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Abstract. The long term properties, like co-existence and extinction, are usually determined by the demographics of the competing
species or other competitive advantages. In this paper we consider the effect of conspecific support on the co-existence of species.
We show that, even if the competing species have the same demographics and interaction, their co-existence can be destabilized
by sufficient level of conspecific support. When considering large number of species the conspecific support destabilizes the co-
existance equilibrium, thus producing a pattern of extinction and varied levels of existence. Upscaling the model to continuous
space variable leads to model of pattern formation via local self-activation and lateral inhibition.

Introduction

Conspecific support is common survival strategy used by living organisms. It is typically local and is manifested
differently for different species, e.g. biofilms of bacteria, packs of dogs, herds of grazers, patches of grass in arid areas,
patches of forest in savanna, etc. The basic mechanisms for conspecific support are joint defence, joint acquisition and
retention of resources, better mating opportunities, etc. The conspecific support usually results in the so called Alee
Effect - positive correlation between the per capita growth rate and the population density when the population density
is sufficiently small, [8]. When conspecific support is essential for survival at low population density, we have a strong
Allee Effect, characterised by the existence of minimum survival level, below which the species goes extinct.

In this paper we show the importance of conspecific support for competing species or subpopulation groups.
More precisely, in the case of two competing species, the conspecific support may destabilize a qualified competition
co-existence. In the case of n species the same mechanism leads to pattern of existence and extinction, which in
essence is a mathematical representation of the Gierer-Meinhardt theory of pattern formation via local self-activation
and lateral inhibition, [3], [6]. The model is upscaled from discrete to a continuous space variable by using nonlocal
integral operators. The obtained model is already discussed in [4], [1]. It is interesting to establish the link with discrete
space models with conspecific support.

Model of two competing species

Let us consider first a general system of two competing species of Kolmogorov-type

du
dt

= ug1(u, v), (1)

dv
dt

= vg2(u, v), (2)

where g1 and g2 are smooth real functions defined on R2
+. Competition of the species implies that g1(u, v) is decreasing

on v and that g2(u, v) is decreasing on u. We study (1)–(2) as a dynamical system. A common references on the topic
is [9]. Our main interest is in the existence or extinction of any the species. We recall the following definition.



Definition 1 A population with size or spatial density u = u(t), t ∈ [0,+∞) is said to be uniformly strongly
persistent if there exists ε > 0 such that for every for u(0) > 0 we have lim inf

t→+∞
u(t) ≥ ε, [7].

Equivalently, uniform strong persistence of a population means that for any positive initial state the populations
is uniformly bounded away from zero for sufficiently large t.

We make the following assumption regarding the two populations modelled in (1)–(2):

Each population in the absence of the other has a unique positive equilibrium,
which is globally asymptotically stable on (0,+∞). (3)

We denote these equilibria by p and q, respectively.

Theorem 1 The model (1)–(2) defines a positive dynamical system on R2
+. Further, both populations uniformly

strongly persist if and only if g1(0, q) > 0 and g2(p, 0) > 0.

Proof: The proof comprises the following three steps:

(i) The coordinate exes are invariant set. Hence, so is R2
+.

(ii) It follows from the assumption (3) that the set [0, p] × [0, q] is positively invariant and attractive.
(iii) Using the condition on g1 and g2 given in the theorem and the competition assumption, we obtain that the

interval [0, p] on the x-axis and the interval [0, q] on the y-axis are both positively invariant and repelling
subsets of [0, p] × [0, q]. The uniform persistence then follows from the compactness of [0, p] × [0, q].

�

FIGURE 1. Typical trajectories of the solutions of (4)–(5) under quali-
fied competition.

Example: The system with linear per capita
growth rate [2, Section 5.1].

du
dt

= u(1 − au − bv), (4)

dv
dt

= v(1 − cu − dv), (5)

where a, b, c, d are positive constants. For this sys-
tem the competition is called qualified or weak if
a > c and d > b. As an easy consequence of The-
orem 1 we obtain that if the competition is quali-
fied, then both species uniformly strongly persist.
Indeed, for this example we have g1(u, v) = 1−au−
bv, g2(u, v) = 1 − cu − dv, p = 1

a , q = 1
d . Hence,

g1(0, q) = 1 − b
d > 0 and g2(p, 0) = 1 − c

a > 0.
Therefore, Theorem 1 applies. Further, one can
also show that, the system has a positive equilib-
rium, which is globally asymptotically stable on
the interior of R2

+, as illustrated in Figure 1.

Model of two competing species with conspecific support

We model the conspecific support multiplying the per capita growth rate by a linear factor. We exclude from this oper-
ation the density independent mortality rate, which reflects the maximum life-span of the species and is independent
of conditions or support. In this way we obtain from (1)–(2) the following system

du
dt

= u(1 + β1u)(g1(u, v) + µ1) − µ1u, (6)

dv
dt

= v(1 + β2v)(g2(u, v) + µ2) − µ2v, (7)



where β1, β2 are coefficients in the respective linear factors and µ1, µ2 are the density independent death rates of the
two species. For β1 = β2 = 0 the system (6)–(7) is exactly (1)–(2). For positive velues of β1 and/or β2 the model
(6)–(7) is of the same form as (1)–(2) with right-hand sides

g̃1(u, v) = (1 + β1u)(g1(u, v) + µ1) − µ1,

g̃2(u, v) = (1 + β2v)(g2(u, v) + µ2) − µ2.

It is easy to see that if β1 is sufficiently large then for small population the per-capita growth rate of the first species
increases as x increases. This is the so called Alee Effect. More precisely, due to the specific form chosen for represent-
ing the conspecific support, we have a weak Alee Effect, since there is no additional positive equilibrium generated by
the conspecific support. Similar argument holds for the second species. Let us note that in the strong Alee Effect we
have an unstable positive equilibrium referred to as a minimum survival density. We show that a type of conspecific
support resulting only in weak Alee Effect may destabilize the co-existence of the species. Indeed, g̃1(x, 0) has a root
p̃(β1, µ1) > p. Then, if g2 is unbounded below and p̃(β1, µ1) is sufficiently large, we have g̃2( p̃, 0) = g2( p̃, 0) < 0, that
is, the second species does not persist uniformly.

Similar consideration holds for the root q̃(β2, µ2) of g̃2(0, y) and the persistence of first species.

Example: Destabilizing the qualified competition equilibrium.
The model (6)–(7) in the case of the example (4)–(5) has the form

du
dt

= u(1 + βu)(1 + µ − au − bv) − µu, (8)

dv
dt

= v(1 + βv)(1 + µ − cu − dv) − µv. (9)

We deliberately choose the constants related to conspecific support to be the same for the two species in order to
illustrate that the destabilization of co-existence is not a result of any competitive advantage of one over species the
other.

Theorem 2 If µ >
a
c
− 1 > 0, there exists βcrit such that for the model (8)–(9) we have g̃2( p̃(β, µ), 0) < 0 and

g̃1(0, q̃(β, µ)) < 0 for β > βcrit.

FIGURE 2. Typical trajectories of the solutions of (8)–(9) for β > βcrit.
Parameter values: a = 2.1, c = 2, d = 1.1, b = 1, β = 5, µ = 0.5.

Proof: Let µ >
a
c
− 1 > 0, be fixed. Then the

unique positive root of g̃1(x, 0) = 0 is

p̃(β) =
µ + 1

2a
−

1
2β

+

√(
µ + 1

2a
−

1
2β

)2

+
1

aβ
.

Through standard techniques one can see that p̃ is
in increasing function of β and we have

lim
β→0

p̃(β) =
1
a

= p , lim
β→+∞

p̃(β) =
µ + 1

a
.

Hence,
g̃2(p̃(β), 0) = 1 − cp̃(β),

considered as a function of β, decreases from
1 − c

a > 0 to 1 − c
a (µ + 1) < 0. Therefore, there

exists β(1)
crit ∈ (0,+∞) such that g̃2( p̃(β(1)

crit), 0) = 0
and g̃2( p̃(β), 0) < 0 for β > β(1)

crit.
Similarly, there exists β(2)

crit such that g̃1(0, q̃(β)) < 0 for β > β(2)
crit. Then βcrit = max

{
β(1)

crit, β
(2)
crit

}
is the threshold

value of β required in the statement of the theorem. �
Typical set of trajectories when β > βcrit is presented on Figure 2.



Model of n competing species

In this section we show that the destabilization of co-existence due to conspecific support in the case of two species
may lead to pattern formation in the case of many species. We consider n species, arranged in the order of their
indexes, where every species interact competitively with its two neighbours. To avoid the influence of other factors,
we consider that all species have the same vital dynamics. In fact, we can also consider them groups of the same
species, e.g. packs of dogs, prides of lions, patches of grass. Then a model with linear per capita growth rate can be
written in the form

dui

dt
= ui(k − αui − ui−1 − ui+1), i = 1, ..., n, (10)

where ui is the size of the ith species/population group. As usual in the search for pattern formation, we use periodic
boundary condition, that is

un+1 = u1.

Theorem 3 If α > 2, then all n species uniformly strongly persist.

Proof: Similar to Theorem 1 we establish that the model (10) defines a dynamical system on Rn
+ and that the

set Ω =
[
0, k

α

]n
is positively invariant and attractive. Hence it is enough to consider the model on Ω. For every

i ∈ {1, 2, ..., n} we have on the set Ω the following inequality

dui

dt
≥ ui

(
k − αui −

k
α
−

k
α

)
= ui

(
(α − 2)k

α
− ui

)
.

Therefore,

lim inf
t→+∞

ui(t) ≥
(α − 2)k

α
> 0.

�
Including conspecific support for each individual species or population group similar to (6)–(7 and (8)–(9) we

obtain the following system

dui

dt
= ui(1 + βui)(k + µ − αui − ui−1 − ui+1) − µui, i = 1, ..., n, un+1 = u1. (11)

Theorem 4 Let α > 2. If µ > (α − 2) k
2 , there exists βcrit such that for β > βcrit the system (11) has attractive

boundary equilibria.

Proof: We will give the proof in the case when n is even. The proof for when n is odd is slightly more technically
complicated but uses essentially the same argument.

Let ϕ(θ) = (1 + βθ)(k + µ − αθ) − mu. It is easy to see that φ has a unique positive root, which we denote by θ∗.
Clearly,

ϕ′(θ∗) < 0. (12)

Further, we have

ϕ(
k
2

) = (1 + β
k
2

)(µ − (α − 2)
k
2

) − µ.

Taking into account the inequality given for µ, ϕ( k
2 ) is linear increasing function of β. Therefore, there exists βcrit such

that
β > βcrit =⇒ ϕ(

k
2

) > 0. (13)

Further, one can observe that since φ is a quadratic function of θ, (13) implies that

β > βcrit =⇒ θ∗ >
k
2
. (14)

We will show that for β > βcrit the system has an attractive boundary equilibrium.



Let β > βcrit and let us consider the equilibrium

x∗ = (θ∗, 0, θ∗, 0, θ∗, ..., θ∗, 0).

Every even row of the Jacobian of the right hand side of (11) at x∗ contains a single nonzero entry, which is at the
diagonal and is equal to k − 2θ∗. Therefore, the Jacobian has n

2 eigenvalues equal to k − 2θ∗, which due to (14) are
negative. After these rows and respective columns are removed, the remaining submatrix is diagonal with diagonal
values equal to θ∗ϕ(θ∗). Therefore, the remaining n

2 eigenvalues are all equal to θ∗ϕ(θ∗), which is negative due to (12).
Hence, the equilibrium x∗ is stable and attractive. �

Theorem 4 shows that at least for β > βcrit there is no uniform strong persistence of all species. This property
opens the possibility for emergence of patterns involving extinction of some species. The simulations presented on
Figures 3–5 were implemented with k = 3, α = 2.1, µ = 0.5, β = 5, n = 100. In every figure we have time
diagram (above) and a ”space” diagram (below). In every figure the time diagram indicates that the equilibrium for
each species is obtained. Further, it indicates that the obtained equilibrium of the model is stable with respect to small
perturbations, e.g. at least of the size of the roundoff error. The ”space” diagram represents the sizes of each species
that the obtained equilibrium in a bar-chart, where the species are arranged in the order of their indexes. The initial
condition is a random vector, every coordinate uniformly distributed in [0.01, 1.01]. We note that different pattern are
obtained in different runs. Three pattern are given on Figures 3–5.

FIGURE 3. Pattern 1 of n competing species with conspecific support. Regular sequence of persistence and extinction as given in
x∗.



FIGURE 4. Pattern 2 of n competing species with conspecific support.

FIGURE 5. Pattern 3 of n competing species with conspecific support.



Upscaling from discrete to continuous model

For large n the vector (u1(t), u2(t), ..., un(t)) is often modelled as a function u(t, x), where x is a continuous variable in
a real interval Ω. Further, for large n one can assume interaction not only with the immediate neighbours, but with
their neighbours and beyond. Then the analogy of the growth limiting factor in (11) is an integral of the form

I(u; t, x) =

∫
Ω

ψ(y − x)(k + µ − αu(t, y))dy,

where the support and the shape of the kernel ψ determines the span and type of interaction. Similarly, the growth
with conspecific support factor in the case of a continuous variable x is modelled as

A(u; t, x) =

∫
Ω

φ(y − x)u(t, y)(1 + βu(t, y))dy,

where the support and shape of φ determines the span and type of conspecific support for growth. We may assume
that φ and ψ are normalized so that ∫

Ω

φ(x)dx =

∫
Ω

ψ(x)dx = 1. (15)

For simplicity we also assume that they have compact support. Naturally, the supp(φ) is expected to be much smaller
than supp(ψ).

The upscaling of the model (11) to continuous space variable is of the general form

∂u(t, x)
∂t

∝ A(u; t, x) × I(u; t, x) − µu(t, x). (16)

Further, we need to take into account that the growth limiting factor I(u; t, x) could be negative, while u(t, x) = 0 and
u(t, x) is nonnegative over Ω. Hence, with a modification to exclude the possibility of obtaining negative values the
model is

∂u(t, x)
∂t

=


r
∫

Ω

φ(y−x)u(t, y)(1+βu(t, y))dy ×
∫

Ω

ψ(y−x)(k+µ−αu(t, y))dy−µu(t, x) if u(t, x)>0,

max
{

r
∫

Ω

φ(y−x)u(t, y)(1+βu(t, y))dy ×
∫

Ω

ψ(y−x)(k+µ−αu(t, y))dy−µu(t, x), 0
}

otherwise,
(17)

where r is a positive constant.
The model (16) was first introduced in [4] to model patterns in tiger bush. The model (17) was used in [1] for

modeling the algae Anabaena. It is quite interesting that these models can be linked to models like (11) of competing
species with conspecific support and, in fact, can be derived through upscaling of (11) from discrete to continuous
space variable.

For the simulations in Figures 6 and 7 we use the same values of the parameters as for the simulation on Figures
3–5 with the kernels φ and ψ given in the form

φ(x) =

{
(L1 − x)L−2

1 if |x| ≤ L1
0 if |x| > L1

, ψ(x) =

{
(L2 − x)L−2

2 if |x| ≤ L2
0 if |x| > L2

,

where L1 and L2 are positive reals such that L1 < L2. The simulations are run until a stable pattern occurs. Figure 6
is obtained for L1 = 0.8 and L2 = 4. The pattern is very similar to the one in Figure 3. For smaller ratio L2 : L1 we
obtained wave-like patterns not involving any local extinction. No similar patterns were obtained for the model (11).
In Figure 7 we present a pattern obtained for L1 = 1 and L2 = 3.

We need to remark that these patterns are formed essentially through the Gierer-Meinhard [3] mechanism of
self-activation, represented by the operator A, and lateral inhibition, represented by the operator I. Typically, this
mechanism is represented mathematically via a system of reaction diffusion equations satisfying the Turing instability
condition [10], [6]. Here we show, among other things, that different mathematical representations of the Gierer-
Meinhard theory of pattern formation are possible.



FIGURE 6. Stable pattern obtained for L1 = 0.8 and L2 = 4.

FIGURE 7. Stable pattern obtained for L1 = 1 and L2 = 3.

Conclusion

It is widely accepted that the Turing mechanism for systems of reaction-diffusion equations is appropriate way for
modeling pattern formation, [10]. In fact, it seems that it is widely believed that it is the only way, particularly
given that Gierer and Meinhardt derived independently the same model to represent their theory of biological pattern
formation, [5].

We propose two alternative mechanisms for pattern formation, one in a discrete-space model and one in a
continuous-space model. In both cases the pattern formation is due to local self-activation (conspecific support) and
lateral inhibition by exhausting the resource.
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