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Forecasting Macroeconomic Variables Using Large Datasets: Dynamic Factor Model 
versus Large-Scale BVARs 

Rangan Gupta* and Alain Kabundi# 
 
Abstract 
 
This paper uses two-types of large-scale models, namely the Dynamic Factor Model (DFM) and 
Bayesian Vector Autoregressive (BVAR) Models based on alternative hyperparameters specifying 
the prior, which accommodates 267 macroeconomic time series, to forecast key macroeconomic 
variables of a small open economy. Using South Africa as a case study and per capita growth rate, 
inflation rate, and the short-term nominal interest rate as our variables of interest, we estimate the 
two-types of models over the period 1980Q1 to 2006Q4, and forecast one- to four-quarters-
ahead over the 24-quarters out-of-sample horizon of 2001Q1 to 2006Q4. The forecast 
performances of the two large-scale models are compared with each other, and also with an 
unrestricted three-variable Vector Autoregressive (VAR) and BVAR models, with identical 
hyperparameter values as the large-scale BVARs. The results, based on the average Root Mean 
Squared Errors (RMSEs), indicate that the large-scale models are better-suited for forecasting the 
three macroeconomic variables of our choice, and amongst the two types of large-scale models, 
the DFM holds the edge.   
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1. Introduction 
This paper exploits information contained in a large cross-section of time series, 267 to be 
specific, to forecast three key macroeconomic variables, namely, per capita growth rate, the 
Consumer Price Index (CPI) inflation, and the 91 days Treasury Bill rate for the South African 
economy, using a Dynamic Factor Model (DFM) and alternative Bayesian Vector Autoregressive 
(BVAR) models, based on alternative values of the hyperparameters specifying the prior. The two 
types of model are first estimated over the period of 1980:01 to 2000:04 using quarterly data, and 
are then used to generate one- to four-quarters-ahead out-of-sample forecasts over a 24 quarter 
forecasting horizon of 2001:01 to 2006:04. The performance of these two large-scale models are 
also compared with an unrestricted Vector Autoregressive (VAR) model and BVAR models, with 
identical hyperparameter values as the large-scale BVARs, but including only the three variables 
we are concerned of. At this stage, it must be emphasized that the choice of South Africa, as our 
country of interest, emerges purely from the motivation of this study discussed below, and, 
hence, there is no reason that the current work cannot be conducted for any other economy, 
especially given the general nature of the econometric models we use here. 
 
The main motivation for this current piece of work emanates from two recent studies carried out 
for the South African economy by Gupta and Kabundi (2008) and Das et al. (2008).  Gupta and 
Kabundi (2008) used a DFM to forecast growth per capita, inflation based on Gross Domestic 
Product deflator and the 91 days Treasury Bill rate. When the forecast performance of the model 
was compared with an unrestricted VAR, alternative BVARs and a New Keynesian Dynamic 
Stochastic General Equilibrium (DSGE) model, estimated using the three variables of interest, 
the authors found the DFM to outperform all the models in terms of forecasting the interest rate, 
while it did no worse than the VAR and the BVARs in forecasting the other two variables.  On 
the other hand, Das et al. (2008), forecasted regional house price inflation in five major 
metropolitan areas of South Africa based on the same DFM developed by Gupta and Kabundi 
(2008), which now also included house price inflation of different house size category2 for the 
five metropolitans under consideration. When the authors compared the forecasting performance 
of the DFM with spatial and non-spatial BVARs, besides, an unrestricted VAR, based on only 
the house price inflation, the DFM was found to outperform the other models in 10 of the 15 
cases. Both Gupta and Kabundi (2008) and Das et al. (2008) attribute the better performance of 
the DFM to its ability to efficiently handle large amounts of information, and, hence, its 
capability to forecast more accurately.  
 
In such a backdrop, this paper, using the same panel of 267 time series as used by Gupta and 
Kabundi (2008), tries to check for the validity of such a claim, by comparing the forecasting 
performance of a DFM, for three variables, with that of BVAR models, which based on their 
estimation method3 can also accommodate a panel as large as the one used in the DFM.  Our 
analysis is quite similar in spirit, but markedly different in structure, to the work of De Mol et al. 
(2006). This paper compared the forecasting performance of BVAR models, based on normal 
and double exponential priors, with that of a DFM model for the US economy. The authors 
show that the forecasts generated from the BVAR models based on 131 variables for industrial 
production and CPI perform equally well as that of a DFM.4 Though our study, when compared 
to De Mol et al. (2006), is limited in the sense it only considers normal priors, namely the 
Minnesota prior, we by allowing for different degree of interaction amongst domestic and foreign 
variables5, contained in our data, account for the small open economy structure of South Africa 
to play a role in the forecasting results, and, hence, allow for a bit of theory, in these otherwise 

                                                           
2 The houses were categorized as small, medium and large based on the square metres of area covered. See 
Burger and van Rensburg (2008), Gupta and Das (2008) and Das et al. (2008) for further details regarding 
the housing market in South Africa.  
3 See Section 4 laying out the basics of the BVAR models for further details. 
4 Note De Mol et al. (2007) also looked into conditions for consistency of the Bayesian forecasts as the 
cross-section and the sample size became large.   
5 See Section 3 containing the discussion of data for further details. 
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atheoretical models.6  To our knowledge, this is the first attempt to use large-scale BVAR models, 
as an alternative to a DFM, to forecast key macroeconomic variables in an emerging market 
economy.  
 
In general, the motivation to use a large data set to forecast an economy originates not only from 
the fact that such data is now available at lower cost, but also because, and, perhaps, more 
importantly, the increased power of computation has facilitated in using such huge amount of 
information to estimate and forecast with econometric models. Where tradition forecasting 
models such VAR, known for their better predictability, are unable to handle information 
contained in a large dataset without facing the degrees of freedom problems, dynamic factor 
models (DFM) on the other hand can efficiently handle large amounts of information and 
therefore help improve the forecasting performance of econometric models. VAR that uses 
information contained in few fundamental variables seems limited and insufficient to mimic 
complex economic relations and forecast the future. Today modern econometricians have the 
ability to extract important information from a large dataset and accurately forecast the future. In 
addition, central bankers, policymakers, and academics agree that economic agents monitor 
hundreds of economic variables in their decision-making process (Bernanke and Boivin, 2003).  
As Stock and Watson (2005) agreeably put it, the DFM transforms the curse of dimensionality into 
blessing of dimensionality.  

The original dynamic factor models of Sargent and Sims (1977), Geweke (1977), Chamberlain 
(1983) and Chamberlain, and Rothschild (1983) have been improved recently through advances 
in estimation techniques proposed by Stock and Watson (2002), Forni et al. (2005), and 
Kapetanios and Marcellino (2004). The success of DFM is due to the fact that only few extracted 
common factors can explain to a large extent the variation of variables in a large cross-section of 
time series. Several empirical researches provide evidence of improvement in forecasting 
performance of macroeconomic variables using factor analysis (Giannone and Matheson, 2007; 
Van Nieuwenhuyze, 2007; Cristadoro et al., 2005; Forni et al., 2005; Schneider and Spitzer, 2004, 
Kabundi, 2004; Forni et al., 2001; and Stock and Waston, 2002a, 2002b, 1999, 1991, and 1989).  

Unlike the unrestricted VAR, the Bayesian VAR (BVAR) can be seen as a valid alternative to 
the DFM as it can equally accommodate large number of predictors without facing the risk of 
losing degrees of freedom associated with unrestricted VAR. By imposing restrictions related to 
the distribution of coefficients, BVAR models avoid the overparametrization and overfitting of 
the model that are inherent in a VAR framework. Hence, a BVAR is based on fast exploration of 
the model space and, as part of the Bayesian methodology, it does not need to rely on asymptotic 
theory as in the case of an unrestricted VAR. Furthermore, given their estimation procedures, the 
DFM and the BVAR are capable of forecasting simultaneously a large number of time series 
other than the key variables of interest. In other words, the two models are ideal in using large 
amount of information to forecast the economy, and, hence, could be considered to be on an 
even ground.    

The remainder of the paper is organized as follows: The following section briefly discusses the 
DFM. Section 3 outlines the basics of the VAR and Minnesota-type BVARs. Section 4 discusses 
the data used to estimate the DFM and BVARs, while Section 5 presents the results from the 
forecasting exercise. Finally, section 6 concludes.  

2. The Basics of a DFM 
This study uses the Dynamic Factor Model (DFM) developed by Forni et al. (2005) to extract 
common components between macroeconomics series, and then these common components are 
used to forecast the three key macroeconomic variables. In the VAR models, since all variables 
are used in forecasting, the number of parameters to estimate depend on the number of variables 
n . With such a large information set, n , the estimation of a large number of parameters leads to a 
curse of dimensionality. The DFM uses information set accounted by few factors nq << , which 
transforms the curse of dimensionality into a blessing of dimensionality.  

The DFM expresses individual times series as the sum of two unobserved components: a 
common component driven by a small number of common factors and an idiosyncratic 
                                                           
6 See Section 4 for further details. 
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component, which are specific to each variable. The relevance of the method is that the DFM is 
able to extract the few factors that explain the comovement of all South African macroeconomic 
variables. Forni et al. (2005) demonstrated that when the number of factors is small relative to 
the number of variables and the panel is heterogeneous, the factors can be recovered from the 
present and past observations. 
 
Consider an 1n ×  covariance stationary process )y...,,y(Y ntt1t ′= . Suppose that tX  is the 
standardized version of tY , i.e. tX  has a mean zero and a variance equal to one. Under DFM 
proposed by Forni et al. (2005) tX  is described by a factor model, it can be written as the sum of 
two orthogonal components:  
 ititittiittiit Ff)L(bx ξχξλξ +=+=+=   (1) 
 
or, in vector notation:  
 
 ititittittt Ff)L(BX ξχξΛξ +=+=+=   (2) 
 
where tf  is a 1q×  vector of dynamic factors, s

s10 LB...LBB)L(B +++=  is an qn×  matrix of 
factor loadings of order s , itξ  is an 1n ×  vector of idiosyncratic components, tF  is 1r×  vector 
of factors, with )1s(qr += . However, in more general framework qr ≥ , instead of the more 
restrictive )1s(qr += . In a DFM, tf  and itξ  are mutually orthogonal stationary process, while 

itχ  is the common component.  
In factor analysis jargon, ittt f)L(BX ξ+=  is referred to as dynamic factor model, and 

ittt FX ξΛ +=  is the static factor model. Similarly, tf  is regarded as vector of dynamic factors 
while tF  is the vector of static factors. Since dynamic common factors are latent, they need to be 
estimated. Forni et al. (2005) estimate dynamic factors through the use of dynamic principal 
component analysis. It involves the estimating the eigenvalues and eigenvactors decomposition 
of spectral density matrix of tX , which is a generalization of orthogonalization process in case of 
static principal components.7  

3. Alternative Forecasting Models: VAR and BVAR8 
The Vector Autoregressive (VAR) model, though ‘atheoretical’, is particularly useful for 

forecasting purposes. A VAR model can be visualized as an approximation of the reduced-form 
simultaneous equation structural model.   

 
 An unrestricted VAR model, as suggested by Sims (1980), can be written as follows: 
 

= + +0 ( )t t ty A A L y ε                                                                                              (3)                                
where y is a ( ×1n ) vector of variables being forecasted; A(L) is a ( ×n n ) polynomial matrix in 
the backshift operator L with lag length p, i.e., A(L) = + + +2

1 2 ................ p
pA L A L A L ; 0A is 

a ( ×1n ) vector of constant terms, and ε  is a ( ×1n ) vector of error terms. In our case, we 
assume thatε σ ×2~ (0, ), where is a identity matrixn nN I I n n . 

 
Note the VAR model, generally uses equal lag length for all the variables of the model. One 

drawback of VAR models is that many parameters need to be estimated, some of which may be 
insignificant. This problem of overparameterization, resulting in multicollinearity and a loss of 
degrees of freedom, leads to inefficient estimates and possibly large out-of-sample forecasting 
errors. One solution, often adapted, is simply to exclude the insignificant lags based on statistical 

                                                           
7See Gupta and Kabundi (2008) for a detailed description of the model. 
8 This section relies heavily on the discussion available on VAR and BVAR in Dua and Ray (1995), LeSage 
(1999), Gupta and Sichei (2006), Gupta (2006, 2007a,b) and Gupta and Das (2008). 
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tests. Another approach is to use a near VAR, which specifies an unequal number of lags for the 
different equations.   

 
However, an alternative approach to overcoming this overparameterization, as described in 

Litterman (1981), Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), is to use 
a BVAR model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on 
these coefficients by assuming that they are more likely to be near zero than the coefficients on 
shorter lags. However, if there are strong effects from less important variables, the data can 
override this assumption. The restrictions are imposed by specifying normal prior distributions 
with zero means and small standard deviations for all coefficients with the standard deviation 
decreasing as the lags increase. The exception to this is that the coefficient on the first own lag of 
a variable has a mean of unity. Litterman (1981) used a diffuse prior for the constant.  This is 
popularly referred to as the ‘Minnesota prior’ due to its development at the University of 
Minnesota and the Federal Reserve Bank at Minneapolis.  

 
Formally, as discussed above, the means and variances of the Minnesota prior take the 

following form: 
 

β ββ σ β σ2 2~ (1, )and ~ (0, )
i ji jN N                                                                 (4)                                 

where βi  denotes the coefficients associated with the lagged dependent variables in each 

equation of the VAR, while β j  represents any other coefficient. In the belief that lagged 
dependent variables are important explanatory variables, the prior means corresponding to them 
are set to unity. However, for all the other coefficients, β j ’s, in a particular equation of the VAR, 
a prior mean of zero is assigned to suggest that these variables are less important to the model.   

 
 The prior variances 2

βσ i
and 2

βσ j
, specify uncertainty about the prior means βi  = 1, and β j  = 

0, respectively. Because of the overparameterization of the VAR, Doan et al. (1984) suggested a 
formula to generate standard deviations as a function of small numbers of hyperparameters: w, d, 
and a weighting matrix f(i, j). This approach allows the forecaster to specify individual prior 
variances for a large number of coefficients based on only a few hyperparameters. The 
specification of the standard deviation of the distribution of the prior imposed on variable j in 
equation i at lag m, for all i, j and m, defined as S1(i, j, m), can be specified as follows:   

σ
σ

= × ×1

ˆ
( , , ) [ ( ) ( , )]

ˆ
j

i

S i j m w g m f i j                                                                         (5)                               

with f(i, j) = 1, if i = j and ijk  otherwise, with ( ≤ ≤0 1ijk ), g(m) = − >, 0dm d . Note that σ̂ i  is 

the estimated standard error of the univariate autoregression for variable i. The ratio ˆ ˆ/i jσ σ  
scales the variables to account for differences in the units of measurement and, hence, causes 
specification of the prior without consideration of the magnitudes of the variables. The term w 
indicates the overall tightness and is also the standard deviation on the first own lag, with the 
prior getting tighter as we reduce the value. The parameter g(m) measures the tightness on lag m 
with respect to lag 1, and is assumed to have a harmonic shape with a decay factor of d, which 
tightens the prior on increasing lags. The parameter f(i, j) represents the tightness of variable j in 
equation i relative to variable i, and by increasing the interaction, i.e., the value of ijk , we can 
loosen the prior.9 Note, in the standard Minnesota-type prior, the overall tightness (w) takes the 
values of 0.1, 0.2 and 0.3, while, the lag decay (d) is generally chosen to be equal to 0.5, 1.0 and 
2.0. The interaction parameter ( ijk ) is traditionally set at = 0.5. We will call the BVARs estimated 
with this set of parameterization of the priors as symmetric BVARs.  
Given that, we have domestic as well as foreign and world variables in the DFM, and realizing 

                                                           
9 For an illustration, see Dua and Ray (1995). 
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the South Africa is a small open economy, and, hence, domestic variables would have minimal, if 
any, effect on foreign and world variables, while the latter set of variables is sure to have an 
influence on the South African variables, setting ijk = 0.5 could be a quite far fetched from reality. 
Hence, borrowing from the BVAR models used for regional forecasting, involving both regional 
and national variables, and following Kinal and Ratner (1986) and Shoesmith (1992), the weight 
of a foreign or world variable in a foreign or world equation, as well as a domestic equation, is set 
at 0.6. The weight of a domestic variable in other domestic equation is fixed at 0.1 and that in a 
foreign or world equation at 0.01. Finally, the weight of the domestic variable in its own equation 
is 1.0. These weights are in line with Litterman’s circle-star structure. Star (foreign or world) 
variables affect both star and circle (domestic) variables, while circle variables primarily influence 
only other circle variables.10 We will call the BVARs estimated with this set of parameterization 
of the priors as asymmetric BVARs.  
  

Finally, once the priors have been specified, the alternative BVARs, whether based on the 3 
variables or all the 267 variables (symmetric or asymmetric), are estimated using Theil's (1971) 
mixed estimation technique. Specifically, suppose we denote a single equation of the VAR model 
as: β ε ε σ= + = 2

1 1 1, with ( ) ,y X Var I  then the stochastic prior restrictions for this single 
equation can be written as: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

111 111 111 111

112 112 112 112

/ 0 . . . 0
0 / 0 . . 0

. . . . . . . . .

. . . . . . . . .

. 0 . . . . 0 . .
0 0 . . 0 /nnm nnm nnm nnm

M a u
M a u

M a u

σ σ
σ σ

σ σ

                                (6)                                 

 
Note, σ= 2( )Var u I and the prior means ijmM and ijmσ  take the forms shown in (4) and (5). 

With (6) written as: 
β= +r R u                                                  (7)                                  

and the estimates for a typical equation are derived as follows: 
β −= + +1

1
ˆ ( ' ' ) ( ' ' )X X R R X y R r                                                                                    (8)                                 

 
Essentially then, the method involves supplementing the data with prior information on the 

distribution of the coefficients. The number of observations and degrees of freedom are 
increased by one in an artificial way, for each restriction imposed on the parameter estimates. The 
loss of degrees of freedom due to over- parameterization associated with a classical VAR model 
is, therefore, not a concern in the BVARs. 

4. Data 
It is imperative in factor analysis framework to extract common components from a data rich 
environment. After extracting common components of per capita growth rate, inflation, and 
nominal interest rates of South Africa, we make out-of-sample forecast for one, two, three, and 
four quarters ahead.  
The data set contains 267 quarterly series of South Africa, ranging from real, nominal, and 
financial sectors. We also have intangible variables, such as confidence indices, and survey 
variables. In addition to national variables, the paper uses a set of global variables such as 
commodity industrial inputs price index and crude oil prices. The data also comprises series of 
major trading partners such as Germany, the United Kingdom (UK), and the United States (US) 
                                                           
10 We also experimented by assigning higher and lower interaction values, in comparison to those specified 
above, to the star variables in both the star and circle equations, but, the rank ordering of the alternative 
forecasts remained the same.  
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of America. The in-sample period contains data from 1980Q1 to 2000Q4. All series are 
seasonally adjusted and covariance stationary. The more powerful DFGLS test of Elliott, 
Rothenberg, and Stock (1996), instead of the most popular ADF test, is used to assess the degree 
of integration of all series. All nonstationary series are made stationary through differencing. The 
Schwarz information criterion is used in the selecting the appropriate lag length in such a way 
that no serial correction is left in the stochastic error term. Where there were doubts about the 
presence of unit root, the KPSS test proposed by Kwiatowski, Phillips, Schmidt, and Shin (1992), 
with the null hypothesis of stationarity, was applied. All series are standardized to have a mean of 
zero and a constant variance. It must, however be pointed out that, non-stationarity is not an 
issue with the BVAR, since Sims et al. (1990) indicates that with the Bayesian approach entirely 
based on the likelihood function, the associated inference does not need to take special account 
of nonstationarity, since the likelihood function has the same Gaussian shape regardless of the 
presence of nonstationarity. Hence, for the sake of comparison amongst the VARs, both classical 
and Bayesian, we make no attempt o make the variables stationary, unlike in the DFM.11 The in-
sample period contains data from 1980Q1 to 2000Q4, while the out-of-sample set is 2001Q1-
2006Q4.12  

There are various statistical approaches in determining the number of factors in the DFM. For 
example, Bai and Ng (2002) developed some criteria guiding the selection of the number of 
factors in large dimensional panels. The principal component analysis (PCA) can also be used in 
establishing the number of factors in the DFM. The PCA suggests that the selection of a number 
of factors q be based on the first eigenvalues of the spectral density matrix of tX . Then, the 
principal components are added until the increase in the explained variance is less than a specific 

05.0=α . The Bai and Ng (2002) approach proposes five static factors, while Bai and Ng (2007) 
suggests two primitive or dynamic factors. Similar to the latter method, the principal component 
technique, as proposed by Forni et al. (2000) suggests two dynamic factors. The first two 
dynamic principal components explain approximately 99 percent of variation, while the 
eigenvalue of the third component is 05.0005.0 < .  
 
5. Evaluation of Forecast Accuracy 

 
Given the specification of the priors above, we estimate a VAR and the small- and large-scale 

BVARs (both symmetric and asymmetric) over the period of 1980:01 to 2000:04, based on 
quarterly data. Then we compute the out-of-sample one- through four-quarters-ahead forecasts 
for the period of 2001:Q1 to 2006:Q4, and compare the forecast accuracy relative to that of the 
forecasts generated the benchmark DFM model. The different types of the VARs are estimated 
with 5 lags13 of each variable. The VAR and the BVARs, for an initial prior, are estimated for the 
period of 1980:Q1 to 2000:Q4 and, then, we forecast from 2001:Q1 through to 2006:Q4. Since 
we use five lags, the initial five quarters of the sample, 1980:Q1 to 1981:Q4, are used to feed the 
lags. We generate dynamic forecasts, as would naturally be achieved in actual forecasting practice. 
The models are re-estimated each quarter over the out-of-sample forecast horizon in order to 
update the estimate of the coefficients, before producing the 4-quarters-ahead forecasts. This 
iterative estimation and 4-steps-ahead forecast procedure was carried out for 24 quarters, with 
the first forecast beginning in 2001:Q1. This experiment produced a total of 24 one-quarter-
ahead forecasts, 24-two-quarters-ahead forecasts, and so on, up to 24 4-step-ahead forecasts. We 
use the algorithm in the Econometric Toolbox of MATLAB14, for this purpose. The RMSEs15 

                                                           
11 See Dua and Ray (1995) for further details. 
12Details about data and their statistical treatment of the variables used to estimate the DFM are available 
upon request. 
13 The choice of 5 lags is based on the unanimity of the sequential modified LR test statistic, Akaike 
information criterion (AIC), the final prediction error (FPE) criterion, Schwarz information criterion and 
the Hannan-Quinn (HQ) information criterion applied to a stable VAR estimated with the three variables 
of concern. Note, stability, as usual, implies that no roots were found to lie outside the unit circle.   
14 All statistical analysis was performed using MATLAB, version R2006a. 
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for the 24, quarter 1 through quarter 4 forecasts are then calculated for the per capita growth, 
CPI inflation and the short-term nominal interest rate. The values of the RMSE statistic for one- 
to four-quarters-ahead forecasts for the period 2001:Q1 to 2006:Q4 are then examined. The 
model, DFM or any of the VARs, that produces the lowest average value for the RMSE is 
selected, as the ‘optimal’ model for a specific variable.  
 
To evaluate the accuracy of forecasts generated by the DFM, we need alternative forecasts.  To 
make the RMSEs comparable with the DFM, we report the same set of statistics for the out-of-
sample forecasts generated from an unrestricted classical VAR, the three-variable BVARs and the 
symmetric and asymmetric 267-variables BVARs. In Tables 1 to 3, we compare the RMSEs of 
one- to four-quarters-ahead out-of-sample-forecasts for the period of 2001:Q1 to 2006:Q4, 
generated by the abovementioned models. At this stage, a few words need to be said regarding 
the choice of the evaluation criterion for the out-of-sample forecasts generated from Bayesian 
models. As Zellner (1986: 494) points out the “optimal” Bayesian forecasts will differ depending 
upon the loss function employed and the form of predictive probability density function". In 
other words, Bayesian forecasts are sensitive to the choice of the measure used to evaluate the 
out-of-sample forecast errors. However, Zellner (1986) points out that the use of the mean of the 
predictive probability density function for a series, is optimal relative to a squared error loss 
function and the Mean Squared Error (MSE), and, hence, the RMSE is an appropriate measure 
to evaluate performance of forecasts, when the mean of the predictive probability density 
function is used. This is exactly what we do below in Tables 1 through 3, when we use the 
average RMSEs over the one- to four-quarter-ahead forecasting horizon. The conclusions, 
regarding each of the three variables, based on the average one- to four-quarters-ahead RMSEs, 
from these tables can be summarized as follows: 

  
[INSERT TABLES 1 THROUGH 3] 

 
(i) Per Capita Growth Rate:  The DFM is outperformed by all the VAR models, small 

or large-scale, classical or Bayesian, symmetric or asymmetric. The three variable 
classical VAR performs better than all the small-scale BVARs, as well as, the large-
scale asymmetric BVARs. Amongst the VARs, though, it is the large-scale symmetric 
BVAR which performs the best. In fact, the best-suited model for forecasting per 
capita growth rate is the BVAR model with the most tight prior (w = 0.1 and d = 
2.0). 

(ii) CPI Inflation: For CPI inflation, the DFM outperforms all the other models. 
Amongst the VARs, the small-scale classical VAR outperforms all the large-scale 
symmetric BVAR, and the three-variable BVAR except for the case where priors are 
most loose (w = 0.3 and d = 0.5). Further, except for two cases of relatively loose 
specification of the prior, specifically when w = 0.3, d = 0.5 and w = 0.2 and d = 1.0, 
the VAR, in general, is also better suited than the large-scale asymmetric BVARs. 
But, overall amongst the VARs, it is the large-scale asymmetric BVAR model with w 
= 0.3, d = 0.5 that is best-suited for forecasting CPI inflation. 

(iii) 91-days Treasury bill rate: As with the CPI inflation, the DFM stands out in 
forecasting the Treasury bill rate, when compared to other alternative models. 
Amongst the VARs, the small-scale classical VAR outperforms all the large-scale 
symmetric BVAR, but is outperformed in turn, by all the small-scale BVARs and the 
large-scale asymmetric BVARs. Further, as with the CPI inflation, it is the large-scale 
asymmetric BVAR model with w = 0.3, d = 0.5 that is best-suited for forecasting the 
short-term interest rate amongst the VARs. 

 
                                                                                                                                                                      
15 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF + is the forecast 

made in period t for t + n, the RMSE statistic can be defined as: 1 ( ) 100t n t t nA F
N + +− ×∑ . For n = 1, the 

summation runs from 2001:Q1 to 2006:Q4, and for n = 2, the same covers the period of 2001:Q2 to 
2006:Q4, and so on. 
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So, to summarize, we find that the DFM outperforms the VARs, small or large-scale, classical or 
Bayesian, symmetric or asymmetric, by quite a margin in terms of the average RMSEs for one- to 
four-quarters-ahead forecasts for the CPI inflation and the Treasury bill rate, but, in turn, is 
outperformed by the large-scale symmetric BVAR with most tight priors. Furthermore, setting 
the DFM aside for a moment, we observe that the next best performing model for forecasting 
the CPI inflation and the Treasury bill rate is the large-scale asymmetric BVAR with most loose 
priors.  Recall, that the large-scale symmetric BVAR treats all the variables, other than the 
dependent variable identically. Hence, the looseness and asymmetry in the prior specification is 
most-likely indicative of, respectively, persistence and the importance of relevant variables 
required for the determination of CPI inflation and the interest rate, especially when one takes 
into account of the role of foreign factors in determining these two variables. The fact that 
growth rate per capita is forecasted best by a symmetric BVAR, irrespective of the degree of 
tightness or looseness of the prior, is, perhaps, due to the equal importance of variables, other 
than the per capita growth rate in explaining itself.       
 
6. Conclusions 
 
This paper exploits information contained in a large cross-section of time series to forecast three 
key macroeconomic variables, namely, per capita growth rate, the Consumer Price Index (CPI) 
inflation, and the 91 days Treasury Bill rate for the South African economy, using a DFM and 
BVARs, based on alternative values of the hyperparameters specifying the prior. The two-types 
of models are first estimated over the period of 1980:01 to 2000:04 using quarterly data, and are 
then used to generate one- to four-quarters-ahead out-of-sample forecasts over a 24 quarter 
forecasting horizon of 2001:01 to 2006:04. The performance of these two large-scale models are 
also compared with each other and with an unrestricted Vector Autoregressive (VAR) model and 
BVAR models, with identical hyperparameter values as the large-scale BVARs, but including only 
the three variables we are concerned of. As stressed in the introduction, given the modeling 
strategies, the current study can be easily generalized to any other country and should not be 
dubbed as specific to the South African economy.  
 
In general, we find that the DFM outperforms all the alternative forms of the VARs by quite a 
distance in terms of the average RMSEs for one- to four-quarters-ahead forecasts for the CPI 
inflation and the Treasury bill rate, but, in turn, is outperformed by the large-scale symmetric 
BVAR with most tight priors. But, setting the DFM aside for a moment, we observe that the 
next best performing model for forecasting the CPI inflation and the Treasury bill rate is the 
large-scale asymmetric BVAR with most loose priors.  Based on these results, what is of more 
importance, is the observation that, whether it is the DFM or the BVAR (symmetric or 
asymmetric), it is always a large-scale model that is best-suited for forecasting the three variables 
of our concern. And further, it seems that, perhaps, the DFM might have an edge over the large-
scale BVARs, especially when it comes to forecasting variables such as the inflation and the 
interest rates, which are likely to be influenced more by a specific set of important variables, 
unlike growth rate, which, at least in the short-run, is less likely to be driven by proper theoretical 
foundations. The first part of the statement is, in some sense, vindicated by the better 
performance of the asymmetric BVARs within the VAR category of models, which, in fact, does 
allow for bit of theory in terms of the Small Open Economy assumptions. While, second half of 
the statement in concern follows from the result that the large-scale symmetric BVAR is best-
suited for forecasting growth rate per capita.  
 
Overall, our results indicate that data-rich models – DFM or large-scale BVARs, are better suited 
in forecasting key macroeconomic variables relative to small-scale models involving only the few 
variables of interest. However, it is important to point out that, given that there are at least two 
major limitations to using a Bayesian approach for forecasting, the DFM is, perhaps, a better 
model to base ones’ forecasts on. The two shortcomings of the Bayesian models are as follows: 
Firstly, as it is clear from Tables 1 to 3, the forecast accuracy is sensitive to the choice of the 
priors. So if the prior is not well specified, an alternative model used for forecasting may perform 
better. Secondly, in case of the Bayesian models, one requires to specify an objective function, for 
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example the average RMSEs, to search for the ‘optimal’ priors, which, in turn, needs to be 
optimized over the period for which we compute the out-of-sample forecasts. However, there is 
no guarantee that the chosen parameter values specifying the prior will continue to be ‘optimal’ 
beyond the period for which it was selected. Nevertheless, the importance of large-scale BVARs 
cannot be ignored16, especially when one realizes that they are the best possible alternative to the 
DFM, as far as accommodating large number of time series is concerned. Further, it is also 
important to check for the robustness of our conclusions, by redoing the exercise with BVARs 
based on alternative forms of priors, other than the Minnesota-type used in this paper. In this 
regard, a good starting point would be to use the double exponential priors as in De Mol et al. 
(2006). In addition to this, one might want to revisit the forecast performances of the BVARs by 
assuming a more general error structure, as in Gupta (2007a), to account for non-constant 
variance of the variables, and, also look at Bayesian Vector Error Correction Models (BVECMs). 
As pointed out by LeSage (1990), Gupta (2006, 2007b) and Zita and Gupta (2007), even though 
non-stationarity is not an issue with the Bayesian approach BVECMs, in general, tends to 
outperform BVARs, since Error Correction Models (ECMs) use long-run equilibrium 
relationships from economic theory to explain short-run dynamics of data. 
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Table1. RMSEs for Per Capita Growth Rate (2001:01-2006:04) 
       
  1 2 3 4 Average 
 DFM 0.4556 0.4856 0.5219 0.7869 0.5625 
 VAR 0.2733 0.2167 0.1148 0.0599 0.1662 

w=0.3,d=0.5 BVAR1 0.4473 0.2111 0.1985 0.0029 0.2149 
 BVAR2 0.2700 0.2100 0.1100 0.0600 0.1625 
 BVAR3 0.5013 0.1428 0.3264 0.3314 0.3255 

w=0.2,d=1 BVAR1 0.4573 0.1857 0.1554 0.0154 0.2034 
 BVAR2 0.2500 0.1900 0.1000 0.0500 0.1475 
 BVAR3 0.4365 0.0004 0.2979 0.2987 0.2584 

w=0.1,d=1 BVAR1 0.4498 0.1945 0.1481 0.0263 0.2047 
 BVAR2 0.2100 0.1600 0.0700 0.0300 0.1175 
 BVAR3 0.3776 0.0109 0.1693 0.2050 0.1907 

w=0.2,d=2 BVAR1 0.4846 0.1562 0.2732 0.1277 0.2604 
 BVAR2 0.1000 0.0900 0.0400 0.0100 0.0600 
 BVAR3 0.3520 0.2204 0.2390 0.3031 0.2786 

w=0.1,d=2 BVAR1 0.4579 0.1941 0.2198 0.1345 0.2516 
 BVAR2 0.0000 0.0100 0.0000 0.0600 0.0175 
 BVAR3 0.5013 0.1428 0.3264 0.3314 0.3255 

Note: BVAR1: 3-Variable BVAR; BVAR2: Large Symmetric BVAR; BVAR3: Large Asymmetric BVAR
 
 
 

 
 

Table2. RMSEs for CPI Inflation (2001:01-2006:04) 
       
  1 2 3 4 Average 
 DFM 0.0111 0.0112 0.0112 0.0112 0.0112 
 VAR 0.1695 0.0826 1.1857 0.7337 0.5429 

w=0.3,d=0.5 BVAR1 0.0437 0.0206 1.2979 0.7093 0.5179 
 BVAR2 0.1699 0.0947 1.1892 0.7358 0.5474 
 BVAR3 0.0680 0.2534 0.6183 0.5343 0.3685 

w=0.2,d=1 BVAR1 0.5768 0.1676 1.6281 1.0162 0.8472 
 BVAR2 0.1410 0.1703 1.2171 0.7565 0.5712 
 BVAR3 0.2777 0.1419 1.1231 0.5669 0.5274 

w=0.1,d=1 BVAR1 0.5339 0.2034 1.5672 1.0458 0.8376 
 BVAR2 0.0644 0.2939 1.2773 0.8011 0.6092 
 BVAR3 0.2395 0.2457 1.0539 0.7546 0.5734 

w=0.2,d=2 BVAR1 1.0603 0.0546 1.9936 0.9676 1.0190 
 BVAR2 0.0921 0.4841 1.3781 0.9006 0.7137 
 BVAR3 0.7323 0.4874 1.2126 0.8873 0.8299 

w=0.1,d=2 BVAR1 0.9343 0.1142 1.7622 1.0941 0.9762 
 BVAR2 0.1570 0.5919 1.4823 0.9777 0.8022 
 BVAR3 0.6059 0.5223 1.2071 0.7793 0.7786 

Note: BVAR1: 3-Variable BVAR; BVAR2: Large Symmetric BVAR; BVAR3: Large Asymmetric BVAR
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Table3. RMSEs for 91 Days Treasury Bill Rate (2001:01-2006:04) 
       
  1 2 3 4 Average 
 DFM 0.0169 0.0121 0.0116 0.0104 0.0127 
 VAR 0.0395 0.1756 0.6709 0.8999 0.4465 

w=0.3,d=0.5 BVAR1 0.1262 0.2213 0.1173 0.3531 0.2045 
 BVAR2 0.0446 0.1823 0.6749 0.9045 0.4516 
 BVAR3 0.1728 0.1113 0.1610 0.1775 0.1557 

w=0.2,d=1 BVAR1 0.1456 0.1901 0.2735 0.4678 0.2693 
 BVAR2 0.0771 0.2227 0.7010 0.9322 0.4833 
 BVAR3 0.1455 0.2013 0.1506 0.2412 0.1846 

w=0.1,d=1 BVAR1 0.1957 0.1505 0.4869 0.4935 0.3317 
 BVAR2 0.1657 0.3330 0.7552 0.9974 0.5628 
 BVAR3 0.1252 0.1858 0.0823 0.1111 0.1261 

w=0.2,d=2 BVAR1 0.1425 0.1981 0.2585 0.4579 0.2642 
 BVAR2 0.1246 0.2814 0.7330 0.9681 0.5268 
 BVAR3 0.1252 0.1858 0.0823 0.1111 0.1261 

w=0.1,d=2 BVAR1 0.1837 0.1789 0.4377 0.4835 0.3209 
 BVAR2 0.1717 0.3291 0.7054 0.9454 0.5379 
 BVAR3 0.1518 0.2750 0.1266 0.1495 0.1757 

Note: BVAR1: 3-Variable BVAR; BVAR2: Large Symmetric BVAR; BVAR3: Large Asymmetric BVAR
 
 
 




