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Highlights 

 An international G by E sugarcane growth analysis dataset was collected 

 E and GxE variation were present in final dry biomass and stalk yields   

 G differences found for germination, canopy development and photosynthesis 

parameters 

 Data analysis reveals strengths and weaknesses in process model concepts 

 Solar radiation, in addition to temperature, influences onset of stalk growth 

 

Abstract 

Crop improvement aims to produce high yielding genotypes for target environments.  

Crop models simulate yield formation as the outcome of a series of low-level 

processes, driven by environmental (E) variables and regulated by genetic (G) traits.  

There is potential for  crop models to aid sugarcane breeding, by identifying desirable 

genetic traits for target environments.  The objective of this study was to evaluate 

existing concepts of G and E control of plant processes for explaining crop 

development, growth and yield, using an international growth analysis dataset. 

Crop development, growth and yield were monitored in the plant and 1st ratoon crops 

for seven cultivars (N41, R570, CP88-1762, HoCP96-540, Q183, ZN7 and NCo376) 

grown under well-watered conditions at La Mare (Reunion Island, France), Pongola 

(South Africa (RSA), Chiredzi (Zimbabwe), and Belle Glade (Florida, USA).    Weather 

data were collected and environmental conditions characterized for each experiment.  

Derived process-level phenotypic parameters, based on concepts from four 

sugarcane growth simulation models (DSSAT-Canegro, Mosicas, APSIM-Sugar and 
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Canesim), were calculated from observations and used to (1) evaluate current 

understanding of E drivers of sugarcane growth and development processes, and (2) 

identify and quantify G control at a process level. 

Final yields showed significant E and GxE variation; dry above-ground biomass and 

stalk yields were highest in La Mare and lowest in Pongola.   Cultivar rankings in stalk 

dry mass for the common cultivars (N41, R570, CP88-1762) varied significantly 

between Es.  Significant E variation in phenotypic parameters describing germination, 

tillering and timing of the onset of stalk growth (OSG) revealed shortcomings in the 

underlying simulation concepts.  Significant G variation was found for germination rate, 

leaf appearance rate and canopy development rate per unit thermal time (TT), and 

maximum radiation use efficiency, indicating strong G control of the associated 

underlying processes.  

Solar radiation was found to influence tillering rate per unit TT, and TT to OSG, 

challenging the current theory of TT as the sole driver of these processes.   

By explaining more of the E variation, more stable and accurate G-specific model 

parameters can be defined and evaluated.  This is anticipated to lead to less GxE 

confounding of modelled processes, and hence crop models that are better-equipped 

for supporting sugarcane crop improvement. 

 

Keywords: Crop model, thermal time, tillering, canopy development, environment, 

genotype, growth 
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INTRODUCTION 

Sugarcane is an important crop worldwide, as a sweetener, source of dietary calories, 

and feedstock for bioenergy production.  In 2017 about 1.84 billion tons of cane were 

produced from 25 million ha in more than 100 countries in the tropical and subtropical 

regions of the world (FAO, 2019). Major producers include Brazil, India, China, 

Thailand, Pakistan and Mexico.   Sugarcane production also makes vital contributions 

to national economies of smaller producers, such as Australia and several African 

countries.  

Many of these industries invest substantially in breeding cultivars well-adapted to local 

environmental conditions and field management. 

Crop models have potential to assist sugarcane breeding by identifying desirable traits 

for target environments.  Models can be used to dissect high-level complex traits (such 

as yield at harvest) to isolate and characterise E and G control over lower level traits 

(such as photosynthetic efficiency or leaf expansion rate).  Crop models suitable for 

such applications are required to be strongly process-based, where complex trait 

values emerge as a consequence of process-level interactions with G (represented by 

G-specific model parameters) and E control (represented by climatic input variables, 

simulated soil water and nutrient balances and management related inputs) (Hammer 

and Jordan, 2007; Yin et al., 2004).   

Crop models represent quantitative syntheses of objective knowledge of crop 

physiological processes (Boote et al., 2010).  Assessing crop model process concepts 

against experimental data could reveal the extent to which current knowledge 

adequately captures G and E control at a process level.  Possible weaknesses in 
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process concepts and assumptions could be identified that need attention for 

sugarcane crop models to become suitable for breeding applications.  Analyzing crop 

model concepts outside of the models permits clearer process-level evaluation, 

because doing so eliminates any potentially confounding effects from other parts of 

the models. 

Several process-based sugarcane models have been developed.  These include 

DSSAT-Canegro, “Canegro” (Inman-Bamber, 1991; Jones and Singels, 2018; Singels 

et al., 2008; Singels and Bezuidenhout, 2002); Canesim (Singels and Donaldson, 

2000; Singels and Paraskevepoulos, 2017), a simplified version of Canegro; Mosicas 

(Martiné et al., 1999; Martiné and Todoroff, 2004); and APSIM-Sugar, “Apsim” 

(Keating et al., 1999).  These models operate on a daily time-step, and simulate 

germination, canopy development and radiation interception, photosynthesis and 

biomass accumulation, and biomass partitioning processes to translate G, E and M 

inputs into predictions of stalk and sucrose yields.  There are substantial differences 

in the model philosophies, which are reflected in differences in the nature of model 

input parameters and the complexity and approach of constituent process algorithms.  

The Canegro and Apsim models are used extensively worldwide (Jones et al., 2014; 

Marin et al., 2013; Thorburn et al., 2014), while use of the Mosicas and Canesim 

models has been mostly restricted to their industries of origin.  The best reported 

performance of these models is prediction accuracy of approximately 5-7 t/ha for stalk 

dry mass. (Jones and Singels, 2018).    

Sugarcane yield sensitivity to Apsim model cultivar parameters has been assessed by 

Sexton et al. (2017) for two environments in Australia.  Trait modelling in sugarcane 

has also been explored for drought tolerance, again using the Apsim model (Inman-



6 

 

Bamber et al., 2016).  Site x cultivar effects for several process-level parameters 

(relating to tillering and stalk elongation) from the Canegro model were statistically 

assessed by Ngobese et al. (2018), for 12 South African cultivars at two sites (one 

rainfed, one irrigated).   No attempt was made to explain differences in terms of E 

differences at each site.  Parameters that were not stable between sites or crop 

classes (i.e. plant/ratoon crops) were considered unsuitable for use in breeding 

applications, rather than evidence of unresolved GxE interactions in the underlying 

model concepts.  Hoffman et al. (2018) calculated Canegro model parameter values 

for 14 genotypes in a well-watered pot trial, and found significant differences in leaf-

level photosynthesis rates, thermal time from primary shoot emergence to the onset 

of stalk growth, and stalk partitioning fraction.  The Canesim model was able to 

simulate cultivar differences in yield using these independently-determined parameter 

values for well-watered field conditions (Singels et al., 2016). 

Marin et al. (2015) compared simulations from the Canegro and Apsim models and 

explained simulation differences in terms of detailed descriptions of the process-level 

algorithms, in the context of climate change impacts simulations.  However, as far as 

we could ascertain Canegro and Apsim (and Mosicas) have not been compared at 

conceptual process-level with equivalent inputs and assumptions for assessing G, E, 

and GxE effects.    

Operational application of crop models to assist sugarcane breeding activities around 

the world requires careful evaluation of existing sugarcane models.  Testing and 

comparing process-level algorithm concepts against an appropriate multiple-G, 

multiple-E trial will reveal strengths and weaknesses of different modelling 
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approaches, as well as reveal knowledge gaps that limit the effectiveness of 

sugarcane models in breeding applications. 

The overall aim of this study was to characterise crop development and growth 

observed in an international multi-environment cultivar trial, to gain a better 

understanding of genotypic and environmental controls of sugarcane crop 

performance under non-limiting water and nutrient conditions.  Avoiding confounding 

effects of water and nutrient stresses allows a first-step ‘potential production’ level 

analysis, and could better reveal subtle genetic effects on crop development and 

growth.  

The specific objectives of this paper were to: 

1. Characterise the growth environments in terms of radiation, temperature and 

water status; 

2. Characterise/describe crop development and growth for different G and E. 

3. Evaluate current theories/understanding of G and E control of sugarcane 

development and growth by deriving key parameters for each G-E combination:   

4. Thermal time requirements for phenological events, and leaf, tiller and canopy 

development; 

5. Radiation use efficiency; and 

6. Biomass partitioning 

7. Propose new concepts for G and E control of crop development and growth. 

8. Assess the value of the dataset for the broader objectives of unravelling GxE 

influences on yield, and make recommendations for improving experimental 

protocols for future studies. 
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We present an overview of process-level simulation concepts from four mature 

sugarcane models.  The methods section then describes the experiments conducted, 

how the experimental growth environments were characterised, and how each G-E 

combination was phenotypically characterised in terms of key simulation concepts.  

Results are then shown, and discussions and conclusions presented.  A table of 

acronyms is shown below (Table 2) to guide the reader. 

SUGARCANE MODEL CONCEPTS 

An overview of key processes simulated by the four sugarcane crop models (Canegro, 

Canesim, Apsim and Mosicas), and how they might be tested against experimental 

data, is presented in this section.  Two versions of the Canegro model are considered: 

v4.5 (Singels et al., 2008), Canegro1; and v4.5_C2.2 (Jones and Singels, 2018), 

Canegro2.  For simulated processes where these do not differ, “Canegro” is used.  

The discussion focusses on well-watered and well-nourished sugarcane production.  

2.1. Germination 

During germination, underground buds sprout shoots that elongate to emerge above 

the soil surface.  The date of shoot emergence (DAP_EM, d) is defined in the 

Canegro1, Canesim, Mosicas and Apsim models as the date when 50% of primary 

shoots have emerged (DAP_EM50, d).  The Canegro2 model considers shoot 

emergence as the date when the first shoot emerges (DAP_EM1, d). 

All models use air temperature within specific ranges (effective temperature) as the 

sole E driver of germination rate (and rates of several other plant processes).   This is 

captured in the crop models with the concept of thermal time (TT, °Cd), making use of 
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a base temperature (TB, °C), and in the Canegro2, Canesim, Mosicas and Apsim 

models, optimal (TO) and upper limit (TU) cardinal temperatures (Jones and Singels, 

2018).  These cardinal temperatures are process-specific in Canegro, Canesim and 

Mosicas, and fixed in Apsim.   

Canegro, Canesim and Mosicas predict DAP_EM using TT elapsed since crop start 

(TT_EM50, °Cd).  Apsim simulates a TT delay for bud sprouting, followed by TT-driven 

shoot elongation from the bud to the soil surface, accounting for the effect of planting 

depth.  All three models differentiate between plant (P) and ratoon (R1) crops for 

calculating DAP_EM.  TT_EM50 is G-specific in Canegro, Canesim and Mosicas. 

As all models effectively simulate germination as a function of TT, it is appropriate to 

evaluate the concept in these terms. 

2.2. Canopy development and light interception 

Green leaf area index (GLAI, m2/m2) determines the fraction of incident solar radiation 

intercepted for photosynthesis, and affects rates of transpiration and soil evaporation.   

All models use the concept of fractional interception (Fi, %) of radiation.  Fi of 

photosynthetically-active solar radiation (PAR, MJ/m2/d) is FiPAR (%), and of global 

radiation (SRAD, MJ/m2/d), FiSRAD (%). 

The Canegro, Apsim and Mosicas models estimate Fi from GLAI, using a radiation 

extinction coefficient using Beer’s Law.  The Canesim model simulates FiPAR directly 

as a function of TT since TT_EM50, with a single G-specific parameter, TT_Fi50 

(thermal time from emergence to 50% FiPAR).  

The Mosicas model calculates the daily change in unstressed GLAI using a Gompertz 

derivative equation of TT accumulation since emergence.  Apsim and Canegro 
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calculate GLAI per shoot, where: leaf number (G-specific) is determined by TT via 

phyllocron intervals (PI, °Cd); area per leaf is determined by leaf number (G-specific), 

and TT; total green leaf area per shoot is multiplied by shoot population (POPN, 

shoots/m2).  Leaf area growth in the Apsim model is driven by temperature and limited 

by water stress in a conceptually similar manner to Canegro, but also requires that 

sufficient carbohydrate is supplied to the leaves (via biomass accumulation 

(photosynthesis) and partitioning processes) to support the daily increase in leaf area.  

Demand for leaf biomass is based on the daily leaf area increase and specific leaf 

area, which is permitted to vary within bounds.  Insufficient biomass results in limits on 

leaf area expansion.  It should be noted that the size of green leaf canopy is not 

determined by carbohydrate supply (source strength) in Canegro, Canesim and 

Mosicas.  Both Canegro and Apsim effectively simulate TT-driven POPN 

development, with G-specific control parameters.  Canegro2 differentiates between 

primary and secondary shoots and adjusts tillering rates in response to light 

competition.   

All models are sensitive to water status: Canesim transiently reduces Fi; Mosicas 

reduces the daily leaf expansion; Canegro and Apsim reduce leaf elongation rates and 

accelerate leaf senescence rates; and Canegro reduces tillering rates and accelerates 

shoot senescence rates.   

All models make provision for G-specific control over canopy development rates, and 

the key E determinants of canopy development rate are TT and water stress.  For the 

purposes of evaluating model concepts under unstressed Es, it is adequate to frame, 

as G-controlled functions of TT since DAP_EM50: (1) canopy development in terms 
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of FiPAR development rate; and (2) its components, shoot and leaf development, as 

shoot (tiller) appearance rate and PI respectively.  

2.3. Biomass accumulation 

Canegro, Canesim, Mosicas and Apsim all simulate biomass accumulation (ΔDM, 

t/ha/d) using a radiation-use efficiency (RUE) approach (Singels, 2013).  RUE can be 

calculated by dividing observed above-ground dry biomass (ADM) production by 

measured canopy-intercepted solar radiation.  All models calculate daily simulated 

RUE based on a theoretical maximum RUE value (RUEo, maximum dry biomass 

produced per unit of canopy-intercepted radiation at optimal temperature, crop water 

and nutrient status for a young, healthy crop, g/MJ), and air temperature and water 

status. The Apsim model additionally considers the simulated nitrogen status of the 

crop.  RUE is not affected by radiation intensity in any of these models (i.e. simulated 

RUE does not decrease under very high radiation conditions).   

Canegro, Canesim and Mosicas express RUEo in terms of PAR (assumed in this 

paper to be 50% of SRAD), while Apsim uses SRAD.  Respiration is explicitly 

simulated by Canegro, Canesim and Mosicas, and not by Apsim.  Canegro and 

Canesim assume the same RUEo for P and R1 crops, while Mosicas and Apsim allow 

different parameter values for plant and ratoon crops.  RUEo is G-specific in Canegro, 

Canesim and Mosicas, and is considered fixed in Apsim. 

Figure 1 shows the RUE relationship with temperature for well-watered crops as used 

in the different models, using their default input parameter values.  The values are 

expressed according to a common RUEo definition, for meaningful comparison; the 
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Apsim definition (expressed in g ADM per MJ SRAD) is used as it is the only definition 

that can express parameter values equivalently for all models. 

   

Figure 1. Well-watered radiation use efficiency (RUE, g of dry aboveground biomass per MJ 

of intercepted shortwave solar radiation (SRAD)), for four models, under reference 

conditions (total biomass = 41 t/ha; stalk dry mass = 18 t/ha; age = 9 months; SRAD = 

25 MJ/m2; unstressed water status) with default model parameter values.  RUEo 

(representing the maximum theoretical RUE values (g/MJ)) are reflected where RUE values 

are highest. 

Calculating a value for RUEo from observed data is practically difficult, due to the 

necessity to create RUE-maximising environmental conditions for a sustained period. 

Analysis of high values of RUE (based on observed ADM and intercepted PAR 

measurements) for unstressed, healthy crops (RUEmax, g/MJ) could inform 

understanding of G control over RUEo. 

2.4. Biomass partitioning 

Canegro, Canesim and Apsim consider onset of stalk growth (OSG) as a phenological 

event determined solely by TT accumulation after DAP_EM50 (TT_OSG, °Cd; 
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Singels, 2013), while Mosicas uses an ADM threshold (ADM_OSG, t/ha).  As ADM 

accumulation (ΔADM) is reduced by water stress, Mosicas effectively considers 

source strength (and water stress) in simulating OSG.  These two approaches need 

to be evaluated separately against observed TT and ADM respectively. 

Canegro and Mosicas partition ΔDM between roots (ΔRDM, t/ha/d) and above-ground 

(ΔADM, t/ha/d) parts as functions of total biomass and crop class.   In Apsim, ΔRDM 

is calculated from ΔADM via growth stage-based multiplier parameters. 

Canegro calculates a temperature-sensitive (≈10-17 °C range) STKPF from a 

reference G-specific parameter (Singels et al., 2005a).  Mosicas estimates STKPF as 

a continuous function of ADM, with a G-specific maximum value and a crop class-

specific attenuation coefficient.  Apsim considers STKPF to be a fixed G-specific 

parameter.  Default parameter values for the different models are in the range 0.70-

0.75 t/t. 

STKPF can be evaluated from observed SDM and ADM. 

METHODS 

This section describes the methodology followed to achieve the stated objectives.  A 

set of experiments is described, followed by a description of analyses conducted to 

characterise the growth environments in each experiment.  We then describe how 

each G-E combination was phenotyped in terms of process-level model concepts 

identified in Section 3.  Finally, we explain how we assessed the variation in these 

phenotypic parameters in order to assess E, G and GxE interaction effects.  This 
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allowed us to infer the extent to which G control is exerted at a process level, as well 

as identify significant remaining E variation that pointed to model concept deficiencies. 

3.1. Experiment details 

Eight experiments (Es; ‘E’ is used interchangeably to refer to experiments and 

environments in this paper) were conducted, consisting of plant and first ratoon crops 

at sites in four countries (Table 1).  The intention was to have the same set of cultivars 

(genotypes, Gs) grown at all sites, with no water or nutrient limitations.  In practice, 

three Gs were common to all sites (N41, R570 and CP88-1762) and additional Gs 

(HoCP96-540, Q183, ZN7 and NCo376) were included at some sites, and water stress 

could not be avoided in some cases.  At all sites, expect in Chiredzi, Zimbabwe, two 

adjacent blocks,  A and  B, were established at each site.  Plant crops were established 

on both blocks simultaneously, but only the plots in block A were sampled during the 

first season of growth (recording data for the plant crop). Block B was cut back on the 

day of the final harvest of block A, and was sampled during the second season of 

growth (recording data for the first ratoon crop).  At Chiredzi, the ratoon crop was 

started on a different field with a different soil, six months after the harvest date of the 

plant crop.   

Each experiment was designed as a randomised complete block with five plots per 

treatment; each plot consisted of 9 rows of 11 m long, spaced at 1.5 m.  Non-

destructive measurements of top visible dewlap height (TVDH, cm) and leaf number 

(tagged shoots), and shoot population (2 m row-length), were conducted every one to 

four weeks, with more frequent sampling during the partial canopy and tillering phases.  

Destructive samples (of 18 m2) were taken on four occasions – 3, 6, 9 and 12 months’ 

age.   Leaf area, shoot and leaf counts, and fresh and dry biomass fractions were  
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Table 1. Experimental details.    All experiments included cultivars N41, R570 and CP88-

1762. 

Country, site 

and location 

Additional 

cultivars 

Crop 

class 

Start 

date 

Harvest 

date 

Irrigation 

type 

Soil type  Notes 

Reunion, La 

Mare.   

20°57’0”S; 

55°18’0”E; 

70 m a.s.l. 

Q183, 

NCo376 

Plant 2015-

02-25 

2016-

02-23 

Overhead 

sprinkler 

 

Hypereutric 

Nitisols 

 

Irrigation 

suspended 

after 3 

months in 

plant crop. 

Ratoon 2016-

01-18 

2017-

01-25 

South Africa, 

Pongola.   

27°24’0”S; 

31°35’0”E; 

308 m a.s.l. 

HoCP96-

540, 

HoCP96-

540, ZN7 

Plant 2014-

03-25 

2015-

03-24 

Overhead 

sprinkler 

and drip 

Rhodic 

Cambisol 

 

Limited 

irrigation in 

ratoon 

crop. 

Ratoon 2015-

03-24 

2016-

03-23 

USA, Belle 

Glade.   

26°39’02”N; 

80°38’08”W; 

5 m a.s.l 

NCo376, 

Q183, 

HoCP96-

540 

Plant 2013-

12-12 

2015-

01-04 

Water 

table 

Dystric 

Sapric 

Histosol  

 

Ratoon 2015-

01-23 

2016-

01-26 

 

Zimbabwe, 

Chiredzi. 

21°02’01.95”S, 

31°36’58.52”E, 

420 m a.s.l. 

Q183, 

HoCP96-

540, ZN7 

 

Plant 2013-

10-30 

2014-

11-26 

Furrow Eutric 

Luvisol 

Plant and 

ratoon 

crop fields 

not 

adjacent in 

space or 

time  

Ratoon 2015-

06-03 

2016-

06-03 

Floppy 

overhead 

sprinkler 

Eutric 

Luvisol 



16 

 

Table 2.  Symbols, their units and meanings. 

Acronym Units Description 

ADM t/ha Above-ground dry biomass 

ADM_OSG t/ha ADM on date of onset of stalk growth 

Apsim  APSIM-Sugar 

cv% % Coefficient of variance 

DAP_EM d Days from crop start to primary shoot emergence 

DAP_EM50 d Days from crop start to 50% primary shoot emergence 

Canegro  DSSAT-Canegro 

Canegro1  DSSAT-Canegro v4.5 

Canegro2  DSSAT-Canegro v4.5_C2.2 

E  Environment or experiment 

Fi % Fractional interception of radiation 

FiPAR % Fractional interception of PAR 

G  Genotype or cultivar 

GLAI m2/m2 Green leaf area index 

IntPAR MJ/m2 Intercepted PAR 

Mosicas  Mosicas 

OSG  Onset of stalk growth (phenological event) 

P  Plant crop 

PAR MJ/m2 Photosynthetically-active radiation 

PFINAL shoots/m2 Final shoot population 

PI °Cd/leaf Leaf phyllocron interval 

POPN shoots/m2 Shoot population 

PPEAK shoots/m2 Peak shoot population 

PTQ MJ/m2/°Cd Photothermal quotient 
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PTQc MJ/m2/°Cd Cumulative daily PTQ 

PTQd MJ/m2/°Cd Daily PTQ 

R1  First ratoon crop 

RUE g/MJ Radiation use efficiency (photosynthetic conversion 

efficiency) calculated as the aboveground dry biomass 

produced over a given period divided by PAR intercepted 

over the same period 

RUEmax g/MJ Maximum observed RUE calculated over four biomass 

sampling periods 

RUEo g/MJ Theoretical maximum RUE under ideal conditions (optimal 

temperature, water status and nutrient status) 

SDM t/ha Stalk dry mass 

SRAD MJ/m2 Global solar radiation 

STKPF t/t Stalk partitioning fraction 

TAR shoots/m2/

°Cd 

Tiller appearance rate per unit TT 

TB °C Base temperature for thermal time accumulation 

TMAX °C Maximum daily air temperature 

TMIN °C Minimum daily air temperature 

TO °C Optimal temperature for thermal time accumulation 

TT °Cd Thermal time 

TT_EM50 °Cd TT from crop start to 50% primary shoot emergence 

TT_Fi50 °Cd TT from TT_EM50 to 50% FiPAR 

TT_OSG °Cd TT from DAP_EM50 to date of OSG 

TT10 °Cd TT calculated with Canegro2 cardinal temperatures for leaf 

elongation 
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TT16 °Cd TT calculated with Canegro2 cardinal temperatures for 

tillering 

TT9 °Cd TT calculated with Apsim cardinal temperatures  

TU °C Upper temperature for thermal time accumulation 

WSI  Water stress index 

ΔADM t/ha/d Daily change in ADM 

ΔADMp t/ha Change in ADM for period p 

ΔIntPARp MJ/m2 Change in intercepted PAR for period p 

ΔRDM t/ha/d Daily change in root dry mass 

 

determined based on 3 m2 sub-samples.  Dry mass values for biomass components 

(e.g. ADM and SDM) were determined by multiplying the respective dry mass fractions 

(calculated using the 3 m2 sub-samples) by the 18 m2 above-ground fresh mass 

samples.  Radiation interception by the canopy was measured non-destructively, using 

handheld line quantum sensors, on several occasions throughout each crop.  

Departures from this basic protocol are highlighted in the results.  Some other 

limitations were noted for certain crop and genotype combinations.  These are noted 

in the results.   

3.2. Environmental characterisation 

3.2.1. Thermal time 

Cumulative TT was calculated as described by Jones and Singels (2018).  TT9 used 

Apsim cardinal temperatures (TB = 9, TO = 32, TU = 45 °C); TT10 and TT16 used 

Canegro2 cardinal temperatures for leaf development (TB = 10, TO = 30, TU = 43 °C) 

and tiller development (16, 35, 48 °C) respectively.    
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3.2.2. Crop water status 

The water stress index (WSI) was calculated as the cumulative sum of daily 

photosynthesis water stress (SWDF2) values simulated by the Canegro2 model, using 

standard cultivar coefficients. 

3.2.3. Photo thermal quotient    

The photo-thermal quotient (PTQ, Nix, 1976) is the ratio of solar radiation to TT 

accumulation, and captures the combined effect of radiation as the primary source of 

carbon accumulation and temperature as a main carbon sink determinant.  This 

concept has been used to explain variation in tillering in sorghum (Kim et al., 2010) 

but has not been used in sugarcane models. 

Daily cumulative PTQ (PTQc, MJ/m2/°Cd) is reported for the environmental 

characterisation, and was calculated as: 

𝑃𝑇𝑄𝑐 = ∑min⁡(6, 𝑃𝑇𝑄𝑑)

𝐷

𝑑=1

 
(2) 

𝑃𝑇𝑄𝑑 =
𝑆𝑅𝐴𝐷

𝑇𝑇10
 

(3) 

Daily PTQ (PTQd, MJ/m2/°Cd) was limited to 6 MJ/m2/°Cd, based on analysis of the 

PTQd values (mean = 2.15, median = 1.38 MJ/m2/°Cd; excluded outliers amounted to 

< 1 % of the dataset).  This was to avoid PTQd reaching enormous values on days 

where the air temperature is near or below the base temperature of 10 °C.   PTQc 

values were used visually (only). 
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3.3. Phenotypic characterisation 

Descriptive phenotypic parameters were calculated either directly or derived from 

observed data.  The derived parameters are based on concepts from the different 

models, and the focus was on parameters understood to be of particular importance 

to these models. 

3.3.1. Canopy development 

Methods for calculating values for TT_EM50, PI, tiller appearance rate per unit thermal 

time (TAR, shoots/m2/°Cd), peak shoot population (PPEAK, shoots/m2), final shoot 

population (PFINAL, shoots/m2), TT_Fi50, seasonal intercepted PAR (IntPAR, MJ/m2) 

and seasonal average FiPAR (FiPARavg, %) are described in this section. 

 TT_EM50 was calculated as the cumulative TT10 value on the date of 

DAP_EM50 (preliminary analysis showed little difference between TT 

measures calculated with different cardinal temperatures).   DAP_EM50 is 

required to estimate TT_EM50, and had been observed for the Reunion P and 

Belle Glade P and R1 crops.   In other cases, DAP_EM50 was inferred from 

POPN observations (methodology explained in Section 1.3 of the 

Supplementary Online Material).   

 PI was calculated as the inverse of leaf appearance rate per unit thermal time 

(LAR0, leaves/shoot/°Cd).  LAR0 was calculated as the slope of the linear 

regression of total leaf number per shoot (TLFN) against TT10, for TT10 values 

less than 3100 °Cd.  

 TAR was calculated as the slope of the linear regression of POPN against 

TT16, from DAP_EM50 to date of PPEAK. 
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 PFINAL was estimated from the last three POPN observations.   

 PPEAK was taken as the maximum observed (treatment mean) POPN value.   

 TT_Fi50 was used to characterize canopy development.  Values were 

estimated by optimising the Canesim FiPAR model (see Supplementary Online 

Material) parameters to achieve a good fit to FiPAR observations.  A genetic 

algorithm ("Genoud", Mebane and Sekhon, 2011) was used for parameter 

optimisation.   TT_Fi50 could not be determined for Chiredzi R1 due to lack of 

reliable data. 

 IntPAR was calculated as the dot-product of fitted daily FiPAR (from the 

Canesim model) and PAR values.   

 FiPARavg was calculated as the ratio of IntPAR to total seasonal incident PAR, 

expressed as a percentage. 

3.3.2. Biomass accumulation and partitioning 

ADM, SDM and IntPAR data were used to estimate parameters for biomass 

accumulation (RUEmax, defined as the maximum RUE observed in all biomass 

sampling periods) and partitioning (ADM_OSG, TT_OSG and STKPF).  

 RUEmax was calculated as highest of RUE calculated per biomass sampling 

period p (RUEp, g/MJ) 

RUEp =
ΔADMp ∗ 100

ΔIntPARp
 

 (5) 

where ΔADMp (t/ha) and ΔIntPARp (MJ/m2) are the changes in ADM and 

IntPAR between consecutive sampling dates.   

 ADM_OSG was determined by linearly regressing SDM (> 0 t/ha) against ADM 

and then finding the x-intercept.  TT_OSG was taken as the TT10 age since 
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DAP_EM50 at which ADM = ADM_OSG.  For Chiredzi R1 only, TT_OSG was 

additionally estimated using TVDH (top visible dewlap height, a measure of 

plant height, cm) data, as the ADM_OSG values appeared too high for this E.  

TVDH was regressed against TT16, and the corresponding TT10 value (since 

DAP_EM50) when TVDH was last projected to be zero was taken as TT_OSG.  

 STKPF was calculated as the slope of linear regression of SDM and ADM.   

3.3.3. Analysis of variance 

ANOVA was conducted on ADM and SDM final values using the R ‘aov’ function for 

analysis of variance (R Core Team, 2016). 

For each phenotypic parameter, the mean and standard deviation of E values for each 

G were calculated: E variation was quantified as the standard deviation of E means 

(averaged over Gs), divided by the overall (averaged over Es) mean value, expressed 

as a percentage (Ecv, Eq. (6)).  An Ecv value exceeding 25% was taken as an 

indication of strong E impact. 

𝐸𝑐𝑣 =
𝑠𝑡𝑑𝑑𝑒𝑣(𝑀𝑉𝐸1, 𝑀𝑉𝐸2, … ,𝑀𝑉𝐸𝑛)

𝑚𝑒𝑎𝑛(𝑀𝑉𝐸1, 𝑀𝑉𝐸2, … ,𝑀𝑉𝐸𝑛)
∗ 100 

(6) 

𝑀𝑉𝐸𝑦 = 𝑚𝑒𝑎𝑛(𝑉𝑎𝑙𝑢𝑒𝐸𝑦,𝐺1, 𝑉𝑎𝑙𝑢𝑒𝐸𝑦,𝐺2, 𝑉𝑎𝑙𝑢𝑒𝐸𝑦,𝐺3) (7) 

where MVEy is the mean phenotypic parameter value (ValueE,G) for the three common 

Gs (G1, G2, G3) for environment y (Ey). 

Similarly, the mean and standard deviation of G values for each E were calculated:  G 

variation was quantified as the standard deviation of G means (averaged over Es), 

divided by the overall (averaged over Gs) mean value, expressed as a percentage 

(Gcv, Eq. (8)).  In addition the variation in G rankings was quantified as the standard 
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deviation of average G rankings across Es, divided by the mean G ranking, expressed 

as a percentage (GRcv, Eq. (10)).  G impacts were considered strong when Gcv 

exceeded 8% and GRcv exceeded 25%.   

𝐺𝑐𝑣 =
𝑠𝑡𝑑𝑑𝑒𝑣(𝑀𝑉𝐺1,𝑀𝑉𝐺2, 𝑀𝑉𝐺3)

𝑚𝑒𝑎𝑛(𝑀𝑉𝐺1,𝑀𝑉𝐺2, 𝑀𝑉𝐺3)
∗ 100 

(8) 

𝑀𝑉𝐺𝑥 = 𝑚𝑒𝑎𝑛(𝑉𝑎𝑙𝑢𝑒𝐸1,𝐺𝑥, 𝑉𝑎𝑙𝑢𝑒𝐸2,𝐺𝑥, … , 𝑉𝑎𝑙𝑢𝑒𝐸𝑛,𝐺𝑥) (9) 

𝐺𝑅𝑐𝑣 =
𝑠𝑡𝑑𝑑𝑒𝑣(𝑀𝑅𝐺1, 𝑀𝑅𝐺2, 𝑀𝑅𝐺3)

𝑚𝑒𝑎𝑛(𝑀𝑅𝐺1, 𝑀𝑅𝐺2, 𝑀𝑅𝐺3)
∗ 100 

(10) 

where MVGx is the mean parameter value for genotype x (Gx) for environments 1 to n 

(E1…En), and MRGx is the mean of rankings of Gx in each environment. 

4. RESULTS 

4.1. Environmental characterisation 

Figure 2 illustrates the time course of incident global radiation (SRAD, MJ/m2), TT, 

WSI and PTQ values for each E. 

Table A-3 (Supplementary Online Material) summarises key E parameters over three 

growth phases – germination, tillering and stalk growth, where the phases are 

determined by the Canegro1 model’s standard parameter values for TT_EM50 and 

TT_OSG. 

The warmest site was La Mare (seasonal cumulative TT10 ≈ 5400 °Cd), while the 

coolest was Pongola (≈ 4500 °Cd).  La Mare P and R1 and Chiredzi P experienced 

warm conditions at the crop start, with cooler conditions later on; the other crops were 

started at a cooler time of year (Figure 2).   
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Figure 2.  Time series plots of cumulative solar radiation (SRAD, MJ/m2), measures of 

thermal time accumulation (TT16 and TT10), cumulative water stress index (WSI) and 

cumulative photo-thermal quotient (PTQc, divided by 10), for each Experiment. 

 

La Mare had the smallest temperature variation of all sites (all days averaged 16-

30 °C, TMIN > 16 °C and TMAX < 35 °C).  Chiredzi experienced the strongest weather 

variation – there were on average 50 days where TMIN < 10 °C and 64 days per year 

where TMAX > 35 °C.  Despite being the coolest overall, Pongola still had significant 

numbers of hot (TMAX > 30 °C) and very hot (TMAX > 35 °C) days. 

Chiredzi had the highest seasonal SRAD, with the P and R1 crops receiving 8477 and 

7400 MJ/m2 respectively.  La Mare ranked second (7320 and 6914 MJ/m2), Belle 

Glade third (6573 and 6456 MJ/m2), and Pongola last (6132 and 5770 MJ/m2).  

The data in Figure 2 show that SRAD and TT accumulation had a similar relationship 

throughout the season at La Mare P and R1, and Pongola R1.  Pongola P, Belle Glade 

P and R1 and Chiredzi R1 PTQc data suggest a high radiation to temperature ratio 

during the tillering phase for these Es (Table A-3), while the converse is true for the 

germination and tillering stages of Chiredzi P.  
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Pongola R1 experienced water stress through most of the growing period (seasonal 

average WSI=0.3) due to irrigation water use restrictions, while La Mare P and 

Chiredzi P were water stressed for most of the stalk growth phase with seasonal 

average WSI of 0.42 and 0.19 respectively (Figure 2 and Table A-3).  These three Es 

were therefore considered water stressed. Other Es experienced relatively little water 

stress (WSI ≤ 0.1) through most of the growing period (Figure 2 and Table A-3) and 

were considered well-watered. 

Biotic limitations were noted for some of the Es.  Lodging was recorded at Pongola P, 

Belle Glade P, and Chiredzi P.  The Belle Glade P crop experienced a frost event 38 

days after planting, which affected only Q183.  Brown and Tawny rust, Sesamia stalk 

borer, rats and rabbits affected cultivar HoCP96-540 at Belle Glade and Pongola.  We 

believe these had little impact on outcomes, as we focussed mainly on the common 

Gs (generally ruling-out issues with Q183 and HoCP96-540) and unstressed 

experiments (so excluding Chiredzi P).  Lodging recorded at Belle Glade P and 

Pongola P (along with drying-off at this site) may have led to reduced final ADM and 

SDM, but we believe this had little impact on the process-level analysis as the focus 

was seldom on final values. 

4.2. Phenotypic characterisation 

Observed phenotypic parameters (PPEAK, PFINAL, ADM and SDM at harvest), and 

derived phenotypic parameters based on modelling concepts, were calculated from 

the experimental data.  These were then analysed for variation G and E, as well as 

GxE interactions via consistency of G rankings across Es.    
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The derived parameters allowed us to assess the extent to which model concepts 

explained the observations.  In principle: 

 strong variation with E indicates model concept shortcomings relating to 

simulating E effects. 

 strong variation with G, and consistent G rankings – according to the 

significance criteria described in Section 4.3.3 - indicate G control over the 

related plant process(es) (and a need for G-specific parameters in models); 

 strong variation with G and/or E, but with inconsistent G rankings, indicates 

unresolved GxE interaction effects. 

Variation in parameter values across E and G for common Gs (N41, R570 and CP88-

1762) is summarised in Table 3.  Actual parameter values and correlation between 

parameters are provided in the Supplementary Online Material.   

Results are presented for parameters relating to canopy development, then biomass 

accumulation and partitioning. 
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Table 3.  Coefficient of variance (%) of derived phenotypic parameter values.  G indicates variation in mean values across three cultivars (N41, 
R570 and CP88-1762); E indicates variation in mean values across experiments (all, unstressed and stressed experiments).  Mean rankings 

and cv% of rankings for unstressed Es are shown. 

 Unstressed Es All Es Stressed Es 

     Rankings      

 Mean 
value 

Units  E cv% G cv% N41 R570 CP88
-1762 

G Rank 
cv% 

E cv% G cv% E 
cv% 

G cv% 

Parameter Derived parameters 

TT_EM50 (P crops) 419 °Cd 34.2 10.5 1.5 2.0 2.5 25.0 31.3 5.3 36.5 1.7 

TT_EM50 (R1 crops) 345 °Cd 39.4 37.8 1.7 2.7 1.7 28.9 41.3 32.1 - 4.9 

PI 138 °Cd/leaf 15.5 8.7 1.6 3.0 1.4 43.6 13.5 8.4 5.0 7.5 

TAR 0.027 shoots/m2/°
Cd 

51.6 16.4 2.4 2.0 1.6 20.0 54.1 18.6 61.1 24.9 

TT_Fi50 352 °Cd 19.8 10.3 2.5 2.3 1.3 33.1 25.2 10.0 18.1 10.8 

RUEo 3.11 g/MJ 18.8 6.9 1.5 2.0 2.5 25.0 21.2 6.4 27.7 20.7 

ADM_OSG 5.3 t/ha 80.4 10.8 2.2 2.2 1.6 17.3 82.8 4.6 93.2 45.2 

TT_OSG 911 °Cd 39.2 6.9 2.6 2.0 1.4 30.0 44.5 3.2 50.6 8.7 

STKPF 0.80 t/t 9.3 2.3 2.6 1.8 1.6 26.5 14.1 3.8 20.8 11.9 

STKPF** 0.83 t/t 2.8 1.6 2.3 2.0 1.8 12.5 14.0 4.4 21.0 11.8 

 Observed parameters 

PPEAK 21 shoots/m2 28.1 26.4 2.8 1.5 1.8 33.1 29.4 23.6 38.4 19.8 

PFINAL 11 stalks/m2 34.6 17.6 2.4 1.2 2.4 34.6 36.3 17.8 42.3 19.2 

ADM 49.4 t/ha 20.4 4.6 1.8 1.8 2.4 17.3 18.7 4.0 18.4 3.7 

SDM 35.6 t/ha 15.8 6.4 2.0 1.6 2.4 20.0 16.9 9.6 4.8 16.5 
**La Mare R1 excluded. 
ATT10 
BTT16 
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4.2.1. Canopy components 

For P crops, mean TT_EM50 was similar to the default value for Canegro1 (428 °Cd), 

≈50% lower than the Apsim default, and considerably greater than the Mosicas default 

parameter value, in equivalent TT terms.  For ratoon crops, average TT_EM50 was 

greater than the equivalent default parameter values for Canegro1, Apsim and 

Mosicas.      

TT_EM50 values were lowest for Pongola and highest for Chiredzi.  Strong G variation 

combined with consistent G rankings (high GRcv) suggest significant G effects, with 

minimal GxE interaction effects, for P crops.   

For R1 crops, E variation in TT_EM50 was slightly greater than that of P crops and 

exceeded the 25% threshold, indicating strong E effects, and hence an insufficient 

explanation of shoot emergence with thermal time.  G variation was considerably 

higher than that of P crops, and rankings indicate that R570 consistently requires more 

TT for germination than other Gs.  R570 required 619 °Cd for germination at Belle 

Glade R1, compared with ≈150 °Cd for other Gs in this E.  R570 also required nearly 

50% more TT for germination for Chiredzi R1 compared to N41 and CP88-1762, and 

about 30% more for Belle Glade P 

E and G variation in PPEAK and PFINAL were considerable, but there was little GxE 

interaction as rankings were mostly consistent across the Es.  Water stress affected 

the E averages, but had little effect on G rankings.   PPEAK was consistently greater 

for unstressed than stressed crops. 

TAR appears to be affected by both E and G factors.  For the three common Gs, there 

was considerable variation in E (0.007-0.047 shoots/m2/°Cd) and the cv was second-



30 

 

highest of all parameters (52%).  G rankings were relatively inconsistent (GRcv = 

20%), suggesting the possible existence of GxE interaction effects.  We note however 

that N41 had the highest TAR in six of eight Es, and CP88-1762 had the lowest in five 

Es.  

E and G variation in PI was low, suggesting that E does not affect PI.  Gcv for PI 

exceed our threshold for strong G effects, and the GRcv% value indicates that the G 

rankings are consistent for the three common Gs under unstressed conditions.  R570 

had the greatest PI in all five unstressed Es, while rankings (and average leaf PI 

values) were nearly identical for N41 and CP88-1762. 

Relatively low E variation in TT_Fi50 suggests that canopy development is 

predominantly TT-driven.  Further investigations (results not shown) also suggest that 

TT_Fi50 is more accurately modelled using TT16 than TT9, as E variation was lower 

with TT16.  TT_Fi50 was smallest for CP88-1762 in five (out of seven) Es, and greatest 

for N41 in five Es.  It should be noted that the underlying FIPAR observations used for 

these analyses were not always ideal in terms of quantity and quality, thereby reducing 

the confidence of these findings.   

4.2.2. Biomass accumulation and partitioning 

ADM at final harvest (Figure 3, Table A-10, Supplementary Online Material) ranged 

between 33.4 t/ha (R570 at Pongola, R1) and 71.2 t/ha (R570, La Mare, R1).  SDM 

(Figure 4, Table A-10) was lowest for R570 at Pongola R1 (22.9 t/ha) and highest at 

Belle Glade P (52.2 t/ha).  For the three Gs common to all Es, ANOVA results (Table 

A-4) indicate significant E (p<0.001) and GxE interaction (p<0.01) effects for ADM, for 

all Es and non-stressed Es only.  SDM variances were significantly explained by E 
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(p<0.001), G (p<0.05 across all Es, p<0.1 for unstressed Es) and GxE interaction 

effects (p<0.01).  SDM values at final harvest are shown in Figure 4.      

  

Figure 3.  Above-ground dry biomass at harvest for different cultivars and experiments.  

Error bars indicate one standard deviation of the mean.

 

Figure 4.  Stalk dry mass at harvest for different cultivars and experiments.  Error bars 

indicate one standard deviation of the mean. 

Average unstressed maximum RUE values are similar to the RUEmax parameters for 

the Apsim (equivalent to 3.3-3.6 g/MJ PAR) and Canegro1 and Canegro2 models (2.9-
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3.4 g/MJ).  RUEo values were consistent across Es (except for Chiredzi P, attributed 

to errors in estimating FiPAR for this experiment) with low E variation (Table 3).   

The Es which best matched the predefined experimental conditions (fully irrigated 

ratoon crops with sufficient FiPAR data for the same set of five Gs) were the La Mare 

R1 and Belle Glade R1.  For these Es the G-specific RUEo values were highly 

consistent and the G rankings were identical (Table 4).   

Table 4.  Maximum sampling-period radiation use efficiency values (g/MJ intercepted PAR), 

and rankings, by Experiment and Cultivar, for the two most comparable experiments. 

Experiment 

N
4
1
 

R
5
7
0

 

C
P

8
8
-

1
7
6
2

 

H
o

C
P

9
6

-5
4
0
 

Q
1
8
3
 

Z
N

7
 

N
C

o
3
7
6

 

A
v
g

 

 Values (g/MJ) 

La Mare, R1 3.11 3.17 3.18  2.57  2.69 2.94 

Belle Glade, R1 3.35 3.48 4.28  2.57  3.20 3.38 

All 3.23 3.33 3.73  2.57  2.95 3.16 

 Rankings 

La Mare, R1 3.0 2.0 1.0  5.0  4.0 2 

Belle Glade, R1 3.0 2.0 1.0  5.0  4.0 1 

All 3.0 2.0 1.0  5.0  4.0  

 

The average value for ADM_OSG in this study was 5.3 t/ha and E variation was 

extremely high, for unstressed and stressed Es.  G variation was strong and G 

rankings not consistent, indicating considerable GxE interaction.    There were no clear 

crop class differences.   

E variation in TT_OSG was half that of ADM_OSG, but still high (Table 3).  G variation 

was very low, although CP88-1762 had a consistently lower TT_OSG than N41 and 

R570 (and rankings were fairly consistent, GRcv = 30%, indicating minimal GxE 
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interaction effects).  Average TT_OSG for the common Gs was 1029 °Cd overall, 

911 °Cd for non-stressed Es and 1226 °Cd for stressed Es.   

E and G variation in STKPF (Table 3) were below our threshold values, indicating 

insufficient evidence of strong E and G effects for non-stressed Es and common Gs.  

It should be noted that the La Mare R1 crop values were unusually low compared to 

the other non-stressed Es, indicating possible sampling error.  With this E omitted, 

STKPF values had even lower E variation.  CP88-1762 ranked lowest in STKPF (of 

the three common Gs) in three unstressed Es, but ranked highest in one unstressed 

E.  E and particularly G variation were considerably higher with stressed Es, and 

CP88-1762 had the highest STKPF of the common Gs for all three stressed Es.      

5. DISCUSSION  

Key findings are stated as bullet points, with the supporting discussion following. 

5.1. Canopy development and light interception 

5.1.1. Germination is strongly E- and G-controlled with little GxE 

interaction; for P crops, strong E variation in TT_EM50 indicates 

that E drivers in addition to TT influence time to primary shoot 

emergence, warranting further investigation.   

Correct prediction of TT_EM50 is important: for P crops, it is correlated 

(p<0.005) with ADM and SDM (Table A-5, Supplementary Online Material); and 

several other derived parameters are defined in TT terms after emergence, 

potentially affecting their estimation accuracy. 
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Germination is presumably driven by soil temperature rather than air 

temperature, although all models considered use air temperature (probably for 

pragmatic reasons, that air temperature is available as an input, and soil 

temperature is not) to drive this process.  Seasonal trends in soil temperatures 

tend to lag behind those in air temperatures.  P crops are more likely to be 

affected by soil temperature dynamics because the buds are more deeply 

buried than with ratoon crops.  The La Mare and Pongola P crops were started 

in late summer / early autumn, when soils might be expected to be warmer than 

the air, thus requiring less thermal time (in air temperature terms) for 

germination; this is reflected in the data with smaller TT_EM50 requirements.  

The Belle Glade and Chiredzi P crops were started in winter/spring, where soil 

temperatures would have been cooler than air temperatures and hence would 

be expected to require additional TT (based on air temperature) to achieve 

germination; this is borne out in the data, as these crops had higher TT_EM50 

requirements.  This pattern is less clear with ratoon crops.  Soil temperature 

can be estimated from air temperature, incident radiation, canopy cover and 

soil albedo, and it is recommended that this approach be explored for improving 

the simulation of germination.  Another possibility is that seedcane quality 

affected germination rates at the different sites. 

5.1.2. Base temperatures used to calculate thermal time for germination 

are likely to be G-specific. 

TT_EM50 values were noticeably greater for R570 than the other common Gs 

in some Es (Table A-6, Supplementary Online Material).  An explanation for this 

could be that this cultivar has a higher base temperature requirement for 

germination.  Belle Glade (P and R1) and Chiredzi P experienced much lower 
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average (16-18 °C) and minimum (TMIN ≈ 9-13 °C) temperatures during the 

germination period compared to the other sites (average daily temperature ≈ 

22-28 °C, TMIN ≈ 16-24 °C), and had substantially greater TT_EM50 values for 

R570 than other Gs in these experiments.  This is consistent with the findings 

of Poser et al. (2019), who reported a significantly higher germination TB 

(13.3 °C) for R570 than two other cultivars tested.  Similarly, Smit (2010) found 

different TB values for germination for three cultivars (NCo376, N16 and N27).   

5.1.3. There is significant G and E control over tillering/shoot population 

traits, and thermal time alone is not sufficient to predict shoot 

population under unstressed conditions. 

The TAR value of 0.027 shoots/m2/°Cd is considerably greater than the 

0.0074 shoots/m2/°Cd reported by Bezuidenhout et al. (2003).  G differences in 

tillering rates have been reported in at least two other studies (Inman-Bamber, 

1994; Singels et al., 2005b).    

TAR appears to be affected by both E and G factors.  For the three common 

Gs, there was considerable variation in E (Table 3).  We note however that N41 

had the highest TAR in six of eight Es, and CP88-1762 had the lowest in five 

Es.  On balance, we interpret this as indicating a need for G-specific tillering 

parameters in models. 

Unstressed tiller development has historically been considered to be driven 

solely by TT accumulation (Bezuidenhout et al., 2003; Keating et al., 1999; 

Singels, 2013; Singels et al., 2005b).  However, the large E variation in TAR 

challenges this theory.   

TAR decreased with increasing mean daily SRAD over the tillering period, 

although this relationship for non-stressed crops was not significant (p = 0.08) 
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(Figure 5).  This concept should be explored further for possible inclusion in 

sugarcane crop models to improve simulation of POPN. 

  

Figure 5.  Relationship between mean tiller appearance rate and mean daily solar 

radiation (SRAD, MJ/m2/d) for the tillering period, for non-stressed (filled circles) and 

stressed (filled squares) crops.  

5.1.4. PI is strongly G-controlled with minimal E and GxE interaction 

influences. 

PI values determined in the study are comparable to values reported by Sinclair 

et al. (2004) for CP88-1762, Inman-Bamber (1994) and Bonnet (1998).  Ecv 

was low and Gcv and GRcv were high.  There is also much evidence in the 

literature for G-specific PIs (e.g. Bonnett, 1998; Inman-Bamber, 1994).    

5.1.5. Canopy development rate is G-specific 

G variation in TT_Fi50 for the common Gs is considered strong, and the 

rankings were sufficiently consistent (relatively high GRcv) to indicate G control 

over this trait.   
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5.2. Biomass accumulation and partitioning 

5.2.1. Crop growth response differences to environmental factors is 

genotype-specific.   

Differences in average ADM between Es were significant (Table A-4) and could 

be linked to climatic parameters.  For example, La Mare R1 (highest ADM of 

the unstressed Es, 65.3 t/ha for the common Gs) had 38% greater TT10 and 

20% greater SRAD than Pongola P (lowest ADM of unstressed Es for common 

Gs, 37.3 t/ha).  Canopy development therefore occurred more rapidly and 

intercepted more incoming radiation for La Mare R1 than Pongola P (Table 3).  

La Mare R1 also had a higher average RUEmax than Pongola P (Table A-10), 

probably due to a more favourable temperature regime (24.8 compared to 

21.7 °C, Table A-3) 

GxE interaction in ADM was significant (Table A-4) and G rankings changed 

with E.  For example N41 yielded higher than CP88-1762 in La Mare R1, but 

yielded lower in Belle Glade R1 (Table A-9, Supplementary Online Material). 

This coincided with a slightly higher and lower FIPARavg for N41 in La Mare 

R1 and Belle Glade R1 respectively (Table A-10).  N41 also showed a much 

lower RUEmax than CP88-1762 in Belle Glade R1 (Table A-10).  A notable 

difference between these Es is the average range in daily temperature, with 

Belle Glade R1 at 10.3 compared to 7.4 °C for La Mare R1 (Table A-3). CP88-

1762 may be better adapted to the larger temperature range than N41. 

G variance in SDM was statistically significant (Table A-4).  CP88-1762 yielded 

highest for unstressed Es and common Gs) and N41 lowest.  This coincided 
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with a higher RUEmax (Table A-10), a quicker canopy (TT_Fi50, Table A-5) 

and earlier OSG (TT_OSG, Table A-5). 

5.2.2. Genotypic differences in RUEo are consistent over Es.   

RUEmax showed moderate G variation for common Gs at unstressed Es, and 

very consistent G rankings over Es.  The identical rankings of RUEmax for five 

Gs at Belle Glade and La Mare are remarkable, considering that these sites are 

15 000 km apart, with completely different soils, start dates, irrigation methods, 

biotic stresses and numerous other differences.  The similarity is striking and 

strongly suggests that RUEo is G-specific and stable across Es.  Hoffman et al. 

(2018) and Marin et al. (2011) reported G differences in RUEmax. 

5.2.3. TT_OSG is recommended over ADM_OSG as a simulation 

approach for crop models, and it is clear that TT or ADM alone are 

insufficient for predicting OSG.   

Ecv for ADM_OSG was approximately double that of TT_OSG. Further testing 

with complete models is however necessary to assess this in combination with 

a variable STKPF, as in the Mosicas model.  Water stress should also be taken 

into account when predicting OSG.  The evidence from this study is 

inconclusive regarding the extent to which this trait is also G-controlled. 

Results indicate that TT accumulation (under non-limiting water conditions) 

does not sufficiently account for E differences in OSG.  Characterising related 

G differences (and resolving GxE interaction effects) may only be possible once 

the E drivers of these processes are better understood.  The relationship 

between mean TT_OSG and mean daily SRAD over the tillering period is robust 

(R2 ≈ 0.70, p<0.05), and holds for stressed and irrigated crops (Figure 6).  This 
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suggests that TT_OSG is lower when SRAD is higher.  This needs to be 

investigated further to more fully elucidate the underlying mechanisms.   

 

 

Figure 6.  Relationship between thermal time (TT10) from emergence to start of stalk growth 

averaged over cultivars and average daily incident shortwave radiation for the different 

experiments.  Higher-intensity radiation per unit thermal time appears to result in earlier 

onset of stalk elongation.  Water-stressed experiments are shown as filled squares. The 

linear trend lines were fitted to all data points (stressed and non-stressed combined). 

It is surmised that OSG (and the end of the tillering period as indicated by 

PPEAK) is a response to competition for light.  More profuse tillering under 

relatively sunny conditions, as found in sorghum (Kim et al., 2010), may lead to 

earlier OSG as a response to competition for light (supported by significant 

correlation between TT_OSG and TAR found in our study).  Tiller senescence 

is triggered by the radiation environment in many crops (red to far-red radiation 

ratio, e.g. Lafarge and Hammer (2002)).  Tillering in sugarcane has been 

reported to cease at 70% FiPAR (Inman-Bamber, 1994), and at 90% intra-row 

y = -122.95x + 3355.19
R² = 0.70

0

500

1000

1500

2000

2500

12 14 16 18 20 22 24

A
ve

ra
ge

 T
T_

O
SG

 (
°C

d
)

Average daily solar radiation DAP_EM50 to OSG, MJ/m2



40 

 

FiPAR (Singels and Smit, 2009).  These thresholds may be G-specific, with 

values reported from 55% (ZN7) to 75% (N14) (Singels et al., 2005b; Zhou et 

al., 2003).  Bezuidenhout et al. (2003) suggested that tiller senescence due to 

light competition starts later in subsequent ratoons due to stool widening.  

Allison et al. (2007) found that rapid stalk growth began at PPEAK in irrigated 

sugarcane and Napier grass.   

It is not clear whether it is necessary to simulate a gradual transition from 

tillering to stalk elongation based on phenological development of shoot cohorts 

of different thermal age; doing so may achieve better simulation of low level leaf 

and tiller trait impacts on crop performance. 

5.2.4. Under well-watered conditions, STKPF is a robust parameter, 

unlikely to change by G or E, for the Gs tested here. 

The small observed G variation in STKPF is not agreement with current thinking 

represented in models, which allow for G-specific values for related model 

parameters.  Hoffman et al. (2018) found statistically significant differences in 

stalk fraction in an irrigated pot trial, although the range of values was narrow.  

In an Apsim model parameter sensitivity analysis for two environments in 

Australia (Sexton et al., 2017), 10 model parameters were ranked according to 

their influence in determining simulated yields (where 1st-ranked was the most 

influential and 10th-ranked the least);  STKPF ranked sixth for biomass yields 

eighth for sucrose yields.  The Apsim model does however have the same value 

(0.70 t/t) for the vast majority of standard cultivar definitions.  There is a 

possibility of a G-specific STKPF response to water stress, also not reflected in 

any of the models considered.  
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5.3. Process-level evaluation of crop model concepts 

We believe that the approach demonstrated in this study of analysing crop growth in 

terms of process-level concepts from crop models is enormously valuable for 

improving crop modelling for supporting breeding applications.  Many of the 

phenotypic parameters quantified can be used directly or indirectly as model input 

parameter values.  Shortcomings in crop models, particularly situations where errors 

in one process compensate for errors in other processes, will be highlighted by 

constraining the number and value range of parameters that can be determined via 

trial and error.  Correcting these will ensure that models operate more realistically in 

terms of process composition.  This supports one of the key tenets of crop model 

suitability for crop improvement, that models emulate of the biology of the plant. 

5.4. Significance of the international multi-genotype, multi-

environment dataset 

Relatively few sugarcane ‘multi-environment trials’ (METs) have been conducted, and 

all such trials that we are aware of have been conducted in a single country.  While 

considerable E diversity can exist in a single country, we believe that the dataset 

described here offers considerable additional value by spanning very different growing 

environments.  The cultivars grown are similarly diverse, originating from different 

breeding programmes, with different objectives and germplasm pedigrees.  Finally, 

this is a growth analysis- rather than breeding-focussed dataset, which provides not 

only the opportunity to characterise G, E and GxE interaction effects, but also attempts 

to understand and explain these at a process level.  This offers possibilities for 

improvement to the fundamental mechanisms of process-based sugarcane models, 
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which simultaneously improves the models for more effective application in crop 

improvement activities by (further) unravelling genotypic control over complex traits, 

as well as generally improving the accuracy of the models for more ‘traditional’ 

applications, such as yield benchmarking, forecasting and irrigation scheduling.   

6. CONCLUSION 

Growth analysis data from an international multi-environment trial were used to gain a 

better understanding of G and E effects on biomass production and stalk yields.   

Above-ground dry biomass (ADM) and stalk dry mass (SDM) yields at final harvest 

showed significant E and GxE variation.   Notable traits of the three common Gs 

include: rapid tillering, high peak and final shoot population for N41; slow leaf 

appearance rate and low shoot population with R570; and rapid canopy development 

and high radiation use efficiency for CP88-1762. 

Main findings include:  

 Significant E variation was observed for phenotypic parameters TT_EM50 

(thermal time (TT) to 50% primary shoot emergence), TAR (tiller appearance 

rate per unit TT) and TT_OSG (TT from 50% primary shoot emergence to onset 

of stalk elongation (OSG)).  This challenges (1) the use of air temperature to 

drive shoot emergence, where simulated soil temperature is proposed as an 

alternative; and (2) the use of TT as the sole driver of unstressed tillering rate 

and OSG timing, where solar radiation was found to have a significant influence 

on these (in addition to TT).  OSG timing also appears to be affected by water 

stress. 
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 Significant G variation was observed for TT requirements for leaf and canopy 

development, and RUEo, with little E variation in these.   Stalk partitioning 

fraction was found to vary very little between G or E.    

 Determining the date of primary shoot emergence accurately was both 

challenging and important, as many crop timing parameters are defined with 

reference to this phenological event.   

By explaining more of the E variation, more stable and accurate G-specific model 

parameters can be defined and evaluated.  This is anticipated to lead to less GxE 

confounding of modelled processes, and hence crop models that are better-equipped 

for supporting sugarcane crop improvement activities. 

Crop model concepts have been explored in this work.  The next step is to assess the 

crop models themselves in terms of their abilities to simulate GxE interactions at these 

sites.  Following that – as necessary – model refinements, addressing some of the 

weaknesses (and their possible solutions) identified in this paper, will be implemented 

and tested. 
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