Agricultural and Forest Meteorology 279 (2019) 107706

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Check for
updates

Evaluation of modeled actual evapotranspiration estimates from a land
surface, empirical and satellite-based models using in situ observations from
a South African semi-arid savanna ecosystem

Floyd V. Khosa™”", Gregor T. Feig”“‘, Martina R. van der Merwe®, Mohau J. Mateyisi®,
Azwitamisi E. Mudau®, Michael J. Savage”

2 Global Change and Ecosystems Dynamics, Natural Resources and Environment, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
® Agrometeorology Discipline, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

¢ Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

4 South African Environmental Observation Network, PO Box 2600, Pretoria 0001, South Africa

ARTICLE INFO ABSTRACT

Keywords: Evapotranspiration (ET) plays a crucial role in the land-atmosphere interaction and climate variability, espe-
Brutsaert-Strickler cially in arid and semi-arid areas. Accurate estimates of ET are important in hydrological and climate modeling.
CABLE This study evaluates eight ET data products from different models used for ET estimation. The data products are
GLEAM

classified into three main categories depending on the type of modeling approaches: namely process-based land
surface model, empirical models, and satellite data derived estimates. The different model estimates are eval-
uated against in situ measurements from the Skukuza flux tower which is situated in a semi-arid savanna in South
Africa. The correlation score and cantered root mean square error computed on monthly ET averages indicate
that the satellite-derived model and land surface model estimates are closer to the observed ET signal for the
Skukuza site, both in-phase and magnitude. The empirical models' outputs tend to reflect a relatively pro-
nounced departure from observations in magnitude. The normalised mean bias computed for different seasons
reveals that the estimates from all modeling approaches are close to the observed signal during the transition
period (March-May) to the austral summer. In general, all models overestimate ET during summer and un-
derestimate it in winter. A qualitative analysis of the year-to-year variation for different seasons reveals that all
model estimates are qualitatively consistent with the observed seasonal pattern of the signal. Satellite and
process-based land surface models (LSMs) also show a response to extremes events such as drought years. The
study identifies satellite-derived model outputs as a candidate for understanding spatio-temporal variability of
ET across different landscapes within the study region, and process-based models to potentially be used for
climate change impact studies on ET.

Granger-Gray
Szilagyi-Jozsa
Complementary relationship

1. Introduction Many studies have evaluated the accuracy of the models for esti-

mating potential evapotranspiration (PET), which is the amount of ET

Evapotranspiration (ET), which is the transfer of water vapor to the
atmosphere from the surface, plays a significant role in the modulation
of global climate feedback, through its role in carbon, energy, and
water cycles (Cao et al., 2010). Accurate estimates of the actual eva-
potranspiration (AET) are required for applications such as hydro-
logical, climate and water resource modeling (Ding et al., 2013; Wang
et al., 2010a; Xu and Chen, 2005). Studies for evaluating models for
estimating AET, to be referred hereafter as ET, are generally are sparse.
Such studies include the work done by Xu and Chen (2005), Xu and
Singh (2005) and Zhang et al. (2016).

that would occur if the soil water supply was not limited (Bormann,
2011; Fisher et al., 2005; Lu et al., 2005; Shi et al., 2008), and reference
(ET,) or crop ET (Ahooghalandari et al., 2016; Cai et al., 2007; Pereira
et al., 2015; Tabari et al., 2016; Valipour, 2014) which is ET from a
reference surface, generally a specific crop type with certain char-
acteristics with an unlimited water supply (Allen et al., 1998; McMahon
et al., 2013). These models have been evaluated across different biomes
(e.g., forests, grassland and savanna), demonstrating that their perfor-
mance is highly variable over space and time.

The methods for estimating ET have their inherent limitations
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associated with the fact that: (1) each method targets a specific tem-
poral and spatial scale. In most cases, the spatial scale is larger than that
covered by the localized in situ observations, (2) each of the estimation
methods has specific assumptions, errors and technical challenges
(Wilson et al., 2000). The limitations of various methods for estimating
ET lead to the overall uncertainty in the values obtained.
Bormann (2011) recommends that models (e.g., atmospheric models
coupled to LSM) be validated at a regional scale before they are applied
for climate change studies. This is because comparisons between
models and observation are generally problematic, particularly in the
case where there is a mismatch in the spatial scale between modeled
outputs and the point measurements. In the absence of spatially dis-
tributed in situ observations, point evaluation of various models is re-
commended (Haughton et al., 2018, 2016). In such cases, care needs to
be taken to ensure that models are evaluated against observational sites
that meet the uniformity assumptions about the drivers of the key
feedbacks implemented in the models. To have confidence in these
models, key land surface processes should be adequately simulated.

Three categories of models are evaluated in this study including land
surface, empirical and satellite-based models. In particular, we evaluate two
versions of the CSIRO Atmosphere Biosphere Land Exchange (CABLE-2.0
and 2.3.4) LSM, three commonly-used empirical models (Granger-Gray,
Szilagyi-Jozsa, and Brustaert-Strickler) based on the complementary re-
lationship and three versions of the Global Land Evaporation Amsterdam
Model (GLEAM v3a, b, and c) satellite-based models. The models differ in
their assumptions about drivers of ET, the forcing data and the implemented
mathematical formulations for calculating ET. In LSMs for example, the
schemes that control the transfer of water vapor from vegetated surfaces (i.e.
transpiration) differ. This is an important component of the model con-
cerning the simulation of ET, as transpiration from the canopy has been
estimated to account for 60-80% of ET across the land surface (Jovanovic
et al., 2015; Palmer et al., 2015). Empirical models differ in the mathe-
matical structure and the satellite-based models differ in forcing data.
Owing to the differences in the mathematical structure of the models, it is
important to evaluate each of the models against observations, to in-
vestigate how they respond to the forcing data and how representative the
models are for a specific region.

For South Africa, where a significant part of the total land area (32.5%)
is covered by the savanna biome, much attention has been given to un-
derstanding the ability of remote sensing-based techniques to represent ET
(Jovanovic et al., 2014; Majozi et al., 2017; Palmer et al., 2015; Ramoelo
et al., 2014; Sun et al., 2012). Little attention has been given to the eva-
luation of process-based (e.g., LSMs) estimates, particularly for the Savanna
biome which is characterized by discontinuous tree cover and continuous
grass cover (Ratnam et al., 2011; Whitley et al., 2017). There is a need for a
detailed understanding of how process-based models represent ET per eco-
hydrological zones within the region. However, such studies are constrained
by a lack of ET measurements.

The limitations of ET measurements are not only confined to South
Africa but affects large parts of the world. In situ ET measurements are a
valuable source of information for evaluating and calibrating various
models, as well as for understanding the response of different processes
to ecological and climatic changes at various spatiotemporal scales. The
main reason for the scarcity of ET measurements is that they are ob-
tained through the use of sophisticated instrumentation, which is gen-
erally expensive and is not available for the majority of practical ap-
plications (Guo et al., 2016). Most of the measurement sites that are
listed on the observational networks such as FLUXNET are temperate
regions. The Skukuza site, which is used as a reference in this study, is
located in a semi-arid savanna region and is the only South African
measurement site that is listed on FLUXNET. The site provides a unique
opportunity to evaluate ET models for the region.

In this paper, we work towards gaining an in-depth understanding of the
patterns and representativity of the modeled datasets, by comparing them
with in situ observations from a South African flux tower. To achieve this,
we evaluate how the models perform in capturing the phase (ie.,
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qualitative) and magnitude (ie., quantitative) of the observed ET from the
Skukuza flux tower. In particular, we evaluate whether the differences be-
tween various model outputs and observations are significant or not. The
differences are deemed insignificant if they are within the range of un-
certainties in the observed ET fields, or the unpredictable internal variability
of the observed fields. The study seeks to establish if the models can be used
reliably to simulate local and regional ET conditions in Africa. For models
that show an insignificant difference relative to observations, we discuss the
spatial patterns for different biomes within the study region. In summary,
the evaluation study aims to obtain an enhanced understanding of the
outputs of the models relative to the flux tower observations and the po-
tential mechanisms responsible for the identified differences in the perfor-
mance of the models.

2. Materials and methods
2.1. Evapotranspiration models

2.1.1. Land surface model

The CSIRO Atmosphere Biosphere Land Exchange (CABLE) is a LSM
used to calculate water, heat and carbon exchanges between the at-
mosphere and the land surface. The LSMs represent the land surface
component of global climate models used to project climate
(Abramowitz, 2005; Abramowitz et al., 2008; Kowalczyk et al., 2013).
The CABLE model is suitable for use in climate models, and as a stand-
alone (ie. offline) model (Kowalczyk et al., 2006a,b; Law et al., 2012),
however, it has not been explicitly tested against in situ observations
from the African region. Based on the Penman-Monteith (P-M) equa-
tion, the model calculates the components of ET (i.e. canopy evapora-
tion, plant transpiration, and soil evaporation). It takes into account soil
moisture in addition to the standard meteorological variables used for
estimating ET. The P-M equation is accurate in areas where vegetation
is not water-stressed and the data for stomatal resistance (r;) and net
irradiance are available (Wang et al., 2010b). Soil evaporation (Eg)
from a wet surface is calculated using

AEq =T (R, — G) + (1 — IN)p,A0q,/7s €))

where A is the latent heat of vaporization (MJ kg ™), T = A/(A + ¥), A
the slope of the curve relating saturation water vapor pressure to air
temperature (kPa °C™ '), y the psychrometric constant (kPa °C™ 1), p, the
air density (kg m™3), 8q4 the humidity deficit in the air (%), R, the net
irradiance (W m™2) and G the ground heat flux (W m™2). For a wet
surface Eg = Egp, while for a dry surface Eg < Eg,, where Eg, is the po-
tential soil evaporation (mm). The actual E; is estimated as a fraction, x
of Eg, or Eg given by;

AE; = XAEy, or AE; = xAEy @)
Two variables are required to estimate E; namely soil moisture and

soil surface temperature (Kowalczyk et al., 2006a,b). Transpiration is
estimated using:

AE _ ARn + cppaDa(Gh,i + Gr,i)
;=
A+ y(Gpi + G)/Gy,i 3

where c, is the specific heat capacity of air (J kg~' °C™1"), D, is vapor

pressure density (kg m~3), and Gy, i» Gn, ; and G, ; are the unit less
conductance of water, heat, and radiation respectively. Evapo-
transpiration is then calculated as the sum of evaporation and tran-
spiration (Kowalczyk et al., 2006a,b).

Two versions of the LSM are used in this study namely CABLE-2.0
and CABLE-2.3.4. The model is parameterized for a point (i.e., Skukuza)
and run offline. The motivation for running the model at a point is to
capture ecosystem-scale properties. The model is forced with the site-
specific meteorological data. The parameterization of the model en-
tailed substituting default parameters with observed parameters at the
site, the details of the parameterization are listed in Table A1l in the
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Appendix). The distinguishing feature amongst the two model versions
is the stomatal conductance schemes used. The stomatal conductance
schemes are based on different theories namely the empirical and op-
timal approach. The empirical approach (i.e., CABLE-2.3.4) is based on
stomatal response to environmental factors (Medlyn et al., 2011). The
optimal approach (CABLE-2.0) formulated by Cowan and
Farquhar (1977) is based on a theory stating that stomata should
minimize water loss, whilst maximizing carbon gain during photo-
synthesis. In CABLE-2.0, stomatal conductance (g;, mol m~2s Y is
modeled following Leuning (1995):

afA
@-n(1+73) @

2

&s

where go (mol m~ s™Y), a; and Dy (kPa) are fitted constants, A
(umol m~2 s™') is the assimilation rate (i.e. photosynthesis), C;
(umol mol™1) is the CO, concentration at the leaf surface, T
(umol mol ~ ') is the CO, compensation point of photosynthesis, D (kPa)
is the water vapor pressure deficit at the leaf surface, f is the empirical
soil moisture stress factor computed as:

6 -6,
=2 " g0, 1
B & —6n B810, 1] ©

where 6 (m® m™3) is the mean volumetric moisture content in the root
zone, 0,, (m> m~>) is the wilting point and ;. (m® m™2) is the field

capacity. In  CABLE-2.3.4, g is computed following
Medlyn et al. (2011):
aB)A
=g+ 16[1+ = | =
s ( VD ) G ©)

where g; is a fitted constant.

2.1.2. Empirical models

Three commonly used empirical models namely: Szilagyi-Jozsa (S-J),
Brutsaert-Strickler (B-S) and Granger-Gray (G-G) models were evaluated
in this study. These models use a complementary relationship to estimate
areal AET. The complementary relationship is based on a hypothesis by
Bouchet (1963) stating that PET and AET depend on each other in a com-
plementary way, via feedbacks between the land and atmosphere for large
and homogeneous areas, where there is little advective heat and moisture
(Bouchet, 1963; McMahon et al., 2013). As the surface dries, the decrease in
AET is accompanied by an equal but opposite change in PET. Therefore, the
PET ranges from its value at saturation to twice this value (Xu and Chen,
2005; Xu and Singh, 2005). The three models differ in the formulas used to
estimate wet environmental ET (ET,), PET (ET,), and AET (ET,). The
complementary relationship is represented by:

ET, + ET, = 2ET, @)
In the advection aridity model (i.e., B-S), ET, is calculated by

combining information from the energy budget and water vapor
transfer in the Penman (1948) equation:

ET,= -2 By ¥
A+y 2

E,

Aty ®
where E, is the drying power of the air (mm day ™ !):
E, = f(Uz)(es —ey) (C))

where f(U,) is the function of mean wind speed U, at a reference level z
above the ground, e, and e are the water vapor pressure of air and the
saturation vapor pressure at the air temperature respectively. Further-
more, ET,, is calculated following Priestley and Taylor (1972) i.e.,
fU) =~ f(U,) = 2.626 + 1.381U,, partial equilibrium ET equation:

A R,

ET, =« —
A+y 2 10)

where a is the unit less Priestley-Taylor coefficient, & = 1.26 is mainly
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cited in the literature. The B-S model estimates ET, using:

_A Ry ¥
A+y 21

ETPS = 2a — 1)

A+y " 1)
where ET?S is the aerial ET (mm day ~'). The S-J model was originally
developed by Szilagyi (2007) purely based on the complementary re-
lationship (Eq. (7)), and further modified by Szilagyi and Jozsa (2008):

ETY = 2ET,, — ET, 12)

where E5 is the ET (mm day ™), in the S-J model ET, estimated using
the wind function proposed by Penman (1948). The G-G model esti-
mates ET from un-saturated lands (McMahon et al., 2013), it was de-
veloped by Granger and Gray (1989) following the Penman (1948)
equation:

AGy R,-G 1G; 5
AG +y A AG +7 " 13)

ETSC =

where EZC is the ET (mm day™'), G is the ground heat flux (MJ m~2
day~") and G, is a dimensionless evaporation parameter based on
various surface types, computed as the ratio of ET, to ET):
_EL,
tET, 14)

The advantage of the empirical models is that they are easy to imple-
ment and they use standard atmospheric variables that are easily measured
(Granger and Gray, 1989; Granger, 1998; McMahon et al., 2013). They are
widely used because of their simplicity and practical applicability
(Szilagyi, 2007). An understood artifact of the S-J and B-S models is that
they occasionally estimate negative ET value for days with low net irra-
diance. The periods with negative ET values are not considered when
computing evaluation metrics in this study. These models have been criti-
cized in the literature for the uncertainty surrounding the a value and its
physical significance (McMahon et al., 2013). The empirical models as de-
scribed above are implemented in the “Evapotranspiration” package in the
R programming software developed by Guo et al. (2016). These models
were forced and parameterized (e.g latitude, site elevation, and wind in-
strument height) specifically for the Skukuza site. These models represent
the area covered by the flux tower footprint. The Universal constants used in
the package are listed in Table A2 of the Appendix, and variables that are
site-specific (i.e., parameters) are listed in Table A3 of the Appendix. The
EMP models are forced with the same datasets, with all the other settings
being kept the same.

2.1.3. GLEAM v3

Global Land Evaporation Amsterdam Model (GLEAM v3.1) is a set
of algorithms designed to estimate daily ET and its components from
satellite data at a global resolution of 0.25°. The GLEAM model uses
satellite-derived radiation, precipitation, air temperature, snow-water
equivalent, soil moisture, vegetation cover fractions, soil properties,
lightning frequency and vegetation optical depth (VOD) as input to
derive ET. The Priestley and Taylor (P-T) equation is used to compute
cover-dependent potential evaporation rate based on net irradiance and
air temperature (Martens et al., 2017; Miralles et al., 2011):

AE, = a2 R, - G)

A+y (15)
where E,, is the potential evaporation rate (mm day ~ 1). The estimates of
E, are converted to ET and its components depending on the type of
land cover. Land cover data is obtained from the MOD44B v51 satellite
observations. ET is then calculated as:

ET = S X ET, + E; (16)
where E; is the interception loss computed following Gash's model

(Miralles et al., 2010), and S is the evaporation stress factor. The stress
factor (S) for both short and tall vegetation is computed using:
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a)

Fig. 1.(a) Map of South African
biomes, Kruger National park and the
location of the Skukuza flux tower. The
biomes shapefiles for South Africa are
downloaded from the South African
national biodiversity institute
(SANBI) website (http://bgis.sanbi.
org/SpatialDataset), (b) the area con-
sidered for grid inter-comparison, (c)
area used to represent the Savanna, and
(d) grassland biome.
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Albany Thicket
Bl Azonal Vegetation
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Indian Ocean Coastal Belt
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where VOD,,,., is the maximum VOD for a specific pixel, w, m®m~3)is
the critical soil moisture, w,,, (m® m™3) is the water retained below the
wilting point and w™( m® m~3) is the soil moisture content of the
wettest layer, assuming that water is drawn from layers in which it is
more accessible by plants. For bare soil S is calculated as:

we — w®

S=1-

W, — W, (18)

where w™ (m® m™3) is the surface soil moisture and w, (m® m~3) is the
soil moisture that is not available for root uptake for bare soil
(Martens et al., 2017). The P-T equation is used because it utilizes a few
inputs, mainly those that are directly observed by satellites. Key fea-
tures that differentiate this approach is the use of vegetation density,
land surface temperature and microwave-derived soil moisture
(Miralles et al., 2011). The strength of this model is that it produces
spatially coherent estimates of water fluxes over land.

The GLEAM model has three versions, namely v3a, v3b and v3c. Version
3a uses satellite observed variables (soil moisture, radiation, reanalysis air
temperature, snow-water equivalent, and vegetation optical depth) and a
Multi-Source Weighted Ensemble Precipitation (MSWEP) dataset as inputs.
This global dataset is from 1980 to 2016. Versions 3b and 3c use the same
satellite input data, except soil moisture and vegetation optical depth which
are based on measurements from different microwave sensors, namely
European Space Agency Climate Change Initiative (ESA CCI) for v3b and
Soil Moisture and Ocean Salinity (SMOS) for v3c. The periods of v3b and
v3c are shorter, 2003-2015 and 2011-2015 respectively (Martens et al.,
2017). A detailed description of the forcing data for the three GLEAM
models is listed in Table A4 in the Appendix.

2.2. Data and evaluation site

The dataset used in this study to evaluate the models’ performance
is collected from the Skukuza flux tower collected through the eddy
covariance method. The tower is located at an elevation of 370 m above
sea level (25.0197°S, 31.4969°E) in the Kruger National Park (South
Africa), a conservation area located in a semi-arid savanna ecosystem
(Fig. 1). The Skukuza flux tower is the longest-running flux tower in

A

Nama-Karoo
B Namib Desert
B Savanna
Succulent Karoo
Il Waterbodies
1 Kruger National Park

South Africa and has been collecting data since August 2000 to date.

The flux tower site is located at a transition between two vegetation
types, namely the broad-leaved Combretum apiculatum dominated savanna
on the crests, which tend to have coarse sandy soil that is relatively nutrient-
poor, and fine-leaved Senengalia nigrescens (Acacia nigrescence) savanna on
sandy clay loam in the valleys, which is relatively nutrient-rich (Archibald
et al., 2009; Feig et al., 2009; Scholes et al., 2001). The tower was delib-
erately placed on the ecotone of the vegetation types, to sample the different
vegetation types (Scholes et al., 2001). There is a strong seasonal pre-
cipitation pattern with most of the rainfall occurring between November
and April (Archibald et al., 2009). The grass layer is dominated by Eragrostis
rigidor, Panicum maximum, and Pogonarthria squarrosa (Scholes et al., 2001).
The woody vegetation at the Skukuza flux tower site is estimated to range
between 8 and 10 m in height. The tower sensors are 17 m high with a fetch
of approximately 500 m (Archibald et al., 2009). Therefore, the measure-
ments do not only represent a point but a larger area (~ 500 m in diameter).
The measurements are taken at 10Hz and then averaged to half-hourly
periods using the Eddy Pro software (Version 6.2.0). A description of the FT
instruments used to collect the necessary input data for ET models are listed
in Table A5.

The site data in this study is representative of about 0.2 km? (250 m
radius) footprint as explained in Section 2.1. While the GLEAM model
resolution is 25 km. The working assumption is that the time-averaged
signal, from the observations and model outputs on time scales greater
than a month is fairly developed, and stand a chance to show features
reflective of the system as influenced by broader climatic patterns. Of
course, this is a limited assumption but reliable within the neighboring
region, with homogenous vegetation patterns across the biome and
comparable climatic region forcings as is the case in this study. The
comparison between modeled and measured data is only done for
periods where there are no missing values in the observations. Fur-
thermore, a comparison of the models is done at a point. Since the
GLEAM models produce areal estimates of ET, data for a point where
the Skukuza flux tower is located in the grid cell was extracted using the
site coordinates nearest neighbor. This method is suitable as the data
for the grid cell presents a spatial average ET value for the grid cell. The
estimates by CABLE and empirical models are site (i.e., point) specific.
The datasets compared to measurements in this study are listed in
Table 1. The lengths of the various ET datasets are not equal as shown
in Table 1. The analysis is split into three by model type (i.e., empirical
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Table 1

Summary of datasets used.
Dataset Data type Period
In situ Measurements 2001-2016
Brutsaert-Strickler Empirical model 2001-2016
CABLE-2.0 Land surface model 2001-2011
CABLE-2.3.4 Land surface model 2001-2011
GLEAM v3a Satellite-based model 1980-2016
GLEAM v3b Satellite-based model 2003-2015
GLEAM v3c Satellite-based model 2011-2015
Granger-Gray Empirical model 2001-2016
Szilagyi-Jozsa Empirical model 2001-2016

models, EMP; LSM and satellite-based models, SBM) as they differ ei-
ther structurally or by forcing data.

2.2.1. Gap filling of input meteorological variables

The measured meteorological variables from the flux tower contain
missing data mainly caused by equipment malfunction. The half-hourly
data were converted to daily and used as input in the
"Evapotranspiration" package in R. The ET package has internal gap-
filling procedures for the inputs required to compute ET. Any gap-filling
procedure results in biased estimates if the missing gaps exceed 20%
(Enders, 2003). A study by Ukkola et al. (2017) to process FLUXNET
data recommends that the threshold of missing data be between 15%
and 20% per year. In this study, the threshold was set to a maximum of
20% per variable for the analysis period. The gap-filling procedures
used in the package are adopted from Narapusetty et al. (2009). The
percentage of missing values for the Rs exceeds 20% (Fig. Al). There-
fore, the number of daily sunshine hours is used as an input instead
(Guo et al., 2016). The number of sunshine hours is estimated following
the method proposed by Abd el-wahed and Snyder (2015) using
average daily air temperature. The flux tower data used as input in the
empirical ET models are graphically shown in Fig. Al in the Appendix.
These include air temperature (Ta, °C), relative humidity (RH, %), in-
coming solar irradiance (Rs, W m~2), wind speed (WS, m s™1) and
rainfall in mm day~'. The meteorological forcing data for the CABLE
model was gap filled with measured data from the nearest South
African Weather Service (SAWS) station, located approximately 13 km
away from the flux tower.

2.3. Model evaluation metrics

Regarding that, all models are limited to their assumptions about
the drivers of ET. This study employs basic matrices that can potentially
inform the fitness of the models for an envisaged purpose, and give
insight on possible avenues for improvement. First, we look at the
Taylor diagrams (Taylor, 2001) which graphically quantify the agree-
ment between modeled data and observations by using the Pearson
correlation coefficient (r) and the centered root mean square error
(RMSE). In particular, the matrices are used to uncover whether there
are significant differences between the modeled and observed signal for
the site. We also calculate the normalised mean bias (NMB) to represent
the degree of agreement between the observations and model outputs
on a seasonal time scale. A time series plot for each season is presented
to show the temporal variation of the modeled ET estimates against
observations. The 80% data threshold is used to represent a month and
season for both the in situ observations and model estimates.

3. Results and discussion
3.1. In situ evapotranspiration
As highlighted in the introduction, the main goal of this study is to

evaluate models’ performance in estimating ET against in situ data at the
Skukuza semi-arid savanna site to assess the appropriateness of each of the
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modeling approaches to estimate ET from southern African ecosystems.
Sixteen years (2001-2016) of measured ET data from the flux tower are
used in this study (Fig. 3). The data are measured in the form of energy (ie.,
latent heat, LE) in W m ™2 and converted to ET (mm day ~ ') by dividing the
observed LE by 28.94 (i.e., 28.94 W m ~ 2 is equivalent to 1 mm day ). The
mean energy balance ratio (EBR) at the site computed at the 30 min tem-
poral scale is 0.73, corresponding to a mean energy flux residual of
36.39 W m ™2 over the period 2001-2016. The EBR is defined as the ratio
between the sum of the turbulent convective and latent heat fluxes and
radiation minus soil heat (Majozi et al., 2017). Details on the calculation of
the EBR may be found in Hogy et al. (2019). The daily processed time series
data is displayed in Fig. 3. Ideally daily observed ET for the period would
have 5844 (ie., N) data points. However, due to missing data only 3867
(i.e., 66.17%) data points are available.

Fig. 2 shows the seasonal variation of ET at Skukuza, the amount of
available and missing data (i.e. white cells), the inter-annual variation,
and the range of ET using different color codes. The figure shows that in
the following years 2002, 2006 and to a lesser extent 2015 had low data
coverage.

ET is highest during the austral summer season (DJF), i.e., hot and
wet periods and low in winter (JJA), i.e., cool and dry periods (Fig. 2).
This is best reflected in the years with high data recovery. The ET
temporal pattern is typical of a semi-arid savanna, where the water loss
through ET is generally low (<1.5mm day~'). The summer of 2009
recorded the highest ET, with ET values ranging between 5 and
7mm day ', in contrast, the summers of 2015 and 2016 recorded
lower ET values. The period has been reported as the driest in more
than 100 years in South Africa due to a “super” El Nifio event
(Oxford, 2017) and the ET measurements at Skukuza are reflective of
that. The next section studies the sensitivity of ET at the site. This is
done to identify the key variables that drive ET at Skukuza.

3.2. Sensitivity analysis of ET at Skukuza

One of the objectives of the paper is to obtain an in-depth understanding
of the modeled and observed data sets for the site and evaluate the modeled
outputs against the observations. A natural starting point is to discuss the
sensitivity of the observed ET to the driving meteorological variables. It is
well established that the principal factors that drive ET include meteor-
ological variables (e.g, solar radiation, precipitation, air temperature, hu-
midity and wind speed), ground cover (e.g., plant density, litter cover, root
depth and stomatal conductance) including soil properties such as soil type
and soil moisture (Allen et al., 1998; Brown, 2014; Valipour, 2014; Wang
et al., 2010a; Zhang et al., 2001). For the Skukuza site, a multivariate re-
gression analysis fitted on the stationary (i.e., de-trended and de-seasona-
lised) in situ time series data (Fig. A2 of the Appendix) reveals that, 53%
(i.e., R?) of the variation is explained by air temperature, relative humidity,
wind speed, surface soil moisture, and incoming solar radiation. Surface soil
moisture and relative humidity (RH) explains most of the variation of ET
(i.e., these variables have the highest beta coefficients). This is further ela-
borated by a strong correlation between ET, RH and surface soil moisture
(Fig. A3 of the Appendix).

The rest of the variation (i.e., 47%) of ET at the Skukuza may be
explained by other variables such as vegetation and soil characteristics.
For example, the leaf area index would account for much of the var-
iation of ET following a wet period, as precipitation is intercepted by
the plants. Root depth and plant type account for some of the variation
in ET during the dry period as the water is extracted from deep soil
layers (Bonan, 2008). Air temperature, wind speed, and incoming solar
radiation generally have the same effect on ET, an increase in these
variables generally results in an increase in ET. This is also elaborated
by the regression coefficients of these variables (Fig. A2) having the
same sign. The median values of surface soil moisture and RH for
Skukuza are 7 and 62% respectively. The results presented here are
consistent with the finding of Bonan (2008) stating that air temperature
is the dominant driver in cold regions and soil moisture in arid regions.
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Fig. 2. Measured daily evapotranspiration (mm day ~!). The x-axis represents the month of measurement. The y-axis is the day of the month, and the Z-axis (color)
represents measured ET (ET_obs). The dark blue color represents low ET measurements ranging between 0 and 2 mm day ~'. The dark red color represents high ET
measurements between 6 and 8 mm day ~!. The white cells indicate missing data. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

3.3. Short-term seasonal comparison

A quantitative understanding of how the models compare against
observations at inter-annual time scales can be gained by looking at the
correlation coefficient (i.e., r), root mean squared error (i.e., RMSE) and
standard deviation. This is summarized through a Taylor plot Fig. 3.
The GLEAM models (i.e., SBM) have the highest correlation with the
observations ranging between 0.6 and 0.8, showing that there is a
strong positive relationship between the observations and GLEAM
model outputs. The LSMs (i.e., CABLE-2.0 and CABLE-2.3.4) data have
the lowest correlation coefficients ranging between 0.4 and 0.5 (ie.,
moderate positive relationship) respectively, which are even lower than
those between the empirical models (i.e., EMP) and observations ran-
ging between 0.5 and 0.6. The low correlation values between the
CABLE simulations and observations are indicative that, there is a weak
agreement in the phase of the inter-annual ET signal and the

observations. This may be attributed to the bias in the forcing data
which could have been introduced by the gap-filling of the input me-
teorological drivers.

The monthly in situ ET observations have a standard deviation of
31.94mm month~' shown by the black dotted line in Fig. 3. The
GLEAM v3a model has a standard deviation of 31.42 mm month ™!
which is close to that of the observations with a difference of
0.52mm month™!, CABLE-2.3.4 has a standard deviation of
32.84 mm month ™! indicating that the amplitudes of the observations
and these models are similar. This means that these models capture the
variability of the observed ET in magnitude. The standard deviations of
GLEAM v3b, v3c and CABLE-2.0 are slightly higher than those of the
observations ranging between 33.91mm month™! and
34.64mm month™! indicating a tendency towards slight over-
estimation of the observed ET by these models. The B-S and S-J models
have far higher standard deviations almost twice that of the
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observations (i.e., more than 60 mm month ') indicating an over-
estimation of the observed monthly ET by these models.

As shown in Fig. 3, the GLEAM v3a, v3c, CABLE-2.0, and CABLE-2.3.4
have lowest RMSEs, 27.55, 28.91, 32.78 and 32.80 mm month ™! respec-
tively. This is indicative that ET outputs for these models are not sig-
nificantly different from that of observations in magnitude. This finding is
also consistent with the discussion of the standard deviation values de-
scribed above. In conclusion, we have learned that the EMP models gen-
erally overestimate the magnitude of observed ET. However, these models
capture the observed monthly cycles of ET. The LSM generally captures both
the phase and magnitude of the observed ET. The SBMs captures the
monthly patterns of the observed ET with a slight overestimation of the
magnitude especially by the v3b and v3c model variants.

From the Taylor diagram in Fig. 3, we learn that the degree of agree-
ment in magnitude between the observation and model outputs is generally
low. This is depicted by the RMSE which lies between (30 and
40 mm month ™) for LSM, (20 and 30 mm months™) SBM and (35 and
58 mm month ') EMP. In Fig. 4 we unpack the nature of the agreement in
magnitude by looking at the normalised mean bias (NMB) for the models for
the four seasons (depicted in Fig. 4 by different shapes). The analysis has the
potential to yield insight on the performance of the models in capturing the
observed ET magnitude for the respective seasons. An obvious feature of the
plot is that the LSM and SBMs have a relatively lower bias for the austral

autumn season (MAM). The NMB for autumn ranges between —0.09 and
0.22 for all the models. The LSM and SBMs generally show the least bias on
ET across all the seasons, with GLEAM v3a and v3c showing a strikingly low
bias ranging between 0.03 and 0.27 in winter and between 0.01 and 0.07 in
summer respectively. The LSM versions also show relatively low ET biases
in spring of about —0.09. The EMP models, on the contrary, tend to either
significantly overestimate or underestimate ET across the most seasons ex-
cept for the spring season in which case the EMP models show a relatively
low bias.

The P-M schemes in the LSM are considered to be the most robust
and more physically realistic formulation of ET (Bonan, 2008). Their
performance-based on magnitudes is reflective that their performance
has a certain level of systematic uncertainty. We further observed that
the performance of the two versions of the LSM is in general similar
albeit with slight improvements in ET simulation of CABLE-2.3.4 re-
lative to that CABLE-2.0. We can conclude that the use of the new
stomatal conductance scheme (CABLE-2.3.4) did not result in major
changes of ET simulation relative to the old scheme (CABLE-2.0). This
finding is consistent with that report by De Kauwe et al. (2015).

3.4. Long-term seasonal comparison

In Fig. 5 we can see that both the observation and model estimates
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Fig. 6. Modeled (red) seasonal ET annually using the empirical models (EMP), land surface model (LSM) and satellite-based models (SBM) compared with in situ
observations (black) at Skukuza. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

agree that ET is high during summer when it is hot and wet and low in
winter when it is dry and cool. The elevated ET in summer is because
there is sufficient energy to convert the abundant moisture, which is
associated with high summer precipitation for the region into vapor
(Allen et al., 1998). The seasonal cycles as presented by the empirical
models (i.e., EMP) is shifted relative to that of observations (Fig. 5).
Particularly for those presented by the B-S and S-J models during the
dry period (ie., winter). The two models show the dry months (ie.,
months of low ET) to be between May and August (3 months), while the
observations show the dry months to be between June and September
(3 months). The G-G empirical model underestimates the length of the
dry period relative to the observations, which is between May and July
(2 months). This is reflected by the low agreement in-phase (r = 0.5).

Both versions of the CABLE model capture the qualitative long term
feature of the observed ET signal. As seen on the model bias results, there
are slight differences between CABLE-2.3.4 and CABLE-2.0 which are most
likely attributable to the improvements implemented in the stomatal con-
ductance scheme used in CABLE-2.3.4. A study conducted by Zhang et al.
(2016) concluded the CABLE model performed remarkably well in simu-
lating monthly ET in cold (or polar) climates and predicted that it would

perform well in arid and semi-arid regions. The long term pattern of ET
confirms that the CABLE model adequately simulates the qualitative feature
of the ET signal in a semi-arid South African site.

The satellite-based models (i.e., GLEAM) generally capture the
seasonal observed patterns. However, there is a noticeable departure of
GLEAM output from observations during summer. The GLEAM v3a in
comparison to versions 3b and 3c best captures the magnitude and
phase of the observed ET. A long-term averaged ET signal may mask
some features of the signal that occur at inter-annual time scales such as
the influence of the El Nifio-Southern Oscillation (ENSO) conditions on
the ET signal. Therefore, it is instructive to evaluate the ability of the
models to respond to such extreme meteorological events by looking at
the ET signal at annual time scales.

3.5. Inter-annual comparison

In Fig. 6, the seasonal ET signal for the analysis period (i.e., 2001-2016)
is depicted for all the models and observations. An interesting question to
ask is whether the models can capture the observed ET responses during
anomalous years. In particular, we investigate if the models show sensitivity
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to either wetter or drier years. We learn from Fig. 6 that the LSM and SBMs
are consistent in capturing the year to year variations in ET across the
seasons. In the autumn of 2009, the highest ET is observed, this is parti-
cularly reflected by GLEAM v3b. The LSM and SBMs show a lower ET in
agreement with the observations for the austral winter (JJA) and spring
(SON) during the year 2004. The year was reported to be a drought year
(Masih et al., 2014). A similar low ET estimates in agreement with ob-
servation for the spring and winter seasons during the year 2007 can be
seen. The period 2015/2016 was recorded as one of the driest periods on
record (Oxford, 2017; Swemmer et al., 2018), this is also reflected by the
observed ET and is captured by the SBMs. Unfortunately, it is not possible to
match the model responses for all-season during anomalous years due to the
data gaps, however, during the years of persistent drought, both LSMs and
SBMs agree with the in situ observations in reflecting the ET pattern qua-
litatively. This gives confidence in the ability of the models to respond to the
forcing data in calculating the temporal variations of ET. The EMP models
largely overestimate (DJF and SON) and in some instances underestimate
(JJA) the observed ET across the various years and seasons. The G-G model
shows an almost uniform ET across the years and seasons relative to the
observations that fluctuate across the years. A natural question to ask is
whether the portrayed sensitivity for the LSMs and SBMs at a point scale can
translate to a regional scale. An answer to this question is limited by the
scarcity of observations spatially. However, it is still interesting to under-
stand the seasonal nature of the model outputs at larger spatial scales. This
will be discussed in Section 4.

Some of the observed differences between modeled and observed ET
patterns across the three model types (ie., EMP, LSM, and SBM) can be
associated with the differences in the assumptions about the drivers of ET
and the models' response to the forcing data. The adequate performance by
the SBMs and LSM relative to the EMP can be largely attributed to their
robustness in their ET calculations. These models take into account more
physical variables for estimating ET which are not considered by the simple
EMP models. These include, for example, variables such as soil moisture,
soil texture, vegetation types, and leaf area index. The SBMs use similar
forcing data except for GLEAM v3a, which uses the MSWEP precipitation
data making its performance slightly different compared to GLEAM v3b and
v3c (Martens et al., 2017).
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The EMP models use the same forcing data, however, they reveal a
strong sensitivity to small changes in the free parameter (a) value con-
cerning the estimation of ET. This was investigated in this study by varying
the a value between 0.23 (default), 0.5 and 1. For this experiment, all the
other variables were kept unchanged only varying the a value between 0
and 1 (restricted in the package). The results are presented in Fig. A4
showing highly variable ET estimates for the various EMP models. The is-
sues surrounding the a value for these models have been also reported in the
literature in a study by McMahon et al. (2013). We also learn that the (B-S
and S-J) systematically produce negative ET values during the days of low
radiation. Clearly, some of the bias in the EMP models emanate from how
they respond to the forcing data for regions beyond which they were fo-
cused during their development.

4. Regional comparison of ET

Most of the evaluation indices reflect that the LSM and SBMs are cap-
able of capturing the qualitative features of the ET signal, at least for months
or seasons when the observed records were above the 80% data availability
threshold. These models, therefore, present an opportunity for under-
standing the spatial variations, both in the quantitative and qualitative
sense, across the landscapes of interest (Fig. 1b). A quantitative under-
standing of the seasonal patterns of ET can potentially inform an under-
standing of the water budget for applications at a regional scale. In this
section, we present the results of the LSM and SBMs models at a resolution
of 25 km. In the case of the LSM, default parameterization for variables such
as vegetation classes is used. This is a departure from the point (i.e., Skukuza
site) where a highly detailed parameterization (described in Table Al in the
appendix) has been used. In the case of regional simulation vegetation and
soil, parameters are represented by the dominant soil and vegetation types
in each grid cell.

We learn in Fig. 7 that the SBM and LSM are qualitatively consistent
with the observed seasonal spatial pattern of ET at the flux tower (shown in
Fig. 2) for most of the savanna regions of South Africa. In those regions, ET
is reflected as high in summer and low in winter. The reflected spatial
pattern of ET makes intuitive sense from the knowledge of climate types for
the regions (Kottek et al., 2006). This suggests that the two families of
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Fig. 7. Seasonal variability in ET across the region (Fig. 1b) dominated by the savanna and grassland biomes.
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models consistently translate the input data for calculating ET. In the ab-
sence of spatially distributed in situ observations, it not possible to conclude
on which model has superior skill in estimating ET across the various
landscapes. The CABLE model, for example, presents higher ET estimates in
the grassland biome compared to the GLEAM models during summer. For
the northern parts of Limpopo (savanna biome), the CABLE model presents
lower values of ET ranging between 0 and 50 mm, compared to GLEAM
models with ET values ranging between 75 and 100 mm. Despite these
noticeable quantitative differences, it is encouraging to see that the con-
sistency of the qualitative seasonal features of the signal observed at a point
translates to broader landscapes. Most likely, the quantitative agreement
between LSM and SBMs can be improved by fine-tuning the default para-
meter settings to better reflect the local conditions. This can be done for
example by introducing local soil and vegetation parameters as opposed to
using the default settings. The spatial pattern of ET presented in Fig. 7 is
consistent with those presented by Jovanovic et al. (2015) using the MODIS
satellite product. All these approaches suggest that ET in the eastern part of
the study region is generally higher compared to the western parts where it
is generally low. The box-and-whisker plots (Fig. 8) demonstrate the con-
sistency in the responsiveness of LSM and SBMs to the seasonal changes in
ET for the two dominant biomes within the study region, namely the sa-
vanna (Fig. 1c) and grassland (Fig. 1d).

5. Conclusions

The main aim of this study was to evaluate if the empirical (EMP), land
surface (LSM) and satellite-based (SBM) models, for estimating ET were able
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to capture the observed ET at a South African semi-arid savanna site. The
models evaluated differed either by model structure or forcing data. The
three EMP models differed in the mathematical structure, two versions of a
LSM differed in the stomatal conductance schemes, and the SMBs differed in
the forcing data. The evaluation was conducted at monthly and seasonal
temporal scales. The analysis was initiated by investigating the sensitivity of
ET to various meteorological variables at the study site using multivariate
regression. The analysis revealed that ET at the Skukuza site is most sen-
sitive to soil moisture and relative humidity.

From the model evaluation results, we have learned based on the
evaluation metrics (i.e., correlation coefficient, root mean square error,
standard deviation, and normalised mean bias) that, the empirical
models generally overestimate the magnitude of the observed ET during
summer, and underestimate ET during winter. However, the EMP
models proved to be capable of capturing the phase of the observed
monthly cycles. The two versions of the LSM generally captured both
the qualitative (phase) and quantitative (magnitude) features of the
observed ET signal. Based on the evaluation metrics, we have also
learned that the use of the different stomatal conductance schemes in
the model did not result in major changes in the simulation of ET.
However, the use of the recent stomatal conductance scheme (version
2.3.4) resulted in slight improvements of the ET estimates. Similarly,
the SBMs also capture the qualitative and quantitative features of the
observed ET signal. The performance of the three versions of the SBMs
is generally similar, with version 3a showing better agreement with the
observations relative to the other version. This is attributed to the
precipitation forcing data used for this particular model. Furthermore,
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both the LSM and SBMs have shown to be able to capture the observed
ET even during anomalous years, such as those that experienced
drought.

The adequate performance by the SBMs and LSM relative to the
EMP can be largely attributed to their robustness in their ET calcula-
tions. These models take into account more physical variables when
estimating ET which are not considered by the simple EMP models. The
poor performance of the EMP models is linked to uncertainties sur-
rounding the alpha value, and them occasionally estimating negative
ET values during the days of low radiation.

In the absence of spatially distributed data, we investigated whether
the portrayed sensitivity for the LSMs and SBMs at a point scale can
translate to a regional scale. These models displayed spatial consistent
patterns at a regional scale across South African vegetation types.
However, the LSM showed higher ET values across the region compared
to the SBMs. This shows that a detailed parameterization of the LSM to
represent key variables (e.g., vegetation and soil types) representative
of the region is necessary as was done at the site level before it can be
used for climate change studies under various emission scenarios, fu-
ture research may focus on this aspect. The study identifies satellite-
derived model outputs as a candidate for understanding spatio-
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temporal variability of ET across different landscapes within the study
region, and process-based models to potentially be used for climate
change impact studies on ET. Future research may also focus on eval-
uating these models at multiple sites within different African biomes
and savanna types.
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Appendix

This Appendix consists of supporting information for this study. Section A.1 displays the sensitivity of ET measurements at the Skukuza site to
meteorological variables. Section A.2 shows the parameterization of the CABLE model for the Skukuza site. Variables and constants that can be
changed and those fixed in the evapotranspiration package used to estimate evapotranspiration using the empirical models are shown in Section A.3.
forcing data for the three versions of GLEAM models are shown in Section A.4. Section A.5 discusses symbols and variable used in the study, and
Section A.6 shows the results of the empirical models to the alpha value.

A.1. CABLE parameterization
Table A.1.

Table Al
Parameterisation of the CABLE model at the Skukuza site.

Parameter Description Units Default Site specific
bch Parameter in Campbell's equation - 4.2 4.2
Betaroot Beta parameter to calculate froot - 0.961 0.95
clay Fraction of soil which is clay - 0.09 0.172
css Soil specific heat capacity Jkg 'Kt 850 850
Frac4 Fraction of C4 plants - 0 0.6
hyds Hydraulic conductivity at saturation ms~? 0.000166 0.000166
LAImax Maximum leaf area index m?m™2 MODIS climatological average leaf area index 1°x 1° grid 2.5
Leafangle Leaf angle ° 0.25 0.25
leaflength Leaf length m 0.950 0.05
leafwidth Leaf width m 0.8 0.05
poolleaf Mass of organic matter in the leaf pool kgm™? 300 245
poolwood Mass of organic matter in the wood pool kgm™? 12,000 1000
rholeaf Leaf reflectance - 0.092 0.092
rholeafnir - 0.380 0.39
rhosoil Soil bulk density kgm 3 1600 1300
rhosoilvegnir - 0.1 0.1
rhowood - 0.16 0.16
rhowoodnir - 0.39 0.39
rootveg - 1029 192
Rp20 Plant respiration scalar - 2.2 2.2
Rs20 Soil respiration scalar - 1 1

sand Fraction of soil which is sand - 0.83 0.73

sfc Volume of water at field capacity m®*m~3 0.143 0.143
silt Fraction of soil that is silt - 0.08 0.1

Soil fast Fast soil carbon pool gCm™2 216 178
soilslow Slow soil carbon pool gCm™2 432 4576
ssat Volume of water at saturation m’m~3 0.398 0.398
sucs Suction at saturation m —0.106 —0.106
swilt Volume of water at wilting m*m~3 0.072 0.072
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Table A1l (continued)

Parameter Description Units Default Site specific
tauleaf Leaf transmittance - 0.05 0.05
tauleafnir - 0.25 0.25
tauwood - 0.001 0.001
tauwoodnir - 0.001 0.001
tvjmax °C 15 15
tvjmin °C 5 3
vbeta Stomatal sensitivity to soil water - 2 2
vemax Maximum RuBP carboxylation rate at top of leaf molm ™ 2s~! 0.00006 0.0006
vegcef Soil respiration scalar - 8 8
vegheight Vegetation height m 20 7
WoodAl Wood area index m?*m™2 1 1

A.2. Evapotranspiration package constants

Tables A.2 and A.3.

Table A2
Universal constants, which are kept constant (hard wired) for most conditions in the ET package for the used methods.
Constant Description Value Unit
A Latent heat of vaporization 2.45 MJ kg~ !(at 20 °C)
§ sigma Stefan-Boltzmann 4.903x107° MJ K *m™2day !
Gsc Solar constant 0.0820 MJ m~2 min~!
Roua Mean density of air 1.2 kg m 3 (at 20 °C)
Ca Specific heat of air 0.001013 MJ kg ' K™!
G Soil heat flux Negligible for daily time step = 0 (Allen et al., 1998, page 68) Wm™2
alphaA Albedo for Class-A pan 0.14 -
a Szilagyi-Jozsa formula 1.31 (Szilagyi and Jozsa, 2008) -
Brutsaert-Strickler formula 1.28 (Brutsaert and Strickler, 1979) -
GLEAM formulation 1.26 (Priestley and Taylor, 1972) -

0.97 for tall vegetation (i.e. trees)

Table A3
Variable that can be changed for specific climate conditions in the ET package.
Variable Description
Lat Latitude
Lat_rad Latitude in radians
as Fraction of extra-terrestrial radiation reaching earth on sunless days
bs Difference between fraction of extra-terrestrial radiation reaching full-
sun days
Elev Ground elevation above mean sea level (m)
4 Height of wind instrument (m)
a_0 Constant for estimating sunshine hours from cloud cover data
b_0 Constant for estimating sunshine hours from cloud cover data
c 0 Constant for estimating sunshine hours from cloud cover data
d_o Constant for estimating sunshine hours from cloud cover data

A.3. GLEAM forcing datasets

Table A.4.
Table A4
Forcing datasets for GLEAM.
Variable Forcing data Data type Version of GLEAM
Radiation ERA-Interim Reanalysis v3a
CERES L3SYN1DEG Satellite v3b, ¢
Precipitation MSWEP v1.0 Merge v3a
TMPA 3B4 v7 Merge v3b, ¢
Air temperature ERA-Interim Reanalysis v3a
AIRS L3RetStd v6.0 Satellite v3b, ¢
Cover fractions MOD44B v51 Satellite v3a, b, ¢
Soil moisture SMOS L3 Satellite v3c
ESA CCI v2.3 Satellite v3a, b
GLDAS Noah Reanalysis v3a, b, ¢
Soil properties IGBP-DIS Survey v3a, b, ¢

13
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A.4. Flux tower instruments and meteorological data

Table A.5, Fig. A.1.

Table A5
Flux tower instruments and measurements taken at Skukuza. The gas analyzer is calibrated on a quarterly basis.
Instrument Measurement taken Unit
Open path gas analyser (Li-cor Li7500) Water vapor and carbon dioxide concentration umol mol ~*
Rain gage tipping bucket (Texas instruments) Precipitation (0.246 mm resolution) mm
Radiometer (Kipp and Zonnen CNR1) Components of the radiation balance (e.g, solar irradiance) Wm 2
Air temperature sensor (RM Young) Air temperature °C
Relative humidity %
Three dimensional wind speed sensor (Campbell Scientific CSAT) Wind velocity and wind direction ms~!

Two dimensional wind speed and direction (RM Young)

| |
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Fig. Al. Daily meteorological forcing data from the Skukuza flux tower used in the evapotranspiration models, air temperature (Ta, °C), relative humidity (RH, %),
solar irradiance (Rs, Wm ~2), wind speed (WS, m s~ and rainfall (mm day’l).
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A.5. Sensitivity of ET to meteorological variables

Figs. A2 and A.3

call:
Im{formula = ET ~ Ta + RH + WS + Rs + SM, data = binded)

Residuals:
Min 1q Median 3Q Max
-1.57604 -0.29970 -0.04436 0.48785 1.42272

Coefficients:
Estimate std. Error t value Pri=|t])

(Intercept) 0.072365 0.050024 1.447  0.14917

Ta -0.131835 0.026776 -4.924 1.4Be-06 #¥*

RH 0.070203 0.007944 8.837 <« 2e-16 **x

W5 -0.401655 0.146147 -2.748 0.00639 #*

Rs -0.008375 0.002081 -4.024 7.44e-05 #¥*

5M 0.179739 0.029397 6.114 3.3%e-09 *®*¥*

signif. codes: © “®***° 0,001 ‘**' 0.01 ‘*' 0.05 .7 0.1 " ' 1

Residual standard error: 0.6524 on 270 degrees of freedom
(2028 observations deleted due to missingness)

Multiple R-squared: 0.5389, Adjusted R-squared: 0.5303

F-statistic: 63.11 on 5 and 270 DF, p-value: < 2.2e-16

Fig. A2. Assessment of Sensitivity of ET to measured meteorological variables at Skukuza using multi-variate regression, with the significance codes: 0 “***”0.001 ‘**’
0.01 “?0.05‘’ 0.1 “’ 1.
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Fig. A3. Scatter plot showing agreement between ET, (a) soil moisture and (b) relative humidity.
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A.6. Sensitivity of empirical models to alpha

Fig. A4.
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Fig. A4. Sensitivity of daily ET estimates from the; (a), Brutsaert-Strickler (b) Szilagyi-Jozsa and (c¢) Granger-Gray model to the alpha value as varied between 0.23
(red), 0.5 (green) and 1 (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A.7. Descriptions of model parameters
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Fig. A4. (continued)

Table A.6.
Table A6
Variables used in the computation of AET.
Variable  Description Estimated-measured-constant Unit
[eX Evaporation parameter G = P T + 0.006D, -
D, Dimensionless relative drying power Dy = Ea -
2
D Vapor pressure deficit at the leaf surface kPa
D, Vapor pressure deficit within the canopy kPa
Do Fitted constant 1.5 kPa
a Fitted constant 4.0 -
A Assimilation rate A = Cif (I), where Ciis the intercellular CO, concentration and f(I)is the function of pumol m~2s~?!
incident light.
2 Fitted constant 0 mol m~ %!
& Fitted constant 3.37 kPa®® for C3 and 1.10 kPa®® for C4 molm~2s!
Cs CO, concentration at the leaf surface Measured pmol mol =1
B Empirical soil moisture stress factor f= 9—6w -
efc — 6w
R, Net radiation Ry = Rus — Ru MJ kg ™!
Rps Net short incoming solar radiation Measured MJ kg ™!
Ry Net outgoing long solar radiation Measured MJ kg~!
G Soil/ground heat flux Measured MJ m~2 day !
A Latent heat of vaporization 2.45 MJ kg~ !(at 20°C)
% Psychometric constant y= 0.00163§ kPa °C !
p Atmospheric pressure p= 101.3(293 ;)-9030651’-"’)5.26 kPa
Elev Elevation above sea level Measured m
E, Drying power of air Eq = f(u)(es — eq) mm day !

18
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Variable  Description Estimated-measured-constant Unit
[ Vapor pressure of air e = 0.6108 exp| 17.27T, ] kPa
s . P T +237.3
eq Saturation vapor pressure _ ¢s(Tamax) + es (Tamin) kPa
2
W, Critical soil moisture m3m™3
Wap Water retained below the wilting point m3m~2
Wy Soil moisture not available for root uptake m®m~3
w™ Soil moisture at the wettest layer m®m™3
® i i 1-1), -1 _ @ { 3m~3
w Surface soil moisture o (Fs(,i )+F},i )*Ei(21*F§,g)A‘ m° m
w =
2z
fw Priestley-Taylor wind function f(u) =1.313 + 1.381u -
Up Daily wind speed at 2 m Measured ms™!
A Slope of saturation vapor pressure 4098(0.6108Exp (—727Ta_y, -
A= Tq+237.3
(Tq +237.3)2
T, Mean daily air temperature Measured °C
i i A R G -1
Epr Wet environment evaporation Epr = aPT[A+y 7n _ 1]; apr = 1.26 mm day
ET, PET _ A Rn ¥ mm day !
’ ETP_AerA A+yE"
E; Interception loss Computed following Gash's model mm day !
T CO, compensation of assimilation in the presence of _ A pbar
dark respiration Aty
. . . d ~1
TS Aerodynamic resistance from soil to canopy | exp(2en) ~ exp (e AL~ 1)) sm
B a2fsp(MerL2cwA
8qq Humidity deficit of air o8qy = % RH is the relative humidity (%) %
Pa Air density o, = -2 kgm™3
@ R*Ty
P Pressure Measured Pa
R Specific gas constant for dry air 287.05 J/(kg m™?)
Eq Soil evaporation AEq =T(Ry, — G) + (1 — D)pAdq,/1s mm
Eg Potential evaporation AEgp = A (q*(Ty) — Gyep)/7s mm
¢ Specific heat capacity =2y Jkgtec!
Gp, i Heat conductance Gl;,li = G;% + (nbpp Ggil)fl -
Gy, i Water conductance Gy = Gt + Gyt + Gy -
G, Radiation conductance Gri = 4gfop T’/ cp -
z Height Measured m
VOD Vegetation Optical Depth Measured by satellite -
S Evaporative stress (Tall vegetation) S=1— (Mewy
We — Wwp
Evaporative stress (Short vegetation) 1o [We=ww | T -
S= \ We —wwp 0.8
2
Evaporative stress (Bare soil) §=1— [We=ww -
Wwe — WWP
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