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Abstract: Time-series of imagery acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) has previously been used to estimate woody and herbaceous vegetation cover in savannas. 

However, this is challenging due to the mixture of woody and herbaceous plant functional types 

with specific contributions to the phenological signal and variations in soil background reflectance 

signatures observed from satellite. These factors cause variations in the accuracy and precision of 

woody cover estimates from different modelling approaches and datasets. Here, woody cover is 

estimated over Kruger National Park (KNP) from the MODIS 16-day composite time-series data 

using dry season NDVI/SAVI images and applying NDVIsoil determination methods. The woody 

cover estimates when NDVIsoil was ignored had R² = 0.40, p < 0.01, slope = 1.01, RMSE (root mean 

square error) = 15.26% and R² = 0.32, p < 0.03, slope = 0.79, RMSE = 16.39% for NDVIpixel and SAVIpixel, 

respectively, when compared to field plot data of plant functional type fractional cover. The woody 

cover estimated from the soil determination methods had a slope closer to 1 for both NDVI and 

SAVI but also a slightly higher RMSE. For a soil-invariant method, RMSE = 19.04% and RMSE = 

17.34% were observed for NDVI and SAVI respectively, while for a soil-variant method, RMSE = 

18.28% and RMSE = 19.17% were found for NDVI and SAVI. The woody cover estimated from all 

models had a high correlation and significant relationship with LiDAR/SAR based estimates and a 

woody cover map produced by Bucini. Woody cover maps are required for vegetation succession 

monitoring, grazing impact assessment, climate change mitigation and adaptation research and 

dynamic vegetation model validation. 
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1. Introduction 

Several vegetation indices such as Leaf Area Index (LAI), normalised difference vegetation index 

(NDVI) and others, as well as biophysical parameters such as canopy height and aboveground 

biomass (AGB) have previously been used for mapping woody plant abundance [1–3]. This is because 

woody fractional cover is needed as an input to many ecological models for the assessment of fire, 
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deforestation, degradation, urban expansion and hydrological dynamics [4–11]. Changes in woody 

cover can have profound effects and unforeseen consequences for ecosystems functioning [12,13]. 

Information on woody fractional cover provides immense benefit to ecological modelling and helps 

in understanding ecosystem function in savannas [14,15], but spatially explicit information on woody 

fractional cover is difficult to obtain [7,16,17]. A proper understanding of vegetation structure and 

phenological characteristics is a key requirement for measuring woody cover [12].  

Satellite remote sensing provides an indirect measurement of vegetation indices (e.g., NDVI) 

and biophysical parameters (e.g., LAI, fAPAR, AGB and fractional vegetation cover [FVC]) [18–20]. 

Studies on woody cover estimation have been published previously [7,21–23], but the accuracy and 

precision of woody fractional cover estimates vary with modelling approach, used datasets and 

ecosystems [1,21,24]. Although estimates of land cover types using remote sensing data have an 

associated error and uncertainty of unknown magnitude, the estimate of woody fractional cover is 

very challenging, particularly in savannas. This is because savanna vegetation is not discrete but 

rather a continuum of a varying mixture of tree and grass plant functional types (PFTs), which can 

show clumping or patchiness at certain scales. 

The existing vegetation continuous fields (VCF) product from MODIS does not accurately 

measure woody fractional cover, especially for open forests [10,21]. White et al. [25] assessed MODIS 

VCF products in the Western USA, a region spanning semi-arid deserts, sparse dry woodlands, and 

cool mesic upland forests by using two independent ground-based tree cover databases. They 

reported an underestimation of low tree cover and overestimation of dense canopies in the MODIS 

product. An overall root mean squared error (RMSE) of 24% and 31% was found when comparing 

the MODIS retrievals with ground-based Forest Inventory and Analysis (FIA) data (1176 field plots) 

and Southwest Regional GAP (SWReGAP) datasets (2778 field plots). RMSE indicated a more 

positive values at > 10% cover than 15% for FIA and 12% for SWReGAP. At canopy cover >60%, the 

error is high (49% for FIA and 44% for SWReGAP). 

Ibrahim et al. [26] estimated the fractional cover of PFTs in Kruger National Park (KNP) from 

MODIS NDVI time series using harmonic analysis. In that study, harmonic analysis was used to 

decompose the time series signal into amplitude, cycles, and phase. The field plot estimates of tree 

cover showed a significant correlation with the amplitude (r = −0.59, p = 0.001), phase of the first 

harmonic term (r = −0.73, p = 0.0001) and the number of cycles of the second harmonic term (r = 0. 56, 

p = 0.002). The tree cover estimated from the phase of the strongest harmonic term showed a strong 

linear relationship with field-measured tree cover (R2 = 0.55, p < 0.01, slope = 0.93, RMSE = 13.26%). 

Ibrahim et al. [26] emphasized the importance of the phase of the significant harmonic terms for tree 

cover estimation. In constrast, here the MODIS NDVI data are not decomposed using harmonic 

analysis, but instead the impact of using a soil database for accounting for the variation of soil 

reflectance in the NDVI calculation for woody cover estimation in KNP is assessed. We chose KNP 

because it is dominated by savannah ecosystems (e.g., Skukuza thickets, open trees, dense trees, and 

bush savanna). The plot data we collected from the KNP span different vegetation types, geological 

conditions, and soil types and cover a gradient of woody/herbaceous mixtures that is very distinct in 

terms of structure, type, density, and distribution [26–30]. 

Many studies have applied soil-variant and invariant approaches (with respect to spatial 

variability of soil backgrounds in the NDVI) to estimate fractional vegetation cover [31–33]. Zeng et 

al. [34] combined the International Geosphere-Biosphere Program (IGBP) land cover classification 

with 1 km NOAA AVHRR NDVI data and employed the fifth percentile of the histogram of the 

maximum NDVI for the barren or sparsely vegetated category as the NDVIsoil to calculate global FVC. 

Zeng’s method assumed that NDVIsoil is invariant. Wu et al. [35] combined the Harmonized World 

Soil Database (HWSD) and annual minimum NDVI to calculate NDVIsoil for different soil types and 

then estimated global FVC. Wu’s et al. [35] method considers spatial variability of soil background. 

The HWSD provides global soil types with a spatial resolution of 1 km. Ding et al. [36] investigated 

the influence of variations of NDVIsoil derived from FVC estimation using these two approaches 

proposed by Wu et al. [35] and Zeng’s et al. [34]. However, Ding’s [36] methods used 564 reflectance 

spectra of soils collected in Northeast China. Validation results indicated that this approach that 
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considered the spatial variability of soil background yields better estimates of FVC than using a soil-

invariant NDVIsoil value. The accuracy increases from RMSE = 7% to 10% [36]. The soil-variant 

method is more robust when ground measurements of soil reflectance are available than using the 

soil database to determine the NDVIsoil, but it is unclear whether ignoring NDVIsoil in the absence of 

field spectral measurements yields higher errors than considering it using a global soil database like 

HWSD. This is especially true for small areas with less soil variation and low NDVI (e.g., savanna) 

as the uncertainty in determining the NDVIsoil is higher in areas of low vegetation [36].  

In this study, we investigate different approaches for accounting for the spatial variation of soil 

spectral signatures in estimating woody cover in African savanna using MODIS data. Specifically, 

the study (1) evaluates the accuracy of woody cover estimation using different regression models 

without accounting for soil background; (2) investigates whether accounting for NDVIsoil obtained 

from a soil database reduces the woody cover prediction error; and (3) compares the estimated woody 

cover maps with other existing satellite-derived woody cover products. 

2. Materials and Methods  

2.1 The Study Area  

Kruger National Park (KNP) is South Africa’s largest nature reserve covering approximately 

2,000,000 hectares. It extends 380 km from north to south and 60 km from east to west (Figure 1). Its 

elevation ranges from 260 m to 839 m above mean sea level. The mean annual rainfall ranges from 

440 mm in the north to 750 mm in the south. Figure 1 shows the mean annual rainfall for the year 

2002 to 2015 for the three weather stations in the area.  

 

Figure 1. Location of the study area of Kruger National Park (KNP) (Southern part) in South Africa 

and its main river courses, indicating the locations of the sample plots of the field data collection in 

2015. Blue circles indicate the field plot locations. The red points indicate the mean annual rainfall for 

the year 2002 to 2015 (14 years) of three stations in KNP. 
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The area is divided into two main geological zones. The western part is situated on granite and 

the east on basaltic bedrocks [26–30]. Geological bedrock influences soil formation processes, and 

indirectly plant species and abundance distribution, and ecological processes [30]. KNP has diverse 

vegetation types (more than 1900 plant species) including woody and herbaceous plant functional 

types [27]. Figure 2 shows the soil types in KNP and the main soil types in the field plot areas based 

on the soil database by the International Union of Soil Sciences (IUSS), the United Nations 

Environment Programme, the FAO, and the International Soil Reference and Information Centre 

(ISRIC) [37]. 

 

Figure 2. Soil types in KNP, the main soil types in the field plot area, field plot data (the blue and pink 

points indicate calibration and validation plots, respectively. 

The park has been classified into landscapes (e.g., Skukuza thickets, open trees, dense trees, and 

bush savanna) based on geomorphology, climate, soil and vegetation pattern [27–29]. The major 

woody species in the southern part include Combretum apiculatum, Acacia nigrescens, Spirostachys 

africana, Combretum hereroense, Sclerocarya birrea, Terminalia sericea, Combretum zeyheri, while the drier 

northern part is dominated by Colophospermum mopane (mopane) savanna.  

2.2. Data 

2.2.1. Field Data 

Percent woody, herbaceous and bare soil cover were estimated for 25 field plots in the KNP 

during a field campaign carried out in March 2015 at the end of growing season. An ocular method 

proposed by Law et al. [38] was adopted for the estimation of percent cover for four structural 

vegetation types and bare soil within the plots (trees > 6 m, tree and shrubs 1–6 m, forbs and grasses) 

located along the road from Skukuza to Tshokwane (Figure 1). Three additional plots were added 

based on visual interpretation of Google Earth images to incorporate areas with denser tree cover 

than what was sampled in the field. The Google Earth imagery was acquired in May 2015. However, 
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despite the two months difference between the field data and the Google Earth imagery, we assumed 

that woody phenology does not vary much within this period. Previous studies found that woody 

phenology is more stable over time than herbaceous phenology [28]. The field survey has considered 

the MODIS satellite pixel size (250 m × 250 m) by a sampling plot almost equal to the size (200 m × 

200 m) of the pixel. Our observations in the field helped us to understand that vegetation cover does 

not vary that much over that spatial distance. The uncertainty is considered minimal. The 28 plots 

were placed in different vegetation types, geological conditions and soil types. Some of the tree 

species found in these plots include Combretum zeyheri/apiculatum (e.g., plot 14, 10, 4), Dichrostachys 

cinerea, Sclerocarya birrea, Terminalia sericea (e.g., plot 28), Acacia gradicortuna (e.g., plots 17, 25, and 19), 

Combretum hereroense (e.g., plot 19) and Albizia harveyi (e.g., plot 9). A detailed description of the field 

data can be found in Ibrahim et al. [26].  

2.2.2. MODIS NDVI Data 

MODIS NDVI data (MOD13Q1) were obtained from the National Aeronautics and Space 

Administration (NASA) via https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl. MOD13Q1 is a 

gridded level 3 product provided at 250 m spatial resolution every 16 days produced from 

atmospherically corrected bi-directional surface reflectance factors (BRFs) and masked for water, 

clouds, and cloud shadows [39,40]. A previous study developed a method based on MODIS Ross-

Thick and Li-Sparse kernels to estimates of BRDF effects in NOAA-AVHRR NDVI time series. The 

results indicated that, in most cases, the uncorrected NDVI time series do not reflect actual seasonal 

and interannual variation in vegetation greenness. It was found out that the techniques reduce BRDF 

effects in AVHRR NDVI observations by about 50% to 85% [41]. MODIS NDVI has been used widely 

for retrieving vegetation composition such as vegetation structure and annual net primary 

productivity (ANPP) dynamics in grassland-shrub land areas [42], tree cover change [2], tree-grass 

separation/green-up dates [28], for monitoring vegetation and land use dynamics [43,44] and for the 

analysis of trends to assess the CO2 fertilization effect on vegetation [45]. NDVI has also been used to 

examine the relationship between vegetation productivity and rainfall distribution along 

environmental gradients [43,44]. Chamaille-Jammes and Fritz [44] investigated the relationships 

between precipitation and primary production along a precipitation gradient. The variability of both 

precipitation and primary production was measured as interannual coefficient of variations (CVs), 

which decreased with increasing mean annual precipitation (MAP) (respectively F(1, 31) = 21,88,  p, 

0.0001 and F(1, 31) = 12.28, p 0.0014). The CV of annual NDVI was positively correlated with the CV 

of precipitation (F (1, 31) = 35.480, p, 0.0001). The study affirmed the finding of study that the 

sensitivity of NDVI to precipitation decreases with increasing MAP. NDVI is used here as the proxy 

of vegetation cover as numerous studies have identified a strong relationship between the NDVI and 

NPP [46–48]. Prince and Goward [46] designed a Global Production Efficiency Model based on the 

production efficiency concept. The model relies on variables (e.g., NDVI, temperature, etc.) that can 

be remotely sensed at global scale. It is mechanistic and does not require a correlation between NDVI 

and primary productivity. Moreno-de las Heras et al. [42] found the strong relationships between 

field net primary production (ANPP) and the annual integrals (per growing cycle) of herbaceous (R2 

= 0.67, p < 0.001) and shrub (R2 = 0.65, p < 0.001) NDVI components. Zhu and Southworth [47] 

predicted NPP from the GIMMS3g NDVI data and correlated it with annual MODIS NPP stratified 

by savannah type. Highly significant linear correlations were found for tree savanna, bush savanna, 

and grassland savanna with correlation coefficients of 0.77, 0.74, and 0.80, respectively. 

2.2.3. MODIS SAVI Data 

The Soil Adjusted Vegetation Index (SAVI) was developed specifically to minimize soil 

brightness effects on vegetation indices derived from red and near-infrared (NIR) wavelengths [49]. 

In this study, NDVI and SAVI vegetation indices were derived from MODIS images for the period 

12 July to 29 August 2014 (before the start of season) and 9 May to 26 June 2015 after the end of season. 

This season is best for modelling woody cover using passive optical data in savannah [50,51] because 
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the remote sensing data for the beginning of the dry season provide the best discrimination of green 

woody canopies from the senesced grass layer [50,51]. The SAVI index was calculated as follows: 

SAVI= (NIR − R)/ (NIR + R+ L) * (0.5 + L), (1)

where the NIR is the near-infrared band, R is the red band and L stands for a soil correction factor 

(ranges from 0 to 1). L = 0.5 was used in this study as it has been recommended for savanna 

ecosystems by previous study [52]. 

2.2.4. MODIS Vegetation Continuous Field (VCF) 

MODIS VCF is an Earth observation product describing percent tree cover, percent non-tree 

vegetation (mostly herbaceous) and percent bare surface and is provided globally at 250 m resolution 

by NASA, from the Land Processes Distribution Active Archive Centre (LP DAAC) available at 

http://e4ftl01.cr.usgs.gov/MOLT/. It is called MOD44B as a standard MODIS product [53,54]. The 

collection 5 of this product (version 0051) was used in this study, being the most recent version of 

this dataset at the time of writing the manuscript. Specifically, MODIS VCF for the years 2008 and 

2014 were used in this study for validation and comparison purposes.  

2.2.5. Validation Datasets 

Two woody cover map of KNP were used as independent validation dataset. A 2010 woody 

cover map was produced using 14 dual-polarized (HV, HH) 12.5 m L-band ALOS PALSAR images 

trained with a random forest algorithm and 25,000 ha of airborne LiDAR data [55]. The L-band 

Synthetic Aperture Radar (SAR) data was shown to produce higher accuracy woody cover products 

compared to C- and X-band data in southern African savannas [56]. The LiDAR data were acquired 

in April 2008 (end of wet season) when woody plants were leaf-on, and the SAR images in July–

August 2008 (dry season, leaf-off) to avoid soil moisture effects on the radar signal [56]. This was 

shown to be the best season to model woody cover in the region with SAR data [6,57]. Woody plants 

of at least 1 m canopy height were included. For details of the LiDAR and SAR datasets, see [56]. 

Validation of the SAR-map with independent LiDAR data produced an R2 = 0.8 and RMSE = 7.7% 

[56]. The 12.5 m LiDAR/SAR product was resampled to the 250 m MODIS resolution. In addition, the 

Bucini’s woody cover map was provided by Scientific Services (GIS unit) of SANParks [50,51]. The 

map was modelled through multiple regression techniques using a combination of optical Landsat 

ETM+ data, JERS-1 SAR scenes (L-band, HH polarization), and field plots of woody cover. The best 

predictive model was selected based on the Akaike information criterion [50,51], and the 90 m pixel 

size map represented woody cover conditions for the years around 2000. 

2.3. Woody Cover Estimation 

The data sets, approaches and the processing procedure implemented for the estimation of 

woody cover are summarized in Figure 3. The reference plot data from the field were used to extract 

the MODIS data (NDVIpixel and SAVIpixel). The NDVIpixel and SAVIpixel and invariant and variant NDVI 

and SAVI generated from the original data were used for model calibration using regression models. 

Woody cover was then extrapolated using the regression equations. The woody cover estimates were 

validated using the half of field data on woody cover. We validated the LiDAR/SAR, Bucini, and 

MODIS VCF products using our field data. We compared our estimates of woody cover with the 

LiDAR/SAR, Bucini, and MODIS VCF products (Figure 2). All statistical analyses were carried out in 

R. Detailed explanation on methods is given in the following sections. 
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Figure 3. Flowchart showing data sets and processing procedure for the estimates of woody cover in 

KNP. 

2.3.1. Woody Cover Estimate Using NDVIpixel and SAVIpixel 

The mean NDVI and SAVI over the dry period were calculated and taken as woody (NDVIpixel 

and SAVIpixel). In this ecosystem, woody species have two growing cycles at the time when the 

herbaceous layer is dormant. Grass usually dries up before the woody species lose their leaves in 

autumn so that two short periods with dry grass and a green woody canopy exist (before and after 

the wet seasons). These periods occur before and after the wet season or in autumn and spring (April–

May, and October–November, respectively). The wet season starts from October and ends in April. 

This is considered useful in capturing the phenology of woody plants. Some woody species fully 

green up before the first significant rains (e.g., Sclerocarya birrea, Acacia nigrescens). Woody species in 

KNP usually take eight weeks to reach full leaf flush from the woody leaf-out onset. However, some 

woody species such as Combretum apiculatum are usually late in their leaf flush but take shorter 

periods to develop full leaf cover than early leaf flushers [28]. To reduce an overlap of woody and 

herbaceous phenology occurring probably due to a delayed start or end of season, the images chosen 

were for the months of July and August (12 July to 29 August 2014) before the start of season and 

May and June (09 May to 26 June 2015) after the end of season.  

The assumption we make is that the influence of bare soil on the NDVI is minimal over a small 

area. The soil correction factor usually applied to derive SAVI reduces the influence of bare soil. 

Although both vegetation indices are sensitive to fractional vegetation cover, they are also sensitive 

to the soil background [4,36]. While the SAVI approach is subject to some uncertainty in woody cover 

estimation, the effects of soil reflectance due the nature of soil type characteristics (e.g., such as soil 
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brightness, moisture) is likely to be negligible because of the small spatial scale being considered [58]. 

In addition, the soil background reflectance values are lower than the canopy reflectance due to high 

albedo in the tropics [33]. Jiang et al. [51] found out that the nonlinearity of NDVI over partially 

vegetated surfaces is more prominent with darker soil backgrounds and shadow [59].  

The aim of this study is to establish the fundamental relationships between NDVIpixel, SAVIpixel 

and field data on woody cover to develop a calibration technique to assess the extent to which such 

relationships are able to estimate woody cover. Both linear and nonlinear regression analyses 

methods have been used for data calibration as the relationship between NDVI and measurements 

of canopy structures vary with vegetation types and seasonality [60]. 

2.3.2. Woody Cover Estimation Using NDVIsoil Determination Methods  

In this method, it is first assumed that each pixel consists of three fractional covers: woody cover 

(T), bare soil cover (S), and grass cover (G). In savannas, during the dry season, most of the non-

woody fraction is occupied by bare soil or dry grass while, in the wet season, green grass fractional 

cover makes up most of the contribution [28,61]. In the dry season, the grass layer becomes non-

photosynthetic and dries up. The green grass layer (fraction of photosynthetically active vegetation) 

decreases from 85% to 8% while the fraction of non-photosynthetic vegetation of the same layer 

increases from 7% to 79% between the beginning and end of dry season [62]. Furthermore, an 

investigation using field reflectance measurements of bare soil, grass and woody indicated that dry 

grass had the lowest NDVI [62]. Hence, in this study, the non-photosynthetic grass layer was merged 

with bare soil. NDVIpixel was attributed to only woody and bare soil as expressed in Equation (2). The 

same was applied to SAVIpixel: 

NDVI * f_t + NDVIsoil * (f_s + f_g) = NDVIpixel, (2)

where f_t is tree percent cover, f_s is fractional cover of bare soil, f_g is grass percent cover and 

NDVIpixel is the mean dry season NDVI from the MODIS data. 

This means that the influence of bare soil in the vegetation index does not usually allow spectral 

signals of vegetation to vary. To indicate the spatial variability of PFTs, the contribution of bare soil 

should be accounted for. Different techniques of vegetation fractional cover estimation have 

previously been proposed, which account for bare soil contribution. Some of these techniques are 

invariant to soil types and characteristics [31–33]. These methods rely upon the assumption that 

pixels with FVC = 1 and 0 exist in an image. These are described by NDVIveg and NDVIsoil for 

maximum vegetation and bare soil, respectively. Hence, FVC is calculated as [63]: 

FVC =	
���������	�	��������

��������	��������
. (3)

Gutman and Ignatov [31] used low spatial resolution data (0.15 × 0.15) and estimated NDVIveg 

as 0.52 ± 0.03 and NDVIsoil as 0.05 ± 0.03. Similarly, Sobrino and Raissouni [32] provided a threshold 

NDVIveg of 0.5 and NDVIsoil of 0.02 [35]. In this study, the methods by Zeng et al. [34] and Wu et al. 

[35] were adopted with slight modification due our study site being relatively small, the spatial 

resolution, and the fact that we lacked soil spectral reflectance field measurements [31]. The first 

method is invariant to soil characteristics for determining NDVIsoil. Zeng et al. [34] determined 

NDVIsoil by utilizing the percentile of vegetation types using the IGBP land cover classification. They 

used the fifth percentile of the histogram of the maximum NDVI for the barren or sparsely vegetated 

category as the NDVIsoil, which was 0.05, to estimate global FVC. Note, however, that only woody 

cover is estimated as opposed to Zeng et al. [34] whose aim was to assess statistically most likely FVC 

using spectra of soil collected from different datasets. Therefore, woody fractional cover is estimated 

as:  

FVC =	
���������	�	��������

��������	��������
. (4)

The same was applied for SAVI as follows: 
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FVC =	
���������	�	��������

��������	��������
. (5)

The procedure requires that the histogram for each land cover is computed. Considering the size 

of the study area, the histogram for the whole image was computed. The minimum and maximum 

values of NDVI are 0.12 and 0.65. Since the maximum NDVI for this image is 0.65, a lower NDVIsoil 

is suggested for barren and sparsely vegetated areas. In this case, NDVIveg and NDVIsoil are 

approximated as 0.02 and 0.7 for bare soil and maximum vegetation, respectively. The 0.7 is the 

maximum vegetation for the whole KNP. The 0.02 is the threshold for NDVIsoil.  The SAVIsoil is 

thresholded at 0.05 and for maximum vegetation at 1.32 (the maximum for the whole KNP). 

However, the contribution of the NDVIsoil for each pixel has been determined from the pure pixels 

based on its fractional cover of bare soil. The estimation of NDVIsoil can be performed with 

considerable accuracy if available soil reflectance data from in situ measurements exist for the major 

types of soil in a given study area [4,35,36]. Unfortunately, it is challenging to acquire this information 

[4]. Consequently, many previous studies have relied on the Harmonized World Soil Database and 

IGBP land cover to assign NDVIsoil for each vegetation type, especially at regional scale [34,35].  

Wu et al. [35] used the Harmonized World Soil Database (HWSD) Version 1.21 which was 

produced by the International Institute for Applied Systems Analysis (IIASA) and the Food and 

Agriculture Organization of the United Nations (FAO) to determine NDVIsoil for each soil type. The 

HWSD does not cover all the major soil types in KNP due to missing data from the map especially 

for the region of our field data. Hence, a global soil and terrain database at a scale of 1:1 million 

developed by the International Union of Soil Sciences (IUSS), the United Nations Environment 

Programme, the FAO, and the International Soil Reference and Information Centre (ISRIC) [37] was 

used here. Based on Wu et al. [35], the NDVIsoil for the three types of soil in our plot locations (which 

include Regosols, Luvisols, and Nitisols) were thresholded at 0.21, 0.24, and 0.32, respectively. This 

approach slightly differs from Wu et al. [35]. First, a linear method is applied as opposed to Wu et al. 

[35]. Given the small size of the study area, NDVIsoil is considered for each soil type and for each plot, 

while a single value for maximum NDVI (NDVIveg) was considered for all locations. For the NDVI, 

Regosols, Luvisols, and Nitisols have been thresholded at 0.015, 0.02, and 0.02, respectively, while, 

for SAVI, the thresholds were 0.04, 0.05, and 0.06. The three types of soils are described based on the 

World Reference for Soil Resources (2014) according to the International Soil Classification System of 

the Food and Agriculture Organization (FAO) of the United Nations [64]. Regosols are characterised 

as the very weakly developed mineral soils in unconsolidated materials that do not have a mollic or 

umbric horizon. They are generally fine-grained material and are particularly common in semi/arid 

areas [64]. Luvisols have a higher clay content in the subsoil than in the topsoil, as a result of 

pedogenetic processes (especially clay migration) leading to an argic subsoil horizon [64]. Nitisols are 

deep, well-drained, red tropical soils with diffuse horizon boundaries and a subsurface horizon with 

at least 30 percent clay. Nitisols are some of the most productive red tropical soils [64]. 

2.4. Regression Analyses 

In this study, different types of regression models were used to assess the relationship between 

the percent woody cover from the field campaign in 2015 and the independent variables (NDVI or 

SAVI vegetation index). Only 50% of the field data on woody cover (14 plots) was used for model 

calibration while holding the remaining 50% back for validation. The power of our study design was 

assessed by using the Power and Sample Size Calculation software provided by Dupont et al. [65]. In 

this study, with reference to sample size (14 plots), we found statistical power following Dupont et 

al. [65] methods for sample size and power calculations. Our sample size results in a statistical power 

of 0.98. The type of regression analysis depends on the nature of the phenology metric being used. 

The procedure assumes that the NDVI-fractional vegetation cover relationship (or SAVI) is a function 

of vegetation type, the influence of understory and bare soil [60,66–68]. The regression model applied 

for each phenology metrics is explained below: 

(1) Since the assumption to use the mean of the images of chosen MODIS data (NDVIpixel and 

SAVIpixel) does not preclude the presence of bare soil, different regression models were tested for 
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estimating woody cover. Although it has previously been reported that the relationship between 

vegetation indices (especially NDVI) and percent cover depends largely on vegetation type [60], or 

may even have a strong linear relationship with sparse vegetation [66,67], it is not well known how 

the relationship with woody cover would be in KNP. Therefore, simple linear, polynomial and 

logarithmic models were tested for both vegetation indices to find the best fit for percent woody cover 

estimation. 

(2) Only a simple linear regression was applied to NDVIsoil and SAVIsoil determination methods. 

2.5. Assessment of Model Performance 

The assessment of model performance for fractional woody cover from the MODIS NDVI/SAVI 

time series data uses the remaining field plot data (14 plots) not used for calibration. The LiDAR/SAR-

based woody cover map and the MODIS VCF datasets were first compared to the field observations 

to quantify their accuracies. The validation of MODIS VCF with field data uses the MODIS VCF data 

for the year 2014 since the field campaign was in 2015. To assess model performance for woody cover 

estimated in this study, the coefficient of determination (R²) of the regression model was used to 

measure the strength of the relationship between the predicted and the observed values. The 

predicted data for each model are taken as the independent variable and the observed as the 

dependent [69]. In addition, RMSE was used to determine the goodness-of-fit. All MODIS 

NDVI/SAVI woody cover estimates were validated with field data are from year 2014/15. 

2.6. Comparison of Woody Cover Estimates with LiDAR/SAR and Bucini Woody Cover Maps 

The Pearson correlation coefficient is the measure of the bidirectional linear correlation between 

two variables and was used to assess whether woody cover estimates from this study as well as the 

MODIS VCF product are related to the LiDAR/SAR and Bucini woody cover maps. The significance 

of the relationship was also assessed at alpha = 0.05.  

3. Results 

3.1. Model Calibration  

3.1.1. NDVIpixel and SAVIpixel for Woody Cover Estimate 

Data on woody and herbaceous cover, and NDVIpixel and SAVIpixel used for woody cover 

estimation are shown in Table 1. Figure 4 shows the relationship between NDVIpixel and SAVIpixel and 

percent woody cover surveyed during the 2015 field campaign. The NDVIpixel versus the percent tree 

cover (Figure 4a,c,e) had moderate coefficient of determination with R2 between 0.53–0.58 and p < 

0.01. The relationships for linear and polynomial regressions yielded the strongest fits (R2 = 0.56, p < 

0.01 and R2 = 0.58, p < 0.01. Although the difference between linear and nonlinear regression (Figure 

4e: R2 = 0.53, p < 0.01) is not important, the nonlinearity of the NDVI increases with increasing species 

composition. In the dry season, the woody species are active while other PFTs (e.g., grasses) are dry 

making NDVI more sensitive to vegetation. The accuracy of SAVIpixel is higher (Figure 4b,d,f) than 

that of NDVIpixel with R2 = 0.56 to 0.67 (p < 0.01). The saturation of NDVIpixel occurs at a higher percent 

cover than that of SAVIpixel. This is expected since SAVI applied correction factors, which minimise 

the effect of the soil background. Overall, the existing relationship between the NDVIpixel, SAVIpixel 

with percent woody cover implies that they can both be used to estimate percent woody cover. 

Table 1. Woody, grass, bare soil, NDVIpixel and SAVIpixel for woody cover estimation. 

Plot  Woody Cover Grass Cover Bare Soil NDVIpixel SAVIpixel 

1 5 85 10 0.336 0.485 

3 6 85 9 0.289 0.454 

4 10.5 45 44.5 0.264 0.434 

7 12 67 21 0.3492 0.544 

9 17 78 5 0.349 0.499 
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10 20 70 10 0.3547 0.520 

12 30 45 25 0.352 0.511 

15 31 55 14 0.335 0.498 

16 32 35 33 0.375 0.557 

19 35 22 43 0.341 0.502 

21 41 35 24 0.389 0.551 

22 42 30 28 0.346 0.515 

24 45 45 10 0.330 0.562 

27 69 20 11 0.471 0.691 

 

Figure 4. The relationship between NDVIpixel, SAVIpixel and field percent cover estimates with 

regression analyses, simple linear (a and b), polynomial (c and d) and nonlinear regression (e and f). 

3.1.2. NDVI and SAVI for Woody Cover Estimation with NDVIsoil Determination Using a Modified 

Procedure by Zeng et al. [34] and Wu et al. [35] 

Table 2 shows the field plots data for the percent woody, herbaceous, bare soil and the type of 

soil for each calibration plot. Table 2 also indicates the fraction of the NDVI (NDVIZeng and NDVIWu) 

and SAVI (SAVIZeng and SAVIWu) estimated using the two soil background effect correction methods. 
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Figure 5a–d shows the calibration results for NDVI and SAVI. NDVI estimates for both methods 

show an increased accuracy much better than when NDVIsoil is not removed. The invariant method 

for which an NDVIsoil threshold of 0.02 was used has a strong relationship with percent woody cover: 

R2 = 0.67, p < 0.01 (Figure 5a) while the other approach which considered the Harmonized World Soil 

Database to determine the NDVIsoil for each soil type in the plot locations also had a strong 

relationship with percent cover (R2 = 0.67, p < 0.01, Figure 5c). There is a slight difference between the 

two vegetation indices as only three types of soil were found in the plot locations based on the soil 

database.  

The invariant soil determining method for SAVIZeng which threshold NDVIsoil at 0.05, is not very 

effective as its accuracy (R2 = 0.50, p < 0.01) is slightly lower than the initial relationship for which the 

soil contribution is unaccounted. This means that the invariant method applied here may be less 

accurate in inferring woody cover compared to other approaches though validation results might 

show otherwise, while, when considering the soil type in determining the NDVIsoil, a strong 

relationship is observed between the SAVIWu and percent woody cover (R² = 0.80, p < 0.01). In this 

case, the NDVIsoil 0.04 was threshold for Regosols while Luvisols and Nitisols at 0.05 and 0.06, 

respectively. Overall, all vegetation indices have shown a good relationship with the percent woody 

cover. 

Table 2. Estimates of percent cover using NDVI and SAVI with soil determining methods using a 

modified procedure by Zeng et al. [34] and Wu et al. [35] 

Plot 
Woody 

Cover 

Grass 

Cover 

Bare 

Soil 

Grass & 

Bare 

Soil 

Soil 

Types 

NDVIpix

el 
NDVIZeng NDVIWu SAVIpixel NDVIZeng NDVIWu 

1 5 85 10 95 Nitisols 0.336 0.290 0.290 0.485 0.404 0.384 

3 6 85 9 94 Nitisols 0.289 0.244 0.244 0.454 0.469 0.354 

4 10.5 45 44.5 89.5 Regosols 0.263 0.220 0.231 0.434 0.504 0.371 

7 12 67 21 88 Luvisols 0.349 0.306 0.306 0.544 0.426 0.466 

9 17 78 5 83 Regosols 0.349 0.310 0.320 0.499 0.501 0.440 

10 20 70 10 80 Regosols 0.354 0.316 0.326 0.520 0.447 0.463 

12 30 45 25 70 Regosols 0.352 0.318 0.327 0.511 0.454 0.461 

15 31 55 14 69 Luvisols 0.335 0.302 0.302 0.498 0.451 0.437 

16 32 35 33 68 Luvisols 0.375 0.342 0.342 0.557 0.488 0.497 

19 35 22 43 65 Regosols 0.340 0.309 0.317 0.502 0.447 0.456 

21 41 35 24 59 Luvisols 0.389 0.361 0.361 0.551 0.438 0.499 

22 42 30 28 58 Regosols 0.346 0.319 0.326 0.515 0.493 0.474 

24 45 45 10 55 Nitisols 0.330 0.304 0.304 0.562 0.578 0.504 

27 69 20 11 31 Luvisols 0.471 0.457 0.457 0.691 0.683 0.664 
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Figure 5. Calibration of NDVI and SAVI for woody estimate considering two methods for correcting 

soil variation background effects using a modified procedure by Zeng et al. [34] and Wu et al. [35]; 

NDVIZeng (a) and NDVIWu (c), NDVIZeng (b) and NDVIWu (d). 

3.2. Comparison of LiDAR/SAR, Bucini and MODIS VCF Woody Cover with Field Data at Plot Level  

LiDAR/SAR, Bucini and MODIS VCF woody cover estimates were assessed with field 

observations collected (28 plots) in 2015 (Figure 6). The assessment with field estimates indicates that 

the LiDAR/SAR woody cover map has the highest accuracy (R² = 0.45, p < 0.001, Slope = 0.5, RMSE = 

15.90%) followed by Bucini (R² = 0.55; p < 0.001, Slope = 0.5, RMSE = 17.54%) compared to MODIS 

VCF (R² = 0.53, p < 0.001, Slope = 0.05, RMSE = 27.5%). The difference between these woody cover 

estimates is more obvious in the RMSE and Slope (Figure 6). 
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Figure 6. Validation of woody cover estimated from MODIS VCF, LiDAR/SAR, Bucini woody cover 

estimates (2001) observed woody cover from the field plot data 2015. 

3.3. Validation of Woody Cover Estimates 

3.3.1. MODIS NDVIpixel and SAVIpixel Woody Cover Maps 

Table 3 shows field validation plots and NDVIpixel, SAVIpixel as well their corresponding woody 

cover estimated from simple linear, polynomial and logarithmic regression equations. Figure 7a,c 

presents an accuracy assessment of woody cover from the NDVIpixel and SAVIpixel (mean of dry season 

images for 2014/2015) using the field data from 2015. The estimated woody cover using linear 

regression has an R² = 0.40, p < 0.01, slope = 1.01 for NDVIpixel, RMSE = 15.26% and R² = 0.32, p < 0.03, 

slope = 0.79, RMSE = 16.39% for SAVIpixel. The level of accuracy for NDVIpixel and SAVIpixel with 

polynomial regression are not far from the simple linear regression (NDVIpixel: R² = 0.40, p < 0.01, slope 

= 0.89, RMSE = 15.21%; SAVIpixel: R² = 0.32, p < 0.03, slope = 0.78, RMSE = 15.39%). The logarithmic 

model is slightly less accurate for both vegetation indices (NDVIpixel: R² = 0.40, p < 0.01, slope = 0.79, 

RMSE = 15.44%; SAVIpixel: R² = 0.32, p < 0.03, slope = 0.82, RMSE = 16.51%). These results suggest that 

both NDVIpixel and SAVIpixel are sensitive to percent woody cover. However, with reference to the 

scatterplots (Figure 7a,c), the nonlinearity of the two relationships is evident. 

Table 3. Validation of MODIS NDVIpixel and SAVIpixel woody cover estimates. 

Plot 

No. 

Woody 

Cover (%) 
NDVIpixel SAVIpixel 

NDVIpixel Estimated Woody Cover SAVIpixel Estimated Woody Cover 

Linear Polynomial 
logarithmi

c 

Linea

r 
Polynomial logarithmic 

2 5 0.307 0.486 16.17 16.99 16.24 19.35 19.35 19.32 

5 11 0.359 0.550 31.21 29.74 31.98 34.80 34.78 35.73 

6 11 0.385 0.582 38.42 37.07 38.71 42.43 42.41 43.14 

8 12 0.345 0.502 27.08 25.88 27.89 23.19 23.19 23.59 

11 21 0.401 0.573 43.04 42.20 42.80 40.23 40.21 41.04 

13 30 0.371 0.517 34.47 32.95 35.08 26.69 26.68 27.37 
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14 30 0.350 0.514 28.41 27.10 29.23 26.13 26.12 26.77 

17 35 0.347 0.511 27.78 26.52 28.60 25.41 25.40 26.00 

18 35 0.374 0.547 35.24 33.74 35.80 34.08 34.06 35.00 

20 35 0.338 0.503 25.26 24.27 26.04 23.50 23.50 23.93 

23 45 0.338 0.489 25.22 24.24 26.01 19.99 19.99 20.03 

25 55 0.366 0.544 33.20 31.68 33.88 33.19 33.17 34.11 

26 65 0.425 0.625 49.99 50.53 48.65 52.84 52.84 52.62 

28 70 0.489 0.710 68.22 75.92 62.53 73.12 73.17 69.35 

 

Figure 7. Validation of woody cover estimates derived with NDVIpixel and SAVIpixel using regression 

analyses, (a) with simple linear; (b) polynomial; (c) logarithmic regressions. 

3.3.2. NDVI and SAVI Woody Cover Estimation from the NDVIsoil Determination Methods by Zeng 

et al. [34] and Wu et al. [35] 

Table 4 shows field validation plots and their corresponding woody cover estimated using two 

approaches which account for NDVIsoil and SAVIsoil in the estimation. Figure 8a shows the validation 

of woody cover estimates from a modified procedure of vegetation fractional cover estimation by 

Zeng et al. [34] for NDVI (Figure 8a) (R² = 0.40, p < 0.01, slope = 1.06; RMSE = 19.04%) as well as for 

SAVI (Figure 8a) (R² = 0.32, p < 0.3, slope = 1.06; RMSE = 17.34%). The woody cover estimated for both 

vegetation indices using Zeng’s procedure indicated that the approach can be used to infer woody 

fractional cover using dry season images even though the accuracy of the estimated woody cover 

were slightly lower than when NDVIsoil were unaccounted for. There is an overestimation of woody 

cover in the lower percent cover where the contribution of soil is higher demonstrating the 

implication of an invariant NDVIsoil removal approach. Figure 8b shows the validation of woody 

cover estimated from the modified procedure of vegetation fractional cover estimates by Wu et al. 

[35] (NDVI: R² = 0.40, p < 0.01, slope = 0.98; RMSE = 18.28%, SAVI: R² = 0.32, p < 0.02, slope = 0.88; 

RMSE = 19.17%). The accuracy of this approach is slightly higher than for the previous method. The 

difference between the two methods is more obvious in the RMSE and slope demonstrating the 

importance of the NDVIsoil determination method that considers soil type characteristics.  
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Table 4. Validation of MODIS NDVI woody cover maps estimated using two methods of soil signal 

removal. 

Plot 

No. 

Observe 

Woody 

Cover 

(%) 

NDVIpixel SAVIpixel 

Estimated 

Woody 

Cover (%) 

(Zeng et al.) 

Estimated 

Woody Cover 

(%) (Wu et al.) 

Estimated 

Woody Cover 

(%) (Zeng et al.) 

Estimated 

Eoody Cover 

(%) (Wu et al.) 

2.00 5.00 0.307 0.486 28.52 28.99 29.382 33.39 

5.00 11.00 0.359 0.550 39.94 43.83 40.757 47.17 

6.00 11.00 0.385 0.582 45.57 51.16 46.445 54.06 

8.00 12.00 0.345 0.502 31.36 32.68 32.225 36.83 

11.00 21.00 0.401 0.573 43.95 49.05 44.845 52.12 

13.00 30.00 0.371 0.517 33.94 36.04 34.892 40.06 

14.00 30.00 0.350 0.514 33.53 35.50 34.358 39.42 

17.00 35.00 0.347 0.511 33.00 34.81 33.825 38.77 

18.00 35.00 0.374 0.547 39.40 43.14 40.224 46.52 

20.00 35.00 0.338 0.503 31.59 32.98 32.403 37.05 

23.00 45.00 0.338 0.489 28.99 29.60 29.915 34.03 

25.00 55.00 0.366 0.544 38.75 42.29 39.691 45.88 

26.00 65.00 0.425 0.625 53.27 61.17 54.088 63.32 

28.00 70.00 0.489 0.710 68.25 80.65 69.195 81.63 

 

Figure 8. Validation of NDVI and SAVI woody cover estimates from the (a) modified procedure by 

Zeng et al. [34] and the (b) modified procedure by Wu et al. [35]. 

3.3.3. Comparison of Estimated Woody Cover with LiDAR/SAR-Derived and Bucini’s Woody 

Cover Estimates Using Pearson Correlation Analysis and RMSE 

Table 5 presents a correlation coefficient and RMSE of NDVI, SAVI, and MODIS VCF tree cover 

estimates with LiDAR/SAR and Bucini using 14 validation plots from the field campaign in 2015. All 

vegetation indices have a significant relationship with previous tree cover estimates except the 

polynomial model in NDVIpixel with LiDAR/SAR. The linear model had the highest correlation for 

both vegetation indices (NDVIpixel: r = 0.52, p = 0.05 with LiDAR/SAR and r = 0.63, p = 0.014 with Bucini; 

SAVIpixel: r = 0.53, p = 0.05 with LiDAR/SAR and r = 0.59, p = 0.02 with Bucini). However, the 

logarithmic model recorded the lowest RMSE in both NDVIpixel (RMSE = 15.99) and SAVIpixel (RMSE= 

14.93) compared to linear (NDVIpixel: RMSE= 16.46 and SAVIpixel: RMSE = 15.15) and polynomial models 

(NDVIpixel; RMSE = 17.14 and SAVIpixel: RMSE= 15.98). The correlation between MODIS VCF with the 

previous tree cover estimates is however not significant r = 0.39, p = 0.16, RMSE =23.36 with 

LiDAR/SAR and r = 0.40, p = 0.17, RMSE =40.83 with Bucini) and had higher RMSE. 

Table 5. Correlation and RMSE of estimated woody cover with LiDAR/SAR and Bucini estimates. 
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Woody Cover Estimates  

LiDAR/SAR 2008 Bucini 2001 

r 
p- 

Value 
RMSE (%) r 

p- 

Value 
RMSE 

NDVIpixel (Linear)  0.52 0.05 16.46 0.63 0.014 15.15 

NDVIpixel (Polynomial) 0.49 0.07 17.14 0.62 0.016 15.98 

NDVIpixel (Logarithmic) 0.52 0.05 15.99 0.63 0.014 14.93 

NDVI (Zeng’s et al.) 0.52 0.05 19.28 0.59 0.02 12.85 

NDVI (Wu et al.) 0.52 0.05 22.85 0.59 0.02 12.78 

SAVIpixel (Linear) 0.53 0.05 16.74 0.59 0.02 16.66 

SAVIpixel (Polynomial) 0.53 0.05 16.74 0.59  0.02 16.67 

SAVIpixel (Logarithmic) 0.53 0.05 16.42 0.58 0.02 16.28 

SAVI (Zeng’s et al.) 0.52 0.05 19.94 0.59 0.02 12.51 

SAVI (Wu et al.) 0.52 0.05 25.49 0.59 0.02 12.50 

MODIS VCF  0.39 0.16 23.36 0.40 0.17 40.83 

4. Discussion 

4.1. Comparison of LiDAR/SAR, Bucini and MODIS VCF Data 

The previous products on woody cover have been validated by the providers and were found 

relatively accurate. The LiDAR/SAR and Bucini woody cover map have been found the most accurate 

using our field data (Figure 6). Despite the differences between the times of field campaign data that 

were used for this study (2015), the LiDAR/SAR and Bucini [48] woody cover maps are consistent 

with our field measurements (Figure 6). Although LiDAR/SAR woody cover has an advantage since 

LiDAR has the ability to measure vegetation in three dimensions [29,70], another important 

consideration is acquiring the SAR images in July–August 2008 (dry season, leaf-off) to avoid soil 

moisture effects on the radar signal [6]. The Bucini woody cover map was produced from the synergy 

between optical (Landsat ETM+ and JER-S) and SAR data. The accuracy of this product might result 

due to consideration of phenology of woody species (dry season images for the optical dataset to 

maximize discrimination of woody vegetation) as well as for accounting the effects of climate, soil 

characteristics, topography, fire frequency and herbivory in a regression analysis to estimate woody 

cover. 

Despite reported strengths of MODIS VCF datasets observed in many studies [9,70–72], the 

accuracy of the products is lower in savannas, particularly when certain statistical observations are 

put into consideration. The accuracy of MODIS VCF has the highest RMSE (28.6%) of all datasets 

compared here, probably due its model calibration, which only considered cover of trees taller than 

5 m (Figure 6). This simply means that there is an underestimation of tree or woody cover from the 

MODIS VCF in this region where many trees are lower than 5 m. The underestimation of woody 

cover from the MODIS VCF compared to in situ data observed here is similar to the study by Brandt 

et al. [3], whose estimate of woody cover in the Sahel was nine times higher than the MODIS VCF. 

Consequently, low accuracy of MODIS VCF as a proxy for overall woody cover has been reported in 

the scientific literature [7,25,73]. 

The use of a large number of phenology metrics acquired in different periods regardless of 

vegetation dynamics [72,74], the presence of bad pixels (haze, cloud cover and shadow), the training 

datasets (regression tree usually require large samples), and limitations inherent in the MODIS 

viewing geometry (the effects is more with the individual bands than the vegetation index-NDVI) 

may be responsible for the limitations of the MODIS VCF in savannas. None of the MODIS VCF 

(2014) pixel values was of bad quality within the field plots used for this study. Consideration of the 

seasonal vegetation dynamics is useful for global scale mapping of woody cover in savannas using 

space observations. This is due to large differences in vegetation phenology during the wet and dry 

seasons [75] and consequent limitations such as cloud cover and sensor viewing geometry, which 

may affect the interannual and seasonal variation of woody/herbaceous phenology [41,76].  

4.2. The NDVIpixel and SAVIpixel 
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The composite dry season images used for vegetation indices to estimate woody cover in KNP 

were accurate (Figure 7a–c). The validation of woody cover estimated from the NDVI showed a lower 

error (RMSE = 15.26%, 15.21%, 15.44% for the linear, polynomial and logarithmic model respectively) 

for all models compared to SAVIpixel (RMSE = 16.39%, 16.39%, 16.51% for linear, polynomial and 

logarithmic model, respectively) (Figure 7a–c), illustrating the strong dependence of NDVI on woody 

canopy structure during the dry season in KNP. This also demonstrated the presence of a 

photosynthetically active woody layer in the dry season as previously observed [50]. The relationship 

between the NDVI and PFT types depends on the nature of the ecosystem in question [33,41,60].  

The relationship between NDVIpixel / SAVIpixel and percent woody cover is approximately linear 

(Figure 7a). Most of the plots used for woody cover in this study are within the granitic zone, where 

soil types differ from the basaltic zone. The results discussed in this section agree with previous 

studies [60,66,67]. A recent study found a linear relationship between FVC and the EVI as well as the 

SAVI vegetation index. In the same study, the relationship between the NDVI and FVC was nonlinear 

due to saturation effects at high vegetation fractions, the presence of shadow as well as the influence 

of soil background [77]. 

There is strong correlation between SAVIpixel / NDVIpixel and Bucini / LiDAR/SAR woody cover 

(Table 5). At the lower percent woody cover, the points are clustered. This demonstrated the influence 

of radiative transfer from the surface on canopy reflectance especially where there is mixed woody, 

herbaceous and bare soil fractions [70,78–80]. Therefore, in a sparse vegetation cover, radiative 

interactions cause soil to be prominent and canopy visible reflectance will contain a strong 

backscatter component. The soil reflectance effect is less prominent in the NIR canopy reflectance, 

since multiple scattering of NIR radiation by vegetative components dominate. Hence, the influences 

of soil reflectance reduces with decreasing canopy gaps [36,81].  

4.3. Woody Cover Estimated Using Two NDVIsoil and SAVIsoil Determination Methods 

The assessment of woody cover maps from the soil determination methods indicated a moderate 

linear relationship between the predicted and observed percent woody cover (Figure 8a,c). Although 

the slope of the regression line for both vegetation indices were higher (slope ranges from 0.88 to 1) 

(Figure 8a,c) compared to woody cover estimates without removal of the soil signal (slope ranges 

from 0.78 to 1) (Figure 8a), the RMSE is still high with soil determination methods. The RMSE for 

woody cover estimates without soil signal removal ranges between 15.21–16.51%. In contrast, the 

RMSE for the invariant method is 19.04% and 17.34% for the NDVI and SAVI vegetation indices 

estimates, respectively, while the RMSE for the variant method is 18.28% and 19.17% for the NDVI 

and SAVI estimates, respectively. Therefore, RMSE increases to more than 3% for the NDVI and about 

5% for SAVI. The RMSE for SAVI vegetation index increases to about 2% with an invariant method 

and 4% with variant method. The SAVI vegetation index was found to be less sensitive to soil signal 

removal than the NDVI. SAVI is one of the vegetation indices specifically developed to reduce soil 

backgrounds effects. Although soil colour is useful for differentiating soil reflectance [80], soil 

moisture was considered an important factor in influencing vegetation indices [82]. From the results 

in Figure 8, uncertainty in the estimates of percent woody cover at lower cover is high in all methods. 

The second approach of the soil determination methods overestimated low percent woody cover 

values. This can be explained by the sensitivity of the canopy NDVI or SAVI to soil background or 

the result of changing canopy structure, which might decrease in the NIR reflectance and increasing 

visible reflectance consequently leading to reduced NDVI. In addition, the sensitivity of vegetation 

indices to soil backgrounds was found to be greatest in the intermediate level of vegetation cover 

[36,83]. It is usual to overestimate percent woody cover whenever soil contribution is underestimated 

and vice versa [4]. Overall, despite the uncertainty in the estimation of percent woody cover with the 

soil determination approaches used in this study, heterogeneity is present in the woody cover 

estimates derived from these approaches.  

4.4. The Uncertainties and Sources of Errors and Proposed Improvements  
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While our results demonstrated the potential of MODIS data to estimate percent woody cover 

from vegetation indices, woody cover estimated in this study has some limitations and remaining 

uncertainties that must be considered: 

(1) Phenology 

Phenology of PFTs in savannas is usually influenced by many environmental factors [84] 

Specifically, woody phenology is influenced mainly by temperature and day length [85], or 

precipitation and disturbance in certain conditions [86]. For these reasons, the estimates of percent 

woody cover from passive optical remote sensing are less accurate compared to high-resolution 

datasets. While high resolution data such as LiDAR (active optical data) can determine woody canopy 

cover by measuring its 3D structure, the estimates from the passive optical imaging datasets mostly 

rely on the green canopy cover within a pixel [3].  

The grass layer (fraction of photosynthetic vegetation) in savannas may have changed from 85% 

to 8% and the fraction of non-photosynthetic vegetation of the same layer may increase from 7% to 

79% between the beginning and end of dry season [62]. Although careful attention was given to 

defining the dry season, woody/herbaceous cover separation can be affected by certain grass species 

that are supported by soil moisture and temperature [28]. In savannas, certain environmental factors 

favor grass growth and influence its phenology, productivity and biomass allocation [87,88]. 

Temperature and soil moisture are generally not limiting factors of grass productivity in KNP [28]. 

This might contribute to the overestimation of woody cover, especially in a highly mixed 

woody/herbaceous area. In addition, the time differences between the LiDAR/SAR, Bucini, and field 

data campaign may affect the accuracy assessment of the two products from MODIS compared here. 

Although the MODIS vegetation indices (e.g., NDVI) are less sensitive to illumination than individual 

bands, as previously reported in the literature, the estimates of woody cover in this study may well 

contain remaining uncertainties despite being specific to a particular season [41,76]. The temporal 

granularity of the MODIS NDVI products of 16 days limits the temporal precision of the detection of 

changes in greenness. Denser time-series data would be preferable. 

(2) The ground data (field plot data on percent woody/herbaceous cover) 

The calibration data used in our models may not be the representative of all species over the 

KNP landscape. The field method for woody cover estimation is a visual approach which may also 

constrain the accuracy of our models due to remaining uncertainties in the field data collection. 

However, the results presented in this study demonstrated that percent woody cover can be 

estimated from vegetation indices in savannas, and that a single regression model based on our field 

data indicated RMSE between 15–21%. However, while the accuracy assessment indicates lower 

errors, percent woody cover of <40%, where spectral signatures are probably dominated by 

understorey (dry grass) and soil, is not highly correlated with the field measurements. This might 

arise due to the presence of soil and dry grass, underestimation of percent woody cover in the field 

campaign or changes in woody phenology due to fire over the period [89]. For both calibration and 

validation plots, there are only a few plots with percent woody cover >40%. This means that, if the 

regression models are to be developed and applied consistently over the large area, it is important 

that they are established on a much larger sample than as presented in the current study. This may 

reduce uncertainty and increase model accuracy. 

(3) NDVIsoil estimation 

The use of in situ measurements of soil reflectance remains a crucial step for an effective 

determination of NDVIsoil in a pixel to estimate woody cover fraction [4,82,90], especially in savannas 

where the availability of vegetation indices at MODIS resolution of 250 m is essential for capturing 

vegetation and bare soil. One of the greatest challenges for woody cover estimation is the lack of soil 

reflectance since soil reflectance varies with soil type and characteristics (e.g., soil moisture).  

In this study, as demonstrated by the validation results using different models, the influence of 

NDVIsoil is minimal. Though the estimates of woody cover from the linear regression using soil 

determining methods had a slope closer to 1 (Figure 8a,b) for both vegetation indices, the NDVIpixel 
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and SAVIpixel had the lowest RMSE (Figure 7a). This might be due to smaller size of the field plot data 

as well as difficulties in matching the soil type characteristics for both validation and calibration plots. 

Woody cover estimation with these approaches might introduce errors in a situation where only 

woody cover is being estimated. Challenges in woody/herbaceous or soil separation remain critical 

to model accuracy. However, the methods would have been more accurate if a larger environment is 

considered as some of these approaches are insensitive to a particular land cover type [34]. The 

influence of spectral response pattern of both vegetation and soil can have strong temporal and 

spatial effects [58]. The spatial effects may be negligible if a small area is considered. The temporal 

effects for soil [91] and vegetation are important as the species keep changing throughout the growing 

period, coupled with sensor limitations [33,41,92].  

Smallman et al. [88] evaluated the role of repeated woody biomass estimates in constraining the 

dynamics of the major ecosystem carbon pools. They highlighted the challenges with dead organic 

carbon stocks and soil using the Harmonised World Soil Database (HWSD) to account for bare soil. 

In their estimates of carbon stocks, the in situ soil carbon observations have a lower uncertainty than 

those based on the HWSD. They stressed that the impact of the HWSD prior is reduced due to lack 

of a robust assessment of the uncertainty associated with the database and the lack of information on 

the time for which the priors are representative, necessitating a conservative use of the database. In 

situ measurements of soil reflectance (if available) would be more useful regardless of spatial scale 

[36,82,91]. 

5. Conclusions 

A remote sensing-based model of woody cover retrieval in African savanna was developed from 

vegetation index metrics based on NDVI and SAVI derived from MODIS data and field data from 28 

sites in KNP. The models were developed on the understanding that during the dry season only 

woody species are photosynthetically active. A strong linear relationship was found between the 

phenology and woody cover observations from a field campaign in 2015. The accuracy of the 

estimated woody cover had R² = 0.40, p < 0.01, slope = 1.01, RMSE = 15.26% and R² = 0.32, p < 0.03, 

slope = 0.79, RMSE = 16.39% for NDVIpixel and SAVIpixel, respectively. The percent woody cover 

estimated from the soil determination methods had an improved slope for both NDVI and SAVI but 

a slightly higher RMSE. Although it was not the primary objective of this study, it turns out that the 

LiDAR/SAR estimate is more accurate for woody cover estimates (R² = 0.45, p < 0.001, Slope = 0.5, 

RMSE = 15.90%) than other products tested in this study. The maps of woody cover will be useful in 

understanding woody/grass interactions in wooded savannas. Future work will have to ascertain the 

transferability of the method to savanna sites worldwide. 
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