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ABSTRACT 

Oscillations occurring in industrial process plants often reflect the presence of severe disturbances 

affecting process operations. Accurate detection and root-cause analysis of oscillations is of great interest 

for the economic viability of the process operation. Standard oscillation detection and root cause analysis 

methods require a large enough number of data samples. Unrelated transient changes superimposed on 

the oscillation pattern reduce the number of useful data samples. The present paper proposes simple 

heuristic methods to effectively detect and remove two types of transient changes from oscillatory signals, 

namely step changes and spikes. The proposed methods are used to pre-process oscillatory time series. 

The accuracy gained when using auto-correlation function method for oscillation detection (Thornhill et 

al., 2003) and transfer entropy method for oscillation propagation (Bauer et al., 2007) is experimentally 

evaluated. The methods are carried out on a 1,3-Butadiene production process where several 

measurements showed an established oscillation occurring after a production level change.  

Keywords: Plant-wide disturbances; oscillations; pre-processing; transient removal; fault detection, 

chemical process. 
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1. INTRODUCTION 

Disturbances occurring in industrial process systems can travel through the interconnected process 

equipment and appear in several measurements in the process resulting in what is often termed ‘plant-wide 

disturbances’ (Thornhill and Horch, 2007). Oscillatory disturbances are a common type of plant-wide 

disturbances affecting industrial process systems. The detection and the diagnosis of these oscillatory 

disturbances are of great importance as these disturbances can increase the level of process variability and, 

ultimately, decrease the profit of the process operation (Shunta, 1995). In Horch (2007) the author defines 

oscillations as “periodic variations that are not completely hidden in noise”. Several methods for 

oscillation detection are available in the literature and listed in Thornhill and Horch (2007). Among 

oscillation detection methods with successful industrial implementation (Bauer, et al., 2016) we can cite 

methods based on spectral PCA analysis (Thornhill, et al., 2006), methods based on the regularity of the 

integral absolute error (IAE) (Hägglund, 2005; Forsman & Stattin, 1999), methods based on the decay 

ratio of the auto-correlation function (Miao & Seborg, 1999), methods based on zero-crossings of the 

auto-correlation functions (Thornhill, et al., 2003) and methods based on wavelet analysis (Matsuo, et al., 

2004).  

Methods for the isolation of the root cause of an oscillatory process disturbance include surrogate testing 

(Thornhill, 2005, Choudhury et al., 2007), bi-spectra and related bi-coherence (Choudhury et al., 2004), 

harmonics (Zang and Howell, 2005) and spectral envelope method (Jiang et al., 2007). A method using 

the spectral envelope is proposed in Jiang et al., (2007). Yuan and Qin, (2014) use Granger causality in the 

spectral domain to isolate the root cause of oscillatory disturbances while in Bauer et al. (2007), transfer 

entropy, a metric of causality based on information theory introduced in Schreiber (2000) is adapted for 

the root cause analysis of oscillatory as well as non-oscillatory process disturbances. 

The authors in Jelali and Huang (2009) claim that oscillation detection methods can nowadays be 

considered as a largely solved research topic. In industrial practice, however, the presence of transient 

disturbances in the oscillatory signals can lead to a decrease of the accuracy of standard oscillation 

detection methods (Jelali and Huang, 2009), (Zhou, et al., 2017) and therefore reduce their industrial 

acceptance.  

In Cecílio et al. (2014), a transient disturbance is defined as “a short deviation of a measurement from its 

previous and subsequent trend. In addition, this deviation should seldom repeat within the time horizon of 

analysis. After the occurrence of a transient disturbance, the measurement may return to its previous trend 

or follow a different trend”. Figure 1 exemplifies two types of transient disturbances affecting an 

oscillatory signal and shows that their presence can mislead a visual inspection of oscillations. 
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Detection of transients affecting oscillatory signals is also a topic of investigation in power systems (Cai et 

al. 2017). In the areas of power systems protection and power quality assessment, methods based on time–

frequency domain analysis such as wavelet transform (Liu et al. 2014, Costa 2014 and Huang et al. 2002) 

are proposed for transient detection. Transient disturbance detection in power systems differs nevertheless 

from the problem studied in the present work. The topic here is the detection and the root cause analysis of 

oscillatory disturbances affected by transients. In power systems protection and power quality assessment, 

the objective is the detection of transients, while the oscillatory components reflect the nominal behaviour 

of power, voltage or current signals in an AC power system. In Cecílio, et al. (2014), a method based on 

nearest neighbours is proposed to detect transients and in Cecílio, et al., (2016) a method based on nearest 

neighbour imputation is used to remove transients. 

Common industrial practice is either to exclude from the analysis time intervals exhibiting transients or to 

completely drop out signals with transients (Tikkala, et al., (2014)). However, in order to allow accurate 

oscillation detection, the oscillation should persist during eight cycles at minimum and excluding time 

intervals with transients can hinder that (Thornhill, et al., 2003). The same argument holds for root cause 

analysis methods: for the transfer entropy method, a minimum number of 2000 samples are recommended 

in Bauer et al.(2007). A typical example is the start of an oscillation during an intermediate phase of the 

process operation such as a grade transition, a production level change or a start-up. Pre-processing 

methods that are able to remove transients from univariate oscillatory time series are therefore needed to 

fully exploit the available process data when applying oscillation detection and root cause analysis 

methods. The problem is also different from outlier detection (Liu et al., 2004), which aims at removing 

single points.  

The empirical mode decomposition (EMD) method proposed in Srinivasan and Rengaswamy (2007) 

allows the detection and the quantification of multiple oscillation modes by iteratively applying it on an 

extracted non-constant mean. This approach inherently removes the non-constant mean (low-frequency 

oscillation mode) from the signal. Multivariate empirical mode decomposition (MEMD) proposed by 

Aftab et al.(2018) extends the EMD method to plant wide oscillation detection and benefits from the same 

advantage i.e. the ability to deal with the slowly varying trends. Alternatively, the direct cosine transform 

(DCT) introduced in Li et al. (2010), isolates different frequency components, e.g., multiple oscillations, 

of a time series and detects the oscillations by checking the regularity of zero-crossings of the isolated 

components. Likewise, the DCT method is able to handle slowly varying trends by isolating them (low-

frequency component) and discarding them based on the low regularity of the corresponding component 

zero crossing. 
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On the other hand, transient changes like spikes and steps affecting the oscillating time series are not 

discussed in Srinivasan and Rengaswamy (2007), Li et al. (2010) and in Aftab et al.(2018). The 

particularity of these transients is a clear localization in the time domain but no precise localization the 

frequency domain. This aspect motivates investigating time domain approaches for the pre-processing of 

oscillating time series affected by such transients. 

The present work extends the analysis of the transient detection and removal methods introduced in Zhou, 

et al. (2017) where the authors proposed heuristic methods to detect and to remove transients from 

oscillatory signals by applying it in conjunction with oscillation and transfer entropy method to study the 

effects. In addition to this expansion, the procedure is improved and formulated precisely in mathematical 

terms. The methods are here used as a pre-processing step for oscillation detection and root cause analysis 

methods in an offline context. In this work, the performance is evaluated on simulated data as well as on 

an industrial case study.  

The remainder of the paper is organized as follows. The autocorrelation function (ACF) oscillation 

detection method and transfer entropy based causal analysis are briefly introduced In Section 2. In Section 

3, the proposed methods for steps and spikes detection and removal are described in detail. In Section 4, a 

sensitivity analysis to the tuning parameters is done and recommendations for default parameter settings 

are provided. The proposed methods are tested first in simulation in Section 5 then applied on a real 

industrial dataset collected from a 1,3-Butadiene process to demonstrate the improvement both in 

oscillation detection and root cause analysis in Section 6. Finally, Section 7 concludes the paper. 

 

Figure 1. Examples of transients affecting oscillatory signals: left side: transient spikes, right side: transient step. 

2. OSCILLATION DETECTION AND USING AUTO-COVARIANCE FUNCTION (ACF) AND 

CAUSAL ANALYSIS USING TRANSFER ENTROPY 

The ACF method (Thornhill, et al., 2003) is a method for oscillation detection. This method determines 

the regularity of the zero crossings of the auto-covariance function. The ACF of an oscillating signal is 

itself oscillatory with the same period as the oscillation in the time trend. The advantage of using the ACF 

for oscillation detection is that the impact of noise is reduced because white noise has an ACF that is 
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theoretically zero for lags greater than zero. The zero crossings of a periodic oscillation are regularly 

spaced while for a signal that is not oscillating, the zero crossings of the ACF happen at random times. 

The zero crossings intervals are therefore similar in the first case and dissimilar in the second. The 

standard deviation of the intervals is used as an indication of the regularity of the oscillation and a 

clustering algorithm determines which measurements belong to the same group of oscillations. 

Transfer entropy is one possible metric to quantify the influence or causality of one process variable on 

another process variable proposed in (Bauer et al, 2007) for plant disturbance analysis. This statistical 

method evaluates the predictability of a variable from another variable based on Probability Density 

Functions (PDF). The causality measure used to quantify the extent of the influence of a variable x on 

another variable y is derived from Transfer Entropy 𝑇𝐸 (𝐱|𝐲) (Schreiber, 2000). The latter is derived from 

entropy. Entropy is a measure of uncertainty of a random variable summing a weighed logarithm of the 

PDF (Shannon and Weaver, 1948). Transfer entropy is calculated from joint PDF of two variables and 

provides a measure for the dependencies between those variables. The causality measure 𝑇𝐸 (𝐱, 𝐲) is 

derived by comparing the influence of x on y with the influence of y on x: 𝑇𝐸 (𝐱, 𝐲)  =  𝑇𝐸 (𝐱|𝐲)  −

 𝑇𝐸 (𝐲|𝐱). A large value of 𝑇𝐸 (𝐱, 𝐲) indicates therefore a strong causality from x to y. 

3. DETECTION AND REMOVAL OF TRANSIENT DISTURBANCES 

This section describes the proposed approach to detect and remove transient disturbances from oscillatory 

signals. Following the definition given in Cecílio et al., (Nearest neighbors method for detecting transient 

disturbances in process and electromechanical systems, 2014), two types of transient disturbances are 

considered in the present work. Step changes are defined by a fast signal variation followed by a deviation 

to a value significantly different from the original one and no return of the signal to its original value 

within a short time interval. Spike changes are, on the other hand, defined by a fast signal variation 

followed by a deviation to a value significantly different from the original one, and a return of the signal 

to its original value within a short time interval. In industrial data, it is possible that spike and step follow 

each other and appear to occur at the same time. Also, spikes can occur in quick succession. Generally, 

steps are considered more significant as they are persistent and usually have a larger effect on process 

performance. The proposed algorithm is able to deal with these occurrences by adjusting its parameters. 

The data used to develop parameter guidelines in the following sections, however, does not include the 

simultaneous occurrence of steps and spikes.  

The proposed approach uses as prior information an estimated value of the signal oscillation frequency 

obtained from a standard method for oscillation detection (ACF, Thornhill, et al., 2003) with no pre-
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processing. Note that alternative oscillation detection methods can be used to get an estimate of the signal 

oscillation frequency. 

3.1 Step and Spike Detection Algorithm 

The detection algorithms are based on an increase in the rate of change The detection algorithm of steps 

and spikes are similar because a step is a large change in one direction while a spike is a large change in 

one direction followed by a change in another direction. The key challenge is to identify large changes by 

setting appropriate levels and parameters. The parameters here are scaled – where appropriate – to the 

oscillation period Tp that was detected in a first analysis.  

The time trends is defined as: 

𝑥 =  [𝑥1, ⋯ , 𝑥𝑁]  (1) 

with time index n and N the number of samples of the selected time period. In the first step, any linear 

time trend for the selected time period is subtracted: 

𝑥′ = 𝑥 − 𝑥𝑙𝑖𝑛𝑒𝑎𝑟  (2) 

where 𝑥𝑛
𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑏0 + 𝑏1𝑛 is the linear regression of 𝑥 with linear regression coefficients computed form 

𝑥.  

Similarly, parabolic time trend can be removed by using a quadratic polynomial regression model. 

To eliminate high frequency components a moving average filter is applied with window length 2M+1:  

𝑥𝑛
′′ =

1

2𝑀+1
∑ 𝑥𝑛+𝑘′𝑛+𝑀

𝑘=𝑛−𝑀  (3) 

where 𝑀 = ⌈
𝑇𝑝

𝛼
⌉

𝑐𝑒𝑖𝑙
 with smoothing level 𝛼 . For both step and spike detection the rate of change is 

important. To approximate differentiation, the difference vector is computed:  

𝑑𝑛 = 𝑥𝑛
′′ − 𝑥′′𝑛−1 for n = 2…N (4) 

3.1.1 Rate of change detection 

The mean 𝜇𝑑 and standard deviation 𝜎𝑑 of difference vector are computed over the selected time series N 

to define the threshold for change detection. Change detection occurs for the points that exceed the 

threshold  

𝑑𝑐ℎ𝑎𝑛𝑔𝑒: |𝑑𝑛 − 𝜇𝑑| > 𝛽𝜎𝑑 (5) 
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with deviation threshold factor 𝛽 . To differentiate between fast and moderate changes, two different 

threshold factors, which replace β are introduced, namely βfast and βmod. This results in 𝑑𝑓𝑎𝑠𝑡 and 𝑑𝑚𝑜𝑑. 

Moderate changes may be required to be considered for spike detection because the spike can occur over a 

number of samples, which are not necessarily consecutive.  

Most steps and spikes do not occur over one or two samples but over several samples. Therefore fast or 

moderately changing points need to be grouped into intervals. The start of an interval is defined as sample 

𝑛𝑘
𝑠𝑡𝑎𝑟𝑡 and end point of interval as 𝑛𝑘

𝑒𝑛𝑑, the sample after the last detected change. The duration of the 

interval is defined 𝑛𝑘
𝑒𝑛𝑑 − 𝑛𝑘

𝑠𝑡𝑎𝑟𝑡 + 1. There will be K intervals indexed from 1…k for the sample period 

of N samples.   

3.1.2 Consolidation of step and spike intervals  

The grouping of large changes into intervals needs to be done particularly carefully as it has a significant 

effect on the detection and is different for steps and spikes.  

In steps, only consecutive samples of fast changing samples are added into one interval.  

For spikes, the shift from a sharp increase to decrease of variable x’’ can result in a short period of little 

change. It is therefore useful to define a threshold below which the samples belong to the same interval. 

The threshold is scaled to the oscillation period as Tp/δ where δ is the adjacency level factor.  The samples 

in between two fast changing intervals that are close together are also added to the interval. After 

consolidating the intervals in this way, moderately changing are added to the interval if they within the 

proximity defined by Tp/δ of existing intervals. No new intervals are defined by moderately changing 

peaks.  

3.1.3 Definition of pre- and post-interval levels 

To establish whether the increase in the rate of change is a step or a spike the amplitude levels before and 

after the detected change have to be evaluated. These intervals are referred to as ‘pre’ and ‘post’ events 

and are of length Tp/γ where γ is the adjacency factor and Tp the estimated oscillation period. If there is a 

sufficiently large difference between pre- and post-levels then the interval is defined as a step. If the levels 

are sufficiently similar then the interval is defined as a spike. 

The K pre-intervals are defined as:   

 𝑥𝑘
𝑝𝑟𝑒

= [𝑥𝑛𝑘,𝑝𝑟𝑒
𝑠𝑡𝑎𝑟𝑡 ′′ ⋯ 𝑥

𝑛𝑘,𝑝𝑟𝑒
𝑒𝑛𝑑 ′′]   (6) 
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with mean 𝜇𝑘
𝑝𝑟𝑒

 and standard deviation 𝜎𝑘
𝑝𝑟𝑒

 of 𝑥𝑘
𝑝𝑟𝑒

 where 𝑛𝑘,𝑝𝑟𝑒
𝑠𝑡𝑎𝑟𝑡 = 𝑛𝑘

𝑠𝑡𝑎𝑟𝑡 −
𝑇𝑝

𝛾
 and 𝑛𝑘,𝑝𝑟𝑒

𝑒𝑛𝑑 = 𝑛𝑘
𝑠𝑡𝑎𝑟𝑡 and 

adjacency level 𝛾. Conversely, 

xk
post

= [xnk,post
start ′′ ⋯ x

kk,post
end ′′] (7) 

with corresponding mean 𝜇𝑘
𝑝𝑜𝑠𝑡

 and standard deviation 𝜎𝑘
𝑝𝑜𝑠𝑡

. 

3.1.4 Threshold for significance 

Arguably the most important step is to set thresholds what levels of change in amplitude account for both 

step and spike. The threshold for each interval is defined by the standard deviation of the periods before 

and after the change event, ‘pre’ and ‘post as follows:  

Δk = ϵ ∙ max {σk
pre

,σk
post

} (8) 

Where 𝜖 is the deviation level factor, which is different for steps 𝜖𝑠𝑡𝑒𝑝  and spikes 𝜖𝑠𝑝𝑖𝑘𝑒 , resulting in 

Δ𝑘
𝑠𝑡𝑒𝑝

 and Δ𝑘
𝑠𝑝𝑖𝑘𝑒

.  

A step is detected if the difference of the measurement at the beginning and end of the interval is larger 

than the threshold: 

|𝑥𝑛𝑘
𝑒𝑛𝑑 − 𝑥𝑛𝑘

𝑠𝑡𝑎𝑟𝑡| > Δ𝑘
𝑠𝑡𝑒𝑝

  (9) 

A second condition is that the difference between the mean of the pre- and post transient level must be 

larger than the same threshold:  

|𝜇𝑘
𝑝𝑟𝑒

− 𝜇𝑘
𝑝𝑜𝑠𝑡

| > 𝛥𝑘
𝑠𝑡𝑒𝑝  (10) 

A spike is detected if the difference of the measurement at the beginning and end of the interval is smaller 

than the threshold: 

|𝑥𝑛𝑘
𝑒𝑛𝑑 − 𝑥𝑛𝑘

𝑠𝑡𝑎𝑟𝑡| < 𝛥𝑘
𝑠𝑝𝑖𝑘𝑒  (11) 

A second condition for the spike is that the difference between the mean of the pre- and post transient 

level must be smaller than the same threshold:  

|𝜇𝑘
𝑝𝑟𝑒

− 𝜇𝑘
𝑝𝑜𝑠𝑡

| < 𝛥𝑘
𝑠𝑝𝑖𝑘𝑒 . (12) 
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3.1.5 Graphical explanation 

Figure 2 shows an exemplary data trend that includes a step and gives the key variables of the previous 

section. The top panel shows the time trend with linear trend removed and after filtering. The step is 

detected between samples 17 and 20 which are marked as 𝑛𝑘
𝑠𝑡𝑎𝑟𝑡  and 𝑛𝑘

𝑒𝑛𝑑  respectively. The periods 

before and after the interval are eight samples long, marked as grey dots and are labeled ‘pre’ and ‘post’. 

The mean value of the pre and post periods 𝜇𝑘
𝑝𝑟𝑒

 and 𝜇𝑘
𝑝𝑜𝑠𝑡

 are used to differentiate between steps and 

spikes. The bottom panel shows the difference vector dn for the selected time trend.  

 

Figure 2. Graphical representation of an exemplary time trend, linear trend and mean removed and filtered. Bottom 

panel shows the difference vector d. 

3.2 Step and Spike Removal Algorithm 

As the aim of this work is to improve the use of oscillation detection using autocorrelation functions 

(ACF), it is important to note that the method of ACF requires a level of stationarity as a preliminary. The 

step removal algorithm aims to improve the stationarity by replacing spikes and steps.  

The step removal method consists of three stages illustrated by Figure 3. First, the mean and linear trends 

are removed from the signal as defined in the previous section detailing the detection. Thus, the algorithm 
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starts with vector 𝑥′. From this signal, a baseline containing steps and slow drifts is computed using a 

median filter with filter length 𝑇𝑝: 

𝑏𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑛−𝑇𝑝/2 … 𝑥𝑛+𝑇𝑝/2) 

The median is defined as the value in the middle if the data set is sorted in ascending or descending order. 

This baseline is subtracted to remove steps and slow drifts from the signal. 

𝑦𝑛 = 𝑥′𝑛 − 𝑏𝑛 

Note that median filters are traditionally used to remove outliers (Tukey, 1977). Applying a median filter 

with a window length equal to the oscillation period 𝑇𝑝  to a zero mean periodic signal leads to an 

identically null filtered signal. The reason is that a median value evaluated over a complete cycle of a 

periodic signal is equal to its mean value. It follows that the periodic part of the signal is removed. 

Therefore, the baseline only contains the steps and slow drifts of the original signal. Subtracting the 

baseline from the signal reveals oscillations and other fine deviations other than steps or slow drifts. 

 

Figure 3. Step removal method. Pre-transient and post-transient areas are marked in thick grey lines. 

The spike removal algorithm follows the same procedure as the step removal, that is, mean and the linear 

function are subtracted from the time trend and a median filter is applied. Then, time intervals where a 

spike is detected are replaced by an averaged value of sample points taken over the pre- and post-intervals 

where no spike occurs. The start and end of the spike intervals were stored in 𝑛𝑘
𝑠𝑡𝑎𝑟𝑡  and 𝑛𝑘

𝑒𝑛𝑑 . This 

method requires the signal to be stationary, i.e. without steps or drifts, in order to ensure that transient free 

cycles of the time series are similar and that their averaged values are a good estimate of the transient time 

intervals. The spike removal method is illustrated in Figure 4.  
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Figure 4. Spike removal method. Two spikes are occurring where the second spike rises and falls quickly. The first 

spike is less pronounced and somewhat masked by the oscillation.  

4. PARAMETER SETTINGS 

The objective of the spike and step removal is to improve other detection methods, such as oscillation 

detection. These methods do not work well in the presence of spikes and steps. A measurement for the 

correct identification of oscillations is therefore introduced to measure the success of the spike and step 

removal. The parameters of the step and spike removal algorithms are optimised so that oscillations are 

detected successfully. 

This section analyses the sensitivity of the proposed methods to their respective tuning parameters. It also 

provides suggestions for selecting default parameters. A set of experiments is performed on a dataset 

collected from a real-world industrial process. The dataset consists of measurements generated by 

pressure, flow and temperature sensors. Through visual inspection, 219 signals are found to be oscillatory, 

nine signals include steps and 39 include spikes. The F1 score (Rijsbergen & J., 1979) is used to evaluate 

the performance of the proposed detection method. The F1 score is a metric used to evaluate the 

performance of binary classification methods and is defined as follows: 

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 

with precision P defined as  

𝑃 =
𝑁𝐶

𝑁𝑂

 

where NC is the number of correctly detected oscillatory measurements and NO is the number of all 

measurements detected as oscillatory. Recall R is defined as 

𝑅 =
𝑁𝐶

𝑁𝐴

 

where NA is the number of actual measurements that show an oscillation.  
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Figure 5. F1 score evaluated for various values of the step detection parameters. Parameters are dimensionless 

values. 

 

Figure 6. F1 Score evaluated for various values of the spike detection parameters. Parameters are dimensionless 

values. 

Figure 5 and Figure 6 illustrate respectively the effect of the value of the parameters used in the step and in 

the spike detection methods based on their influence on the F1 score value. During each test, a single 

parameter is varied while the others are set to their recommended values. After running the step and the 

spike detection method with all possible combinations of parameters, two sets of recommended default 

parameter settings are provided in Table 1. The spike and step removal is considered successful when it 

leads to the correct detection of oscillations. As there are 39 spikes and nine steps in the data sets, this 

means that all of them have to be correctly identified. In addition, only those occurrences of steps and 

spikes must be detected and no others. If this is the case, then the F1 score will be equal to one. 
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Table 1: Recommended parameter settings for step and spike detection methods.  

Parameter Description Recommended 

value step 

detection 

Recommended 

value spike 

detection 

𝛼 Smoothing level of moving average filter, factor 

influencing the window length of the mean filter 

10 15 

𝛽𝑓𝑎𝑠𝑡 , 𝛽𝑚𝑜𝑑   Deviation threshold factor to detect fast and 

moderate changes (moderate changes for spikes 

only) 

3, n.a. 3, 2.5 

𝛾 Adjacency level factor to define length of pre- and 

post transients  

1 1 

𝛿 Adjacency level factor to define acceptable length 

between intervals, for spikes only 

n.a. 2 

𝜖𝑠𝑡𝑒𝑝, 𝜖𝑠𝑝𝑖𝑘𝑒  Deviation level to define detection threshold  3 3 

 

5. TEST EXPERIMENT ON SIMULATED DATASET 

This section describes the results of the proposed transient detection and removal methods on simulated 

data. Seven datasets are generated corresponding to different scenarios of transients and disturbances 

(oscillatory signal/ oscillatory signal with white noise and/or with a baseline drift). In Figure 7, from left to 

right, the columns depict the raw signal, the signal after step removal, the signal after step removal 

rescaled for better visualization and the signal after spike removal. If step and spike are both present in a 

signal, a step removal is performed first, then a spike removal follows. In Figure 7 dataset ‘Data1’ is a 

sinusoidal signal with a step.  After step removal and rescaling (row one, column three) a “residual” spike 

can be observed. This “residual” spike is present because the step magnitude is significantly greater than 

the oscillation magnitude. The step removal is then corrected by a spike removal (row one, column four). 

Dataset ‘Data2’ is a sinusoidal signal with a step and white noise. From Figure 7 (row two, column three), 

we can see the proposed transient detection and removal methods work well despite the presence of noise. 

Dataset ‘Data3’ is a sinusoidal signal with two consecutive steps and white noise. The transient detection 

and removal method are able to remove both steps (row three, column four). Dataset ‘Data4’ is a 

sinusoidal signal with a baseline drift and a spike. As no step is present in the signal, the step detection 
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and removal methods have no effect on the signal (row four, column three). The spike detection and 

removal methods completely remove the spike (row four, column four) despite the presence of the drift. 

Dataset ‘Data5’ is a sinusoidal signal with a drift, two consecutive spikes and white noise. Both spikes are 

removed by the proposed transient detection and removal methods despite the presence of noise and 

baseline drift. 

 

Figure 7. Proposed transient removal methods are applied to simulated oscillatory signals including steps and 

spikes.  

Dataset ‘Data6’ is a sinusoidal signal with a spike followed by a step. The step is first removed (row six, 

column two). Then the spike is removed in (row six, column four). Dataset ‘Data7’ is a sinusoidal signal 

with two steps and spikes for which all the transients are removed by the proposed method (row seven, 

column four). Datasets ‘Data6’ and ‘Data7’ illustrate the ability of the proposed method to remove 

combinations of transients affecting an oscillatory signal. 

6. INDUSTRIAL CASE STUDY 

The advantage of using the proposed transient detection and removal is evaluated in this section. The 

increase in accuracy of both the Auto-Correlation Function (ACF) and the transfer entropy methods is 

quantified. The analysis is conducted on a 1,3-Butadiene purification section of a chemical plant located in 

Germany. 
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Figure 8. Simplified process schematic of a 1,3-Butadiene process. 

An overview of the simplified process schematic of the 1,3-Butadiene process is provided in Figure 8. The 

process input consists of a flow of raw C4. Pure 1,3-Butadiene is obtained after separation of impurities, 

e.g. C3 fraction, raffinate, and 1,2-butadiene via two conventional and two extractive distillation units 

(White, 2007). The process data is presented in an Excel file with a one-minute sampling time. Some 

examples of collected process data are provided in Figure 9.  

 

Figure 9. Examples of oscillatory process variables. 
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The analysed dataset contains 670 signals in total. Forty eight signals are discarded from the analysis due 

to high compression rate. Through visual inspection, 219 process variables are considered as oscillatory 

and 403 as non-oscillatory through visual inspection. The 219 oscillatory signals consist of 115 flow 

measurements, 43 level measurements, 11 pressure measurements, 43 temperature measurements and 7 

quality measurements.  The 219 oscillatory signals exhibit a similar oscillation with a time period close to 

60 minutes and originate from various plant units, suggesting that the oscillations might result from the 

propagation of the same root cause.  Process units affected by the oscillatory plant-wide disturbance are 

listed in Table 2.  

Table 2. Process units affected by the plant wide oscillatory disturbance. 

Unit index (refer to Fig. 8)  1 2 3 4 5 6 7 8 10 other units 

Number of oscillatory signals 25 8 37 17 36 37 17 2 20 20 

 

6.1 Improvement of oscillation detection with transient removal 

Description of the experimental tests 

The improvement gained when using the proposed transient removal methods is demonstrated by 

comparing the performance of the ACF method (Thornhill, et al., 2003) in two conditions, with and 

without applying transient removal. 

The ACF method is first applied with a broad band pass filter. Filter cut-off frequencies are set to values 

significantly distant from the estimated value of the oscillation frequency 2π 𝑇𝑝⁄  ensuring that no spurious 

oscillations are generated by the filter (Thornhill, et al., 2006). The result (Error! Reference source not 

found.4) indicates missed and misclassified oscillation of signals with transients. Next, the ACF method is 

used with a narrow band-pass filter to show that transient disturbances cannot be removed no matter how 

the filter is configured. Furthermore, the performance of oscillation detection is degraded because spurious 

oscillations are generated due to the filter settings. Finally, when transient removal is applied to the signals 

prior to using the ACF method, the result shows that all oscillatory signals are properly detected and 

clustered. 

More specifically, the cut-off frequencies of the broad band-pass filter are set to [17 120]  minutes 

([1.39 9.80] × 10−4Hz) and the bandwidth (8.42 × 10−4Hz) satisfies the requirement of minimum band 

width (2.24 × 10−4Hz) of the ACF method (Thornhill, et al., 2006): bandwidth > ffiltercentre/2.5. The 
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cut-off frequencies of the narrow band-pass filter are [35 67] minutes ([2.49 4.75] × 10−4Hz) and the 

bandwidth of the narrow filter (2.27 × 10−4Hz) satisfies the requirement of minimum bandwidth (1.45 ×

10−4Hz ). The lower cut-off frequency ( 67 min, 2.49 × 10−4Hz ) of the narrow band-pass filter is 

relatively close to the oscillation frequency (60 min, 2.78 × 10−4Hz). This leads to generation of spurious 

oscillations that adds to the 60 min oscillation present in the signal (Thornhill, et al., 2006). Finally, the 

proposed approach to remove transient disturbances is used prior to applying the ACF method with filter 

settings identical to the broad band-pass filter ([17 120]min, [1.39 9.80] × 10−4Hz). 

6.2.2 Case study results 

 

Figure 10. Power spectrum of the measurement used by the step detection and removal methods, before transient 

removal (first three panels) and after transient removal (fourth panel). 

In Table 3, the number of oscillatory measurements detected at the actual frequency of 

60 min, 1.66 10−4Hz, the number of oscillatory measurements detected at an incorrect frequency, as well 

as the undetected oscillations and the false positives (false alarms) based on a visual inspection of the 

dataset are provided. 

If transients are not removed before applying the ACF method, six signals are misclassified, i.e. their 

oscillation time period is wrongly estimated and therefore they are grouped into a wrong oscillation cluster. 

Performance improvements of the ACF method with transient removal compared to the ACF method 

without transient removal (both with broad band-pass filter) in term of correctly detected oscillatory 

signals is 7.4% (15 signals) and 24.4% (10 signals) in term of false alarms. Note that a misclassification 

also affects the root cause analysis as root cause analysis is performed within each cluster and therefore 

the obtained diagnostic can be misled. Visual inspection of the misclassified and missed oscillatory signals 

shows that they exhibit transient changes. This means that transient changes can affect clustering. The 

reason why transient changes can affect oscillation detection is revealed in Figure 10, which shows that 

some spectral components of the transient being relatively close to the oscillation frequency cannot be 

removed by linear filtering as illustrated by the narrow-filtered signal power spectrum (third panel). 
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Alternatively, the power spectrum of the signal after applying the proposed approach shows an effective 

removal of the spectral components close to the oscillatory frequency (fourth panel). 

Table 3. Influence of transient removal on the performance of the ACF method. 

 Filter Correctly 

detected 

Misclassified Missed False alarms 

Without transient removal Broad 204 6 9 41 

Without transient removal Narrow 209 10 0 159 

With transient removal Broad 219 0 0 31 

 

6.2 Improvement of root cause analysis with transient removal 

Description of the experimental tests 

The improvement gained by using the proposed transient removal methods is demonstrated by comparing 

the outcome of a root cause analysis using the transfer entropy method on raw oscillatory signals and on 

oscillatory signals with transient removal. The root cause analysis using the transfer entropy method is 

applied to each unit of the 1,3-Butadiene process described in Section 6.1. For each unit, the oscillatory 

signals detected using the ACF method as described in Section 4.2. Three root cause analysis are 

conducted at the unit level. First on the vaporiser unit, then on the pre-degassing towers unit and finally on 

the steam distribution unit. 

Case study results 

Root cause analysis on vaporiser unit. Oscillating process variables detected by the ACF method in 

Section 6.2 and belonging to the vaporiser unit are displayed on a simplified process schematic in Figure 

11. The oscillatory process variables are marked in dark circles while the non- oscillatory process 

variables are marked in grey circles. Note that the oscillatory process variables are connected to each other 

through the process flow. 
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Figure 11. Simplified process schematic of the vaporiser unit indicating the location of detected oscillatory 

measurements (dark circles), non-oscillatory measurements are marked in grey circles. 

The time trends of the oscillatory signals belonging to the vaporiser unit are shown in Figure 12. Figure 14 

shows the oscillatory signals after applying transient removal. Transfer entropy is computed pairwise 

between a given oscillatory measurement and all the other oscillatory measurements belonging to the 

vaporiser unit. Trends in Figure 12 and Figure 14 are sorted according to the value of the computed 

transfer entropy. Finally, propagation paths are obtained in the form of causality maps. Causality maps are 

constructed by connecting the measurements with directed lines if a significant causal relationship is 

detected by the pairwise computed transfer entropy and if there exists a physical connection between this 

pair of measurements. The causality map obtained on measurements without applying transient removal is 

shown in Figure 13, while the causality map obtained on measurements on which transient removal is 

applied is shown in Figure 15.  
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Figure 12. Time trends of oscillatory measurements detected in the vaporiser unit without transient removal and 

sorted according to the transfer entropy criteria. 

 

Figure 13. Causality map of the oscillatory measurements detected in the vaporiser unit obtained without transient 

removal. 

From Figure 13 and Figure 15, the root cause analysis of the oscillatory disturbance affecting the vaporiser 

unit when using raw time trends, i.e. without transient removal, points towards the temperature and the 

pressure measured at the top of the vaporiser column as being the closest to the root cause of the 

oscillation. The causality map in Figure 15 and the process schematic in Figure 11 suggest that the 
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oscillatory disturbance originates from temperature T21 and pressure P21 since the measurements located 

upstream of T21 and P21 i.e. LC21, FC24 and FC25 are not oscillatory. The oscillatory disturbance is 

transmitted first to T22 and FC23 then to T23, T24 FC32 and FC22. The root cause analysis conducted on 

the raw time trends suggests therefore that the oscillatory disturbance originates from within the vaporiser. 

On the other hand, the root cause analysis of the oscillatory disturbance affecting the vaporiser unit when 

using the proposed transient removal method, points towards two flow measurements both originating 

from the steam supply unit FC21 and FC22. 

 

Figure 14. Time trends of oscillatory measurements detected in the vaporiser unit after transient removal and sorted 

according to the transfer entropy criteria. 

The causality map of the reconstructed data and the process schematic suggests that the oscillation 

originate from the steam supply FC21 and FC22, propagates to the central vaporiser column where it 

affects the top-side column pressure P21 and temperature T21 and further to the flow FC23. Additionally, 

the oscillation travels to the bottom-temperature T22 and further affects the solvent temperature T23. The 

root cause analysis conducted on the pre-processed oscillatory signal using the proposed transient removal 

method suggests therefore that the oscillatory disturbance originates from the steam supply unit i.e. not 

from the process itself but rather from the auxiliary system. 
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Figure 15. Causality map of the oscillatory measurements detected in the vaporiser unit obtained after transient 

removal. 

Root cause analysis on pre-degassing unit 

Oscillating process variables detected by the ACF method in Section 6.2 and belonging to the pre-

degassing unit are displayed on a simplified process schematic in Figure 16. The oscillatory process 

variables are marked in dark circles while the non- oscillatory process variables are marked in grey circles. 
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Figure 16. Simplified process schematic of the pre-degassing unit indicating the location of detected oscillatory 

measurements (dark circles), non-oscillatory measurements are marked in grey circles. 

The time trends of the oscillatory signal belonging to the pre-degassing unit are shown in Figure 17. Figure 

19 shows the same oscillatory signals after applying the proposed transient removal method. Trends are 

again sorted according to the value of the computed transfer entropy. The causality map resulting from the 

analysis of oscillatory measurements without transient removal is shown in Figure 18, the causality map 

resulting from the analysis of oscillatory measurements on which transient removal is applied after 

transient removal is shown in Figure 20.  

From Figure 18 and Figure 20, the root cause analysis of the oscillatory disturbance affecting the pre-

degassing unit using oscillatory measurements without transient removal suggests that either the steam 

supply FC51, the temperature T56 (together with the solvent temperature T57), or the C4 flow FC52 

(together with temperature T58) could all potentially be the closest measurements to the root cause of the 

oscillatory disturbance. This result is consistent with the analysis conducted on the vaporiser unit that 



 

24 

 

pointed to the steam supply unit as a potential location of the root cause of the oscillatory disturbance. The 

C4 flow FC52 originates from the heat exchanger unit (Unit4 in Figure 8). A closer look at the 

measurements of the process variables related to the solvent reveals that the solvent source is not 

oscillatory, meaning that it cannot be the root cause of the oscillatory disturbance under investigation. 

 

Figure 17. Time trends of oscillatory measurements detected in the pre-degassing unit without transient removal and 

sorted according to the transfer entropy criteria. 

The root cause analysis of the oscillatory disturbance affecting the pre-degassing unit when using the 

proposed transient removal method suggests conclusions similar to the root cause analysis conduction on 

raw oscillatory signals with a slight difference that a significant causal relationship between the steam 

supply FC51 and the temperature T56 is revealed.  
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Figure 18. Causality map of the oscillatory measurements detected in the pre-degassing unit obtained without 

transient removal. 
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Figure 19. Time trends of oscillatory measurements belonging to the pre-degassing unit after transient removal and 

sorted according to the transfer entropy criteria. 
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Figure 20. Causality map of the oscillatory measurements detected the pre-degassing unit obtained after transient 

removal. 

In summary, both root cause analysis conducted on the pre-degassing oscillatory signals with and without 

transient removal suggest that the oscillatory disturbance originates from the steam supply unit. 

Root cause analysis on steam supply unit 

The analysis conducted on two of the 1,3-Butadiene process units pointed to the steam supply unit as a 

possible location for the root cause of the oscillatory disturbance affecting 219 process variables. It is 

important to note that auxiliary systems, because of their plant wide connectivity, can propagate 

disturbances across multiple units of a process. The oscillatory measurements collected from the steam 

supply unit are displayed on a simplified process schematic in Figure 21. Again, the oscillatory 

measurements are marked in dark circles, the non-oscillatory measurements are marked in grey circles. 
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Figure 21. Simplified process schematic of steam unit indicating the location of detected oscillatory measurements 

(dark circles), non-oscillatory measurements are marked in grey circles. “D” stands for “Steam processing 

column”. 

The time trends of the oscillatory signal belonging to the steam supply unit are shown in Figure 22. Figure 

24 shows the oscillatory signal after applying the proposed transient removal method. The causality map 

obtained on measurements without applying transient removal is shown in Figure 23, while the causality 

map obtained on measurements on which transient removal is applied is shown in Figure 25.  

From Figure 23 and Figure 25 the root cause analysis of the oscillatory disturbance affecting the steam 

supply unit using oscillatory measurements without transient removal suggests that the steam pressures 

P01, PC01 and PC02 are the closest to the root cause, pointing towards the middle pressure steam header. 



 

29 

 

 

Figure 22. Time trends of oscillatory measurements detected in the steam unit without transient removal and sorted 

according to the transfer entropy criteria. 

 

Figure 23. Causality map of the oscillatory measurements detected in the steam unit obtained without 

transient removal.  
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The root cause analysis of the oscillatory disturbance affecting the steam supply unit when using the 

proposed transient removal method suggests conclusions similar to the root cause analysis conduction on 

raw oscillatory signals.  

 

 

Figure 24. Time trends of oscillatory measurements detected in the steam distribution unit after transient removal 

and sorted according to the transfer entropy criteria. 
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Figure 25. Causality map of the oscillatory measurements detected in the steam unit after transient removal. 

In summary as for the case of the pre-degassing unit, root cause analysis conducted on the pre-degassing 

oscillatory signals with and without transient removal suggest the same root cause: the middle pressure 

steam header. 

Conclusion on root cause analysis 

The root cause analysis of the oscillation disturbance conducted on three units of the 1,3-Butadiene 

process pointed towards the middle pressure steam header as the source from which originates a plant 

wide disturbance affecting 219 of the 1,3-Butadiene process variables. For two of the unit level root cause 

analysis (pre-degassing unit and steam supply unit), the proposed transient detection and removal method 

did not modify the results obtained by the transfer entropy causal analysis. In one of the unit level root 

cause analysis (vaporiser unit), the proposed transient detection and removal method modified the results 

obtained by the transfer entropy causal analysis. It is important to emphasize that the result obtained after 

applying the proposed transient detection and removal method, the transfer entropy causal analysis 

pointed to a root cause and a propagation path that agree with the analysis conducted on the two other unit 

i.e. from middle pressure steam header to unit steam supply to process units. The fault propagation paths 

after transient removal revealed a more complete picture.  
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7. CONCLUSION 

In this paper we proposed simple heuristic methods to detect and remove transients from oscillatory time 

series. Such methods are instrumental in improving the accuracy of oscillation detection and oscillation 

causal analysis methods. Two types of transients are considered: steps and spikes. In the proposed step 

detection method, the oscillatory signal is first de-trended and smoothed then, fast signal variations are 

detected and the amount of deviation before and after the detected fast signal change is evaluated. In the 

proposed spike detection method, after de-trending and smoothing, in order to capture different type of 

spikes with fast/slow rising and falling edges, the signal first derivative is evaluated and compared to two 

thresholds corresponding to a fast and a slow variation of the signal. Pairs of peaks of opposite signs that 

are close enough in time are grouped to form a transient time interval and the amount of deviation before 

and after the detected transient time interval is evaluated. In the step removal method, the mean and linear 

trend are removed from the signal, a baseline containing steps and slow drifts is computed using a median 

filter and subtracted from the signal. In the spike removal method, time intervals where a spike is detected 

are replaced with an averaged value of sample points taken from the time intervals where no spike occurs. 

The proposed heuristic methods to detect and remove transients were used to pre-process process 

measurements prior to applying the auto-covariance function oscillation detection method and the transfer 

entropy causality analysis method. Validation of the two methods on a dataset collected from a 1,3-

Butadiene process plant affected by a plant wide oscillatory disturbance demonstrated their ability to 

significantly improve the performance of the ACF in term of missed and misclassified oscillations 

reduction and of the root cause analysis using the transfer entropy method when transient changes are 

present in the process data. 

There are still limitations to this approach and the parameter guidelines are based on the assumption that 

there is no simultaneous occurrence of spikes and steps, or spikes and steps lying in close proximity. In 

addition, the use of a single estimated oscillation period to compute a baseline in the step and spike 

removal algorithm (Section 3.2) limits the applicability of the proposed method to oscillations with single 

or multiple integer frequencies. These cases should be investigated in future work. It also has to be noted 

that this way of dealing with spikes and steps is recommended for detection methods that require 

stationarity. Removing steps and spikes in this manner for system identification, for example, will be 

counter-productive.  
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