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Abstract 

Nonparametric statistical process monitoring schemes are robust alternatives to traditional 

parametric process monitoring schemes, especially when the assumption of normality is 

invalid or when we do not have enough information about the underlying process 

distribution. In this paper, we propose to improve the well-known precedence scheme using 

the 2-of-(h+1) runs-rules schemes (where ℎ > 1). The performance of the proposed control 

schemes are thoroughly investigated using both Markov chain and simulations based 

approaches. We find that the proposed schemes outperform their competitors in many cases. 

A real-life example is given to illustrate the design and implementation of the proposed 

schemes. 

Keywords: nonparametric scheme; precedence control scheme; generalized 2-of-(h+1) runs-

rules schemes; Markov chain approach; simulations  

  

1.   Introduction  

In these last two decades, many researchers have devoted their attention on nonparametric 

statistical process monitoring (NSPM) schemes. If the in-control (IC) run-length distribution 

and consequently, all the IC characteristics of a monitoring scheme are the same for every 

continuous probability distribution function (pdf), the scheme is referred to as “distribution-

free” (or nonparametric). Distribution-free schemes are mostly recommended when the 
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underlying distribution of the quality process is unknown or non-normal, for example, see 

Qiu (2014), Graham et al. (2017), Triantafyllou (2017), Mukherjee and Sen (2018), Patil and 

Shirke (2017) and Zombade and Ghute (2018). The plotting statistics of these schemes (or 

charts) are either the sign or sign-rank or Mann-Whitney or some order statistic of the 

observations. One of the most popular nonparametric schemes known as “the median 

scheme” was proposed by Janacek and Meikle (1997). The lower and upper control limits 

(LCL and UCL) of this scheme are given by two order statistics of the Phase I (or reference) 

sample 𝑋1, 𝑋2,…, 𝑋𝑚; and the plotting statistic is the median, M, of the Phase II (or test) 

sample 𝑌1, 𝑌2,…, 𝑌𝑛. This scheme is considered to be the basic median scheme denoted by 

“1-of-1 scheme”. The basic median scheme signals when the charting (or plotting) statistic 

plots on or outside of the control limits. Therefore, the basic scheme uses only one plotting 

statistic to decide whether the process is IC or out-of-control (OOC). Klein (2000) showed 

that the 1-of-1 (or basic) scheme is relatively insensitive to small shifts. To overcome this 

problem, many researchers suggested the addition of runs-rules; see for example, Derman and 

Ross (1997), Klein (2000), Chakraborti et al. (2009) and Tran (2017, 2018).   

Traditional Shewhart-type schemes are usually more effective in detecting large and abrupt 

shifts in one or more process parameters. Nevertheless, they are often found to be less 

efficient for small to moderate shifts. Traditional Shewhart-type schemes are often integrated 

with supplementary runs-rules to improve their performance in detecting small and moderate 

shifts. A scheme is expected to give an OOC signal if one or more plotting statistics fall 

outside the control limits or when the plotted points do not exhibit a random pattern of 

behaviour. Balakrishnan and Koutras (2002) defined a run as an uninterrupted sequence of 

the same elements bordered at each end by other types of elements. Two types of runs exist in 

statistical process control and monitoring (SPCM), referred to as “run up” (when there is an 

increasing trend in the observed plotting statistics) and “run down” (when there is a 

decreasing trend in the observed plotting statistics). The runs are very important in assessing 

patterns on schemes. Western electric company (1956) and Nelson (1984) defined eight rules 

for detecting nonrandom patterns on schemes and later on, Trip and Does (2010) suggested 

four rules. For more details on the decision rules, readers are referred to Montgomery (2001). 

Different other types of rules (runs-rules) have been considered in the literature and they are 

mainly described as follows:  
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(i) the non-side-sensitive (NSS) w-of-(w+v) with w > 1 and v ≥ 0 (by Derman and 

Ross (2010), hereafter DR) that signals when 𝑤 out of w+v successive samples 

fall on or outside the control limits, no matter whether some (or all) of the 𝑤 

samples fall above the UCL and others (or all) fall below the LCL which are 

separated by at most 𝑣 samples that fall between the control limits, 

(ii) the side-sensitive w-of-(w+v) (by Klein (2000), hereafter KL) that signals when w 

samples out of w+v successive samples plot above (below) the UCL (LCL) which 

are separated by at most v samples that plot below (or above) the UCL (LCL), 

respectively.  

Earlier in current decade, Human et al. (2010) and Kritzinger et al. (2014) investigated the 

performance of the nonparametric sign and signed-rank charts with supplementary runs-rules. 

The 2-of-2 precedence schemes were investigated by Chakraborti et al. (2009) and Malela-

Majika et al. (2016a, 2016b). Shongwe and Graham (2016) explored the zero-state and 

steady-state performance of a variety of synthetic and runs-rules schemes. Rakitzis (2016) 

used two-sided schemes supplemented with runs-rules to monitor exponential data. Li et al. 

(2016) proposed a robust algorithm for an economic design of nonparametric schemes. More 

recently, several authors have investigated the properties of a variety of monitoring schemes 

supplemented with runs-rules, see for example, Maravelakis (2017), Rakitzis (2017), Patil 

and Shirke (2017), Chang et al. (2018) and Mehmood et al. (2018). The economic design of 

monitoring schemes supplemented with runs-rules was investigated by Lee and Khoo (2017) 

and Golbafian et al. (2017). Zombade and Ghute (2018) proposed a Shewhart-type 

nonparametric control chart for monitoring the process location. Tran (2017, 2018) proposed 

the median and t schemes with supplementary runs-rules for monitoring the process mean. 

The performances of these schemes are investigated using either exact formulae, simulations 

or the Markov chain approach. When using simulations to evaluate the performance of a 

scheme, an inerrant error of simulation occurs and this may considerably affect the results. 

This error can be minimized by increasing the number of simulations (or replications), which 

consequently increases the computational times required for computing the run-length 

characteristics. To fix this problem, researchers are recommended to use exact formulas or a 

Markov chain procedure, see for example, Li et al. (2014), Petcharat et al. (2015) and Dyer 

(2016).    
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In this paper, we use a Markov Chain approach to investigate the zero-state and steady-state 

performances of the two-sided generalized 2-of-(h+1) DR and KL Shewhart-type precedence 

schemes where h is a positive integer (h > 0). The investigation is carried in terms of their IC 

and OOC unconditional average run length (UARL). We also use the extra quadratic loss 

function (EQL), as in Shongwe and Graham (2016), to investigate the overall zero-state and 

steady-state performances of the proposed schemes for different shift ranges. Extensive 

simulations (with 100000 replications) are also used to check the accuracy of the results. The 

investigation of the performance of the improved 2-of-(h+1) DR and KL schemes (i.e. the 1-

of-1 or 2-of-(h+1) DR and KL Shewhart-type precedence schemes) will be discussed in a 

separate article. Note that Chakraborti et al. (2009) proposed a class of precedence charts 

based on the 2-of-2 scheme which is a particular case of the proposed generalized 2-of-(h+1) 

DR and KL precedence charts when h = 1 and explored the zero-state performance only. 

Therefore, in this paper, we first investigate the IC and OOC performances of the 2-of-(h+1) 

for h ≥ 1 (as Chakraborti, Eryilmaz, and Human (2009) and Malela-Majika, Chakraborti, and 

Graham (2016) did for h = 1 (only)). Secondly, we use a Markov chain approach slightly 

different from that in Chakraborti, Eryilmaz, and Human (2009). While Chakraborti, 

Eryilmaz, and Human (2009) studied the zero-state performance only, here, we study both the 

zero- and steady-state modes. Finally, the overall performance metric, i.e. zero- and steady-

state average EQL (AEQL) values are computed to supplement the specific shift metric i.e. 

zero- and steady-state average run-length (ARL) values. 

The remainder of this paper is organized as follows: in Section 2, firstly the 1-of-1 (i.e. basic) 

median precedence scheme is introduced, and, secondly, the general form of the transition 

probability matrices (TPMs) of the generalized 2-of-(h+1) DR and KL schemes are given. In 

Section 3, the performance measures and the expressions of the zero-state and steady-state 

ARL for both DR and KL schemes, are developed. Section 4 provides the design and 

implementation of the proposed charts and discusses the IC and OOC zero-state and steady-

state performances of the 2-of-(h+1) DR and KL Shewhart-type precedence schemes. In 

Section 5, the effect of the Phase I sample size on the Phase II performance, of the proposed 

schemes, are investigated using extensive simulations. A real-life application of the proposed 

schemes is given in Section 6. Section 7 gives a concluding summary and some 

recommendations.  
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2.    Shewhart-type precedence scheme with supplementary runs-rules 

2.1   1-of-1 precedence scheme 

Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑚} be a reference sample of size 𝑚 available from an IC process with 

an unknown continuous cdf 𝐹(𝑥). Let 𝑌𝑗
ℎ (with 𝑗 = 1, 2, …, 𝑛 and ℎ = 1, 2, …) denote the 

ℎ𝑡ℎ test sample of size 𝑛ℎ, 𝑛ℎ = 𝑛 ∀ℎ, since we are assuming that the Phase II samples are all 

of the same size. For instance, 𝑌𝑗
1 = {𝑌1, 𝑌2, … , 𝑌𝑛} is the first test sample of size 𝑛. Let 𝐺ℎ(𝑦) 

denote the cdf of the distribution of the ℎ𝑡ℎ Phase II sample and let 𝐺ℎ(𝑦) = 𝐺(𝑦) ∀ℎ, since 

the Phase II samples are all assumed to be identically distributed. Let assume that the location 

model is given by 𝐺(𝑡) = 𝐹(𝑡 − 𝛿), for all t, where 𝛿 is the location difference (or shift in the 

location parameter). The process is IC in Phase II when 𝐺 = 𝐹 which happens when 𝛿 = 0. 

The precedence scheme is a general class of nonparametric schemes that uses the 𝑗𝑡ℎ order 

statistic in the Phase II sample 𝑌(𝑗:𝑛) (such as the minimum, lower quartile, median, upper 

quartile and maximum) as the charting statistic. In the case of the two-sided Shewhart-type 

precedence scheme, the charting statistic 𝑌(𝑗:𝑛) is compared to the LCL and UCL which are 

given by the 𝑎𝑡ℎ and 𝑏𝑡ℎ order statistics of the Phase I sample, denoted 𝑋(𝑎:𝑚) and 𝑋(𝑏:𝑚) 

respectively, where 1 ≤ a < b ≤ m (see Figure 1). When j = 1, the corresponding precedence 

scheme is referred to as the minimum precedence scheme. However, when j = n, the 

precedence scheme is referred to as the maximum precedence scheme. When 𝑛 is odd, say, 

𝑛 = 2𝑟 + 1, then 𝑗 = 𝑟 + 1 corresponds to the unique test sample median and the 

corresponding precedence scheme is called median precedence scheme. In the current paper, 

we consider the median precedence scheme and, only for brevity and simplicity throughout 

the paper, we refer to it as the precedence scheme, omitting the word median. 
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Figure 1. Different zones of the proposed control schemes 

 

For the precedence scheme with known process parameters (that is, under Case K), we 

determined a as well as b and, consequently, the control limits, by setting the false alarm rate 

(FAR) to a desirable small value, say 0.0027 or 0.0020. The process is said to be OOC at the 

ith  sampling time if the charting statistic 𝑌(𝑗:𝑛) ≥ 𝑈𝐶𝐿 or 𝑌(𝑗:𝑛) ≤ 𝐿𝐶𝐿. 

In Phase II, the random variable 𝑌 follows a beta distribution with parameters 𝑗 and 𝑛 − 𝑗 + 1 

(see for example, Mukherjee, Graham, and Chakraborti 2013). Therefore, the conditional 

probabilities that the charting statistic plots in Zones 1, 2 and 3 (see Figure 1) are given by  

𝑝0 = 𝑃(𝑌(𝑗:𝑛) ∈ 𝜃) where 𝜃 ∈ {1,2,3}: 

𝑝1 = 𝑃(𝑌(𝑗:𝑛) ≥ 𝑋(𝑏:𝑚)|𝑋(𝑏:𝑚) = 𝑥(𝑏:𝑚)) = 𝐼(𝐺𝐹
−1(𝑈(𝑏:𝑚)), 𝑗, 𝑛 − 𝑗 + 1), (1) 

  

𝑝2 = 𝑃(𝑋(𝑎:𝑚) ≤ 𝑌(𝑗:𝑛) ≤ 𝑋(𝑏:𝑚)|𝑋(𝑎:𝑚) = 𝑥(𝑎:𝑚), 𝑋(𝑏:𝑚) = 𝑥(𝑏:𝑚)) 

                              = 𝐼(𝐺𝐹−1(𝑈(𝑏:𝑚)), 𝑗, 𝑛 − 𝑗 +  1) −  𝐼(𝐺𝐹
−1(𝑈(𝑎:𝑚)), 𝑗, 𝑛 − 𝑗 + 1)                                      

(2) 

and 

 𝑝3 = 𝑃(𝑌(𝑗:𝑛) ≤ 𝑋(𝑎:𝑚)|𝑋(𝑎:𝑚) = 𝑋(𝑎:𝑚)) = 𝐼(1 − 𝐺𝐹
−1(𝑈(𝑎:𝑚)), 𝑗, 𝑛 − 𝑗 + 1), (3) 

respectively, where 𝐼(. , . , . ) denotes the incomplete beta function and 𝛹(𝑢) = 𝐺𝐹−1(𝑈(𝑒:𝑙)) 

is the conversion function for any two continuous distributions 𝐺 and 𝐹 where 𝑈(𝑒:𝑙) 

represents the 𝑒𝑡ℎ order statistic of a sample of size 𝑙 from the Uniform (0,1) distribution. 
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Note that Equations (1) - (3) do not depend on the parent cdfs, when the process is IC or 𝐹 =

𝐺. 

It is important to know that the process is IC if 𝐺 = 𝐹. In this case,  𝛹(𝑢) = 𝐺𝐹−1(𝑢) = 𝑢 

for any 𝑢 𝜖 (0,1). For more details on the precedence scheme, the reader is referred to 

Chakraborti, Van der Laan, and Van de  Wiel  (2004);  Chakraborti,  Eryilmaz, and Human 

(2009); Balakrishnan, Paroissin, and Turlot (2015) and Malela- Majika, Chakraborti, and 

Graham  (2016). 

2.2   The generalized 2-of-(h+1) DR and KL Shewhart-type precedence schemes: 

2.2.1. Transition probability matrices (TPMs) 

Before introducing the general results, we first discuss how to obtain the TPMs of the 2-of-

(h+1) KL and DR schemes when h = 2. To construct the TPMs, we need to define the 

compound pattern denoted Λ that results in an OOC event – this procedure is also used in 

Shongwe and Graham (2016). Let us consider the compound pattern Λ ={11, 121, 33, 323}. 

For example, ‘323’ indicates that in a sequence of three test samples, the first and third 

samples are lower non-conforming samples (i.e. plot in Zone 3 – see Figure 1), and the 

second is a conforming sample (i. e. plots in Zone 2). The elements, 11, 121, 33 and 323 in 

the compound pattern Λ show all possible ways of obtaining and OOC signal using the 2-of-

(h+1) KL scheme. The Markov chain states of the 2-of-(h+1) KL scheme, based on the 

compound pattern Λ when h = 2, are obtained as follows (see Table 1): 

Step 1: List all the elements in the compound pattern Λ. In our example Λ = {11, 121, 33, 

323}. 

Step 2: Create the dummy state denoted 𝜙 which is defined by the single IC state given by 

{2}. This IC state can also be denoted by 𝜂ℎ+1 = 𝜙. Thus, when h = 2, 𝜂3 = 𝜙= 

{2}. 

Step 3: Decompose each element of the compound pattern given in Step 1 into its basic 

(i.e. transient sub-patterns) states by removing the last nonconforming element. 

These sub-patterns are non-absorbing states denoted by 𝜂1 𝜂2 𝜂4 and 𝜂5. For 

example, the element ‘323’ is decomposed into a transient state ‘32’. Decomposing 

all elements in Λ give the complete set of the basic states denoted by 𝜂. Therefore, 

when h = 2, 𝜂 = {12, 1, 3, 32} where the basic states are defined as 𝜂1 = {12}, 
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𝜂2 = {1}, 𝜂4 = {3} and 𝜂5 = {32}. Note that the sub-pattern 𝜂3 (i.e. 𝜂ℎ+1), which 

is also non-absorbing, is defined in Step 2. 

 Step 4: Denote the OOC states in Step 1 as “OOC”. For example, for h = 2, OOC = {11, 

121, 33, 323}. 

Step 5: Combine the states in Steps 2 to 4 to get the state space denoted by Ω. Hence, when 

h = 2, the state space of the 2-of-(h+1) KL scheme is given by Ω = {𝜂1, 𝜂2, 𝜂3 = 𝜙, 

𝜂4, 𝜂5; OOC}. The number of non-absorbing sub-patterns from the state space is 

denoted by 𝜏. Therefore, the essential TPM of the proposed scheme is a 𝜏 × 𝜏 

matrix {where 𝜏 = 2h + 1). When h = 2, 𝜏 = 5. For illustration purpose, in Table 1, 

the state space Ω is constructed for h = 1, 2, 3 and 4 for the KL schemes. 

Step 6: Construct the TPMs of the proposed KL schemes as shown in Table 2 when h = 1, 

2 and 3. 

 

Table 1. Decomposition of the TPM’s state space of a two-sided 2-of-(h+1) DR and KL 

schemes when h = 1, 2, 3 & 4 

h Scheme Λ 𝜙 𝜂 Ω 

1 
*DR Λ1={00} 𝜂1={2} 𝜂2={0} {𝜙;𝜂2;OOC} 

KL Λ1={11}, Λ2={33} 𝜂2={2} 𝜂1={1}, 𝜂3={3} {𝜂1; 𝜙;𝜂3;OOC} 

2 

*DR Λ1={00}, Λ2={020} 𝜂1={2} 𝜂2={0}, 𝜂3={02} {𝜙;𝜂2,𝜂3;OOC} 

KL 
Λ1={11}, Λ2={121}, 

Λ3={33}, Λ4={323} 
𝜂3={2} 

𝜂1={12},𝜂2={1}, 

𝜂4={3},𝜂5={32} 
{𝜂1,𝜂2;𝜙;𝜂4,𝜂5;OOC} 

3 

*DR Λ1={00},  Λ2={020}, Λ3={0220} 𝜂1={2} 𝜂2={2}, 𝜂3={02}, 𝜂4={022} {𝜙;𝜂2,𝜂3,𝜂4;OOC} 

KL 

Λ1={11},  Λ2={121}, 

Λ3={1221}, 

Λ4={33},  Λ5={323}, Λ6={3223} 

𝜂4={2} 
𝜂1={122}, 𝜂2={12}, 𝜂3={1},  

𝜂5={3}, 𝜂6={32}, 𝜂7={322} 
{𝜂1,𝜂2,𝜂3;𝜙;𝜂5,𝜂6,𝜂7;OOC} 

 

4 
*DR 

Λ1={00},  Λ2={020}, 

Λ3={0220}, Λ4={02220} 
𝜂1={2} 

𝜂2={0},  𝜂3={02}                  

𝜂4={022}, 𝜂5={0222} 
{𝜙;𝜂2,𝜂3, 𝜂4,𝜂5;OOC} 

KL 

Λ1={11},  Λ2={121}, 

Λ3={1221}, Λ4={12221}, 

Λ5={33}, Λ6={323}, Λ7={3223}, 

Λ8={32223}  

𝜂5={2} 

𝜂1={1},  𝜂2={12}, 𝜂3={122}, 

𝜂4={1222}, 𝜂6={3}, 

𝜂7={32}, 𝜂8={322}, 

𝜂9={3222} 

{𝜂1,𝜂2,𝜂3,𝜂4;𝜙;𝜂6,𝜂7,𝜂8,𝜂9;OOC}  

*Note: for the DR scheme, Zone 0 = Zone 1 ∪ Zone 3 = (-∞, 𝐿𝐶𝐿] ∪ [UCL, + ∞).  

Let us now consider the Markov chain states of the 2-of-(h+1) DR scheme based on the 

compound pattern Λ when h = 2. In this case, the compound pattern is given by Λ = {11, 121, 

33, 323, 123, 13, 31, 321}. Accordingly to the DR scheme properties, and in order to simplify 

the compound pattern, we denote Zone 0 = Zone 1 ∪ Zone 3 since the DR scheme is a non-

side-sensitive scheme. Hence, we assume that state 1 and state 3 represent the non-

conforming state denoted by state 0. Therefore, the compound pattern becomes Λ = {00, 020, 

00, 020, 020, 00, 00, 020} which is simplified into Λ = {00, 020}. Thus, the Markov chain 

states, of the 2-of-(h+1) DR scheme for h = 2, based on the simplified compound pattern are 

obtained as follows (see Table 1): 
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Step 1: List all the elements in the compound pattern Λ. In our example Λ = {00, 020}. 

Step 2: Create the dummy state denoted 𝜙 which is defined by the single IC state given by 

{2}. To simplify the notation, the dummy (i.e. single IC) state will be denoted as 

𝜂1 = 𝜙 = {2} in Step 5. 

Step 3: Decompose each element of the compound pattern given in Step 1 into its basic 

(i.e. transient sub-patterns) states by removing the last nonconforming element. 

These sub-patterns are non-absorbing states denoted by 𝜂2 and 𝜂3. Note that the 

sub-pattern 𝜂1 which is also non-absorbing, is defined in Step 2. In our example for 

h = 2, 𝜂2 = {0} and 𝜂3 = {02}. 

 Step 4: Denote the OOC states in Step 1 as “OOC”. For example, for h = 2, OOC = {00, 

020}. 

Step 5: Combine the states in Steps 2 to 4 to get the state space denoted by Ω. Hence, when 

h = 2, the state space of the 2-of-(h+1) DR scheme is given by Ω = {𝜂1 = 𝜙, 𝜂2, 𝜂3; 

OOC}. Therefore, the essential TPM of the proposed DR scheme is a 𝜏 × 𝜏 matrix 

{where 𝜏 = h + 1). When h = 2, 𝜏 = 3. For illustration purpose, in Table 1, the state 

space Ω is constructed for h = 1, 2, 3 and 4 for the DR schemes. 

Step 6: Construct the TPMs of the proposed DR schemes as shown in Table 2. 

 

For more details on how to construct the TPMs of the 2-of-(h+1) KL and DR schemes, 

readers are referred to Shongwe and Graham (2016, 2017). 

Table 2 presents the TPMs of the 2-of-(h+1) KL and DR schemes when h = 1, 2 and 3 where 

𝑝1, 𝑝2 and 𝑝3 are computed using Equations (1)-(3), respectively, and 𝑝0 = 𝑝1 + 𝑝3. 

 

  



10 
 

Table 2. TPMs of the two-sided 2-of-(h+1) DR and KL schemes when h = 1, 2 and 3 

h DR scheme KL scheme 

1 

 𝜙 𝜂2 OOC 

𝜙 𝑝2 𝑝0 0 

𝜂2 𝑝2 0 𝑝0 

OOC 0 0 1 
 

 

 
 𝜂1 𝜙 𝜂3 OOC 

𝜂1 0 𝑝2 𝑝3 𝑝1 

𝜙 𝑝1 𝑝2 𝑝3 0 

𝜂3 𝑝1 𝑝2 0 𝑝3 
OOC 0 0 0 1 

2 

 𝜙 𝜂2 𝜂3 OOC 

𝜙 𝑝2 𝑝0 0 0 

𝜂2 0 0 𝑝2 𝑝0 

𝜂3 𝑝2 0 0 𝑝0 

O
C  0 0 0 1 

  

 

 𝜂1 𝜂2 𝜙 𝜂4 𝜂5 OOC 

𝜂1 0 0 𝑝2 𝑝3 0 𝑝1 

𝜂2 𝑝2 0 0 𝑝3 0 𝑝1 

𝜙 0 𝑝1 𝑝2 𝑝3 0 0 

𝜂4 0 𝑝1 0 0 𝑝2 𝑝3 

𝜂5 0 𝑝1 𝑝2 0 0 𝑝3 
OOC 0 0 0 0 0 1 

3 

 𝜙 𝜂2 𝜂3 𝜂4 OOC 

𝜙 𝑝2 𝑝0 0 0 0 

𝜂2 0 0 𝑝2 0 𝑝0 

𝜂3 0 0 0 𝑝2 𝑝0 

𝜂4 𝑝2 0 0 0 𝑝0 

OOC 0 0 0 0 1 
 

 𝜂1 𝜂2 𝜂3 𝜙 𝜂5 𝜂6 𝜂7 OOC 

𝜂1 0 0 0 𝑝2 𝑝3 0 0 𝑝1 

𝜂2 𝑝2 0 0 0 𝑝3 0 0 𝑝1 

𝜂3 0 𝑝2 0 0 𝑝3 0 0 𝑝1 

𝜙 0 0 𝑝1 𝑝2 𝑝3 0 0 0 

𝜂5 0 0 𝑝1 0 0 𝑝2 0 𝑝3 

𝜂6 0 0 𝑝1 0 0 0 𝑝2 𝑝3 

𝜂7 0 0 𝑝1 𝑝2 0 0 0 𝑝3 
OOC 0 0 0 0 0 0 0 1 

 

Note: 𝑝0 = 𝑝1 + 𝑝3 (since Zone 0 = Zone 1 ∪ Zone 3) 

 

3.    Run-length distribution of the 2-of-(h+1) schemes 

The characteristics of the run-length distribution reveal important information about the 

performance of a control chart. In this section, we give the expressions of the run-length 

distribution of the proposed schemes.  

The TPM of a two-sided 2-of-(h+1) DR scheme using Markov chain approach for any integer 

𝜏 is given by 

𝑷(𝜏+1)×(𝜏+1) = (
𝑸𝜏×𝜏 | 𝒓𝜏×1
− − −
𝟎1×𝜏
′ | 11×1

) (4) 

 

where 𝑸 = 𝑸𝜏×𝜏 is the essential TPM of the chart, 𝒓 = 𝟏 − 𝑸𝟏 with 𝒓 = 𝒓𝜏×1, 𝟎𝜏×1 =

(0 0…0)′ and 𝟏 = 𝟏𝝉×𝟏 = (1 1…1)
′. Note that Equation (4) is very important in the 

derivation of the properties (or characteristics) of the run-length using the Markov chain 

technique (see Fu and Lou (2003)). Thus, the conditional run-length (CRL) distribution and 

ARL of the 2-of-(h+1) schemes are given by 

 

 𝑷(𝑁 = 𝑡) = 𝝃 𝑸𝑡−1(𝐈 − 𝑸)𝟏 for 𝑡 = 1, 2, 3, … with 𝑸0 = 𝐈 (5)  
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and 

 𝑪𝑨𝑹𝑳 = 𝝃 𝐑 (6)  

 

respectively, where 𝐈 = 𝐈𝜏×𝜏 and 𝝃 = 𝝃1×𝜏 is the initial probability vector and 𝐑 =

(𝐈 − 𝑸)−𝟏𝟏 is the 𝜏 × 1 CARL vector. 

Therefore, the unconditional ARL (UARL) is then defined by 

 

 𝑼𝑨𝑹𝑳 = ∫ ∫ 𝑪𝑨𝑹𝑳
𝑡

0

1

0
𝑓𝑎𝑏(𝑠, 𝑡)𝑑𝑠𝑑𝑡 (7)  

 

where 𝑓𝑎𝑏(𝑠, 𝑡) =
𝑚!

(𝑎−1)! (𝑏−𝑎−1)!(𝑚−𝑏)!
𝑡𝑎−1(𝑡 − 𝑠)𝑏−𝑎−1(1 − 𝑡)𝑚−𝑏 which is the joint pdf of 

the 𝑎𝑡ℎ and 𝑏𝑡ℎ order statistics in a random sample of size m from the Uniform (0,1) 

distribution, s and t are random variables from the Uniform (0,1) distribution. 

 

Note that in order to compute Equations (5)-(7), the initial probability vector (i.e. 𝝃) has to be 

defined. In the zero-state mode we have 𝝃 = 𝒒 = (1 0 0 … 0) for the 2-of-(h+1) DR scheme. 

The zero-state initial probability vector of the 2-of-(h+1) KL scheme is given by 𝝃 = 𝒒 =

(0 …  0 1 0 …  0) where the unique “1” is located at the 
𝜏+1

2

𝑡ℎ
 position. However, in the 

steady-state mode, 𝝃 = 𝒔 = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝜏) which is obtained by dividing each element of 

𝑸(𝛿 = 0) by its corresponding row sum, so that the new essential TPM 𝑸 called the 

conditional essential TPM, denoted by 𝑸𝑪 is ergodic (i.e. 𝒔T𝑸𝑪 = 𝒔
T subject to ∑ 𝒔𝑗

𝜏
𝑗=1 = 1). 

Therefore, the zero-state initial probability vectors of the 2-of-(h+1) DR and KL schemes are 

given by 

 𝒒1×𝜏 = (1 0 0 … 0) (8a)  

and 

 𝒒1×𝜏 = (0 0 0…1𝜏+1
2

 … 0 0) (8b)  

respectively. 

However, the steady-state initial probability vector of the 2-of-(h+1) DR and KL schemes are 

given by  

 

                                                                  𝒔1×𝜏 =
1

1+ℎ 𝑝0
 (1 𝑝0 𝑝0… 𝑝0) (9a) 

and 
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 𝐬(1×𝜏) =

(

 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
s3
⋮

sℎ−2
sℎ−1
sℎ
sℎ+1
sℎ+2
sℎ+3
sℎ+4
⋮

s2ℎ−1
s2ℎ
s2ℎ+1)

 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

2∑ 𝜃𝑖
ℎ−1

𝑖=0
+2𝜃ℎ(1−𝑝2)−1

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜃ℎ−1

𝜃ℎ−2

𝜃ℎ−3

⋮
𝜃2

𝜃
1

2𝜃ℎ(1 − 𝑝2)
−1

1
𝜃
𝜃2

⋮
𝜃ℎ−3

𝜃ℎ−2

𝜃ℎ−1 )

 
 
 
 
 
 
 
 
 
 
 
 

′

 (9b)  

 

respectively, with 𝑝0 = 𝑝1 + 𝑝3, 𝜃 =
2𝑝2

1+𝑝2
 and  𝑝2 is defined in Equation (2). 

3.1   Zero-state and steady-state run-length characteristics of the 2-of-(h+1) DR schemes 

The zero-state and steady-state modes are mostly used to characterize the short-term and the 

long-term run-length properties of a scheme. The zero-state run-length is defined as the 

number of sampling points at which the chart first signals given that it begins in some 

specific initial state. However, the steady-state run-length is the number of sampling points at 

which the chart first signals given that the process begins and stays IC for a long time, then at 

some random time, an OOC is observed.  

Equation (4) of the 2-of-(h+1) DR schemes for any value of h is given by 

 

 𝜙 𝜂2 𝜂3 𝜂4 ⋯ 𝜂ℎ+1 OOC 

𝜙 𝑝2 𝑝0 0 0 ⋯ 0 0 

𝜂2 0 0 𝑝2 0 ⋯ 0 𝑝0 

𝜂3 0 0 0 𝑝2 ⋯ 0 𝑝0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝜂ℎ 0 0 0 0 ⋯ 𝑝2 𝑝0 

𝜂ℎ+1 𝑝2 0 0 0 ⋯ 0 𝑝0 

OOC 0 0 0 0 ⋯ 0 1 

 

where 𝜏 = ℎ + 1 and 𝑝0 = 𝑝1 + 𝑝3. For both zero- and steady-state modes, the CARL vector 

(i.e. 𝐑𝜏×1) of the 2-of-(h+1) DR scheme for any value of h is given by 
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                𝐑𝜏×1(𝛿) =

(

 
 
 
 
 
 
 

𝜁1(𝛿)

𝜁2(𝛿)

𝜁3(𝛿)

𝜁4(𝛿)
⋮

𝜁ℎ−2(𝛿)

𝜁ℎ−1(𝛿)

𝜁ℎ(𝛿)

𝜁ℎ+1(𝛿))

 
 
 
 
 
 
 

=
1

1−𝑝2−𝑝2
ℎ+𝑝2

ℎ+1

(

 
 
 
 
 
 
 

2 − 𝑝2
ℎ

1
1 + 𝑝2

ℎ−1 − 𝑝2
ℎ

1 + 𝑝2
ℎ−2 − 𝑝2

ℎ

⋮
1 + 𝑝2

4 − 𝑝2
ℎ

1 + 𝑝2
3 − 𝑝2

ℎ

1 + 𝑝2
2 − 𝑝2

ℎ

1 + 𝑝2 − 𝑝2
ℎ )

 
 
 
 
 
 
 

                            (10) 

 

Substituting Equations (8a) and (10) into Equations (6) and (7), the conditional zero-state 

ARL (denoted as CARLZS) of the two-sided 2-of-(h+1) DR scheme for any value of h is given 

by 

 

𝐶𝐴𝑅𝐿𝑍𝑆(𝛿) =
2 − 𝑝2

ℎ 

1 −  𝑝2 − 𝑝2
ℎ −  𝑝2

ℎ+1. (11) 

where 𝑝2 is defined in Equation (2). 

The unconditional zero-state ARL (denoted as UARLZS) is then defined by 

𝑈𝐴𝑅𝐿𝑍𝑆(𝛿) = ∫ ∫ [
2 − 𝑝2

ℎ 

1 −  𝑝2 − 𝑝2
ℎ −  𝑝2

ℎ+1] 𝑓𝑎𝑏

𝑡

0

1

0

(𝑠, 𝑡)𝑑𝑠 𝑑𝑡 (12) 

where 𝑓𝑎𝑏(𝑠, 𝑡) is defined in Equation (7).  

However, substituting Equations (9a) and (10) into Equations (6) and (7), the conditional 

steady-state 𝐴𝑅𝐿 (denoted as CARLSS) of the two-sided 2-of-(h+1) DR scheme for any value 

of h is given by  

 𝐶𝐴𝑅𝐿𝑆𝑆(𝛿) =
1

1+ℎ 𝑝0
𝜁1(𝛿) +

𝑝0

1+ℎ 𝑝0
∑ 𝜁𝑖(𝛿).
ℎ+1
𝑖=2   (13)  

Therefore, the unconditional steady-state ARL (UARLSS) is given by 

 𝑈𝐴𝑅𝐿𝑆𝑆(𝛿) = ∫ ∫ [
1

1+ℎ 𝑝0
𝜁1(𝛿) +

𝑝0

1+ℎ 𝑝0
∑ 𝜁𝑖(𝛿)
ℎ+1
𝑖=2 ] 𝑓𝑎𝑏(𝑠, 𝑡)

𝑡

0

1

0
𝑑𝑠𝑑𝑡  (14)  

where the components of the CARL vector (i.e. 𝜁𝑖) are defined in Equation (10). 
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3.2   Zero-state and steady-state run-length characteristics of the 2-of-(h+1) KL schemes 

Following a similar procedure as done in Shongwe and Graham (2017), the TPM of the two-

sided 2-of-(h+1) KL scheme in Equation (4) for any value of h is given by  

 

 𝜂1 𝜂2 ⋯ 𝜂𝑙−4 𝜂𝑙−3 𝜂𝑙−2 𝜂𝑙−1 𝜙 𝜂𝑙+1 𝜂𝑙+2 𝜂𝑙+3 𝜂𝑙+4 ⋯ 𝜂𝜏−2 𝜂𝜏−1 𝜂𝜏 OOC 

𝜂1        𝑝2 𝑝3        𝑝1 
𝜂2 𝑝2        𝑝3        𝑝1 

𝜂3  𝑝2       𝑝3        𝑝1 

⋮   ⋱      ⋮        ⋮ 

𝜂𝑙−3    𝑝2     𝑝3        𝑝1 

𝜂𝑙−2     𝑝2    𝑝3        𝑝1 

𝜂𝑙−1      𝑝2   𝑝3        𝑝1 

𝜙       𝑝1 𝑝2 𝑝3         

𝜂𝑙+1       𝑝1   𝑝2       𝑝3 

𝜂𝑙+2       𝑝1    𝑝2      𝑝3 

𝜂𝑙+3       𝑝1     𝑝2     𝑝3 

⋮       ⋮      ⋱    ⋮ 

𝜂𝜏−3       𝑝1       𝑝2   𝑝3 

𝜂𝜏−2       𝑝1        𝑝2  𝑝3 

𝜂𝜏−1       𝑝1         𝑝2 𝑝3 

𝜂𝜏       𝑝1 𝑝2         𝑝3 

OOC                 1 

 

where 𝑙 =
𝜏+1

2
 and 𝜏 = 2ℎ + 1. 

For both zero- and steady-state modes, the CARL vector of the 2-of-(h+1) KL scheme for any 

value of h is defined by 

 



15 
 

𝐑(𝜏×1)(𝛿) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜁1(𝛿)

𝜁2(𝛿)
⋮

𝜁ℎ−3(𝛿)

𝜁ℎ−2(𝛿)

𝜁ℎ−1(𝛿)

𝜁ℎ(𝛿)

𝜁ℎ+1(𝛿)

𝜁ℎ+2(𝛿)

𝜁ℎ+3(𝛿)

𝜁ℎ+4(𝛿)

𝜁ℎ+5(𝛿)
⋮

𝜁2ℎ(𝛿)

𝜁2ℎ+1(𝛿))

 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

1 − 𝑝2 − 𝑝1𝑝2
ℎ − 𝑝3𝑝2

ℎ − 𝑝1𝑝3 ∑ 𝑝2
𝑖2ℎ−1

𝑖=0

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 + 𝑝1𝑝2∑𝑝2

𝑖

ℎ−2

𝑖=0

)(1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝1𝑝2
2∑𝑝2

𝑖

ℎ−3

𝑖=0

)(1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

)

⋮

(1 + 𝑝1𝑝2
ℎ−3∑𝑝2

𝑖

2

𝑖=0

)(1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝1𝑝2
ℎ−2∑𝑝2

𝑖

1

𝑖=0

)(1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝1𝑝2
ℎ−1) (1 + 𝑝3∑𝑝2

𝑖

ℎ−1

𝑖=0

)

1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

(1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

)(1 + 𝑝3∑𝑝2
𝑖

ℎ−1

𝑖=0

)

1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

(1 + 𝑝3𝑝2
ℎ−1) (1 + 𝑝1∑𝑝2

𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝3𝑝2
ℎ−2∑𝑝2

𝑖

1

𝑖=0

)(1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝3𝑝2
ℎ−3∑𝑝2

𝑖

2

𝑖=0

)(1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

)

⋮

(1 + 𝑝3𝑝2
2∑𝑝2

𝑖

ℎ−3

𝑖=0

)(1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

)

(1 + 𝑝3𝑝2∑𝑝2
𝑖

ℎ−2

𝑖=0

)(1 + 𝑝1∑𝑝2
𝑖

ℎ−1

𝑖=0

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(15) 

Substituting Equations (8b) and (15) into Equations (6) and (7), the UARLZS of the two-sided 

2-of-(h+1) KL scheme for any value of h is given by  

 

                      𝑈𝐴𝑅𝐿𝑍𝑆(𝛿) = ∫ ∫ [
(1+𝑝1∑ 𝑝2

𝑖ℎ−1
𝑖=0 )(1+𝑝3∑ 𝑝2

𝑖ℎ−1
𝑖=0 )

1−𝑝2−𝑝1𝑝2
ℎ−𝑝3𝑝2

ℎ−𝑝1𝑝3∑ 𝑝2
𝑖2ℎ−1

𝑖=0

] 𝑓𝑎𝑏
𝑡

0

1

0
(𝑠, 𝑡)𝑑𝑠 𝑑𝑡 (16) 

However, substituting Equations (9b) and (15) into Equations (6) and (7), the UARLSS of the 

two-sided 2-of-(h+1) KL scheme for any value of h is given by  
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𝑈𝐴𝑅𝐿𝑆𝑆(𝛿) = ∫ ∫ [𝑠ℎ+1𝜁𝐻+1(𝛿) +∑𝑠𝑖 × (𝜁𝑖(𝛿) + 𝜁(2ℎ+2)−𝑖(𝛿))

ℎ

𝑖=1

] 𝑓𝑎𝑏

𝑡

0

1

0

(𝑠, 𝑡)𝑑𝑠 𝑑𝑡, (17) 

where the components of the steady-state initial vector 𝒔 are defined in Equation (9b) and 𝜁𝑖 

are the components of the CARL vector defined in Equation (15). 

3.3   Overall performance measure 

Many studies in SPCM use the 𝐴𝑅𝐿 values to assess the performance of schemes (Li et al., 

2014). This measure evaluates the performance of a control chart for a specific shift. 

Therefore, schemes which are designed on the basis of a specified optimal shift (say, 𝛿𝑜𝑝𝑡) 

will perform poorly if the shift is actually different from 𝛿𝑜𝑝𝑡. When researchers are 

interested in measuring the chart’s performance for a range of shifts, 𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥, it is 

recommended to use measures of the overall performance ( Machado and Costa, 2014). In 

this paper, we make use of one of the characteristics of the quality loss function (QLF), the 

average extra quadratic loss (AEQL) value, in order to investigate the overall performance of 

the proposed schemes. A QLF describes the relationship between the size of the shift and the 

quality impact. For more details on the overall measures of performance, readers are referred 

to Wu et al. (2008) and Reynolds and Lou (2010).  

Writing 𝑓(𝛿) as the pdf of a uniform distribution with parameters 0 and 1, the AEQL may be 

given by: 

𝐴𝐸𝑄𝐿 =
1

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛
∫ (𝛿2 × 𝐴𝑅𝐿(𝛿))

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

× 𝑓(𝛿)𝑑𝛿. (18) 

When comparing several schemes, the scheme with the minimum AEQL value is considered 

to be the winner. 

4.   Zero-state and steady-state performance studies of the 2-of-(h+1) precedence 

schemes 

4.1   Design of the proposed control charts  

One of the most important steps in the design and implementation of a scheme is the 

computation (or search) of the control limits. The control limits of the 2-of-(h+1) precedence 

schemes are determined once the plotting constants 𝑎 and 𝑏 (with 𝑏 = 𝑚 − 𝑎 + 1) are found. 
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The plotting constants denote the position of the order statistics in the Phase I sample. For 

instance, the zero-state plotting constants of the 2-of-(h+1) DR and KL precedence schemes 

are determined using Equations (12) and (16), respectively, whereas the steady-state plotting 

constants are found using Equations (14) and (17), respectively, so that the IC UARLZS 

(UARL0ZS) and UARLSS (UARL0SS) are equal (or close) to some high desired values such as 

370 or 500. For example, for m = 200 and n = 5 so that j = 3 and for a nominal IC ARL 

(𝐴𝑅𝐿0) of 370, it is found that the couple (a, b) = (31, 170) yields an attained UARL0ZS of 

368.78, so that (𝐿𝐶𝐿̂, 𝑈𝐶𝐿̂) of the zero-state 2-of-2 DR precedence scheme is given by 

(𝑋(31:200), 𝑋(170:200)) when h = 1. On the other hand, with the same settings, it is found that 

for the zero-state KL case, when h = 1, the couple (a, b) = (34, 167) so that (𝐿𝐶𝐿̂, 𝑈𝐶𝐿̂) =  

(𝑋(34:200), 𝑋(167:200)) which yields an attained UARL0 ZS of 399.6 (see Table 3).  Table 3 

gives the 2-of-(h+1) DR and KL plotting constants (a, b) as well as the attained UARL0ZS and 

UARL0SS values for h = 1, 2, 5 and 10 when m = 100, 200 and 500 with n = 5 and 7. The first 

row of each cell in Table 3 is related to a nominal UARL0ZS and UARL0SS value of 370, 

whereas the second row is related to a nominal UARL0ZS and UARL0SS value of 500.  

Table 3. Zero-state and steady-state plotting constants (a, b) and the attained UARL0ZS and 

UARL0SS  values of the 2-of-(h+1) DR and KL precedence schemes under the N(0,1), t(5) and 

GAM(1,1) distributions when h = 1, 2, 5 and 10 for a nominal ARL0 of 370 & 500. 

h m 

DR KL 

n = 5, j = 3 n = 7, j = 4 n = 5, j = 3 n = 7, j = 4 

a b UARL0ZS UARL0SS  a b UARL0ZS UARL0SS  a b UARL0ZS UARL0SS  a b UARL0ZS UARL0SS  

1 

100 
16 85 373.31 372.38 20 81 345.93 345.00 18 83 328.69 327.84 21 80 414.67 413.84 

15 86 548.99 548.04 19 82 509.54 508.60 17 84 456.52 455.67 20 81 594.56 593.73 

200 
31 170 368.78 367.84 39 162 336.98 336.04 34 167 399.6 398.71 42 159 358.81 357.93 

29 172 537.62 536.67 37 164 490.44 489.49 33 168 471.18 470.29 40 161 504.01 503.13 

500 
76 425 369.50 368.55 94 407 388.83 387.88 85 416 377.91 376.98 104 397 362.28 361.36 

72 429 496.89 495.94 90 411 526.08 525.12 81 420 490.21 489.28 99 402 506.61 505.69 

2 

100 
14 87 437.09 435.71 18 83 404.63 403.26 16 85 342.26 341.02 20 81 313.2 311.99 

13 88 686.85 685.45 17 84 628.91 627.51 15 86 498.01 496.77 19 82 456.58 455.37 

200 
28 173 346.51 345.13 35 166 385.72 384.34 31 170 351.66 350.35 38 163 380.70 379.42 

26 175 526.40 525.00 34 167 474.78 473.39 29 172 507.88 506.57 37 164 458.64 457.35 

500 
68 433 359.81 358.41 86 415 381.59 380.19 76 425 365.41 364.04 94 407 381.07 379.71 

64 437 500.71 499.30 83 418 488.05 486.64 72 429 488.49 487.11 90 411 512.46 511.10 

5 

100 
13 88 303.31 300.58 17 84 278.44 275.74 14 87 330.1 327.76 18 83 302.52 300.23 

12 89 489.80 486.99 16 85 440.34 437.57 13 88 508.34 505.98 17 84 461.12 458.82 

200 
24 177 367.45 364.63 31 170 408.67 405.84 27 174 335.06 332.56 34 167 368.11 365.65 

23 178 466.02 463.16 30 171 518.78 513.91 25 176 509.83 507.31 33 168 452.82 450.35 

500 
58 443 381.30 378.43 77 424 366.04 363.18 65 436 375.96 373.32 84 417 364.57 361.96 

55 446 507.27 504.37 74 427 480.3 477.40 62 439 482.68 480.03 80 421 506.27 503.64 

10 

100 
12 89 275.36 270.97 15 86 401.38 396.88 13 88 285.44 281.39 16 85 402.53 398.53 

11 90 460.28 455.70 14 87 687.1 682.44 12 89 451.04 446.93 15 86 655.21 651.15 

200 
22 179 336.12 331.51 29 172 368.35 363.73 24 177 357.24 352.86 31 170 391.36 387.04 

21 180 433.28 428.58 28 173 471.06 466.36 23 178 448.61 444.20 30 171 490.33 485.98 

500 
52 449 385.30 380.56 71 430 359.3 354.60 58 443 385.42 380.76 77 424 367.88 363.28 

49 452 526.95 522.12 68 433 479.74 474.94 55 446 507.64 502.93 74 427 478.05 473.40 

  



18 
 

4.2   Robustness of the proposed control charts 

The 𝐴𝑅𝐿0 of the nonparametric scheme does not depend on the underlying process 

distribution. To check the robustness property of the proposed schemes, we consider various 

distributions. The standard normal distribution, N(0,1), is used to investigate the effect of 

symmetric distributions, the Student’s t-distribution, with degree of freedom 5, t(5), to study 

the effect of heavy tails and the gamma distribution, GAM(1,1), to investigate the effect of 

skewness. From Tables 3 and 4, it can be seen that, as expected, for every continuous 

distribution under consideration, the proposed schemes yield the same IC characteristics (i.e., 

UARL0ZS or UARL0SS).  For instance, we computed the control limits and the attained 

UARL0SS values for the 2-of-4 KL precedence scheme (i.e., when h = 3) under the N(0,1), t(5) 

and GAM(1,1) distributions for m = 500, n = 5 and a nominal UARL0SS value of 500. We find 

that (𝐿𝐶𝐿̂, 𝑈𝐶𝐿̂) = (𝑋(67:500), 𝑋(434:500)) yields a UARL0SS value of 497.48 under these three 

distributions (see Table 4). This shows that the proposed schemes are IC robust. 

 



19 
 

Table 4. Zero-state and steady-state AEQL, plotting constants (a, b) and the attained UARL0ZS (UARL0SS) values of the Shewhart 2-of-(h+1) DR and KL 

precedence schemes for different values of h under the N(0,1), t(5) and GAM(1,1) distributions when m = 500 and n = 5. 

 

DR scheme KL scheme 

h (a, b) 
UARL0ZS 

(UARL0SS)  

Zero-state Steady-state 
(a, b) 

UARL0ZS 

(UARL0SS)  

Zero-state Steady-state 

N(0,1) t(5) GAM(1,1) N(0,1) t(5) GAM(1,1) N(0,1) t(5) GAM(1,1) N(0,1) t(5) GAM(1,1) 

1 (72, 429) 
496.89                         

(495.94) 
104.72 85.69 193.92 102.99 84.09 191.22 (81, 420)                                                                                                                                                        

490.21                                                    

(489.28) 
92.88 78.64 169.49 91.7 77.55 167.7 

2 (64, 437)                         
500.71                                                                                                    

(499.30) 
100.79 84.74 170.65 98.38 82.54 167.17 (72, 429)                                                                                                                                                                                                                                       

488.49                                                    

(487.11) 
90.12 77.97 151 88.48 76.42 148.69 

3 (60, 441) 
494.75                                                                                                                      

(492.89) 
99.53 84.72 163.78 96.53 81.92 159.47 (67, 434)                                                                                                    

499.00                                                    
(497.48) 

90.08 78.42 147.33 88.08 76.54 144.5 

4 (57, 444) 
507.41                                                                                                                            

(505.11) 
99.94 85.49 162.81 96.46 82.27 157.72 (64, 437)                                                                                           

494.79                                                    

(492.55) 
90.03 78.67 146.15 87.68 76.48 142.78 

5 (55, 446) 
507.27                                                                                                                            

(504.37) 
100.04 85.9 162.54 96.07 82.25 156.58 (62, 439)                                                                              

482.68                              

(480.03) 
89.9 78.78 145.78 87.23 76.28 141.85 

6 (54, 447) 
479.20                                                                                                                                                                                                                                                                                   

(476.05) 
98.99 85.37 161.06 94.53 81.25 154.29 (60, 441)                                                                                                                                

491.41                                                    

(488.33) 
90.54 79.37 147.15 87.61 76.64 142.75 

7 (52, 449) 
515.34                                                                             

(511.76) 
100.94 87.04 164.36 96.2 82.69 157.04 (58, 443)                                                                                                                                            

516.06                                                    
(512.57) 

91.74 80.34 149.59 88.61 77.44 144.81 

8 (51, 450) 
511.48                                                                   

(507.48) 
101.1 87.32 165.07 95.97 82.63 157.03 (57, 444)                                                                                                                        

505.78                                                    

(501.88) 
91.78 80.46 150.13 88.38 77.32 144.86 

9 (50, 451)                                                                                                                                                    
515.81                                                                                  

(511.39) 
101.64 87.88 166.39 96.17 82.89 157.7 (56, 445)                                                                                                                       

503.53                                                    

(499.23) 
92.09 80.75 151.12 88.45 77.41 145.42 

10 (49, 452)                                                                                                   
526.95                                                                

(522.12) 
102.5 88.67 168.16 96.73 83.43 158.9 (55, 446)                                                                                                                                                      

507.64                                                    

(502.93) 
92.6 81.19 152.46 88.76 77.67 146.36 
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4.3   OOC Performance 

Since the proposed schemes are IC robust, it is of interest to compare their performance when 

the process is OOC. For a specific shift, 𝛿 ≠ 0, the scheme with a small OOC UARLZS 

(𝑈𝐴𝑅𝐿𝛿 𝑍𝑆) or small OOC UARLSS (𝑈𝐴𝑅𝐿𝛿 𝑆𝑆) value is considered to be more sensitive. 

When comparing the overall performance, the scheme with a small 𝐴𝐸𝑄𝐿 is preferred. Note 

that, when 𝛿𝑚𝑎𝑥 = 0.7, the AEQL value gives the measure of the overall performance for 

small shifts only. When 𝛿𝑚𝑎𝑥 = 1.5, the AEQL value measures the overall performance for 

small and moderate shifts considered together. For 𝛿𝑚𝑎𝑥 = 3, the AEQL value measures the 

overall performance of small, moderate and large shifts considered together. In terms of the 

UARL value, under both zero-state and steady-state modes, Tables 5 and 6 showed that, for 

small shifts, the enhanced precedence DR schemes perform better under skewed distributions 

when h = 1. However, when h > 1, the 2-of-(h+1) DR scheme performs best under heavy 

tailed distributions followed by symmetric distributions. For moderate and large shifts, the 

proposed 2-of-(h+1) DR scheme performs best under heavy tailed distributions followed by 

symmetric distributions regardless of the value of h. Under heavy tailed distributions, for 

both zero-state and steady-state modes, the 2-of-(h+1) DR scheme performs better when h = 2 

regardless of the size of the shift. However, under the symmetric distributions, the 2-of-(h+1) 

DR scheme performs better when h = 5. Under skewed distributions, for small and moderate 

shifts in the process mean, the proposed 2-of-(h+1) DR scheme performs better for large 

values of h. However, for large shifts, the 2-of-(h+1) DR scheme performs better when h = 5. 

Tables 7 and 8 show that, for both zero-state and steady-state modes, the 2-of-(h+1) 

KL scheme performs better under heavy tailed distributions regardless of the size of 

the shift in the process mean. Moreover, for both zero-state and steady-state modes, for 

small shifts, the proposed 2-of-(h+1) KL scheme performs better under skewed 

distributions compared to symmetric distributions; whereas, for moderate and large 

shifts, the 2-of-(h+1) KL scheme performs better under symmetric distributions 

compared to skewed distributions. Under heavy tailed distributions, for both zero-state 

and steady-state modes, for very small shifts in the process mean, the proposed 2-of-

(h+1) KL scheme performs better when h = 5 and for moderate to large shifts, the 2-

of-(h+1) KL scheme performs better when h = 2. Under symmetric distributions, for 

small and moderate shifts, the 2-of-(h+1) KL scheme performs better when h = 5. For 

large shifts, the sensitivity of the 2-of-(h+1) KL scheme remains the same regardless of 
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the value of h. Under skewed distributions, for small shifts, the 2-of-(h+1) KL scheme 

performs better for large values of h and for moderate and large shifts, the 2-of-(h+1) 

KL scheme performs better when h = 5. 

In terms of the AEQL values (i.e., overall performance), for 𝛿𝑚𝑎𝑥 = 0.7, the 2-of-

(h+1) DR and KL precedence schemes are more sensitive under skewed distributions 

(see Figure 2a). For 𝛿𝑚𝑎𝑥 = 1.5 and 𝛿𝑚𝑎𝑥 =  3, the proposed schemes are more 

sensitive under heavy tailed distributions and insensitive under  skewed  distributions  

(see  Figure 2b–2c). 

When comparing the enhanced precedence schemes to the basic precedence scheme, 

we observe that, for 𝛿𝑚𝑎𝑥 =  0.7 and 1.5, the enhanced DR and KL precedence 

schemes outperform the basic precedence scheme (Figure 2a–2b). For 𝛿𝑚𝑎𝑥 =  3, 

under both zero-state and steady-state modes, the basic precedence scheme 

outperforms the 2-of-(h+1) DR precedence scheme regardless of the value of h under 

the symmetric and skewed distributions, whereas the enhanced DR precedence 

schemes outperform the basic precedence scheme under heavy tailed distributions. 

However, under the zero-state mode, the enhanced KL precedence schemes 

outperform the basic precedence scheme under symmetric and skewed distributions 

when h < 13 and, under heavy tailed distributions, the enhanced KL precedence 

schemes outperform the basic precedence scheme regardless of the value of h (Figure 

2c). For 𝛿𝑚𝑎𝑥 =  3, under the steady-state mode, the enhanced KL precedence 

schemes outperforms the basic precedence scheme regardless of the value of h and 

the nature of underlying process distribution. Thus, the above dis- cussion indicates 

that adding runs-rules to the basic precedence scheme would not necessarily improve 

the efficiency of the scheme in some of the situations. The opera- tors would be 

advised to use these types of runs-rules only when small and moderate shifts are of 

interest. When large shifts are of interest, the operator would be advised to add runs-

rules only for specific cases as above-mentioned. 

The proposed 2-of-(h+1) KL precedence schemes perform better than the 2-of-(h+1) 

DR precedence schemes. This was expected according to the SPCM literature (Klein 

2000). When comparing the zero-state and steady-state scheme performances, we 

observe that, for both DR and KL schemes, the steady-state performance of the 

proposed schemes is slightly better than the zero-state performance. 
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Table 5. Zero-state performance of the 2-of-(h+1) DR precedence scheme for h = 1, 2, 5, 10 and 15 when m = 500 and n = 5 for a nominal 𝐴𝑅𝐿0 of 500 

Shift(δ) N(0,1) t(5) GAM(1,1) 

0.1 433.20 431.78 432.41 446.23 449.79 413.73 415.12 420.24 437.80 443.71 348.78 339.39 330.29 334.35 334.23 

0.2 298.80 289.79 282.22 286.91 287.97 254.18 252.03 254.46 266.98 272.90 224.71 210.14 195.89 193.38 191.70 

0.3 178.79 167.94 158.77 159.31 159.70 132.11 128.95 129.80 137.53 142.28 142.76 128.78 115.89 112.47 111.16 

0.4 101.61 92.89 86.10 86.08 86.72 65.79 63.29 63.76 68.46 71.86 92.96 81.51 71.65 69.04 68.41 

0.5 58.22 52.26 48.14 48.46 49.34 33.86 32.25 32.72 35.73 38.12 63.03 54.16 47.03 45.36 45.22 

0.6 34.67 30.84 28.57 29.17 30.11 18.67 17.71 18.21 20.25 21.93 44.66 37.87 32.77 31.80 31.96 

0.7 21.73 19.29 18.12 18.84 19.71 11.20 10.63 11.10 12.55 13.74 33.00 27.76 24.09 23.59 23.90 

0.8 14.37 12.82 12.27 12.99 13.75 7.32 6.98 7.40 8.45 9.30 25.31 21.22 18.53 18.34 18.73 

0.9 10.03 9.02 8.81 9.48 10.12 5.20 4.99 5.35 6.12 6.71 20.06 16.81 14.81 14.81 15.23 

1.0 7.36 6.69 6.67 7.27 7.78 3.97 3.84 4.14 4.70 5.11 16.36 13.72 12.21 12.33 12.76 

1.5 2.88 2.78 2.91 3.12 3.25 2.19 2.18 2.25 2.34 2.40 7.98 6.84 6.40 6.69 7.01 

2.0 2.13 2.12 2.17 2.22 2.25 2.02 2.01 2.02 2.03 2.04 5.26 4.63 4.50 4.75 4.95 

3.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.42 3.13 3.15 3.30 3.39 

AEQL 104.72 100.79 100.04 102.50 104.47 85.69 84.79 85.90 88.67 90.65 193.92 170.65 162.54 168.16 173.51 

h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15 

 

Table 6. Steady-state performance of the 2-of-(h+1) DR precedence scheme for h = 1, 2, 5, 10 and 15 when m = 500 and n = 5 for a nominal 𝐴𝑅𝐿0 of 500 

Shift(δ) N(0,1) t(5) GAM(1,1) 

0.1 432.31 430.47 429.74 441.82 443.57 412.87 413.84 417.62 433.44 437.55 347.98 338.23 327.97 330.55 328.90 

0.2 298.07 288.73 280.10 283.44 283.10 253.51 251.05 252.47 263.67 268.22 224.08 209.23 194.13 190.55 187.78 

0.3 178.23 167.14 157.22 156.80 156.21 131.63 128.26 128.43 135.24 139.05 142.25 128.07 114.56 110.38 108.28 

0.4 101.19 92.31 84.99 84.30 84.26 65.45 62.82 62.83 66.92 69.69 92.55 80.96 70.64 67.46 66.24 

0.5 57.90 51.83 47.34 47.19 47.58 33.62 31.92 32.09 34.69 36.64 62.70 53.71 46.23 44.12 43.52 

0.6 34.43 30.51 27.97 28.23 28.80 18.50 17.48 17.76 19.51 20.88 44.39 37.50 32.12 30.80 30.59 

0.7 21.54 19.04 17.67 18.12 18.71 11.07 10.45 10.77 12.00 12.96 32.76 27.45 23.55 22.75 22.76 

0.8 14.23 12.62 11.92 12.42 12.96 7.22 6.84 7.15 8.02 8.70 25.11 20.95 18.07 17.62 17.75 

0.9 9.91 8.86 8.53 9.02 9.48 5.11 4.87 5.14 5.77 6.24 19.88 16.57 14.41 14.18 14.37 

1.0 7.26 6.56 6.43 6.88 7.24 3.90 3.74 3.97 4.41 4.72 16.20 13.52 11.86 11.78 12.00 

1.5 2.83 2.70 2.78 2.91 2.98 2.14 2.11 2.14 2.18 2.19 7.87 6.70 6.17 6.32 6.51 

2.0 2.09 2.05 2.06 2.06 2.05 1.97 1.95 1.92 1.89 1.86 5.18 4.52 4.32 4.46 4.57 

3.0 1.95 1.94 1.90 1.86 1.83 1.95 1.93 1.90 1.86 1.83 3.35 3.05 3.01 3.08 3.11 

AEQL 102.99 98.38 96.07 96.73 97.21 84.09 82.54 82.25 83.43 84.12 191.22 167.17 156.58 158.90 161.37 

h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15 
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Table 7. Zero-state performance of the 2-of-(h+1) KL precedence scheme for h = 1, 2, 5, 10 and 15 when m = 500 and n = 5 for a nominal 𝐴𝑅𝐿0 of 500 

Shift(δ) N(0,1) t(5) GAM(1,1) 

0.1 393.84 387.10 377.86 394.93 382.93 365.84 363.24 360.31 382.05 373.11 334.76 321.44 305.04 312.16 300.65 

0.2 231.93 221.26 210.53 217.30 211.41 185.66 182.16 181.25 194.75 193.41 198.08 182.33 166.02 165.77 159.57 

0.3 124.28 115.34 107.60 110.30 108.22 86.59 83.73 83.46 90.75 91.83 117.08 104.15 92.17 90.82 87.93 

0.4 68.07 61.99 57.43 59.05 58.74 42.36 40.52 40.68 44.87 46.34 73.18 63.58 55.48 54.54 53.33 

0.5 39.37 35.47 33.01 34.31 34.69 22.49 21.39 21.76 24.40 25.72 48.82 41.80 36.35 35.90 35.51 

0.6 24.18 21.71 20.45 21.57 22.18 13.06 12.42 12.85 14.62 15.67 34.55 29.35 25.61 25.50 25.51 

0.7 15.75 14.17 13.59 14.56 15.19 8.30 7.92 8.33 9.58 10.38 25.71 21.76 19.13 19.23 19.44 

0.8 10.85 9.82 9.60 10.44 11.02 5.74 5.51 5.87 6.78 7.36 19.95 16.87 14.98 15.21 15.51 

0.9 7.87 7.19 7.17 7.88 8.37 4.29 4.14 4.46 5.11 5.52 16.02 13.57 12.18 12.48 12.82 

1.0 5.99 5.53 5.61 6.21 6.60 3.43 3.33 3.60 4.06 4.34 13.24 11.25 10.21 10.55 10.90 

1.5 2.67 2.60 2.73 2.91 3.01 2.14 2.13 2.19 2.25 2.29 6.85 5.96 5.69 6.02 6.28 

2.0 2.10 2.09 2.13 2.17 2.19 2.01 2.01 2.02 2.02 2.03 4.71 4.20 4.14 4.40 4.56 

3.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.20 2.97 3.00 3.15 3.22 

AEQL 92.88 90.12 89.90 92.60 93.79 78.64 77.97 78.78 81.19 82.27 169.49 151.00 145.78 152.46 156.55 

h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15 

 

Table 8. Steady-state performance of the 2-of-(h+1) KL precedence scheme for h = 1, 2, 5, 10 and 15 when m = 500 and n = 5 for a nominal 𝐴𝑅𝐿0 of 500 

Shift N(0,1) t(5) GAM(1,1) 

0.1 393.05 385.95 375.66 391.06 377.46 365.09 362.14 358.19 378.28 367.76 334.02 320.37 303.03 308.66 295.75 

0.2 231.38 220.49 209.09 214.81 207.91 185.19 181.48 179.95 192.45 190.13 197.55 181.59 164.68 163.48 156.39 

0.3 123.92 114.83 106.68 108.73 106.03 86.30 83.31 82.67 89.37 89.87 116.70 103.63 91.26 89.29 85.82 

0.4 67.81 61.64 56.81 58.00 57.28 42.17 40.25 40.18 43.99 45.09 72.89 63.20 54.82 53.45 51.84 

0.5 39.18 35.22 32.57 33.56 33.66 22.36 21.21 21.42 23.81 24.87 48.60 41.51 35.85 35.08 34.38 

0.6 24.04 21.52 20.12 21.02 21.41 12.96 12.28 12.60 14.20 15.06 34.37 29.11 25.21 24.85 24.61 

0.7 15.64 14.02 13.33 14.13 14.59 8.22 7.81 8.14 9.26 9.92 25.56 21.56 18.80 18.70 18.70 

0.8 10.76 9.70 9.40 10.09 10.53 5.68 5.42 5.72 6.52 7.00 19.82 16.70 14.70 14.75 14.88 

0.9 7.80 7.09 7.00 7.60 7.97 4.24 4.07 4.33 4.90 5.23 15.91 13.43 11.93 12.08 12.27 

1.0 5.93 5.45 5.47 5.97 6.27 3.38 3.27 3.49 3.88 4.10 13.14 11.12 9.99 10.20 10.41 

1.5 2.63 2.55 2.64 2.77 2.83 2.10 2.08 2.11 2.14 2.16 6.78 5.88 5.54 5.78 5.96 

2.0 2.06 2.04 2.05 2.06 2.06 1.98 1.96 1.94 1.92 1.90 4.65 4.13 4.02 4.21 4.31 

3.0 1.97 1.95 1.93 1.90 1.88 1.97 1.95 1.93 1.90 1.88 3.15 2.91 2.91 3.00 3.03 

AEQL 91.70 88.48 87.23 88.76 88.91 77.55 76.42 76.28 77.67 77.94 167.70 148.69 141.85 146.36 148.50 

h 1 2 5 10 15 1 2 5 10 15 1 2 5 10 15 
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(a) AEQL when 𝛿𝑚𝑎𝑥= 0.7 (small shifts) 

h

A
E

Q
L

2019181716151413121110987654321

150

125

100

75

50

 
h

A
E

Q
L

2019181716151413121110987654321

200

180

160

140

120

100

80

60

 
(b) AEQL when 𝛿𝑚𝑎𝑥= 1.5 (small & moderate shifts) (c) AEQL when 𝛿𝑚𝑎𝑥= 3 (small, moderate & large shifts) 

Figure 2. Zero-state and steady-state overall performances of the 2-of-(h+1) DR/KL precedence and 

the basic precedence schemes when m = 500 and n = 5 

5.   Simulation studies 

In this section, we use Monte Carlo simulations with 100000 replications to check the 

accuracy of the results obtained through the Markov chain approach. The Phase I sample size 

effect on the Phase II performance of the proposed schemes is also investigated through 

extensive simulations with 10000 replications. 

5.1   Monte Carlo simulation 

The plotting statistics and characteristics of the run-length distribution can also be obtained 

using the following steps: 
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Step 1: Specify the Phase I reference sample size (m), the Phase II test sample size (n), the 

number of simulations (r), the value of h and the parameter(s) of the distribution. For 

the IC case, the Phase I and Phase II distributions are identical. For instance, both 

distributions can be drawn from a N(0,1) distribution (i.e., 𝛿 = 0). For the OOC case, 

the Phase II distribution is taken to be the same form as that for the Phase I sample, 

but with a difference in the location parameter. In this case, if the Phase I is a N(0,1) 

distribution, the Phase II will be a N(𝛿,1) distribution with 𝛿 from zero (𝛿 ≠ 0). 

Step 2: Set the plotting constant, 𝑎, to some integer value such that 1 ≤ 𝑎 <
𝑚

2
 and compute 

the corresponding value of 𝑏 (𝑏 = 𝑚 − 𝑎 + 1). For example, when m = 100 and h = 

2, we found 𝑎 = 64 and 𝑏 = 437 so that the attained 𝐴𝑅𝐿0 is close or equal to 500. 

Step 3: Generate a Phase I sample, X, from a distribution such as N(0,1) distribution. The 

control limits are given by 𝐿𝐶𝐿 = 𝑋(𝑎:𝑚) and 𝑈𝐶𝐿 = 𝑋(𝑏:𝑚). In our example, 𝐿𝐶𝐿 =

𝑋(64:500) and 𝑈𝐶𝐿 = 𝑋(437:500). 

Step 4: Randomly generate a Phase II test sample from the same distribution. In our example, 

the Phase II is generated from N(δ,1) distribution. Compute the plotting statistic 𝑌(𝑗:𝑛) 

where 𝑗 = 𝑟 + 1 if 𝑛 = 2𝑟 + 1 when 𝑛 is odd. Compare the plotting statistic to the 

control limits obtained in Step 3. If this first point plots between the control limits (the 

process is IC) we have to generate the next test sample, compute the next plotting 

statistic and compare it to the control limits obtained in Step 3. Continue this process 

until two points out of ℎ + 1 consecutive points plot beyond the control limits. 

Step 5: The chart signals if: (i) the two points plot on or outside the control limits, no matter 

whether one (or both) plot(s) above the 𝑈𝐶𝐿 and the other (or both) plot(s) below the 

𝐿𝐶𝐿 (DR scheme), and (ii) both points plot on or above (below) the 𝑈𝐶𝐿 (𝐿𝐶𝐿) (KL 

scheme). If (i) or (ii) does not happen according to the type of scheme (i.e., DR or KL 

scheme), then repeat Steps 4 and 5 until the chart signals for the first time and records 

the number of subgroups needed to get to that stage. This number represents one 

value of the run-length distribution. 

Step 6: Repeat Steps 4 and 5 a total of 𝑟 times. 

Step 7: Once the unconditional run-length (URL) values are obtained, calculate: 𝑈𝐴𝑅𝐿 =

1

𝑟
∑ 𝑈𝑅𝐿𝑖
𝑟
𝑖=1 . 

Step 8: For δ = 0, that is the IC case, if the 𝐴𝑅𝐿0 value is much closer to the nominal value of 

500, record the control limits (𝑈𝐶𝐿 and 𝐿𝐶𝐿). Otherwise, repeat Steps 2 to 7. 
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Step 9: Repeat Step 3 to 7 using the control limits found in Step 8 by varying the shift (𝛿 = 0 

(0.1) 3, where δ = 0 provides the IC values and δ ≠ 0 provides the OOC values). 

Record the IC and OOC ARL values. 

A thorough examination of the results showed that the plotting constants and characteristics 

of the run-length distribution found using simulations are similar those found using Markov 

chain approach. 

Let UARLMC denote the UARL values computed using the Markov chain approach  and 

UARLSIM  denote the UARL values computed using simulations. Table 9 displays the 

absolute percentage difference between the UARLMC and UARLSIM values. The absolute 

percentage difference is calculated as follows 

 

|
𝑈𝐴𝑅𝐿𝑀𝐶 − 𝑈𝐴𝑅𝐿𝑆𝐼𝑀

𝑈𝐴𝑅𝐿𝑀𝐶
| (19) 

 

For instance, in zero-state mode, when (m, n) = (500, 5), 𝛿 = 0 and h = 1, there is a 

0.62% difference between the UARLMC and UARLSIM values of the DR scheme under 

the N(0,1) distribution. From Table 9 it can be observed that in the zero-state mode, 

under symmetric distributions, when h = 1, 2 and 5, there is a 0.63%, 1.18% and 

1.43% (see boldfaced values in Table 9 - columns 2 to 4) difference between the 

UARLMC and UARLSIM values of the 2-of-(h+1) DR scheme, respectively. However, 

when h = 1, 2 and 5, there is a 0.67%, 1.21% and 1.44% difference between the UARLMC 

and UARLSIM values of the 2-of-(h+1) KL scheme, respectively. Under the heavy 

tailed distributions, when h = 1, 2 and 5, there is a 1.6%, 1.71% and 2.65% difference 

between the UARLMC and UARLSIM values of the 2-of-(h+1) DR scheme, 

respectively; whereas, there is a 1.89%, 1.94% and 2.81% difference between the 

UARLMC and UARLSIM values of the 2-of-(h+1) KL scheme. Under the skewed 

distributions, when h = 1, 2 and 5, there is a 2.36%, 3.04% and 3.12% difference 

between the UARLMC and UARLSIM values of the 2-of-(h+1) DR scheme, respectively, 

whereas there is a 2.76%, 2.98% and 3.01% difference between the UARLMC and 

UARLSIM values of the 2-of-(h+1) KL scheme. For both DR and KL schemes, the 

percentage difference between the UARLMC and UARLSIM values increases as (i) h 
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increases, and (ii) the distribution departs from normality. As we can see, there is not 

that much of a difference between UARLMC values and the UARLSIM values since the 

maximum difference is close to 3%. In terms of the percent- age difference between 

the AEQL values computed using the Markov chain approach and simulations, it can 

be seen that the results of the two approaches are quite similar since the maximum 

percentage difference is less than 0.1%. 
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Table 9. The absolute percentage difference between the UARLZS values computed using Markov chain and the UARLZS  values 

computed  using simulations when (m, n) = (100, 5), h =1, 2 and 5 with a nominal ARL0  value of 500 under the N(0,1), t(5) and 

GAM(1,1) distributions. 

DR scheme KL scheme 

N(0,1) t(5) GAM(1,1) N(0,1) t(5) GAM(1,1) 

Shift h = 1 h = 2 h = 5 h = 1 h = 2 h = 5 h = 1 h = 2 h = 5 h = 1 h =2 h = 5 h = 1 h = 2 h =5 h = 1 h =2 h =5 

0.0  0.62  1.14 1.43  0.65 1.71  2.52  0.86  1.54  2.91  0.43  0.89  1.35  0.20  0.99    1.35     1.20    0.81    1.97 

0.1 0.08 0.87 0.60 1.36 0.93 2.65 2.36 3.04 2.94 0.00 1.21 0.83 0.97 1.58 1.38 2.76 2.98 3.01 

0.2 0.25 0.76 0.98 1.60 1.06 2.18 2.13 2.31 3.12 0.01 0.94 0.72 1.26 1.29 2.62 2.48 2.01 2.09 

0.3 0.08 0.63 0.68 1.53 0.81 1.65 1.78 1.73 1.82 0.54 0.58 0.42 1.05 1.76 1.85 2.49 1.78 1.99 

0.4 0.63 0.88 1.06 1.54 0.55 1.95 1.55 1.34 1.60 0.38 0.12 0.68 1.50 1.19 2.02 2.22 2.23 1.65 

0.5 0.53 1.10 1.18 1.31 0.84 2.17 1.33 1.55 2.26 0.30 0.07 0.27 1.37 1.94 1.08 2.42 2.15 2.33 

0.6 0.14 1.17 1.14 1.21 0.62 2.39 1.42 1.67 1.70 0.67 0.37 0.60 1.81 1.75 1.19 1.29 2.23 1.92 

0.7 0.30 1.18 1.25 1.59 0.75 0.90 1.21 1.01 1.13 0.20 0.43 0.03 1.45 1.59 2.68 1.89 1.11 2.13 

0.8 0.59 1.03 1.07 1.19 0.71 0.96 1.09 1.33 1.13 0.28 0.08 0.17 1.27 1.03 2.62 2.51 1.94 1.66 

0.9 0.43 0.89 0.98 1.20 0.91 0.81 1.03 0.98 1.29 0.62 0.57 0.97 0.74 1.52 1.51 1.74 2.56 1.38 

1.0 0.35 1.03 0.86 1.21 0.72 0.71 1.35 0.85 1.03 0.49 0.37 1.16 0.88 0.75 0.95 1.21 2.20 1.25 

1.1 0.14 1.02 0.81 1.07 0.48 0.70 1.28 0.80 1.04 0.64 0.09 1.10 0.99 0.36 2.02 1.71 1.41 1.29 

1.2 0.22 1.00 0.78 1.10 0.51 0.74 1.15 1.06 1.11 0.49 0.32 1.36 1.89 1.20 1.87 1.22 1.79 1.20 

1.3 0.26 1.02 0.27 1.14 0.66 0.63 0.88 0.82 1.03 0.03 0.11 1.40 1.81 1.16 2.81 2.26 1.07 1.52 

1.4 0.18 0.54 0.91 0.94 0.28 0.69 0.73 0.76 1.12 0.26 0.28 1.44 1.67 1.45 2.54 1.24 0.89 0.95 

1.5 0.23 0.32 0.89 0.84 0.39 0.73 0.81 0.75 0.91 0.11 0.37 1.17 1.52 0.99 2.01 1.18 0.93 0.78 

1.6 0.01 0.71 0.51 1.05 0.48 0.42 0.69 0.72 1.04 0.38 0.02 0.87 0.78 1.01 1.56 0.80 1.06 1.01 

1.7 0.06 0.13 0.72 0.89 0.35 0.46 0.70 0.42 1.08 0.27 0.08 0.47 0.95 0.59 0.85 0.74 0.66 0.36 

1.8 0.29 0.23 0.63 0.83 0.04 0.29 0.73 0.30 1.05 0.01 0.01 0.52 0.48 0.55 0.78 0.63 1.08 0.33 

1.9 0.05 0.40 0.75 0.71 0.22 0.21 0.69 0.58 1.05 0.13 0.22 0.14 0.60 0.64 0.66 0.39 1.03 0.53 

2.0 0.18 0.38 0.71 0.24 0.27 0.13 0.51 0.49 0.43 0.17 0.01 0.10 0.03 0.49 0.20 0.30 0.90 0.18 

2.5 0.12 0.12 0.28 0.05 0.05 0.08 0.42 0.40 0.04 0.09 0.08 0.18 0.04 0.04 0.06 0.30 0.60 0.32 

3.0 0.03 0.03 0.06 0.00 0.00 0.01 0.08 0.22 0.21 0.02 0.02 0.04 0.00 0.00 0.00 0.04 0.22 0.19 

AEQL 0.02 0.03 0.04 0.01 0.03 0.05 0.03 0.04 0.06 0.01 0.03 0.04 0.02 0.03 0.05 0.02 0.04   0.07 

2
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5.2   Effect of the Phase I sample size on the performance of the proposed schemes 

In real-life applications and specifically in manufacturing processes, the underlying quality 

process distribution is mostly non-normal with unknown parameters (Case U). In this case, 

the IC process parameters need to be estimated before process monitoring can begin. Using 

parameter estimates degrades charts performances and may also give more false alarms than 

expected. Many researchers pointed out the deterioration of the Phase II scheme performance 

due to the effect of estimation error (Bischak and Trietsch, 2007; Castagliola et al., 2012). In 

such a case, a study of the effects (or impact) of parameter estimation on the control chart 

performance is recommended and it focuses mostly on the IC characteristics of the run-length 

distribution (Saleh et al., 2015). While studying the effects of parameter estimation on the 

Phase II chart performance, it is useful to examine the conditional run-length (CRL) 

distribution. The CRL distribution and various associated issues have been studied by several 

authors, including Chakraborti (2006) for Shewhart-type schemes. In this section, we focus 

on the impact (or effect) of the Phase I reference sample size on the performance of the 

proposed precedence schemes with respect to the CRL distribution and its characteristics 

such as the conditional IC average run-length (𝐶𝐴𝑅𝐿0) and conditional IC standard deviation 

of run-length (𝐶𝑆𝐷𝑅𝐿0).  

The number of observations available for a Phase I analysis plays a crucial role in the 

estimation of the values of any unknown parameters. Jensen et al. (2006) studied the effect of 

estimation error on control charts performances in Phase II. They concluded that the accurate 

and precise estimation of any unknown process parameters is critical for achieving a 

specified Phase II chart performance and the size of the Phase I sample must often be quite 

large in order to achieve the accurate and precise estimation needed. In order to answer the 

question of the size of the Phase I sample needed for the enhanced precedence schemes, we 

make use of the mean of the conditional 𝐴𝑅𝐿0(𝐶𝐴𝐴𝑅𝐿0) and the conditional standard 

deviation of the 𝐴𝑅𝐿0 (𝐶𝑆𝐷𝐴𝑅𝐿0). The size of the Phase I reference sample is estimated 

such that the 𝐶𝐴𝐴𝑅𝐿0 is close to the desired value of 500 and the 𝐶𝑆𝐷𝐴𝑅𝐿0 values within 

10% of the intended 𝐴𝑅𝐿0 as recommended by Zhang et al. (2014). 

The Monte Carlo simulation steps in the Phase I sample size study of the proposed 

precedence schemes are given as follows: 
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Step 1: For each Phase I sample size (say m = 100), we compute the 𝑀 ×𝑀 IC CRL (𝐶𝑅𝐿0) 

matrix  𝐶𝑅𝐿0𝑀 x 𝑀 where 𝑀 is the number of simulations (or replications). 

Step 2: Compute the 𝐶𝐴𝑅𝐿0 vector, 𝐶𝐴𝑅𝐿0𝑀×1, and the associated IC conditional standard 

deviation of the run-length (𝐶𝑆𝐷𝑅𝐿0) vector,  𝐶𝑆𝐷𝑅𝐿0𝑀 x 1. 

Step 3: Compute the 𝐶𝐴𝑅𝐿0 and 𝐶𝑆𝐷𝑅𝐿0 u - quantiles (they are equivalent to the percentiles; 

for instance, u = 0.10 represents the 10th percentile, u = 0.11 represents the 11th 

percentile,…, u = 0.9 represents the 90th percentile etc.). This step allows us to 

estimate the position (in percentage of the sample size) that guarantee the best 

estimate of the plotting constant (see Figure 3). 

Step 4: Repeat Steps 1 to 3 for the different Phase I sample size, m. 

Step 5: For each triplet (m, a, b), compute the mean of the 𝐶𝐴𝑅𝐿0 vector (𝐶𝐴𝐴𝑅𝐿0) and the 

standard deviation of the 𝐶𝐴𝑅𝐿0 vector (𝐶𝑆𝐷𝐴𝑅𝐿0) for different value of m. Record 

the 𝐶𝐴𝐴𝑅𝐿0 and 𝐶𝑆𝐷𝐴𝑅𝐿0 values next to their corresponding triplet (m, a, b). 

Step 6: Select the Phase I sample size such that the 𝐶𝐴𝐴𝑅𝐿0 value is close to the nominal 

𝐴𝑅𝐿0 and the 𝐶𝑆𝐷𝐴𝑅𝐿0 value within the 10% of the nominal 𝐴𝑅𝐿0. This sample size 

represents the number of Phase I observations needed in order to achieve a stability 

and better Phase II performance of the proposed schemes. 

Note that the design of the proposed schemes requires the estimation of the plotting constants 

𝑎 and 𝑏. Once one plotting constant is found, the other may be easily determined through the 

expression defining the relationship between a, b and m; that is, 𝑎 + 𝑏 = 𝑚 + 1 which means 

𝑎 = 𝑚 − 𝑏 + 1. From Figures 3 (a)-(c) it can be seen that, for the DR scheme, the proposed 

scheme performs better if the estimate of the plotting constant b is near the 70th percentile 

when m = 500 and h = 1. For 100 ≤ 𝑚 < 500, the proposed scheme performs better when b 

is between the 85th and 95th percentiles. When h = 2, the proposed scheme performs better 

when b is between the 75th and 95th percentiles and m ∈ {25, 50, 100, 200, 300, 400} and 

near the 50th percentile when m = 500. When h = 5, the proposed scheme performs better 

when b is between the 40th and 50th percentiles and m ∈ {200, 300, 400} and between the 80th 

and 95th percentiles when m = 100 and 500. From Figures 3 (d)-(f), for the KL scheme, it can 

be seen that the proposed 2-of-2 (i.e., h = 1) scheme performs better when the estimate of the 

plotting constant b is near the 70th and 90th percentiles and m ∈ {400, 500} and {100, 200, 

400}, respectively. For more details on the position of the estimate of the plotting constants, 
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the reader is referred to Figure 3 at the intersection of each 𝐶𝐴𝑅𝐿0 curve and 𝐶𝐴𝑅𝐿0 = 500 

(the position is read on 𝑥 −axis). 

Table 10 displays the 𝐶𝐴𝐴𝑅𝐿0 and its corresponding 𝐶𝑆𝐷𝑅𝐿0 values in brackets for 

different (𝑚, 𝑎, 𝑏) triplets of the Shewhart 2-of-(h+1) precedence schemes. The results clearly 

illustrate the potential problems associated with parameter estimation. The shaded cells of 

Table 9 give the number of Phase I observations that guarantee stability and better 

performance of the proposed schemes. It can be seen that, the Shewhart 2-of-2 and 2-of-3 DR 

precedence schemes require at least 200 Phase I observations, while the 2-of-6 DR 

precedence scheme requires at least 300 Phase I observations. The 2-of-2 and 2-of-6 KL 

precedence schemes require at least 200 Phase I observations, while the 2-of-6 KL 

precedence scheme requires at least 100 Phase I observations.  

 

Table 10. The CAARL0 and CSDEL0 (in brackets) of the Shewhart 2-of-(h+1) DR and KL precedence 

schemes when h = 1, 2 and 5 for a nominal 𝐴𝑅𝐿0 of 500 

 
 

DR KL 

 h 1 2 5 1 2 5 

 
25 

269.73                                                                      

(21.96) 

183.65                                                               

(75.07) 

74.65                                               

(8.55) 

136.7                    

(30.09) 

310.00                                                                

(90.23) 

126.54                              

(20.82) 

 
50 

283.84                        

(21.64) 

315.74                  

(46.88) 

359.44                                                                  

(75.53) 

461.17                                                                                                                  

(60.32) 

521.41                                                                       

(78.00) 

433.53                                         

(52.12) 

 
100 

536.03                                              

(24.36) 

437.23                                                                                                                  

(30.30) 

481.42                                        

(40.09) 

457.43                                                                           

(25.91) 

494.90                                                

(33.88) 

542.83                                         

(44.90) 

m 
200 

524.42                         

(20.60) 

527.27                       

(25.86) 

466.73                                  

(26.74) 

471.79                                                      

(20.53) 

503.10                      

(22.8) 

502.56                                

(29.64) 

 
300 

471.69                                                                                                                  

(17.68) 

487.85                                                                        

(20.16) 

480.68                                                              

(26.56) 

479.77                                 

(18.73) 

512.32                                     

(21.29) 

503.86                       

(31.87) 

 
400 

477.35                                           

(15.95) 

524.12                         

(20.53) 

510.83                                                           

(26.20) 

487.33                                                       

(18.88) 

518.89                            

(19.67) 

511.16                                

(30.09) 

 
500 

492.59                       

(16.71) 

500.64                                      

(18.61) 

506.39                                   

(19.48) 

489.56                                               

(17.82) 

488.37                                                                        

(17.05) 

471.33                                             

(17.75) 
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 (a) DR scheme when h = 1 
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(b) DR scheme when h = 2 
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(c) DR scheme when h = 5 
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(d) KL scheme when h = 1 
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 (e) KL scheme when h = 2 
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(f) KL scheme h = 5 

Figure 3. The 𝐶𝐴𝑅𝐿0 of the 2-of-(h+1) precedence schemes for different values of the triplet (𝑚, 𝑎, 𝑏) and u quantiles, when 𝑛 = 5 and h = 1, 2 and 5 
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6.   Illustrative example 

In this section, we illustrate the design and implementation of the proposed schemes using a 

well-known dataset from Montgomery (2001, page 223, Tables 5.2 and 5.3). The data are the 

inside diameters of piston rings manufactured by a forging process. The data given in Table 

5.2 contains fifteen Phase II samples, each of size 𝑛 = 5. Table 5.3 contains 125 Phase I 

observations, that were collected when the process was considered IC (𝑚 = 125). These data 

are considered to be the Phase I (or reference) observations for which a goodness of fit test 

for normality is not rejected. 

For both zero-state and steady-state modes, for a nominal 𝑍𝑆𝐴𝑅𝐿0 (or 𝑆𝑆𝐴𝑅𝐿0) of 500, the 

zero-state and steady-state LCL and UCL of the 2-of-(h+1) DR precedence schemes with h = 

1 (i.e., 2-of-2 scheme) are given by 𝐿𝐶𝐿1 = 𝑋(19:125) = 73.99 and 𝑈𝐶𝐿1 = 𝑋(107:125) = 74.012, 

respectively. The subscript 1 from the LCL and UCL refers to the value of h. The zero-state 

and steady-state LCL and UCL of the 2-of-4 DR precedence scheme are given by 𝐿𝐶𝐿3 = 

𝑋(16:125) = 73.99 and 𝑈𝐶𝐿3 = 𝑋(110:125) = 74.013, respectively. A plot of the median plotting 

statistics for both cases is shown in Figure 4 (a). It is seen that 2-of-2 DR precedence scheme 

signals for the first time on the tenth sample in the prospective phase (Phase II), whereas the 

2-of-4 DR precedence scheme signals for the first time on the twelfth sample in the 

prospective phase.  

The zero-state and steady-state LCL and UCL of the 2-of-2 and 2-of-4 KL precedence scheme 

are given by (𝐿𝐶𝐿1, 𝑈𝐶𝐿1) = (𝑋(21:125), 𝑋(105:125)) = (73.992, 74.011) and (𝐿𝐶𝐿3, 𝑈𝐶𝐿3) = 

(𝑋(17:125), 𝑋(119:125)) = (73.986, 74.013), respectively. A plot of the median plotting statistics 

for both cases is shown in Figure 4 (b). It is seen that 2-of-2 KL precedence scheme signals 

for the first time on the tenth sample in the prospective phase (Phase II), whereas the 2-of-4 

KL precedence scheme signals for the first time on the twelfth sample in the prospective 

phase. 

The example shows that the 2-of-2 DR and KL schemes outperform the 2-of-4 DR and KL 

schemes. This agrees with our finds in Section 4.3. 
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(a) ZS and SS DR scheme of the 2-of-(h+1)  precedence 

schemes when m = 125, n = 5 with h = 1 and 3 
(b) ZS and SS KL scheme of the 2-of-(h+1)  precedence 

schemes when m = 125, n = 5 with h = 1 and 3 
Figure 4. The 2-of-2 and 2-of-4 DR and KL precedence schemes for the Montgomery (2001) piston 

ring data 

7.   Summary and conclusion 

Chakraborti et al. (2004) proposed a class of nonparametric Shewhart-type schemes, called 

the precedence scheme, using some order statistic of a Phase II sample as the charting 

statistic and control limits constructed using some order statistics of the Phase I reference 

sample. Chakraborti et al. (2009) improved the precedence scheme by using the 2-of-2 DR 

and KL runs-rules using a backward Markov chain approach. Malela-Majika et al. (2016b) 

proposed the 2-of-2 KL minimum and median precedence schemes using simulations. In this 

paper, we proposed the generalized 2-of-(h+1) DR and KL precedence schemes using a 

forward Markov chain approach. The performance of the proposed charts is thoroughly 

investigated in order to suggest the most efficient precedence monitoring scheme.  

Chakraborti et al. (2009) showed that the 2-of-2 DR and KL schemes enhance the basic 

precedence schemes. In this paper, we showed that the addition of runs-rules to the basic 

precedence scheme does not always improve its performance in some of the cases. Therefore, 

a thorough investigation of the performance of control schemes supplemented with different 

types of runs-rules is needed. The performance analysis confirms that proposed 2-of-(h+1) 

KL precedence schemes perform better than the 2-of-(h+1) DR precedence schemes.  

The performance analysis showed that there is not a specific value of h that provides a 

superior precedence scheme. Therefore, quality practitioners are recommended to use the 

value of h between 2 and 6 (2 ≤ ℎ ≤ 6) in order to monitor efficiently small and moderate 
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shifts. In case practitioners are interested to monitor processes where 𝛿𝑚𝑎𝑥 = 3 using the 

precedence scheme with supplementary 2-of-(h+1) runs-rules, they would be advised to use h 

= 4 or 5. In practice, we would recommend operators and quality practitioners to make use of 

small values of h for two main reasons: (i) simplicity in the design and implementation of 

schemes, (ii) higher efficiency in monitoring small and moderate shifts. 

In future, we will consider investigating the performance of the improved 2-of-(h+1), 

modified 2-of-(h+1), improved modified 2-of-(h+1), h-of-h (with h = 2, 3, …), improved h-

of-h and the synthetic precedence control charts.  Also, in this paper we only considered 

symmetric control limits and the proposed schemes, using non-symmetric control limits, will 

be investigated as a future research problem. 
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