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Abstract

Nonparametric statistical process monitoring schemes are robust alternatives to traditional
parametric process monitoring schemes, especially when the assumption of normality is
invalid or when we do not have enough information about the underlying process
distribution. In this paper, we propose to improve the well-known precedence scheme using
the 2-of-(h+1) runs-rules schemes (where h > 1). The performance of the proposed control
schemes are thoroughly investigated using both Markov chain and simulations based
approaches. We find that the proposed schemes outperform their competitors in many cases.
A real-life example is given to illustrate the design and implementation of the proposed

schemes.

Keywords: nonparametric scheme; precedence control scheme; generalized 2-of-(h+1) runs-

rules schemes; Markov chain approach; simulations

1. Introduction

In these last two decades, many researchers have devoted their attention on nonparametric
statistical process monitoring (NSPM) schemes. If the in-control (IC) run-length distribution
and consequently, all the IC characteristics of a monitoring scheme are the same for every
continuous probability distribution function (pdf), the scheme is referred to as “distribution-

free” (or nonparametric). Distribution-free schemes are mostly recommended when the
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underlying distribution of the quality process is unknown or non-normal, for example, see
Qiu (2014), Graham et al. (2017), Triantafyllou (2017), Mukherjee and Sen (2018), Patil and
Shirke (2017) and Zombade and Ghute (2018). The plotting statistics of these schemes (or
charts) are either the sign or sign-rank or Mann-Whitney or some order statistic of the
observations. One of the most popular nonparametric schemes known as “the median
scheme” was proposed by Janacek and Meikle (1997). The lower and upper control limits
(LCL and UCL) of this scheme are given by two order statistics of the Phase | (or reference)
sample X;, X,,..., X,,; and the plotting statistic is the median, M, of the Phase Il (or test)
sample Y;, Ys,..., Y. This scheme is considered to be the basic median scheme denoted by
“1-of-1 scheme”. The basic median scheme signals when the charting (or plotting) statistic
plots on or outside of the control limits. Therefore, the basic scheme uses only one plotting
statistic to decide whether the process is IC or out-of-control (OOC). Klein (2000) showed
that the 1-of-1 (or basic) scheme is relatively insensitive to small shifts. To overcome this
problem, many researchers suggested the addition of runs-rules; see for example, Derman and
Ross (1997), Klein (2000), Chakraborti et al. (2009) and Tran (2017, 2018).

Traditional Shewhart-type schemes are usually more effective in detecting large and abrupt
shifts in one or more process parameters. Nevertheless, they are often found to be less
efficient for small to moderate shifts. Traditional Shewhart-type schemes are often integrated
with supplementary runs-rules to improve their performance in detecting small and moderate
shifts. A scheme is expected to give an OOC signal if one or more plotting statistics fall
outside the control limits or when the plotted points do not exhibit a random pattern of
behaviour. Balakrishnan and Koutras (2002) defined a run as an uninterrupted sequence of
the same elements bordered at each end by other types of elements. Two types of runs exist in
statistical process control and monitoring (SPCM), referred to as “run up” (when there is an
increasing trend in the observed plotting statistics) and “run down” (when there is a
decreasing trend in the observed plotting statistics). The runs are very important in assessing
patterns on schemes. Western electric company (1956) and Nelson (1984) defined eight rules
for detecting nonrandom patterns on schemes and later on, Trip and Does (2010) suggested
four rules. For more details on the decision rules, readers are referred to Montgomery (2001).
Different other types of rules (runs-rules) have been considered in the literature and they are

mainly described as follows:



(i) the non-side-sensitive (NSS) w-of-(w+v) with w > 1 and v > 0 (by Derman and
Ross (2010), hereafter DR) that signals when w out of w+v successive samples
fall on or outside the control limits, no matter whether some (or all) of the w
samples fall above the UCL and others (or all) fall below the LCL which are
separated by at most v samples that fall between the control limits,

(i)  the side-sensitive w-of-(w+v) (by Klein (2000), hereafter KL) that signals when w
samples out of w+v successive samples plot above (below) the UCL (LCL) which
are separated by at most v samples that plot below (or above) the UCL (LCL),

respectively.

Earlier in current decade, Human et al. (2010) and Kritzinger et al. (2014) investigated the
performance of the nonparametric sign and signed-rank charts with supplementary runs-rules.
The 2-of-2 precedence schemes were investigated by Chakraborti et al. (2009) and Malela-
Majika et al. (2016a, 2016b). Shongwe and Graham (2016) explored the zero-state and
steady-state performance of a variety of synthetic and runs-rules schemes. Rakitzis (2016)
used two-sided schemes supplemented with runs-rules to monitor exponential data. Li et al.
(2016) proposed a robust algorithm for an economic design of nonparametric schemes. More
recently, several authors have investigated the properties of a variety of monitoring schemes
supplemented with runs-rules, see for example, Maravelakis (2017), Rakitzis (2017), Patil
and Shirke (2017), Chang et al. (2018) and Mehmood et al. (2018). The economic design of
monitoring schemes supplemented with runs-rules was investigated by Lee and Khoo (2017)
and Golbafian et al. (2017). Zombade and Ghute (2018) proposed a Shewhart-type
nonparametric control chart for monitoring the process location. Tran (2017, 2018) proposed
the median and t schemes with supplementary runs-rules for monitoring the process mean.
The performances of these schemes are investigated using either exact formulae, simulations
or the Markov chain approach. When using simulations to evaluate the performance of a
scheme, an inerrant error of simulation occurs and this may considerably affect the results.
This error can be minimized by increasing the number of simulations (or replications), which
consequently increases the computational times required for computing the run-length
characteristics. To fix this problem, researchers are recommended to use exact formulas or a
Markov chain procedure, see for example, Li et al. (2014), Petcharat et al. (2015) and Dyer
(2016).



In this paper, we use a Markov Chain approach to investigate the zero-state and steady-state
performances of the two-sided generalized 2-of-(h+1) DR and KL Shewhart-type precedence
schemes where h is a positive integer (h > 0). The investigation is carried in terms of their IC
and OOC unconditional average run length (UARL). We also use the extra quadratic loss
function (EQL), as in Shongwe and Graham (2016), to investigate the overall zero-state and
steady-state performances of the proposed schemes for different shift ranges. Extensive
simulations (with 100000 replications) are also used to check the accuracy of the results. The
investigation of the performance of the improved 2-of-(h+1) DR and KL schemes (i.e. the 1-
of-1 or 2-of-(h+1) DR and KL Shewhart-type precedence schemes) will be discussed in a
separate article. Note that Chakraborti et al. (2009) proposed a class of precedence charts
based on the 2-of-2 scheme which is a particular case of the proposed generalized 2-of-(h+1)
DR and KL precedence charts when h = 1 and explored the zero-state performance only.

Therefore, in this paper, we first investigate the IC and OOC performances of the 2-of-(h+1)
for h > 1 (as Chakraborti, Eryilmaz, and Human (2009) and Malela-Majika, Chakraborti, and
Graham (2016) did for h = 1 (only)). Secondly, we use a Markov chain approach slightly
different from that in Chakraborti, Eryilmaz, and Human (2009). While Chakraborti,
Eryilmaz, and Human (2009) studied the zero-state performance only, here, we study both the
zero- and steady-state modes. Finally, the overall performance metric, i.e. zero- and steady-
state average EQL (AEQL) values are computed to supplement the specific shift metric i.e.

zero- and steady-state average run-length (ARL) values.

The remainder of this paper is organized as follows: in Section 2, firstly the 1-of-1 (i.e. basic)
median precedence scheme is introduced, and, secondly, the general form of the transition
probability matrices (TPMs) of the generalized 2-of-(h+1) DR and KL schemes are given. In
Section 3, the performance measures and the expressions of the zero-state and steady-state
ARL for both DR and KL schemes, are developed. Section 4 provides the design and
implementation of the proposed charts and discusses the IC and OOC zero-state and steady-
state performances of the 2-of-(h+1) DR and KL Shewhart-type precedence schemes. In
Section 5, the effect of the Phase | sample size on the Phase Il performance, of the proposed
schemes, are investigated using extensive simulations. A real-life application of the proposed
schemes is given in Section 6. Section 7 gives a concluding summary and some

recommendations.



2. Shewhart-type precedence scheme with supplementary runs-rules
2.1 1-of-1 precedence scheme

Let X = {X;, X5, ..., X;n} be a reference sample of size m available from an IC process with
an unknown continuous cdf F(x). Let th (withj=1,2,...,nand h =1, 2, ...) denote the
ht" test sample of size ny,, n, = n Vh, since we are assuming that the Phase Il samples are all
of the same size. For instance, le = {V, Y, ..., Y, } is the first test sample of size n. Let G (y)
denote the cdf of the distribution of the ht" Phase 11 sample and let G*(y) = G(y) Vh, since
the Phase Il samples are all assumed to be identically distributed. Let assume that the location
model is given by G(t) = F(t — &), for all t, where & is the location difference (or shift in the

location parameter). The process is IC in Phase Il when G = F which happens when § = 0.

The precedence scheme is a general class of nonparametric schemes that uses the j* order
statistic in the Phase Il sample Y{;.,) (such as the minimum, lower quartile, median, upper
quartile and maximum) as the charting statistic. In the case of the two-sided Shewhart-type
precedence scheme, the charting statistic Y.,y is compared to the LCL and UCL which are
given by the a** and b*" order statistics of the Phase | sample, denoted X 4.y and Xp.m)
respectively, where 1 < a < b < m (see Figure 1). When j = 1, the corresponding precedence
scheme is referred to as the minimum precedence scheme. However, when j = n, the
precedence scheme is referred to as the maximum precedence scheme. When n is odd, say,
n=2r+1, then j=r+1 corresponds to the unique test sample median and the
corresponding precedence scheme is called median precedence scheme. In the current paper,
we consider the median precedence scheme and, only for brevity and simplicity throughout
the paper, we refer to it as the precedence scheme, omitting the word median.
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Figure 1. Different zones of the proposed control schemes

For the precedence scheme with known process parameters (that is, under Case K), we
determined a as well as b and, consequently, the control limits, by setting the false alarm rate
(FAR) to a desirable small value, say 0.0027 or 0.0020. The process is said to be OOC at the
i sampling time if the charting statistic ¥{;.,) = UCL or Y.,y < LCL.

In Phase 11, the random variable Y follows a beta distribution with parameters jandn —j + 1
(see for example, Mukherjee, Graham, and Chakraborti 2013). Therefore, the conditional

probabilities that the charting statistic plots in Zones 1, 2 and 3 (see Figure 1) are given by

po = P(Y(j.n) € 6) where 6 € {1,2,3}:

p1 = P(Yjm) = Xoom) | Xwim) = X@omy) = I(GF*(Upumy ), jom — j + 1), (1)

P2 = P(X(am) < Yiim) < X [ X@m) = X@my Xom) = Xp:m))

@)
= 1(GF *(Upam))jn—j+ 1) = I(GF Y (Uaam)),jon —j + 1)

and

ps = P(Y(j:n) < X(a:m)lx(a:m) = X(a:m)) = 1(1 - GF_l(U(a:m))'j'n —j+ 1)' (3

respectively, where I(.,.,.) denotes the incomplete beta function and ¥ (u) = GF‘l(U(e:l))
is the conversion function for any two continuous distributions G and F where U,

represents the et™ order statistic of a sample of size | from the Uniform (0,1) distribution.



Note that Equations (1) - (3) do not depend on the parent cdfs, when the process is IC or F =
G.

It is important to know that the process is IC if G = F. In this case, ¥(u) = GF 1(u) = u
for any u € (0,1). For more details on the precedence scheme, the reader is referred to
Chakraborti, Van der Laan, and Van de Wiel (2004); Chakraborti, Eryilmaz, and Human
(2009); Balakrishnan, Paroissin, and Turlot (2015) and Malela- Majika, Chakraborti, and
Graham (2016).

2.2 The generalized 2-of-(h+1) DR and KL Shewhart-type precedence schemes:
2.2.1. Transition probability matrices (TPMs)

Before introducing the general results, we first discuss how to obtain the TPMs of the 2-of-
(h+1) KL and DR schemes when h = 2. To construct the TPMs, we need to define the
compound pattern denoted A that results in an OOC event — this procedure is also used in
Shongwe and Graham (2016). Let us consider the compound pattern A ={11, 121, 33, 323}.
For example, ‘323’ indicates that in a sequence of three test samples, the first and third
samples are lower non-conforming samples (i.e. plot in Zone 3 — see Figure 1), and the
second is a conforming sample (i. e. plots in Zone 2). The elements, 11, 121, 33 and 323 in
the compound pattern A show all possible ways of obtaining and OOC signal using the 2-of-
(h+1) KL scheme. The Markov chain states of the 2-of-(h+1) KL scheme, based on the

compound pattern A when h = 2, are obtained as follows (see Table 1):

Step 1:  List all the elements in the compound pattern A. In our example A = {11, 121, 33,
323}.

Step 2:  Create the dummy state denoted ¢ which is defined by the single IC state given by
{2}. This IC state can also be denoted by 1., = ¢. Thus, when h = 2, n; = ¢=
{2}.

Step 3:  Decompose each element of the compound pattern given in Step 1 into its basic
(i.e. transient sub-patterns) states by removing the last nonconforming element.
These sub-patterns are non-absorbing states denoted by 1, n, n, and ns. For
example, the element ‘323 is decomposed into a transient state ‘32’. Decomposing
all elements in A give the complete set of the basic states denoted by n. Therefore,
when h = 2, n = {12, 1, 3, 32} where the basic states are defined as n, = {12},



Step 4:

Step 5:

Step 6:

n, = {1}, n, = {3} and ns = {32}. Note that the sub-pattern n; (i.e. n5,4+1), Which

is also non-absorbing, is defined in Step 2.
Denote the OOC states in Step 1 as “OOC”. For example, for h = 2, OOC = {11,

121, 33, 323}.

Combine the states in Steps 2 to 4 to get the state space denoted by Q. Hence, when

h = 2, the state space of the 2-of-(h+1) KL scheme is given by Q = {n,, n,, 13 = ¢,

N4, Ns; OOC}. The number of non-absorbing sub-patterns from the state space is

denoted by t. Therefore, the essential TPM of the proposed scheme is a T Xt

matrix {where t = 2h + 1). When h = 2, ¢ = 5. For illustration purpose, in Table 1,

the state space Q is constructed for h = 1, 2, 3 and 4 for the KL schemes.

Construct the TPMs of the proposed KL schemes as shown in Table 2 when h =1,

2and 3.

Table 1. Decomposition of the TPM’s state space of a two-sided 2-of-(h+1) DR and KL
schemeswhenh=1,2,3 &4

Scheme A 0] n Q

*DR A,={00} n.={2} 172={0} {¢:1,.00C}

KL A, ={11}, A,={33} 7,={2} n.={1}, n;={3} {ns; $;13,00C}

*DR A,={00}, A,={020} n,={2} 1,={0}, n3={02} {¢:1,,m3,00C}
A={11}, A,={121}, - n1={12}n,={1}, ey )

KL A13:{33}y A24:{323} 773_{2} nt:{g}’nszz{gz} {77117721(1)177417757000}

*DR | A,={00}, A,={020}, A;={0220} | n,={2} | n,={2} 1:={02}, n,={022} {¢:12.13.14;00C}
A ={11}, A,={121}, _ _ _

KL =221, m=(zy | MR i men,00C)

A,={33}, A-={323}, A,={3223} ns={3}, 16={32}, n,={322}

* A,={00}, A,={020}, - n2={0}, n3={02} : .

DR A4={0220}, A.={02220} m={2} n,={022}, n.={0222} {@n2:m3, M4:m5:00C}
131:{11}, Az_:{12l}y 771:{1}._ n.={12}, 713={122},

KL A~ {1221}, Ay {12221, ns={2} na={1222}, ne~43}, {n1.M2.13M4:0M6.M7,18,19;00C}

As={33}, As={323}, A,={3223},
Ag={32223}

n7={32}, ng={322},
n9={3222}

*Note: for the DR scheme, Zone 0 = Zone 1 U Zone 3 = (-oo0, LCL] U [UCL, + o).

Let us now consider the Markov chain states of the 2-of-(h+1) DR scheme based on the

compound pattern A when h = 2. In this case, the compound pattern is given by A = {11, 121,
33, 323, 123, 13, 31, 321}. Accordingly to the DR scheme properties, and in order to simplify

the compound pattern, we denote Zone 0 = Zone 1 U Zone 3 since the DR scheme is a hon-

side-sensitive scheme. Hence, we assume that state 1 and state 3 represent the non-

conforming state denoted by state 0. Therefore, the compound pattern becomes A = {00, 020,
00, 020, 020, 00, 00, 020} which is simplified into A = {00, 020}. Thus, the Markov chain

states, of the 2-of-(h+1) DR scheme for h = 2, based on the simplified compound pattern are

obtained as follows (see Table 1):




Step 1:  List all the elements in the compound pattern A. In our example A = {00, 020}.

Step 2:  Create the dummy state denoted ¢ which is defined by the single IC state given by
{2}. To simplify the notation, the dummy (i.e. single IC) state will be denoted as
N, = ¢ ={2} in Step 5.

Step 3:  Decompose each element of the compound pattern given in Step 1 into its basic
(i.e. transient sub-patterns) states by removing the last nonconforming element.
These sub-patterns are non-absorbing states denoted by 7, and n;. Note that the
sub-pattern n; which is also non-absorbing, is defined in Step 2. In our example for
h=2,n, ={0} and n; = {02}.

Step 4:  Denote the OOC states in Step 1 as “OOC”. For example, for h = 2, OOC = {00,
020}.

Step5:  Combine the states in Steps 2 to 4 to get the state space denoted by Q. Hence, when
h = 2, the state space of the 2-of-(h+1) DR scheme is given by Q ={n, = ¢, n,, n3;
OOC}. Therefore, the essential TPM of the proposed DR scheme is a T X T matrix
{where T = h + 1). When h = 2, 7 = 3. For illustration purpose, in Table 1, the state
space Q is constructed for h =1, 2, 3 and 4 for the DR schemes.

Step 6:  Construct the TPMs of the proposed DR schemes as shown in Table 2.

For more details on how to construct the TPMs of the 2-of-(h+1) KL and DR schemes,

readers are referred to Shongwe and Graham (2016, 2017).

Table 2 presents the TPMs of the 2-of-(h+1) KL and DR schemes when h =1, 2 and 3 where
p1, P2 and p; are computed using Equations (1)-(3), respectively, and p, = p; + ps.
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Table 2. TPMs of the two-sided 2-of-(h+1) DR and KL schemes whenh =1, 2 and 3

h DR scheme KL scheme
| ¢ u ooc 7, ¢ 713 00C
M 0 p b3 p1
1 L ¢ |, p2 P3O
N2 p, O Po 0
oocl o 0 1 n3 b1 D2 P3
ooCc | 0 0 0 1
¢ mn, n3 0OOC L/ T | PR [ 00C
& | po 0 O m |0 0 p p3 O P1
) m o o »,  p m |p: 0 0 p3 O P1
0 0 ¢ |0 p pp p3 O 0
s P2 Po Na 0 m 0 0 p p3
oC 0 0 0 1
s |0 p p2o 0O O P3
ooCc | 0 0 0 0 0 1
N My Nz $  7Ns 7ng 71y  OOC
b M2 M3 N 00C M 0 0 0 p, p3 0 O P1
o} P2 po 0 O 0 M2 p 0 0 0 p; 0 O p1
7 0 0 p, 0 Po s §0 pp 0 0 p3 O 0 p
3 n 0 0 0 » P ¢ 0 0 P P2 D3 0 0 0
3 > 0 Ns 0 0 nm 0 0 p; 0 p3
e fp2 000 Po e fo o p 0 0 0 p p
ooCc g o 0 0 0 1 n, 0 0 p, p, O 0 0 Ps
(o]e]6f 0 0 0 0 0 0 0 1

Note: p, = p; + p3 (since Zone 0 = Zone 1 U Zone 3)

3. Run-length distribution of the 2-of-(h+1) schemes

The characteristics of the run-length distribution reveal important information about the
performance of a control chart. In this section, we give the expressions of the run-length
distribution of the proposed schemes.

The TPM of a two-sided 2-of-(h+1) DR scheme using Markov chain approach for any integer
T IS given by

Q‘L’XT I Trxa
) (4)

P(r+1)><(-c+1) = ( - - -

,1><T | 11X1

where Q = Q.. IS the essential TPM of the chart, r =1 — Q1 with r =1r,y, 0,4 =
(00..0) and 1 =1,,, =(11...1)". Note that Equation (4) is very important in the
derivation of the properties (or characteristics) of the run-length using the Markov chain

technique (see Fu and Lou (2003)). Thus, the conditional run-length (CRL) distribution and
ARL of the 2-of-(h+1) schemes are given by

P(N=0)=§Q 01— Q)1fort =1,2,3,..with Q° =1

(%)
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and
CARL =¢R (6)

respectively, where I =1,,, and § = &;., is the initial probability vector and R =
(I—- Q) 1 is the T x 1 CARL vector.
Therefore, the unconditional ARL (UARL) is then defined by

UARL = [] [, CARL f,, (s, t)dsdt ©)

m!
(a-1)! (b—a-1)!(m-b)!

where f,,(s,t) = t@1(t — 5)P7¢"1(1 — £)™P which is the joint pdf of

the a™ and b™* order statistics in a random sample of size m from the Uniform (0,1)

distribution, s and t are random variables from the Uniform (0,1) distribution.

Note that in order to compute Equations (5)-(7), the initial probability vector (i.e. &) has to be
defined. In the zero-state mode we have § = q = (100 ...0) for the 2-of-(h+1) DR scheme.
The zero-state initial probability vector of the 2-of-(h+1) KL scheme is given by & = q =

th
(0..010 ... 0) where the unique “1” is located at the T:—l position. However, in the

steady-state mode, § = s = (s4, Sy, S3, ..., S;) Which is obtained by dividing each element of
Q(6 = 0) by its corresponding row sum, so that the new essential TPM @ called the
conditional essential TPM, denoted by Q. is ergodic (i.e. sTQ. = sT subject to =157 =1).
Therefore, the zero-state initial probability vectors of the 2-of-(h+1) DR and KL schemes are
given by

qix: =(100 ..0) (8a)
and

Gixe = (o 00...1e1 .0 o) (8b)

2

respectively.
However, the steady-state initial probability vector of the 2-of-(h+1) DR and KL schemes are

given by

1
Sixr = —— (1 po Po - Po) (9a)

1+h Po

and



S(ixt) =

Sh-2
Sh-1
Sh
Sh+1
Sh+2
Sh+3
Sh+4

Soh-1

S2n
Soh+1

respectively, with p, = p; + p3, 0 =

3.1 Zero-state and steady-state run-length characteristics of the 2-of-(h+1) DR schemes

P2
+p2

1
23 ir20h(1-py)t

92
0;—3
9h—2
Hh_l

and p, is defined in Equation (2).

12

(9b)

The zero-state and steady-state modes are mostly used to characterize the short-term and the

long-term run-length properties of a scheme. The zero-state run-length is defined as the

number of sampling points at which the chart first signals given that it begins in some

specific initial state. However, the steady-state run-length is the number of sampling points at

which the chart first signals given that the process begins and stays IC for a long time, then at

some random time, an OOC is observed.

Equation (4) of the 2-of-(h+1) DR schemes for any value of h is given by

N3 13 M4 o Mpyer O0C
¢ P2 Po 0 0 0 0
N2 0 0 D2 0 0 Po
UE] 0 0 0 D2 0 Po
nm |0 0 0 0 P2 Po
Nher | P2 O 0 0 0 Po
ooc|lo 0 0 0 0 1

where T = h + 1 and p, = p; + p3. For both zero- and steady-state modes, the CARL vector

(i.e. R;,) of the 2-of-(h+1) DR scheme for any value of h is given by
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{1 (6) 2 - pg
> (6) 1
5(8) 1+p3~ ' —p3
2,(8) ) 1+ph=2—ph
R;x1(8) = : = —— T : (10)
Gua(8) | TP 14 ph—ph
In-1(8) 1+p; —p}
{n(6) 1+p%—p}
{h+1(8) 1+p, —p?

Substituting Equations (8a) and (10) into Equations (6) and (7), the conditional zero-state
ARL (denoted as CARLzs) of the two-sided 2-of-(h+1) DR scheme for any value of h is given

by

CARL,s(8) = 2-ps (12)
R T e
where p, is defined in Equation (2).
The unconditional zero-state ARL (denoted as UARLzs) is then defined by
2— Pz
UARL;5(6) = - fap (s, t)ds dt (12)
2

where f,, (s, t) is defined in Equation (7).

However, substituting Equations (9a) and (10) into Equations (6) and (7), the conditional
steady-state ARL (denoted as CARLss) of the two-sided 2-of-(h+1) DR scheme for any value
of his given by

CARLss(S) = 1t

o $1(8) + =B 6(6). (13)

1+h Po

Therefore, the unconditional steady-state ARL (UARLss) is given by

-01(8) + Y G| fan (s, ) dsdt (14)

1+hp

UARLss(8) = J, [} [~

1+hp

where the components of the CARL vector (i.e. ;) are defined in Equation (10).



3.2 Zero-state and steady-state run-length characteristics of the 2-of-(h+1) KL schemes
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Following a similar procedure as done in Shongwe and Graham (2017), the TPM of the two-

sided 2-of-(h+1) KL scheme in Equation (4) for any value of h is given by

M M M-a+ M-3 Mz M-1 P M1 Mirz M3 Misa Ne—z N1 7 OOC
M D2 D3 D1
N2 b2 Ps3 P1
13 p2 p3 P1
Mi-3 %) b3 D1
M2 b2 ps3 D1
Mi-1 b2 Ps3 D1
¢ P1 P2 D3
Mi+1 P1 P2 p3
Ni+2 D1 D2 b3
Mi+3 D1 D2 b3
Ne—3 P1 b2 b3
Ne—2 P1 b2 b3
Nr-1 P1 P2 p3
Nt P1 P2 b3
0ooC 1

where [ =%1andr=2h+1.

For both zero- and steady-state modes, the CARL vector of the 2-of-(h+1) KL scheme for any

value of h is defined by
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Substituting Equations (8b) and (15) into Equations (6) and (7), the UARLzs of the two-sided
2-of-(h+1) KL scheme for any value of h is given by

(1401 215 pé)(lﬂﬂs pyang Ly
1-p2—p1 PR3t —p1ps X205 1 pl

UARLzs(8) = [, [} Fup (s, 0)ds dt (16)

However, substituting Equations (9b) and (15) into Equations (6) and (7), the UARLss of the

two-sided 2-of-(h+1) KL scheme for any value of h is given by
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1 pt h
varLss@) = | | [sh+1zH+1(6>+zsix(zi(6)+<<2h+z>_i(a)) far (s Dds dt,  (17)
i=1

where the components of the steady-state initial vector s are defined in Equation (9b) and {;

are the components of the CARL vector defined in Equation (15).
3.3 Overall performance measure

Many studies in SPCM use the ARL values to assess the performance of schemes (Li et al.,
2014). This measure evaluates the performance of a control chart for a specific shift.
Therefore, schemes which are designed on the basis of a specified optimal shift (say, §,,¢)
will perform poorly if the shift is actually different from &,,.. When researchers are

interested in measuring the chart’s performance for a range of shifts, §,,in < 6 < Spmax, I 1S
recommended to use measures of the overall performance ( Machado and Costa, 2014). In
this paper, we make use of one of the characteristics of the quality loss function (QLF), the
average extra quadratic loss (AEQL) value, in order to investigate the overall performance of
the proposed schemes. A QLF describes the relationship between the size of the shift and the
quality impact. For more details on the overall measures of performance, readers are referred
to Wu et al. (2008) and Reynolds and Lou (2010).

Writing £ (&) as the pdf of a uniform distribution with parameters 0 and 1, the AEQL may be
given by:

5max

f (62 X ARL(8)) X f(8)dS. (18)

min

1
AEQL =

Smax - 6min 5

When comparing several schemes, the scheme with the minimum AEQL value is considered

to be the winner.

4.  Zero-state and steady-state performance studies of the 2-of-(h+1) precedence

schemes
4.1 Design of the proposed control charts
One of the most important steps in the design and implementation of a scheme is the

computation (or search) of the control limits. The control limits of the 2-of-(h+1) precedence

schemes are determined once the plotting constants a and b (with b = m — a + 1) are found.
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The plotting constants denote the position of the order statistics in the Phase | sample. For
instance, the zero-state plotting constants of the 2-of-(h+1) DR and KL precedence schemes
are determined using Equations (12) and (16), respectively, whereas the steady-state plotting
constants are found using Equations (14) and (17), respectively, so that the IC UARLzs
(UARLozs) and UARLss (UARLoss) are equal (or close) to some high desired values such as
370 or 500. For example, for m = 200 and n = 5 so that j = 3 and for a nominal IC ARL
(ARL,) of 370, it is found that the couple (a, b) = (31, 170) yields an attained UARLozs of
368.78, so that (LCL, UCL) of the zero-state 2-0of-2 DR precedence scheme is given by

(X(31:200), X(170:200)) When h = 1. On the other hand, with the same settings, it is found that

for the zero-state KL case, when h = 1, the couple (a, b) = (34, 167) so that (LCL, UCL) =
(X(34:200), X(167:200)) Which yields an attained UARLo zs of 399.6 (see Table 3). Table 3
gives the 2-of-(h+1) DR and KL plotting constants (a, b) as well as the attained UARLozs and
UARLoss values for h =1, 2, 5 and 10 when m = 100, 200 and 500 with n =5 and 7. The first
row of each cell in Table 3 is related to a nominal UARLozs and UARLoss value of 370,

whereas the second row is related to a nominal UARLgzs and UARLoss value of 500.

Table 3. Zero-state and steady-state plotting constants (a, b) and the attained UARLozs and
UARLoss values of the 2-of-(h+1) DR and KL precedence schemes under the N(0,1), t(5) and
GAM(1,1) distributions when h = 1, 2, 5 and 10 for a nominal ARL, of 370 & 500.

DR KL

h m n=5j=3 n=7,j=4 n=5j=3 n=7,j=4
a b UARLgzs | UARLgss | a b UARLgzs | UARLgss | a b UARLgzs | UARLgss | a b UARLgzs | UARLgss
16 | 85 37331 37238 | 20 | 81 345.93 345.00 18 | 83 328.69 327.84 21 80 414.67 413.84
100 15 | 86 548.99 548.04 19 [ 82 509.54 508.60 17 | 84 456.52 455.67 20 81 594.56 593.73
31 | 170 368.78 367.84 | 39 | 162 336.98 336.04 34 | 167 399.6 398.71 42 | 159 358.81 357.93
1| 200 29 | 172 537.62 536.67 | 37 | 164 | 490.44 489.49 33 | 168 | 471.18 470.29 40 | 161 504.01 503.13
76 | 425 369.50 368.55 | 94 | 407 | 388.83 387.88 85 | 416 | 377.91 376.98 | 104 | 397 362.28 361.36
500 72 | 429 496.89 49594 | 90 | 411 526.08 525.12 81 | 420 | 490.21 489.28 99 | 402 506.61 505.69
100 14 | 87 437.09 435.71 18 | 83 404.63 403.26 16 | 85 342.26 341.02 20 81 3132 311.99
13 | 88 686.85 685.45 17 | 84 628.91 627.51 15 | 86 498.01 496.77 19 82 456.58 455.37
28 | 173 346.51 34513 | 35 | 166 | 385.72 384.34 31 | 170 | 351.66 350.35 38 | 163 380.70 379.42
2 | 200 26 | 175 526.40 525.00 | 34 | 167 | 474.78 473.39 29 | 172 507.88 506.57 37 | 164 458.64 457.35
68 | 433 359.81 35841 | 86 | 415 | 381.59 380.19 76 | 425 | 365.41 364.04 94 | 407 381.07 379.71
500 64 | 437 500.71 49930 | 83 | 418 | 488.05 486.64 72 | 429 | 488.49 487.11 90 | 411 512.46 511.10
13 | 88 303.31 300.58 17 | 84 278.44 275.74 14 | 87 330.1 327.76 18 83 302.52 300.23
100 12 | 89 489.80 486.99 16 | 85 440.34 437.57 13 | 88 508.34 505.98 17 84 461.12 458.82
24 | 177 367.45 364.63 | 31 | 170 | 408.67 405.84 27 | 174 | 335.06 332.56 34 | 167 368.11 365.65
5 | 200 23 | 178 466.02 463.16 | 30 | 171 518.78 513.91 25 | 176 | 509.83 507.31 33 | 168 452.82 450.35
58 | 443 381.30 37843 | 77 | 424 | 366.04 363.18 65 | 436 | 375.96 373.32 84 | 417 364.57 361.96
500 55 | 446 507.27 504.37 | 74 | 427 480.3 477.40 62 | 439 | 482.68 480.03 80 | 421 506.27 503.64
100 12 | 89 275.36 270.97 15 | 86 401.38 396.88 13 | 88 285.44 281.39 16 85 402.53 398.53
11 | 90 460.28 455.70 14 | 87 687.1 682.44 12 | 89 451.04 446.93 15 86 655.21 651.15
22 | 179 336.12 33151 | 29 | 172 | 368.35 363.73 24 | 177 | 357.24 352.86 31 | 170 391.36 387.04
10 | 200 21 | 180 433.28 42858 | 28 | 173 | 471.06 466.36 23 | 178 | 448.61 444.20 30 | 171 490.33 485.98
52 | 449 385.30 38056 | 71 | 430 359.3 354.60 58 | 443 | 385.42 380.76 77 | 424 367.88 363.28
500 49 | 452 526.95 52212 | 68 | 433 | 479.74 474.94 55 | 446 | 507.64 502.93 74 | 427 478.05 473.40
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4.2 Robustness of the proposed control charts

The ARL, of the nonparametric scheme does not depend on the underlying process
distribution. To check the robustness property of the proposed schemes, we consider various
distributions. The standard normal distribution, N(0,1), is used to investigate the effect of
symmetric distributions, the Student’s t-distribution, with degree of freedom 5, t(5), to study
the effect of heavy tails and the gamma distribution, GAM(1,1), to investigate the effect of
skewness. From Tables 3 and 4, it can be seen that, as expected, for every continuous
distribution under consideration, the proposed schemes yield the same IC characteristics (i.e.,
UARLozs or UARLess). For instance, we computed the control limits and the attained
UARLoss values for the 2-of-4 KL precedence scheme (i.e., when h = 3) under the N(0,1), t(5)
and GAM(1,1) distributions for m = 500, n = 5 and a nominal UARLss value of 500. We find
that (LCL, UCL) = (X(67:500) X(a34:500)) Yields a UARLoss value of 497.48 under these three

distributions (see Table 4). This shows that the proposed schemes are 1C robust.



Table 4. Zero-state and steady-state AEQL, plotting constants (a, b) and the attained UARLqzs (UARLss) values of the Shewhart 2-of-(h+1) DR and KL

precedence schemes for different values of h under the N(0,1), t(5) and GAM(1,1) distributions when m = 500 and n = 5.

DR scheme KL scheme
h (a.b) UARLgzs Zero-state Steady-state a.b) UARLgzs Zero-state Steady-state
(UARLess) | N1 | tB) | cam@,y | No) | t5) | eAam@) (UARLess) | N1 | t5) | cAaM@) | NO) | t5) | cAaM(LY)

1 | 72, 429) (jgg:g?‘) 10472 | 8560 | 19392 | 10299 | 409 | 19122 | (81, 420) (ﬁgﬁé) 9288 | 7864 | 169.49 017 | 7755 | 167.7
2 | (64, 437) (238;3) 10079 | 8474 | 17065 | 9838 | 254 | 16717 | (72, 429) (32373) 9012 | 77.97 151 8848 | 7642 | 14869
3 | (60, 441) é‘g;:gg) 9953 | 8472 | 16378 | 9653 | 8192 | 15047 | (67,434) (jg;’:gg) 9008 | 7842 | 14733 | 8808 | 7654 | 1445
4 | (57, 428 (ggg:ﬂ) 9004 | 8549 | 16281 | 9646 | 8227 | 15772 | (64,437) (333:;?)) 90003 | 7867 | 14615 | 8768 | 7648 | 14278
5 | (55, 446) (ggz:g) 10004 | 859 16254 | 9607 | 8225 | 15658 | (62,439) (jgg:gg) 809 | 7878 | 14578 | 8723 | 7628 | 14185
6 | (54, 447) (gg:gg) 9899 | 8537 | 16106 | 9453 | 8125 | 15429 | (60, 441) (jgééé) 9054 | 7937 | 14715 | 8761 | 7664 | 14275
7 | 52, 249) (gﬁ’:%’) 10094 | 87.04 | 16436 962 | 8269 | 15704 | (58,443) (gig:g% 9174 | 8034 | 14959 | ss6l | 77.44 | 14481
8 | (51, 450) (gé%flg) 1011 | 8732 | 16507 | 9597 | 8263 | 157.08 | (57,444) (28%2) 9178 | 8046 | 15013 | 8838 | 77.32 | 14486
9 | (0,451 (gﬁ’:gg) 10164 | 8788 | 16639 | 96.17 | 8289 1577 | (56, 445) (igg:gg) 9200 | 8075 | 15112 | 8845 | 77.41 | 14542
10 | (49, 452 (ggg:?% 1025 | 8867 | 16816 | 96.73 | 8343 1589 | (55, 446) (282183) 926 | 8119 | 15246 | 8876 | 7767 | 14636
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4.3 OOC Performance

Since the proposed schemes are IC robust, it is of interest to compare their performance when
the process is OOC. For a specific shift, § # 0, the scheme with a small OOC UARLzs
(UARLg z5) or small OOC UARLss (UARLgsss) value is considered to be more sensitive.
When comparing the overall performance, the scheme with a small AEQL is preferred. Note
that, when §,,,, = 0.7, the AEQL value gives the measure of the overall performance for
small shifts only. When 6,,,, = 1.5, the AEQL value measures the overall performance for
small and moderate shifts considered together. For 6,,,, = 3, the AEQL value measures the
overall performance of small, moderate and large shifts considered together. In terms of the
UARL value, under both zero-state and steady-state modes, Tables 5 and 6 showed that, for
small shifts, the enhanced precedence DR schemes perform better under skewed distributions
when h = 1. However, when h > 1, the 2-of-(h+1) DR scheme performs best under heavy
tailed distributions followed by symmetric distributions. For moderate and large shifts, the
proposed 2-of-(h+1) DR scheme performs best under heavy tailed distributions followed by
symmetric distributions regardless of the value of h. Under heavy tailed distributions, for
both zero-state and steady-state modes, the 2-of-(h+1) DR scheme performs better when h = 2
regardless of the size of the shift. However, under the symmetric distributions, the 2-of-(h+1)
DR scheme performs better when h = 5. Under skewed distributions, for small and moderate
shifts in the process mean, the proposed 2-of-(h+1) DR scheme performs better for large
values of h. However, for large shifts, the 2-of-(h+1) DR scheme performs better when h = 5.

Tables 7 and 8 show that, for both zero-state and steady-state modes, the 2-of-(h+1)
KL scheme performs better under heavy tailed distributions regardless of the size of
the shift in the process mean. Moreover, for both zero-state and steady-state modes, for
small shifts, the proposed 2-of-(h+1) KL scheme performs better under skewed
distributions compared to symmetric distributions; whereas, for moderate and large
shifts, the 2-of-(h+1) KL scheme performs better under symmetric distributions
compared to skewed distributions. Under heavy tailed distributions, for both zero-state
and steady-state modes, for very small shifts in the process mean, the proposed 2-of-
(h+1) KL scheme performs better when h =5 and for moderate to large shifts, the 2-
of-(h+1) KL scheme performs better when h = 2. Under symmetric distributions, for
small and moderate shifts, the 2-of-(h+1) KL scheme performs better when h=5. For

large shifts, the sensitivity of the 2-of-(h+1) KL scheme remains the same regardless of
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the value of h. Under skewed distributions, for small shifts, the 2-of-(h+1) KL scheme
performs better for large values of h and for moderate and large shifts, the 2-of-(h+1)

KL scheme performs better when h=5.

In terms of the AEQL values (i.e., overall performance), for 6,,,, = 0.7, the 2-of-
(h+1) DR and KL precedence schemes are more sensitive under skewed distributions
(see Figure 2a). For 6,4 = 1.5 and 6,4, = 3, the proposed schemes are more
sensitive under heavy tailed distributions and insensitive under skewed distributions

(see Figure 2b—2c).

When comparing the enhanced precedence schemes to the basic precedence scheme,
we observe that, for §,,,, = 0.7 and 1.5, the enhanced DR and KL precedence
schemes outperform the basic precedence scheme (Figure 2a—2b). For 8,4 = 3,
under both zero-state and steady-state modes, the basic precedence scheme
outperforms the 2-of-(h+1) DR precedence scheme regardless of the value of h under
the symmetric and skewed distributions, whereas the enhanced DR precedence
schemes outperform the basic precedence scheme under heavy tailed distributions.
However, under the zero-state mode, the enhanced KL precedence schemes
outperform the basic precedence scheme under symmetric and skewed distributions
when h < 13 and, under heavy tailed distributions, the enhanced KL precedence
schemes outperform the basic precedence scheme regardless of the value of h (Figure
2c). For 6ax = 3, under the steady-state mode, the enhanced KL precedence
schemes outperforms the basic precedence scheme regardless of the value of h and
the nature of underlying process distribution. Thus, the above dis- cussion indicates
that adding runs-rules to the basic precedence scheme would not necessarily improve
the efficiency of the scheme in some of the situations. The opera- tors would be
advised to use these types of runs-rules only when small and moderate shifts are of
interest. When large shifts are of interest, the operator would be advised to add runs-

rules only for specific cases as above-mentioned.

The proposed 2-of-(h+1) KL precedence schemes perform better than the 2-of-(h+1)
DR precedence schemes. This was expected according to the SPCM literature (Klein
2000). When comparing the zero-state and steady-state scheme performances, we
observe that, for both DR and KL schemes, the steady-state performance of the

proposed schemes is slightly better than the zero-state performance.



Table 5. Zero-state performance of the 2-of-(h+1) DR precedence scheme for h =1, 2, 5, 10 and 15 when m =500 and n =5 for a nominal ARL of 500
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Shift(5) N(0,1) t(5) GAM(1,1)
0.1 43320 | 431.78 | 43241 | 44623 | 44979 | 41373 | 41512 | 42024 | 43780 | 44371 | 34878 | 339.39 | 330.29 | 334.35 | 334.23
0.2 298.80 | 289.79 | 28222 | 286.91 | 287.97 | 254.18 [ 25203 | 25446 | 266.98 | 272.90 | 22471 | 21014 | 19589 | 193.38 | 191.70
0.3 178.79 | 167.94 | 15877 | 15931 | 15970 | 132.11 | 12895 [ 129.80 | 13753 | 142.28 | 142.76 | 12878 | 11589 | 11247 | 111.16
0.4 101.61 92.89 86.10 86.08 86.72 65.79 63.29 63.76 68.46 71.86 92.96 81.51 71.65 69.04 68.41
0.5 58.22 52.26 48.14 48.46 49.34 33.86 32.25 32.72 35.73 38.12 63.03 54.16 47.03 45.36 45.22
0.6 34.67 30.84 28.57 29.17 30.11 18.67 17.71 18.21 20.25 21.93 44,66 37.87 32.77 31.80 31.96
0.7 21.73 19.29 18.12 18.84 19.71 11.20 10.63 11.10 12.55 13.74 33.00 27.76 24.09 23.59 23.90
0.8 14.37 12.82 12.27 12.99 13.75 7.32 6.98 7.40 8.45 9.30 25.31 21.22 18.53 18.34 18.73
0.9 10.03 9.02 8.81 9.48 10.12 5.20 4.99 5.35 6.12 6.71 20.06 16.81 14.81 14.81 15.23
1.0 7.36 6.69 6.67 7.27 7.78 3.97 3.84 4.14 4.70 5.11 16.36 13.72 12.21 12.33 12.76
1.5 2.88 2.78 2.91 3.12 3.25 2.19 2.18 2.25 2.34 2.40 7.98 6.84 6.40 6.69 7.01
2.0 2.13 2.12 2.17 2.22 2.25 2.02 2.01 2.02 2.03 2.04 5.26 4.63 4.50 4.75 4.95
3.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.42 3.13 3.15 3.30 3.39
AEQL | 10472 | 100.79 | 100.04 | 102,50 | 104.47 85.69 84.79 85.90 88.67 90.65 193.92 | 170.65 | 16254 | 168.16 | 173,51
h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15
Table 6. Steady-state performance of the 2-of-(h+1) DR precedence scheme for h =1, 2, 5, 10 and 15 when m = 500 and n = 5 for a nominal ARL, of 500
Shift(5) N(0,1) 1(5) GAM(1,1)
0.1 432.31 | 430.47 | 429.74 | 44182 | 44357 | 41287 | 41384 | 41762 | 43344 | 43755 | 347.98 | 338.23 | 327.97 | 33055 | 328.90
0.2 298.07 | 28873 | 280.10 | 28344 | 28310 | 25351 | 251.05 | 25247 | 26367 | 268.22 | 22408 | 209.23 | 194.13 | 190.55 | 187.78
0.3 17823 | 167.14 | 15722 | 156.80 | 156.21 | 131.63 | 12826 | 12843 | 13524 | 139.05 | 14225 | 12807 | 11456 | 110.38 [ 108.28
0.4 101.19 92.31 84.99 84.30 84.26 65.45 62.82 62.83 66.92 69.69 92.55 80.96 70.64 67.46 66.24
0.5 57.90 51.83 47.34 47.19 4758 33.62 31.92 32.09 34.69 36.64 62.70 53.71 46.23 44,12 43,52
0.6 34.43 30.51 27.97 28.23 28.80 18.50 17.48 17.76 19.51 20.88 44.39 37.50 32.12 30.80 30.59
0.7 21.54 19.04 17.67 18.12 18.71 11.07 10.45 10.77 12.00 12.96 32.76 27.45 23.55 22.75 22.76
0.8 14.23 12.62 11.92 12.42 12.96 7.22 6.84 7.15 8.02 8.70 25.11 20.95 18.07 17.62 17.75
0.9 9.91 8.86 8.53 9.02 9.48 5.11 4.87 5.14 5.77 6.24 19.88 16.57 14.41 14.18 14.37
1.0 7.26 6.56 6.43 6.88 7.24 3.90 3.74 3.97 4.41 4.72 16.20 13.52 11.86 11.78 12.00
1.5 2.83 2.70 2.78 2.91 2.98 2.14 2.11 2.14 2.18 2.19 7.87 6.70 6.17 6.32 6.51
2.0 2.09 2.05 2.06 2.06 2.05 1.97 1.95 1.92 1.89 1.86 5.18 4.52 4.32 4.46 4.57
3.0 1.95 1.94 1.90 1.86 1.83 1.95 1.93 1.90 1.86 1.83 3.35 3.05 3.01 3.08 3.11
AEQL | 102.99 98.38 96.07 96.73 97.21 84.09 82.54 82.25 83.43 84.12 19122 | 167.17 | 15658 | 158.90 | 161.37
h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15
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Table 7. Zero-state performance of the 2-of-(h+1) KL precedence scheme for h =1, 2, 5, 10 and 15 when m =500 and n = 5 for a nominal ARL, of 500

Shift(d) N(0,1) t(5) GAM(1,1)
0.1 393.84 387.10 377.86 394.93 382.93 365.84 363.24 360.31 382.05 373.11 334.76 321.44 305.04 312.16 300.65
0.2 231.93 221.26 210.53 217.30 211.41 185.66 182.16 181.25 194.75 193.41 198.08 182.33 166.02 165.77 159.57
0.3 124.28 115.34 107.60 110.30 108.22 86.59 83.73 83.46 90.75 91.83 117.08 104.15 92.17 90.82 87.93
0.4 68.07 61.99 57.43 59.05 58.74 42.36 40.52 40.68 44.87 46.34 73.18 63.58 55.48 54.54 53.33
0.5 39.37 35.47 33.01 34.31 34.69 22.49 21.39 21.76 24.40 25.72 48.82 41.80 36.35 35.90 35.51
0.6 24.18 21.71 20.45 21.57 22.18 13.06 12.42 12.85 14.62 15.67 34.55 29.35 25.61 25.50 25.51
0.7 15.75 14.17 13.59 14.56 15.19 8.30 7.92 8.33 9.58 10.38 25.71 21.76 19.13 19.23 19.44
0.8 10.85 9.82 9.60 10.44 11.02 5.74 5.51 5.87 6.78 7.36 19.95 16.87 14.98 15.21 15.51
0.9 7.87 7.19 7.17 7.88 8.37 4.29 4.14 4.46 5.11 5.52 16.02 13.57 12.18 12.48 12.82
1.0 5.99 5.53 5.61 6.21 6.60 3.43 3.33 3.60 4.06 4.34 13.24 11.25 10.21 10.55 10.90
1.5 2.67 2.60 2.73 291 3.01 2.14 2.13 2.19 2.25 2.29 6.85 5.96 5.69 6.02 6.28
2.0 2.10 2.09 2.13 2.17 2.19 2.01 2.01 2.02 2.02 2.03 4.71 4.20 4.14 4.40 4.56
3.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.20 2.97 3.00 3.15 3.22

AEQL 92.88 90.12 89.90 92.60 93.79 78.64 77.97 78.78 81.19 82.27 169.49 151.00 145.78 152.46 156.55
h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15

Table 8. Steady-state performance of the 2-of-(h+1) KL precedence scheme for h=1, 2, 5, 10

and 15 when m = 500 and n = 5 for a nominal ARL, of 500

Shift N(0,1) t(5) GAM(L,1)
0.1 | 39305 | 38595 | 37566 | 391.06 | 377.46 | 365.09 | 362.14 | 358.19 | 378.28 | 367.76 | 334.02 | 320.37 | 303.03 | 308.66 | 295.75
0.2 231.38 | 22049 | 20909 | 21481 | 20791 | 18519 | 18148 | 179.95 | 19245 | 19013 | 19755 | 18159 | 16468 | 16348 | 156.39
03 12392 | 11483 | 106.68 | 108.73 | 106.03 8630 | 8331 | 8267 | 8937 89.87 11670 | 10363 | 91.26 89.29 85.82
0.4 67.81 61.64 56.81 | 58.00 57.28 4217 | 4025 | 4018 | 43.99 45,09 7289 | 6320 | 54.82 53.45 51.84
05 39.18 35.22 3257 | 3356 33.66 2236 | 2121 | 2142 | 2381 2487 4860 | 4151 | 3585 35.08 34.38
06 24.04 2152 2012 | 21.02 2141 12.96 12.28 1260 | 14.20 15.06 3437 | 2911 | 2521 24.85 2461
07 15.64 14.02 1333 1413 1459 8.22 7.81 8.14 9.26 9.92 2556 | 21.56 18.80 18.70 18.70
08 10.76 9.70 9.40 10.09 10.53 5.68 5.42 5.72 6.52 7.00 1982 | 16.70 14.70 14.75 14.88
0.9 7.80 7.09 7.00 7.60 7.97 4.24 4.07 4.33 4.90 5.23 1591 | 13.43 11.93 12.08 12.27
1.0 5.93 545 547 5.97 6.27 3.38 3.27 3.49 3.88 410 1314 | 1112 9.99 10.20 10.41
15 2.63 2.55 2.64 2.77 2.83 2.10 2.08 2.11 2.14 2.16 6.78 5.88 554 5.78 5.96
2.0 2.06 2.04 2.05 2.06 2.06 1.98 1.96 1.94 1.2 1.90 4.65 413 4.02 4.21 4.31
3.0 1.97 1.95 1.93 1.90 1.88 1.97 1.95 1.93 1.90 1.88 3.15 2.91 2.91 3.00 3.03

AEQL | 91.70 88.48 87.23 | 88.76 88.91 7755 | 7642 | 7628 | 77.67 77.94 167.70 | 148.69 | 141.85 | 14636 | 148.50
h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15




24

100 -

90

80 T

70 1

AFQL

A—A A A A A A A A A A A A A A A A A A A

S G G G G- G- G- S-S O O S S—— ¢

7
m
2 TR
iy oo TN\ m . K {,\
W EN 7 S\

- ZS_DR t(5)

- ZS_ KL N(0,1)

- SS_DRt(5)
- SS_DR GAM(,1)

- Basic prec N(O,1)
- Basic prec t(5)
- Basic prec GAM(1,1)

Variable
ZS_DR N(O,1)

ZS_DR GAM(1,1)

ZS_KL t(5)
ZS KL GAM(,1)
SS_DR N(0,1)

SS_KL N(0,1)
SS_KL t(5)
SS_KL GAM(1,1)

T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) AEQL when §,,,,= 0.7 (small shifts)

150

\

| -
8 100 84
< <
120
75‘\ a g, Ay A, _W
Ay A -+ 100 N=
A —A - A A S S —* =3 - — — — — — .1 - =
R SR i S SRS U o Sty S P S O S e 2 B S SR O S e O
_ ATi-w ST e AW AT -
o Aoy t\:!-\r-—-#---#\_,_.-0---4---«—-+\*._/4x-_‘_-+—‘*"+-\-t.-’*"§\.~&

\
»\—»—»—»——r—k»a—»——»—»—»—»——v——»—»a—»——»—»

T e e 1601
N

50 M
i

200

1801

1404

80

601,

—
1 2

— T T T T T T T T T T T T T T T —T
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3

9 10 11 12 13 14 15 16 17 18 19 20

(b) AEQL when 6,,,,= 1.5 (small & moderate shifts)

(c) AEQL when 6,,,,,.= 3 (small, moderate & large shifts)

Figure 2. Zero-state and steady-state overall performances of the 2-of-(h+1) DR/KL precedence and
the basic precedence schemes when m =500 and n =5

5. Simulation studies

In this section, we use Monte Carlo simulations with 100000 replications to check the

accuracy of the results obtained through the Markov chain approach. The Phase | sample size

effect on the Phase Il performance of the proposed schemes is also investigated through

extensive simulations with 10000 replications.

5.1

Monte Carlo simulation

The plotting statistics and characteristics of the run-length distribution can also be obtained

using the following steps:
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Step 1:Specify the Phase | reference sample size (m), the Phase Il test sample size (n), the
number of simulations (r), the value of h and the parameter(s) of the distribution. For
the IC case, the Phase | and Phase Il distributions are identical. For instance, both
distributions can be drawn from a N(0,1) distribution (i.e., § = 0). For the OOC case,
the Phase Il distribution is taken to be the same form as that for the Phase | sample,
but with a difference in the location parameter. In this case, if the Phase I is a N(0,1)
distribution, the Phase Il will be a N(§,1) distribution with § from zero (6 # 0).

Step 2: Set the plotting constant, a, to some integer value such that 1 < a < % and compute

the corresponding value of b (b = m — a + 1). For example, when m = 100 and h =
2, we found a = 64 and b = 437 so that the attained ARL, is close or equal to 500.

Step 3:Generate a Phase | sample, X, from a distribution such as N(0,1) distribution. The
control limits are given by LCL = X (q.n) and UCL = X(p.y. In our example, LCL =
X(64:500) aNd UCL = X(437:500)-

Step 4:Randomly generate a Phase Il test sample from the same distribution. In our example,
the Phase Il is generated from N(6,1) distribution. Compute the plotting statistic Y{;.,,
where j =r+ 1 if n = 2r + 1 when n is odd. Compare the plotting statistic to the
control limits obtained in Step 3. If this first point plots between the control limits (the
process is IC) we have to generate the next test sample, compute the next plotting
statistic and compare it to the control limits obtained in Step 3. Continue this process
until two points out of h 4+ 1 consecutive points plot beyond the control limits.

Step 5: The chart signals if: (i) the two points plot on or outside the control limits, no matter
whether one (or both) plot(s) above the UCL and the other (or both) plot(s) below the
LCL (DR scheme), and (ii) both points plot on or above (below) the UCL (LCL) (KL
scheme). If (i) or (ii) does not happen according to the type of scheme (i.e., DR or KL
scheme), then repeat Steps 4 and 5 until the chart signals for the first time and records
the number of subgroups needed to get to that stage. This number represents one
value of the run-length distribution.

Step 6:Repeat Steps 4 and 5 a total of r times.

Step 7:Once the unconditional run-length (URL) values are obtained, calculate: UARL =
1
~Xi-1 URL;.

Step 8:For 6 = 0, that is the IC case, if the ARL, value is much closer to the nominal value of

500, record the control limits (UCL and LCL). Otherwise, repeat Steps 2 to 7.
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Step 9:Repeat Step 3 to 7 using the control limits found in Step 8 by varying the shift (§ =0
(0.1) 3, where ¢ = 0 provides the IC values and 6 # 0 provides the OOC values).
Record the IC and OOC ARL values.

A thorough examination of the results showed that the plotting constants and characteristics
of the run-length distribution found using simulations are similar those found using Markov
chain approach.

Let UARLyc denote the UARL values computed using the Markov chain approach and
UARLgy denote the UARL values computed using simulations. Table 9 displays the
absolute percentage difference between the UARLyc and UARLgy values. The absolute

percentage difference is calculated as follows

UARLyc — UARLgy
UARLy

(19)

For instance, in zero-state mode, when (m, n) = (500, 5), § =0 and h =1, there is a
0.62% difference between the UARLyc and UARLg\ values of the DR scheme under
the N(0,1) distribution. From Table 9 it can be observed that in the zero-state mode,
under symmetric distributions, when h = 1, 2 and 5, there is a 0.63%, 1.18% and
1.43% (see boldfaced values in Table 9 - columns 2 to 4) difference between the
UARLyc and UARLS,y values of the 2-of-(h+1) DR scheme, respectively. However,
when h=1, 2 and 5, thereisa0.67%, 1.21% and 1.44% difference between the UARL ¢
and UARLg), values of the 2-of-(h+1) KL scheme, respectively. Under the heavy
tailed distributions, when h=1, 2 and 5, there is a 1.6%, 1.71% and 2.65% difference
between the UARLyc and UARLg, Vvalues of the 2-of-(h+1) DR scheme,
respectively; whereas, there is a 1.89%, 1.94% and 2.81% difference between the
UARLpc and UARLgy values of the 2-of-(h+1) KL scheme. Under the skewed
distributions, when h = 1, 2 and 5, there is a 2.36%, 3.04% and 3.12% difference
between the UARL yc and UARLg\ values of the 2-of-(h+1) DR scheme, respectively,
whereas there is a 2.76%, 2.98% and 3.01% difference between the UARLy,c and
UARLgy values of the 2-of-(h+1) KL scheme. For both DR and KL schemes, the

percentage difference between the UARLyc and UARLg\ Vvalues increases as (i) h
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increases, and (ii) the distribution departs from normality. As we can see, there is not
that much of a difference between UARLyc values and the UARLg\ values since the
maximum difference is close to 3%. In terms of the percent- age difference between
the AEQL values computed using the Markov chain approach and simulations, it can
be seen that the results of the two approaches are quite similar since the maximum

percentage difference is less than 0.1%.



Table 9. The absolute percentage difference between the UARL ¢ values computed using Markov chain and the UARL ;s values
computed using simulations when (m, n) = (100, 5), h=1, 2 and 5 with a nominal ARL, value of 500 under the N(0,1), t(5) and
GAM(1,1) distributions.

DR scheme KL scheme

N(0,1) t(5) GAM(1,1) N(0,1) t(5) GAM(1,1)
Shift h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5 h=1 h=2 h=5
0.0 062 114 143 065 171 252 086 154 291 043 089 135 020 099 135 120 0.81 197
0.1 0.08 087 060 136 093 265 236 3.04 294 0.00 121 083 097 158 138 276 298 3.01
0.2 025 0.76 098 160 106 218 213 231 312 001 094 072 126 129 262 248 201 209
0.3 0.08 063 068 153 081 165 178 173 182 054 058 042 105 176 185 249 178 1.99
0.4 063 088 106 154 055 195 155 134 160 038 012 068 150 119 202 222 223 165
0.5 053 110 118 131 084 217 133 155 226 030 0.07 027 137 194 108 242 215 233
0.6 014 117 114 121 062 239 142 167 170 0.67 037 060 181 175 119 129 223 192
0.7 030 1.18 125 159 075 090 121 101 113 020 043 003 145 159 268 189 111 213
0.8 059 103 107 119 071 09 109 133 113 028 0.08 0.17 127 103 262 251 194 166
0.9 043 089 098 120 091 081 103 098 129 062 057 097 074 152 151 174 256 1.38
1.0 035 103 086 121 072 071 135 085 103 049 037 116 088 075 095 121 220 1.25
11 0.14 102 081 107 048 070 128 080 104 064 0.09 110 099 036 202 171 141 1.29
1.2 022 100 078 110 051 074 115 106 111 049 032 136 189 120 187 122 179 120
1.3 026 102 027 114 066 063 088 082 1.03 003 011 140 181 116 281 226 107 152
14 0.18 054 091 094 028 069 073 076 112 026 028 144 167 145 254 124 0.89 0.95
15 023 032 089 084 039 073 081 075 091 011 037 117 152 099 201 118 093 0.78
1.6 001 071 051 105 048 042 069 072 104 038 0.02 087 078 101 156 080 106 1.01
1.7 006 013 072 089 035 046 070 042 108 027 0.08 047 095 059 085 074 066 0.36
1.8 029 023 063 083 004 029 073 030 105 0.01 0.01 052 048 055 0.78 063 108 0.33
1.9 005 040 075 071 022 021 069 058 105 013 022 014 060 064 066 039 103 0.53
2.0 0.18 038 0.71 024 027 013 051 049 043 0.17 0.01 010 0.03 049 0.20 0.30 0.90 0.18
25 0.12 0.12 028 005 005 008 042 040 004 0.09 0.08 018 0.04 0.04 006 030 060 0.32
3.0 0.03 0.03 006 000 000 001 008 022 021 0.02 0.02 0.04 0.00 000 000 004 022 0.19
AEQL 0.02 0.03 0.04 0.01 0.03 005 0.03 0.04 006 0.01 0.03 004 0.02 0.03 005 002 0.04 007
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5.2 Effect of the Phase | sample size on the performance of the proposed schemes

In real-life applications and specifically in manufacturing processes, the underlying quality
process distribution is mostly non-normal with unknown parameters (Case U). In this case,
the IC process parameters need to be estimated before process monitoring can begin. Using
parameter estimates degrades charts performances and may also give more false alarms than
expected. Many researchers pointed out the deterioration of the Phase Il scheme performance
due to the effect of estimation error (Bischak and Trietsch, 2007; Castagliola et al., 2012). In
such a case, a study of the effects (or impact) of parameter estimation on the control chart
performance is recommended and it focuses mostly on the IC characteristics of the run-length
distribution (Saleh et al., 2015). While studying the effects of parameter estimation on the
Phase Il chart performance, it is useful to examine the conditional run-length (CRL)
distribution. The CRL distribution and various associated issues have been studied by several
authors, including Chakraborti (2006) for Shewhart-type schemes. In this section, we focus
on the impact (or effect) of the Phase | reference sample size on the performance of the
proposed precedence schemes with respect to the CRL distribution and its characteristics
such as the conditional IC average run-length (CARL,) and conditional IC standard deviation
of run-length (CSDRL,).

The number of observations available for a Phase | analysis plays a crucial role in the
estimation of the values of any unknown parameters. Jensen et al. (2006) studied the effect of
estimation error on control charts performances in Phase Il. They concluded that the accurate
and precise estimation of any unknown process parameters is critical for achieving a
specified Phase Il chart performance and the size of the Phase | sample must often be quite
large in order to achieve the accurate and precise estimation needed. In order to answer the
question of the size of the Phase | sample needed for the enhanced precedence schemes, we
make use of the mean of the conditional ARL,(CAARL,) and the conditional standard
deviation of the ARL, (CSDARL,). The size of the Phase | reference sample is estimated
such that the CAARL, is close to the desired value of 500 and the CSDARL, values within
10% of the intended ARL, as recommended by Zhang et al. (2014).

The Monte Carlo simulation steps in the Phase | sample size study of the proposed

precedence schemes are given as follows:
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Step 1:For each Phase | sample size (say m = 100), we compute the M X M IC CRL (CRL,)
matrix CRLg,, . ,, Where M is the number of simulations (or replications).

Step 2: Compute the CARL, vector, CARL,,, ,, and the associated IC conditional standard
deviation of the run-length (CSDRL,) vector, CSDRLy,,  ,-

Step 3:Compute the CARL, and CSDRL, u - quantiles (they are equivalent to the percentiles;
for instance, u = 0.10 represents the 10" percentile, u = 0.11 represents the 11
percentile,..., u = 0.9 represents the 90" percentile etc.). This step allows us to
estimate the position (in percentage of the sample size) that guarantee the best
estimate of the plotting constant (see Figure 3).

Step 4:Repeat Steps 1 to 3 for the different Phase | sample size, m.

Step 5:For each triplet (m, a, b), compute the mean of the CARL, vector (CAARL,) and the
standard deviation of the CARL, vector (CSDARL,) for different value of m. Record
the CAARL, and CSDARL, values next to their corresponding triplet (m, a, b).

Step 6: Select the Phase | sample size such that the CAARL, value is close to the nominal
ARL, and the CSDARL, value within the 10% of the nominal ARL,. This sample size
represents the number of Phase | observations needed in order to achieve a stability
and better Phase 11 performance of the proposed schemes.

Note that the design of the proposed schemes requires the estimation of the plotting constants
a and b. Once one plotting constant is found, the other may be easily determined through the
expression defining the relationship between a, b and m; that is, a + b = m + 1 which means
a =m — b+ 1. From Figures 3 (a)-(c) it can be seen that, for the DR scheme, the proposed
scheme performs better if the estimate of the plotting constant b is near the 70" percentile
when m =500 and h = 1. For 100 < m < 500, the proposed scheme performs better when b
is between the 85" and 95" percentiles. When h = 2, the proposed scheme performs better
when b is between the 75" and 95" percentiles and m € {25, 50, 100, 200, 300, 400} and
near the 50" percentile when m = 500. When h = 5, the proposed scheme performs better
when b is between the 40" and 50" percentiles and m € {200, 300, 400} and between the 80"
and 95" percentiles when m = 100 and 500. From Figures 3 (d)-(f), for the KL scheme, it can
be seen that the proposed 2-of-2 (i.e., h = 1) scheme performs better when the estimate of the
plotting constant b is near the 70" and 90" percentiles and m € {400, 500} and {100, 200,

400}, respectively. For more details on the position of the estimate of the plotting constants,
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the reader is referred to Figure 3 at the intersection of each CARL, curve and CARL, = 500

(the position is read on x —axis).

Table 10 displays the CAARL, and its corresponding CSDRL, values in brackets for
different (m, a, b) triplets of the Shewhart 2-of-(h+1) precedence schemes. The results clearly
illustrate the potential problems associated with parameter estimation. The shaded cells of
Table 9 give the number of Phase | observations that guarantee stability and better
performance of the proposed schemes. It can be seen that, the Shewhart 2-of-2 and 2-0f-3 DR
precedence schemes require at least 200 Phase | observations, while the 2-of-6 DR
precedence scheme requires at least 300 Phase | observations. The 2-of-2 and 2-of-6 KL
precedence schemes require at least 200 Phase | observations, while the 2-of-6 KL

precedence scheme requires at least 100 Phase | observations.

Table 10. The CAARL, and CSDEL, (in brackets) of the Shewhart 2-of-(h+1) DR and KL precedence

schemes when h =1, 2 and 5 for a nominal ARL, of 500
DR KL
h 1 2 5 1 2 5

269.73 183.65 74.65 136.7 310.00 126.54

25 | (21.96) (75.07) (8.55) | (30.09) (90.23) (20.82)
co | 28384 31574 35044 | 46117 52141 43353

(2164) (4688) (7553) | (60.32) (78.00) (52.12)
Loo | 53608 437.23 48142 | 457.43 49490 54283

(24.36) (30.30) (40.09) | (25.91) (33.88) (44.90)

M | oo | 52442 527.27 466.73 | 47179 50310 50256
(20.60) (25.86) (26.74) | (2053) (22.8) (29.64)

47169 487.85 480.68 | 479.77 512.32 503.86
(17.68) (20.16) (26.56) | (18.73) (21.29) (31.87)

477.35 52412 510.83 | 487.33 518.89 511.16
(15.95) (20.53) (26.20) | (18.88) (19.67) (30.09)

49259 500.64 506.39 | 489.56 488.37 471.33
(16.71) (18.61) (19.48) | (17.82) (17.05) (17.75)

300

400

500
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Figure 3. The CARL of the 2-of-(h+1) precedence schemes for different values of the triplet (m, a, b) and u quantiles, whenn=5andh =1, 2 and 5
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6. Ilustrative example

In this section, we illustrate the design and implementation of the proposed schemes using a
well-known dataset from Montgomery (2001, page 223, Tables 5.2 and 5.3). The data are the
inside diameters of piston rings manufactured by a forging process. The data given in Table
5.2 contains fifteen Phase Il samples, each of size n = 5. Table 5.3 contains 125 Phase |
observations, that were collected when the process was considered IC (m = 125). These data
are considered to be the Phase | (or reference) observations for which a goodness of fit test

for normality is not rejected.

For both zero-state and steady-state modes, for a nominal ZSARL, (or SSARL,) of 500, the
zero-state and steady-state LCL and UCL of the 2-of-(h+1) DR precedence schemes with h =
1 (i.e., 2-of-2 scheme) are given by LCL; = X(19.125) = 73.99 and UCL; = X(107:125) = 74.012,
respectively. The subscript 1 from the LCL and UCL refers to the value of h. The zero-state
and steady-state LCL and UCL of the 2-of-4 DR precedence scheme are given by LCL; =
X16:125) = 73.99 and UCL3 = X(110:125) = 74.013, respectively. A plot of the median plotting
statistics for both cases is shown in Figure 4 (a). It is seen that 2-of-2 DR precedence scheme
signals for the first time on the tenth sample in the prospective phase (Phase Il), whereas the
2-0f-4 DR precedence scheme signals for the first time on the twelfth sample in the

prospective phase.

The zero-state and steady-state LCL and UCL of the 2-of-2 and 2-of-4 KL precedence scheme
are given by (LCLy, UCLq) = (X(21:125), X(105:125)) = (73.992, 74.011) and (LCL3, UCL3) =
(X(17:125), X(119:125)) = (73.986, 74.013), respectively. A plot of the median plotting statistics
for both cases is shown in Figure 4 (b). It is seen that 2-of-2 KL precedence scheme signals
for the first time on the tenth sample in the prospective phase (Phase 1l), whereas the 2-of-4
KL precedence scheme signals for the first time on the twelfth sample in the prospective

phase.

The example shows that the 2-of-2 DR and KL schemes outperform the 2-of-4 DR and KL

schemes. This agrees with our finds in Section 4.3.
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Figure 4. The 2-0f-2 and 2-of-4 DR and KL precedence schemes for the Montgomery (2001) piston
ring data

7. Summary and conclusion

Chakraborti et al. (2004) proposed a class of nonparametric Shewhart-type schemes, called
the precedence scheme, using some order statistic of a Phase Il sample as the charting
statistic and control limits constructed using some order statistics of the Phase | reference
sample. Chakraborti et al. (2009) improved the precedence scheme by using the 2-of-2 DR
and KL runs-rules using a backward Markov chain approach. Malela-Majika et al. (2016b)
proposed the 2-of-2 KL minimum and median precedence schemes using simulations. In this
paper, we proposed the generalized 2-of-(h+1) DR and KL precedence schemes using a
forward Markov chain approach. The performance of the proposed charts is thoroughly

investigated in order to suggest the most efficient precedence monitoring scheme.

Chakraborti et al. (2009) showed that the 2-of-2 DR and KL schemes enhance the basic
precedence schemes. In this paper, we showed that the addition of runs-rules to the basic
precedence scheme does not always improve its performance in some of the cases. Therefore,
a thorough investigation of the performance of control schemes supplemented with different
types of runs-rules is needed. The performance analysis confirms that proposed 2-of-(h+1)

KL precedence schemes perform better than the 2-of-(h+1) DR precedence schemes.

The performance analysis showed that there is not a specific value of h that provides a
superior precedence scheme. Therefore, quality practitioners are recommended to use the

value of h between 2 and 6 (2 < h < 6) in order to monitor efficiently small and moderate




35

shifts. In case practitioners are interested to monitor processes where 8,4, = 3 using the
precedence scheme with supplementary 2-of-(h+1) runs-rules, they would be advised to use h
=4 or 5. In practice, we would recommend operators and quality practitioners to make use of
small values of h for two main reasons: (i) simplicity in the design and implementation of

schemes, (ii) higher efficiency in monitoring small and moderate shifts.

In future, we will consider investigating the performance of the improved 2-of-(h+1),
modified 2-of-(h+1), improved modified 2-of-(h+1), h-of-h (with h =2, 3, ...), improved h-
of-h and the synthetic precedence control charts. Also, in this paper we only considered
symmetric control limits and the proposed schemes, using non-symmetric control limits, will

be investigated as a future research problem.
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