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Abstract

We employ linear and nonlinear unit-root tests to examine the stationarity of five multi-century historical U.K. series of 
real output compiled by the Bank of England. Three series span 1270 to 2016 and two series span 1700 to 2016. These 
datasets represent the longest span of historical real output data available and, thus, provide the environment for which 
unit-root tests are most powerful. A key feature of our test is its simultaneous allowance for two types of nonlinearity: 
time-dependent (structural breaks) nonlinearity and state-dependent (asymmetric adjustment) nonlinearity. The key 
finding of the test, contrary to what other more popular nonlinear unit-root tests suggest, provides strong evidence that 
the main structure of the five series is a stationary process characterized by an asymmetric nonlinear adjustment and a 
permanent break affecting both the intercept and the trend. A major policy implication of this finding is fiscal and/or 
monetary stabilization policies have only temporary effects on the output levels of the United Kingdom.
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I. Introduction

In their seminal paper, Nelson and Plosser (1982)
claimed that U.S. real GDP contains a unit root, that
is, stochastic trend dominates its movements. This
finding has important macroeconomic implications,
as it proves inconsistent with the traditional view of
the business cycle. Most importantly, it suggests that
real factors such as technology shocks play an
important role in economic fluctuations, supporting
the hypotheses of the real business cycle theory
(Christopoulos 2006).

Prior to Nelson and Plosser (1982), the prevailing
view argued that real GDP exhibited a stationary
process around a deterministic trend (Barro, 1976;
Blanchard 1981; Kydland and Prescott 1980). Distinct
practical differences exist between trend-stationary
and unit-root processes. First, the deterministic
trend provides the optimal forecast for a trend-
stationary process, while the current value provides
the optimal forecast for a unit-root process. Second,
a finite zone bounds the MSE of a trend-stationary
forecast whereas the MSE of a unit-root forecast
grows linearly and, thus, becomes less precise the
longer the forecast horizon. Third, the effect of
a shock to a trend-stationary process will eventually

disappear, or put differently, a trend-stationary pro-
cess exhibits only a limited memory of its past beha-
viour, whereas the effect of a shock on a unit-root
process does not decay over time, implying
a permanent memory.

Almost four decades since Nelson and Plosser
(1982), the question of deterministic versus stochas-
tic trend in real GDP remains unresolved. Following
Nelson and Plosser (1982), a large body of empirical
work failed to reject the hypothesis of unit root for
real GNP, leading Stock and Watson (1999) to con-
clude that the unit-root econometric literature sup-
ports the contention of Nelson and Plosser (1982).
Empirical studies by Wasserfallen (1986), Perron
and Phillips (1987), Campbell and Mankiw (1987),
Evans (1989), Papell and Prodan (2004), Ben-David
and Papell (1995), Cheung and Chinn (1996), and
Murray and Nelson (2000), and so on, reach the
conclusion that U.S. real GDP is nonstationary.
That is, no evidence exists that the economy self-
corrects, in the sense that output never returns to its
previous trend.Walton (1988) reaches a similar con-
clusion for the United Kingdom. Moreover,
Kormendi and Meguire (1990), Cogley (1990),
Fleissig and Strauss (1999), and Rapach (2002)



provide international evidence supporting the null
of a unit root in real GDP for OECD economies.

These results, however, are far from conclusive.
Other papers since Stock and Watson (1999),
using several modifications and extensions, reject
the unit-root hypothesis. Ben-David, Lumsdaine,
and Papell (2003), Papell and Prodan (2004),
Vougas (2007), Beechey and Österholm (2008),
Cook (2008), and Shelley and Wallace (2011)
find empirical evidence to reject the unit-root
hypothesis in real GDP.

The power of the tests lies at the heart of the issue.
The power of the standard unit-root tests depends on
the specification of the alternative hypothesis.
Structural breaks and nonlinearities cause undersized
standard unit-root tests, resulting in a reduction of
statistical power (Habimana, Månsson, and Sjölander
2018). Perron (1989) first notes that stationary pro-
cesses with structural breaks are too often mistakenly
interpreted as unit-root processes. Perron (1989) sug-
gests that standard unit-root tests such as the stan-
dard ADF test probably cannot distinguish the
behaviour of a unit-root process from that of
a stationary process with structural breaks.
Kapetanios, Shin, and Snell (2003), in turn, maintain
that the standard unit-root tests suffer from a power
problem when applied to data characterized by
a nonlinear DGP.

A growing literature, starting with Enders and
Granger (1998), relaxes the assumption of linearity
implicit in the standard unit-root tests and develops
tests that can distinguish linear nonstationary pro-
cesses from nonlinear stationary processes. These
tests examine the unit-root hypothesis against the
alternative of a nonlinear stationary process. In this
context, the literature analyzes two sources of nonli-
nearity: state-dependent (regime-wise) nonlinearity
(i.e., nonlinearity in the speed of mean reversion)
and time-dependent (structural breaks) nonlinearity
(i.e., nonlinearity in the deterministic components).
Kapetanios, Shin, and Snell (2003) and Sollis (2009)
implement state-dependent nonlinear tests. The two
tests differ on the dynamics of the speed of adjustment
towards equilibrium. Kapetanios, Shin, and Snell
(2003) employ the exponential smooth transition
autoregressive (ESTAR) model while Sollis (2009)
employs the asymmetric exponential smooth transi-
tion autoregressive (AESTAR) model. Leybourne,
Newbold, and Vougas (1998), Omay (2015), and

Çorakcı, Emirmahmutoğlu, and Omay (2017)
develop nonlinear structural-break unit-root tests.
Leybourne, Newbold, and Vougas (1998) consider
a single permanent break; Omay (2015) considers
multiple smooth breaks; and Çorakcı,
Emirmahmutoğlu, and Omay (2017) consider
a single temporary break. Christopoulos and Leon-
Ledesma (2010), Omay and Yıldırım (2014), and
Omay, Emirmahmutoglu, andHasanov (2018) imple-
ment tests that incorporate both structural break(s)
and state-dependent nonlinearity simultaneously.
The Omay, Emirmahmutoglu, and Hasanov (2018)
test provides the most comprehensive nonlinear unit-
root test as it combines the time-dependent nonli-
nearity of the unit-root test of Leybourne, Newbold,
and Vougas (1998) with the state-dependent nonli-
nearity of the unit-root test of Sollis (2009). Thus,
while the Christopoulos and Leon-Ledesma (2010)
and Omay and Yıldırım (2014) tests impose
a symmetric (ESTAR) nonlinear adjustment, the
Omay, Emirmahmutoglu, and Hasanov (2018) test
allows for asymmetric (AESTAR) nonlinear adjust-
ment. The Omay, Emirmahmutoglu, and Hasanov
(2018) test considers two alternative specifications of
the trend function, the logistic transition function,
which models a single break, and the Fourier series
(Becker, Enders, and Lee 2004, 2006; Enders and Lee
2012; Rodrigues and Taylor 2012), which models
multiple breaks. In contrast, the Omay and Yıldırım
(2014) test can deal only with a single break, and the
Christopoulos and Leon-Ledesma (2010) test can deal
only with multiple breaks.

We employ the Omay, Emirmahmutoglu, and
Hasanov (2018) test, as well as a battery of other linear
and nonlinear tests, to investigate the stationarity
properties of five multi-century annual U.K. series
of real output compiled by the Bank of England
(Thomas and Dimsdale 2017). Three series span
1270 to 2016 and two series span 1700 to 2016.
These datasets represent the largest span of historical
real output data available and, thus, provide the envir-
onment for which unit-root tests are most powerful.

The main results of the Omay, Emirmahmutoglu,
and Hasanov (2018) tests are strong and powerful.
The tests reject the unit-root hypothesis in each of the
five historical U.K. real output series and provides
strong evidence that the main structure of the data
is stationary with a trend break and an asymmetric
nonlinear adjustment. Although we view the findings
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of the Omay, Emirmahmutoglu, and Hasanov (2018)
tests as our main results, for completeness, we also
consider several other linear and nonlinear unit-root
tests that are popular in the econometric literature.
Specifically, we execute a total of ten unit-root tests:
two standard linear unit-root tests (Dickey and Fuller
1979; Ng and Perron 2001), two nonlinear state-
dependent unit-root tests (Kapetanios, Shin, and
Snell 2003; Sollis 2009), three nonlinear time-
dependent tests (Leybourne, Newbold, and Vougas
1998; Çorakcı, Emirmahmutoğlu, and Omay 2017;
Omay 2015), and three ‘hybrid’ tests that combine
state-dependence and time-dependence tests
(Christopoulos and Leon-Ledesma 2010; Omay and
Yıldırım 2014; Omay, Emirmahmutoglu, and
Hasanov 2018). With the exception of Omay (2015),
which employs a fractional Fourier approach, the
other nonlinear tests nest in the Omay,
Emirmahmutoglu, and Hasanov (2018) tests.1

The rest of the paper is organized as follows.
Section 2 provides a brief outline of the two ver-
sions of Omay, Emirmahmutoglu, and Hasanov
(2018) unit-root test. Section 3 presents the find-
ings of the Omay, Emirmahmutoglu, and Hasanov
(2018) unit-root tests and the results of the nine
other tests. Section 4 conducts a series of linearity
tests developed by Luukkonen, Saikkonen, and
Terasvirta (1988) and Becker, Enders, and Lee
(2004) designed to identify which nonlinear unit-
root test is more consistent with the data. Section
5 comments and concludes.

II. The Omay, Emirmahmutoglu, and Hasanov
(2018) unit-root tests

The Omay, Emirmahmutoglu, and Hasanov
(2018) tests are the newest and most comprehen-
sive nonlinear unit-root tests. We offer the second
application of the tests. Omay, Emirmahmutoglu,
and Hasanov (2018) first applied the procedure to
test the purchasing power parity (PPP) hypothesis
using both the trade-weighted real effective

exchange rate (REER) (Bahmani-Oskooee, Kutan,
and Zhou 2007) and bilateral real exchange rates.
The key findings of the tests suggest that the PPP
holds in the majority of the countries in the sam-
ple, which details the importance of employing
highly complex models in the analysis and tests
of aggregate data. Omay, Emirmahmutoglu, and
Hasanov (2018) utilize the following equation for
modelling the deterministic and stochastic com-
ponents of an observed time series yt:

yt ¼ ϕ tð Þ þ ut; (1)

where ϕ tð Þ is the nonlinear deterministic trend
function and ut is the stochastic deviation from
the trend. Omay, Emirmahmutoglu, and Hasanov
(2018) consider two specifications of ϕ tð Þ. The
first specification combines the time-dependent
(time-varying) nonlinearity of Leybourne,
Newbold, and Vougas (1998) and the state-
dependent (regime-wise) nonlinearity of the
AESTAR model of Sollis (2009) and models one
permanent structural break. The break is modelled
with the logistic transition function following
Leybourne, Newbold, and Vougas (1998) under
three alternative models:

Model A : yt ¼ α1 þ α2St γ; τð Þ þ εt; (2a)

Model B : yt ¼ α1 þ β1t þ α2St γ; τð Þ þ εt; (2b)

Model C : yt ¼ α1 þ β1t þ α2St γ; τð Þ þ β2St γ; τð Þt
þ εt;

(2c)

where t = 1,2, . . ., T, εt is a zero mean process, and
St γ; τð Þ is the logistic transition function with
a sample size of T. That is,

St γ; τð Þ ¼ 1þ exp �γ t � τTð Þf g½ ��1: (3)

In this framework, a smooth transition process
between different regimes governs structural
change as in Leybourne, Newbold, and Vougas

1Other researchers independently propose slightly different versions of the Omay et al. (2014, 2018) tests. Two, in particular, warrant mention. First, Chen
and Xie (2015) develop the Leybourne et al. (1998) version of the AESTAR test and examine current account sustainability. Second, Ranjbar et al. (2018)
develop the Fourier version of the AESTAR test and reexamine real interest rate parity for 12 OECD countries. An important difference between our paper
and these two other papers relates to the critical-value problem. That is, Omay, et al. (2018) obtain convergent critical values (see Tables 1 and 2, Omay
et al. 2018), whereas Chen and Xie (2015) and Ranjbar et al. (2018) obtain divergent critical values (see Table 1, Chen and Xie, 2015, and Table 1, Ranjbar
et al. 2018). Unlike Chen and Xie (2015) and Ranjbar et al. (2018), we apply the Simplex method to compute critical values for the Leybourne et al. (1998)
type of detrending. Omay and Emirmahmutoğlu (2017) show that the Genetic and Simplex methods are the appropriate optimizing algorithms for the
Leybourne et al. (1998) type of unit-root testing.
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(1998), rather than an instantaneous structural
break as in Lumsdaine and Papell (1997) and Lee
and Strazicich (2003). This reflects the now pre-
vailing view in the current literature that the cycli-
cal behaviour of real GDP is best represented by
a nonlinear model rather than a linear model with
structural breaks (Beechey and Österholm 2008).
That is, real GDP movements between peaks and
troughs occur gradually and not instantaneously.
The model in Equations. (1)-(3) captures
a regime-switching model with two regimes asso-
ciated with the extreme values of the transition
function St γ; τð Þ ¼ 0 and St γ; τð Þ = 1, where the
transition from one regime to the other occurs
gradually. St γ; τð Þ is a continuous function, and
the parameters γ and τ determine the smoothness
or speed of transition and location between the
two regimes, respectively. Since the value of
St γ; τð Þ depends on the value of the parameter γ,
the transition between the two regimes occurs
slowly for small values of γ whereas the transition
between the regimes becomes almost instanta-
neous at time t ¼ τT for large values of γ. When
γ ¼ 0, then St γ; τð Þ ¼ 0:5 for all values of t.
Therefore, in Model A, yt is stationary around
a mean that changes from α1 to α1 þ α2:Model B
allows for a fixed slope term β1, whereas the inter-
cept term changes from α1 to α1 þ α2. Model
C allows, in addition to the similar changes in
the intercept, the slope changes from β1 to β1 þ
β2 at the same time. See, for further details,
Leybourne, Newbold, and Vougas (1998).

The second specification of the test utilizes the
Fourier series (Enders and Lee 2012; Omay 2015)
to model multiple smooth breaks:

ϕ tð Þ ¼ α0 þ δt þ
Xn

k¼1
aksin

2πkt
T

� �

þ
Xn

k¼1
bkcos

2πkt
T

� �
þ ut; (4)

where n≤T/2 represents the number of frequen-
cies, k is the selected frequency in the approxima-
tion process, and ai and bi are the measurements
for the amplitude and displacement of the sinu-
soidal components of the function. As stated in
Omay, Emirmahmutoglu, and Hasanov (2018),
the Fourier series with an appropriate lag order
in most cases can approximate any function with

unknown numbers of breaks of unknown forms.
Under the assumption of ai = bi ¼ 0 for all i, the
Fourier function becomes a linear model without
a structural break. As a result, rejecting the null of
ai = bi ¼ 0 implies a structural break in the series.
If Equation (4) allows for a structural break, the
minimum frequency component must equal at
least one.

To model the stochastic component, Omay,
Emirmahmutoglu, and Hasanov (2018) utilize
the asymmetric exponential smooth transition
autoregressive (AESTAR) model of Sollis (2009),
which captures the nonlinear asymmetric adjust-
ment process towards equilibrium. The AESTAR
model considers both a logistic function and an
exponential function as follows:

Δut ¼ Gt θ1; ut�1ð Þ Ft θ2; ut�1ð Þρ1 þ 1� Ft θ2; ut�1ð Þð Þρ2
� �

ut�1 þ �t; (5)

Gt θ1; ut�1ð Þ ¼ 1� exp �θ1 u2t�1

� �� �
; θ1 > 0 and

(6)

Ft θ2; ut�1ð Þ ¼ 1þ exp �θ2 ut�1ð Þð Þ½ ��1; θ2 > 0

(7)

where �t,iid 0; σ2ð Þ. Ft θ2; ut�1ð Þ is the logistic
transition function for two regimes, determined
by the positive and negative deviations from the
equilibrium of ut (i.e., the sign of disequilibrium).
Gt θ1; ut�1ð Þ is the U-shaped symmetric exponen-
tial transition function, defined over the range
from 0 to 1, determined by the small and large
deviations from the equilibrium in absolute terms.

The AESTAR function implies a globally sta-
tionary process, which requires θ1 > 0, ρ1 < 0, and
ρ2 < 0 as stated in Sollis (2009). If ρ1�ρ2, the
adjustment process captures not only sign but
also size adjustment to the equilibrium. On the
other hand, if ρ1 ¼ ρ2, the adjustment to the equi-
librium becomes a symmetric exponential smooth
transition autoregressive (ESTAR) process.

We can test the null hypothesis of a linear unit
root against the alternative hypothesis of a globally
stationary AESTAR process. The hypotheses are as
follows:

H0 : θ1 ¼ 0; (8)
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H1 : θ1 > 0: (9)

Failure to reject the null provides evidence of
a unit root. Testing the null hypothesis proves
problematic, since ρ1, ρ2, and θ2 are unidentified
nuisance parameters under the null. To overcome
this problem, Sollis (2009) applies a first-order
Taylor expansion and derives the following aux-
iliary equation:

Δut ¼ φ1u
3
t�1 þ φ2u

4
t�1 þ ωt: (10)

Under Equation (10), the null hypothesis in
Equation (8) becomes H0 : φ1 ¼ φ2 ¼ 0. Equation
(5) assumes a serially uncorrelated error term. To
allow for serial correlation, we augment the regres-
sion equation as follows:

Δut ¼ Gt θ1; ut�1ð Þ Ft θ2; ut�1ð Þρ1 þ 1� Ft θ2; ut�1ð Þð Þρ2
� �

ut�1 þ
Xp

j¼1
δjΔut�j þ �t; (11)

where �t,iid 0; σ2ð Þ. Therefore, we use the follow-
ing auxiliary regression to test the null hypoth-
esis H0 : φ1 ¼ φ2 ¼ 0:

Δut ¼ φ1u
3
t�1 þ φ2u

4
t�1 þ

Xp

j¼1
δjΔut�j þ #t

(12)

The testing procedure in Omay, Emirmahmutoglu,
and Hasanov (2018) consists of two steps (see, also,
Kapetanios, Shin, and Snell 2003; Leybourne,
Newbold, and Vougas 1998; Sollis 2009). First,
Omay, Emirmahmutoglu, and Hasanov (2018) esti-
mate (a) the Fourier model (by OLS) for the fre-
quency k over the range 1 � k � kmax and obtain
the optimal k that minimizes RSS through a grid
search over the interval 1 � k � kmax or (b) the
logistic model (by NLS). Second, using the residuals
from (a) or (b), Omay, Emirmahmutoglu, and
Hasanov (2018) estimate Equation (12) (by OLS),
and test the null hypothesis H0 : φ1 ¼ φ2 ¼ 0;
using a conventional F-test. The F-test statistic is
denoted as FLBAE (logistic transition function ver-
sion), or as FFSAE (Fourier function version). Omay,
Emirmahmutoglu, and Hasanov (2018) obtain the
critical values of FLBAE and FFSAE via stochastic simu-
lation and show that the tests possess satisfactory
size and power small-sample properties.

III. Empirical results

The dataset contains five multi-century annual U.
K. real output series that the Bank of England
recently compiled in the database A Millennium
of Macroeconomic Data maintained at https://
www.bankofengland.co.uk/statistics/research-data
sets. Three series span 1270 to 2016, and two
series span 1700 to 2016. We use Version 3.1 of
the database, updated to 2016. For detailed infor-
mation about the historical sources of the data, see
Thomas and Dimsdale (2017). The five data series
are defined as follows:

Series 1: Real U.K. GDP at market prices (1700-2016),
geographically-consistent estimate based on post-1922
borders, millions of British pounds, chained volume
measure, 2013 prices;

Series 2: Real U.K. GDP at factor cost (1700-2016),
geographically-consistent estimate based on post-1922
borders, millions of British pounds, chained volume
measure, 2013 prices;

Series 3: Real GDP of England at market prices (1270-
2016), millions of British pounds, chained volume
measure, 2013 prices;

Series 4: Real GDP of England at factor cost (1270-
2016), millions of British pounds, chained volume
measure, 2013 prices; and

Series 5: Composite estimate of English and (geogra-
phically-consistent) U.K. real GDP at factor cost
(1270-2016), 2013=100.

As a preliminary step, we first apply two linear unit-
root tests: the standard Augmented Dickey-Fuller
(ADF 1979) test (constant, and constant and linear
trend) and the four versions of the Ng and Perron
(2001) test (constant and linear trend). The Ng and
Perron (2001) procedure yields substantial power
gains over the standard unit-root test. Significant
modifications of existing unit-root tests improve
their power and size. The MZa and MZt tests modify
the Phillips (1987) and Phillips and Perron (1988) Za
and Zt tests, respectively; the MSB test relates to the
Bhargava (1986) R1 test; and the MPT test modifies
the Elliott, Rothenberg, and Stock (1996) point-
optimal test. Tables 1 and 2 report the results of
applying these tests. We choose the proper lag length
by the SIC criterion from a maximum of 12 lags. We
cannot reject the null hypothesis of a unit root for any
of the five series. Asmentioned above, linear unit-root
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tests can suffer from power problems in the presence
of nonlinearities in the data leading to a bias towards
the non-rejection of the null hypothesis.

We next consider the results of two tests that
allow for state-dependent nonlinearity. That is, the
tests allow for symmetric nonlinearity (Kapetanios,
Shin, and Snell 2003) and asymmetric nonlinearity
(Sollis 2009), but ignore the possibility of structural
breaks. Tables 3 and 4 tabulate the results, respec-
tively, of the Kapetanios, Shin, and Snell (2003) unit-
root tests of a symmetric ESTAR model and of the
Sollis tests of an asymmetric ESTAR (AESTAR)
model. The Kapetanios, Shin, and Snell (2003) test
rejects the null of a unit root in only one series
(Series 5), for the constant, and constant and trend
cases. Conversely, the Sollis (2009) unit-root test

rejects the null of unit root in four series (Series 2,
3, 4, and 5) in the constant case, and in three series
(Series 3, 4, and 5) in the constant and trend case.
This provides some evidence that asymmetric
adjustment proves an important characteristic of
state-dependent nonlinearity.

Then, we consider three time-dependent unit-root
tests designed to consider structural breaks. Table 5
presents the Leybourne, Newbold, and Vougas (1998)
unit-root test results. The test results show that allow-
ing for a permanent break causes a more frequent
rejection of the null hypothesis than the Omay (2015)
and Çorakcı, Emirmahmutoğlu, and Omay (2017)
tests presented in Tables 6 and 7. The Omay (2015)
test models multiple smooth structural breaks using
the fractional version of the Fourier function, while
the Çorakcı, Emirmahmutoğlu, and Omay (2017) test
models temporary structural breaks. The Omay
(2015) and Çorakcı, Emirmahmutoğlu, and Omay
(2017) tests do not reject the null in any of the output
series. In contrast, Model C of the Leybourne,
Newbold, and Vougas (1998) unit-root test rejects
the unit-root hypothesis in four of the five series
(Series 2, 3, 4, and 5). Weaker evidence of rejection
appears forModel A, which rejects the null in three of
the five series (Series 3, 4, and 5), while Model

Table 1. ADF unit-root test results.
Output Series Constant Constant and trend

Series 1 7.791 5.348
Series 2 7.293 4.676
Series 3 11.426 10.927
Series 4 12.197 11.713
Series 5 11.740 11.231
Test critical values:
1% −3.438 −3.420
5% −2.865 −2.910
10% −2.568 −2.620

*denotes 10% significance level; **denotes 5% significance level; ***
denotes 1% significance level.

Table 2. Ng and Perron (2001) unit-root test results.
Output Series MZa MZt MSB MPT

Series 1 2.891 1.957 0.677 136.294
Series 2 2.943 2.061 0.700 145.605
Series 3 −5.623 −1.099 0.195 15.221
Series 4 −6.181 −1.177 0.190 14.597
Series 5 −6.275 −1.196 0.191 14.498
Test critical values:
1% −23.800 −3.420 0.143 4.030
5% −17.300 −2.910 0.168 5.480
10% −14.200 −2.620 0.185 6.670

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

Table 3. Kapetanios, Shin, and Snell (2003) unit-root test 
results.
Output Series Constant Constant and trend

Series 1 −0.900 −1.513
Series 2 −0.747 −1.379
Series 3 −1.184 −1.758
Series 4 −0.764 −1.306
Series 5 −5.868*** −8.628***
Test critical values:
1% −3.480 −3.970
5% −2.930 −3.400
10% −2.660 −3.130

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

Table 4. Sollis (2009) unit-root test results.
Output series Constant Constant and trend

Series 1 1.638 2.412
Series 2 8.292*** 2.140
Series 3 29.473*** 20.859***
Series 4 25.062*** 15.647***
Series 5 17.421*** 50.774***
Test critical values:
1% 6.883 8.531
5% 4.954 6.463
10% 4.157 5.460

* denotes 10% significance level; **denotes 5% significance level; ***
denotes 1% significance level.

Table 5. Leybourne, Newbold, and Vougas (1998) unit-root test 
results.
Output Series Model A Model B Model C

Series 1 −3.023 −3.447 −3.447
Series 2 −3.186 −5.882*** −5.882***
Series 3 −6.699*** −0.579 −7.126***
Series 4 −7.320*** −0.543 −7.697***
Series 5 −7.130*** −0.451 −7.468***
Test critical values:
1% −4.882 −5.479 −5.560
5% −4.232 −4.771 −5.011
10% −3.909 −4.427 −4.697

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.
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B cannot reject the unit-root hypothesis in four of the
five series (Series 1, 3, 4, and 5). Given the historical
length of the data, and the fact that all five output
series, as expected, display a positive trend, we find
more appropriate to emphasize Model C, which
allows for breaks in both the intercept and the slope
of the trend. The findings from Model C provide
some evidence that the structure of the historical
series does not include a single temporary break or
multiple smooth breaks.

Finally, we report in Table 8–11 the results of the
three ‘hybrid’ tests, which consider simultaneously
the two types of nonlinearity: time dependence
(structural breaks) and state dependence (transi-
tional adjustment). Table 8 reports the
Christopoulos and Leon-Ledesma (2010) test results.
The test statistics for the constant, and constant and
trend cannot reject the null of a unit root for all five
series. This confirms that a model with multiple
smooth breaks and symmetric adjustment does not
adequately support the hypothesis of stationarity.
The critical values for the constant only test statistic
come fromChristopoulos and Leon-Ledesma (Table
2). The critical values for the constant and trend test

statistic are not available from Christopoulos and
Leon-Ledesma (2010) and are obtained by our
Monte Carlo simulation for T=500 and k = 1.2

Table 9 reports the Omay and Yıldırım (2014) test
results. The test employs the Leybourne, Newbold,
and Vougas (1998) structure but assumes symmetric
adjustment (ESTAR). The test statistics for Model
A reject the null of a unit root at the 1-per cent level
in Series 1, 2, 4, 5 and at the 5-per cent level in Series
3. The results of model B, on the other hand, indicate
failure to reject the null for all series. The test statis-
tics for Model C, in contrast, reject the null of unit
root at the 1-per cent level in all five series. The
results from Model C, which for the reasons men-
tioned above we find more suitable, provide strong
evidence that favours the presence of both a single
permanent break and nonlinear symmetric adjust-
ment for the five historical real output series.

Tables 10 and 11 report the results of the two
versions of the Omay, Emirmahmutoglu, and
Hasanov (2018) unit-root tests, namely the logistic
function version and the Fourier function version.
Table 10 reports the FLBAE of the logistic transition
function for Models A, B, and C. The test results of

Table 6. Omay (2015) unit-root test results.
Output Series Constant Constant and trend

Series 1 1.238 −1.912
Series 2 1.236 −1.945
Series 3 11.005 6.943
Series 4 11.365 7.985
Series 5 10.957 7.661
Test critical values:
1% −4.31 −4.94
5% −3.67 −4.35
10% −3.33 −4.05

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

Table 7. Çorakcı, Emirmahmutoğlu, and Omay (2017) unit-root 
test results.
Output Series Model A Model B Model C

Series 1 −1.006 −1.649 −1.687
Series 2 −0.932 −1.481 −2.056
Series 3 −0.164 −0.787 −0.876
Series 4 −0.010 −0.008 −0.698
Series 5 −1.504 −2.997 −1.954
Test critical values:
1% −5.017 −5.544 −5.797
5% −4.374 −4.900 −5.166
10% −4.051 −4.572 −4.844

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

Table 8. Christopoulos and Leon-Ledesma (2010) unit-root test 
results.
Output Series Constant Constant and trend

Series 1 3.560 −0.442
Series 2 3.712 −0.359
Series 3 6.693 4.045
Series 4 7.188 4.634
Series 5 7.113 6.322
Test critical values:
1% −4.41 −4.44
5% −3.86 −3.86
10% −3.54 −3.57

* denotes 10% significance level; ** denotes 5% significance level; ***
denotes 1% significance level.

Table 9. Omay and Yıldırım ( 2014) unit-root test results.
Output Series Model A Model B Model C

Series 1 −4.152** −3.865 −5.142***
Series 2 −4.506*** −3.701 −5.478***
Series 3 −5.051** −2.716 −5.174***
Series 4 −5.027*** −2.332 −5.120***
Series 5 −23.873*** −1.540 −26.669***
Test critical values:
1% −4.443 −4.777 −5.041
5% −3.821 −4.202 −4.411
10% −3.509 −3.889 −4.090

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

2We also computed the critical values for T = 2500. We report them for additional information. They are, respectively, −4.42, −3.86, and −3.56 for the 1%,
5%, and 10% significance level, respectively.
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single break version of the test are quite similar to
those in Model A and Model C of Omay and
Yıldırım (2014), confirming the relevance of the
single permanent structural break over the multiple
smooth breaks. We reiterate again that we deem
Model C the most appropriate. Table 11 reports
the FFSAE test statistic for the constant, and constant
and trend. We find that the logistic version of the
Omay, Emirmahmutoglu, and Hasanov (2018) unit-
root test is also preferred to the Fourier version,
which allows for the possibility of multiple smooth
breaks, since the logistic version rejects the null in all
five series compared to the rejection of only three
series in the Fourier function case.

Figures 1–5 present in panels (a) and (b) the
historical GDP series along with estimated nonlinear
trend functions and the corresponding detrended
data. Visual inspection of the series reveals the
importance of taking account of structural breaks
when analysing these historical series.

IV. Identification tests of the stochastic
structure of the data
In the previous section, we have determined the 
integration order of the five series of U.K. historical

real output by using various state-dependent and
time-dependent nonlinear tests. Three tests, in par-
ticular, namely Leybourne, Newbold, and Vougas
(1998), Omay and Yıldırım (2014), and Omay,
Emirmahmutoglu, and Hasanov (2018) identify the
data as stationary processes with different nonlinear
structures. Still, the identification of the stochastic
features of the data is scant, since in all tests the null
hypothesis is one of unit-root linearity. Unit-root
tests, however, do not identify which test is most
consistent with the data. To do that, we conduct in
this section a sequence of auxiliary identification
tests. Linearity testing is an integral part of nonlinear
modelling.

As all five series are I(0), we can use the linear-
ity test of Luukkonen, Saikkonen, and Terasvirta
(1988) and the Trig-test of Becker, Enders, and Lee
(2004) for identification of alternative nonlineari-
ties such as state-dependent nonlinearity and
time-dependent nonlinearity. We conduct the
identification of the true structure of the data
with a sequential procedure, which consists of
five stages as follows:

(1) Apply the unit-root tests. If the results indi-
cate that the data are stationary I(0), move
to Step 2. If the unit-root null is not
rejected, then accept the nonstationary
hypothesis and stop.

(2) Apply the linearity test of Luukkonen,
Saikkonen, and Terasvirta (1988) to deter-
mine whether the stationary data are state-
dependent or time-dependent (time-varying).

(3) If the stationary data are state-dependent,
determine whether the state-dependent non-
linearity is of the ESTAR or AESTAR type.

(4) If the stationary data are time-dependent,
determine whether the nonlinear trend is
logistic (LSTR), exponential (ESTR),
Fourier with integer frequency (IFFF),
or Fourier with fractional frequency
(FFFF).

(5) For the last step, check whether residual
nonlinearity (remaining nonlinearity after
de-trending the nonlinear trend) exists
after applying Step 4. For this purpose, we
use the Becker, Enders, and Lee (2004)
Trig-test and Luukkonen, Saikkonen, and
Terasvirta (1988) test.

Table 10. Omay, Emirmahmutoglu, and Hasanov (2018) unit-
root test results (logistic trend function version).
Output Series Model A Model B Model C

Series 1 10.720** 9.377* 18.759***
Series 2 12.230*** 9.651** 22.811***
Series 3 25.248*** 52.249*** 28.732***
Series 4 30.734*** 9.756** 34.318***
Series 5 386.214*** 42.540*** 433.129***
Test critical values:
1% 10.756 12.681 13.621
5% 8.110 9.642 10.617
10% 7.101 8.339 9.209

*denotes 10% significance level; **denotes 5% significance level;
***denotes 1% significance level.

Table 11. Omay, Emirmahmutoglu, and Hasanov (2018) unit-
root test results (Fourier trend function version).
Output Series Constant Constant and trend

Series 1 21.346*** 4.867
Series 2 21.805*** 4.726
Series 3 73.806*** 40.620***
Series 4 70.126*** 37.119***
Series 5 47.809*** 35.947***
Test critical values:
1% 8.68 10.61
5% 6.36 7.93
10% 5.31 6.75

* denotes 10% significance level; **denotes 5% significance level; ***
denotes 1% significance level.

8



Linearity tests against smooth transition auto-
regressive (STAR) models assume that the time
series under investigation is stationary. Since we
find that the assumption of stationarity is gener-
ally satisfied in the Leybourne, Newbold, and
Vougas (1998), Omay and Yıldırım (2014), and
Omay, Emirmahmutoglu, and Hasanov (2018)
tests, we proceed to stage 2 and apply the first
linearity test to determine whether the series exhi-
bit state- or time-dependent nonlinearity.

We apply the linearity tests of Luukkonen,
Saikkonen, and Terasvirta (1988) and consider

the class of two-regime STAR processes repre-
sented as

yt ¼ ϕ1 x1t þϕ2 x2t F st; γ; τð Þ þ ut (13)

for some transition function F st; γ; cð Þ, where St is
the transition variable, γ> 0 is the transition scale,
and τ is the threshold. Luukkonen, Saikkonen, and
Terasvirta (1988), and the vast majority of empiri-
cal research since then, consider the logistic and
exponential transition functions. Within this fra-
mework, the tests of linearity are complicated by
the presence of an unidentified nuisance
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Figure 1. Series 1: Real U.K. GDP at market prices (1700–2016), geographically consistent estimate based on post-1922 borders; 
millions of British pounds, chained volume measure, 2013 prices.
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parameter under the null hypothesis, since we can
test the hypothesis of linearity in two ways: as
a test that the parameters in the two regimes
equal each other, H0: ϕ1 = ϕ2 and as a test that
the scale parameter γ equals zero, H’

0: γ = 0. To
overcome this problem, Luukkonen, Saikkonen,
and Terasvirta (1988) replace the transition func-
tion with the appropriate Taylor approximation.

The linearity test obtained from the first-order
Taylor approximation results in the following aux-
iliary regression3

yt ¼ β0;0 þ β
0
0xt þ β1;0st þ β

0
1xtst þ et (14)

where the regression parameters β0,0, β
0
0, and β01

depend on the parameters ϕ1, ϕ2, γ and τ and et is
the disturbance term, which comprises the origi-
nal shocks, ut, as well as the error term arising
from the Taylor approximation. We can express
the null hypothesis of linearity as
H00

0 : β1;0 ¼ β01 ¼ 0, that is, the parameters asso-
ciated with the auxiliary regressors equal zero. We
test this null hypothesis by a standard variable
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Figure 2. Series 2: Real U.K. GDP at factor cost (1700–2016), geographically consistent estimate based on post-1922 borders; millions 
of British pounds, chained volume measure, 2013 prices.

3For further details, see Luukkonen, Saikkonen, and Terasvirta (1988).
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addition test in a straightforward manner. The test
statistic, denoted by LM1, is asymptotically dis-
tributed as χ2 with p+1 degrees of freedom, where
p is the dimension of the vector xt.

4 As noted by
Luukkonen, Saikkonen, and Terasvirta (1988), the
LM1 test statistic has no power in situations where
only the intercept differs across regimes.
Luukkonen, Saikkonen, and Terasvirta (1988) sug-
gest in this case the replacement of the transition
function F st; γ; cð Þ with a third-order Taylor
approximation. This results in the following aux-
iliary model:

yt ¼ β0;0 þ β
0
0xt þ β1;0st þ β

0
1xtst þ β2;0s

2
t þ β

0
2xts

2
t

þ β3;0s
3
t þ β

0
3xts

3
t þ et:

(15)

The null hypothesis now corresponds to

H
00
0 : β

0
i ¼ 0, i ¼ 1; 2; 3, which we can again test by

a standard LM-type test. Under the null hypothesis of
linearity, the test statistic, denoted by LM3, has an
asymptotic χ2 distribution with 3(p +1) degrees of
freedom. Since only the parameters corresponding
to s2t and s

3
t are functions of ϕ1 and ϕ2, we can obtain
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Figure 3. Series 3: Real GDP of England at market prices (1270–2016), millions of British pounds, chained volume measure, 2013 
prices.

4In Equation (13), we assume that the transition variable st is not one of the elements in xt . If this is not the case, we drop the term β1;0st from the auxiliary
regression.
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a parsimonious version of the LM3 statistic, denoted
as LM3E, by augmenting the auxiliarymodel (13) only
with regressors s2t and s3t . That is,

yt ¼ β0;0 þ β
0
0xt þ β

0
1xtst þ β2;0s

2
t þ β3;0s

3
t þ et

(16)

The resultant statistic is the LM3E statistic. As tran-
sition variable, st, we select yt�1. This is consistent
with the structure of the unit-root tests. Table 12

displays the LM3E version of the test for the five real
output series. The results indicate that time-
dependent nonlinearity (structural breaks) is the
dominant structure of the data in levels, although
the test also supports the state-dependent nonlinear-
ity for series 4 and 5 as well. Thus, this outcome can
explain why the Kapetanios, Shin, and Snell (2003)
test finds ESTAR stationarity for series 5 and the
Sollis (2009) test produces AESTAR stationarity
results for series 4 and 5.
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In stage 3, we consider the choice between the
ESTAR and LSTAR models and the ESTAR and
AESTAR models. To choose between the ESTAR
and LSTAR models, Terasvirta (1994) suggests
using a decision rule based on a sequence of tests in

Equation (15). Specifically, Terasvirta (1994) pro-
poses to test the following set of null hypotheses:

ðiÞ H03 : β4 ¼ 0:
ðiiÞ H02 : β2 ¼ 0jβ4 ¼ 0:
ðiiiÞ H03 : β1 ¼ 0jβ4 ¼ β2 ¼ 0:
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Figure 5. Series 5: Composite Estimate of English and (geographically consistent) U.K. real GDP at factor cost (1270–2016), 2013 = 

100.
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These hypotheses can be tested by ordinary
F tests, denoted as F3, F2, and F1, respectively.
The decision rule is as follows: If the p-value
corresponding to F2 is the smallest, then the
ESTAR model is selected, while in all other
cases, the LSTAR model is selected.

For the choice between the ESTAR and
AESTAR models, we use the following
extended auxiliary regression:

yt ¼ β0;0 þ β
0
0xt þ β1;0 st þβ

0
1; xt st þ β2;0s

2
t

þ β
0
2; xt s

2
t þ β3;0s

3
t þ β

0
3; xt s

3
t þ β4;0s

4
t

þ β
0
4; xt s

4
t þ et

(17)

together with the following set of null hypotheses:

ðiÞ H03 : β3 ¼ 0:
ðiiÞ H02 : β2 ¼ 0jβ3 ¼ 0:
ðiiiÞ H03 : β1 ¼ 0jβ2 ¼ β3 ¼ 0:

These hypotheses are again tested by ordinary
F tests, denoted as F4, F2, and F1, respectively. The
decision rule is as follows: If the p-value correspond-
ing to F2 is the smallest, then the ESTAR model is
selected, while in all other cases, the AESTAR model
is selected. Since we found in stage 2, however, that
the dominant structure is time-dependent nonlinear-
ity, we do not apply these tests and proceed to stage 4.

In this stage, we use the Becker, Enders, and Lee
(2004) Trig-test for determining which nonlinear
trend is consistent or more appropriate with the
data. The test is valid under the null of stationar-
ity. Becker, Enders, and Lee (2004) test the null
hypothesis of linearity against the alternative of
a nonlinear trend with given frequency k. Enders
and Lee (2012) use the following F-statistic:,

FðkÞ ¼ SSR0 � SSR1ðkÞð Þ=2
SSR1ðkÞ=ðT� qÞ

where SSR1ðkÞ denotes the sum of squared resi-
duals (SSR) when Fourier transforms enter into
the equation, q is the number of regressors, and
SSR0 denotes the SSR from the regression without
the trigonometric terms. By analogy, we can use
the following F-statistic for the smooth transition
type of nonlinear trends:

FðkÞ ¼ SSR0 � SSR1ðγ; τÞð Þ=2
SSR1ðγ; τÞ=ðT� qÞ

where SSR1ðγ; τÞ denotes the sum of squared resi-
duals (SSR) when smooth transition functions
enter into the equation.

We present the results of the Trig-test in Table 13
with the choice of the best fitting trend in bold type.
The Trig-test results suggest that the best fitting
nonlinear trend is Model C of Leybourne,
Newbold, and Vougas (1998). This is consistent
with the unit-root test results. Therefore, we can
safely claim that all real output series are character-
ized by breaks that are prevalent in the intercept
and trend. Thus, the Luukkonen, Saikkonen, and
Terasvirta (1988) linearity test and the Trig-test of
Becker, Enders, and Lee (2004) both support Model
C of Omay, Emirmahmutoglu, and Hasanov (2018)
and Omay and Yıldırım (2014) tests. Consequently,
in stage 5, we concentrate on which of the three
tests is more consistent with the data under
investigation.

That is, in this stage, we check which of Model
C of Leybourne, Newbold, and Vougas (1998),
Model C of Omay, Emirmahmutoglu, and
Hasanov (2018), or Model C of Omay and Yıldırım
(2014) is more consistent with the data. All three
tests successfully detect stationarity among the five
real output series. Recall that Leybourne, Newbold,
and Vougas (1998), Omay and Yıldırım (2014), and
Omay, Emirmahmutoglu, and Hasanov (2018) are
two-step tests. The first step removes the structural

Table 12. Linearity tests (level data).
State-Dependent Nonlinearity st ¼ yt�1 Time-Varying Nonlinearity st ¼ t Result

Output Series F-test Significance F-test Significance

Series 1 1.178 0.315 8.927 0.000 TV
Series 2 1.208 0.299 8.617 0.000 TV
Series 3 1.185 0.311 8.726 0.000 TV
Series 4 2.410 0.027 6.649 0.000 SD-TV
Series 5 2.624 0.016 6.669 0.000 SD-TV

Note: TV indicates time-varying or time-dependent nonlinearity, SD indicates state-dependent nonlinearity.
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break and the second step uses the linear ADF test
(Leybourne, Newbold, and Vougas 1998), the non-
linear Kapetanios, Shin, and Snell (2003) test (Omay
and Yıldırım 2014), or the nonlinear Sollis (2009)
test (Omay, Emirmahmutoglu, and Hasanov 2018).
Since in the first step, Omay and Yıldırım (2014) and
Omay, Emirmahmutoglu, and Hasanov (2018) use
the same Model C of Leybourne, Newbold, and
Vougas (1998), we apply the Luukkonen,
Saikkonen, and Terasvirta (1988) linearity test to
the residuals obtained from Model C of the
Leybourne, Newbold, and Vougas (1998) model.
The results appear in Table 14. The test can be
viewed as a linearity test of the residuals (or remain-
ing nonlinearity after de-trending the series with
nonlinear trend) and also this nonlinear trend can
be classified as nonlinear attractor which the

asymmetric mean adjustment occurs around this
nonlinear attractor; hence, we are determining this
nonlinearity in the residual terms.

As Table 14 shows, the Luukkonen, Saikkonen,
and Terasvirta (1988) test results on the residuals of
the Leybourne, Newbold, and Vougas (1998) unit-
root test do not support linearity. That is, the Model
C of Leybourne, Newbold, and Vougas (1998)
obtained residuals are not linear. All the test values
indicate that a nonlinear structure persists in the
residuals. This allows us to exclude the Leybourne,
Newbold, and Vougas (1998) as consistent with the
data5 The results for series 1 and 3 support state-
dependent nonlinearity, while the results for series 2,
4 and 5 support time-dependent (time-varying)
nonlinearity. The tests that comprise the time-
dependent structure of series 2, 4, and 5 are Model

Table 13. Selection of the best fitting trend function by using F-test.
Smooth Transition trends

Output Series A γ τ B γ τ C γ τ

Series 1 LSTR 64151.6 0.024 0.124 889.141 0.002 0.387 69966.06 0.026 0.0661
Series 2 LSTR 72588.5 0.024 0.124 988.977 0.002 0.394 77395.99 0.024 0.1291
Series 3 LSTR 40493.4 0.020 0.380 738.938 0.001 0.366 516.028 0.006 0.9554
Series 4 LSTR 14143.134 0.025 0.939 1331.931 0.993 0.332 19231.932 0.036 0.998
Series 5 LSTR 14947.579 0.025 0.925 1430.391 0.995 0.321 19449.298 0.035 0.918
Series 1 ESTR 34.444 2.1E-07 0.451 1025.101 0.000 0.896 58576.69 0.000 0.641
Series 2 ESTR 91.648 2.1E-07 0.404 1045.669 0.000 0.892 952.204 0.000 0.457
Series 3 ESTR 96.162 1.6E-07 0.403 1154.020 0.000 0.939 3111.42 0.000 0.510
Series 4 ESTR 158.981 0.000 0.262 633.401 0.000 0.992 15621.332 0.000 0.529
Series 5 ESTR 132.497 0.000 0.244 719.193 0.000 0.993 11144.209 0.000 0.627

Fourier trends

Output Series Frequency Intercept k Intercept and trend k

Series 1 Integer 111.741 1 448.361 1
Series 2 Integer 112.490 1 453.563 1
Series 3 Integer 114.008 1 459.518 1
Series 4 Integer 110.414 1 544.879 1
Series 5 Integer 112.674 1 563.911 1
Series 1 Fractional 298.760 0.1 1101.983 0.1
Series 2 Fractional 301.552 0.1 1119.738 0.1
Series 3 Fractional 305.859 0.1 1137.801 0.1
Series 4 Fractional 406.288 0.1 2425.552 0.1
Series 5 Fractional 421.181 0.1 2583.837 0.1

Table 14. Linearity test of the residuals of Model C (Leybourne, Newbold, and Vougas 1998).
State-Dependent Nonlinearity st ¼ yt�1 Time-Dependent Nonlinearity st ¼ t Result

Output Series F-test Significance F-test Significance

Series 1 3.142 0.004 1.613 0.140 SD
Series 2 0.611 0.721 8.140 0.000 TV
Series 3 3.240 0.003 1.457 0.190 SD
Series 4 0.420 0.865 7.192 0.000 TV
Series 5 1.201 0.305 6.838 0.000 TV

Note: TV indicates time-varying or time-dependent nonlinearity; SD indicates state-dependent nonlinearity.

5As Kapetanios, Shin, and Snell (2003) indicate, the ADF test is still powerful in some form of ESTAR nonlinearity. Therefore, the test results that are obtained
as stationarity may be found for this reason..
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C of Omay, Emirmahmutoglu, and Hasanov (2018)
and Model C of Omay and Yıldırım (2014).

Enders and Lee (2012) observe that the Fourier
function can imitate the ESTAR structure. It fol-
lows that the Fourier structure can also imitate the
Kapetanios, Shin, and Snell (2003) and Sollis
(2009) models. This, in our view, can explain the
time-varying nonlinearity results. The test results
and the unit-root test results are super consistent
and imply that the structure underlying the U.K.
GDP data conform to either Model C of Omay,
Emirmahmutoglu, and Hasanov (2018) or Model
C of Omay and Yıldırım (2014). Model C of
Omay, Emirmahmutoglu, and Hasanov (2018)
employs the AESTAR model, while Model C of
Omay and Yıldırım (2014) employs the ESTAR
model. Since the AESTAR model nests the
ESTAR model, we can safely conclude that the
true structure of the U.K. real output series is
characterized by nonlinear AESTAR stationarity
around a break, which occurs in the intercept
and trend. These, in turn, are the main features
of the Omay, Emirmahmutoglu, and Hasanov
(2018) unit-root test.

V. Conclusions

We employ the nonlinear unit-root test recently
developed by Omay, Emirmahmutoglu, and
Hasanov (2018), as well as a battery of linear
and nonlinear tests, to examine the stationarity
of five multi-century historical U.K. series of
real output compiled by the Bank of England
(Thomas and Dimsdale 2017). Three series span
1270 to 2016 and two series span 1700 to 2016.
These datasets represent the longest span of
historical real output data available and, thus,
provide the environment for which unit-root
tests are most powerful.

Linear unit-root tests, such as the ADF and the Ng
and Perron (2001) tests, systematically fail to reject
the unit root in all five historical real output series.

Nonlinear unit-root tests exhibit mixed success.
Time-dependent tests, such as Leybourne,
Newbold, and Vougas (1998), which impose on
the structure of the data a single break, reject the
unit-root hypothesis in four of the five real output
series (Series 2, 3, 4, and 5). Oddly, state-dependent
tests, such as Sollis (2009), which imposes

asymmetric adjustment, reject the null of unit root
also in four of the five series (Series 2, 3, 4, and 5).
This shows that time-dependent nonlinearity in the
form of a single structural break, and state-
dependent nonlinearity in the form of asymmetric
adjustment can imitate each other. That is, a break
in trend and intercept can also be modelled by an
AESTAR type nonlinearity. In contrast, time-
dependent tests such as Omay (2015) and
Çorakcı, Emirmahmutoğlu, and Omay (2017),
which impose multiple smooth breaks and one
temporary break, respectively, consistently fail to
reject the unit-root hypothesis. The results of the
Christopoulos and Leon-Ledesma (2010) tests also
fail to reject the unit-root hypothesis, confirming
that the structure of the series is not inclusive of
multiple smooth structural breaks. State-dependent
tests with symmetric adjustment, such as
Kapetanios, Shin, and Snell (2003), also fail to reject
the null of a unit root. Thus, the above-mentioned
tests are capable, on their own, of delivering some
bits and pieces of empirical information about the
structure of the five historical series. Applied to the
first series, however, none of these tests provides
evidence of stationarity.

In contrast, the key findings of the Omay,
Emirmahmutoglu, and Hasanov (2018) unit-
root test, Model C, provides strong evidence
that the main structure of all the five series is
stationary with a break in the intercept and the
trend and an asymmetric nonlinear adjustment.
This finding is highly significant from the per-
spective of current macroeconomic debate
because it refutes, for the historical U.K. series
at least, the most stylized fact that real output
follows a non-stationary process. This result is
highly at odds with the much more popular
nonlinear tests that consider only one facet of
the nonlinear process, such as the Kapetanios,
Shin, and Snell (2003) unit-root test that allows
for state-dependent nonlinearity, but ignores
structural breaks, or the Christopoulos and
Leon-Ledesma (2010) unit-root test that allows
for multiple smooth breaks but ignore asym-
metric adjustments.

Finally, since nonlinear unit-root tests iden-
tify nonlinearity under the alternative but not
under the null, which remains one of linearity,
we pay attention to the issue of model
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identification by means of a sequence of linear-
ity tests. We infer from this sequence that
Model C of Omay, Emirmahmutoglu, and
Hasanov (2018) is consistent with the time-
dependence and AESTAR structure of the data.
Therefore, by using this 5-step identification
procedure, we introduce an empirical strategy
to the researcher for better identification of
their data.
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