
Cone Normal Stepping

by

Divan Desmond Burger

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

December 2018

Publication data:

Divan Desmond Burger. Cone Normal Stepping. Master’s dissertation, University of Pretoria, Department of Com-

puter Science, Pretoria, South Africa, November 2018.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

http://upetd.up.ac.za/UPeTD.htm

http://cirg.cs.up.ac.za/
http://upetd.up.ac.za/UPeTD.htm

Cone Normal Stepping

by

Divan Desmond Burger

E-mail: divan.burger@gmail.com

Abstract

This dissertation examines several methods of relief mapping, such as parallax mapping

and cone step mapping, as well as methods for soft shadowing and ambient occlusion

of relief maps. Ambient occlusion is an approximation of global illumination that only

takes occlusion into account. New relief mapping methods are introduced to bridge

the gap between distance fields and cone maps. The new methods allow calculating

approximate distance fields from their cone map approximate ambient occlusion and

soft shadows. The new methods are compared with linear, binary, and interval search as

well as variants of cone mapping, such as relaxed cone mapping and quad cone mapping.

These methods were evaluated with regards to performance and accuracy and were found

to be similar in performance and accuracy than the existing methods. The new methods

did not outperform existing methods on the tested scenes, but the new methods make

use of approximate distance fields and remove the maximum cone angle limitation. It

was also shown that in most cases linear search with interval mapping performed the

best, given the error metric used.

Keywords: parallax mapping, relief mapping, displacement mapping, heightmap, ray-

tracing, cone step mapping.

Supervisor : Dr. M. Helbig

Department : Department of Computer Science

Degree : Philosophiae Doctor of Computer Science

mailto:divan.burger@gmail.com

Contents

List of Figures iii

List of Algorithms v

List of Tables vi

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Dissertation Outline . 3

2 Background 4

2.1 Normal Mapping . 4

2.2 Parallax and Self-occlusion . 5

2.3 Intersection Refinement . 11

2.4 Cone Mapping . 14

2.5 Distance Fields . 17

2.6 Shadowing and Ambient Occlusion . 18

2.7 Curved Surfaces and Silhouettes . 19

2.8 Other Acceleration Structures . 20

2.9 Screen-space techniques . 20

2.10 Summary . 21

i

3 Cone Normal Stepping 22

3.1 Cone Normal . 22

3.2 Distance field approximation . 24

3.3 Intersection . 25

3.4 Multiple cones . 26

4 Experiments 28

4.1 Experimental Setup . 28

4.2 Heightmap only methods . 30

4.2.1 Linear search . 30

4.2.2 Binary search . 30

4.2.3 Interval search . 31

4.3 Accelerated methods . 38

4.3.1 Cone Step Mapping . 38

4.3.2 Quad Cone Step Mapping . 39

4.3.3 Relaxed Cone Stepping . 39

4.3.4 Cone Normal Stepping . 42

4.3.5 Multiple Cone Normal Stepping 44

4.4 Shadows . 48

4.5 Ambient occlusion . 50

5 Conclusions 52

5.1 Summary of Conclusions . 52

5.1.1 Related work . 52

5.1.2 Contributions . 54

5.1.3 Results . 55

5.2 Future Work . 57

Bibliography 58

A Acronyms 63

Index 65

ii

List of Figures

2.1 Eye ray and expected intersect position 8

2.2 Parallax mapping . 9

2.3 Linear search . 10

2.4 Linear search followed by binary search 12

2.5 Linear search followed by interval search 13

2.6 Cone Step Mapping . 15

2.7 Ray-marching a distance field . 17

2.8 Soft shadowing . 19

3.1 Cone defined by a normal . 23

3.2 Calculating approximate distance from cone 24

3.3 Method 1: Multiple cones at different height 26

3.4 Method 2: Multiple piecewise cones . 27

4.1 Different scenes . 29

4.2 Linear search artifacts . 32

4.3 Binary search artifacts . 35

4.4 Binary vs interval search artifacts . 36

4.5 Comparison of binary search vs. interval mapping with 10 linear steps . . 37

4.6 CSM artifacts . 39

4.7 cone step mapping (CSM) with binary search across scenes 41

4.8 Comparison of all coarse search methods without refinement 45

4.9 Comparison of all coarse search methods with 3 binary search steps . . . 46

4.10 Comparison of all coarse search methods with 3 interval search steps . . . 47

iii

4.11 Comparison of linear vs. CSM with either no refinement search, binary

search or interval search . 47

4.12 Soft shadowing methods comparison . 49

4.13 Ambient occlusion approximation comparison 51

iv

List of Algorithms

1 Linear search . 11

2 Binary search . 12

3 Interval search . 14

4 Cone Step Mapping . 16

v

List of Tables

4.1 Performance of linear search . 31

4.2 Performance of binary search . 33

4.3 Linear only vs linear + binary search . 33

4.4 Performance of interval search . 34

4.5 Binary vs interval search for refinement search with 10 linear steps 34

4.6 Performance of CSM . 40

4.7 Error of linear search vs Cone Step Mapping 40

4.8 Cone Step Mapping vs Quad Cone Step Mapping 41

4.9 Cone Step Mapping vs Quad Cone Step Mapping vs Relaxed Cone Step-

ping, all with 5 binary search steps . 42

4.10 Relaxed Cone Stepping, refined search comparison 42

4.11 Performance of Cone Normal Stepping with 5 binary search steps 43

4.12 Performance of Relaxed Cone Normal Stepping with 5 binary search steps 43

4.13 Performance of Multiple Cone Normal Stepping with 5 binary search steps 44

4.14 Performance of shadow linear search . 48

4.15 Performance of ambient occlusion approximations 50

vi

Chapter 1

Introduction

Most modern real-time rendering engines use polygons to represent objects in 3D space

because of their flexibility and speed at which polygons can be rendered on hardware.

The fidelity of an object can be increased by increasing the amount of polygons that are

used to represent the object to capture finer and finer details. But more polygons slow

down the rendering process and require more data to be stored and processed.

Texture mapping and normal mapping [2] are ways to increase the apparent detail of

polygons. These techniques reduce the amount of polygons required to achieve the same

amount of perceived detail. Texture mapping simulates color changing across a polygon

and normal mapping simulates the surface changing its normal across a polygon. Parallax

mapping [14] was introduced to simulate parallax within a polygon. These techniques

progressively bring the effect closer to having real geometery. This apparent geometry

increases realism without actually adding more real geometry.

Parallax mapping offsets the position in the texture from where color and normal

information is fetched from to simulate parallax of the apparent geometry. Enhancements

to the technique also simulate effects, such as occlusion and shadowing within a polygon

[21] [28].

1

Chapter 1. Introduction 2

1.1 Motivation

Three dimensional distance fields provide very good approximations for effects such as

ambient occlusion and soft shadows [30], but their requirement of a 3D texture makes

them very expensive with regards to storage, memory and memory bandwidth.

Enhanced versions of parallax mapping, such as Steep Parallax Mapping [28], can

still be slow, and thus methods of accelerating the effect were introduced, such as cone

step mapping (CSM) [8]. CSM uses only a 2D texture to speed up tracing, but lacks

some of the nice properties of distance fields which allows them to approximate certain

effects, such as ambient occlusion (AO) and soft shadows [37].

This dissertation examines a technique to modify CSM and other algorithms based

on it, to allow for the approximation of a distance field from a height map and the

acceleration structure used by CSM. This technique allows the use of the approximate

distance field to render effects such as AO and soft shadows bridging the gap between

CSM and distance fields and without requiring a distance field to be stored.

1.2 Objectives

The goal of the dissertation is to explore the performance of different methods of ren-

dering the parallax, occlusion, shadowing and AO effects, as well as evaluating the new

technique to determine if it is viable and what advantages and disadvantages it has.

1.3 Contributions

This dissertation proposes cone normal stepping (CNS) and the variant relaxed cone

normal stepping (RCNS), which are modified versions of CSM and relaxed cone step-

ping (RCS), respectively [8][29]. These techniques improve on their original versions

by removing the limit on cone angles, and allowing conservative approximations of the

distance field to be used. Removing the limit on cone angles allows the method to

potentially skip faster through space.

Chapter 1. Introduction 3

1.4 Dissertation Outline

The dissertation is divided into the following chapters:

• Chapter 2 focuses on the existing methods to simulate parallax and other effects.

The chapter starts with the history of parallax mapping, the various methods

introduced and what the methods contributed to the field. The methods that are

used in the rest of the dissertation are then covered in detail.

• Chapter 3 describes the new methods which are extensions of CSM in detail.

• Chapter 4 compares the various methods that were covered in detail to determine

the performance and visual characteristics of the methods.

• Chapter 5 provides a summary of the findings with regards to the performance

of both the existing and new methods.

The index may be used as a quick guide to find the methods and other techniques

discussed, and can be found on page 65. Acronyms used in this dissertation can be found

in Appendix A.

Chapter 2

Background

This chapter provides background information that is required for the remainder of the

dissertation.

Section 2.1 covers related work with regards to normal mapping. Section 2.2 goes

into detail about some of the first methods to try to achieve apparent geometry including

how the methods work. Section 2.3 explains how refinement to the intersection point

can be done after an intersection is found. Cone Mapping is one of the main methods

for accelerating intersection finding and what the new proposed methods are based on.

Section 2.4 covers Cone Mapping in detail. Section 2.5 explores Distance fields and some

of the reasons they are useful above other acceleration methods.

Shadowing and Ambient Occlusion is explained in Section 2.6. Section 2.7 covers

Curved Surfaces and Silhouettes. In Section 2.8 some other acceleration methods that

were not previosuly covered are shown.

Section 2.9 shows how similar techniques in screen-space effects could be used. Sec-

tion 2.10 covers related work comparing some of the methods mentioned in this chapter.

2.1 Normal Mapping

In 1978 James Blinn presented [2] an algorithm to achieve the impression of much more

detailed geometry without any increase in the amount of polygons. This algorithm is

more commonly called normal mapping but is also known as bump-mapping. Polygons

4

Chapter 2. Background 5

usually have only one normal vector per vertex that is interpolated across the polygon

or a single normal for the whole polygon. Normal mapping allows mapping normals to

the surface of the polygon in the same way as colors are mapped onto the surface with

texture mapping. The normals can then change direction much more frequently across

the surface of the polygon, allowing lighting to be calculated as if the polygon is uneven

and not flat.

Normal mapping significantly increases the apparent complexity of the geometry, but

lacks certain characteristics, such as self-occlusion, self-shadowing and parallax. When

the viewer moves the geometry it does not seem to behave like real geometry, which

is affected by depth and the viewer’s viewpoint. The apparent geometry within the

polygon still seems to behave like a flat polygon even though the lighting behaves as if

the geometry was real. Therefore, this technique only works very well when the apparent

geometry is very shallow or the viewer is very far away from the object.

It is cheap to use and only requires an extra normal map and the tangent (and

optionally the bitangent) to be passed per vertex. Each pixel to be shaded reads from

the normal map a normal that is then transformed into the space of the triangle using

the given tangent and bitangent. This new normal is then used instead of the normal of

the triangle itself for all lighting calculations.

2.2 Parallax and Self-occlusion

Parallax is the effect of geometry moving at different rates at different distances to the

viewer when the viewer moves. Parallax is a hint to the human eye about how far away

different parts of the geometry are. Self-occlusion includes the effect of geometry hiding

or revealing other geometry of the same primitive when the viewer moves. These aspects

are by definition dependent on the viewer’s relative position to the geometry.

In 2000 Oliveira et al [25] explained how to warp textures to simulate geometric

complexity and occlusion. Their method warped the texture before applying normal

texture-mapping using 1D warping functions and was implemented on the central pro-

cessing unit (CPU) and therefore performance was lacking.

Most methods before 2001 relied on processing textures on the CPU, but with the

Chapter 2. Background 6

introduction of pixel shaders in commercial hardware more work could be shifted to the

graphics processing unit (GPU) [13][14].

Kaneko et al [14] introduced Parallax Mapping which used a simple texture offset

that was calculated completely on the GPU. The method is extremely fast and is very

close to pure texture mapping. However, since the calculation is only an approximation

there is a lot of distortion in the resultant image if the viewing angle is close to grazing

or the heightmap does not have smooth transitions. The viewing angle is grazing if the

viewing direction is perpendicular to the normal of the polygon.

In 2002 the Relief Texture Mapping method was partially implemented on the GPU

and unlike the Parallax Mapping of Keneko et al [14], the method was relatively accurate.

Instead of pre-warping the texture on the CPU, only the offsets were generated on

the CPU and the GPU did the warping [13]. One advantage of this approach when

compared to the original Relief Texture Mapping method is that only one offset map has

to be generated by the CPU and the GPU can use the offset map to transform multiple

textures, including a normal map. Combined with normal mapping, this method allows

self-occlusion and parallax, as well as relief shading. Reflection mapping of the apparent

geometry is also possible by way of sampling an environment cube map. Even though

this method is implemented in hardware, it was not yet much faster than the software

method executed on the hardware of the time.

Welsh [40] improved on the Parallax Mapping of Keneko et al [14]. The original

offset calculation introduced a lot of distortion at grazing angles, because of its depth

approximation. Welsh [40] mitigated this by adding a term that flattens the apparent

geometry at grazing angles. His approach addressed the distortion at grazing angles at

the expense of parallax and also reduced the amount of calculations that were required

to calculate the effect in the process.

Policarpo et al [28], McGuire et al [23] and Brawley et al [3] introduced ray-tracing

for calculating the intersection point instead of the offset calculation of Welsh [40]. The

method by McGuire et al [23] uses only a linear search on a mip-mapped height texture

and normal smoothing step to reduce the step artifacts produced by the linear stepping.

The method by Policarpo et al [28] introduced the usage of a fixed or dynamic (dependent

on hardware) number of linear steps followed by a binary search of the height-map. In

Chapter 2. Background 7

addition, a method of representing full 3D objects using dual-depth relief textures was

proposed. This method captures a depth value from the reverse side of the polygon so

that the profile of the object can be captured as well.

Methods like ‘Relief Texture Mapping’ [25] were implemented on the CPU which

made the methods unusably slow for real-time use in complex scenes. Methods that are

implemented on the CPU are limited by the bandwidth between them and the GPU

and CPUs are often busy with other tasks as well. GPUs are also better suited to these

types methods. As such we are only considering the GPU-based methods for the rest

of this dissertation. It is also assumed that all the primitives are triangles. The rest of

the methods can all be represented by some form of ray-casting. These methods were

usually implemented in the fragment shader, but some of the original versions could be

implemented using the fixed-functionality of the GPUs of the time.

For each fragment of the triangle to be rendered, an eye ray is calculated in the

texture space of the triangle. The space is represented by the 2D UV coordinates of the

texture, as well as a third coordinate between 0 and 1 representing the depth into the

triangle. This will be referred to as the local triangle space. The depth coordinate can

assign any value between 0 and 1 as the surface of the triangle itself. The ray is then

traced into the primitive to determine where it intersects with the apparent geometry.

This intersection is then used to look up the attributes of the material required to shade

the fragment, usually including a diffuse and a normal map. The intersection Tn is

determined by calculating the t value in the following equation:

pn = po + td (2.1)

where po is the point where the eye ray enters the local triangle space, pn is the

intersection point and d is the direction of the eye ray. The x and y cordinates of po are

the original UV coordinates and are also represented by To. The x and y coordinates of

pn are the final UV coordinates and are represented by tn.

Nearly all the methods require a height map that represents the height of the apparent

geometry in the local triangle space. The x and y coordinates are in the UV space of

the triangle. The height value is in the space of the depth coordinate and represents

the height of the apparent geometry at that point in the triangle. The value, which is

represented by h, is usually transformed so that it is zero at the surface of the triangle

Chapter 2. Background 8

and scaled to change the height of the apparent geometry relative to the normal. This

is done using the equation:

hsb = sh+ b (2.2)

where h is the height value from the height map and s and b are the scale and bias

respectively. The result hsb is used when intersecting with the ray.

p0

d

pn

tn

Figure 2.1: The eye ray and the expected intersect position.

Given the ray, defined by po and d, the intersection point on the heightmap must be

calculated, as seen in Figure 2.1. The methods to calculate the intersection point can

be split into two categories, namely those that only use the height map and those that

require generating a separate acceleration structure.

The simplest method is that of parallax mapping [14]. It provides a reasonable

approximation of parallax, but can cause much distortion depending on the viewing

angle and the characteristics of the height map. The method fetches the height value for

the point where the ray enters the triangle and assumes that the apparent geometry is

a plane parallel to the triangle at the fetched height. The ray intersects with the plane,

Chapter 2. Background 9

p0

d

pn

tn

hsb

Figure 2.2: Parallax mapping.

returning a new UV coordinate. The value of t is calculated according to the following

equation:

t =
hsb
dz

(2.3)

where hsb is defined in Equation 2.2 and d is the direction of the eye ray and the subscript

indicates the component of the vector. For example, dz indicates a scalar equal to the z

component of the vector d.

Equation 2.3 and Equation 2.1 together produce the following equation:

pn = po +
hsb
dz

d (2.4)

Equation 2.4 with the definition of tn and to, produces:

tn = to +
hsb
dz

dx,y (2.5)

where dx,y represents a vector of two components consisting of the x and the y compo-

nents of d.

Chapter 2. Background 10

If the resultant UV coordinate is outside of the triangle’s space, the fragment can be

discarded if it was not meant to wrap.

Parallax mapping works well enough with smooth heightmaps with no drastic changes

in height. If the viewer looks at the triangle at increasingly grazing angles the method

causes lots of distortion. This was somewhat fixed by Welsh [40] by applying an offset

limit. The method was still somewhat expensive at the time so the limit was implemented

by removing the division by dz in Equation 2.5 so that it becomes:

tn = to + hsbdx,y (2.6)

This causes the parallax effect to be faded out at increasingly grazing angles, avoiding

most of the distortion and reducing the effect.

The linear search, defined in Algorithm 1 and visualized in Figure 2.3, finds the

intersection by taking linearSteps equally sized steps and stopping when the ray dips

below the surface. The step size, stepSize, is calculated so that the ray will reach the

lowest possible height after all linearSteps have been taken.

p0

pn

tn

Figure 2.3: Linear search.

Chapter 2. Background 11

Algorithm 1 Linear search.
p← po

t← 0

stepSize← 1.0÷ rd.z ÷ linearSteps
for i← 1 to linearSteps do

h← getHeight(pxy)

if h ≥ pz then

return p

else

t← t+ stepSize

p← po + td

end if

end for

2.3 Intersection Refinement

Most methods use one method for finding a rough intersection point and then use another

method for refining the intersection point, called the coarse search and refining search

respectively from now on.

The method by Policarpo et al [28] uses full ray-casting to find the intersection point.

It starts by using linear search as the coarse search and then binary search for the refining

search. The binary search method, defined in Algorithm 2 and visualized in Figure 2.4,

refines the intersection point by using the classic binary search algorithm. The algorithm

starts by initializing t to the value found by the coarse search (linear search in most cases)

and then taking half a step back. The algorithm then either goes forward or backwards a

quarter step, depending on whether that point is above or below the surface respectively.

This process is repeated, each time taking half the step size of the previous iteration.

Each step on average reduces the error by half.

Binary search is a more efficient algorithm for finding the intersection point, but

it cannot be used on its own as it can miss features even with an infinite amount of

refinement steps. The linear search ensures that features, that are at least as thick as

the step size, are not missed.

Chapter 2. Background 12

pn−1

pn

p0

Iteration 2
Iteration 1

Figure 2.4: Linear search followed by binary search.

Algorithm 2 Binary search.
s← stepSize÷ 2

t← linearT − s
p← po + d · t
for i← 1 to binarySteps do

h← getHeight(p.xy)

if h ≥ p.z then

s← −s÷ 2

else

s← s÷ 2

end if

t← t+ s

p← po + d · t
end for

Chapter 2. Background 13

Risser et al [31] introduced a technique called interval mapping. Normally the inter-

section to the height field would be found with linear search and then refined using binary

search. Interval mapping uses the last two heights sampled from the linear search to do

a piece-wise approximation of the height field resulting in faster convergence and less

noticable artifacts due to C0 continuity. A function has C0 continuity if it is continuous

or does not suddenly change in value without going through in between values.

pn

pn−1

p0

Figure 2.5: Linear search followed by interval search.

Tatarchuk et al [37] proposed an improved height-map intersection approach, level of

detail (LOD) techniques, as well as soft-shadowing and a dynamic sampling rate. The

proposed intersection method is very similar to interval mapping.

Risser et al [31] introduced a more efficient algorithm for the refining search by

approximating the height map as a piece-wise linear function. This approach decreases

the amount of iterations required to achieve the same result as binary search and the

algorithm mostly achieves C0 continuity of the calculated intersections which decreases

the obviousness of the distortion. This search is referred to as Interval search, defined in

Algorithm 3 and visualized in Figure 2.5. This method requires the t value before and

Chapter 2. Background 14

Algorithm 3 Interval search.

p1 ← po + d · t1
p2 ← po + d · t2
h1 ← getHeight(p1.xy)

h2 ← getHeight(p2.xy)

for i← 1 to binarySteps do

f ← h1−p1.z
(p2.z−p1.z)−(h2−h1)

tint ← f(t2 − t1) + t1

pint ← po + tintd

hint ← getHeight(pint.xy)

if hint ≥ pint.z then

p1 ← pint

t1 ← tint

h1 ← hint

else

p2 ← pint

t2 ← tint

h2 ← hint

end if

end for

after the intersection is found by the coarse search, defined by t1 and t2 respectively.

2.4 Cone Mapping

CSM [8] provided a technique that improved on the performance of the ray tracing, by

precomputing a texture that can be used to skip through empty space but that would

not skip intersections. However the number of steps must be limited, because it may

never quite reach the intersection point, which leads to some distortion. CSM also has

the problem of requiring the generation of the cone data that cannot be done in real-time

and therefore is not suitable for dynamic surfaces such as water. In the game Simcity

(2013), CSM was used for all building facades [32].

Chapter 2. Background 15

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 2.6: Cone Step Mapping.

CSM [8] is a coarse search method that requires an acceleration structure. Each

height value in the heightmap has a corresponding cone ratio r that together define a

cone positioned with its point p on top of the heightmap. The cone c is defined as:

cz =
‖cxy − pxy‖

r
+ pz (2.7)

The ‘cone map’ stores
√
r to increase precision of smaller values as they are usually

stored in an 8-bit format.

The search, defined in Algorithm 4 and visualized in Figure 2.6, is performed by

intersecting the ray with the cone given at the current position. This process is repeated

until either the maximum amount of steps have been taken or the current position is

close enough.

RCS [29] improved on CSM by further reducing the average number of iterations

required to find an intersection. RCS achieved this by allowing the precomputed cone

map to intersect with the height field, i.e. the cones can be much wider for skipping

space quickly. Techniques such as binary search can then be applied, as a point below

Chapter 2. Background 16

Algorithm 4 Cone Step Mapping.
p← po

t← 0

for i← 1 to coneSteps do

h← getHeight(pxy)

if h ≥ pz then

return p

else

r ← getConeRatio(pxy)
2

iz ←
√

1− rd.z2

s← p.z−h
iz
r
−rd.z

t← t+ s

p← po + d · t
end if

end for

and above the heightmap can be found, which allows for a much more robust way of

calculating intersections. Quad cone step mapping (QCSM) [29] was also introduced,

which generates a cone map for 4 major directions instead of only the one cone map.

This enables faster space skipping, but requires more storage, memory and bandwidth.

The results show that the RCS method is superior to CSM.

Anistropic cone mapping (ACM) [5] improves on the CSM method by generating a

cone map for more than one direction and is very similar to QCSM. However, ACM does

allow the amount of directions to be chosen. Lee. et al [17] proposed a method where for

each pixel of the heightmap a cone is projected down and the lowest and highest point

within the cone are stored. The data is then used to limit the search to this range when

tracing. The algorithm is very dependent on the angle chosen for the cone and artifacts

can occur if the traced ray is outside the cone.

In 1996 Paglieroni et al [27] introduced the height distributional distance transform

(HDDT). HDDT is a generalization of CSM, where the free-space skipping volumes are

only cone-like. A bounding curve is defined and then swept around the cone apex. These

shapes are cone-like in that their shape is defined by a circle starting with a radius of

Chapter 2. Background 17

zero around an axis and increasing in size as it is swept along that axis in one direction.

The bounding curve defines th e radius of the circle as it is swept along the axis. If the

bounding curve is linear and not piece-wise, then it is a cone and thus identical to CSM.

HDDT was only, however, implemented on a CPU, where as CSM is a GPU technique.

2.5 Distance Fields

(a) Iteration 1 (b) Iteration 2

Figure 2.7: Ray-marching a distance field.

Donnelly [7] used a 3D volume texture that contains a distance field describing the

geometry. The distance field is ray-casted in the pixel shader, and is used to accelerate the

ray when it is far away from geometry. It has several advantages over other methods,

including having nearly no artifacts and it can represent geometry not supported by

height-maps. Unfortunately, the 3D volume texture requires a lot of video memory,

limiting the technique to only a few objects at a time.

Figure 2.7 shows how a distance field is ray-marched. Each iteration the current

ray position is looked up in the distance field. The resultant value in the distance field

indicates the distance to the closest point on the surface, thus the ray can safely move

that distance forward in the direction of d. The process is then repeated until a certain

number of steps or until the returned distance is considered to be close enough.

Chapter 2. Background 18

2.6 Shadowing and Ambient Occlusion

Shadows are a very important part of realistic graphics. Normal mapping as described in

Section 2.1 does not take into account any shadowing caused by the apparent geometery

of the surface itself.

In 1988 a technique called Horizon mapping [21] was introduced, which allowed shad-

owing of bump-mapped surfaces. The technique is likened to recording at what time each

part of the landscape gets shadowed as the sun sets. Unfortunately this requires record-

ing the information for multiple directions as the light can come from any direction.

In 2000 [34] this technique was implemented on a GPU to improve speed. The horizon

mapping technique was extended to take into account surface curvature when computing

shadows using the horizon mapping technique [26].

Kautz et al [15] introduced a new technique for shadowing of bump maps, called

an ellipse shadow map. For each pixel of the bump map many ray tests are performed

to determine which part of the hemisphere around a pixel has blockers. The resultant

data is then fitted with an ellipse stored in a separate map. At run time the light

direction is compared with the ellipse to determine if that pixel is shadowed. A soft

shadowing method was also introduced. Later the same technique was extended with

indirect lighting [10].

Before graphics cards were fast enough to do ray-casting methods such as Horizon

Mapping were used [21][34]. However, nowadays ray-casting is the main shadowing

method used in parallax maps.

The same methods that are used for the coarse search of occlusion can be used for

shadowing. The refinement search is not needed as it is unnecessary to know where the

intersection point is, only that there is one.

Soft-shadowing is the term used to refer to the techniques that try to emulate the

fact that shadows do not have a hard transition but have a region in between called

the penumbra which is where the light is partially occluded. The effect can be seen in

Figure 2.8 [11]. Soft-shadowing can be approximated using techniques discussed in [37]

for height-maps or in [30] for distance fields. Both approaches are very cheap in terms of

computing power as they do not do any extra texture fetches and consist of only a few

more instructions per pixel. The soft-shadowing technique of Tatarchuk et al [37] traces

Chapter 2. Background 19

(a) Hard shadow (b) Soft shadow

Figure 2.8: Soft shadowing.

a ray from the intersection point to the light source to find occluders, but also calculates

the amount of occlusion by tracking how far the ray travelled into the occluders on the

heightmap.

Other effects, such as ambient occlusion, can be calculated for height maps [18],

as well as distance fields [9]. Distributed ray-tracing techniques [6] can be used to

calculate shadowing and ambient occlusion more accurately, but are a lot more expensive

to compute.

2.7 Curved Surfaces and Silhouettes

Jeschke et al [12] proposed several techniques to enable relief mapping on curved surfaces.

Shell mapping allows smooth mapping of the apparent detail across a surface, even when

the surface is curved. Curved shell mapping further enhances the technique to account

for curvature within a polygon. Kharlamov et al [16] introduced a method referred to as

silhouette clipping to render the silhouette of objects as an extension to relief mapping.

This method is based on the original silhouette clipping method introduced by Sander

et al, originally developed to render smooth silhouettes for non-parallax mapped objects

[33].

The Crytek 3 game engine used parallax occlusion mapping (POM) for ground details

and Silhouette POM for trees [35]. Chen et al [4] introduced a silhouette rendering

method that does not require the use of prisms by continuously bending the ray at

Chapter 2. Background 20

each step while finding an intersection. Luo et al [19] introduce dual-space ray casting to

allow accurate parallax mapping on curved surfaces and an analytical model for spherical

surfaces. An approach that uses multiple layers of relief mapping at different scales, as

well as texture-space ambient occlusion, was proposed in [18]. The approach increases

the amount of detail that can be represented by the relief maps, without increasing the

storage requirements too much.

2.8 Other Acceleration Structures

Tevs et al [38] proposed maximum mipmaps, another approach for accelerating the ray

traversal. The maximum mipmaps allow the ray to skip through the space above the

heightmap, descending to a more detailed level when necessary. The method also uses a

ray for bilinear patch intersection on the lowest level without any further binary/interval

search and therefore has negligible artifacts.

Ali et al [1] introduced a few methods specially suited to rendering facades of build-

ings. The first method uses boxes instead of spheres or cones for the acceleration struc-

ture. The second method compresses this new acceleration structure and allows rendering

directly from the compressed version.

2.9 Screen-space techniques

Techniques very similar to relief mapping can also be used in screen-space where the

depth buffer of the scene is the heightmap. Screen-space techniques are used to simulate

arbitrary reflections, shadowing and global illumination effects [20][22][39][41][42]. In

2013 Michal Valient [39] summarized their use of screen-space reflections in their tech-

nology demo ‘Kill Zone: Shadow Fall’. In 2014 McGuire et al [22] introduced an efficient

method of performing screen-space tracing by using the 3D Digital Differential Analyzer

(DDA) algorithm instead of linear search, as is typically using by relief mapping.

Wronski [41][42] discussed some of the disadvantages of screen-space reflections. One

of the biggest disadvantages is the lack of information, as scenes are not well represented

by a single height map. However, the technique can be made to work decently nonethe-

Chapter 2. Background 21

less. Mara et al [20] used depth-peeling techniques to extract more information from the

rendered scene to improve the quality of screen-space ray tracing.

2.10 Summary

Comparisons of all of the mentioned methods can be found in other papers as well.

Ohrn et al [24] summarized some of the techniques used to add more apparent detail

to surfaces, including normal mapping, parallax mapping and displacement mapping.

Szirmay-Kalos et al [36] covered a large percentage of the methods mentioned including

displacement mapping using vertex shaders.

This chapter explored most of the methods related to parallax mapping, including

CSM which the new proposed methods are based on. The new proposed methods, CNS

and RCNS, will be explained in the next chapter.

Chapter 3

Cone Normal Stepping

This chapter introduces the new methods and the enhancements to existing methods

that approximates a distance field and remove the cone angle limitation from the original

CSM.

Section 3.1 introduces a new way of representing the cone map in CSM [8], which

allows easy calculation of an approximate distance to nearby geometry as defined in

Section 3.2. The new representation does require a new intersection equation, which is

presented in Section 3.3.

3.1 Cone Normal

The original CSM [8] and distance fields for relief mapping [7] are actually not that dif-

ferent. Both methods give a conservative distance to step before intersecting the surface,

but CSM takes advantage of the fact that the surface is a heightmap. Distance fields

represent the closest distance to the surface as a sphere, while a cone step map repre-

sents the distance as a cone and only requires a single cone per point on the heightmap.

Figure 2.6 shows how a cone map is traversed and Figure 2.7 shows how a distance field

is traversed for comparison.

The original CSM method proposed storing a cone ratio that is equivalent to the

slope of the side of the cone, similar to the classic formula for a line, y = mx+ c, except

x is replaced by z, y is replaced by the distance along the x and y coordinates and m is

22

Chapter 3. Cone Normal Stepping 23

O

r

Q

L

P

n

Figure 3.1: Cone defined by a normal.

the cone ratio or r as can be seen in Equation 2.7. One problem with the original formula

of a line is that m approaches infinity as the line becomes more vertical or as the cone

becomes wider. The original method caps the value of r to 1. The cap can be increased

or decreased to trade precision (because the value is quantized) for the maximum angle

of the cone that is represented by the cone map.

It is proposed in this dissertation that instead of storing the cone ratio, to instead

store the normal of the cone sides. The cones are always pointing upwards in the z

direction and thus flatten the problem from a 3D problem with a cone to a 2D problem

with two lines by slicing along the plane created by the apex of the cone and the ray.

In Figure 3.1 it can be seen how the cone is defined. P is the apex of the cone that is

always at the same height as the heightmap at that point. r is the ray originating from

O and passing through Q, which is where the current query position is. L is the point

of intersection with the cone from Q in the direction of r and n is the ‘normal’ of the

line. n is normalized and perpendicular to the cone sides. As n is normalized it is only

necessary to store one component and regenerate the missing components if needed. nz

was chosen as the component to be stored to simplify calculations.

Chapter 3. Cone Normal Stepping 24

Q

P

d

θ L

h

Figure 3.2: Calculating approximate distance from cone.

3.2 Distance field approximation

Distance fields have several advantages in approximating effects like soft-shadowing and

ambient occlusion as they provide information about the nearby geometry. Using the

modified definition of cone mapping as defined in Section 3.1, a conservative approxima-

tion of the distance field can be calculated. The approximation tries to fit the largest

sphere centered at the current location in the cone. Equation 3.1 and Figure 3.2 show

how this can be calculated. d is the radius of the fitted circle and the approximate

distance to the closest geometry.

Chapter 3. Cone Normal Stepping 25

d = ‖PQ‖ cos θ

=
‖PQ‖‖LQ‖ cos θ

‖LQ‖

=
PQ · LQ

‖LQ‖
= PQ · n (n is LQ normalized)

= 〈0, h〉 · 〈nxy, nz〉

= hnz

(3.1)

The approximate distance can then be used with the distance field methods described

in Section 2.6 to approximate soft-shadowing and ambient occlusion effects.

3.3 Intersection

To calculate the intersection with the cone defined using its normal, a ray-plane inter-

section is calculated as indicated by Equation 3.2. The origin is the cone apex. p is

the current ray position relative to the cone apex, therefore p is of the form 〈0, 0, pz〉
as the current ray position is directly above the cone apex. A plane is defined by

ax + by + cz + d = 0, where for the cone 〈a, b, c〉 = n and d = 0 as the plane passes

through the origin. d is the ray direction and t is the size of the step for this iteration.

t =
−(p · n + d)

n · d

=
−(〈0, 0, pz〉 · 〈nx, ny, nz〉+ 0)

n · d
=
−pznz

n · d
=
−hnz

n · d

(3.2)

The approximate distance, d = hnz, as defined in Equation 3.1, is a byproduct of

calculating the intersection.

Chapter 3. Cone Normal Stepping 26

Figure 3.3: Method 1: Multiple cones at different height.

3.4 Multiple cones

Close to the edges of features in the heightmap the cone map produces very narrow

cones. Narrower cones lead to smaller steps in ray traversal, which usually result in

more iterations being required before the intersection is found. Deriving the distance

field from the cone, as discussed in Section 3.2, leads to drastically under-estimated

distance values in the upper area of the narrow cones.

The distance field created by a heightmap increases monotonically along the positive

z (‘up’) axis. This is due to the fact that given any other point on the heightmap, if the

current point is below the other point then the distance stays the same as the current

point moves ‘up’ until it is at the same height as the other point. Otherwise, when

the current point is above the other point, moving it up causes it to move away from

the other point, thus increasing distance. As the distance field increases monotonically,

cones are a good approximation for the distance field. Using multiple cones allow fitting

the field more accurately.

The first method, shown in Figure 3.3, defines multiple cones at different heights

above the heightmap. One cone is placed on the heightmap in the same way as in the

original CSM method. When calculating the intersection or approximating distance, the

Chapter 3. Cone Normal Stepping 27

Figure 3.4: Method 2: Multiple piecewise cones.

cone that will lead to the largest step or largest distance respectively is selected. This

method is relatively easy to implement, but can only properly approximate distance

fields where the derivative of the distance is increasing monotonically. This is due to the

fact that extra cones can only widen the area that the cone covers.

A second possible method, shown in Figure 3.4, uses piecewise cones, where only one

cone defines for a range of heights and each successive cone continues where the last cone

ended, but at a new angle. This method was not evaluated in this dissertation and is a

candidate for future work.

In this chapter the new methods were introduced in detail and how the methods can

allow for approximating a distance field. The next chapter investigates the performance

of the methods introduced in this chapter, as well as the existing methods discussed in

Chapter 2.

Chapter 4

Experiments

This chapter examines the performance of existing methods, as well as the methods

introduced in the previous chapter. Comparisons are made between the methods to

evaluate the differences in performance between these methods.

In Section 4.1 the setup used for the experiments are explained, as well as the cal-

culation of the metrics. Section 4.2 explores the results of methods that only use a

heightmap to find an intersection. Section 4.3 explores the results of methods that

require a separate acceleration structure, including the new (proposed) methods. Sec-

tion 4.4 and Section 4.5 look at the results from the shadowing and ambient occlusion

effects respectively, optionally using the cone map to approximate the effects.

4.1 Experimental Setup

The testing program is written in C++ and uses OpenGL 4.5 for rendering. The parallax

mapping methods are implemented as a fragment shader written in GLSL. The program

was executed on a Linux machine with a NVIDIA GTX 780 GPU and an Intel i5 3750K

CPU. The NVIDIA 384.98 driver was used for the GPU and GNU compiler collection

(GCC) 7.2.1 as the C++ compiler. The Linux kernel 4.13.11 was used.

The recorded frame times are averaged over 500 frames. The final mean squared

error (MSE) is calculated by capturing the rendered scene, where each pixel contains

the error for that pixel. The captured error values are squared and summed to produce

28

Chapter 4. Experiments 29

the final metric. The error per pixel is calculated by subtracting the intersection point’s

height from the height sampled from the height map at that point. The error metric is

not perfect as it does not take into account missed geometry but it still works relatively

well and it is easy to calculate.

(a) Lion (b) Self-shadow

(c) Stones (d) Shapes

(e) Collage (f) Rock Bump

Figure 4.1: Some of the different scenes that were tested.

Figure 4.1 contains the scenes that were used in the experiments. The scenes ‘Lion’,

‘Self-shadow’ and ‘Collage’ are from ‘Steep Parallax Mapping’ [23]. The ‘Shapes’ and

‘Rock Bump’ scenes are from ‘Interval Mapping’ [31]. The ‘Lion’ scene was used ex-

tensively for testing as it contains many different types of features, including smoother

Chapter 4. Experiments 30

stones, as well as sharp edges with large changes in height.

4.2 Heightmap only methods

The methods evaluated in this section only use a heightmap as input to find intersec-

tions. These methods do not require generating acceleration structures and therefore are

suitable for dynamic heightmaps which change often, sometimes even every frame.

Section 4.2.1 discusses the results of the linear search algorithm, Section 4.2.2 dis-

cusses the results of the binary search algorithm, and results of the interval search algo-

rithm are discussed in Section 4.2.3.

4.2.1 Linear search

Table 4.1 presents the mean-squared error and frame time of the linear search with in-

creasingly more steps. The linear search can terminate early, which affects performance,

thus the average steps is also shown.

Increasing the amount of linear steps improved the accuracy, but also drastically

increased the time taken to render the frame. Linear search has ‘step’ artifacts where

it is possible to see the boundaries between pixels where the step counts differed. The

calculated intersections have a C0 discontinuity between pixels of differing step counts.

Linear search can also miss small features causing the silhouette of the features to be

incorrect. As the total step count increased, these artifacts vanished, but, as shown in

Figure 4.2, even at 50 steps it was still possible to see visual artifacts.

4.2.2 Binary search

Table 4.2 shows that binary search drastically improved on the error metric for each extra

step. In Figure 4.3, the results of increasing the amount of steps is shown. Binary search

decreased visual artifacts as the MSE indicates, but did not improve the silhouette of

features. Binary search still had the same type of artifacts as produced by linear search,

but the amount of binary search steps required to minimize the ‘step’ artifacts were

considerably less.

Chapter 4. Experiments 31

Steps Average steps per pixel MSE Frame time (ms)

5 2.843 0.01956579 0.4313

10 6.099 0.00515373 0.5052

15 9.210 0.00242219 0.5751

20 12.224 0.00136451 0.6414

25 15.260 0.00086101 0.7095

30 18.302 0.00060373 0.7772

40 24.386 0.00033423 0.9068

50 30.359 0.00021447 1.0339

60 36.334 0.00014471 1.1582

75 45.322 0.00008993 1.3447

100 60.290 0.00004856 1.6483

150 90.171 0.00001962 2.2478

200 120.111 0.00000997 2.8662

Table 4.1: Performance of linear search

Table 4.3 compares linear search to linear search with binary search. If two steps of

binary search were used after linear search, the amount of linear steps could be lowered

to reach the same approximate error. Much less linear steps could be used with only 2

binary steps, therefore improving the frame time.

4.2.3 Interval search

Table 4.4 shows how the error metric improved for each extra step of interval search.

The first step of interval search already improved the error by a factor of 115 with 10

linear steps.

Table 4.5 compares binary search and interval search as a refinement search. Interval

search initially outperformed binary search, but when more refinement steps were taken

the two methods performed equally regarding error. However, interval search was slower.

Chapter 4. Experiments 32

(a) Linear only, 50 steps (b) Reference

Figure 4.2: Linear search artifacts. Left is linear search with 50 steps and right is the reference

(200 linear steps with 8 interval steps).

In Figure 4.4, the comparison between the artifacts of binary search versus interval

search can be seen. Binary search had ‘step’ artifacts that decreased in size with more

steps. Interval search had much less artifacts in smooth regions, but had some distortion

artifacts near to regions where the curvature of the heightmap was high.

In Graph 4.5, binary search and interval mapping are compared across different

scenes. Binary search approximately halved the error for each additional step as ex-

pected. Interval mapping reduced the error more than binary search, but the error

reduction depended heavily on the scene. Interval mapping did very well on smoother

scenes (like ‘Rock Bump’) or scenes with a lot of flat surfaces (like ‘Shadow’), and per-

formed the best for all scenes.

Chapter 4. Experiments 33

Linear steps Binary steps MSE Frame time (ms)

5 0 0.01956579 0.4271

5 1 0.00141109 0.4731

5 2 0.00038047 0.4946

5 3 0.00009538 0.5177

5 4 0.00002375 0.5369

5 5 0.00000604 0.5606

5 6 0.00000155 0.5760

10 0 0.00515373 0.5219

10 1 0.00037898 0.5489

10 2 0.00009498 0.5645

10 3 0.00002366 0.5890

10 4 0.00000601 0.6075

10 5 0.00000153 0.6312

10 6 0.00000042 0.6471

Table 4.2: Performance of binary search

Linear only Similar error with 2 binary steps

Linear

steps
MSE

Frame time

(ms)

Linear

steps
MSE

Frame time

(ms)

Frame time vs.

linear only (%)

25 0.00086101 0.7095 3 0.00099514 0.4591 64.7

30 0.00060373 0.7772 4 0.00059071 0.4776 61.5

40 0.00033423 0.9068 5 0.00038047 0.4910 54.1

50 0.00021447 1.0339 7 0.00018856 0.5209 50.4

60 0.00014471 1.1582 8 0.00014571 0.5359 46.3

75 0.00008993 1.3447 10 0.00009498 0.5629 41.9

100 0.00004856 1.6483 14 0.00004802 0.6179 37.5

Table 4.3: Linear only vs linear + binary search

Chapter 4. Experiments 34

Linear steps Interval steps MSE Frame time (ms)

5 0 0.01956579 0.4342

5 1 0.00032148 0.4922

5 2 0.00004102 0.5200

5 3 0.00001035 0.5446

5 4 0.00000384 0.5754

5 5 0.00000174 0.6019

5 6 0.00000096 0.6245

10 0 0.00515373 0.5051

10 1 0.00004616 0.5636

10 2 0.00000407 0.5903

10 3 0.00000090 0.6141

10 4 0.00000033 0.6446

10 5 0.00000015 0.6692

10 6 0.00000008 0.6942

Table 4.4: Performance of interval search

Binary Interval

Refine steps MSE
Frame

time (ms)
MSE

Frame

time (ms)

MSE

improvement

1 0.00037898 0.5477 0.00004616 0.5601 8.2x

2 0.00009498 0.5630 0.00000407 0.5851 23.3x

3 0.00002366 0.5867 0.00000090 0.6113 26.3x

4 0.00000601 0.6017 0.00000033 0.6409 18.2x

5 0.00000153 0.6287 0.00000015 0.6659 10.2x

6 0.00000042 0.6438 0.00000008 0.6908 5.3x

Table 4.5: Binary vs interval search for refinement search with 10 linear steps

Chapter 4. Experiments 35

(a) Linear search only (b) 1 binary step

(c) 2 binary steps (d) 3 binary steps

(e) 4 binary steps (f) 5 binary steps

Figure 4.3: Binary search artifacts. Binary search with 10 linear steps.

Chapter 4. Experiments 36

(a) 2 binary steps (b) 3 binary steps

(c) 2 interval steps (d) 3 interval steps

Figure 4.4: Binary vs interval search artifacts. Binary search vs interval search with 10 linear

steps.

Chapter 4. Experiments 37

0 1 2 3 4 5 6

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Iterations

E
rr

or
(M

S
E

)

Lion (Binary)
Lion (Interval)
Stones (Binary)
Stones (Interval)
Collage (Binary)
Collage (Interval)
Shadow (Binary)
Shadow (Interval)
Shapes (Binary)
Shapes (Interval)

RockBump (Binary)
RockBump (Interval)

Figure 4.5: Comparison of binary search vs. interval mapping with 10 linear steps.

Chapter 4. Experiments 38

4.3 Accelerated methods

The methods evaluated in this section have to generate an acceleration structure to speed

up the calculation of the intersection. Generating the acceleration structure usually

takes very long, and thus these methods are usually not suitable for scenarios where the

heightmap changes often.

Section 4.3.1 discusses the performance of the CSM method, Section 4.3.2 discusses

QCSM and Section 4.3.3 discusses RCS. The new methods introduced in this dissertation,

CNS and RCNS, are discussed in Section 4.3.4. Section 4.3.5 discusses the multiple cone

version of the CNS method, referred to as multiple cone normal stepping (MCNS).

4.3.1 Cone Step Mapping

In the original paper on CSM [8], the cone texture (where the cone ratio is stored) is

always sampled linearly, which is technically incorrect as the cone ratio is not linear.

This incorrect sampling caused artifacts on sharp features, shown in Figure 4.6, which

could be fixed by sampling the four texels around the point and taking the minimum cone

ratio. Sampling correctly unfortunately deteriorated performance. Adding a refinement

search after CSM also fixed the problem with less performance deterioration.

Table 4.6 shows that CSM quickly reached a point where increasing the amount of

steps had a minimal impact on the error. The average steps per pixel indicated that

most rays terminated very quickly. The addition of a refinement search, such as binary

or interval search, helped to reduce the error of the linear blending of the cone map.

Interval search did very well error-wise, but was a bit slower.

Graph 4.7 shows that CSM with 4 binary search steps performed very similar across

all the scenes, except for the ‘Shapes’ scene where CSM performed really well. The

‘Shapes’ scene was very well suited to CSM due to the large amount of flat surfaces and

gentle slopes.

Table 4.7 shows how CSM performed against linear search with regards to error.

CSM improved on linear search with very few steps. It was possible to use much less

steps with CSM to achieve the same level of distortion as linear search, thus improving

on performance.

Chapter 4. Experiments 39

(a) Linearly sampled (b) Sampling the minimum

Figure 4.6: CSM produces artifacts when sampling the cone map linearly instead of taking

the minimum. The red square highlights one of the locations with artifacts.

4.3.2 Quad Cone Step Mapping

Table 4.8 shows that QCSM had a very similar frame time to CSM, but had less error

when the amount of steps were low. Even though QCSM had less average steps per

pixel, it still performed the same, as the GPU needed to fetch four channel textures.

The four channel texture, one for each of the main directions, increased storage by a

factor of 4, thus the slight advantages might not be worth the extra storage, memory

and bandwidth used.

4.3.3 Relaxed Cone Stepping

RCS [29] requires a refine search, unlike CSM and QCSM. Thus 5 binary search steps

were also used with RCS.

Table 4.9 looks at the relative performance between the CSM, QCSM and RCS. RCS

Chapter 4. Experiments 40

CSM only 2 binary steps

Steps
Avg. steps

per pixel
MSE

Frame

time (ms)
MSE

Frame

time (ms)

5 2.02 0.00139619 0.5239 0.00113742 0.5504

10 4.01 0.00014891 0.5881 0.00010216 0.6106

15 4.88 0.00005420 0.6238 0.00002371 0.6596

20 5.28 0.00003606 0.6722 0.00000909 0.6959

25 5.49 0.00003003 0.7102 0.00000405 0.7292

30 5.60 0.00002793 0.7480 0.00000254 0.7683

40 5.71 0.00002668 0.8269 0.00000150 0.8334

50 5.76 0.00000109 0.8878 0.00000109 0.9005

Table 4.6: Performance of CSM

Max steps
Linear search

MSE

CSM

MSE
Relative MSE (%)

5 0.01956579 0.00129904 6.63933171

10 0.00515373 0.00017284 3.35367006

15 0.00242219 0.00008325 3.43677003

20 0.00136451 0.00006571 4.81547955

25 0.00086101 0.00005988 6.95455337

30 0.00060373 0.00005781 9.57522402

40 0.00033423 0.00005660 16.93372827

50 0.00021447 0.00005610 26.15615238

60 0.00014471 0.00005593 38.64743280

75 0.00008993 0.00005581 62.06360503

Table 4.7: Error of linear search vs Cone Step Mapping

tended to have the same or better error with a smaller frame time than any of the other

two methods when adding a refinement search. RCS performed especially well at lower

step counts and did not require a four channel texture like QCSM.

Chapter 4. Experiments 41

0 5 10 15 20 25 30

10−6

10−5

10−4

10−3

10−2

Iterations

E
rr

or
(M

S
E

)

Lion
Shadow
Stones
Shapes

Rock Bump

Figure 4.7: CSM with 4 binary search steps across different scenes.

CSM QCSM

Coarse steps
Avg.

Steps
MSE Frame time (ms)

Avg.

Steps
MSE Frame time (ms)

5 2.016 0.00129904 0.4659 2.230 0.00036170 0.4887

10 4.009 0.00017284 0.5348 3.485 0.00013606 0.5596

15 4.877 0.00008325 0.5810 3.905 0.00012041 0.6123

20 5.282 0.00006571 0.6217 4.062 0.00011698 0.6631

25 5.489 0.00005988 0.6637 4.131 0.00011598 0.7068

Table 4.8: Cone Step Mapping vs Quad Cone Step Mapping

RCS requires a refinement search as the error was quite high without any refinement

search, as can be seen in Table 4.10. Interval search as a refinement search did well

when there were only about 2 steps. At higher step counts, binary search at 6 steps

performed similar to interval search at 4 steps. Higher step counts of interval search did

not improve the error much in this test.

Chapter 4. Experiments 42

CSM QCSM RCS

Coarse

steps
MSE

Frame

time (ms)
MSE

Frame

time (ms)
MSE

Frame

time (ms)

5 0.00125975 0.6113 0.00025199 0.6190 0.00016891 0.5851

10 0.00011827 0.6587 0.00002229 0.6768 0.00002260 0.6214

15 0.00002809 0.6949 0.00000654 0.7206 0.00001142 0.6614

20 0.00001059 0.7456 0.00000310 0.7592 0.00000934 0.6901

25 0.00000476 0.7682 0.00000209 0.7999 0.00000863 0.7209

Table 4.9: Cone Step Mapping vs Quad Cone Step Mapping vs Relaxed Cone Stepping, all

with 5 binary search steps

Binary search Interval search

Coarse

steps

Refine

steps
MSE

Frame

time (ms)
MSE

Frame

time (ms)

10 0 0.00234359 0.5002

10 2 0.00053803 0.5628 0.00003801 0.5860

10 4 0.00004697 0.6024 0.00001146 0.6414

10 6 0.00001647 0.6421 0.00000974 0.6906

20 0 0.00233177 0.5809

20 2 0.00052409 0.6332 0.00002964 0.6532

20 4 0.00003358 0.6679 0.00000312 0.7016

20 6 0.00000327 0.7003 0.00000138 0.7463

Table 4.10: Relaxed Cone Stepping, refined search comparison

4.3.4 Cone Normal Stepping

CNS was defined in Chapter 3, and can also be combined with RCS to produce RCNS.

CNS and CSM are compared in Table 4.11 where CNS produced very similar results

to CSM, but CNS was a bit slower. The accuracy was lower for CNS, as it allowed cones

up to 180◦wide, whereas CSM only allowed for cones up to 90◦wide. This negatively

Chapter 4. Experiments 43

CSM CNS

Steps
Avg. steps

per pixel
MSE

Frame

time (ms)

Avg. steps

per pixel
MSE

Frame

time (ms)

5 2.016 0.00125975 0.5750 2.016 0.00126388 0.6023

8 3.423 0.00025695 0.6592 3.425 0.00025793 0.6535

10 4.009 0.00011827 0.6699 4.012 0.00011879 0.6783

15 4.878 0.00002809 0.6895 4.882 0.00002827 0.7219

20 5.282 0.00001059 0.7195 5.287 0.00001067 0.7618

30 5.603 0.00000268 0.7940 5.609 0.00000270 0.8416

Table 4.11: Performance of Cone Normal Stepping with 5 binary search steps

affected CNS, as the cones were rarely wider than 90◦.

RCNS, the relaxed cone version of CNS, fared much better against RCS, than what

CNS fared against CSM. Table 4.12 shows that both RCNS and RCS had similar per-

formance as the extra wide angles that RCNS supports can be utilized, which could

be seen in the slightly reduced average step count and lower error. The more complex

intersection test caused RCNS to be slightly slower, despite the lower average step count.

RCS RCNS

Steps
Avg. steps

per pixel
MSE

Frame

time (ms)

Avg. steps

per pixel
MSE

Frame

time (ms)

5 2.115 0.00016891 0.6051 2.115 0.00016902 0.5862

8 2.915 0.00004071 0.6378 2.916 0.00004059 0.6206

10 3.180 0.00002260 0.6358 3.181 0.00002247 0.6546

15 3.444 0.00001142 0.6512 3.445 0.00001144 0.6569

20 3.533 0.00000934 0.6735 3.534 0.00000934 0.7034

30 3.595 0.00000852 0.7723 3.596 0.00000852 0.7671

Table 4.12: Performance of Relaxed Cone Normal Stepping with 5 binary search steps

CNS and RCNS did not really have any advantage performance wise over CSM and

Chapter 4. Experiments 44

RCS respectively, but allowed for a more accurate approximation of the distance field,

which can be used for other effects.

4.3.5 Multiple Cone Normal Stepping

CNS MCNS

Steps
Avg. steps

per pixel
MSE

Frame

time (ms)

Avg. steps

per pixel
MSE

Frame

time (ms)

5 2.016 0.00126388 0.6088 2.043 0.00114881 0.6696

8 3.425 0.00025793 0.6599 3.395 0.00024533 0.6957

10 4.012 0.00011879 0.6847 3.965 0.00011471 0.7310

15 4.882 0.00002827 0.7302 4.817 0.00002777 0.7855

20 5.287 0.00001067 0.7691 5.214 0.00001051 0.8483

30 5.609 0.00000270 0.8494 5.530 0.00000267 0.9458

Table 4.13: Performance of Multiple Cone Normal Stepping with 5 binary search steps

Using multiple cones with Method 1 described in Section 3.4 is not worthwhile, as

shown in Table 4.13. Even though the average step per pixel was slightly lower, as the

ray can skip over the top parts of the heightmap faster, most time was spent closer to

the heightmap surface causing the gains to be minimal. The extra intersection test(s)

required outweighed any benefit from performing less steps. The error started out only

slightly better for MCNS, but as the amount of steps increased the difference in error

vanished. CNS was faster than MCNS with very similar error.

Graph 4.8 shows how each method performed without any refinement search. A few

step counts for each method are plotted such that the x-axis is time and the y-axis, with

a log-scale, is MSE. Each method was tested with 5 to 35 steps. A lower MSE for a

given frame time is considered better. Both this graph and the following graph used the

‘Lion’ scene.

CSM and CNS performed really well with CNS being slightly slower for the given

amount of error. QCSM performed better for very low step counts, but was quickly

Chapter 4. Experiments 45

0 0.2 0.4 0.6 0.8 1

10−4

10−3

10−2

Frame time (ms)

E
rr

or
(M

S
E

)

Linear
CSM
RCS
CNS

RCNS
QCSM

Figure 4.8: Comparison of all coarse search methods without refinement.

overtaken by CSM. RCS and RCNS did not perform very well and did not see any real

improvement with more steps due to the fact that they were meant to be used with a

refinement search. Linear performed really poor at low step counts, but caught up and

surpassed RCS at higher step counts. With no refinement search, CSM was the overall

winner at nearly every step count.

Graph 4.9 is the same comparison as Graph 4.8, but adds 3 binary search steps as

the refinement search. This graph shows that CSM, CNS and QCSM performed very

similar, but with much improved error. RCS and RCNS improved their error by an order

of magnitude. RCS and RCNS experienced a small drop in error at 10 steps, but did

not improve with more steps. Linear improved drastically with its error dropping by two

orders of magnitude. With 3 binary search steps of refinement, Linear search performed

the best.

Graph 4.10 shows how each method performed using 3 steps of interval mapping

instead. All methods had less error for any given step count. QCSM performed better

than both RCS and RCNS, while RCS and RCNS performed better than QCSM at lower

step counts. Linear search performed even better compared to all the other methods with

interval mapping as the refinement search and was the overall winner.

Chapter 4. Experiments 46

0 0.2 0.4 0.6 0.8 1
10−6

10−5

10−4

10−3

Frame time (ms)

E
rr

or
(M

S
E

)

Linear
CSM
RCS
CNS

RCNS
QCSM

Figure 4.9: Comparison of all coarse search methods with 3 binary search steps.

Graph 4.11 compared CSM with linear search, with either no refinement search,

binary search, or interval mapping. CSM with no refinement search performed well for

low frame times, but linear search with interval mapping performed the best.

Chapter 4. Experiments 47

0 0.2 0.4 0.6 0.8 1

10−7

10−6

10−5

10−4

10−3

Frame time (ms)

E
rr

or
(M

S
E

)

Linear
CSM
RCS
CNS

RCNS
QCSM

Figure 4.10: Comparison of all coarse search methods with 3 interval search steps.

0 0.2 0.4 0.6 0.8 1

10−7

10−6

10−5

10−4

10−3

Time (ms)

E
rr

or
(M

S
E

)

Linear - None
Linear - Binary
Linear - Interval

CSM - None
CSM - Binary
CSM - Interval

Figure 4.11: Comparison of linear vs. CSM with either no refinement search, binary search

or interval search.

Chapter 4. Experiments 48

4.4 Shadows

Three shadow methods were compared, namely hard shadows, height map soft shadows

and cone normal soft shadows. These methods all use linear search as their base. The

hard shadow method blocks all light if the ray hits the heightmap. Linear soft shadow

attenuates the light relative to how closely the ray travels to the height-map and is

described in Section 2.6 [37]. The cone normal soft shadow combines the distance ap-

proximation from the normal cone map introduced in Section 3.2 with a distance field

soft shadowing method [30].

Steps
Hard shadow

frame time (ms)

Heightmap soft shadow

Frame time (ms)

Cone normal soft shadow

Frame time (ms)

0 0.7281

10 0.9710 0.9736 1.0280

20 1.1722 1.1773 1.2876

30 1.3725 1.3812 1.5448

40 1.5789 1.5769 1.7934

50 1.7771 1.7775 2.0428

60 1.9774 1.9771 2.2938

Table 4.14: Performance of shadow linear search

Table 4.14 compares the various methods of shadowing using linear search. Shadow-

ing took a significant amount of the frame time as linear search was not very efficient

at finding intersections, as shown in Section 4.2.1. The heightmap soft shadow method

increased the frame time, and the cone normal soft shadow method increased it even

further as it required accessing the cone map texture.

In Figure 4.12 the results of the different methods are presented. The ambient light

was turned off to accentuate the shadowing. The soft shadowing methods helped to hide

artifacts caused by lower steps and were less harsh. The heightmap soft shadowing only

took into account the geometry below the ray, while the cone normal soft shadowing

used the cone map to take into account geometry in the area around the ray. This could

especially be seen near the top of the shadow cast by the pillars where the cone normal

Chapter 4. Experiments 49

(a) Hard shadow with 30 steps (b) Hard shadow with 70 steps

(c) Heightmap soft shadow with 30 steps (d) Heightmap soft shadow with 70 steps

(e) Cone normal soft shadow with 30 steps (f) Cone normal soft shadow with 70 steps

Figure 4.12: Soft shadowing methods comparison.

soft shadowing approximated the soft shadow in all directions, while the heightmap soft

shadowing only approximated the soft shadow in the direction of the light.

Chapter 4. Experiments 50

4.5 Ambient occlusion

AO approximates global illumination by attenuating the ambient term relative to the

amount of occlusion around the point to be shaded. AO can be approximated using

distance fields, as well as using the approximate distance field described in Section 3.2.

Calculating the AO from a cone map has several advantages. The AO can be baked into

the albedo texture or supplied separately, but the first approach is incorrect for direct

lighting, and the second approach requires extra texture memory. Generating the AO

term from the cone map allows for a separate AO term without extra textures.

Method
No ambient occlusion

frame time (ms)

With ambient occlusion

Frame time (ms)

CSM 0.8592 0.8604

CNS 0.8998 0.9022

Table 4.15: Performance of ambient occlusion approximations

Table 4.15 indicates that there was negligible impact to the frame time when adding

the approximate AO term. Unfortunately the approximation could only be used with

CSM and CNS, as the cones of RCS and RCNS did not allow generating good approx-

imations to the distance field. The results can be seen in Figure 4.13. Visually, the

AO generated by the distance field seemed to do a good job of approximating local AO,

darkening corners and crevices, as well as darkening in close proximity of larger features,

such as the pillars. The cone ratio from CSM worked very well as an approximate AO

term, and looked nearly identical to the cone normal of CNS, except for some extra

darkening.

The next chapter provides a summary of the whole dissertation and analyzes the

results obtained in this chapter.

Chapter 4. Experiments 51

(a) No ambient occlusion

(b) Using cone ratio, AO only (c) Using cone ratio, textured

(d) Using cone normal, AO only (e) Using cone normal, textured

Figure 4.13: Ambient occlusion approximation comparison.

Chapter 5

Conclusions

This chapter provides a summary, states the conclusions of the experiments and high-

lights further research that could be done.

Section 5.1 provides a summary of the whole dissertation and provides conclusions

based on the results of the previous chapter. Section 5.2 covers work that could still be

done in future to further the field.

5.1 Summary of Conclusions

This section summarizes the whole dissertation and is divided into Section 5.1.1 which

summarizes the related work, Section 5.1.2 where the newly introduced methods are

summarized, and Section 5.1.3 where all the results are combined and conclusions drawn.

5.1.1 Related work

Chapter 1 covered the motivation and objective for this dissertation. There is much

room for improvement in the field of parallax and relief mapping and opportunities for

adding to the techniques that were mentioned. The objective of this dissertation was to

not just compare the existing methods introduced by previous research, but to seek out

improvement on the status quo. Thus, this dissertation introduced new methods.

Methods introduced in previous related work were covered in Chapter 2, starting with

some of the first methods of increasing the apparent complexity of polygons without real

52

Chapter 5. Conclusions 53

geometry. Texture mapping was the first technique applied to polygons, allowing for

the variation of color across the surface of the polygon. This was followed by normal

mapping, which allowed for changing the normal across the polygon. Normal mapping

allowed more sophisticated lighting giving the impression of apparent geometry where

there was none. This technique was, however, only limited to lighting and thus only

smaller features could realistically be represented by normal mapping.

Early computers were limited by the amount of real polygon geometry they could

render in real-time. The first methods trying to simulate the appearance of more com-

plex geometry were developed. Initial methods warped the texture applied to polygons

depending on the location of the viewer to simulated parallax. This was implemented

on the central processing unit (CPU), as the graphics processing unit (GPU) hardware

of the time only provided fixed functionality, and was very slow.

Later GPU hardware introduced some programmability, allowing for some parts of

the warping to be done on the GPU. Instead of warping textures, the texture could

rather be sampled in a way that produced the same effect. This was the basis of the

Parallax Mapping method. Although this method was inaccurate and produced a lot

of distortion in certain cases, it could be completely implemented on the GPU and was

very fast to execute, because of its simplicity. Later improvements were made to the

method to reduce the distortion and increased the performance, but faded out the effect

at grazing angles.

Pixel and vertex shaders introduced by newer GPU hardware allowed for more com-

plex algorithms to be implemented on the GPU. Steep Parallax Mapping used ray casting

to determine the intersection point on the heightmap, allowing for a more accurate ef-

fect. This method uses an initial linear search to get a rough estimate of the intersection

point, followed by a binary search to refine the intersection point. Interval mapping was

then proposed as a replacement for binary search.

Cone step mapping (CSM) was proposed which uses a cone map as an accelera-

tion structure for calculating the intersection point. Quad cone step mapping (QCSM)

and anistropic cone mapping (ACM) are enhancements to CSM that define a cone per

direction to better fit the heightmap. Relaxed cone stepping (RCS) allows the cones

defined in CSM to penetrate the heightmap, allowing for faster traversal of the cone

Chapter 5. Conclusions 54

map. Although, this requires a refinement step after the initial traversal.

Shell mapping and Curved shell mapping allow curved relief mapped surfaces without

distortion.

Screen space reflection methods are very similar to relief mapping, and similar tech-

niques are used in both methods. One noteworthy new method uses the 3D Digital

Differential Analyzer (DDA) algorithm instead of linear search and a refinement search

to accurately find the intersection point.

Shadowing can be done for relief mapped surfaces as well. One of the original tech-

niques is horizon mapping, that was later extended to take surface curvature into account.

Some simple techniques, such as ellipse shadow map, were introduced for shadowing.

This technique was later extended to support soft shadowing and indirect lighting.

When using ray tracing for relief mapping, the same method can be used to calculate

shadowing. The shadow rays can also benefit from acceleration structures, but the

refinement search is not necessary.

Instead of using a heightmap to represent the apparent geometry of the polygon,

distance fields can be used. This has several advantages, including being able to represent

more complex geometry and allowing easy approximation of certain effects, such as soft

shadows and ambient occlusion.

Improvement to relief mapping techniques have slowed down, but more games and

game engines are starting to use these techniques.

5.1.2 Contributions

This dissertation introduced a few new techniques. These techniques bridge the gap

between CSM and distance fields. Cone normal stepping (CNS) replaces the represen-

tation of the cone maps in CSM from a gradient, to the normal of the cone sides. This

removes the limit on the cone angle that is represented by the cone map, and also al-

lows the calculation of a conservative estimate of the distance field. The latter approach

allows calculating the same approximations for soft shadows and ambient occlusion, as

for distance fields. This change is also applied to RCS to produce relaxed cone normal

stepping (RCNS).

Multiple cones are also explored, but unlike QCSM and ACM, the cones are stacked

Chapter 5. Conclusions 55

instead of defined for separate directions in a effort to reduce the amount of steps to

reach an intersection. Multiple cones also allow fitting the distance field more accurately,

producing a more accurate approximation of the distance field.

5.1.3 Results

Linear search is a very simple method of calculating the intersection point of a ray onto a

heightmap. Linear search steps through the heightmap along the ray at regular intervals,

checking the heightmap at each step to determine if the ray dipped below the heightmap.

Linear search on its own was not very efficient, since even very high step counts of linear

search produced clearly visible artifacts, but still required a lot of time to calculate.

Adding a refinement search after linear search was much more efficient. One such

refinement method is binary search. This method explored in Section 2.3. Even using

2 steps of binary search drastically reduced the amount of linear steps required to keep

the same error by nearly one order of magnitude. This lead to much better performance.

Interval search is another refinement search method explored in Section 2.3. Interval

search performed better than binary search with the equivalent amount of steps at lower

step counts. Interval search performed well with smooth surfaces, but binary search had

less artifacts in areas where the gradient changed quickly. Most textures, however, were

mostly smooth and the artifacts caused by interval search was not as bad as those of

binary search.

All these methods only require a heightmap to execute and thus work well on dynamic

heightmaps or heightmaps that change often. It is always recommended that linear search

be used in combination with a refinement search. Interval search worked very well with

smooth surfaces, but it is recommend to choose between binary search and interval search

depending on the heightmap properties.

Accelerated methods, such as CSM, require the generation of a separate acceleration

structure other than the heightmap. This means they are not well suited to dynamic

heightmaps but allow for much faster intersection calculations.

CSM required much less steps than linear search to achieve the same level of error,

and thus, was much faster than linear search. QCSM and ACM required less steps than

CSM to reach the same error level, but performed similarly and used more storage than

Chapter 5. Conclusions 56

CSM.

Cone maps are non-linear and must actually be sampled conservatively by taking the

minimum texel instead of interpolating the cone map texture. If this is not done then

sharp features will have artifacts. Sampling conservatively was slow and thus using a

refinement search step had better performance.

RCS was faster than both CSM and QCSM, but did not have the extra storage

requirements of QCSM. RCS requires a refinement search, but due to the non-linearity

problem of CSM it is recommended for CSM as well.

The new methods introduced in this dissertation are based on CSM. CNS is a modified

version of CSM. CNS performed slightly slower than CSM as the intersection test was

slightly more expensive, and accuracy of the cone angle was decreased. CNS, however,

allows the calculation of a conservative approximation of the distance field.

RCNS is a modification of the RCS method. RCNS and RCS performed nearly

identically. RCNS performed especially well at lower step counts where it had a lower

error than RCS. RCS and RCNS, unfortunately, could not be used to approximate the

distance field, as the cones did not represent the local geometry in a way that was

necessary for the calculation.

The best cone mapping method was either RCS or RCNS, the methods introduced in

this dissertation. Both outperformed the other cone mapping methods and RCNS had

a slight advantage at lower step counts.

Multiple cone normal stepping (MCNS) extends CNS so that there are multiple cones

per texel. Unlike QCSM and ACM, cones are stacked instead of defined for different

directions. Stacking the cones allows for larger steps to be taken, and allows for a better

approximation of the distance field. Unfortunately, MCNS was slower than using a single

cone due the larger steps not making up for the extra cone intersection test.

When comparing all the methods to each other, using a linear search with interval

mapping gave the best error for a given frame time, but as noted in Section 4.1, the error

metric is not perfect as it may not take into account missed geometry.

Adding shadows was slower than without them. Soft shadows only have a small per-

formance cost over and above hard shadows. CNS allowed for more accurate calculation

of soft shadows as it took into account the local geometry and not only the geometry

Chapter 5. Conclusions 57

under the shadow ray. The performance impact of using CNS for soft shadows was

significant, but produced nicer soft shadows.

Approximate soft shadows can easily be added to CSM with minimal performance

impact. Using the soft shadowing of CNS produced more accurate soft shadows, but

had a larger performance impact.

Ambient occlusion (AO) can be approximated using CNS and has a minimal impact

on performance. Even though the cone ratio of CSM cannot be used to derive a distance

field for calculation of AO, the similarity to the cone normal means that it performs

similar.

5.2 Future Work

Not all the techniques mentioned in Chapter 2 were investigated, such as maximum

mipmaps and tracing distance fields directly. These methods should be investigated to

determine their performance characteristics and viability. A different error metric that

takes missed geometry or perceived error into account might give a better indication of

which methods work the best.

CNS relies on a new intersection method that is slower than CSM. It might be possible

to optimize the intersection method further to make CNS a viable alternative to CSM.

Method 2 of the MCNS defined in Section 3.4 was also not evaulated. As the first

method did not perform that well, it was assumed that the second method will probably

also not perform very well. Method 2 does allow for selecting the correct cone to intersect

instead of trying all the cones, thus it may perform better than Method 1.

Screen space ray tracing might be able to use some of the accelerated techniques,

such as CSM to accelerate ray traversal, if the generation of the cone map can be either

made much faster or approximated.

Relief mapping is a bridge between rasterization techniques and ray tracing. It might

be possible to render larger sections of scenes on GPUs using ray tracing where rasteri-

zation struggles. One idea might be to render bodies of water using ray tracing only, ray

tracing all the geometry below the surface of the water, or rendering complex geometry

like grass with ray tracing.

Bibliography

[1] Saif Ali, Jieping Ye, Anshuman Razdan, and Peter Wonka. Compressed facade

displacement maps. In IEEE Transactions on Visualization and Computer Graphics,

volume 15, pages 262–273, mar 2009.

[2] James F. Blinn. Simulation of wrinkled surfaces. ACM SIGGRAPH Computer

Graphics, 12(3):286–292, aug 1978.

[3] Zoe Brawley and Natalya Tatarchuk. Parallax Occlusion Mapping: Self-Shadowing,

Perspective-Correct Bump Mapping Using Reverse Height Map Tracing. In W En-

gel, editor, ShaderX3: Advanced Rendering with DirectX and OpenGL, pages 135–

154. Charles River Media, 2005.

[4] Ying Chieh Chen and Chun Fa Chang. A prism-free method for silhouette rendering

in inverse displacement mapping. Computer Graphics Forum, 27(7):1929–1936, oct

2008.

[5] Yu-Jen Chen and Yung-Yu Chuang. Anisotropic Cone Mapping. Proceedings of

2009 APSIPA, 1:9–12, 2009.

[6] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In

ACM SIGGRAPH Computer Graphics, volume 18, pages 137–145, New York, New

York, USA, jul 1984. ACM Press.

[7] William Donnelly. Per-Pixel Displacement Mapping with Distance Functions. In

GPU Gems 2, chapter 8, pages 123–137. Pearson Education, Inc., 2005.

58

Bibliography 59

[8] J Dummer. Cone step mapping: An iterative ray-heightfield intersection algorithm.

Dostupno na http://www. lonesock. net/files/, 2006.

[9] Alex Evans. Fast Approximations for lighting of Dynamic Scenes. Advanced Real-

Time Rendering in 3D Graphics and Games SIGGRAPH 2006, pages 153 – 171,

2006.

[10] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter Seidel. Illuminat-

ing micro geometry based on precomputed visibility. In Proceedings of the 27th

annual conference on Computer graphics and interactive techniques - SIGGRAPH

’00, pages 455–464, New York, New York, USA, 2000. ACM Press.

[11] Inigo Quilez. Sphere - soft shadow, 2014.

[12] Stefan Jeschke, Stephan Mantler, Michael Wimmer, J. Kautz, and S. Pattanaik.

Interactive smooth and curved shell mapping. Rendering Techniques 2007, 6:351–

360, 2007.

[13] Takashi Kanai and Masahiro Fujita. Hardware-assisted relief texture mapping. Eu-

rographics 2002 Short paper presentations, 2:257–262, 2002.

[14] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Ya-

suyuki Yanagida, Taro Maeda, and Susumu Tachi. Detailed Shape Representation

with Parallax Mapping. In In Proceedings of the ICAT 2001, pages 205–208, 2001.

[15] Jan Kautz, Wolfgang Heidrich, and Katja Daubert Mpi. Bump Map Shadows for

OpenGL Rendering. 2000.

[16] Alexander Kharlamov, Iain Cantlay, and Yuri Stepanenko. Next-generation

speedtree rendering. In GPU Gems, volume 3, chapter 4, pages 69–92. Addison-

Wesley Professional, 2007.

[17] Lo Wei Lee, Shih Wei Tseng, and Wen Kai Tai. Improved relief texture mapping

using minmax texture. In Proceedings of the 5th International Conference on Image

and Graphics, ICIG 2009, pages 547–552. IEEE, sep 2010.

Bibliography 60

[18] Frederico A. Limberger, Victor C. Schetinger, and Manuel M. Oliveira. Meta-Relief

Texture Mapping with Dynamic Texture-Space Ambient Occlusion. In Brazilian

Symposium of Computer Graphic and Image Processing, volume 2015-Octob, pages

1–8, 2015.

[19] Jianxin Luo, Guyu Hu, and Guiqiang Ni. Dual-space ray casting for height field

rendering. Computer Animation and Virtual Worlds, 25(1):45–56, jan 2014.

[20] Michael Mara and Morgan Mcguire. Fast Global Illumination Approximations on

Deep G-Buffers. NVIDIA Technical Report NVR-2014-001, 2014.

[21] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces. The Visual

Computer, 4(2):109–117, mar 1988.

[22] Morgan Mcguire and Michael Mara. Efficient GPU Screen-Space Ray Tracing.

Journal of Computer Graphics Techniques, 3(4):73–85, 2014.

[23] Morgan Mcguire and Max Mcguire. Steep Parallax Mapping. I3D 2005 Poster,

pages 2005–2005, apr 2005.

[24] K Ohrn. Different Mapping Techniques for Realistic Surfaces. 2008.

[25] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture mapping.

In Proceedings of the 27th annual conference on Computer graphics and interactive

techniques - SIGGRAPH ’00, pages 359–368, New York, New York, USA, 2000.

ACM Press.

[26] Koichi Onoue, Nelson Max, and Tomoyuki Nishita. Real-time rendering of

bumpmap shadows taking account of surface curvature. In Proceedings - 2004 In-

ternational Conference on Cyberworlds, CW 2004, pages 312–318. IEEE, 2004.

[27] David W. Paglieroni and Sidney M. Petersen. Height distributional distance trans-

form methods for height field ray tracing. In ACM Transactions on Graphics, vol-

ume 13, pages 376–399. ACM, oct 1994.

Bibliography 61

[28] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief

mapping on arbitrary polygonal surfaces. In ACM SIGGRAPH 2005 Papers on

- SIGGRAPH ’05, volume 24, page 935, New York, New York, USA, 2005. ACM

Press.

[29] Fábio Fabio Policarpo and Manuel M. Oliveira. Relaxed cone stepping for relief

mapping. GPU Gems 3, 3(Dummer):409–428, 2007.

[30] Inigo Quilez. Free penumbra shadows for raymarching distance fields, 2010.

[31] Eric Risser, Musawir Shah, and Sumanta Pattanaik. Interval Mapping. University

of Central Florida Technical Report, 2005.

[32] Ryan Ingram. Building and Rendering SimCity (2013), 2013.

[33] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Snyder.

Silhouette clipping. In Proceedings of the 27th annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’00, pages 327–334, 2000.

[34] Peter-Pike J. Sloan and Michael F. Cohen. Interactive Horizon Mapping. In Bernard

Péroche and Holly Rushmeier, editors, Rendering Techniques ’00 (Proc. Eurograph-

ics Workshop on Rendering), pages 281–286. Springer Vienna, Vienna, 2000.

[35] Tiago Sousa, Wenzel Carsten, and Chris Raine. The Rendering Technologies of

Crytek 3. In Gdc, 2013.

[36] Laszlo Szirmay-Kalos and Tamas Umenhoffer. Displacement mapping on the GPU

state of the art. Computer Graphics Forum, 27(6):1567–1592, sep 2008.

[37] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approximate soft

shadows. In Proceedings of the 2006 symposium on Interactive 3D graphics and

games - SI3D ’06, volume 1, page 63, New York, New York, USA, 2006. ACM

Press.

[38] Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. Maximum mipmaps for fast, accurate,

and scalable dynamic height field rendering. Symposium on Interactive 3D Graphics

and Games, page 183, 2008.

Bibliography 62

[39] Michal Valient. Killzone: Shadow Fall Demo Postmortem. Sony Devstation, 2013.

[40] Terry Welsh. Parallax mapping with offset limiting: A per-pixel approximation of

uneven surfaces. Infiscape Corporation, pages 1–9, 2004.

[41] B Wronski. The future of screenspace reflections, 2014.

[42] Bart lomiej Wroński. Assassin’s Creed 4: Black Flag: Road to next-gen graphics.

Game Developers Conference, 2014.

Appendix A

Acronyms

ACM anistropic cone mapping. 15, 53, 54, 56

AO ambient occlusion. 2, 45, 46, 51, 57

CNS cone normal stepping. 2, 35, 39–41, 45, 46, 54, 56, 57

CPU central processing unit. 5–7, 17, 28, 53

CSM cone step mapping. iv, 2, 3, 13–15, 17, 22, 26, 34–42, 45, 46, 53–57

DDA Digital Differential Analyzer. 20, 54

GCC GNU compiler collection. 28

GPU graphics processing unit. 6, 7, 17, 18, 28, 37, 53

HDDT height distributional distance transform. 15, 17

LOD level of detail. 13

MCNS multiple cone normal stepping. 35, 41, 56, 57

MSE mean squared error. 28, 31, 41

POM parallax occlusion mapping. 19

63

Acronyms 64

QCSM quad cone step mapping. 14, 15, 34, 37, 38, 41, 42, 53, 54, 56

RCNS relaxed cone normal stepping. 2, 35, 39–42, 46, 54, 56

RCS relaxed cone stepping. 2, 14, 34, 38–42, 46, 53, 54, 56

Index

Ambient Occlusion, 18, 25, 50

Anistropic Cone Mapping, 16

Binary Search, 6, 11, 15, 30

Binary search, 55

Cone Normal Stepping, 42

Cone Step Mapping, 14, 15, 38, 54

Curved Shell Mapping, 19, 54

Distance Fields, 17, 18, 24, 54

Ellipse shadow map, 18

Height Distributional Distance Transform,

16

Horizon Mapping, 18, 54

Interval Mapping, 13, 31, 55

Interval search, see Interval Mapping

Linear search, 6, 10, 11, 30

Maximum Mipmaps, 20

Multiple Cone Normal Stepping, 44

Parallax Mapping, 6, 8, 53

Quad Cone Step Mapping, 16, 39

Relaxed Cone Stepping, 15, 39

Relief Texture Mapping, 5–7

Shadows, 18, 25, 48

Shell Mapping, 19, 54

Silhouette clipping, 19

Soft Shadowing, 13, 18

Steep Parallax Mapping, 6, 11, 53

65

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Dissertation Outline

	2 Background
	2.1 Normal Mapping
	2.2 Parallax and Self-occlusion
	2.3 Intersection Refinement
	2.4 Cone Mapping
	2.5 Distance Fields
	2.6 Shadowing and Ambient Occlusion
	2.7 Curved Surfaces and Silhouettes
	2.8 Other Acceleration Structures
	2.9 Screen-space techniques
	2.10 Summary

	3 Cone Normal Stepping
	3.1 Cone Normal
	3.2 Distance field approximation
	3.3 Intersection
	3.4 Multiple cones

	4 Experiments
	4.1 Experimental Setup
	4.2 Heightmap only methods
	4.2.1 Linear search
	4.2.2 Binary search
	4.2.3 Interval search

	4.3 Accelerated methods
	4.3.1 Cone Step Mapping
	4.3.2 Quad Cone Step Mapping
	4.3.3 Relaxed Cone Stepping
	4.3.4 Cone Normal Stepping
	4.3.5 Multiple Cone Normal Stepping

	4.4 Shadows
	4.5 Ambient occlusion

	5 Conclusions
	5.1 Summary of Conclusions
	5.1.1 Related work
	5.1.2 Contributions
	5.1.3 Results

	5.2 Future Work

	Bibliography
	A Acronyms
	Index

