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ABSTRACT

In this paper we investigate Bayesian generalized nonlinear mixed effects (NLME) regression

models for zero inflated longitudinal count data. The methodology is motivated by and ap-

plied to colony forming unit (CFU) counts in extended bactericidal activity tuberculosis (TB)

trials. Furthermore, for model comparisons we present a generalized method for calculating

the marginal likelihoods required to determine Bayes factors. A simulation study shows that

the proposed zero inflated negative binomial regression model has good accuracy, precision

and credibility interval coverage. In contrast, conventional normal NLME regression models

applied to log-transformed count data, which handle zero counts as left censored values,

may yield credibility intervals that undercover the true bactericidal activity of anti-TB drugs.

We therefore recommend that zero inflated NLME regression models should be fitted to CFU

count on the original scale, as an alternative to conventional normal NLME regression models

on the logarithmic scale.
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1. INTRODUCTION

Generalized linear models specifying either the Poisson or negative binomial distributions are

basic models for count data. These models can be extended to relatively complex situations,

including regression models, mixed effects models, and models that accommodate overdis-

persion, underdispersion, and excess zeros. [1–3] However, in particular when very large counts

are to be modeled, such as counts of viral or bacterial load in medical applications, [4–7] or

large counts in biology and ecology, [8,9] researchers often log-transform the data. After doing

so, the data might be expected to be normally distributed, at least approximately, and standard

statistical procedures, such as normal linear models, including mixed effects linear models,

are applied. However, this approach has been criticized as a remnant of traditional statistical

practice from an era when practical techniques were not yet available to model count data

on the original scale. [10] Nevertheless, in relatively complex cases such as nonlinear mod-

els for hierarchically structured data, [11] the practice of log-transformation of count data is still

common, despite the fact that generalized mixed effects models [12] may serve as alternatives.

Moreover, imputation of zero counts on the logarithmic scale (as a workaround) can lead to

biased parameter estimates when the variability of the counts is large and the mean counts

are small. [10,13] Thus an important advantage of generalized mixed effects models for count

data on the original scale is that zero counts do not have to be imputed, or specified as left

censored values, [14,15] on the logarithmic scale.

Generalized linear mixed effects models and generalized nonlinear mixed effects (NLME) mod-

els for count data should adequately accommodate both overdispersion and excess amounts

of zeros through, for example, zero inflated Poisson or zero inflated negative binomial mod-

els. [16,17] Zero inflated count models fit a mixture distribution, with a point mass at zero, and a

Poisson or negative binomial distribution for the “count” part. [3,18] Ignoring zero inflation in the

data may yield biased estimates of fixed and random effects, and thus may lead to inaccurate

3



inferences for model parameters of interest. [3]

Although a wide range of literature is available on Bayesian implementations of zero inflated

generalized linear mixed effects models, [19–21] relatively little work has been done on zero

inflated generalized NLME models. For example, Sae-Lim et al. [22] fitted Bayesian zero inflated

Poisson and negative binomial NLME models to tick counts from animals on tick infested fields,

to measure within-breed genetic variation and heritability.

For the purpose of model comparisons of zero inflated generalized NLME models using Bayes

factors, the marginal likelihoods need to be approximated. Approximation techniques for marginal

likelihoods include the Laplace-Metropolis approximation [23,24] (the so-called compound Laplace-

Metropolis marginal likelihood (CLMML)), and the widely used harmonic mean sampling esti-

mator. [25] Here it may be noted that in some cases the harmonic mean sampling estimator has

infinite variance (which does not adhere to the central limit theorem) [26] and preferably should

be abandoned in favor of CLMMLs.

The objectives of the present paper are to propose and evaluate zero inflated generalized

NLME regression models for longitudinal count data that belong to the exponential family

of distributions. The methodology is motivated by and applied to colony forming unit (CFU)

counts in extended bactericidal activity tuberculosis (TB) trials. Furthermore, for model com-

parisons we present a generalized method for calculating the marginal likelihoods required to

determine CLMMLs and ultimately Bayes factors, and we provide methods for calculating the

deviance information criterion (DIC) statistic and Pearson goodness of fit measure. In addition,

the NLME regression model is formulated as a zero inflated generalized Poisson (ZIGP) re-

gression model to serve as an extension to the proposed regression models that fall within the

exponential family of distributions. [27]

The paper is organized as follows: Section 2 provides an overview of analysis methods for

CFU count data in extended bactericidal activity TB trials. Section 3 introduces a general zero
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inflated generalized NLME regression model for CFU count over time. Special cases of the

general zero inflated generalized NLME regression model are outlined in Section 4. The ZIGP

regression model (as an extended version of the regression models presented in Section 4) is

outlined in the online appendix of this paper. DIC statistics and Bayes factors for discriminating

between the various NLME regression models, and the Pearson goodness of fit measure, are

introduced in Section 5. Section 6 provides applications of the proposed methodology using

a CFU count dataset of a recently published extended bactericidal activity TB trial. Section 7

presents a simulation study to compare the performance of the recommended regression mod-

els. Section 8 discusses the results and key findings of the paper.

2. MOTIVATING DATA

The methods in this paper are motivated by CFU count data in extended bactericidal activity

TB trials. In such trials the bactericidal and sterilization activity of TB drugs are characterized

by the rate of change in CFU count. Decline in CFU count during a particular treatment period

typically is bilinear or biphasic over time, and has conventionally been modeled through linear

and nonlinear regression, after log-transformation of the count data.

2.1. Early and extended bactericidal activity of tuberculosis drugs

The assessment of the early bactericidal activity (EBA) of anti-TB drugs, namely bactericidal

activity during the first 14 days of treatment, is a key phase of the development of new anti-TB

drugs and treatments. [28] Thus EBA trials are conducted to characterize the short-term efficacy

of anti-TB drugs in development Phase 2a trials. [6] In such trials, overnight sputum samples

are collected, usually daily, from Day 0 up to Day 14 after the start of treatment. [6] In these

sputum samples, so-called colony forming units (CFUs) are counted. Based on these counts,

the EBA of anti-TB drugs is characterized by the rate of decline in CFU count over time, on
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the logarithmic scale to the base of 10 (or log10(CFU) count). [6] The EBA over a certain time

interval, calculated from a log10(CFU) versus time profile, is expressed as follows [29]:

EBA(t1–t2) = − f̂(t2)− f̂(t1)

t2 − t1
(1)

where f(t) is an appropriate regression function for log10(CFU) count versus time, and f̂(t1)

and f̂(t2) are the corresponding fitted values at Day t1 and Day t2, respectively. From Equa-

tion (1) it can be seen that the anti-TB activity of a given drug or treatment becomes larger

as EBA(t1–t2) increases. Most anti-TB drugs, such as isoniazid, [30,31] cause a relatively fast

decline in log10(CFU) count during the initial phase of treatment, thereby eradicating most of

the TB bacteria during this time.

In contrast to the concept of EBA, the sterilization property of TB drugs refers to the rate of

decline in log10(CFU) count after the initial phase of treatment (i.e. the rate of decline once

the majority of TB bacteria have been eradicated). [32] That is, the sterilization activity of anti-

TB drugs refers to their activity against persistent TB microorganisms surviving the first few

days of treatment. [32] Extended bactericidal activity trials have longer treatment duration than

EBA trials and typically span 56 days. For example, in the trial reported by Rustomjee et al. [33]

overnight sputum samples were collected from TB infected patients on Days 0, 2, 7, 14, 21, 28,

35, 42, 49 and 56 following the start of treatment. Extended bactericidal activity trials might

be conducted during later stages of development of anti-TB drugs, such as in late Phase 2

(Phase 2b) trials, but before the drug enters Phase 3 trials. [34] Rustomjee et al. [33] clearly

distinguish between the EBA and sterilizing activity of each of the treatment regimens studied.

In fact, for each treatment the log10(CFU) counts over time suggest that the initial slope (rate

of decline of CFU counts) is substantially larger than the terminal slope.

Regression slopes of log10(CFU) count over 56 days of treatment, time to sputum culture con-

version in liquid media, and the proportion of patients with negative sputum culture after 56
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days of treatment have been used as surrogate markers of the long term efficacy of anti-TB

drugs (Phase 3; favorable versus unfavorable outcome). [35,36] Figure 1, adapted from Mitchi-

son and Davies [35], illustrates the relationship between the aforementioned standard efficacy

endpoints of 56-day extended bactericidal activity trials.

CFU counts in anti-TB trials are conventionally calculated as:

CFU =
1

n

n∑
x=1

CFUx × factor× 10dilution (2)

where CFUx is the count of culture plate x (from n replicate plates in total), and “factor ×

10dilution” compensates for the dilution used in the counting process.

Inspection of CFU count data from a wide range of previous trials (see Burger and Schall [14])

showed that the variance of CFU counts on the original scale increases with their mean. That

is, if one assumes that the variance of the data Y is of the form Var (Y ) = σ2 [E (Y )]2 = σ2µ2

for some constant σ2, then CV (Y ) =

√
Var(Y )

E(Y )
= σµ

µ
= σ. Thus, the coefficient of variation (CV)

of Y is constant over all µ. Approximately, constant variance of CFU count on the logarithmic

scale was confirmed by the extensive empirical study reported by Burger and Schall [14]. The

observation of constant variance on the logarithmic scale suggests that the mean-variance

relationship of the distribution of CFU count on the original scale is characterized by a constant

CV. As a consequence, one promising approach to modeling CFU count over time was to

regress the data against time on the logarithmic scale.

CFU counts of zero are considered valid data, and in analyses based on log-transformed

counts, zero counts have been accommodated as censored observations. The censoring limit

for zero counts on the logarithmic scale was chosen as follows: In Equation (2), suppose

that n = 2, factor = 20 & dilution = 0 [6,15], then the smallest possible count above zero is

1 for one plate, and zero for the other plate, and therefore the smallest value of log10(CFU)

from a non-zero count is 1. Thus, on the logarithmic scale to the base of 10, a CFU count
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of zero is specified as a left censored value of 1. [33] Combination therapy with effective anti-

TB drugs such as moxifloxacin, pretomanid (or PA-824) and pyrazinamide causes substantial

eradication of TB bacteria (hence, a steep decline in log10(CFU) count over time), which yields

CFU counts of zero relatively early in the course of treatment. [37]

2.2. Conventional mixed effects models for colony forming unit count

As pointed out in Section 2.1, the EBA of an anti-TB drug or treatment regimen is convention-

ally calculated based on a regression fit of log10(CFU) counts over time. When jointly modeling

the data of all patients in a given treatment group, or when modeling jointly the data of all pa-

tients from several treatment groups in a clinical trial, hierarchical mixed effects models of

increasing complexity need to be fitted, resulting in random coefficients models. Most mixed

effects regression models used in practice are linear and assume that the residual terms are

normally distributed. [38] However, log10(CFU) count typically follows a bilinear or nonlinear pat-

tern over time (e.g. as constituted by the sterilization activity of anti-TB drugs; see Figure 1). In

order to account for the biphasic nature of log10(CFU) versus time curves, two types of nonlin-

ear regression models have been described in the literature, namely bilinear and bi-exponential

regression.

The use of NLME regression models for log10(CFU) count from TB trials was first proposed

by Davies et al. [39] in the form of bi-exponential mixed effects regression models. However, the

bi-exponential regression model is not appropriate for log10(CFU) versus time profiles that are

decreasing slowly during the early phase of treatment, followed by a faster decline. The NLME

regression model of Burger and Schall [14,15,40] has recently been introduced for the modeling of

log10(CFU) count versus time profiles, and was shown to be more flexible than bi-exponential

regression models in the sense that they allow for terminal rates of decline to be greater than

initial rates of decline and vice versa. Burger and Schall [14,15] proposed a Bayesian method
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for fitting the required hierarchical nonlinear regression models, for estimation of the model

parameters and for inference about relevant parameter contrasts.

The Bayesian NLME regression of Burger and Schall [14,15] was fitted to CFU counts from sev-

eral clinical trials that assessed the sterilization activity of anti-TB drugs. [37,41,42] The regression

model fitted to these datasets assumed normally and skew Student t distributed residuals (on

the logarithmic scale), and zero counts were specified as left censored values of 1, to avoid

underestimation of the variances in random effects. [33]

As an alternative to performing “normal-theory" nonlinear regression of log10(CFU) count

against time (where zero counts are treated as left censored values), in the following sec-

tion we propose zero inflated generalized NLME regression models fitted to CFU count on

the original scale (therefore treating zero counts as observed data instead of left censored

observations).

3. ZERO INFLATED GENERALIZED NONLINEAR MIXED EFFECTS REGRESSION MODEL

We investigate four distributions for CFU count on the original scale: (i) Poisson, (ii) zero in-

flated Poisson (ZIP), (iii) negative binomial (NEGBIN) and (iv) zero inflated negative binomial

(ZINB). The ZINB model, in particular, might be most appropriate when dealing with cases

where the data exhibit overdispersion, together with an excess amount of zeros. [43] Further-

more, the magnitude of overdispersion, and the excess amount of zeros in CFU count may be

time dependent (thus, may either increase or decrease over time). The dispersion and zero

inflation parameters should therefore be allowed to vary freely over time.

Consider the following likelihood function, belonging to the exponential family of distributions,
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of the zero inflated generalized NLME regression model for CFU count over time:

L (φij ,θj , τjk, πjk|yijk) = πjkI (yijk = 0) + (1− πjk)h (yijk, τjk)× (3)

exp [η (f (φij ,θj , tijk, oijk) , τjk) · T (yijk)− A (f (φij ,θj , tijk, oijk) , τjk)]

where yijk =
∑nijk

l=1 CFUijkl is the total of nijk bacterial plate counts for patient i = 1, . . . , Nj in

treatment group j = 1, . . . , J at timepoint k = 1, . . . , Kij (or K), tijk ≥ 0 is the corresponding

measurement time, and I (a) denotes an indicator function taking the value 1 if a is true, and 0

otherwise. Furthermore, the function f describes the nonlinear relationship between tijk and

vectors of model parameters φij & θj , and τjk are vectors of additional model parameters

that describe the underlying distribution of the data per timepoint (e.g. characteristics such as

dispersion). πjk are the proportions of excess zeros, and oijk are offset constants, comprising

the total number of replicate plates & dilution factor of the sputum sample in question, to war-

rant the modeling of CFU counts as per Equation (2). Furthermore, η and T are respectively

vectors of canonical link functions and sufficient statistics of the data, whereas h and A are

respectively the carrier measure and normalization factor. [1] Here, η ·T signifies the sum of the

dot product of vectors η and T . The regression model is fitted jointly to the data of all patients

from all treatment groups from a given trial.

The vectors of parameters φij are assumed to vary between patients as follows:

φij = φj +ϕij (4)

where ϕij (or φij) represent vectors of random effects, whereas φj and θj represent vec-

tors of fixed effects. The fixed effects represent the average effect for each treatment group.

Eventually, the fixed effects allow one to make inferences on the average bactericidal activity

or sterilization activities of the treatment groups, and about the differences between treatment

groups. The random effects, in the other hand, allow for separate regression curves for each
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patient.

Assume φij follow multivariate distributions g with mean φj and unstructured covariance ma-

trices Ψj , so that:

φij ∼ g (φj ,Ψj) (5)

Accordingly, the likelihood of φij , φj , Ψj , θj , τjk and πjk for patient i assigned to treatment

group j can be written as follows:

L (φij ,φj ,Ψj,θj , τjk, πjk|yij) =

Kij∏
k=1

L (φij ,θj , τjk, πjk|yijk)

P (φij|φj ,Ψj) (6)

where P (φij|φj ,Ψj) denotes the probability density function of φij|φj ,Ψj , and yij denote

Kij × 1 vectors containing
(
yij1, . . . , yijk, . . . , yijKij

)′.
The resulting joint posterior distribution of φij , φj , Ψj , θj , τjk and πjk (for all j = 1, . . . , J ,

i = 1, . . . , Nj and k = 1, . . . , K) can be written as follows:

P (φij ,φj ,Ψj,θj , τjk, πjk, j = 1, . . . , J, i = 1, . . . , Nj, k = 1, . . . , K|y) (7)

=

 J∏
j=1

Nj∏
i=1

L (φij ,φj ,Ψj,θj , τjk, πjk|yij)

 J∏
j=1

(
P (φj)P (Ψj)P (θj)

K∏
k=1

[P (τjk)P (πjk)]

)

where y denotes the
∑J

j=1

∑Nj
i=1Kij × 1 vector containing yij for all j = 1, . . . , J and i =

1, . . . , Nj . P (φj), P (Ψj), P (θj), P (τjk) and P (πjk) respectively denote the prior density

functions of φj , Ψj , θj , τjk and πjk.

For typical extended bactericidal activity trials lasting 56 days, in order to avoid numerical

overflow, the regression models should be fitted with the times tijk expressed in weeks rather

than days.
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4. MODELS FOR COLONY FORMING UNIT COUNT ON ORIGINAL SCALE

The Bayesian NLME regression model of Burger and Schall [14,15] can be implemented as Pois-

son, ZIP, NEGBIN, ZINB and lognormal NLME regression models by setting the quantities in

Equation (3) to those presented in Appendix Table 1 (see Appendix A). These models can

thus be specified as special cases of the zero inflated generalized NLME regression model

in Section 3. The likelihood functions of these distributions and the corresponding expected

values and variances are presented in Table 1. The same quantities for the ZIGP regression

model are presented in Section 1 of the online appendix of this paper.

The models in Table 1 include the following coefficients for patient i in treatment group j

(see Section 3 of Burger and Schall [14]): Intercepts (αij); two slopes characterizing the rate of

change over time (β1ij and β2ij). Furthermore, each treatment is characterized by the node (or

inflection point) at which transition from one slope to another occurs (κj); and by a “smooth-

ness" parameter governing the “speed" of transition (γj).

As a special case of Equation (4), the terms αij , β1ij and β2ij are the sums of fixed effects and

associated random coefficients, namely:

µij =


αij

β1ij

β2ij

 =


αj

β1j

β2j

+


u0ij

u1ij

u2ij

 = µj +


u0ij

u1ij

u2ij

 (8)

where φij = µij = (αij, β1ij, β2ij)
′ (or ϕj = [u0ij, u1ij, u2ij]

′) and φj = µj = (αj, β1j, β2j)
′ are

respectively the vectors of random and mean intercepts and slopes. Detail on the specification

of the random effects and prior distributions is provided in Appendix B.

The mean bactericidal activity of treatment group j is expressed as the daily rate of change in
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mean log10 (CFU) count over timepoints k1 and k2, namely:

BAj (tk1–tk2) = − log [Mj (tk2)]− log [Mj (tk1)]

log (10) (tk2 − tk1)
(9)

where Mj (tk) = δjk = exp

(
αj − β1jtk − β2jγj log

[
e

tk−κj
γj +e

−
tk−κj
γj

e

κj
γj +e

−
κj
γj

])
for the Poisson, NEG-

BIN, and lognormal regression models, and Mj (tk) = (1− πjk) δjk for the ZIP, ZINB and ZIGP

regression models.

It should be noted that the lognormal regression model is equivalent to the regression model

of Burger and Schall [14] when alternatively regressed to zijk = log (yijk) + oijk (see Table 1).

Hence the zijk are the logarithm of the CFU counts as per Equation (2) and follow normal

distributions, namely:

zijk ∼ Normal
(
log [δjk] , σ

2
jk

)
(10)

The regression models were fitted using OpenBUGS. [44] Posterior samples were monitored

and convergence was confirmed using iteration and autocorrelation plots, and Brooks-Gelman-

Rubin statistics of parallel chains. [14,45,46]

5. MODEL DISCRIMINATION AND GOODNESS OF FIT

In order to compare the models investigated here, model discrimination statistics, namely DIC

statistics [47] conditional on the random coefficients of the regression models and Bayes factors

(or CLMMLs), [24] were calculated.
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5.1. Deviance information criterion statistic

The DIC is defined under Model M as follows (see Table 1 and Appendix Table 1):

DIC(M) = 2D(φij ,θj , τjk, πjk)− D(φ̂ij , θ̂j , τ̂jk, π̂jk) (11)

where D(φij ,θj , τjk, πjk) = −2 log
(∏J

j=1

∏Nj
i=1

∏Kij
k=1 L (φij ,θj , τjk, πjk|yijk)

)
is the deviance

measure. Here, φ̂ij , θ̂j , τ̂jk and π̂jk are respectively the mean of the posterior distribution

of φij , θj , τjk and πjk, and D(φij ,θj , τjk, πjk) is the mean of the posterior distribution of

D(φij ,θj , τjk, πjk).

Models with small DIC are favored. The DICs were calculated outside OpenBUGS using li-

braries available in the R project.

5.2. Bayes factors

When comparing two of any of the count models defined in Section 4, say Model M0 and

Model M1, based on the posterior probability of each of the models conditional on the data,

the Bayes factor in favor of M0 is defined as [48]:

B01 =
f (y|M0)

f (y|M1)
(12)

where f(y|M0) and f(y|M1) are the marginal likelihoods of y under Model M0 and Model M1,

respectively. Equivalently:

log(B01) = log(f [y|M0])− log(f [y|M1]) (13)
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The model with the larger log-marginal likelihood is favored. Detail on the Laplace-Metropolis

approximation of Bayes factors is provided in Appendix C.

5.3. Pearson goodness of fit measure

Model checks were performed by evaluating the predictive performance of the candidate mod-

els using the following Pearson goodness of fit measure [49,50] (see Table 1 and Appendix Ta-

ble 1):

χ2
(
yijk,φ

(z)
ij ,θ

(z)
j , τ

(z)
jk , π

(z)
jk

)
=

J∑
j=1

Nj∑
i=1

Kij∑
k=1


[
yijk − E

(
yijk|φ(z)

ij ,θ
(z)
j , τ

(z)
jk , π

(z)
jk

)]2
Var
(
yijk|φ(z)

ij ,θ
(z)
j , τ

(z)
jk , π

(z)
jk

)


where φ(z)
ij , θ(z)j , τ (z)

jk and π(z)
jk are respectively the posterior samples from φij , θj , τjk and

πjk at iteration z (z = 1, . . . , Z). In addition, suppose y∗,(z)ijk is a random copy drawn from the

joint posterior distribution of yijk|φ(z)
ij ,θ

(z)
j , τ

(z)
jk , π

(z)
jk at iteration z. The corresponding posterior

p-value under Model M is then defined as:

p (M) =
1

Z

Z∑
z=1

(
I
[
χ2
(
y
∗,(z)
ijk ,φ

(z)
ij ,θ

(z)
j , τ

(z)
jk , π

(z)
jk

)
> χ2

(
yijk,φ

(z)
ij ,θ

(z)
j , τ

(z)
jk , π

(z)
jk

)])
(14)

Values of p (M) close to 0.5 would suggest that the candidate model fits the data adequately,

whereas values close to 0 or 1 indicate poor model fit. [45]

6. APPLICATION

We apply the models proposed in this paper in a reanalysis of the CFU count data of Dawson

et al. [37]. In this trial, drug-sensitive TB patients were randomized to receive 8-week combi-

nation therapy of either moxifloxacin, PA-824 (100 mg) and pyrazinamide (M-PA100-Z; 60 pa-
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tients); or moxifloxacin, PA-824 (200 mg) and pyrazinamide (M-PA200-Z; 62 patients); or Ri-

fafour (59 patients; control treatment). Two 16-hour overnight sputum samples were collected

pre-treatment and were used for the calculation of CFU count at Day 0. Thereafter, overnight

sputum samples were collected on Days 3, 7, 14, 21, 28, 35, 42, 49 and 56.

Summary statistics of the observed CFU count over time are presented in Appendix Table 2

(see Appendix D) by treatment group. The preliminary investigation of the data suggests that

the CFU counts are overdispersed. Furthermore, it is observed that the percentage of zero

counts significantly increases over time. These findings therefore motivate the fit of zero in-

flated regression models to the data on the original scale as an alternative to fitting regression

models on logarithmic scale.

The lower and upper bounds of κj and γj were set to Lκ = 3, Uκ = 11, Lγ = 0.05 and

Uγ = 2. In order to avoid model overparameterization and overfit, the time-dependent model

parameters (πjk, ρjk, ωjk and σ2
jk) were pooled by (i) Days 0, 3 and 7, (ii) Days 14 and 21,

(iii) Days 28 and 35, and (iv) Days 42, 49, 56.

The SAS R©, OpenBUGS and R code for the implementation of the ZINB regression model,

including the calculation of the DIC statistic, CLMML and Pearson goodness of fit measure,

are included in Section 2 of the online appendix of this paper. In the code, OpenBUGS and

R are called remotely from SAS R©, and accordingly, posterior samples are exported back to

SAS R© for further computation.

For the ZINB regression model, 80000 samples were simulated from the joint posterior dis-

tribution for two parallel chains. Among those 80000 samples (per chain), the initial 30000

samples were discarded (burn-in). The thinning factor was set to 50 to reduce autocorrelation

among the samples.

Regression fits were checked using Pearson goodness of fit measures, and compared us-
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ing DIC statistics and CLMMLs, for cases where CFU counts of zero were treated either as

(i) left censored observations, and (ii) observed data. The posterior p-values (of the Pearson

goodness of fit measure) and model comparison statistics for the various Bayesian NLME re-

gression models are provided in Table 2. The posterior p-values suggest that the NEGBIN and

ZINB regression models fit the data very well, whereas the Poisson and ZIP regression models

fit the data very poorly (due to overdispersion in the data). Both model comparison statistics,

namely DICs and CLMMLs:

• Significantly favor the regression models with negative binomial distributions (NEGBIN

and ZINB) over the Poisson distributions (Poisson and ZIP).

• Favor the ZINB regression model over the ZIGP regression model.

• Favor the NEGBIN regression model over the lognormal regression model.

• Favor the zero inflated regression models (ZIP and ZINB) over their non-zero inflation

counterparts (Poisson and NEGBIN).

In order to investigate the effect of treating zero counts as left censored values, inferential

statistics of the lognormal regression model (which fits zero counts as left censored obser-

vations) were compared to those of the NEGBIN, ZINB and ZIGP regression models (which

fit zero counts as observed data). The Poisson and ZIP regression models were not further

investigated due to poor model performance.

Figure 2 presents the posterior estimates and 95% Bayesian credibility intervals (BCIs) of

mean BAj (0–56) for the NEGBIN, ZINB, ZIGP and lognormal regression models by treat-

ment group: The posterior estimates for the NEGBIN, ZINB and ZIGP regression models are

smaller than those of the lognormal regression model, whereas the 95% BCIs for the NEG-

BIN, ZINB and ZIGP regression models are generally somewhat wider than those of the log-

normal regression model. Similarly, Table 3 presents the posterior estimates and 95% BCIs
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of mean BAj (0–56), and the corresponding differences versus Rifafour (control), for the ZINB

and lognormal regression models. The difference between M-PA200-Z versus Rifafour in mean

BAj (0–56), based on both the ZINB and lognormal regression model, is statistically significant.

Table 4 presents the posterior estimates and 95% BCIs of πjk for the ZINB regression model

by treatment group. The analysis suggests that, as one would expect, the excess amount of

zeros (in CFU count) increases over the course of treatment.

In a sensitivity analysis we investigated the influence of the prior specification of ρjk and πjk on

the inference about the bactericidal activity of treatments. The ZINB regression model specified

noninformative gamma and beta distributions for ρjk and πjk (see Appendix B). Alternatively,

the ρjk and πjk were assigned weakly informative prior distributions such as truncated Cauchy

(or t(1)) and uniform distributions, namely ρjk ∼ t(1)I (0.01,∞) and πij ∼ Uniform(0, 1). The

inferences about the bactericidal activity of the treatment groups are very similar under both

prior specifications of ρjk and πjk (data not shown). We therefore conclude that the bactericidal

activity is not sensitive to the two types of prior specifications of ρjk and πjk.

The ZINB regression model is the most general regression model among the exponential

family of count models proposed in Section 4, and has the largest flexibility with respect to

zero inflation and overdispersion. The findings of this reanalysis of the CFU count of Dawson

et al. [37] point to the ZINB regression model as the most suitable count model for this data

(compared to the Poisson, ZIP, NEGBIN and ZIGP regression models).

7. SIMULATION STUDY

We assessed the performance of the ZINB and lognormal regression models in a simulation

study. Furthermore, we assessed the effect of fitting zero counts as left censored values in the

lognormal regression model. Datasets were simulated from the ZINB regression model where
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model parameters were chosen to mimic log(CFU) count versus time profiles of a moderately

and highly efficacious anti-TB drugs, each with and without zero inflation in CFU count over

time.

The slope parameters for the two treatments were chosen as β11 = 0.461, β21 = −0.268,

β12 = 0.443 and β22 = −0.203, while the following parameter values were chosen for both

treatments (j = 1, 2): αj = 15, κj = 5, ρj1 = 1.2 (Days 0, 3 and 7), ρj2 = 1.3 (Days 14 and

21), ρj3 = 1.4 (Days 28 and 35), ρj4 = 1.5 (Days 42, 49 and 56), oijk = −5.0633, and

Ωµj =


1.000 0.001 −0.005

0.001 0.020 −0.005

−0.005 −0.005 0.015


Both parameter scenarios were investigated for the following two sets of zero inflation prob-

abilities (hence, a total of four parameter scenarios): (i) πj1 = πj2 = πj3 = πj4 = 0 (without

zero inflation), and (ii) πj1 = 0, πj2 = 0.01, πj3 = 0.05 and πj4 = 0.1 (with zero inflation).

The accuracy and precision characteristics bias, relative bias, standard error (SE), and root

mean square error (RMSE) of the BAj (0–56) estimates for the four parameter scenarios were

calculated, as was the empirical coverage probability of the associated 95% BCIs. The two

candidate regression models (ZINB and lognormal) were fitted to 1000 simulated datasets,

each dataset consisting of 35 profiles per treatment.

From Appendix Table 3 (see Appendix E) we observe that the bias of estimates of BAj (0–56)

from the ZINB regression model is noticeably smaller than that of estimates from the lognor-

mal regression model. The SE and RMSE suggest that the ZINB regression model performs

substantially better than the lognormal regression model. For larger values of BAj (0–56) and

πjk, the coverage probability of the 95% BCI of the lognormal regression model is consid-

erably smaller than the nominal value (therefore suggesting that the credibility intervals are

anti-conservative). Overall, the ZINB regression model yields credibility interval coverage prob-
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abilities that are quite close to the nominal value.

8. DISCUSSION

This paper investigates alternatives to published nonlinear regression models for CFU count

versus time data which exhibit zero inflation. Our results suggest that practitioners should care-

fully consider whether transformation of count data (for example, for the purpose of variance

stabilization, and adherence to the normality assumption) and subsequent “normal theory”

analysis, rather than fitting models to count data on the original scale, are appropriate. In

particular, this paper proposes a general approach for the Bayesian implementation of zero

inflated generalized nonlinear mixed effects regression models for longitudinal count data.

In Bayesian statistics the suitability of candidate regression models is often judged by calcu-

lating their posterior marginal likelihoods (hence, Bayes factors). In the application of mixed

effects regression modeling, marginal likelihoods are usually approximated by computing the

harmonic mean of the likelihood with respect to the posterior distribution, based on samples

drawn from the posterior distribution. Although the harmonic mean may serve as an unbi-

ased estimator for the marginal likelihood, it may have infinite variance. Alternative methods

for approximating the marginal likelihood should therefore be employed. Here, we propose the

so-called Laplace approximation of the marginal distribution. For hierarchical models such as

those considered here, the Laplace method involves marginalization (or integration) at two

different levels: At the second level, the random effects need to be integrated out (therefore

referred to as CLMMLs). The Laplace method seems to be greatly underutilized due to its

complexity (because of the required second layer of integration). We propose the use of the

“R2Cuba” library of the R project to reduce the computational burden of integrating out (multi-

dimensional) random coefficients that describe the nonlinear relationship between longitudinal

count data and time.
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The model comparison statistics (DICs and CLMMLs) and Pearson goodness of fit measures

obtained from a reanalysis of the dataset of Dawson et al. [37] suggest that the NEGBIN regres-

sion model is more suitable than the lognormal (or conventional normal) regression model for

CFU count data with excess zeros. Since for effective anti-TB drugs zero inflation in CFU count

greatly increases towards the end of CFU count versus time profile, ZINB regression models

should be fitted to such data, rather than log-normal regression models that treat zero counts

as “left censored” data. Furthermore, our simulation study shows that the ZINB regression

model has good properties in terms of accuracy, precision and credibility interval coverage,

and that the lognormal regression model yields biased estimates and credibility intervals that

may severely undercover the true bactericidal activity of anti-TB drugs with zero inflation in

CFU count. We therefore recommend that zero inflated NLME regression models should be

fitted to CFU count on the original scale, as an alternative to conventional normal (or lognor-

mal) NLME regression models on the logarithmic scale.

We also extended the proposed NLME regression model by assuming ZIGP distributions for

CFU count. The methods introduced in this paper can also be extended to accommodate

outliers in CFU count (e.g. considering heavy tailed distributions such as the generalized Sichel

distribution [51]).

The application of the proposed zero inflated generalized NLME regression models is not

limited to CFU count data: Thus, the methods introduced here (in particular, the programming

code supporting this paper as part of the supplementary material) can be used by practitioners

for other applications to hierarchically structured zero inflated longitudinal count data.

The application of the suggested NLME regression models within the framework of extended

bactericidal activity anti-TB trials may allow accurate decision-making for advancing anti-TB

drugs into Phase 3 trials, and motivates further extensions of theoretical models for longitudi-

nal count data in clinical trials. Overall, we recommend that researchers should continuously
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illustrate developments in mixed effects regression models via their added value in clinical

research.

Data Availability Statement

The programming code supporting this paper has been included as part of the supplementary

material.
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Figure 1: Efficacy endpoints in extended bactericidal activity TB trials
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Figure 2: Posterior estimates and 95% BCIs of mean BAj (0–56) by regression model
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(c) Rifafour

BAj (0–56): Daily rate of decline in log10(CFU) count from Day 0 to Day 56 of treatment group j.
BCI: Bayesian credibility interval. CFU: Colony forming unit. NEGBIN, ZINB & ZIGP: CFU
counts of zero treated as observed data. Lognormal: CFU counts of zero treated as left cen-
sored observations.
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Table 2: Model discrimination statistics and Pearson goodness of fit measure by regression

model

Censored Uncensored

Regression model DIC CLMML DIC CLMML p (M)

Poisson 343350.59{3}-52528.42{3} 347293.00{5}-53071.68{5}0.0000

ZIP 297587.01{4}-45483.67{4}0.0000

NEGBIN 13601.56{1} -7099.78{1} 13747.80{3} -7180.99{2} 0.6260

ZINB 13500.67{1} -7124.05{1} 0.5445

ZIGP 13515.15{2} -7303.18{3} NC

Lognormal 13923.44{2} -7227.44{2}

DIC: Deviance information criterion. CFU: Colony forming unit. CLMML: Compound Laplace-

Metropolis marginal likelihood on the logarithmic scale. NC: Not calculated. p (M): Posterior

p-value of Pearson goodness of fit measure. Censored: CFU counts of zero treated as left cen-

sored observations. Uncensored: CFU counts of zero treated as observed data. Superscripts

indicate the ranking of model comparison statistics from most favored to least favored.
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Table 3: Posterior estimates and 95% BCIs of mean BAj (0–56): ZINB & lognormal regression

model

ZINB Lognormal

Difference vs. Difference vs.

Treatment Statistic Mean Rifafour Mean Rifafour

M-PA100-Z PE 0.136 0.022 0.148 0.029

95% BCI [0.115; 0.159][-0.012; 0.056] [0.125; 0.171][-0.001; 0.057]

M-PA200-Z PE 0.160 0.046 0.178 0.059

95% BCI [0.132; 0.190] [0.007; 0.083] [0.156; 0.201] [0.030; 0.089]

Rifafour PE 0.114 0.119

95% BCI [0.090; 0.140] [0.101; 0.139]

BAj (0–56): Daily rate of decline in log10(CFU) count from Day 0 to Day 56 of treatment

group j. BCI: Bayesian credibility interval. CFU: Colony forming unit. PE: Posterior estimate.

ZINB: CFU counts of zero treated as observed data. Lognormal: CFU counts of zero treated

as left censored observations.
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Table 4: Posterior estimates and 95% BCIs of πjk: ZINB regression model

Timepoint (days)

Treatment Statistic 0, 3, 7 14, 21 28, 35 42, 49, 56

M-PA100-Z PE 0.045 0.035 0.239 0.507

95% BCI [0.021; 0.076] [0.000; 0.160] [0.000; 0.596] [0.321; 0.682]

M-PA200-Z PE 0.027 0.019 0.168 0.236

95% BCI [0.009; 0.053] [0.000; 0.135] [0.000; 0.488] [0.000; 0.785]

Rifafour PE 0.037 0.144 0.113 0.378

95% BCI [0.013; 0.068] [0.060; 0.240] [0.000; 0.302] [0.018; 0.576]

BCI: Bayesian credibility interval. CFU: Colony forming unit. PE: Posterior estimate. ZINB:

CFU counts of zero treated as observed data.
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Appendix B: Specification of random effects and prior distributions

In Equation (5), the random coefficients φij = µij are assumed to follow tri-variate normal

distributions as follows:

µij ∼ Normal (µj ,Ωµj) (15)

where Ψj = Ωµj are the covariance matrices of φij = µij .

Multivariate normal and Wishart prior distributions are specified, respectively, for µj and Ω−1µj ,

namely:

µj ∼ Normal(0, 104 × I3) (16)

Ω−1µj ∼Wishart(3, 3×Rj) (17)

where 0 = (0, 0, 0)′ and I3 denotes the 3× 3 identity matrix. Rj represent 3× 3 inverse scale

matrices.

The parameters κj and γj are assumed to follow uniform prior distributions, namely:

κj ∼ Uniform(Lκ, Uκ) (18)

γj ∼ Uniform(Lγ, Uγ) (19)

where Lκ, Uκ, Lγ and Uγ are the pre-specified lower and upper bounds for parameters κj and

γj , respectively.

For the choice of Rj , we fitted the model as a generalized linear mixed effects regression

model under the assumption that the node and smoothness parameters (κj and γj) are fixed

at (Uκ + Lκ)/2 and (Uγ + Lγ)/2, respectively. We calculated the “frequentist" estimates for

Ωµj via maximum likelihood estimation using the SAS R© procedure PROC GLIMMIX, to serve
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as Rj .

The dispersion parameters ρjk, scale parameters σ−2jk , and zero inflation probabilities πjk are

assumed to follow vague gamma and beta prior distributions, namely:

ρjk ∼ Gamma (0.1, 0.1) (20)

σ−2jk ∼ Gamma (0.0001, 0.0001) (21)

πjk ∼ Beta (0.1, 0.1) (22)

The prior distributions for the ZIGP regression model are presented in Section 1 of the online

appendix of this paper.

The ZIP distribution can alternatively be specified as a mixture of Poisson and Bernoulli distri-

butions as follows:

yijk ∼ Poisson (λijk [1− uijk]) (23)

uijk ∼ Bernoulli (πjk) (24)

Similarly, the ZINB distribution can alternatively be specified as a mixture of NEGBIN and

Bernoulli distributions as follows:

yijk ∼ NEGBIN (λijk [1− uijk] , ρjk) (25)

uijk ∼ Bernoulli (πjk) (26)

From the law of total probability, the distributions marginalized over uijk result in the ZIP and

ZINB distributions.
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Appendix C: Laplace-Metropolis approximation of Bayes factors

The Laplace-Metropolis approximation of log(f [y|M ]) (that is, CLMML) under Model M can

be written as [15,23,24] (see Table 1 and Appendix Table 1):

log(f [y|M ]) =
1

2
log (2π) pJ +

1

2
log
∣∣∣R(φj ,θj ,τjk,πjk,j=1,...,J)

∣∣∣+ s(φj ,θj ,τjk,πjk,j=1,...,J)+ (27)

J∑
j=1

Nj∑
i=1

(
log
[
P
(
yij|φ̂j , Ψ̂j, θ̂j , τ̂jk, π̂jk

)])
+

J∑
j=1

(
log
[
P
(
φ̂j , Ψ̂j, θ̂j , τ̂jk, π̂jk

)])

where p is the number of parameters among φj , Ψj , θj , τjk & πjk of treatment group j,

and P
(
yij |φ̂j , Ψ̂j, θ̂j , τ̂jk, π̂jk

)
=
∫
P
(
yij|φij , φ̂j , Ψ̂j, θ̂j , τ̂jk, π̂jk

)
dφij (see Equation (6)).

Here, φ̂j , Ψ̂j , θ̂j , τ̂jk and π̂jk are respectively the mean of the posterior distribution of φj ,

Ψj , θj , τjk and πjk.
∣∣∣R(φj ,θj ,τjk,πjk,j=1,...,J)

∣∣∣ and s(φj ,θj ,τjk,πjk,j=1,...,J) respectively denote the

determinant of the correlation matrix and the sum of the logarithm of the standard deviations

of the posterior distributions of φj , θj , τjk and πjk.

The multidimensional integration library “R2Cuba” of the R project was used to approximate

the Laplace integrals. [52]
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Appendix D: Summary statistics

Table 2: Summary statistics of observed CFU count over time

Treatment Day n Mean SD CV Minimum Median Maximum Zeros (%)

M-PA100-Z Day 0 110 4022762 8592024 214 0 509500 55500000 1.8

Day 3 54 5252617 36022027 686 0 62150 265000000 5.6

Day 7 51 43318 91253 211 0 7800 570000 9.8

Day 14 49 13708 26824 196 0 2350 121000 18.4

Day 21 47 17594 71960 409 0 245 460000 34.0

Day 28 42 1272 4744 373 0 0 28600 66.7

Day 35 39 1890 7482 396 0 0 45000 74.4

Day 42 36 468 2017 431 0 0 12000 72.2

Day 49 34 190 840 441 0 0 4800 85.3

Day 56 35 47 205 437 0 0 1200 85.7

M-PA200-Z Day 0 107 4472336 9638695 216 0 380000 51333333 0.9

Day 3 53 432749 1043900 241 0 48000 4700000 3.8

Day 7 47 94440 211236 224 0 15900 1090000 6.4

Day 14 47 32462 173048 533 0 1830 1190000 17.0

Day 21 49 1718 5884 342 0 160 38000 34.7

Day 28 40 3741 22128 592 0 0 140000 57.5

Day 35 40 160 492 307 0 0 2200 77.5

Day 42 37 19131 115050 601 0 0 700000 86.5

Day 49 32 313 1768 565 0 0 10000 93.8

Day 56 35 1830 10818 591 0 0 64000 94.3

n = Number of CFU counts. CFU: Colony forming unit. CV: Coefficient of variation. SD: Stan-

dard deviation.
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Table 2: Summary statistics of observed CFU count over time

Treatment Day n Mean SD CV Minimum Median Maximum Zeros (%)

Rifafour Day 0 104 3035046 7754022 255 50 330000 57000000 0.0

Day 3 51 391262 816412 209 0 46150 4000000 7.8

Day 7 47 90493 169618 187 0 29100 1000000 10.6

Day 14 44 98332 387679 394 0 6088 2500000 15.9

Day 21 42 51665 246875 478 0 845 1600000 23.8

Day 28 37 1969 3556 181 0 370 15990 35.1

Day 35 38 23117 128034 554 0 0 790000 55.3

Day 42 37 5976 34337 575 0 0 209000 70.3

Day 49 37 4087 17002 416 0 0 97000 73.0

Day 56 32 20 78 383 0 0 410 87.5

n = Number of CFU counts. CFU: Colony forming unit. CV: Coefficient of variation. SD: Stan-

dard deviation.

40



Appendix E: Simulation results

Table 3: Accuracy & precision of BA (0–56) estimates, and BCI coverage: ZINB & lognormal

regression model

Timepoint (days): πjk Regression model

BAj (0–56) 0, 3, 7 14, 21 28, 35 42, 49, 56 Statistic ZINB Lognormal

0.1046 0 0 0 0 Bias -0.0039 0.0113

Absolute bias 0.0092 0.0147

SE 0.0111 0.0145

RMSE 0.0118 0.0183

95% BCI coverage 94.6 90.7

0.1054 0 0.01 0.05 0.1 Bias -0.0042 0.0175

Absolute bias 0.0097 0.0190

SE 0.0114 0.0147

RMSE 0.0121 0.0228

95% BCI coverage 94.3 82.3

0.1200 0 0 0 0 Bias -0.0033 0.0147

Absolute bias 0.0099 0.0171

SE 0.0119 0.0149

RMSE 0.0123 0.0209

95% BCI coverage 95.4 86.4

BAj (0–56): Daily rate of decline in log10(CFU) count from Day 0 to Day 56 of treatment

group j. BCI: Bayesian credibility interval. CFU: Colony forming unit. RMSE: Root mean

square error. SE: Standard error. ZINB: CFU counts of zero treated as observed data. Log-

normal: CFU counts of zero treated as left censored observations.
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Table 3: Accuracy & precision of BA (0–56) estimates, and BCI coverage: ZINB & lognormal

regression model

Timepoint (days): πjk Regression model

BAj (0–56) 0, 3, 7 14, 21 28, 35 42, 49, 56 Statistic ZINB Lognormal

0.1208 0 0.01 0.05 0.1 Bias -0.0045 0.0215

Absolute bias 0.0099 0.0225

SE 0.0114 0.0153

RMSE 0.0123 0.0264

95% BCI coverage 95.9 75.0

BAj (0–56): Daily rate of decline in log10(CFU) count from Day 0 to Day 56 of treatment

group j. BCI: Bayesian credibility interval. CFU: Colony forming unit. RMSE: Root mean

square error. SE: Standard error. ZINB: CFU counts of zero treated as observed data. Log-

normal: CFU counts of zero treated as left censored observations.
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