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Abstract—The effect of the radar skin return from
the platform on which a cross-eye jammer is mounted
is significant in many practical cross-eye jamming sce-
narios. However, all published analyses of skin-return
affected cross-eye jamming have significant limitations.
These limitations are addressed by deriving equations for
the distribution of the cross-eye gain in the presence of
skin return. The value of these results is demonstrated by
using them to gain insight into how skin return affects
cross-eye jamming.
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I. INTRODUCTION

Cross-eye jamming attempts to induce an angular error
in a threat radar by recreating the worst-case error due to
glint [1]–[8]. The fact that glint is a naturally-occurring
phenomenon makes cross-eye jamming extremely attrac-
tive as it is capable of affecting all radar systems.

Cross-eye jamming relies on transmitting two signals
which have similar amplitudes and a phase difference of
approximately 180° from antennas which are separated
by a large distance known as the baseline (10 m to
20 m being typical [7]). While many potential imple-
mentations of cross-eye jamming exist, the retrodirective
implementation appears to be the only way to reduce
the tolerance requirements of a cross-eye jammer to
achievable levels [2], [4], [5], [8]. Retrodirective cross-
eye jamming is based on a Van-Atta array [9], with
the signal received by the antenna on each side of the
jammer being retransmitted from the antenna on the
other side of the jammer.

The phase-front analysis of glint has traditionally been
applied to cross-eye jamming, but the results obtained
have been shown to be inaccurate when applied to
retrodirective cross-eye jamming [8], [10], [11]. As out-
lined above, the implementation of practical cross-eye
jammers does not appear to be possible without using
the retrodirective implementation, so this is a significant
limitation of the phase-front analysis.

It may not always be possible to isolate the return of
a cross-eye jammer from the return of the platform on
which the jammer is mounted (the platform skin return),
so the case where both platform skin return and jammer
returns are simultaneously received by the threat radar
is important. While some considerations of this case
have appeared in the literature, they fall into one of
two categories. The first group merely states that a high
jammer-to-signal ratio (JSR) is required (often stated as
20 dB) without providing any analysis to support this
statement [2], [4]–[6], [12]. The second group performs
detailed analyses, but as with most cross-eye jamming
analyses, neglects the retrodirective implementation [1],
[3], [13], [14], leading to significant errors [15].

While an analysis of retrodirective cross-eye jamming
the presence of platform skin return has been published
[15], it lacks mathematical rigour. Most importantly, the
result derived in the appendix of [15] claims that

median

[
k1 + k2 cos (φs) + k3 sin (φs)

k4 + k5 cos (φs) + k6 sin (φs)

]
=
k1

k4
(1)

where kn are arbitrary real values and φs is uniformly
distributed over all angles. However, this result can be
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proved to be incorrect in the general case by setting
kn = n and computing the distribution of the result
numerically using 106 values of φs uniformly distributed
over the range [0, 2π) to obtain a median value of 0.3909
rather than the value of 0.2500 predicted by (1). The
distribution of the function used in the derivation of
the median is obviously also not valid except in special
cases. There is thus a need to confirm that the results
presented in [15] are accurate.

Additionally, the published results for skin-return af-
fected retrodirective cross-eye jamming are limited by
the fact that they only consider certain specific results
rather than the complete general case. For example, only
the median cross-eye gain is considered in detail in [15],
and only the JSR required to limit a target to one side
of the jammer is provided in [16]. The extremely large
variations that are possible in the presence of platform
skin return [15] mean that these specific results provide
only a limited description of the complete problem.

The limitations of existing published analyses are ad-
dressed by providing a mathematically-rigorous deriva-
tion of the distribution of the cross-eye gain obtained
when a cross-eye jammer is operated in the presence of
platform skin return. The mathematical rigour allows the
results to be used with confidence, while the fact the full
distribution is available allows a number of cases which
could not be considered previously to be evaluated. An
extensive discussion of the results is presented to provide
insight into the functioning of a retrodirective cross-eye
jammer in the presence of platform skin return.

Section II provides a summary of previously-published
work, and Section III then uses this background to derive
equations for the cross-eye gain distribution. A number
of examples of how the results derived can be used are
provided in Section IV along with a discussion of the
implications of each result. Finally, a brief conclusion is
provided in Section V.

II. SUMMARY OF PREVIOUS RESULTS

The analysis of cross-eye jamming in the presence of
platform skin return in [15] is briefly summarised below
as it provides the basis for the present work.

The estimate of the angle to a target, the indicated
angle, for a phase-comparison monopulse system can be
computed from the monopulse ratio using [17]

M = tan

[
β
dr
2
sin (θi)

]
(2)

where M is the monopulse ratio, θi is the monopulse
indicated angle, β is the free-space propagation factor,
and dr is the spacing of the phase-comparison radar an-
tennas as shown in Fig. 1. While only phase-comparison

 

Fig. 1. The geometry of the cross-eye jamming scenario which
includes the effect of platform skin return [15]. The phase centres
of the phase-comparison monopulse radar antennas and the jammer
antennas are denoted by circles and crosses respectively, and the point
target used to model the platform skin return is denoted by a square.

Fig. 2. The retrodirective implementation of a cross-eye jammer
showing the definition of a and φ.

monopulse is considered, the results have been shown to
be valid for all monopulse systems [8], [18].

The monopulse ratio received from a retrodirective
cross-eye jammer mounted on a platform whose return
(the platform skin return) is modelled by a point scatterer
halfway between the jammer antennas is given by

Mt ≈ tan (k) +GCt
sin (2kc)

cos (2k) + 1
(3)

where

k ≈ βdr
2
sin (θr) (4)

kc ≈ β
dr
2
cos (θr) θe (5)

θe ≈
dc
2r

cos (θc) (6)

with the geometrical parameters being defined in Fig. 1.
The cross-eye gain is a figure of merit which can be

used to quantify the performance of a cross-eye jammer.
The total cross-eye gain including the effect of platform
skin return is given by

GCt = <
{

1− aejφ

1 + aejφ + asejφs

}
(7)

where a and φ are the relative gain and phase shift of
the two directions through the retrodirective cross-eye
jammer as shown in Fig. 2.

The effect of platform skin return is included via the
parameters as and φs, which are defined as the amplitude
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and phase of the skin return relative to the stronger of
the two jammer signals (i.e. relative to the jammer when
a = 0). The value of as is related to the JSR by

JSR =
1

a2
s

(8)

with the gain of the cross-eye jammer and its antennas
being incorporated into as.

The result in (8) implicitly means that a ≤ 1 because
JSR is defined as the skin return relative to the stronger
of the two jammer-channel returns. Results obtained
using a = x are identical to results obtained for a = 1/x
except that the apparent target is produced on the oppo-
site side of the jammer (the sign of the cross-eye gain is
inverted), so limiting the range of a does not affect the
generality of the results [8], [19].

The median value of the total cross-eye gain has been
shown to be

GCtm =
1− a2

1 + a2 + 2a cos (φ) + a2
s

, (9)

and while the derivation of this result in [15] has errors,
(9) is shown to be correct in Section III.

The apparent target created by a cross-eye jammer is
limited to one side of the jammer when total cross-eye
gain is strictly positive (GCt ≥ 0) giving [16]

as <
1− a2√

1 + a2 − 2a cos (φ)
(10)

JSR >
1 + a2 − 2a cos (φ)

(1− a2)2
(11)

where (8) was used to convert as to JSR.
The monopulse ratio in (3) includes a number of

approximations which are briefly summarised below.
1) The approximate forms of k, kc and θe in (4) to

(6) are extremely accurate for practical cross-eye
jamming scenarios [8].

2) The gains of the two radar antenna elements in
the directions of the jammer antenna elements are
assumed to be identical.

Pr (θr − θe)Pr (θr + θe) ≈ [Pr (θr)]
2 (12)

This is reasonable as the radar antenna pattern is
predominantly determined by the spacing of the
radar antenna elements.

3) The gains of the two jammer antenna elements
in the directions of the radar are assumed to be
identical.

Pc (θc − θe)Pc (θc + θe) ≈ [Pc (θc)]
2 ≈ 1 (13)

The main effect of this assumption is to change the
JSR, but as outlined above, the jammer-antenna gain
is assumed to be included in as.

4) The approximation

cos (2kc) ≈ 1 (14)

is accurate. This is the least accurate of the approx-
imations and will dominate the error.

Approximation 4 is accurate under the conditions
listed below.
• The jammer antenna separation seen by the radar

is small as a small value of θe leads to a small
value of kc. This condition is achieved as the radar
must not be able to resolve the jammer antennas for
cross-eye jamming to be effective [10].

• The jammer is far from the first null of the radar
sum-channel beamwidth where the radar antenna
patterns change rapidly. This condition should be
satisfied as radar is unlikely to track targets far
outside the 3-dB beamwidth of its sum-channel
beam.

• The total sum-channel return is large. Violating this
condition leads to large, uncontrollable variations
in the cross-eye gain, which leads to many prac-
tical difficulties in effectively employing cross-eye
jamming. This condition is thus unlikely to be of
interest to practical cross-eye jammer systems.

III. ANALYSIS

The derivation of the distribution of the total cross-
eye gain is first provided, followed by the development
of simplified results for the extreme values of the total
cross-eye gain.

As the phase of the skin return relative to the jammer
return φs cannot be specified or determined with any
certainty, the cross-eye gain is a distribution rather than
a single value [15]. The median total cross-eye gain and
the proportion of the total cross-eye gain values which
are on the opposite side of the jammer to the intended
target have been considered previously [15], [16], so
the analysis below focuses on extending the results to
obtain closed-form solutions of the distribution of the
total cross-eye gain.

The total cross-eye gain in (7) can be expanded to

GCt =
1− a2 + as cos (φs)− · · ·

1 + a2 + a2
s + 2a cos (φ) + · · ·
· · · aas cos (φs − φ)

· · · 2as cos (φs) + 2aas cos (φs − φ)
(15)

=
1− a2 + · · ·

1 + a2 + a2
s + 2a cos (φ) + · · ·

· · · as [1− a cos (φ)] cos (φs)− · · ·
· · · 2as [1 + a cos (φ)] cos (φs) + · · ·
· · · aas sin (φ) sin (φs)
· · · 2aas sin (φ) sin (φs)

(16)
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=
k1 + k2 cos (φs) + k3 sin (φs)

k4 + k5 cos (φs) + k6 sin (φs)
(17)

where

k1 = 1− a2 (18)

k2 = as [1− a cos (φ)] (19)

k3 = −asa sin (φ) (20)

k4 = 1 + a2 + 2a cos (φ) + a2
s (21)

k5 = 2as [1 + a cos (φ)] (22)

k6 = 2asa sin (φ) (23)

of which only k3 and k6 can be negative because 0 ≤
a ≤ 1 and as ≥ 0.

Equation (17) can be rewritten as

0 = (k1 −GCtk4) + (k2 −GCtk5) cos (φs)+

(k3 −GCtk6) sin (φs) (24)

= (k1 −GCtk4)+

km [cos (θ) cos (φs) + sin (θ) sin (φs)] (25)

= (k1 −GCtk4) + km cos (φs − θ) (26)

= (k1 −GCtk4) + km cos (x) (27)

cos (x) =
GCtk4 − k1

km
(28)

where

cos (θ) =
k2 −GCtk5

km
(29)

sin (θ) =
k3 −GCtk6

km
(30)

k2
m = (k2 −GCtk5)

2 + (k3 −GCtk6)
2 (31)

= a2
s

[
(2GCt − 1)2 + a2 (2GCt + 1)2 +

2a cos (φ) (2GCt − 1) (2GCt + 1)
]

(32)

with km ≥ 0 as it is a magnitude, and

x = φs − θ. (33)

The variable x can take any angle with equal probability
because θ is a constant and φs is uniformly distributed
over all angles.

Equation (28) can now be used to determine the
cumulative distribution of GCt from the cumulative
distribution of x. However, this process is predicated on
(28) having a one-to-one relationship between cos (x)
and GCt. It will firstly be shown that the right-hand side
(RHS) of (28) is monotonic (i.e. each value only occurs
once), after which the fact that each value of cos (x)
corresponds to multiple values of x will be addressed.

The first step to showing that the RHS of (28) is
monotonic is demonstrating that its derivative can only

be zero for values of GCt which make the magnitude of
the RHS of (28) greater than 1. Such values are outside
the allowable range of the left-hand side (LHS) of (28)
because |cos (x)| ≤ 1, thereby ensuring that it is not
possible for the gradient of the RHS of (28) to change
sign within the allowable range of values. As the gradient
cannot change sign, it is impossible for the same value
to be obtained twice.1

The derivative of (28) with respect to GCt is zero
when

0 =
∂

∂GCt

GCtk4 − k1

km
(34)

=
k4

km
+

(GCtk4 − k1)

k3
m

×

[k6 (k3 −GCtk6) + k5 (k2 −GCtk5)] (35)

GCt =
k2 (k1k5 − k2k4) + k3 (k1k6 − k3k4)

k5 (k1k5 − k2k4) + k6 (k1k6 − k3k4)
. (36)

Substituting this value of GCt into (28), squaring the
result and simplifying gives

cos2 (x) =
(k1k6 − k3k4)

2 + (k1k5 − k2k4)
2

(k2k6 − k3k5)
2 . (37)

Ensuring that the RHS of (37) is greater than the
maximum possible value of the LHS, gives the general
requirement for a monotonic result as

1 <
(k1k6 − k3k4)

2 + (k1k5 − k2k4)
2

(k2k6 − k3k5)
2 (38)

0 < (k1k6 − k3k4)
2 + (k1k5 − k2k4)

2−
(k2k6 − k3k5)

2 . (39)

For the cross-eye jamming case, (39) becomes

a2
s

[
1 + a2 − 2a cos (φ)

]
×[

1 + a2 + 2a cos (φ)− a2
s

]2
> 0 (40)

where none of the factors can be negative because a ≤ 1.
However, the derivation of the general case in (36)

requires multiplication by k3
m causing the LHS to take

the form 0 · ∞ when km → ±∞. This situation is
possible as the value of km will become infinite when
the cross-eye gain is infinite (GCt → ∞). Additionally,
the value of the RHS of (28) takes the form∞/∞ when
km is infinite. Finally, the value of (40) can be zero when
the cross-eye gain is infinite because the third factor of
the LHS of (40) is zero when the magnitudes of the sum-
channel jammer and skin returns are equal as required

1Note that this approach is slightly conservative as an inflection
point (derivative is zero but does not change sign) within the range
[−1, 1] would also produce a monotonic gradient. However, the
analysis of this case is more complex, and the more conservative
result is adequate for the case considered here.
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for infinite cross-eye gain (see (43) and (44) below).2

The second step in proving that the RHS of (28) is
monotonic thus requires demonstrating that the RHS of
(28) tends to ±1 (the extreme values of the LHS of (28))
as GCt → ±∞ (the extreme values of the RHS of (28))
when infinite cross-eye gain is possible.

Using L’Hôpital’s Rule [20], it can be shown that

lim
GCt→±∞

GCtk4 − k1

km
= ± k4√

k2
5 + k2

6

(41)

= ± 1 + a2 + 2a cos (φ) + a2
s

2as
√

1 + a2 + 2a cos (φ)
.

(42)

In the general case, |k4| ≥
√
k2

5 + k2
6 will either avoid an

infinite result by ensuring that the denominator of (17)
is never zero or ensure that (41) holds. In the cross-eye
jamming case, the only way to obtain an infinite cross-
eye gain is if the denominator of (7) is zero, giving∣∣∣1 + aejφ

∣∣∣ = ∣∣∣asejφs

∣∣∣ (43)√
1 + a2 + 2a cos (φ) = as (44)

because as ≥ 0, and substituting (44) into (42) gives

lim
GCt→±∞

GCtk4 − k1

km
= ±1 (45)

as required.
The required monotonicity of the RHS of (28) thus

exists in the general case when

(k1k6 − k3k4)
2 + (k1k5 − k2k4)

2−
(k2k6 − k3k5)

2 > 0 (46)

and
|k4| ≥

√
k2

5 + k2
6 . (47)

For cross-eye jamming, the first condition will always
be satisfied, except when the cross-eye gain is infinite
(GCt → ±∞), but the second condition addresses this
case. Furthermore, the first condition is only violated
at the extreme edges of the distribution, so the gradient
cannot change sign within the allowable range of values.
The required monotonicity of the RHS of (28) will thus
always exist for retrodirective cross-eye jamming in the
presence of platform skin return as a result of the forms
of kn in (18) to (23).

The periodic nature of the cosine function means that
the cumulative distribution function of x can be bounded

2The first factor in (40) can only be zero in the absence of
platform skin return (as = 0), while a zero value of the second factor
corresponds parameters which are unsuitable for cross-eye jamming
(a = 1 and φ = 2nπ with n ∈ Z).

by any values as long as a full 2π range of angles is
covered. The cumulative distribution function

Fx (x) =


0 x ≤ −π
1

2π (x+ π) −π < x < π
1 x ≥ π

(48)

is convenient as it allows the fact that cos (x) = cos (−x)
to be exploited to resolve the difficulty that each value
of the RHS of (28) corresponds to two values of x.

The cumulative distribution of the cross-eye gain can
now be written as

FGCt
(GCts) = P {GCt ≤ GCts} (49)

= P {|x| ≥ xs} or P {|x| ≤ xs} (50)

= P {x ≥ xs}+ P {x ≤ −xs} or

P {x ≤ xs} − P {x ≤ −xs} (51)

= [1− Fx (xs)] + Fx (−xs) or

Fx (xs)− Fx (−xs) (52)

= 1− xs
π

or
xs
π

(53)

π − πFGCt
= arccos

(
GCtk4 − k1

km

)
or

πFGCt
= arccos

(
GCtk4 − k1

km

)
(54)

cos (πFGCt
) =

?
± k1 −GCtk4

km
(55)

where xs is the value of x which corresponds to the
specified value of GCt denoted GCts. Two possible
solutions are provided at each step as it is not yet clear
whether the RHS of (28) increases or decreases with
GCt.

Regardless of which form of (55) is correct, the
median cross-eye gain (GCtm) can be shown to be

GCtm =
k1

k4
(56)

by setting FGCt
= 0.5 to make the LHS of (55) zero

in both cases. Using k1 in (18) and k4 in (21) shows
that (56) is identical to (9), thereby confirming that the
median result presented in [15] is correct.3

Substituting the median total cross-eye gain in (56)
into the RHS of (35) gives

∂

∂GCt

GCtk4 − k1

km

∣∣∣∣
GCt=GCtm

=

k4 |k4|√
(k1k6 − k3k4)

2 + (k1k5 − k2k4)
2

(57)

3The fact that the median total cross-eye gain is the same for both
forms of (55) explains why the correct median was obtained in [15]
even though the wrong sign of the RHS of (55) was used.
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which has the same sign as k4 in the general case. In the
cross-eye jamming case, k4 ≥ 0, so the RHS of (28) is an
increasing function of GCt. The cumulative distribution
of the total cross-eye gain is thus given by

FGCt
(GCts) =

1

π
arccos

[
k1 −GCtsk4

km

]
. (58)

However, (58) produces complex results when computed
using values of GCts which are outside the allowable
range of GCt values. Fortunately, the nature of the
arccosine function is such that the resulting values of
FGCt

(GCts) are of the form 0+jx and 1+jx when
GCts < min (GCt) and GCts > max (GCt) respectively,
where x is an arbitrary constant. A more useful form of
the required cumulative distribution is thus given by

FGCt
(GCts) = <

{
1

π
arccos

[
k1 −GCtsk4

km

]}
(59)

as this form gives the desired values of 0 when GCts <
min (GCt) and 1 when GCts > max (GCt).

Determining the value of FGCt
(GCt) using (59) al-

lows the probability of the total cross-eye gain being
lower than a specified value to be computed. However,
the ability to determine the total cross-eye gain for a
specified value of FGCt

(GCt) is more useful in many
situations. Defining

kF = − cos [πFGCt
(GCt)] (60)

allows (59) to be rewritten as

kF =
GCtk4 − k1

km
(61)

k2
F =

(GCtk4 − k1)
2

(k2 −GCtk5)
2 + (k3 −GCtk6)

2 (62)

0 = G2
Ct

[
k2

4 − k2
F

(
k2

5 + k2
6

)]
−

2GCt
[
k1k4 − k2

F (k2k5 + k3k6)
]
+[

k2
1 − k2

F

(
k2

2 + k2
3

)]
. (63)

The solution to (63) is given by

GCt =
k1k4 − k2

F (k2k5 + k3k6) + kF
√
k∆

k2
4 − k2

F

(
k2

5 + k2
6

) (64)

where

k∆ = (k1k6 − k3k4)
2 + (k1k5 − k2k4)

2−
k2
F (k2k6 − k3k5)

2 (65)

was used to simplify the notation. The sign of the square-
root term in the numerator of (64) could be positive
or negative based on the quadratic solution to (63), but
only the positive sign is valid here. This may be shown
by noting that the RHS of (61) is strictly increasing as

demonstrated previously for (28), so GCt must increase
as kF increases.

The extreme values of GCt may be obtained from
(28) by finding the values of GCt with correspond to
the extreme values of the LHS of (28) as follows

1 =

∣∣∣∣GCtxk4 − k1

km

∣∣∣∣ (66)

k2
m = (GCtxk4 − k1)

2 (67)

GCtx =
1− a2 ± as

√
1 + a2 − 2a cos (φ)

1 + a2 + 2a cos (φ)− a2
s

(68)

where GCtx denotes the extreme values of GCt. Deter-
mining which of the GCtx values in (68) correspond to
the minimum and maximum values of GCt requires both
the sign of the denominator and the sign of the numerator
term which can be added or subtracted to be considered.

The first portion of the denominator of (68) corre-
sponds to the magnitude of the total sum-channel jammer
return [15], [16] and thus cannot be negative.

1 + a2 + 2a cos (φ) =
∣∣∣1 + aejφ

∣∣∣2 ≥ 0. (69)

Furthermore, a non-zero total jammer return (a 6= 1) has
been shown to reduce the effect of tolerances [1], [3],
[8], [19] and of platform skin return [15], so the value of
(69) will be greater than zero in practical systems. The
denominator of (68) is only zero when

a2
s = 1 + a2 + 2a cos (φ) (70)

which corresponds to

JSRc =
1

1 + a2 + 2a cos (φ)
. (71)

This is the critical value of the JSR (denoted JSRc) where
the skin return and the total jammer sum-channel return
are equal. The sign of the denominator is negative when
the JSR is below JSRc and positive above JSRc. The
minimum value of GCt is thus obtained from (68) when
± → − and JSR > JSRc, and when ± → + and
JSR < JSRc. The opposite sign of the ± corresponds
to the maximum value of GCt in each case.

The value of JSRc is also significant because both the
minimum and maximum values of GCt at this point are
infinite, so the largest variation in GCt is obtained at
JSRc. This is a result of the fact that the cancellation of
the jammer and skin returns make the denominator of
GCt in (7) equal to zero.

When (70) is substituted into (9) the median total
cross-eye gain becomes

GCtm =
1− a2

2 [1 + a2 + 2a cos (φ)]
(72)

=
1

2
GC when JSR = JSRc (73)
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which shows that the median total cross-eye gain is half
the cross-eye gain in the absence of platform skin return
[6], [8]

GC =
1− a2

1 + a2 + 2a cos (φ)
(74)

when the JSR is JSRc. This result agrees with previously-
published work where a JSR of the form (71) is shown
to produce GCtm = 0.5GC [15].

As an aside, and by way of validation, it is noted
that (10) can be derived by setting (68) equal to zero
and solving for as. Furthermore, a solution can only
be achieved here when ± → − because as ≥ 0 by
definition. Using the negative sign corresponds to the
minimum curve for GCt when JSR > JSRc, thereby
demonstrating that the JSR must at least be greater than
JSRc for the apparent target to be limited to one side of
the cross-eye jammer.

IV. DISCUSSION

The implications of each of the results derived in
Section III are considered below for the following sce-
nario whose parameters are representative of a missile
engaging an aircraft or ship [10], [15]:
• X-Band radar (frequency is 10 GHz),
• 10° radar beamwidth (dr = 2.54 wavelengths, and

each radar antenna element is a uniformly excited
aperture 2.54 wavelengths long),

• 1 km jammer range (r = 1 000 m),
• 10 m jammer element separation (dc = 10 m),
• 30° jammer rotation (θc = 30°), and
• jammer amplitude and phase differences of 0.5 dB

and 175° respectively (a = 0.9441 and φ = 175°)
unless otherwise stated.

A. Extreme Values

A number of extreme indicated-angle values obtained
using (2) and (3) with the extreme total cross-eye gain
values from (68) are shown in Figs 3(a) and 3(b) for
amplitude mismatches of 0.5 dB (a = 0.9441) and
1 dB (a = 0.8414) respectively. The sum-channel 3-dB
antenna beamwidths, the positions of the first sum-
channel nulls, and the indicated angles for the jammer
alone are indicated on the right axes, and the critical JSR
values are indicated on the top axes.

The first important observation is that the curves in
Fig. 3 are identical to the corresponding curves which
were published previously on the basis of 106 computa-
tions of indicated angle over the full 360° range of φs
values [15].
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Fig. 3. The indicated angle as a function of JSR and φ for the case
described in the text with the (a) a = −0.5 dB and (b) a = −1.0 dB.

The values of JSRc are seen to correspond to the
largest cross-eye gain (GCt) variation as infinite cross-
eye gains are possible at JSRc as outlined in Section III.
Equation (3) shows that an infinite cross-eye gain leads
to an infinite monopulse ratio (Mt), and (2) means that
an infinite monopulse ratio corresponds to an apparent
target at first null of the sum-channel as shown in Fig. 3.

Increasing the jammer amplitude mismatch from
0.5 dB in Fig. 3(a) to 1 dB in Fig. 3(b) leads to a
number of differences. The most significant of these
is that the jammer sum-channel return is greater with
a larger mismatch, so a lower JSR is required for the
jammer and platform skin returns to be equal.

Also noticeable in Fig. 3 is the fact that the points
where the minimum indicated angle is zero (implying
that min (GCt) = 0 by (2) and (3)) are very similar for
the cases considered. As outlined previously [16], this is
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a result of the fact that the approximation

cos (φ) ≈ −1 (75)

is extremely accurate over the range of angles consid-
ered. There is thus only a weak dependence on φ, so
the points where the minimum value of GCt = 0 are
expected to be close together. Using (75) allows (10)
and (11) to the rewritten as

as / 1− a (76)

JSR ' (1− a)−2 (77)

' JSRc 180 (78)

where the approximations are extremely accurate when
φ ≈ 180° (the design goal for a cross-eye jammer [15],
[19]).

It is worth reiterating that Approximation 4 means
that the exact value of JSRc is subject to error as
noted in Section II. However, the main effect of the
approximation is a JSR offset. Furthermore, this offset is
less than 1.5 dB for the largest practical jammer-antenna
separation of 20 m (dc = 20 m) at the short range of 1 km
(r = 1000 m) against a radar with a narrow beamwidth
of 2° (dr = 12.7 wavelengths),4 so the computed value
of JSRc is sufficiently accurate to be useful in practical
cross-eye jamming scenarios.

B. Cross-Eye Gain Distribution

The cross-eye gain distributions obtained using (2), (3)
and (64) for amplitude mismatches of 0.5 dB and 1 dB
are shown in Fig. 4.

As for Fig. 3, the curves in Fig. 4 are identical to the
corresponding curves which were published previously
on the basis of 106 computations of indicated angle over
the full 360° range of φs values [15].

The main difference between plots in Fig. 4 is that the
jammer sum-channel return given by 1+a2+2a cos (φ) is
1.8 times greater for Fig. 4(b) than for Fig. 4(a). Despite
this large difference in jammer sum-channel return, the
cross-eye gain values in the absence of platform skin
return (JSR →∞ giving as = 0) are very similar, being
11.05 for Fig. 4(a) and 10.54 for Fig. 4(b) (a difference
of less than 5%). Despite this small difference in the
absence of platform skin return, significant differences
are seen when the effect of platform skin return is
significant.

The first implication of the different jammer sum-
channel return magnitudes is that larger JSR values
are required to achieve given performance goals. For
example, the jammer sum-channel return is equal to the

4Missiles usually have a beamwidth on the order of 10°.
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Fig. 4. The total cross-eye gain which is below the specified
cumulative probability values for the case described in the text with
(a) a = −0.5 dB and (b) a = −1 dB.

skin sum-channel return at a JSR value (JSRc) which is
more than 2.5 dB lower for Fig. 4(b) (JSRc = 17.30 dB)
than for Fig. 4(a) (JSRc = 19.87 dB). Furthermore,
the JSR required to limit the indicated angles to pos-
itive values (JSRo) is over 5.7 dB lower for Fig. 4(b)
(JSRo = 19.27 dB) than for Fig. 4(a) (JSRo = 25.05 dB).

The second significant effect of the different jammer
sum-channel return magnitudes is that the variation in the
results is lower in Fig. 4(b) as can be seen in a number of
ways. Firstly, the maximum values of the curves above
the median (FGCt

(GCt) > 0.5) are larger in Fig. 4(a)
than in Fig. 4(b), and a comparable observation holds
for the curves below the median. This shows that the
total cross-eye gain values are more closely clustered
around the median value when the jammer sum-channel
return is larger. Secondly, the curves in Fig. 4(a) are
broader than in Fig. 4(b), showing that the skin return
has a significant effect on the results over a greater range
of JSR values. This is perhaps most clearly seen by the
fact that difference between JSRo and JSRc is almost
5.2 dB for Fig. 4(a), but less than 2 dB for Fig. 4(b).
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Fig. 5. Total cross-eye gain which is below the specified cumulative
probability values for the case described in the text for a JSR of
15 dB (a) φ = −175° and (b) a = −1.5 dB.

The main implication of these observations is that a given
improvement in JSR will have a greater effect when the
jammer sum-channel return is greater.

Fig. 5 provides an alternative view of the total cross-
eye gain distribution by plotting the results as a function
of the jammer amplitude and phase mismatches (a and
φ respectively) for a fixed JSR of 15 dB. Both graphs
in Fig. 5 are symmetrical about their right axes (i.e.
the results are symmetrical around amplitude and phase
matches of a = 0 dB and φ = 180° respectively).

The general form of the graphs in Fig. 5 is similar
to those in Fig. 4, but with the horizontal axis flipped.
This is a result of the fact that improving the matching
between the two jammer channels (a → 0 dB and
φ → 180°) decreases the total jammer sum-channel
return, and thus has a similar effect to decreasing the
JSR for fixed jammer parameters. Increasing the JSR
would reduce the effect of skin return and thus cause
the position of JSRc to move to the right in both graphs
in Fig. 5.

Both the graphs in Fig. 5 have JSR > JSRc on the

left, changing to JSR < JSRc on the right. This will not
always be the case, as choosing an appropriate value
of φ for Fig. 5(a) or a for Fig. 5(b) would ensure
that JSR > JSRc over the entire range of parameters
considered.

The total jammer sum-channel return is far smaller
at the right of Fig. 5(a) (0.00761) than at the right
of Fig. 5(b) (0.02516) as a result of worse overall
matching (a = −1.5 dB, φ = 180° versus a = 0 dB,
φ = 175°). The effect of this difference is most clearly
seen by the fact that the median indicated angle increases
significantly as the mismatch increases in Fig. 5(a), while
a much smaller variation is observed in Fig. 5(b).

While the median total cross-eye gain (GCtm) in-
creases as the jammer amplitude mismatch increases to
the left of Fig. 5(a), the median cross-eye gain actually
slightly decreases as the phase mismatch increases to the
left of Fig. 5(b). The former case is due to the increasing
total jammer sum-channel return as outlined above, while
the latter case is due to the fact that cross-eye jamming
is less effective when the matching between the jammer
paths is far from 180° (e.g. [1]–[6], [8]). The effect of
the total jammer sum-channel return and the performance
of the cross-eye jammer thus need to be considered
together to obtain a complete understanding of the effect
of platform skin return on cross-eye jamming.

The fact that JSRo does not have a strong dependence
on φ is borne out by Fig. 5(b) where the minimum total
cross-eye gain is less than 0 for the full range of pa-
rameters shown. Additionally, all the values greater than
the median have similar values to the median case when
φ ≈ 180° in Fig. 5(b). The fact that JSR < JSRc at this
point is the reason that the upper half of the distribution
tends to the median, while the opposite would be true
if JSR > JSRc. Both these observations echo those of
previously-published work [15], [16], thereby providing
additional validation of the results.

Fig. 6 shows the probability that a cross-eye jammer
with the specified parameters will exceed the indicated
angle on the bottom-right axis (θi) for jammer amplitude
mismatches of 0.5 dB and 1 dB respectively. The results
were obtained using (2), (3) and (59).

In each case, the distribution develops a tail of nega-
tive indicated angles (negative GCt) as the JSR increases.
This negative tail is gradually replaced by a tail of posi-
tive indicated angles (positive GCt) as the JSR increases
further. The tails for both positive and negative indicated
angles stretch to the edge of the sum-channel main beam
nulls when the sum-channel jammer and skin returns are
equal (JSRc = 19.87 dB and 17.30 dB in Figs 6(a) and
6(b) respectively) as highlighted in Section IV-A.

The distributions for the two cases are almost identical
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Fig. 6. The cumulative probability as a function of the indicated
angle for the case described in the text with (a) a = −0.5 dB and
(b) a = −1 dB.

when the JSR is 0 dB as the skin return dominates the
result at this point. However, the two sets of distributions
display increasingly pronounced differences as the JSR
increases and the jammer has a greater effect. This
general trend is anticipated as the skin returns in the
two cases are identical, while the isolated jammer returns
differ markedly.

The smaller total sum-channel jammer return in
Fig. 6(a) leads to wider distributions than those in
Fig. 6(b), as shown by the flatter curves in Fig. 6(a). For
example, the curve at JSRc in Fig. 6(a) (effectively the
20-dB JSR curve) is much flatter than the corresponding
curve in Fig. 6(b) (slightly above the 17-dB JSR curve)
indicating a significantly wider distribution. This distri-
bution difference is especially important when there is a
large distribution tail on the opposite side of the jammer
to the desired apparent target [16].

However, the width of the distribution is not the only
consideration, and (9) can be used to show that the
median total cross-eye gain (GCtm) is greater in Fig. 6(a)

than in Fig. 6(b) when the JSR is 26.5 dB or greater.
While such a high JSR value may appear unrealistic,
the reduced radar cross section (RCS) of modern plat-
forms combined with the high effective isotropic radiated
power (EIRP) of newer jammers mean that high JSR
values are possible.

These observations clearly demonstrate the importance
of considering the entire GCt distribution rather than just
the median or extreme values as was done in [15], or a
single value as was done in [16].

Figs 7(a) and 7(b) plot the probability of exceeding a
specified GCt of 5 (1−FGCt

(5)) for JSR values of 15 dB
and 20 dB respectively. The values shown on the graph
are the probability of exceeding the specified cross-eye
gain, so for example, the curve labelled “0.4” in Fig. 7(b)
corresponds to a 40% probability of exceeding the a total
cross-eye gain of 5. As in the contour plots published
previously, the values are symmetrical around a = 0 dB,
with the only difference being the side of the jammer on
which the false target is produced.

The contours in Fig. 7 are symmetrical around
φ = 180°. This is a result of the fact that the only
dependence on φ in the main results in Section III is of
the from cos (φ), which is symmetrical around φ = 180°.

Fig. 7 is similar to the relevant plots in other works
(e.g. [15], [19]), but with the notable difference that
contours of constant probability are shown in Fig. 7,
while other published results show contours of constant
cross-eye gain. This change makes the contour plots in
Fig. 7 more useful than the previously-published results
in [15] because only the median case was considered. As
a result, only the curves labelled “0.5” can be obtained
based on the analysis in [15].

The tolerance requirements become stricter (the areas
within the contours become smaller) as the proportion of
possible GCt values below the specified value decreases.
This result is anticipated because a smaller value of
FGCt

(GCts) means that more solutions exceed GCts,
leading to higher cross-eye gain values, and thus tighter
tolerances [19].

The contours in Fig. 7(b) are significantly larger than
the corresponding contours in Fig. 7(a) due to the greater
JSR in Fig. 7(b) leading to a stronger jammer return. This
stronger jammer return reduces the effect of skin return,
leading to smaller GCt variations as a result of platform
skin-return phase.

V. CONCLUSION

An understanding of how platform skin return affects
the operation of a retrodirective cross-eye jammer is
of significant practical interest. Unfortunately, published
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Fig. 7. Probability that the total cross-eye gain will exceed 5 for JSR
values of (a) 15 dB and (b) 20 dB.

results which consider this scenario suffer from a number
of deficiencies which limit their value.

A mathematically-rigorous derivation of the distribu-
tion of the total cross-eye gain which results from skin-
return affected retrodirective cross-eye jamming has been
provided. The mathematical rigour addresses limitations
of previous analyses, and the closed-form solutions ob-
tained allow extensive analysis of the effects of platform
skin return on retrodirective cross-eye jamming.

A number of examples of how the new results can be
applied have been presented, with the main conclusion
being that the problem as must be considered a whole.
For example, the effect of mismatching the two paths
through a retrodirective cross-eye jammer serves to de-
crease the effect of skin return by increasing the sum-
channel return of the jammer as a whole. However, these
same changes reduce the effectiveness of the cross-eye
jammer when considered in isolation. The result is that

compromises between the conflicting goals of decreasing
the effect of skin return with greater mismatches and
obtaining higher jammer performance through improved
matching must be made. The results provided allow
such analyses to be performed by providing a complete
description of retrodirective cross-eye jamming in the
presence of platform skin return.
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