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ABSTRACT

Diagnostics in low speed rolling element bearings is difficult. Not only are normal frequency domain diagnostics 
methods not appropriate for this application, but the bearing response signals are usually immersed in background 
noise which make it difficult to detect these faults. Higher order statistics (HOS) techniques have been available for 
decades but have not been widely applied to machine condition monitoring with the exceptions of skewness and 
kurtosis. There is however reason to believe that these HOS techniques could play an important role in acoustic 
emission (AE) based condition monitoring of rolling element bearings at low speeds provided appropriate care is 
taken. To explore this hypothesis, AE signals at low bearing rotational speeds of 70, 80, 90 and 100 rpm respectively 
were used in this work for the monitoring of tapered roller bearings. In addition to the well-established statistical 
parameters such as mean, standard deviation, skewness and kurtosis, higher moments such as hyper flatness are 
considered in this study. A novel diagnostic method is proposed for fault extraction based on hyperflatness, 
combined with Kullback-Leibler divergence, and an indicator formula derived with the use of Lempel-Ziv 
Complexity is given. The Kullback-Leibler divergence is used together with the skewness and hyperflatness to obtain 
the Kullback-Leibler information Wave (KLW)with which the analysis is performed, and better results obtained as 
compared to conventional frequency domain analysis.  
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Complexity.

1. INTRODUCTION 

Condition monitoring (CM) of rolling element bearings (REB) is commonly 
used in determining the operational state and health of machines to detect 
early stages of component degradation. Based on a study, at low speeds 
however, little energy is generated, and conventional spectral based 
vibration monitoring becomes unsuitable [1-3]. 

According to research, acoustic emission (AE) is a high frequency 
phenomenon whereby transient elastic waves are generated by rapid (and 
spontaneous) release of energy from a localized source or sources within 
a material [4,5]. AE-based condition monitoring in rolling element 
bearings is not new and it has been studied widely for condition 
monitoring at higher speeds (> 600 rpm). However not very much has 
been done at low speeds between 10-600 rpm. Study showed low speeds 
such as these are also often associated with widely varying operating 
conditions which makes spectral based analysis techniques less 
appropriate [6]. 

Time domain parameters like crest factor, skewness and kurtosis have 
been used for many years in vibration monitoring. These parameters are 
however not sensitive enough to detect early faults, even with AE. It is 
therefore tempting to use higher statistical orders which would emphasize 
the effects of slight irregularities in the race even more and thus solve the 
problem of multiple events which sequentially occur at localized 
measurement points during testing in AE signal processing. 

Statistical moments tend to describe the shape of the amplitude 
distribution of vibration data collected from a bearing and are sensitive to 
the impact impulses. From previous research on the application of 
statistical moments to condition monitoring in rolling element bearings, it 
is known that the third and fourth normalized central moments restrain 
the selective range of statistical parameters. 

A scholar suggests that the ability of skewness and kurtosis for fault 
detection decreases at low speeds. Since these indicators do not perform 
well at low speeds, there is a need to formulate better indicators using 
other higher order statistical parameters to be able to propose methods 
other than the traditional ones that could detect faults at lower speeds [7-
10]. 

When calculating the statistical moments of signals measured in machines, 
the presence of outliers which result from noise generated by moving 
parts within and around the machine renders the estimated moments 
unstable and this could become severe for higher order statistical 
moments like skewness, kurtosis, hyperskewness and hyperflatness. For 
heavy tailed distributions this implies that these estimates have high 
variance and are generally too unstable to capture the properties of the 
distribution. Higher orders expose one to the effects of outliers 
(measurement errors) which cause significant variance and no longer 
captures the correlation with damage. 

Being nonlinear functions, the utilization of higher order statistical (HOS) 
techniques allow the analysis of the systems operating under the influence 
of random inputs, where the processes deviate from Gaussianity to 
indicate that there is a fault developing. This stems from the property of 
Gaussian processes to have zero higher-order spectra. HOS techniques 
provide high signal to noise ratio domains in which one can perform 
detection, signal reconstruction, if the time domain noise is spatially 
correlated. HOS parameters which are defined in terms of higher-order 
moments of the data (orders greater than 2), contain much information if 
one were to look beyond the power spectrum domain. 

A scholar recently proposed a feature extraction method of the AE time 
domain waveform signal using the largest Lyapunov exponent (LLE) 
algorithm thereby demonstrating that the LLE feature can detect 
indications of failure from AE hit parameters such as the amplitude, RMS, 
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counts and AE Burst, energy with the Average signal level (ASL) etc. 
However, the process is too cumbersome and unfit for online fault 
detection. 
 
Based on previous research, the use of Kullback-Leibler (KL) divergence 
and Lempel-Ziv complexity may offer a solution to this issue; since by 
introducing KL divergence one reduces the sensitivity to outliers but 
essentially retain the advantage of higher emphasis on irregularity [11]. 
The Lempel-Ziv complexity is an analysis tool used for non-linear dynamic 
systems. Studies showed it specifically measures the generational rate of 
new patterns along a digital sequence and is closely related to important 
source properties such as entropy and compression ratio [12-14]. KL 
divergence is defined as the mean of the log-likelihood ratio which is the 
exponent in large deviation theory. It is also known as information 
divergence and relative entropy that measures the distance between two 
density distributions. 
 
The problem associated to conditions found in many industrial 
applications which include draglines in the mining industry and large 
rolling mills in materials processing environments, is the difficulty in 
detecting faults due to immersed background noise and weak signal 
acquired from transducers, especially at low speed and under varying load 
and speed conditions. According to research, higher order statistical (HOS) 
techniques have not found wide application in this condition monitoring 
area, and this is due to the fact that if a process is Gaussian then HOS 
provide no additional information that can be obtained from the second or 
higher order statistics [15-20]. Most of the conventional methods of 
analyzing faults in literatures are limited to stationary and linear situation 
at high speed (above 600rpm) [21]. However, there is the need to believe 
that these HOS techniques could play an important role in condition 
monitoring, provided appropriate care is taken. In problems that are non-
Gaussian as in the case of consideration here, HOS techniques like the 6th 
order statistical moment (hyperflatness) could play an important role in 
its condition monitoring (CM) and that is what this work contribution is 
about. By applying this analytical method, processing of acoustic emission 
signal at low speed and varying load condition could be very useful 
thereby providing details about the signal which the conventional second 
order statistics cannot [22,23]. 
 
The main objective of this paper is proposing a new indicator called the 
energy coherent factor for detecting anomalies in faulty bearings through 
the use of Kullback-Leibler (KL) divergence and HOS elements as it utilizes 
the AE signal in detecting the state of health of bearings. A new indicator 
is proposed to this effect, which responds to the amplitude of the energy 
of the emission. Sections 2 describe the proposed methods used to detect 
the parameters and features extracted based on statistical higher 
moments for KL divergence formulation with Lempel-Ziv complexity, 
together with the proposed indicator derived. While section 3 describes 
the experimental investigation. The experimental results are reported in 
section 4 with conclusions in section 5. 
 
2. ALGORITHM DEFINITIONS 

 
2.1 Parameter extraction based on statistical higher moments for kl 
formulation 
 
A bearing in a good condition has a Gaussian acceleration probability 
density distribution, whereas damage in a bearing results in a non-
Gaussian distribution with dominant tails, because of the relative increase 
in the number of high level acceleration events. AE signals are considered 
in this work to test the computational robustness of the proposed 
indicator energy coherent factor and to validate it, which helps in the 
analysis to capture the impact within a narrow broad band spectrum being 

that the impact response in the damage bearing is very short, i.e.∆𝑓 =
1

𝑇
.  

 
(1) Skewness (3rd Order Statistical Moment) 
 
Skewness characterizes the degree of asymmetry of distribution around 
its mean and a measure of the lopsidedness of the distribution. A 
distribution that is skewed to the left (i.e. the tail of the distribution is 
longer on the left) will have a negative skewness while a distribution that 
is skewed to the right will have a positive skewness. Hence it is reasonable 
that measurements must be conducted over a sufficiently long period to 
encompass at least one complete cycle of the modulation in order to be 
certain to have measured the maximum skewness. 
 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑥𝑖 − 𝜇)3𝑁

𝑖=1

𝑁𝛿3
                                     (1) 

 
 
 

In order to extract the feature parameter from a faulty signal 
contaminated by noise and to accurately identify the fault type, a skewness 
wave (SKWskewness) of the faulty damage bearing is used to compute 
Kullback-Liebler information wave (KLW) which is presented later.  
 

𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠  =  
∑ (𝑥𝑖 − 𝜇𝑗)

3𝑗×𝑀
𝑖=(𝑗−1)×𝑀+1

𝑀𝛿𝑗
3                            (2) 

 
where M is the number of data points in a small region, and𝜇𝑗and 

𝛿𝑗respectively are the mean and standard deviation of the signal series 𝑥𝑖 

in the 𝑗𝑡ℎsmall region. The skewness formula of (2) is now used to first 
generate a skewness wave to the fault-based signal from the bearing 
housing. Table 1 shows the statistical moment order relation giving its 
moment number in increasing order in relation to the central moment and 
standardized moment. 
 

Table 1: Statistical moments of higher order relation. 
 

Moment number Central Moment Standardized Moment 
1 0 0 
2 Variance 1 
3 - Skewness 
4 - Kurtosis (or flatness) 
5 - Hyperskewness 
6 - Hyperflatness 

 
(2) Kurtosis (4th Order Statistical Moment) 
 
Kurtosis as a fitness parameter also offers the advantage of having high 
values in the presence of a faulty signal while it is usually zero when only 
background noise is present. The kurtosis spectral wave (KWkurtosis) was 
generated on the fault diagnostic signal (i.e the signal generated from the 
faulty bearing housing). 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑤𝑎𝑣𝑒 𝐾𝑊𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑗)  =  
∑ (𝑥𝑖− 𝜇𝑗)

4𝑗×𝑀
𝑖=(𝑗−1)×𝑀+1

𝑀𝛿𝑗
4               (3) 

 
where 𝜇𝑗and 𝛿𝑗are, as above the mean and standard deviation of the signal 

series 𝑥𝑖 in the 𝑗𝑡ℎ small region. 𝑀 is the number of data points in a small 

region and𝑗 = 1 − 𝐿, 𝐿 = 𝑀
𝑁⁄ ≤

𝑓𝑠
𝑓𝐴

⁄  where 𝑓𝑠and 𝑓𝐴 are the sampling 

and the analysis frequencies respectively. The signal data 𝑥𝑖(𝑖 = 1 − 𝑁) is 
divided into smaller regions. The points of the kurtosis are connected in 
order to derive the kurtosis wave KW(j) [16] 
 
(3) Hyperflatness (6th Order Statistical Moment) 
 
Hyperflatness is a statistical power of the sixth order. It is a powerful 
means of estimating fault diagnosis in bearing signal since it belongs to the 
kurtosis family. 
 

𝐻𝑦𝑝𝑒𝑟𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠(𝐻𝐹𝐼𝑊)  =  
∑ (𝑥𝑖− 𝜇𝑗)

6𝑗×𝑀
𝑖=(𝑗−1)×𝑀+1

𝑁𝛿6
               (4) 

 
2.2 Feature extraction using kl and lempel-ziv complexity 
 
Kullback-Leibler (KL) divergence is used to compare the current estimate 
of the feature variable of 𝑃1(𝑥) to the reference feature variable 𝑃2(𝑥) as 
expressed in (5). It is defined as  
 

𝐾𝐿(𝑃1𝑃2)  =  ∫ 𝑃1(𝑥)𝑙𝑜𝑔
𝑃1(𝑥)

𝑃2(𝑥)
𝑑𝑥                 (5) 

 
where 𝑃1and 𝑃2are two probability distributions which have probability 
density 𝑃1(𝑥) and 𝑃2(𝑥) respectively and 𝐾𝐿(𝑃1𝑃2) can be used to compare 
the two PDFs. 
 
There are two fundamental properties of KL: 
 

• Non-negativity: 𝐾𝐿(𝑃1𝑃2) ≥ 0 with equality if and only if 𝑃1 =
 𝑃2 

• Asymmetry: 𝐾𝐿(𝑃1𝑃2) ≠ 𝐾𝐿(𝑃2𝑃1)[16]. 
 
Kullback-Leibler divergence captures the expected log-likelihood ratio 
which gives a statistical interpretation of power loss, when the wrong 
distribution is used for one of the hypotheses. More, technically it is a vital 
part of probability theory with a deep connection to large deviations 
theory and to statistical inference to ergodic theory i.e. outliers associated 
to data measurement. This could be important in the analysis if the 
damage detection is compensated so that in the use of HOS, these 
deviations which could have irregular results in the analysis are well 
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taking care of. According to a study, KL divergence has interesting 
statistical properties; in particular finding parameters of a statistical 
model by maximizing the likelihood is analogous to finding the parameters 
minimizing the divergence [24,25]. The KL information quantity may be 
calculated from the expected value of the reference feature variables given 
by 
 

𝐾𝐿 =  𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑡)𝑙𝑜𝑔
𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑡)

𝐻𝐹𝐼𝑊(𝑡)
𝑑𝑡                (6) 

 
Hence to extract the Kullback feature of the fault signals, the “Kullback-
Leibler Wave (KLW)” is expressed based on the KL information quantity 
expressed above in (6). 
 
Therefore 
 

𝐾𝐿𝑊(𝑡)  =  𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑡)𝑙𝑜𝑔
𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑡)

𝐻𝐹𝐼𝑊(𝑡)
              (7) 

 
It is on the KLW(t) signal that the spectral analysis will be performed. 
Getting the envelope wave from the absolute values of the Kullback-
Leibler information Wave (KLW) which is presented below as 
 

|𝐾𝐿𝑊(𝑗)|  =  |𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑗)𝑙𝑜𝑔
𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑗)

𝐻𝐹𝐼𝑊(𝑗)
|               (8) 

 
Kullback-Leibler (KL) divergence was used together with the 
hyperflatness wave to obtain the final reduced signal on which the 
Lempel-Ziv complexity was used for fault diagnosis. To be able to detect a 
defect (change) in the vibrating signal, there is the need to be able to 
interpret the contribution of each variable to the divergence, then this 
contribution is normalized. This contribution which is based on the idea of 
can be evaluated in (9). 
 

Contrib_L =  
𝐾𝑊𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠− 𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

𝐻𝐹𝐼𝑊
                (9) 

 
2.3 Complexity Measurement 
 
The Lempel-Ziv complexity is an alternative tool for signal analysis 
involving nonlinear dynamics and has been used for monitoring the effect 
of anesthesia in patients. It is used in transforming signal to be analyzed 
into a data sequence whose elements are given in symbols of which such 
transformation is often referred to as “coarse-graining” operation. 
Complexity analysis is known to help in focusing on the intrinsic 
characteristics of the overall dynamics of a signal and neglecting details 
contained in lower hierarchical components especially as it relates to AE 
signal whose analysis cut across a narrow broad band spectrum where the 
impact fault occurs in the damage bearing. Thus, it specifically measures 
the generational rate of new patterns caused by the subsequent change in 
speed along a digital sequence which is closely related to such important 
source as entropy and compression ratio [26,27]. 
 
The Lempel-Ziv complexity reflects on the number of all different 
subsequences contained in the original signal data sequence. Considering 
a generalized normalized complexity, where A* denotes the length of all 
finite length sequences over the finite symbol set A, and 𝑙(𝑃)denotes the 
length of a sequence 𝑃 ∈ 𝐴∗ with (10). 
 
𝐴𝑛 = {𝑃 ∈ 𝐴∗|𝑙(𝑃)| = 𝑛},  𝑛 ≥ 0             (10) 
 
For every𝑃 ∈ 𝐴𝑛, the Lempel-Ziv complexity can be expressed as 
 

𝐶(𝑛) <
𝑛

(1−𝜀𝑛)𝑙𝑜𝑔𝛼(𝑛)
                (11) 

 
where 𝜀𝑛 → 0 if 𝑛 → ∞, and𝛼 is the number of different symbols in the 
symbol set A. 
 
2.4 Proposed indicator 
 
The reason for proposing the damage indicator is based on the 
contribution in the formulation from the fundamental equation at (9) 
which is based on the formulation by Gonzalez De la Rosa et al.Here it is 
further expatiated upon and a complexity measurement is introduced. The 
indicator is computed from the sixth statistical power, the Kullback-
Leibler information Wave (KLW), kurtosis wave (KWkurtosis), skewness 
wave (SKWskewness) and the skewness series. The motivation for proposing 
this indicator as a damage analyzing tool is that it tends to describe the 
shape of the amplitude distribution of the acoustic signal by trying to 
explain its sensitivity phenomenon at low speeds as indicators in the past 
is needed to determine the damage in a bearing (which from the literature 
has some drawback such as been poor indicators when dealing with very 

low speeds in bearings and hence need to be improved upon). The 
following describes the calculation procedure: 
 
(1) Compute the Lempel-Ziv complexity C(n) of the original Kullback-
Leibler wave C(KLW), and the sixth statistical moment (hyperflatness 
C(HFIW)), (and complexityof the series skewness, i.e. C(skewness)). 
 
(2) Compute the original information wave of the kurtosis (KWkurtosis)and 
of the skewness (SKWskewness). 
 
(3) Finally, in (12) we have the energy coherent factor formulation 
 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
[

|𝐾𝑊𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠−𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠|

𝐶(𝐻𝐹𝐼𝑊)
]

[
|𝐶(𝐻𝐹𝐼𝑊)−𝑆𝐾𝑊𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠|

𝐶(𝐾𝐿𝑊)
]

             (12) 

 
3.  EXPERIMENTAL INVESTIGATION 
 
The test rig shown in Figure 1 was used to simulate the progression of 
damage in a non-linear system. Data acquired from this set-up were 
subsequently used to extract the features required for the computation of 
damage indicators based on HOS. The progression of the damage was 
traced with an acoustic emission signal from an acoustic emission 
transducer. Only the radial response was monitored in this case. 

 

 
 

Figure 1: Experimental test rig 
 
The test rig depicted in Figure 1 features the use of two servo-hydraulic 
actuators to introduce constant amplitude axial and radial loads on a test 
bearing. The purpose of introducing the two actuators is to allow 
simulating a scenario where coupling between axial and radial loads could 
be considered. The rotating speed for the slow rotating bearing ranges 
from 70 to 100 rpm. The actuator forces applied is however effectively 
sinusoidal. Figure 2 shows the schematic diagram of the built test rig. 
 

 
 

Figure 2: Schematic diagram of test rig setup 
 
Three test bearing scenarios were considered. Firstly, an undamaged 
bearing was considered. In a second bearing grounded metallic debris was 
mixed with grease and introduced into the bearing. In the last bearing a 
simulated crack was introduced. A taper roller bearing (Timken HR 30307 
J) was used to be able to artificially introduce the localized-defect, since it 
can be dismantled from the outer raceway. Surface damage was seeded on 
the outer raceway of the bearing (as shown in Figure 3) with the use of a 
small hand drilling machine to which a small disk was mounted, which was 
then used to introduce a groove on the outer raceway of the taper bearing. 
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Figure 3: Seeded damage on outer race of a bearing. 
 
Details of the selected bearing are reported in Table 2. 
 

Table 2: Bearing information. 
 

Contents Parameters 
Bearing specification Timken taper roller bearing HR 

30307 J 
Bearing outer diameter 80 mm 
Bearing inner diameter 35 mm 
Bearing width 22.75 mm 
Bearing roller diameter 12 mm 
The number of rollers 14 
Rated speed with grease 4800 rpm 

 
A brushless AC motor (Rockwell Automation MPL-B680B), mounted on a 
NSK 6309 single row bearing was used to drive the system. The angular 
velocity of the motor was retrieved from one of the analogue outputs 
available on the motor drive, (Rockwell Automation Kinetix 6000 series 
BM-01). This system allows continuous speed variation from 0 to 3600 
rpm. A Soundwel AE sensor with model number SR 150M with a frequency 
range of 25-530kH was used in the experiment. 
 
The first bearing (undamaged) was loaded sinusoidally with forces of 
amplitude of 300N at a frequency of 2Hz on the axial load and an amplitude 
of 700N at a frequency of 1Hz in the radial, while bearing two which was 
debris induced was loaded sinusoidally with forces of amplitude of 400N 
at a frequency of 2Hz in the axial direction and an amplitude of 800N at a 
frequency of 1Hz in the radial direction. Bearing three with crack at the 
outer race was loaded sinusoidally with forces of amplitude of 500N on the 
axial at a frequency of 2Hz and 900N at a frequency of 1Hz in the radial 
direction. The reason for applying different loads is to simulate real life 
scenarios of how the application of load affects the bearing in its life cycle. 
The speed of the servo motor was set at 70 rpm, 80 rpm, 90 rpm and 
100rpm for bearings 1, 2, and 3 respectively. The vibration signatures for 
the three test bearings were collected for the four speeds, using an FFT 
analyzer, a National Instruments data acquisition card (BNC-2110) with a 
shielded BNC connector block.  
 
Figure 4 shows the flow chart for arriving at the indicator proposed for use 
in this paper. First the loads are applied in both the axial and radial 
direction and the acoustic transducer is used to obtain the signatures from 
which the skewness, kurtosis and hyperflatness values are obtained which 
are then used to find the KLW before been applied to the indicator 
function. 
 

 
 

Figure 4: A diagram for arriving at the indicator values. 

Sinusoidal axial and radial load where applied to the test bearings and 
acoustic emission signals were collected from the bearing. These signals 
were grouped into smaller groups and analyzed further obtaining 
skewness and the kurtosis wave to which the Kullback-Leibler principle 
was applied to obtain Kullback-Leibler information wave (KLW). 
 
4. EXPERIMENTAL RESULTS 
 
Figure 5 shows a typical acoustic signal obtained from the bearing test rig; 
the length of the data taken was 60000 data samples. It cannot simply be 
visually observed that the amplitude of the wave formed as shown in the 
figure varies within some given time interval. 
 

 
Figure 5: Acoustic emission obtained from test rig at 100rpm 

 
Frequencies of the order of 100 kHz are involved with AE and the fault 
characteristic frequencies caused by the defective bearing and its 
harmonics are difficult to detect in the corresponding spectrum by 
conventional FFT-based envelope analysis especially at low speeds and 
very low speeds (< 10 rpm), as it occurs within a narrow band spectrum 
their harmonics as depicted in fig. 6 below are also difficult to obtain 
especially for the outer race cracked bearings. 
 

 
 

Figure 6: The FFT of the signal at 70 and 100 rpm 
 
Figure 7 show the evolution of the descriptor established for the acoustic 
signal of the different defect for the indicator. With regard to the energy 
coherent factor, the value obtains did consider the energy and the 
amplitude of the signals for the indicator. The rotational speeds used for 
the test are 70rpm, 80rpm, 90rpm and 100rpm.In order to be able to 
cluster at the different speeds, it is necessary to obtain an absolute value 
of the difference in the subgroup division of the indicator equation 
formulated as sometimes negative values are obtained which could cause 
the signal at the various speed level to cross each other when plotted 
causing clustering/separation of the signal to be difficult and also since the 
complexity of the signal grouped into groups are always positive. 
Skewness could sometimes give a negative result hence the denominator 
should always be positive and smaller than the numerator so as to obtain 
favorable answers from the indicators. The high energy and amplitude 
exhibited by the ringing pulses generated as the roller passes over the 
groove induced on the outer ring cannot be observed on the time signal 
given in Figure 5, that is why the indicator is formulated to see if they can 
reflect this energy exhibited and this is shown in Figure 7 by the plot 
shown from energy coherent factor formula. 
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Figure 7: Energy coherent factor plot. 

By observing figure 7, we find that at a low speed of 70 rpm the energy 
level of the three scenarios is clearly spelt out and as these speed increases 
(after a longer life cycle of use) there is a reduction in the energy level 
which further reduces as the speed and life cycle increases which explains 
the description provided by literatures on how the kurtosis value relating 
to that of a good bearing stays below 3.These increases as fault is 
introduced but which reduces over time as the fault is prolonged.  

The good bearing indicator line as shown in the plot above did not show 
much deviation from the zero line, while the debris induced, and the outer 
race crack bearing indicator lines show significant deflection away and 
from the zero line respectively. 

5. CONCLUSION

HOS seem like an intuitive thing to do. Examples are the use of skewness 
and kurtosis. However, the direct outliers (which originate from non-
uniform load) that make it worse for signal analysis as a peaked-ness fault 
in the measured data become difficult to measure. Also, the problem that 
outliers create in measured data being analyzed, that is common with 
higher order moment is a problem it has. Lower order statistical moments 
such as skewness and kurtosis which are commonly used could not be 
easily used to identify the faults at incipient stage especially as it relates to 
very low speeds, but in this work the condition of bearings at very low 
speeds were successfully classified into clusters of good bearing, debris 
induced, and outer race cracked. This is because HOS are much more 
sensitive than lower order statistical moments though it has the problem 
of outliers affecting the analysis. This has been taking care of here through 
the use of KL divergence and Lempel-Ziv complexity. HOS is effectively 
combined with KL divergence and Lempel-Ziv complexity to formulate an 
indicator that made use of kurtosis which is said to be a poor indicator of 
fault especially on outer race of a bearing. With HOS, information was 
successfully extracted which deviated from Gaussianity, making it easier 
to detect and quantify non-linearities in time series especially at very low 
speed. For this, it becomes necessary to introduce statistical techniques to 
“smooth” the signal, by introducing even higher orders parameters like 
(HFIW in energy coherent factor), and this leads to results where the 
energy coherent factor is less sensitive to speed but separate well on the 
basis of damage. For heavily tailed distributions which imply that their 
estimates have high variance and are generally too unstable to capture the 
properties of their distribution, the energy coherent factor derived in this 
work was introduced to help absorb the effects of useful outliers in 
measurements which would have caused significant variance as found 
with other application analysis. With the approach developed here in this 
work, simple representation and interpretation of the online extracted 
information could be made possible. For example, different colors of light 
emitting diode (LED) could be used to indicate the types of faults, such that 
a non-expert or a simple classification algorithm may interpret the result. 
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