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ABSTRACT

The Aedes aegypti mitogenome (Mt) sequences of field isolates from California and South Africa
revealed a deletion between position 14,522 and 14,659 of the Mt contig of the AaegL5 reference gen-
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ome. The length of the mitogenome of the California isolate was 16,659bp and had 99.0% similarity

with the AaeglL5 Mt contig. The South African isolate sequence was 16,600 bp long and had 97.9% simi-
larity with the reference. The region between 1496 and 1664 bp is similar to a nuclear pseudogene
that might be a copy of a portion of the mitochondrial genome.

Aedes aegypti (Linnaeus), also known as the yellow fever mos-
quito, vectors multiple human arboviral diseases that include
yellow fever, dengue fever, and Zika fever. This species origi-
nated in Africa (Nelson 1986; Mousson et al. 2005) but has
now spread around the globe (Gloria-Soria et al. 2014; Akiner
et al. 2016; Cornel et al. 2016). The fully-assembled genome
of A. aegypti (AaegL5) including mitogenome (Mt) became
available in 2017 (Matthews et al. 2017). Here we report two
complete mitogenome sequences of wild caught A. aegypti—
one from Clovis, California (36.813°N, 119.667°W), USA and
the other from the Kruger National Park, South Africa
(23.116°S, 31.430°E).

DNA extraction and library preparation were conducted
using the protocol described by Nieman et al. (2015) and
Yamasaki et al. (2016). The libraries were sequenced for
150 bp paired-end reads using a HiSeq 4000 instrument at
UC Davis. Raw sequencing reads were trimmed using
Trimmomatic version 0.36 (Bolger et al. 2014). Mt contigs
were assembled for each individual using NOVOPIasty version
2.6.7 (Dierckxsens et al. 2017). Resulting contigs from the two
mosquitoes contained a deletion of 138 bp in the 125 rRNA
region starting from position 14,522 of the Aaegl5Mt,
thereby resembling the state in other Culicidae (data not
shown). The length of the California isolate Mt (Genbank:
MH348176) was 16,659 bp and had 99.0% sequence similarity
with Aaegl5Mt. The South African isolate Mt (Genbank:
MH348177) was 16,600 bp and had 97.9% sequence similarity
with the reference. A phylogeny including other vector spe-
cies is shown in Figure 1. DNA samples are kept in Vector
Genetics Laboratory at UC Davis.
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Mitochondrial pseudogenes are known to be prevalent in
the A. aegypti nuclear genome (Hlaing et al. 2009), which
may influence mapping. To compare the mapping quality,
trimmed reads were mapped to references using BWA (Li
2013) with default settings. Mapping performance was com-
pared and inspected visually using IGV version 2.4.10.
Competitive mapping together with the AaegL5 nuclear gen-
ome resulted in lower coverage on the mitogenome (mean
853X) than noncompetitive mapping (mapping to mitoge-
nome only; mean 1,486X). This indicates that some mitochon-
drial reads were mapped to nuclear contigs rather than the
mitogenome during competitive mapping, potentially
increasing the bias in nuclear genome genotype calls. In non-
competitive mapping, a portion of COX1 between 1,496 and
1,703bp had 40% increase in coverage due to nuclear
pseudogene reads mapped to mitogenome. For nuclear gen-
ome analysis of A. aegypti, we recommend mapping the
sequences to the Mt first to filter out Mt reads and then use
the remaining unmapped reads to map to the
nuclear genome.

In the revised Mt sequence, the gap in mapping coverage
is removed. The gap was confirmed by mapping three data-
sets from the NCBI Sequence Read Archive onto Aaegl5
(SRR6063610, SRR6063610, SRR871497). Additionally, we con-
firmed the exact position of the deletion by perfect string
matching of 40-mers. Therefore, the revised versions of the
mitochondrial genome seem to represent a pattern broadly
displayed within A. aegypti. AaegL5 was sequenced from the
Liverpool strain, a colony strain for >80 years that might
show specific characteristics.
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Figure 1. Phylogenetic tree based on mitochondrial genome sequences of mosquito species. Genbank IDs used in this analysis are provided next to each species
name. Jukes—Cantor model was used to calculate pairwise genetic distances. Neighbor-Joining method was used to build this tree. Numbers at nodes indicates
bootstrap values out of 200 replicates. Anopheles gambiae was used as an outgroup.AQ1: Please confirm the corresponding author’s address and correct if it

is inaccurate.
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