutated to create a new population on which the allocation and 

improvement heuristics were applied. This cycle was repeated until the numbers of 

generations (𝑔) were completed.  
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This procedure is described below. 

1. Determine the number of chromosome of the old population to keep from the 

crossover rate (𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒). 

2. Populate the discarded chromosomes to build up a matrix of a new population of size 

(𝑚 ×  𝑝) using the procedure below. 

a. Copy the retained chromosomes into the relevant positions in the new 

population matrix, keeping the least cost chromosome in position 1. 

b. Use rank based roulette wheel selection ( as shown in Figure 5-8 below) to 

select the two mating chromosomes among the retained chromosomes. The 

rank-based roulette wheel selects two chromosomes to be used for crossover 

from the chromosomes retained from the population. It receives as input a 

population of chromosomes ranked based on fitness function from the best 

ranked in the first position to the worst ranked in the last position. 

c. Randomly generate the crossover point for the mating chromosomes as 

described in Figure 5-9 below. 

d. Perform crossover (Figure 5-9 below) and store the two new offsprings in the 

next two positions in the new population matrix. 

e. Repeat step (d ) until the new population matrix is fully constructed 

3. Use the mutation rate to determine the number of genes to mutate by flipping the 

binary value (0 𝑡𝑜 1 𝑜𝑟 1 𝑡𝑜 0). This is described in mutation section below. 

4. Randomly generate the two index positions to mutate in the new matrix  and flip the 

gene in the location while preserving the least cost gene in position 1 unchanged 

5. For every chromosome in position 2 till the last, check for feasibility illustrated 

below) 

a. If a chromosome is not feasible, randomly locate a position that is closed and 

open until the chromosome has a number of opened sites that is feasible for 

demand allocation 

6. Once a new allocation matrix is complete, pass matrix to the greedy algorithm to 

allocate demand and consolidate the allocation using the modified stepping stone 

algorithm 

7. Repeat all steps until the number of generation is complete. 
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Rank-based roulette selection 

rank = ranking of chromosome in the population 

𝑝 = population size 

cumProb = sum of probability up until the current member of the population, initialised to 

zero 

sumRank = sum of the rank of all members initialised to zero 

chrom 1 =   First chromosome selected for crossover 

chrome 2 =  Second chromosome selected for crossover 

 

for all members of the population, 

    sumRank = sumRank  + rank of chromosome 

end for 

 

for all members of population, 

    cumProb = cumProb + ((𝑝 – rank + 1) / sumRank)     

end for 

 

Generate the mating chromosomes       

number = random between 0 and 1 

start from the first member of the population 

while number =< cumProb  

then chrom 1 =  current chromosome 

go to the next member         

end while  

Repeat for chrom 2 what was done for chrom 1 

 

Return chrom 1 and chrom 2 

 

Figure 5-8 Rank based roulette selection 

 

Crossover operation 

Given length of chromosome = chromLength , 

crossover point = random integer between 1 and chromLength = crossPoint  

For the first chromosome (chrom 1) in the pair, copy gene from the second chromosome 

starting from crossPoint to the end and put into the same position in the first chromosome and 

assign to offspring 1. 

For the second chromosome (chrom 2) in the pair, copy gene from the first chromosome 

starting from position 1 to position crossPoint and put into the same position in the second 

chromosome and assign to offspring 2. 

Return offsprings 1 and offspring 2 
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Mutation operation 

𝑝 = number of a row of the matrix, equal to the population size. 

numSource = number of genes in a chromosome, total equal to the number of sources (𝑚). 

mutPercent = percentage of matrix genes to mutate. 

mutNum =  numbers of genes to mutate = (𝑝) × (numSource) × mutPercent 

number 1 = Generate a random number between 1 and  numSource. 

number 2 = Generate a random number between 2 and  𝑝. 

for 1 till mutNum 

flip the gene in position (number 1, number 2) of the matrix 

endfor 

Check for feasibility 

This section checks every chromosome representing a combination of opened sites out of all 

possible sources to ensure feasibility. It accepts as inputs the vector of demand at each 

destination, vector of supply capacity at each source and the matrix of opened sites. 

sumDem = sum of all destination demands (from demand vector). 

sumOpenedCap = sum of capacities of all opened sites, based on a chromosome. 

numSource = number of source sites available, equal to the number of columns of the matrix 

and also equal to the length of a chromosome(𝑚). 

population size (𝑝) = equal to the number of rows of the matrix. 

for all chromosomes (rows) 

 while sumproduct(current chromosome vector and source capacity vector) < sumDem 

  randomly flip one of the zeros to 1 

 end while 

end for 

A summary of the working procedure of the HGA is illustrated in Figure 5-9 below 
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5.4   Computation Study 

The computational study was done in two stages. The first stage is preliminary 

experimentation while the second is the main experimentation. The preliminary 

experimentation was performed to obtain necessary parameters to effectively implement the 

HGA. In addition, it was done to identify the most influential parameters of the HGA by 

observing the relative effectiveness. The parameters such as the population size (𝑝), number 
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Figure 5-9 Hybrid Genetic Algorithm flow chat 
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of generations (𝑔), crossover rate (𝑐𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑒) and mutation rate (𝑚𝑢𝑡 𝑟𝑎𝑡𝑒) implemented, 

have been shown in the literature to affect the convergence of a GA solution. Studies in the 

literature have shown that important parameter settings for a GA to be based on tuning the 

population size and number of generations such as in Ho and Ji (2005), Fernandes et al. 

(2014) and Guo et al. (2017). In the main experimentation, the quality of solutions of the 

HGA and CPLEX will be assessed. This is based on measures of performance described in 

section 5.5. 

5.4.1   Preliminary experimentation  

In this section the population size, number of generation, crossover rate and mutation rate are 

varied. The problem sizes have been stated in the order of (𝑚 × 𝑛 × 𝑎). Where 𝑚 = number 

of sources (or locations), 𝑛 = number of destinations or demand points and 𝑎 = number of 

transport sources or conveyances. In conducting parameter tunings for the HGA, two problem 

sizes (7×10×2   and   15×30×2 )  which represent a sample of small to medium-sized 

problems comprising the test data were selected. Population sizes considered for the smaller 

problem were smaller than the medium-sized problem to account for the uniqueness of the 

solution required to populate each population size.  In both instances, initial crossover and 

mutation rates were randomly selected and kept constant while the population size and 

number of generations were varied in increasing order. The population size and the number 

of generations that showed a quick convergence were retained. Similarly, the best performing 

population size and number of generations were kept constant while the crossover rate and 

mutation rate were progressively varied. Tables 5-1 and 5-2  below show the parameter 

variations and convergence of the test problem size (7×10×2).  The values of the minimum 

cost obtained (equations 5.1) for the first and last iterations are recorded as MinCost (first) 

and MinCost (last) respectively.  

 

Table 5-1  First test result for problem size (7×10×2) 

 Problem 

Specification 

       𝒑 𝒈 MinCost 

first  

MinCost 

Last  

7X10X2                                 

𝒄𝒓𝒐𝒔𝒔 𝒓𝒂𝒕𝒆 = 

0.5   

𝒎𝒖𝒕 𝒓𝒂𝒕𝒆 = 0.1 

10 8 27689 27058 

20 20 27006 27006 

30 50 27006 27006 

 

Table 5-2 Second Test results for problem Size (7×10×2) 

 Problem 

Specification 

𝒄𝒓𝒐𝒔𝒔 𝒓𝒂𝒕𝒆 𝒎𝒖𝒕 𝒓𝒂𝒕𝒆 MinCost 

First  

MinCost 

Last  

7X10X2                                 

𝒑 = 30                           

𝒈 = 50 

0.7 0.3 28059 27006 

0.3 0.3 27342 27006 

0.3 0.1 27024 27006 
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Table 5-3 and 5-4 below show the parameter variations and convergence of the test problem 

size (15×30×2).    

Table 5-3 First Test results for problem Size (15×30×2) 

 Problem 

Specification 

𝒑 𝒈 MinCost 

First  

MinCost 

Last  

15X30X2                                 

Cross rate = 0.5  

Muta rate = 0.1 

20 8 77240 71408 

50 50 75100 70927 

50 100 73084 70927 

 

Table 5-4 Second Test results for problem Size (15×30×2) 

 Problem 

Specification 

𝒄𝒓𝒐𝒔𝒔 𝒓𝒂𝒕𝒆 𝒎𝒖𝒕  𝒓𝒂𝒕𝒆 MinCost 

First  

MinCost 

Last   

15X30X2                                 

𝒑 = 50                           

𝒈 = 100 

0.7 0.3 73915 70927 

0.3 0.3 75150 70927 

0.3 0.1 75085 70927 

 

Results obtained indicate that the parameter combinations all converged to the same 

minimum cost except in the case of 𝑝 =10 and  𝑔 =8 in Table 5.1.  However, some parameter 

combinations obtained lower minimum cost from the initial generation (iteration). This 

possibly could indicate a quick convergence when using such parameter combinations for the 

HGA. For the test problem size (7×10×2), the results in Table 5.1 and 5.2 showed that the 

population size (30), number of generations (50), crossover rate  (0.3) and mutation rate (0.1)  

converged rather quickly for the minimum cost value compared to other parameters used.  

Results of the problem size (15×30×2) as displayed in Table 5.3 and Table 5.4 showed that 

population size (50), number of generations (100), crossover rate (0.5) and mutation rate (0.1) 

converged more quickly than with other parameters. In summary, the population size and the 

number of generations seemed to be very effective in determining the final minimum cost 

value obtained. 

5.4.2   Data generation for experimentation 

A modification to Sanei et al. (2017) experimental data was used to test the different solution 

methods. Their benchmark data was extended to capture the cost of facility location which 

was not considered in their model.  For the facility location cost, the method of generating 

facility location cost instances from the supply capacities considered in the facility location 

literature as used by  Gadegaard et al. (2017), Fischetti et al. (2016) and Guastaroba and 

Speranza (2014) have been used. In this method, the facility location cost is calculated using 

𝐹𝑖 = 𝑈(0,90) + √𝑆𝑖   𝑈(100,110) . Uniformly distributed data randomly generated as 
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integers in a unit square coordinate U[a, b] were considered for the experiments. The letter 

“a” refers to the lower cost limit and “b” is termed the upper cost limit. 

A total of 45 problems instances across 9 different problem sizes were considered for the 

main experimentation. Problem size number (1) to (4) and (5) to (9) have been termed as 

small and medium-sized problems respectively.  A summary of the problem sizes considered 

and the parameters used for data generation are given in the Tables 5-5 and 5-6 respectively.  

 

Table 5-5 Parameter distribution used for computations 

Problem 

Size No. 

 

Problem 

Size 

𝒎 × 𝒏 × 𝒂 

No of 

instances 

   

1 

2 

3 

4 

5 

6 

7 

8 

9 

5×5×2 

5×8×2 

7×10×2 

8×8×2 

9×10×2 

10×10×2 

10×20×2 

15×30×2 

30×30×2 

5 

5 

5 

5 

5 

5 

5 

5 

5 

 

  

 

Table 5-6 Parameter distribution used for experimentation 

Parameter Distribution  

 

𝑺𝒊     U(200, 400) 

𝑫𝒋    U(50, 100) 

𝑻𝒓     U(800, 1800) 

𝒄𝒊𝒋𝒓   U(20, 150) 

𝑯𝒊𝒋𝒓  U(200, 600) 

𝑭𝒊 =

𝐔(𝟎, 𝟗𝟎) +  √𝑺𝒊 𝑼(𝟏𝟎𝟎, 𝟏𝟏𝟎)   

𝑴𝒊𝒋𝒓 = 𝐦𝐢𝐧(𝑺𝒊, 𝑫𝒋, 𝑻𝒓) 
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5.4.3   Solution methods 

The IBM CPLEX  has been utilized as a solution method in this chapter. IBM CPLEX 

utilizes the conventional branch and cut algorithm and also implements a dynamic search 

algorithm. According to the IBM reference manual (Studio, 2016), the dynamic search 

algorithm basically uses the Branch and Cut algorithm as the optimization technique. It also 

indicates that the dynamic search algorithm consists of LP relaxation, branching, cuts and 

heuristics. At the default settings, CPLEX decides whether to provide a solution using the 

conventional branch and cut or the dynamic search algorithm based on the model formulation 

(Studio, 2016). The default settings of IBM CPLEX 12.8 has been used as a solution method 

to the original problem. This can imply a possible conventional Branch and Cut or dynamic 

search could be used by CPLEX to find a solution. 

The HGA was coded using Matlab 7.4.0.  Based on the results from the preliminary 

experimentation, the HGA was computed with population size (30), number of generations 

(50), crossover rate (0.3) and mutation rate (0.1) for the small problem sizes. The medium 

problem sizes, the HGA was computed with population size (50), number of generations 

(100), crossover rate (0.5) and mutation rate (0.1).  The Solution methods were implemented 

on a Windows 8.1 Laptop with 6GB RAM and a processor speed of 2.5 GHz. 

 

5.5   Experimentation and Discussion of Results 

The performance of each solution method was determined under the following test 

categories. 

a)  Preliminary experimentation to determine the HGA parameters for the main 

experimentation. This was computed in section 5.4.1 above. 

b) Mean of each problem size. This was calculated based on the effectiveness and 

efficiency of each solution method. The mean value was expressed with the notations: 

𝐶𝑃𝐿𝐸𝑋 𝑚𝑒𝑎𝑛 and  𝐻𝐺𝐴 𝑚𝑒𝑎𝑛. 

 

𝐶𝑃𝐿𝐸𝑋 𝑚𝑒𝑎𝑛 =  
∑ 𝐶𝑃𝐿𝐸𝑋  𝑆𝑀𝑖

5
𝑖=1

5
    

𝑜𝑟 

 

𝐻𝐺𝐴 𝑚𝑒𝑎𝑛 =    
∑ 𝐻𝐺𝐴  𝑆𝑀𝑖

5
𝑖=1

5
 

 

𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒 

 

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 =>    𝐶𝑃𝐿𝐸𝑋 𝑚𝑖𝑛𝐶𝑜𝑠𝑡  𝑜𝑟  𝐶𝑃𝐿𝐸𝑋 𝑡𝑖𝑚𝑒 

𝐻𝐺𝐴 𝑆𝑀  =>   𝐻𝐺𝐴 𝑚𝑖𝑛𝐶𝑜𝑠𝑡  𝑜𝑟  𝐻𝐺𝐴 𝑡𝑖𝑚𝑒 
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The mean values give an indication of the problem size effectiveness or efficiency 

c) Instance and mean gap computation. This was also calculated based on the 

effectiveness and efficiency of each solution method. The Instance and mean gap 

computation were computed as percentages respectively. These were expressed with 

the notations % gap i and % gap mean respectively. 

  

% gap i = (
𝐻𝐺𝐴 𝑆𝑀 𝑖 − 𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑖

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑖
) × 100 

 

% gap mean = (
𝐻𝐺𝐴 𝑆𝑀 𝑚𝑒𝑎𝑛 − 𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑚𝑒𝑎𝑛

𝐶𝑃𝐿𝐸𝑋 𝑆𝑀 𝑚𝑒𝑎𝑛
) × 100 

 

𝑖 = Instance number index of each problem size 

 

Other notations are previously indicated in (b) above.  

The term % gap i  or   % gap mean  values obtained can either be zero, positive number or 

negative number. A zero value indicates equivalent performance from both methods. A 

positive value indicates that CPLEX obtained better results. A negative value indicates that 

the HGA obtained better results. Based on the effectiveness measure of performance, CPLEX 

should expectedly obtain better results than the HGA. This is because of the conventional 

Branch and Cut implemented by CPLEX. The Branch and Cut has been noted to be an exact 

algorithm that can generate optimal solutions like Branch and Bound (Wolsey et al., 1998).   

CPLEX uses the branch and cut algorithm. Therefore, it can be expected that the solutions 

provided by CPLEX should be at least as good as that provided by the HGA algorithm. 

However, the use of some other search heuristics to speed up the convergence of CPLEX in 

its dynamic search function can lead to some less superior results than the HGA. This is 

possible because of some nodes that could have been fathomed away, especially in instances 

where there are many nodes at a given search level with close possible final solution in their 

exploration, whose exploration may be considered not to hold so much promise, but can 

significantly increase the time of convergence of the solution. 

The results obtained for each of the problem instances based on the defined measures of 

effectiveness and efficiency are presented in Table 5-7 below. The values obtained for the 

individual cases and the categorical averages are presented next. Result presentation begins 

with the instance observations in Table 5-7 below, followed by the problem size averages in 

Table 5-8 below.  
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Table 5-7 Problem instance effectiveness, efficiency and % gap i 

Problem 

Size 

Instance 

no 

𝑪𝑷𝑳𝑬𝑿  
𝒎𝒊𝒏𝑪𝒐𝒔𝒕 

𝑯𝑮𝑨  
𝒎𝒊𝒏𝑪𝒐𝒔𝒕 

𝑪𝑷𝑳𝑬𝑿  
   𝒕𝒊𝒎𝒆  

𝑯𝑮𝑨  
𝒕𝒊𝒎𝒆 

% 𝐠𝐚𝐩 𝐢  
(Min 

Cost) 

% 𝐠𝐚𝐩 𝐢  
(Time) 

5X5X2 1 18417.92 18417.92 1.14 0.13 0.0% -88% 

  2 18801.22 18534.22 1.12 0.13 -1.4% -88% 

  3 15369.09 21830.55 1.12 0.13 42.0% -89% 

  4 18828.75 23005.75 1.13 0.13 22.2% -89% 

  5 17090.47 16662.33 1.13 0.12 -2.5% -89% 

5X8X2 1 31320.91 31320.91 3.06 0.17 0.0% -94% 

  2 26301.38 30143.11 3.00 0.17 14.6% -94% 

  3 24209.66 31825.38 3.02 0.16 31.5% -95% 

  4 25539.24 25539.24 3.05 0.17 0.0% -94% 

  5 25864.92 25798.92 3.01 0.17 -0.3% -94% 

7X10X2 1 34676.97 34806.92 4.71 0.20 0.4% -96% 

  2 34760.30 33612.17 4.57 0.20 -3.3% -96% 

  3 32667.86 34587.04 4.53 0.23 5.9% -95% 

  4 36182.85 35841.88 4.72 0.20 -0.9% -96% 

  5 31334.72 31214.63 4.54 0.20 -0.4% -96% 

8X8X2 1 26952.66 26902.27 2.96 0.16 -0.2% -95% 

  2 26434.64 25816.64 2.97 0.18 -2.3% -94% 

  3 23830.67 23830.67 2.94 0.18 0.0% -94% 

  4 27032.24 27225.24 2.93 0.16 0.7% -95% 

  5 25864.92 25316.20 2.96 0.17 -2.1% -94% 

9X12X2 1 39844.21 37944.21 6.52 1.09 -4.8% -83% 

  2 35472.49 36024.36 6.61 1.06 1.6% -84% 

  3 39697.67 43278.10 6.88 1.11 9.0% -84% 

  4 41005.10 42701.06 6.70 1.04 4.1% -84% 

  5 40125.84 40749.84 6.53 1.03 1.6% -84% 

10X10X2 1 30471.92 30411.76 4.67 0.89 -0.2% -81% 

  2 28252.39 28252.39 4.82 0.99 0.0% -79% 

  3 35462.65 34160.77 4.63 0.88 -3.7% -81% 

  4 27648.69 27648.69 4.67 0.90 0.0% -81% 

  5 29211.92 29496.92 4.72 0.95 1.0% -80% 

10X20x2 1 64045.09 65361.83 18.00 1.77 2.1% -90% 

  2 57654.61 58505.61 17.40 1.63 1.5% -91% 

  3 62724.33 66508.88 18.19 1.56 6.0% -91% 

  4 63389.91 67396.36 18.12 1.79 6.3% -90% 

  5 68527.51 74904.08 17.90 1.81 9.3% -90% 

15X30X2 1 82136.32 93036.10 54.26 2.62 13.3% -95% 

  2 85684.45 87040.73 56.17 2.56 1.6% -95% 

  3 85515.94 89097.15 55.61 2.59 4.2% -95% 

  4 81937.51 81588.46 55.20 2.71 -0.4% -95% 

  5 83554.61 89640.24 55.46 2.66 7.3% -95% 

30X30X2 1 76649.71 75140.45 59.25 2.83 -2.0% -95% 
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  2 81897.82 82452.20 54.88 2.94 0.7% -95% 

  3 81475.84 81725.59 64.07 2.92 0.3% -95% 

  4 78941.52 79702.55 57.16 2.74 1.0% -95% 

  5 88615.06 89680.65 57.33 2.95 1.2% -95% 

 

The limits of a significant difference in effectiveness performance are defined as about 5% 

based on the popular alpha level applied on many empirical tests. This implies that any 

difference in values between the results posted by CPLEX and HGA that is in this range is 

probably not significant enough. If this approach is followed, it can be seen in Table 5-7 

above that the instances tend to show less significant differences with an increase in problem 

sizes, while more significant differences are observed with the smaller problem sizes. In 

addition, the percentage difference in solution time(% gap i  (Time))  across the problem 

instances indicates that the HGA solution seems much faster than CPLEX. 

 

Table 5-8 Mean effectiveness, mean efficiency and % 𝐠𝐚𝐩 𝐦𝐞𝐚𝐧 

Problem 

Size 

𝑪𝑷𝑳𝑬𝑿 𝒎𝒆𝒂𝒏 

  (Min Cost) 

𝑯𝑮𝑨 𝒎𝒆𝒂𝒏 

 (Min 

Cost) 

𝑪𝑷𝑳𝑬𝑿 𝒎𝒆𝒂𝒏 

 (Min Cost) 

𝑯𝑮𝑨 𝒎𝒆𝒂𝒏 

  (Time) 

% 𝐠𝐚𝐩 𝐦𝐞𝐚𝐧 

 (Min Cost) 

% 𝐠𝐚𝐩 𝐦𝐞𝐚𝐧 

 (Time) 

5X5X2 17701.49 19690.16 1.13 0.13 11.2% -89% 

5X8X2 26647.22 28925.51 3.03 0.17 8.5% -95% 

7X10X2 33924.54 34012.53 4.61 0.21 0.3% -96% 

8X8X2 26023.03 25818.20 2.96 0.17 -0.8% -94% 

9X12X2 39229.06 40139.52 6.65 1.07 2.3% -84% 

10X10X2 30209.51 29994.11 4.70 0.92 -0.7% -80% 

10X20x2 63268.29 66535.35 17.92 1.71 5.2% -90% 

15X30X2 83765.77 88080.54 55.34 2.63 5.2% -95% 

30X30X2 81515.99 81740.29 58.54 2.88 0.3% -95% 

 

The group results as shown in Table 5-8 above also indicate that there seems not to be any 

significant difference in effectiveness as the problem size increases while efficiency seems to 

favour HGA. Figure 5-10 shows a plot of the solution time of the HGA and CPLEX as the 

problem size increases. The increase in solution time trend indicates the possibility of the 

HGA obtaining solutions faster than CPLEX when interpreted as probably being equivalent 

as stated earlier. 
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Figure 5-10   Computation time between CPLEX and HGA per problem size 

 

In Figure 5-11 below a representation of the number of times, each solution method obtained 

comparable results for each problem size is shown. By comparable results, it is implied that 

the results obtained by HGA are within a neighbourhood of between (0% and -5%) of 

CPLEX values. In Figure 5-11, a representation of the results of CPLEX that were 

significantly better than HGA is presented. By being significantly better we imply the 

computations  % gap i  (Min Cost) greater than 5%.  These analyses were done for the 

minimum cost computation (effectiveness). 

 

 

Figure 5-11 Number of Instances CPLEX obtained comparable and significantly better 

results than HGA 
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A summary of the results presented showed that CPLEX seems able to obtain better results 

than the HGA most of the times. Nonetheless, CPLEX could become computationally 

intensive as problem size increases and may return good values in an exponential time when 

larger sized problems are considered. Therefore, the HGA which may not guarantee the best 

solutions most of the times but converges faster with good performances for many problem 

instances can be of significant value for solving the FCSLTP.  

 

5.6   Conclusion and Future Direction 

An optimization problem that integrates facility location and the fixed charge solid 

transportation problem was considered in this chapter. This problem was termed Fixed 

Charge Solid Location and Transportation problem (FCSLTP). In order to solve this problem, 

solutions from CPLEX commercial solver and the hybrid genetic algorithm (HGA) were 

considered. The HGA utilizes the Genetic Algorithm framework to generate a population of 

feasible facility locations, while a greedy heuristic which uses cost relaxations implements 

the load allocation. After the allocations are done, an improvement heuristic is used to further 

search the solution space for better results.  Some measures of performance such as mean, 

percentage instance and mean gap were used to assess the HGA and the CPLEX solutions. 

The solution time and mean solution time were also used to assess both solution methods.  

The HGA demonstrated competitive performance in obtaining solutions within the 

neighbourhood of CPLEX values based on the effectiveness measure. In addition, the 

solution time of the HGA seems much faster than CPLEX through all the problem sizes 

considered, and this even more so as the problem size increases. However, overall 

effectiveness results indicate that CPLEX can obtain results comparable to and sometimes 

much significantly better than HGA. This, however, could be computationally intensive for 

CPLEX as problem size increases. 

Possible extensions to the HGA include using a modified stepping stone that can search the 

non-basic positions of the load allocations.  Furthermore, the GA or other metaheuristics 

could also be used to perturb the load allocations in search of better results. The reduced 

computation time of the HGA makes it suitable as a hybrid heuristic to other solution 

methods to obtain better results. 
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Chapter 6 

  

General Conclusion  
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6.1   Research Summary in Perspective 

The development of models and solutions for problems which integrate facility location into 

some variants of the basic transportation problem was the primary objective of this thesis. 

The integrated model can be segmented into the transportation and facility location sections. 

The transportation sections comprised variants of the basic transportation problem such as the 

step-fixed charge transportation problem and the fixed charge solid transportation problem. 

The facility location section considered the capacitated facility location model. Two 

categories of integrated models were essentially developed in this thesis. 

 The first category of the integrated model was aimed at solving the step-fixed charge 

location and transportation problem. Two solutions were developed to tackle this 

problem. The first solution proposed was a hands-on and low-cost heuristic that 

primarily improves on the initial solution obtained using the lower cost envelope         

(linearization) principle for approximating piecewise linear models. The second 

solution heuristic was also based on the same linearization principle with an emphasis 

on deriving a reduced number of transportation problems to obtain the final solution. 

The second solution, however, presented comparative studies with regard to 

effectiveness (optimal solution) to solutions obtainable from standard solvers such as 

CPLEX. 

 

 In the second category of the integrated model developed, the fixed charge solid 

location and transportation problem was formulated. This problem was solved using 

the CPLEX optimization suite. Two other alternative solutions usable by personnel 

possibly not having access to standard solvers such as CPLEX due to reasons such as 

cost were presented.  These solutions are the Lagrange Relaxation Heuristic (LRH) 

and Hybrid Genetic Algorithm (HGA).  

The Lagrange relaxation heuristic was presented with a numerical example to 

demonstrate the workings of the heuristic. The different iteration steps and the effect 

of using different initial Lagrange multipliers in achieving lower and upper bounds 

were discussed. The numerical example showed that depending on the upper-bound 

heuristic integrated into the sub-gradient algorithm, the possibility of generating 

solutions comparable to CPLEX using a Lagrange relaxation heuristic was achievable. 

Comparative studies were performed using an extended version of the earlier 

Lagrange heuristic and CPLEX. The CPLEX outperformed the Lagrange relaxation 

heuristic in the upper bound and lower bound generation through the problem sizes 

considered. The FCSLTP and an equivalent FCSLTP termed FCSTP-EQ (defined in 

Chapter 4) was also compared based on total cost or optimality gap. The FCSLTP 

formulation consistently produced better results than FCSTP-EQ. Solving the 

FCSLTP using CPLEX showed a time complexity for large problem sizes. The 

FCSTP was experimentally shown to be a starting solution to efficiently arrive at 

good solutions to the FCSLTP for large problem sizes. 
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The Hybrid Genetic Algorithm (HGA) solution technique integrates heuristics into the 

genetic algorithm framework to search the solution space. Feasible locations were 

determined using genetic operations. Allocations and consolidations were done using 

a greedy heuristic and an improvement heuristic. Comparative studies were also done 

to compare the performance of the hybrid solution to solutions obtainable by CPLEX, 

a commercial optimization solver. The HGA demonstrated competitive performance 

in obtaining solutions within the neighbourhood of CPLEX values based on the 

effectiveness measure. In addition, the solution time of the HGA seemed much faster 

than CPLEX through all the problem sizes considered, and this even more so as the 

problem size increased. 

 

6.2   Major Contribution 

The main contributions of the models and solutions developed in the thesis are both to 

advance knowledge in the facility location literature and for direct application by operational 

personnel involved logistic planning. These contributions are sectioned based on the category 

of the models developed and the respective solutions proposed. 

Based on the first category of integrated model: 

 A hands-on and low-cost improvement technique usable by logistic operational 

planners to assist in the planning of the location of facilities in environments where 

more than one fixed costs are present along the transportation routes is proposed.  

 

 Secondly, a linearization approach and an improvement technique that reduces the 

feasible solution space and obtained competitive results in terms of effectiveness 

(objective value) with solutions obtainable by standard solvers such as CPLEX is 

proposed. 

Based on the second category of integrated model: 

 The Fixed Charge Solid Location and Transportation problem is formulated. The 

classical Lagrange relaxation heuristic framework is newly applied as an alternative 

solution to the problem. With improved upper bound generating heuristics, the 

possibility of having the Lagrange providing a competitive solution with CPLEX is 

demonstrated. 

 

 A Hybrid Genetic Algorithm (HGA) is newly applied to solve the facility location and 

fixed charge solid transportation problem. Results obtained suggests that the 

performance of HGA is competitive with that obtainable from a commercial solver 

such as CPLEX. 
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6.3   Future directions and Perspectives 

 

The development of integrated combinatorial problems and the application of both classical 

and modern heuristics to solve such problems have been considered in this thesis.  The 

models developed can be extended to a hierarchical type consisting of two or more stages 

(echelons). In addition to the optimization decisions considered in this research work, 

inventory and routing decisions are possible areas that could be integrated into the developed 

models.  

 

In order to solve the step-fixed charge facility location and transportation problem, new initial 

solutions which neither uses the linearization nor improvement techniques discussed in this 

research work could be investigated. Furthermore, computation studies with different ranges 

of data can be conducted to further gain insight into the performance of the heuristics that 

competed effectively with CPLEX. In addition, metaheuristics which have the power of 

lifting solutions out of local optima solutions usually associated with classical heuristics 

could be applied to further search the solution space.  

 

On the fixed charge solid location and transportation problem, extending the Lagrange 

relaxation heuristics into a hybrid solution technique could be studied. Metaheuristics could 

also be integrated to the Lagrange relaxation to search for better upper bounds. Furthermore, 

the hybrid genetic algorithm developed can also be integrated into another evolutionary 

algorithm that can further ensure diversification in the solution search space. 
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