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Abstract

This study examines the very short, short, medium and long-term forecasting ability of dif-

ferent univariate GARCH models of United Kingdom (UK)’s interest rate volatility, using a

long span monthly data from May 1836 to June 2018. The main results show the relevance

of considering alternative error distributions to the normal distribution when estimating

GARCH-type models. Thus, we obtain that the Asymmetric Power ARCH (A-PARCH)

models with skew generalized error distribution are the most accurate models when forecast-

ing UK interest rates, while for the short, medium and long-term term forecasting horizons

(h=3 and h=6, h=12), GARCH models with generalized error distribution for the error term

are the most accurate models in forecasting UK’s interest rates.

Keywords: interest rates; volatility; GARCH models; forecasting; error distributions

JEL: C22; C53; G17.

1. Introduction

While UK interest rates were very stable during the 19th century and until World War I,

the evolution of interest rates in the twentieth century showed periods of large increases and

decreases, that is, periods of high volatility. For example, interest rates reached their highest

level (17%) in 1979, after a decision of the conservative government to combat inflation after

the oil price shock, and it also increased to 15% at the beginning of the 1990s to keep the value

of the pound fixed in the European Exchange Rate Mechanism. These increases in interest

rates were followed by the recessions occurred in UK in 1980/81 and 1991/92. On the other

hand, in the context of the financial crisis, interest rates fell to their lowest levels in 300 years,
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reaching a level of 0.25% in 2016. Interest rates are not only a key tool of monetary policy,

but they have also important implications on many economic variables, such as investment

rate, economic growth, stock returns, or exchange rates, among others (Bernanke, 1983).

Furthermore, interest rate volatility can be taken as an indicator of uncertainty and risk,

and it is fundamental to price securities, which justifies the numerous attempts to model

and forecast interest rates and their volatility. In this context, modelling and forecasting the

interest rate volatility will be important from a monetary policy view (Walsh, 1984; Chadha

and Nolan, 2001; Bartolini et al., 2002) and also for portfolio diversification (Barnhill and

Maxwell, 2002), for risk managers and for hedging strategies (Carcano and Foresi, 1997;

Chan et al., 2001).

An extensive number of papers on modelling interest rate volatility can be found in

the literature. As it happens with most of the financial series, modelling interest rates re-

quires to take into account the following characteristics usually observed in these variables,

such as volatility clustering, excess kurtosis, asymmetric effects, non-linearities, time varying

volatility and volatility clustering, long-memory or leverage effect (Franses and Dijk, 2000;

Zumbach, 2013). In a seminal paper by Chan et al. (1992), for example, the authors assume

that UK interest rate volatility is sensitive to interest rate levels -level effect-, while Brenner

et al. (1996) and Koedijk et al. (1997) propose a model for the interest rate volatility that

takes into account not only the level effect in Chan et al. (1992) but also the conditional

heteroscedasticity effect of the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) type models (Engle, 1982; Bollerslev, 1986), which explains the extensive use of

these models to model interest rates (Longstaff and Schwartz, 1992). However, as conven-

tional GARCH type models cannot account for asymmetries, new models such as Exponen-

tial GARCH (EGARCH) models (Nelson, 1991) or Asymmetric Power ARCH (APARCH)

models (Ding et al., 1993) or GJR-GARCH models were introduced to model and forecast

interest rates (Bali, 2000). Allowing for asymmetric volatility in these types of models im-

plies that positive interest rate shocks increase volatility more than negative interest rate

shocks. Furthermore, since the distribution of the innovations in these models is far from a

normal (Drost and Klaasen, 1997), and usually unknown, semiparametric techniques can be

used to model financial variables. Hou and Suardi (2011), for example, use a semiparametric

smoothing technique to the GARCH model of short rate volatility to forecast US short-term

interest rate volatility and obtain that this approach produces more accurate estimates of

interest rate volatility than other parametric models. Tian and Hamori (2015) model the

short-term interest rate in the euro-yen market using the Realized GARCH (RGARCH)

model in order to capture the volatility clustering and the mean reversion effects of interest

rate behaviour, and find that this model outperforms conventional GARCH-type models.
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As such, the objective of the paper is to examine the short and long-term forecasting

ability of UK interest volatility of different univariate Generalized Autoregressive Conditional

Heteroscedasticiy (GARCH) models, using monthly data from May 1836 to June 2018. The

contributions of the paper are the following. First, we analyse the forecasting accuracy of a

wide number of GARCH models in order to take into account the time series characteristics of

interest rates and their volatility. When using GARCH models, we try to capture the heavy

tailed and asymmetric behaviour using alternative error term distributions, such as Normal,

Students t, Generalized Error Distribution (GED), Skew Normal (SN), Skew Students (SSt),

Skew Generalized Error Distribution (SGED), Inverse Gaussian (IG), Generalized Hyperbolic

(GH) and Johnsons SU Distribution (JSU). Furthermore, the ARMA-Generalized Additive

Semiparametric GARCH by Hou and Suardi (2011) and the Mixture Autoregressive Model

by Wong and Li (2000) are also used to forecast UK interest rates. Finally, the analysis

covers the time period from January 1833 to April 2018, a long period of time in which

interest rates have shown a very heterogeneous behaviour, with stable interest rates at the

beginning of the sample period and with more volatile interest rates from the second half of

the 20th century to the end of the sample.

The remainder of this paper is organised as follows. Section 2 describes the different

models that will be used to forecast UK interest rate volatility. Section 3 presents and

discusses the empirical results. Finally, Section 4 summarizes and concludes this study.

2. Model Description

2.1. Univariate GARCH Models

GARCH: The standard GARCH model formulates the conditional variance of a stochas-

tic process {εt} as follows (Bollerslev, 1986):

εt = σtZt, (1)

σ2
t = V ar(εt|F t−1) = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i,

where E(εt|F t−1) = 0 and F t−1 is the σ-field containing all the information available at

time t. Zt is a white noise, independent of F t−1 for all t with mean zero and variance

1. Bollerslev (1986) considers the conditional distribution of εt|F t−1 to be normal, however

other distributions could be applied. In GARCH formulation, the {εt} process has zero mean.

In the case that process has time variant conditional mean, one may use an ARMA process to

remove the conditional mean, and then apply the GARCH to model the conditional variance.

In this case the model is called ARMA-GARCH and is formulated as follows:

yt − φ0 − (
r∑
i=1

φiyt−i)− (
m∑
i=1

θiεt−i) = εt = σtZt,
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V ar(εt|F t−1) = σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i.

A-PARCH: The general structure of Asymmetric Power ARCH (A-PARCH) model is

as follows (Ding et al., 1993):

εt = σtZt,

σδt = α0 +

q∑
i=1

αi (|εt−i| − γiεt−i)δ +

p∑
i=1

βiσ
δ
t−i,

where Zt is a white noise, independent of F t−1 for all t with mean zero and variance 1,

α0 > 0, αi, δ, βi ≥ 0 and −1 < γi < 1. The model imposes a Box-Cox power transformation

and the asymmetric absolute residuals to handle the asymmetric behavior and Taylor effect1.

CGARCH: The Component GARCH (CGARCH) model (Engle and Lee, 1999) decom-

pose the conditional variance to transitory and permanent components:

εt = σtZt,

σ2
t = V ar(εt|F t−1) = ct +

q∑
i=1

αi
(
ε2t−i − ct−i

)
+

p∑
i=1

βi
(
σ2
t−i − ct−i

)
,

ct = α0 + ρct−1 + γ(ε2t−1 − σ2
t−1),

where Zt is a white noise, independent of F t−1 for all t with mean zero and variance 1

and ct is the permanent component. Using both permanent and transitory components, the

CGARCH model has the ability to explain long term and short term movements in volatility.

EGARCH: The Exponential GARCH (EGARCH) model of Nelson (1991) is defined as

follows:

εt = σtZt,

ln(σ2
t ) = ln (V ar(εt|F t−1)) = α0 +

q∑
i=1

(
αizt−i + γi

(
|zt−i| − E (|Zt−i|)

))
+

p∑
i=1

βi ln
(
σ2
t−i
)
,

where Zt is a white noise, independent of F t−1 for all t with mean zero and variance 1 and

E (|Zt|) is the conditional expectation with respect to density function f(z):

E (|Zt|) =

∫ ∞
−∞
|z|f(z)dz.

1 Taylor (1986) showed in some financial time series, the sample autocorrelation of absolute returns was

larger than that of squared returns.
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The EGARCH model captures the asymmetric behavior in time series trough the term

g(zt−i) = αizt−i + γi

(
|zt−i| − E (|Zt−i|)

)
. The ARCH effect term, g(zt) is linear in zt with

slop α + γ for zt > 0 and α− γ for zt < 0 (Nelson, 1991).

GJR-GARCH: Golsten et al. (1993) used an indicator function to explain the positive

and negative shocks effect on volatility. Assuming the process has zero conditional mean,

the Golsten, Jagannathan, Runkle GARCH (GJR-GARCH) model is formulated as follows:

εt = σtZt,

σ2
t = α0 +

q∑
i=1

(
αiε

2
t−i − γiIt−iε2t−i

)
+

p∑
i=1

βiσ
2
t−i,

where Zt is a white noise, independent of F t−1 for all t with mean zero and variance 1 and

the indicator function It takes on values 1 for positive values of εt and zero otherwise.

TGARCH: The Threshold GARCH (TGARCH) process is given by (Zakoian, 1994):

εt = σtZt,

σt = (V ar(εt|F t−1))
1/2 = α0 +

q∑
i=1

(
α+
i ε

+
t−i − α−i ε−t−i

)
+

p∑
i=1

βiσt−i,

where Zt is a white noise, independent of F t−1 for all t with mean zero and variance 1,

ε+t = max(εt, 0), ε−t = min(εt, 0) and α+
i , α−i and βi are real scalars. The TGARCH model

uses different sets of coefficient to explain the rise and fall of the process. Using this feature,

the TGARCH process has the ability to explain asymmetric behavior in financial time series.

2.2. Error Distributions in Univariate GARCH Models

As mentioned before, the common choice for error term distributions in variation of

GARCH models are Normal and Student’s t distributions. However, there are other choices

which have the ability to capture the heavy tailed and asymmetric behavior in standardized

residuals. The error distributions considered in this paper (provided by rugarch package)

are Normal, Student’s t, Generalized Error Distribution (GED), Skew Normal (SN), Skew

Student’s t (SSt), Skew Generalized Error Distribution (SGED), Inverse Gaussian (IG),

Generalized Hyperbolic (GH) and Johnson’s SU Distribution (JSU).

2.3. ARMA - Generalized Additive Semiparametric GARCH

The ARMA Generalized Additive Semiparametric GARCH (ARMA-GASGARCH) mod-

els the conditional mean and variance of a stochastic process as follows:

yt − φ0 − (
r∑
i=1

φiyt−i)− (
m∑
i=1

θiεt−i) = εt = σtZt,

V ar(εt|F t−1) = σ2
t = f1(εt−1) + f2(σ

2
t−1) + f3(yt−1).
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where Zt is white noise, independent of F t−1 for all t with mean zero and variance 1 and

fi(.), (i = 1, 2, 3) are nonlinear univariate functions. The GASGARCH process given by Hou

and Suardi (2011) considers the conditional mean to be fixed over the time and applies the

nonparametric GARCH (Bühlmann and McNeil, 2002) model to estimate the nonlinear func-

tions. In this paper, the same idea is developed to the models with ARMA conditional mean

(which is the parametric component of the model). Following the Bühlmann and McNeil

(2002) and Hou and Suardi (2011), an ARMA model is applied for to model the conditional

mean and a nonlinear additive model is applied to build the conditional variance model. The

nonlinear functions fi(.) are estimated using local linear kernel estimation (the bandwidth

selection is carried out based on Li and Racine, 2004). Assuming, Zt(t = 1, . . . , n) are iid

random variables, one may use a kernel density estimation to estimate the innovations’ distri-

bution function. In this paper, nonparametric estimation are given based on Epanechnikov

kernel function.

2.4. Mixture Autoregressive Model

The Mixture Autoregressive model (MAR) of Wong and Li (2000) formulates the condi-

tional distribution of stochastic process {yt} as follows:

F (yt|F t−1) =
K∑
k=1

αkΦ

(
yt − φk0 −

∑pk
i=1 φkiyt−i

σk

)
, (2)

where F (yt|F t−1) is the conditional distribution function of the yt given past information,

Φ denotes the Standardized Normal cumulative distribution function and F t−1 is the σ-field

representing all available information trough time t. The mixing weights α1, . . . , αK satisfies

following conditions:

αk > 0, k = 1, . . . , K,
K∑
k=1

αk = 1.

The formulation of MAR is a mixture of AR components with constant conditional vari-

ances. However, the MAR model as the flexibility to model time variant conditional variance

as well as multi modal, heavy tail, asymmetry and changes in the shape of forecasting dis-

tribution. Based on conditional distribution (2), the conditional mean and variance of the

model can be formulated as:

E(yt|F t−1) =
K∑
k=1

αk

(
φk0 +

pk∑
i=1

φkiyt−i

)
=

K∑
k=1

αkµk,t ,

V ar(yt|F t−1) =
K∑
k=1

αkσ
2
k +

K∑
k=1

αkµ
2
k,t −

(
K∑
k=1

αkµk,t

)2

.
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2.5. Forecasting Evaluation

Suppose σ̂t+h is the h step ahead volatility forecast and the εt+h is the residual of the

conditional mean model at time t:

εt+h = yt+h − E(yt+h|F t),

σ̂t+h =

√
V̂ ar(yt+h|F t)

The root mean square error, RMSE, measures the accuracy of the forecast:

RMSE =

(
1

n

n∑
t=1

ηt+h

) 1
2

,

where ηt+h is the h step ahead square error of volatility forecasting:

ηt+h = (|εt+h| − σ̂t+h)2

In order to compare the accuracy of forecasting models, one may use the Kolmogorov-

Smirnov Predictive Accuracy, KSPA, test. The two sided KSPA tests the following hypoth-

esis (Hassani and Silva, 2015): H0 : F
η
(1)
i+h

(z) = F
η
(2)
i+h

(z)

H1 : F
η
(1)
i+h

(z) 6= F
η
(2)
i+h

(z)
,

where F
η
(k)
i+h

(.) is the distribution function of square error corresponding to kth forecasting

model. The rejection of the null hypothesis concludes that two models doesn’t share the

same forecasting accuracy.

2.6. Tests for Asymmetry in Volatility

The asymmetry in volatility is the situation in which, when underlying signal is going up

and down, its volatility is different. One common statistical test for asymmetric volatility,

is the Engle-Ng test (?).

Suppose εt is a zero mean stochastic process in (1) and S−t is a dummy variable which

takes value of 1 if the εt is negative and zero otherwise. The Sign-Bias test, is defined as the

t-ratio for the coefficient b in the following regression:

Z2
t = a+ bS−t + εt

where Zt is standardized residual, i.e. Zt = εt/σt. The Sign-Bias test only takes the sign of

the signal into account and tests if the volatility is different in positive and negative signals.

The Size-Sign-Bias test, however, tests the effect of the size of the signal on volatility, as well
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as its sign. The Size-Sign-Bias test is defined as the t-ratio for coefficients b2 and b3 of the

following regression:

Z2
t = a+ b1S

−
t + b2S

−
t ε

2 + b3S
+
t ε

2 + εt,

where S+
t = 1− S+

t .

Whilst the Engle-Ng’s size and sign bias test is common for testing asymmetry in volatil-

ity, its results depends on the volatility model used to calculate the σt and Zt. In addition to

Engle-Ng’s, we used two sample Kolmogorov-Smirnov (K-S) test to compare the volatility

when the interest rate is going up and down (first difference of interest rate is positive and

negative). In order to test the asymmetry using K-S test, we define the positive and negative

subclasses as follows:

C+ = {ε2t |yt − yt−1 > 0}

C− = {ε2t |yt − yt−1 < 0} (3)

where yt is the origianl time series and εt is the residual of the optimum ARIMA model fitted

to yt. The K-S test is performed to copmare the positive and negative subclasses.

3. Empirical Results

Our variable of interest is the monetary policy instrument of the Bank of England

(BoE), called the Bank Rate. Our sample covers the period of May 1836 to June 2018.

Note that even though the monthly data on the Bank Rate (BR) is available from Novem-

ber 1694, the data remained virtually constant until the beginning of our sample period,

and hence, we decided to ignore the early part of the available data. The data is sourced

from ”A Millennium of Macroeconomic Data for the UK” - a database maintained by the

BoE at: https://www.bankofengland.co.uk/statistics/research-datasets. Figure 1

shows the bank rate from May 1836 to June 2018 and its Autocorrelation Function (ACF)

and Partial Autocorrelation Function (PACF). Since the ACF shows nonstationary behavior,

the stationarity of the time series is tested using Augmented Dickey-Fuller Test (MacKinnon,

1996).2 Table 1 shows the result of the test for the original time series and its first-difference.

According to the Table 1, the BR data is non-stationary (the null hypothesis of the test is

retained at the 5% level of significance), however, the first-difference of the BR is stationary.

Figure 2 plots the first-differenced version of the BR (dBR) variable and the corresponding

ACF and PACF. The LM-test for testing ARCH effect is applied to both series (after re-

moving the conditional mean). The LM-test P-values are presented in Table 1. According

2The test is applied using the ”fUnitRoots” package in R.
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to the LM-test results, there exist ARCH effect in both series. The P-value of K-S test for

asymmetry in volatility (based on the subclasses defined in 3) is 1.459e-13, which shows the

asymmetry in volatility of BR. The RMSE for out-of-sample volatility forecasting of the
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Figure 1: BR time series and its ACF and PACF.

Table 1: The results of Augmented Dickey-Fuller and LM Test

Series’ Name Time Series’ Parameter Augmented DF Test ML Test

Variance (Lag order) Statistic P-value Statistic P-value

BR 9.0425 20 -1.6682 0.0902 174.4383 0.0000

BR’s First

Difference (dBR) 0.3263 20 -12.1211 < 2.2e-16 174.246 0.0000

different models are presented in detail in Tables 2 and 3. Table 4 summarizes the models

with minimum RMSE for very short- (h=1), short- (h=3), medium- (h=6) and long-terms

(h=12) out-of-sample horizons associated with volatility forecasting. The ARMA-A-PARCH

model with SGED error distribution gives the most accurate volatility forecasts for the very

short-term horizon and the GARCH model with GED error distribution for short-, medium-
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Figure 2: First-difference of the BR (dBR) time series and its ACF and PACF.

and long-term horizons, in terms of minimum RMSE. As it can be seen in Table 4, the best

model in very short-term forecasting is an asymmetric one, with both sign and size bias;

which is in line with the K-S test results in Table 1. In other forecasting horizons, despite

the Engle-Ng’s test results showing the significant size-bias in volatility, the minimum RMSE

model is a symmetric one with symmetric error distribution. In other words, the asymmetric

behavior in BR data shows its effect only in very short-term forecasting. In other forecast-

ing horizons, although there is evidence of asymmetry in past, the out-of-sample volatility

forecasting won’t get affected by asymmetry.

The KSPA test is applied to compare accuracy of different models with the minimum

RMSE model (Table 4). The p-values of the test are given in Table 5 and 6. The models

for which the KSPA test’s null hypothesis is retained under α = 0.05 significance level, (i.e.

the models and predictors with same accuracy as the minimum RMSE model) are marked

in Tables 5 and 6. The results show that at the very-short forecasting horizon, the most

accurate models either have asymmetric behavior (A-PARCH) or asymmetric distribution

(SGED and JSU). At other forecasting horizons, however, the performance of the symmetric
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Table 2: Out-of-sample volatility forecasting RMSE of dBR

Model h = 1 h = 3 h = 6 h = 12

GARCH (Normal)a 0.5030 0.4940 0.5010 0.5240

GARCH (SN)a 0.4464 0.4615 0.4792 0.5099

GARCH (Student’s t)a 0.6475 0.9610 1.9800 8.7328

GARCH (SSt)a 0.5188 0.5148 0.5083 0.5039

GARCH (GED)a 0.4077 0.4039 0.3994 0.3941

GARCH (SGED)a 0.4181 0.4171 0.4149 0.4113

GARCH (IG)a 0.4226 0.4334 0.4460 0.4550

GARCH (GH)a 0.4337 0.4394 0.4190 0.4090

GARCH (JSU)a 0.4065 0.4061 0.4037 0.4000

TGARCH (Normal)a 0.5331 0.5401 0.5520 0.5750

TGARCH (SN)a 0.5306 0.5384 0.5640 0.6179

TGARCH (Student’s t)a 0.7599 0.7579 0.4729 0.4579

TGARCH (SSt)a 0.5284 0.5252 0.4590 0.4604

TGARCH (GED)a 1.3561 1.3523 1.3477 1.3388

TGARCH (SGED)a 6.1216 6.1216 6.1216 6.1216

TGARCH (IG)a 0.4464 0.4653 0.4410 0.4520

TGARCH (GH)a 6.1216 6.1216 6.1200 6.1200

TGARCH (JSU)a 3.3909 2.0135 0.4577 0.4597

EGARCH (Normal)a .b .b 8.04E+13 1.38E+12

EGARCH (SN)a 0.5530 0.5386 0.5146 0.5614

EGARCH (Student’s t)a .b .b .b .b

EGARCH (SSt)a 540.1583 8.9836 0.4559 0.4590

EGARCH (GED)a .b .b .b .b

EGARCH (SGED)a .b .b .b .b

EGARCH (IG)a .b .b 2.19E+18 4.35E+16

EGARCH (GH)a .b .b 5.75E+26 8.58E+33

EGARCH (JSU)a 0.8292 0.7893 0.7737 0.7589

a. The conditional mean model is ARMA.

b. The value is computationally infinite.
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Table 3: Out-of-sample volatility forecasting RMSE for dBR (Continued)

Model h = 1 h = 3 h = 6 h = 12

CGARCH (Normal)a 0.4174 0.4484 0.4560 0.4660

CGARCH (SN)a 0.4402 0.4556 0.4721 0.4871

CGARCH (Student’s t)a 0.4820 0.4365 0.4272 0.4383

CGARCH (SSt)a 0.4557 0.4369 0.4423 0.4595

CGARCH (GED)a 0.4348 0.4306 0.4287 0.4253

CGARCH (SGED)a 0.4410 0.4290 0.4224 0.4117

CGARCH (IG)a 0.4392 0.4480 0.4550 0.4560

CGARCH (GH)a 0.4332 0.4148 0.4150 0.4270

CGARCH (JSU)a 0.5738 0.5747 0.5755 0.5770

A-PARCH (Normal)a 0.4694 0.4767 0.4950 0.5170

A-PARCH (SN)a 0.4636 0.4751 0.4910 0.5328

A-PARCH (Student’s t)a 0.4235 0.4271 0.4259 0.4322

A-PARCH (SSt)a 0.9808 0.6871 0.4836 0.4464

A-PARCH (GED)a 1.7951 1.6933 1.5227 1.2562

A-PARCH (SGED)a 0.4051 0.4043 0.4020 0.3992

A-PARCH (IG)a 0.4187 0.4200 0.4230 0.4300

A-PARCH (GH)a 0.4099 0.4119 0.4170 0.4370

A-PARCH (JSU)a 0.4062 0.4058 0.4024 0.3981

GJR-GARCH (Normal)a 0.4665 0.4680 0.4720 0.4880

GJR-GARCH (SN)a 0.5026 0.4956 0.4976 0.5214

GJR-GARCH (Student’s t)a 0.5389 0.4647 0.4432 0.4491

GJR-GARCH (SSt)a 0.5459 0.5229 0.5001 0.4692

GJR-GARCH (GED)a 0.4306 0.4314 0.4304 0.4315

GJR-GARCH (SGED)a 0.4161 0.4144 0.4113 0.4076

GJR-GARCH (IG)a 0.5143 0.4445 0.4330 0.4450

GJR-GARCH (GH)a 0.4387 0.4138 0.4050 0.4020

GJR-GARCH (JSU)a 0.6323 0.6388 0.6491 0.6801

GASGARCH a 10.3293 24.1132 4.26E+13 2.2347

MAR 0.5838 0.5877 0.5944 0.6223

a. The conditional mean model is ARMA.
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Table 4: Minimum RMSE models for forecasting dBR volatility

h=1 h=3 h=6 h=12

Model A-PARCH GARCH GARCH GARCH

Error distribution SGED GED GED GED

RMSE value 0.4051 0.4039 0.3994 0.3941

Engle-Ng Sign-Bias test P-Vlue 3.524e-14 0.3007 0.3007 0.3007

GARCH model with symmetric distribution is not statistically different from the asymmetric

models with asymmetric distributions. As can be seen, none of the models with accuracy

same as the minimum RMSE models has normal distributions, which in turn shows the

importance of heavy-tailed behavior at all forecasting horizons.

3.1. Simulation study

The reliability of the results is investigated using a simulation study. In this study, 1000

sample path of length 2000 is simulated from minimum RMSE models. The performance

of competing models in out-of-sample forecasting is measured using average out-of-sample

RMSE.

In first simulation the sample paths are simulated from A-PARCH(SGED) (A-PARCH

model with SGED distribution, minimum RMSE model for h=1 in Table 4, with parameter

estimated based on the real data) and the average one step ahead forecasting RMSE is

calculated for models with similar forecasting accuracy as A-PARCH(SGED) (models with

similar forecasting accuracy as A-PARCH(SGED) are marked in Tables 5 and 6). In second

simulation, each sample path is generated from GARCH(GED) (GARCH model with GED

distribution, the minimum RMSE model for h = 3, 6 and 12 in Table 4, with parameter

estimated based on the real data). The average h step ahead forecasting RMSE is calculated

for models with similar forecasting accuracy as GARCH(GED) in h = 3, 6 and 12 forecasting

horizons (models with similar forecasting accuracy as GARCH(GED) are marked in Tables

5 and 6). The average RMSEs are presented in Table 7.

As it can be seen in Table 7, the minimum RMSE models in real data has the mini-

mum RMSE in simulations as well for short and medium -term forecasting (h = 1,3, 6).

In long-term forecasting (h =12), however, the minimum RMSE model in real data is

GARCH(GED), whilst in simulation GJR − GARCH(GH) model has minimum average

RMSE which is not surprising since two models have very close RMSE in real data (see

Tables 2 and 3) and GJR−GARCH(GH) model has highest P-value (most similarity with

minimum RMSE model) in KSPA test (see Table 6), for long-term forecasting. In order to

verify the asymmetry test results (Table 4) in long-term forecasting, the Engle-NG test is
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Table 5: KSPA test p-values (two-tailed) for comparing the out-of-sample forecasts to minimum RMSE of

dBR volatility forecast

h = 1 h = 3 h = 6 h = 12

Minimum RMSE model → A-PARCH GARCH GARCH GARCH

Comparing to ↓ (SGED)a (GED)a (GED)a (GED)a

GARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

GARCH(SN)a 0.0000 0.0000 0.0000 0.0000

GARCH(Student’s t)a 0.0000 0.0000 0.0000 0.0000

GARCH(SSt)a 0.0000 0.0001 0.0000 0.0000

GARCH(GED)a 0.0153

GARCH(SGED)a 0.0017 0.0828∗ 0.0921∗ 0.0023

GARCH(IG)a 0.0291 0.0199 0.0226 0.0000

GARCH(GH)a 0.0066 0.1023∗ 0.0419 0.0199

GARCH(JSU)a 0.0665∗ 0.5235∗ 0.7015∗ 0.1530∗

TGARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

TGARCH(SN)a 0.0000 0.0000 0.0000 0.0000

TGARCH(Student’s t)a 0.0000 0.0000 0.0000 0.0000

TGARCH(SSt)a 0.0000 0.0001 0.0001 0.0000

TGARCH(GED)a 0.0000 0.0000 0.0000 0.0000

TGARCH(SGED)a 0.0000 0.0010 0.0001 0.0000

TGARCH(IG)a 0.0001 0.0076 0.0291 0.0001

TGARCH(GH)a 0.0000 0.0010 0.0001 0.0000

TGARCH(JSU)a 0.0000 0.0000 0.0001 0.0000

EGARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

EGARCH(SN)a 0.0000 0.0000 0.0000 0.0000

EGARCH(Student’s t)a 0.0000 0.0000 0.0000 0.0000

EGARCH(SSt)a 0.0000 0.0007 0.0001 0.0000

EGARCH(GED)a 0.0000 0.0000 0.0000 0.0000

EGARCH(SGED)a 0.0000 0.0000 0.0000 0.0000

EGARCH(IG)a 0.0000 0.0000 0.0000 0.0000

EGARCH(GH)a 0.0000 0.0000 0.0000 0.0000

EGARCH(JSU)a 0.0000 0.0000 0.0000 0.0000

a. The conditional mean model is ARMA.

∗. Difference between Min. RMSE model and Alternative models is insignificant at test level

α = 0.05 (The marked models has similar forecasting accuracy as the Min. RMSE models,

according to KSPA test results).
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Table 6: KSPA test p-values (continued)

h = 1 h = 3 h = 6 h = 12

Minimum RMSE model → A-PARCH GARCH GARCH GARCH

Comparing to ↓ (SGED)a (GED)a (GED)a (GED)a

CGARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

CGARCH(SN)a 0.0000 0.0000 0.0000 0.0000

CGARCH(Student’s t)a 0.0000 0.0921∗ 0.1256∗ 0.0116

CGARCH(SSt)a 0.0002 0.0830∗ 0.0362 0.0001

CGARCH(GED)a 0.0000 0.0199 0.0014 0.0002

CGARCH(SGED)a 0.0000 0.0742∗ 0.0594∗ 0.0199

CGARCH(IG)a 0.0014 0.0199 0.0005 0.0000

CGARCH(GH)a 0.0057 0.0007 0.0000 0.0004

CGARCH(JSU)a 0.0000 0.0000 0.0000 0.0000

A-PARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

A-PARCH(SN)a 0.0000 0.0000 0.0000 0.0000

A-PARCH(Student’s t)a 0.0006 0.0665∗ 0.0372 0.0007

A-PARCH(SSt)a 0.0000 0.0002 0.0027 0.0001

A-PARCH(GED)a 0.0000 0.0000 0.0000 0.0000

A-PARCH(SGED)a 0.0828∗ 0.0665∗ 0.1850∗

A-PARCH(IG)a 0.0199 0.0012 0.0101 0.0257

A-PARCH(GH)a 0.0020 0.0004 0.0594∗ 0.0003

A-PARCH(JSU)a 0.0076 0.0101 0.0057 0.1135∗

GJR-GARCH(Normal)a 0.0000 0.0000 0.0000 0.0000

GJR-GARCH(SN)a 0.0000 0.0000 0.0000 0.0000

GJR-GARCH(Student’s t)a 0.0000 0.0027 0.0043 0.0001

GJR-GARCH(SSt)a 0.0000 0.0020 0.0012 0.0001

GJR-GARCH(GED)a 0.0004 0.0594∗ 0.0291 0.0002

GJR-GARCH(SGED)a 0.0023 0.3813∗ 0.0549∗ 0.0488

GJR-GARCH(IG)a 0.0000 0.0257 0.0372 0.0031

GJR-GARCH(GH)a 0.0000 0.1758∗ 0.2532∗ 0.3261∗

GJR-GARCH(JSU)a 0.0000 0.0000 0.0000 0.0000

GASGARCH a 0.0000 0.0000 0.0000 0.0000

MAR 0.0000 0.0000 0.0000 0.0000

a. The conditional mean model is ARMA.

∗. Difference between Min. RMSE model and Alternative models is insignificant at test level

α = 0.05.
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Table 7: Average RMSE of models similar to minimum RMSE models based on 1000 simulations (for h =1,

series are simulated from A-PARCH(SGED) and for h = 3,6,12 the series are simulated from GARCH(GED)).

Forecasting Model h = 1 h = 3 h = 6 h = 12

GARCH(GED)a .b 0.0156 0.0218 0.0291

GARCH(SGED)a .b 0.0246 0.0269 .b

GARCH(GH)a .b 0.0286 .b .b

GARCH(JSU)a 0.0308 0.0191 0.0236 0.0293

CGARCH(Student’s-t)a .b 0.0688 0.0694 .b

CGARCH(SSt)a .b 0.0692 .b .b

CGARCH(SGED)a .b 0.0407 0.0398 .b

A− PARCH(Student’s-t)a .b 0.0712 .b .b

A− PARCH(SGED)a 0.0011 0.0328 0.0345 0.0365

A− PARCH(GH)a .b .b 0.0347 .b

A− PARCH(JSU)a .b .b .b 0.0728

GJR−GARCH(GED)a .b 0.0280 .b .b

GJR−GARCH(SGED)a .b 0.0226 0.0292 .b

GJR−GARCH(GH)a .b 0.0248 0.0249 0.0250

a. The conditional mean model is ARMA.

b. Doesn’t have the same accuracy as the minimum RMSE model

in this forecasting horizon (according to Tables 5 and 6).
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applied to GJR−GARCH(GH) model, fitted to real data. The Engle-NG Sing-Bias test’s

P-value for GJR − GARCH(GH) is 0.1531 which retain the null hypothesis of the test,

under which there is no Sign Bias (or asymmetry) in the model.

4. Conclusion

The main objective of this paper is to evaluate the very short, medium and long-term

forecasting ability of different univariate GARCH models of UK interest rate volatility, using

a long span monthly data from May 1836 to June 2018. With this purpose, we calculate

the forecasting ability of different univariate GARCH- type models (GARCH, Threshold

GARCH, Exponential GARCH, Component GARCH, and Asymmetric Power ARCH). Fur-

thermore, when using these GARCH-type models, we try to capture the heavy tailed and

asymmetric behavior using alternative error term distributions, such as Normal, Students t,

Generalized Error Distribution (GED), Skew Normal (SN), Skew Students (SSt), Skew Gen-

eralized Error Distribution (SGED), Inverse Gaussian (IG), Generalized Hyperbolic (GH)

and Johnsons SU Distribution (JSU), ARMA-Generalized Additive Semiparametric GARCH

by Hou and Suardi (2011) and the Mixture Autoregressive Model by Wong and Li (2000)

are also used to forecast UK interest rates.

Although the results suggest that the forecasting accuracy of each of the models depends

on the forecasting horizon, they clearly show the relevance of considering alternative error

distributions to the normal distribution when estimating GARCH-type models. For example,

for the very short-term forecasting horizon (h=1), A-PARCH models with skew generalized

error distribution is the most accurate models when forecasting UK interest rates, while

for short, medium and long-term term forecasting horizons (h=3 and h=6, h=12), GARCH

models with generalized error distribution for the error term are the most accurate models.

A simulation study is employed to verify the accuracy of the forecasting models. Simulation

results approve accuracy of A-PARCH models with skew generalized error distribution in

short-term forecasting, GARCH models with generalized error distribution for the error

term for medium-term forecasting whilst in long-term forecasting show the GJR−GARCH
with Generalized Hyperbolic error distribution has the highest accuracy. Whilst this study

considered a broad family of volatility models, with different error distributions, developing

volatility models with more flexible error distributions (e.g. the Scale Mixture of Skew

Normal family of distributions (Ferreira et al., 2011)) could increase forecasting accuracy.

The Engle-Ng Sign-Bias test for asymmetry, shows the asymmetric behavior of minimum
0

RMSE model for short-term (h = 1) forecasting and symmetric behavior in medium and long

-term forecasting. The dBR data, on the other hand, has asymmetric volatility it’s self. Ac-

cording to these results, even though the UK’s monthly Bank Rate has asymmetric volatility,
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the asymmetry is only evident in short-term forecasting horizon (h = 1). In medium and

long -term forecasting horizons, symmetric volatility models have highest accuracy. In other

words, whilst the asymmetric nature of the data is important in short-term forecasting, it

doesn’t improve the accuracy of longer forecasting horizons. According to these results we

could conclude that the interest rate volatility is more sensitive to past positive innovations

than to past negative innovations, which explains why volatility tends to be higher when

interest rates are high (Bali, 2000). Furthermore, based on our results, this asymmetric be-

havior of interest rate volatility is more pronounced or evident when short-term forecasting

horizons are considered, while its relevance decreases when longer forecasting horizons are

analyzed. Therefore, and as stated above, the forecasting ability of the models will depend

on the forecasting horizon we are interested in, and thus, it will differ depending on the

objective of our forecasting exercise.

The results on the forecasting ability of these models should be taken into account when

forecasting interest rates for portfolio diversification, investment or hedging strategies, for

pricing different financial securities, for risk managers, or for forecasting different macroe-

conomic variables dependent on interest rates. Furthermore, these results suggest, when

the time series has asymmetric volatility, the use of asymmetric models is not necessary for

achieving the highest out-of-sample forecasting accuracy.
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