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Abstract 

This study presents a method for estimating two area-characteristic natural hazard recurrence 

parameters. The mean activity rate and the frequency-size power law exponent are estimated 

using Bayesian inference on combined empirical datasets that consist of prehistoric, historic, 

and instrumental information. The method provides for incompleteness, uncertainty in the 

event size determination, uncertainty associated with the parameters in the applied occurrence 

models, and the validity of event occurrences. This aleatory and epistemic uncertainty is 
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introduced in the models through mixture distributions and weighted likelihood functions. The 

proposed methodology is demonstrated using a synthetic earthquake dataset and an observed 

tsunami dataset for Japan. The contribution of the different types of data, prior information and 

the uncertainty is quantified. For the synthetic dataset, the introduction of model and event size 

uncertainties provides estimates quite close to the assumed true values, whereas the tsunami 

dataset shows that the long series of historic data influences the estimates of the recurrence 

parameters much more than the recent instrumental data. The conclusion of the study is that 

the proposed methodology provides a useful and adaptable tool for the probabilistic assessment 

of various types of natural hazards. 

 

1. Introduction 

The successful modelling of natural hazards and their associated risks are important for human 

health, safety, and economic growth. Underestimation of natural hazards could lead to fatalities 

and economic losses, whereas overestimation could result in overpriced and excessive safety 

measures. Various industries use information, such as the probabilities of exceedances, return 

periods, and the upper limit of the event size to generate products for safeguarding society. The 

event size of an event refers to the scale at which the event is measured, e.g. the earthquake 

magnitude, tsunami intensity, or the affected area of a fire.  

 

Power laws are probably the models used most often to describe event size and frequency. Such 

equations are capable of modelling natural systems where a large number of small events occur 

compared with a small number of large events. These equations include the Gutenberg-Richter 

relation for earthquake magnitude (Gutenberg and Richter 1956), tsunami intensity (Soloviev 

1970; Geist and Parsons 2006), landslide area (e.g. Malamud et al. 2004), solar flare intensity 

and the burned area for wild fires (e.g. Newman 2005), and air pollution (Shi and Liu 2009). 
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The application of power law to various types of natural systems is discussed in e.g. Newman 

(2005), Burroughs and Tebbens (2001), and Geist and Parsons (2014).  

 

Similar to any statistical distribution, the parameters of the power law are sensitive to the 

quality of the applied data. Data on natural systems can be highly incomplete and uncertain, 

thereby influencing the fitted power law (Burroughs and Tebbens 2005). Accurate instrumental 

recordings of natural disasters represent only a very small part of the overall historical timeline; 

therefore, there is a real possibility that the largest observed events are not included in the 

dataset. This omission could result in the underestimation of the hazard and the subsequent 

underestimation of the vulnerability or risk for the area under investigation.  

 

In an effort to supplement instrumental datasets and reduce epistemic uncertainty, extensive 

research has been devoted to collecting reliable prehistoric and historic information. Prehistoric 

events are those recorded with palaeo-environmental studies. Such research is expensive, as it 

requires the identification of areas where a prehistoric event could have taken place. Additional 

problems associated with prehistoric data are retrieving the exact date of the occurrence and 

the size of the event, which is often not possible. Historic events are those typically observed 

from the time of first human settlement. Their quality depends upon whether they were 

observed and described accurately.  

 

Figure 1 provides a typical illustration of available data used in the assessment of recurrence 

parameters in virtually any natural system. Prehistoric data are subject to uncertainty relevant 

to the time of occurrence, the exact size of the event, and incompleteness in terms of the 

probability of detecting an event. Historic data, consisting of the largest observed events, and 

instrumental datasets are subject to incompleteness and uncertainty relevant to the observed 
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event size, varying levels of certainty regarding the exact location of an event, and varying 

probabilities of all events above a certain minimum size being observed. Time gaps 𝑇𝑔 

represent missing event records. 

 

[INSERT FIGURE 1 HERE] 

Figure 1. Illustration of typical data used for assessment of model recurrence parameters based 

on prehistoric, historic and instrumental datasets. (Modified after Kijko et al. 2016).  

 

Regardless the quality of the data, prehistoric and historic information can be combined with 

instrumental records using Bayesian statistics (e.g. Fernandes et al. 2010) or using the additive 

property of likelihood functions (Rao 1973). Additional information from independent sources 

can be included to stabilise and constrain the estimates. Typical examples are found in 

seismology, such as recurrence parameters for geologically similar areas (Campbell 1982, 

1983). Silva et al. (2017) provide ideas for what could be used as prior information in extreme-

frequency flood analyses. Patskoski and Sankarasubramanian (2018) discuss various forms of 

potential prior information that are used in time-series-based hydrological studies, such as tree 

rings, sea surface temperature, probable maximum flood discharge (Fernandes et al. 2010), 

expert judgement (Viglione et al. 2013), and climate covariates (Sun et al. 2014). Other 

geologic hazards, such as tsunamis and landslides, can include prior information based on 

knowledge of seismotectonics (Geist and Uri 2012), rainfall thresholds (Berti et al. 2012), and 

expert opinions (e.g. Yazdani and Kowsari 2013). Uninformative priors occur commonly 

among different types of hazards (Lyubushin and Parvez 2010; Cooley et al. 2007). 

 

The aim of this study is to present a generic methodology that is capable of utilizing different 

sources information and uncertainty in natural hazard modelling. The methodology is 
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applicable to various types of natural hazards, where the frequency-size relation follows a 

power law. We show how prehistoric, historic, and instrumental data can be incorporated and 

can account for incomplete data, and uncertainty in event sizes and applied occurrence 

distributions. In addition, we present an argument for the inclusion of weighting information 

reflecting individual event validity. Bayesian inference is applied to obtain the recurrence 

parameter estimates. 

 

2. Methodology 

The proposed methodology investigates natural systems by considering the frequency at which 

they occur and their respective sizes. First, we define the model before introducing its 

modifications and extensions to account for the different types of uncertainty. Figure 2 

illustrates the applied methodology for the estimation of recurrence parameters. The 

methodology is similar to that described by Kijko et al. (2016) and Smit et al. (2017). With 

reference to the applied power law, the proposed methodology accounts for aleatory and 

epistemic uncertainty by providing for incompleteness, uncertainty in the event size, and 

uncertainty in the applied occurrence models, with reference to the applied power law. As an 

extension of this methodology, our study introduces the validity of occurrence and Bayesian 

inference to constrain the estimated parameters. 

 

[INSERT FIGURE 2 HERE] 

Figure 2. Schematic illustration of the proposed methodology, showing the types of data that 

can be used, nature of the uncertainties that can be considered, and the estimation techniques 

for the model parameters.  
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2.1. Size and frequency 

As a first step, we assumed independence between the occurrence and the size of an event.  As 

regards earthquakes, independence can be obtained by removing the events classified as 

swarms and/or fore- and aftershocks (e.g. Cornell 1968). The random variable 𝑋 refers to the 

size of the observed events. The sample space for event sizes are defined in terms of 𝑁 possible 

independent and identically distributed (iid) variables 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑁}. Following Figure 1, 

a dataset can be divided into sub-datasets consisting of prehistoric (𝑃), historic (𝐻), and 𝑠 

complete, instrumental datasets. Each of these sub-datasets is considered complete for event 

sizes exceeding a certain level of completeness (LoC) 𝑥min
(𝑖)

, during a certain period of time 𝑡𝑖 

for 𝑖 = 𝑃,𝐻, 1, … , 𝑠. Incompleteness of the dataset is accounted for by defining the likelihood 

functions for each sub-dataset. Creating these sub-datasets, each with different levels of 

completeness, allows more information to be included in the assessment of the recurrence 

parameters. Smaller event sizes are crucial, as they stabilise the slope of the power law, thereby 

providing superior estimates. Several authors have investigated the possibility of sub-setting 

earthquake data for parameter estimation (Kijko and Smit 2012 and references therein). These 

authors sub-divided the data according either to time or to earthquake magnitude levels over 

time. In this study, we sub-set the data according to the type of events (prehistoric, historic, 

and instrumental data), as well as the LoC over time, introduced by Kijko and Sellevoll (1989). 

By structuring the dataset in this fashion and building likelihood functions, data with different 

underlying assumptions could be included in the same assessment process. This approach 

permits the occurrence of ‘gaps’ (𝑇𝑔) to account for missing event records. Missing records are 

often attributable to event recording equipment or networks being non-operational, with other 

socioeconomic and social factors probably also playing a role. 
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The proposed methodology investigates natural systems by examining the frequency at which 

they occur in relation to their respective sizes in terms of power laws. For the investigated area, 

it is assumed that the probability to observe a number of 𝑛 events in the time interval Δ𝑡 is 

described by homogeneous Poisson distribution with parameter 𝜆Δ𝑡 

 

𝑃𝑁 = 𝑃(𝑁𝑋≥𝑥𝑚𝑖𝑛 = 𝑛) =
𝑒−𝜆Δ𝑡(𝜆Δ𝑡)𝑛

𝑛!
, 𝑛 = 0,1,2…. (1) 

 

where 𝑁𝑋≥𝑥𝑚𝑖𝑛  is the number of events where 𝑥𝑖 ≥ 𝑥𝑚𝑖𝑛. Parameter 𝜆 describes the mean, 

usually annual, area-characteristic activity rate of event occurrence, with 𝑥𝑖 ≥ 𝑥𝑚𝑖𝑛. The 

parameter 𝑥𝑚𝑖𝑛 is the size above which it is certain that all the events were recorded and 

included in the analysis.  

 

Furthermore, the number of observed events can be described in terms of event sizes in a 

specific time interval by using power laws. Power laws are used often when the frequency of 

the event occurrence with event size in the interval [𝑥, 𝑥 + 𝑑𝑥] tends to be linear on the log-

log scale. Assuming the event size 𝑥 is measured on a logarithmic scale, this linear relationship 

is expressed as ln 𝑛(𝑥) = 𝑐 − 𝑘𝑥 and transforms to 𝑛(𝑥) = 𝐶𝑒−𝑘𝑥, with 𝑘 representing the 

power law exponent and 𝐶 = exp⁡(𝑐) a constant. One disadvantage of using the frequency-size 

relation is the division of the size variable into bins, which is not always possible. The 

cumulative frequency-size relation (CFSR) overcomes this problem and allows the 

measurement sizes to fall on a continuous scale (Newman 2005). The CFSR, indicated by 𝑛𝑋≥𝑥, 

is defined as  

 

𝑛𝑋≥𝑥 =
𝐶

𝑘 − 1
10−(𝑘−1)𝑥, (2) 
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and represents the number of events observed, in a specified time interval, that are larger than 

or equal to 𝑥. By taking the logarithm, Eq. 2 is transformed into a linear equation  

  

log 𝑛𝑋≥𝑥 = 𝑎 − 𝑏𝑥, (3) 

 

with parameters 𝑎 = log (
𝐶

𝑘−1
)⁡and 𝑏 = (𝑘 − 1) (Newman 2005). The cumulative-frequency 

power law probability distribution is also referred to as a Pareto distribution. Eq. 3 can be 

transformed into an exponential distribution  

 

𝑛𝑋≥𝑥 = exp(𝛼 − 𝛽𝑥), (4) 

 

with parameters 𝛽 = 𝑏 ln 10 and the 𝛼 = 𝑎 ln 10. Eq. 3. is equivalent to the well-known 

frequency-magnitude Gutenberg-Richter relation in seismology, where 𝛽 is a parameter 

expressing the relationship between large and small earthquakes. The size of a tsunami, 

expressed in terms of intensity, can be written in the same way (Smit et al., 2017). For purposes 

of convenience, 𝑛𝑋≥𝑥 will be referred to as 𝑛 in the rest of this paper. 

 

The characteristics of natural events are controlled by the forces of nature adhering to specific 

physical constraints. These constraints are unique to the various types of natural systems. For 

example, the potential earthquake magnitude of a specific geological fault is related to the 

length of the fault. This physical law indicates that an upper earthquake magnitude limit 𝑥𝑚𝑎𝑥 

has to exist. Similarly, the physical processes that govern events such as tsunamis, landslides, 
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floods, and fires are subject to upper limits. The area-characteristic maximum possible event 

size represents the worst-case scenario and is an important parameter in hazard and risk 

modelling. Estimates of the upper limit of a distribution can be highly uncertain, particularly 

when the datasets are short. In an instance of an upper limit being assumed, the unknown true 

𝑥𝑚𝑎𝑥 forms part of the range over which the model parameters 𝜆 and 𝛽 must be evaluated. 

Integrating the model parameter over an unknown value, violates the required condition of 

regularity of likelihood functions (Cheng and Traylor 1995). Methods designed to avoid this 

problem are discussed in Kijko and Singh (2011) and Vermeulen and Kijko (2017).  

 

Based on the cumulative-frequency power law in Eq. 3, a cumulative distribution function 

(CDF) for event sizes can be defined, taking into consideration the existence of the level of 

completeness of a dataset 𝑥𝑚𝑖𝑛, as well as an upper limit 𝑥𝑚𝑎𝑥. This yields a normalized, 

shifted-truncated CDF within the range [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] (Cosentino et al. 1977) as 

 

𝐹𝑋(𝑥) =

{
 

 
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑥 < 𝑥𝑚𝑖𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
𝑥min ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⁡𝑥 > 𝑥max⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

, (5) 

 

Prehistoric and historic datasets contain only the largest events and are governed by extreme 

distributions. Utilising the Poisson distribution (Eq. 1) and the shifted-truncated frequency-size 

distribution (Eq. 5), an extreme distribution is defined in terms of the recurrence parameters 𝜆 

and 𝛽, thereby providing the link between extreme and instrumental datasets (Kijko and 

Sellevoll 1989).  

 

Let 𝑥min represent the level of completeness across the entire dataset, 𝑥𝐻 represents the smallest 

event in the historic sub-dataset, and 𝑥𝑃 the smallest event in the prehistoric dataset such that 
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𝑥𝑃 ≥ 𝑥𝑚𝑖𝑛 and 𝑥𝐻 ≥ 𝑥𝑚𝑖𝑛. The derivation of the extreme distribution will be described only 

in terms of the prehistoric dataset but it is translated easily into the historic data.  

 

Let 𝑋𝑃 = {𝑥1, 𝑥2, … 𝑥𝑁𝑃} represent the sample space for prehistoric event sizes, and 𝑁𝑃 the 

number of prehistoric events where both the sizes and number of events are iid. The occurrence 

of observed events in time is assumed to follow the homogeneous Poisson with parameter 𝜆𝑃. 

The probability to observe a number of 𝑛𝑃 events in the time interval 𝛥𝑡𝑃 with sizes larger than 

𝑥𝑚𝑖𝑛 is defined as the Poisson distribution with parameter 𝜆𝑃Δ𝑡𝑃.  

 

Let 𝑥0 be the largest event size in a specified time interval such that  𝐹𝑋
MAX(𝑥0) = [𝐹𝑋(𝑥0)]

𝑛𝑃 

(e.g. Bain and Engelhardt 1992). Therefore, the distribution of the largest (extreme) events 

within the range [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] takes the form 

 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) =

{
 
 

 
 0 𝑥0 < 𝑥𝑚𝑖𝑛

[
𝑒−𝛽𝑥min − 𝑒−𝛽𝑥0

𝑒−𝛽𝑥min − 𝑒−𝛽𝑥max
]

𝑛𝑃

𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥

1 𝑥0 > 𝑥𝑚𝑎𝑥

. 

 

(6) 

 

By the theorem of total probability (Cramér 1961), the probability that sizes of all the events 

are less than 𝑥0 in an arbitrary time interval 𝛥𝑡𝑃 takes the form of the Gumbel I extreme 

distribution (e.g. Epstein and Lomnitz, 1966): 

 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = exp(−𝜆𝑃𝛥𝑡𝑃[1 − 𝐹𝑋(𝑥0)]) 𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥. (7) 
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2.2. Accounting for uncertainties 

Temporal, spatial, and/or spatial-temporal dependencies violate the independent and 

stationarity conditions in classic hazard assessment procedures. In the instance of earthquakes 

and tsunamis, this can be attributed to various factors, such as changes in the state of stress in 

rock (e.g. Ogata and Abe 1991; Scholz 2015). Rainfall, deforestation, and earthquakes affect 

the occurrence of landslides (Geist and Parsons 2006; Tatard et al. 2010), whereas weather 

phenomena, such as the El Niño Southern Oscillation (ENSO) affect meteorological and 

hydrological occurrences (Khaliq et al. 2006; Egüen et al. 2016). Accordingly, the assumption 

would fail that a homogeneous Poisson distribution describes the probability that the observed 

number of events in the time interval Δ𝑡 equals n in a specific area of investigation. Similarly, 

the assumption of independent and identically distributed recorded event sizes might not hold. 

Therefore, the applied distributions should provide for this type of uncertainty in the data to 

ensure that the perceived hazard is not under- or over estimated. 

 

The replacement of the classic distributions by their mixture counterparts is probably simplest 

way to accommodate the differences between the observed processes and the applied 

distributions (e.g. Vicini et al. 2013). By their very nature, mixture distributions can 

accommodate the temporal and spatial occurrence of natural events and can account for weak 

dependencies in the data. The assumption behind mixed distributions is that their parameters, 

in this study 𝜆 and 𝛽, are random variables and are subject to fluctuation (e.g. Fernandes et al. 

2010; Yadav et al. 2013; Daykin et al. 1993; Cunningham et al. 2012). In this approach, the 

Poisson occurrence distribution (Eq. 1) and the exponential event-size distributions (Eq. 5), are 

replaced by the Poisson mixture and the exponential mixture distributions.  
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The two-parameter gamma distribution is a frequent choice for a mixing distribution. It is used 

in many research fields, as it is flexible enough to adopt different forms by means of the shape 

(𝑝) and scale (𝑞) parameters of the two-parameter gamma distribution. Similar to the Poisson 

and exponential distributions, it is infinitely divisible, a condition for independent, identically 

distributed random variables. In addition, the gamma distribution is the maximum entropy 

distribution for the Pearson Type III distributions, committing only to the known information 

and limiting the prior information required. It adheres to the characteristic of systems governed 

by physical laws that move toward the maximum entropy. The resulting Poisson-gamma and 

exponential-gamma distributions are equivalent, respectively, to the negative binomial and 

Pareto distributions. Compared with classic distributions, mixture distributions have the 

additional benefit that the unconditional variance of the mixture distribution is larger, because 

of the assumed uncertainty in the mixing distribution (Klugman et al. 2004). Examples of 

applying the gamma distribution can be seen in probabilistic models of failure times in 

engineering (Hamada et al. 2008), time to the kth event in seismology (Benjamin and Cornell 

2014), as well as in the insurance and risk industry for modelling claim numbers in risk theory 

(Daykin et al. 1993; Klugman et al. 2004).  

 

In our work, the gamma distribution 𝐺𝐴𝑀(𝑝𝜆, 𝑞𝜆) is used to model the uncertainty in the 

parameter 𝜆. The parameters of the gamma function are defined through the mean and variance 

of 𝜆 as  𝑝𝜆 = 𝜆̅/𝜎𝜆
2 and 𝑞𝜆 ≡ 𝑣𝜆

−2 = 𝜆̅2/𝜎𝜆
2, respectively, with 𝑣𝜆 set as the coefficient of 

variation for the activity rate 𝜆.  

 

𝑃𝑁(𝑛|Δ𝑡, 𝑣𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑝𝜆
Δ𝑡 + 𝑝𝜆

)
𝑞𝜆

(
Δ𝑡

Δ𝑡 + 𝑝𝜆
)
𝑛

, (8) 

 

where 𝜆̅ denotes the mean parameter of  𝜆, and 𝑛 is the value of 𝑁𝑋≥𝑥𝑚𝑖𝑛.  
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In a similar way, the 𝐺𝐴𝑀(𝑝𝛽 , 𝑞𝛽) distribution is used to model the uncertainty in 𝛽 parameter 

in Eqs. 5 and 7 with 𝑝𝛽 = 𝛽̅/𝜎𝛽
2 and 𝑞𝛽 ≡ 𝑣𝛽

−2 = 𝛽̅2/𝜎𝛽
2. The exponential-gamma distribution 

for the interval 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, and extreme exponential-gamma distribution for the interval 

𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥 respectively, take the form  

 

𝐹𝑋(𝑥|⁡𝑣𝛽) =

[
 
 
 
 1 − (

𝑞𝛽
𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽

)

𝑞𝛽

1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]
 
 
 
 

, (9a) 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃, 𝒗𝑷) = exp

(

 
 
−𝜆̅𝑃Δ𝑡𝑃

[
 
 
 
 

1 −

[1 − (
𝑞𝛽

𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]
]
 
 
 
 

)

 
 
, (9b) 

 

where 𝛽̅ denotes the mean parameter of  𝛽, and 𝒗𝑷 = (𝑣𝜆
𝑃, 𝑣𝛽

P) is the vector of the coefficients 

of variation for 𝜆 and 𝛽. The respective probability distribution functions (PDFs) of the above 

CDFs are derived in Kijko et al. (2016). 

 

In addition, event size uncertainty can be built into the formalism. Uncertainty in event size 

determination occurs because of uncalibrated instruments or when such determination is based 

upon the qualitative description of the effect of the event on the environment. One method of 

dealing with size uncertainty is to assume that the apparent (observed) size of an event 𝑥̌ 

consists of the true (unknown) size 𝑥 and some error 𝜀, such that 𝑥̌ = 𝑥 + 𝜀. The uncertainty 

in event size can be dealt with in different ways, with the hard-bound and soft-bound models 

probably used most often. 
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The essence of the hard-bound model is the assumption that the uncertainty of event size x is 

described by the uniform distribution between two values: the lower bound 𝑥𝐿 and the upper 

bound 𝑥𝑈. If 𝛿 =
1

2
(𝑥𝑈 − 𝑥𝐿), then 𝑥𝐿 = 𝑥̌− 𝛿 and 𝑥𝑈 = 𝑥̌+ 𝛿. Size uncertainty is 

implemented utilizing the convolution of size distribution with a uniform distribution. The PDF 

of event size, with an account of the hard-bound size model using the shifted-truncated 

exponential-gamma distribution, is determined using the formula defined in Kijko and 

Sellevoll (1992) 

 

𝑓𝑋(𝑥̌|𝛿) =
1

2𝛿

{
 
 

 
 𝐹𝑋(𝑥̌ + 𝛿) − 𝐹𝑋(𝑥𝑚𝑖𝑛)⁡ 𝑥̌ < 𝑥𝑚𝑖𝑛 + 𝛿

[
𝐹𝑋(𝑥̌ + 𝛿) ⁡− 𝐹𝑋(𝑥̌ − 𝛿)

1 − 𝐹𝑋(𝑥̌|𝛿)
]⁡ 𝑥𝑚𝑖𝑛 + 𝛿 ≤ 𝑥̌ < 𝑥𝑚𝑎𝑥 − 𝛿

1 − 𝐹𝑋(𝑥̌ − 𝛿)⁡⁡ 𝑥𝑚𝑎𝑥 − 𝛿 ≤ 𝑥̌ < 𝑥𝑚𝑎𝑥 + 𝛿

. 
(10) 

 

For this study, we assumed that event size uncertainty for prehistoric and historic data is 

described using hard bound models. The respective CDFs are obtained by substituting Eq. 9b 

into Eq. 10 and solving the integral with numerical methods. 

 

A soft bound model of size error 𝛿 is a distribution with a continuous support, typically 

Gaussian, with mean equal to zero and a standard deviation of 𝜎𝑥. The approximate CDF for 

the shifted-truncated exponential-gamma distribution (Eq. 9a) with an account of the soft-

bound size model (Kijko et al. 2016)  

 

𝐹𝑋(𝑥|𝑣𝛽 , 𝜎𝑥) =
𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1

2𝜎𝑥
{𝐴 + 𝐵}, 

where: 

(11) 
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𝐴 =
(𝑟1+𝑟2𝛼)

−𝑞𝛽

𝑟2𝑞𝛽
|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

,  

𝐵 = (
2

𝜋
)

1
2
∑

(−1)ℎ

2ℎℎ! (2ℎ + 1)

1

𝑏2ℎ+2

∞

ℎ=0

× ∑
(2ℎ + 1)! (−𝑟1)

𝑗(𝑟1 + 𝑟2𝛼)
2ℎ+1−𝑞𝛽−𝑗

(2ℎ + 1 − 𝑗)! 𝑗! (2ℎ + 1 − 𝑞𝛽 − 𝑗)

2ℎ+1

𝑗=0

|

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

, 

 

 

where 𝐶𝛽 = [1 − (
𝑞𝛽

𝑞𝛽+𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
)
𝑞𝛽

]
−1

, 𝛼 = 𝑞𝛽 + 𝛽̅(𝑥 − x𝑚𝑖𝑛), 𝑏 = −𝛽̅𝜎𝑥, 𝑟1 = 𝑞𝛽 +

𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛), and 𝑟2 = 𝛽̅𝜎𝑥.  

 

3. Estimation of Parameters 

3.1. Likelihood functions 

Using the additive property of likelihood functions, the individual likelihood functions are 

multiplied to provide a single likelihood function for the entire available dataset. Therefore, 

𝐿𝑇𝑜𝑡𝑎𝑙, the likelihood function of the unknown model parameters (𝜆̅, 𝛽̅), for given 𝑥𝑚𝑎𝑥 and 

based on the entire dataset can be written as  

 

𝐿𝑇𝑜𝑡𝑎𝑙(𝜆̅, 𝛽̅|𝑰𝑃, 𝑰𝐻, 𝑰𝑖, 𝑥𝑚𝑎𝑥)

= 𝐿𝑃(𝜆̅, 𝛽̅|𝑰𝑷, 𝑥𝑚𝑎𝑥) × 𝐿𝐻(𝜆̅, 𝛽̅|𝑰𝑯, 𝑥𝑚𝑎𝑥)

×∏𝐿𝑖(𝜆,̅ 𝛽̅|𝑰𝑖, 𝑥𝑚𝑖𝑛
(𝑖) , 𝑥𝑚𝑎𝑥)

𝑠

𝑖=1

, 

(12) 

 

where 𝐿𝑃 and 𝐿𝐻 denote the likelihood functions based on the prehistoric and historic parts of 

the database, 𝐿𝑖 is the likelihood function based on the 𝑖th sub-dataset (𝑖 = 1,… , 𝑠), 𝑰𝑃 =

(𝒙𝑷, 𝒕𝑷, 𝒗), 𝑰𝐻 = (𝒙𝑯, 𝒕𝑯, 𝒗) and 𝑰𝑖 = (𝑛𝑖 , 𝑡𝑖, 𝒙𝒊, 𝒗) are the background information for the 

three types of data. For the prehistoric dataset, 𝒙𝑷,⁡and 𝒕𝑷 are the (𝑛𝑃 × 1) vectors of 
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prehistoric event sizes 𝑥𝑃,𝑘 that occurred within time intervals Δ𝑡𝑃,𝑘, where k=1,…,⁡𝑛𝑃. The 

vectors 𝒙𝑯, 𝒙𝒊, 𝒕𝑯 and 𝒕𝒊 are defined similarly for the historic and instrumental datasets. The 

number of events 𝑛𝑖 is the number of events observed in the 𝑖th sub-dataset. The vector 𝒗 =

(𝑣𝜆, 𝑣𝛽) constitutes coefficients of variation for the unknown 𝜆̅ and 𝛽̅.  

 

The likelihood function for the complete, instrumental datasets 𝐿𝑖(𝜆̅, 𝛽̅|𝑰𝒊, 𝑥𝑚𝑖𝑛
(𝑖) , 𝑥𝑚𝑎𝑥) is a 

combination of the likelihood functions following from the frequency and size event 

distributions. In the instance that the number of events is independent of their sizes, the 

respective likelihood functions for sub-dataset 𝑖 = 1,… 𝑠 are defined as 

 

𝐿𝑖(𝜆̅, 𝛽̅|𝑰𝒊, 𝑥𝑚𝑖𝑛
(𝑖) , 𝑥𝑚𝑎𝑥) = 𝐿𝜆𝑖(𝜆̅|𝑛𝑖, Δ𝑡𝑖, 𝑣𝜆) × 𝐿𝛽𝑖(𝛽̅|𝒙𝒊, 𝒗, 𝑥𝑚𝑖𝑛

(𝑖) , 𝑥𝑚𝑎𝑥), (13) 

 

where  

 

𝐿𝜆𝑖(𝜆̅|𝑛𝑖, Δ𝑡𝑖, 𝑣𝜆) = 𝜆̅(𝑖) (
1

λ̅iΔ𝑡𝑖 + qλ
)

𝑞𝜆

(
λ̅iΔ𝑡𝑖

λ̅iΔ𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

 (14) 

 

and 

 

𝐿𝛽𝑖(𝛽̅|𝒙𝒊, 𝒗, 𝑥𝑚𝑖𝑛
(𝑖)
, 𝑥𝑚𝑎𝑥) = [𝐶𝛽𝛽̅]

𝑛𝑖
∏[1 +

𝛽̅

𝑞𝛽
(𝑥𝑖,𝑘 − 𝑥𝑚𝑖𝑛

(𝑖) )]

−(𝑞𝛽+1)
𝑛𝑖

𝑘=1

, (15) 

 

with 𝑥𝑖,𝑘 representing event 𝑘 in the sub-dataset 𝑖, 𝜆̅(𝑖) = 𝜆̅(𝑥𝑚𝑖𝑛)[1 − 𝐹𝑋(𝑥|𝑣𝛽 , 𝜎𝑋)] 

where⁡𝜆̅(𝑥𝑚𝑖𝑛) is the mean activity rate for the level of completeness 𝑥𝑚𝑖𝑛 (Kijko and 

Sellevoll, 1989), and 𝐶𝛽 = [1 − (
𝑞𝛽

𝑞𝛽+𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
)
𝑞𝛽

]
−1

, as defined in Eq. 11. 
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Other examples of constructing a total likelihood function to combine different types of data 

are employed in earthquake, tsunami, and extreme flood analyses (e.g. Stedinger and Cohn 

1986; Fernandes et al. 2010; Kijko et al. 2016; Lam et al. 2017, Smit et al. 2017).  

 

The underlying mechanical trigger of natural catastrophes is sometimes questionable. This is 

particularly true for prehistoric and historic tsunami occurrences, as it could be difficult to 

distinguish between the effects of a tsunami, severe storm surges, and floods. In earthquake 

datasets, it is difficult to distinguish between triggered and induced events, and landslides can 

be caused by extreme rainfall or by earthquakes. Some datasets have an additional variable that 

expresses the validity of the event. For example, the GITEC catalogue criteria (e.g Tinti et al. 

2001) is a validity index for each observation ranging from 0 for an event considered extremely 

improbable, to 4 for a definite tsunami, with a probability close to one. 

 

 The presence of uncertain and questionable event data with respect to the applied model can 

have a serious effect on the estimated recurrence times for event sizes. This could lead to the 

an erroneous assessment of the recurrence parameters. To account for the validity of an event, 

the standard likelihood function is replaced with the weighted likelihood (WL) function. This 

procedure at least preserves the first-order asymptotic properties of the classic likelihood 

function, leading to estimators with the usual asymptotic behaviour (Markatou et al. 1998).  

 

The weighted likelihood function in the context of the above methodology equals 

 

𝐿𝑖(𝜆̅, 𝛽̅|𝑰𝒊, 𝑥𝑚𝑎𝑥) ≡∏𝑓𝑋
i(𝑥𝑘|𝜆̅, 𝛽̅, 𝑰𝒊, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)

𝑤𝑗

𝑛𝑖

𝑘=1

, (16) 
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where 𝑤𝑗 ≡ 𝑤(𝑥𝑗) is the known weight of observation 𝑗 in sub-dataset 𝑖, and the PDF for the 

sub-dataset 𝑖, 𝑓𝑋
𝑖(𝑥|𝜆̅, 𝛽̅, 𝑰𝒊, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), is then defined by the multiplication of the PDFs for 

the Poisson-gamma occurrence distribution and the exponential-gamma event size distribution, 

i.e 𝑓𝑋
𝑖(𝜆̅|𝑛𝑖, 𝑡𝑖 , 𝒗, 𝑥𝑚𝑎𝑥) × 𝑓𝑋

𝑖(𝛽̅|𝒙𝒊, 𝒗, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥). The weights range from 0 to 1, where 1 is 

equivalent to 100% certainty of the validity of an event. The effect of questionable events in 

the model is reduced in this way. 

 

3.2. Bayesian Inference 

The accuracy of the maximum likelihood estimates obtained by the maximization of likelihood 

(Eq. 12) depends upon the quality of the observed dataset. Small datasets often do not yield 

reliable estimates for natural hazards, as they provide only a limited view of the characteristics 

of the physical process. By including prior information in the estimation process, the hazard 

estimates are improved and stabilised.  

 

Following the Bayesian rule, the posterior distribution of the parameters 𝑧(𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥|𝐼)⁡is 

constructed with the a priori probability defined as 𝜋(𝜽), in which 𝜽 = (𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥) and⁡ 𝐼 is 

the background information that denotes all the assumptions related to the particular 

investigation. In seismology, Bayesian inference is performed typically directly on the shifted-

truncated distribution. Common priors used in these cases are the gamma distribution for 𝜆̅ and 

the beta distribution for 𝛽̅ (Mortgat and Shah 1979; Campbell 1982, 1983), thereby accounting 

for model uncertainty. The gamma and beta distributions are also conjugate priors, providing 

closed-form expressions. We explicitly accounted for the model uncertainty by using mixture 

distributions, as this affords the opportunity to use priors from additional but independent 

information. These priors could be taken as uninformative with 𝜋(𝜽) = 𝑐𝑜𝑛𝑠𝑡 when little or 

no information is available. Alternatively, following the law of large numbers and the central 
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limit theorem, our choice of prior 𝜋𝛽(𝛽̅) for 𝛽̅ is the Gaussian distribution with the moments 

𝜇 and 𝜎2 (Aki 1965; Kijko and Graham 1999). The mean annual rate of occurrence is a 

parameter that is specific to the region; therefore, we assigned an uninformative prior 𝜋𝜆(𝜆̅) to 

𝜆̅ in the form of a uniform distribution in the range [𝜆𝐴, 𝜆𝐵] (Dong et al. 1984). Similarly, an 

uninformative prior is assumed for the estimation of the area-characteristic maximum possible 

event size of the range [𝑥𝑚𝑎𝑥
𝐴 , 𝑥𝑚𝑎𝑥

𝐵 ]. In Eq. 17 we assume that the prior information for 𝛽̅ and 

𝜆̅ is independent. Alternatively, a dependent prior 𝜋(𝛽̅, 𝜆̅, 𝑥𝑚𝑎𝑥) can be assumed. Pisarenko et 

al. (1996) implemented uniform priors for 𝜆, 𝛽 and 𝑥𝑚𝑎𝑥 that are constant on a parallelepiped 

(Pisarenko and Lyubushin 1997). Assuming that the prior information for the three recurrence 

parameters is independent, the joint prior distribution 𝜋(𝜽) is defined as 

[𝜋𝜆(𝜆̅)𝜋𝛽(𝛽̅)𝜋𝑥𝑚𝑎𝑥(𝑥𝑚𝑎𝑥)]. The posterior distribution and its estimated mean 𝝁̂(𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥|𝐼) 

and variance 𝒗𝒂𝒓̂(𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥|𝐼) are evaluated numerically 

 

𝑧(𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥|𝐼)

=

(
1

𝑥𝑚𝑎𝑥𝐵 − 𝑥𝑚𝑎𝑥𝐴 ) (
1

𝜆𝐵 − 𝜆𝐴
) exp(−

(𝛽̅ − 𝜇)
2

𝜎2
)𝐿𝑇𝑜𝑡𝑎𝑙(𝜆̅, 𝛽̅|𝑰)

∫ 𝐿𝑇𝑜𝑡𝑎𝑙(𝜆̅, 𝛽̅|𝐼) (
1

𝑥𝑚𝑎𝑥𝐵 − 𝑥𝑚𝑎𝑥𝐴 ) (
1

𝜆𝐵 − 𝜆𝐴
) exp (−

(𝛽̅ − 𝜇)
2

𝜎2
)𝑑𝛽̅ 𝜆̅

. 

(17) 

 

4. Applications 

For purposes of demonstration, two datasets were analysed.  Section 4.1 shows the effect of 

introducing the different types of uncertainty, namely combining different types of datasets, 

event size uncertainty, parameter uncertainty, and the uncertainty associated with occurrence. 

The assessment is based on a synthetic earthquake dataset. The analyses of the Japanese 
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tsunami dataset are presented in Section 4.2. All the estimates were derived by applying the 

Bayesian Inference.  

 

4.1. Simulated dataset  

To evaluate the behaviour of the proposed methodology, a typical earthquake dataset was 

generated using the Monte Carlo simulation to mimic typical prehistoric, historic, and 

instrumentally recorded earthquake data. The prehistoric data were generated using Eq. 9b 

substituted into Eq. 10, and the historic data with the historic derivations of these equations. 

The individual instrumental datasets of different levels of completeness were generated using 

Eq. 11. The apparent earthquake magnitudes in terms of moment magnitude 𝑀𝑊 were 

generated for 𝛽 = 2.302 (𝑏 = 1.0), and a mean annual activity rate for a LoC equal to 4.0, i.e. 

𝜆(𝑥𝑚𝑖𝑛 = 4.0) = 10. Variation of 25% was included in the data as well as uniform event size 

errors for prehistoric and historic data and Gaussian errors for instrumental data.  Table 1 shows 

the input for the generation of the data. The evaluated time periods were chosen to simulate the 

way earthquake data are usually observed. Each sub-dataset has different and decreasing with 

time LoC and earthquake magnitude errors.  

 

[INSERT TABLE 1 HERE] 

Table 1: Input for the generation of a synthetic earthquake magnitude dataset using the shifted-

truncated exponential-gamma distribution, with 𝑏 = 1 and 𝜆(𝑥𝑚𝑖𝑛 = 4) = 10. 

 

The same equations used to generate the synthetic earthquake dataset were used to derive the 

total likelihood function 𝐿𝑇𝑜𝑡𝑎𝑙 utilized in the Bayesian estimation process defined by the 

posterior distribution of Eq. 17. Two versions of 𝐿𝑇𝑜𝑡𝑎𝑙 were investigated, namely the 

unweighted likelihood, as defined in Eq. 12, and the weighted likelihood function version of 
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Eq.12 when applying Eq. 16. To assess the effect of including the different epistemic and 

aleatory uncertainties on the recurrence parameters 𝜆 and 𝛽 of the power law, eight different 

model scenarios were investigated using different variations of the equations defined above. 

The area-characteristic maximum possible event size 𝑥𝑚𝑎𝑥, in this instance the earthquake 

magnitude, was set to 9.65 across all eight scenarios. The scenarios are defined as: 

1. LoC: Earthquake event dataset contains only instrumental data, with different levels 

of completeness 𝑥𝑚𝑖𝑛
(𝑖)

. 

2. LoC_MAG: Earthquake event dataset contains only instrumental data, with different 

level of completeness 𝑥𝑚𝑖𝑛
(𝑖)

. The earthquake event magnitudes are uncertain.  

3. LoC_MOD: Earthquake event dataset contains only instrumental data, with different 

level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The parameters of the earthquake recurrence model are 

assumed uncertain. 

4. LoC_MAG_MOD: Earthquake event dataset contains only instrumental data, with 

different level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The earthquake event magnitudes are uncertain, 

and the parameters of the earthquake recurrence model are assumed uncertain. 

5. LoC_OCC: Earthquake event dataset contains only instrumental data, with different 

level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The validity of event occurrence is introduced. 

6. LoC_MAG_OCC: Earthquake event dataset contains only instrumental data, with 

different level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The earthquake event magnitudes are uncertain. 

The validity of event occurrence is introduced. 

7. LoC_MOD_OCC: Earthquake event dataset contains only instrumental data, with 

different level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The parameters of the earthquake recurrence 

model are assumed uncertain. The validity of event occurrence is introduced. 
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8. LoC_MAG_MOD_OCC: Earthquake event dataset contains only instrumental data, 

with different level of completeness 𝑥𝑚𝑖𝑛
(𝑖) . The earthquake event magnitudes are 

uncertain and the parameters of the earthquake recurrence model are assumed 

uncertain. The validity of event occurrence is introduced. 

 

For all eight scenarios, the recurrence parameters 𝜆̂̅ and 𝛽̂̅ are calculated by application of the 

Bayesian Inference formalism. The results are summarized in Table 2. In all tests, two types 

of 𝜋(𝛽̅) and 𝜋(𝜆̅) priors were considered: the Gaussian distribution for 𝑏 = 1.0 ± 0.1 and the 

uninformative uniform distribution for 𝜆̅. The choices for the priors follow the global 𝑏-value 

estimate for tectonically active areas (El-Isa and Eaton 2014) for 𝜋(𝛽̅), and the assumption of 

a lack of knowledge of the activity rate in the region in question for 𝜋(𝜆̅).  

 

The estimates 𝜆̂̅ and 𝑏̂̅ (where 𝛽̂̅ = 𝑏̂̅ ln(10)) for each scenario are provided in Table 2. In 

addition, this table provides the percentage contribution of each type of dataset to each of the 

estimates. Figure 3 shows the output for the return periods, and Figures 4 and 5 show how 

much 𝜆̂̅ and 𝑏̂̅⁡rely on the respective input information. 

 

[INSERT TABLE 2 HERE] 

Table 2. Output of the estimated earthquake recurrence parameters 𝜆̂, and 𝛽̂ according to the 

mixture models for occurrence and the shifted-truncated earthquake magnitude distribution. 

 

[INSERT FIGURE 3 HERE] 

Figure 3. Comparison of return periods (on a log-scale) for the different model scenarios for 

earthquake magnitudes larger than or equal to 5.0.  
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[INSERT FIGURE 4 HERE] 

Figure 4: Percentage contribution of each sub-dataset to the Bayesian inference estimation of 

the Gutenberg-Richter 𝑏-value per scenario. 

 

[INSERT FIGURE 5 HERE] 

Figure 5. Percentage contribution of each sub-dataset to the Bayesian inference of the mean 

annual rate of occurrence per scenario. The uniform prior has no effect on the estimates. 

 

From Table 2 it is clear that the estimated 𝑏-value depends on the type of input information 

and the type of uncertainty considered. Figure 4 shows that historic and prehistoric data play 

an important role in the estimation process of the 𝑏-parameter. Prehistoric data contribute 

between 56% and 75% of the information, depending on which model is used. The instrumental 

data provide the second most information, closely followed by the historical data. Independent 

prior information contributes up to 10% to the estimation process. This relationship could 

change as the assumptions on the assumed uncertainties change. 

 

For this example, Figure 5 shows that unlike the estimates for the 𝑏-value, the estimate of the 

activity rate 𝜆 depends on the recent instrumental data. The contribution of the different types 

of data varies, depending upon the type and degree of uncertainty introduced. The presence of 

prehistoric and historic data with their respective uncertainties can have a notable effect on the 

estimated parameters. The effect of the validity of events is the smallest for the combined 

dataset. As an uninformative prior was used, it had no effect on the estimates. 

 

In this example, it appears that the explicit introduction of model and earthquake magnitude 

uncertainties provides estimates quite close to the assumed true values of the recurrence 
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parameters. However, the effect of data and model uncertainties manifests more clearly in the 

estimated return periods. The inclusion of validity of events generates higher return periods, 

which signifies a lower hazard. Uncertainty in size also leads to an increase of the return period, 

but the inclusion of model uncertainty reduces the return period (i.e. increased hazard). The 

introduction of the validity of events practically halved the mean annual rate of occurrence, 

which has a significant effect on hazard classifications. 

 

Figure 4 shows that the inclusion of more uncertainty in the model increases the contribution 

of the prior information. An uninformative prior was used for the mean annual rate of 

occurrence 𝜆, which has no effect on the parameter estimate. As the two recurrence parameters 

were solved simultaneously, the assumed prior for 𝛽̂̅ had an indirect effect on 𝜆̂̅.  

 

4.2. The Japan tsunami dataset 

The methodology was applied also to the Japan tsunami international dataset identified and 

analysed in Smit et al. (2017). The dataset contains information about tsunami events occurring 

during the period 47 BC to 2015 that were measured according to the Soloviev-Imamura 

intensity scale. In addition, it contains a validity index according to the GITEC catalogue 

criteria. In Smit et al. (2017), the authors ignored events with a validity index less than 3. In 

this study, the dataset preparation followed the same process, with the exception that all events, 

were included in the computation regardless of the validity index. Table 3 shows the input 

information used in this example, where the validity index is introduced into the likelihood 

function (Eq. 16). The recurrence parameter estimates, based on historic and instrumental data, 

are derived by applying the formalism of the Bayesian inference (Eq. 17). Eq. 11 was used as 

the likelihood function for the instrumental data. Eqs. 9b and 10 were used to derive the 

likelihood function for historic data. Table 4 provides a comparison between the estimated 
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recurrence parameters, using the maximum likelihood (ML) estimation (Smit et al. 2017) that 

considered model uncertainty and tsunami intensity uncertainty, with the ML and Bayesian 

estimates of the recurrence parameters when including the validity index. The maximum 

possible event size was assumed as 𝑥𝑚𝑎𝑥 = 4.3 ± 0.2 as estimated in Smit et al. (2017). 

 

[INSERT TABLE 3 HERE] 

Table 3. Probabilistic tsunami hazard assessment input parameters for Japan. 

 

[INSERT TABLE 4 HERE] 

Table 4. Return periods, and probabilities of exceedance for tsunami intensities 1.5, 2.0, and 

2.5, and percentage contribution of datasets to the estimates. Results are provided for the time 

periods 1, 10, and 25 years. 

 

[INSERT FIGURE 6 HERE] 

Figure 6. Percentage contribution of each sub-dataset to the maximum likelihood estimation 

and Bayesian inference (BI) of the 𝑏-value when taking into consideration the validity index 

associated with the Japan tsunami dataset. 

 

Based on the above comparisons, it is clear that the introduction of the validity index and prior 

information can have a substantial effect on the hazard estimates, particularly on the estimation 

of the activity rate 𝜆. The associated hazard increases when only the validity index is 

introduced. However, the introduction of prior information (Orfanogiannaki and Papadopoulos 

2007) reduces this effect (Figure 6). The historic dataset spans more than 1000 years compared 

with 50 years for the assumed instrumental dataset and, therefore, it has a larger influence on 
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the estimates of the recurrence parameters. Both the validity index and the prior information 

lead to a decrease in the expected probabilities of exceedance for the tsunami intensity sizes 

compared with the ML estimates of Smit et al. (2017).  

 

5. Discussion and Conclusions 

In this study we introduced a generic methodology, based on empirical data and prior 

information, for modelling any type of natural hazard. The modelling process combines a non-

homogeneous Poisson distribution with the power law describing the relationship between the 

frequency and the sizes of events. Explicit provision is made for highly incomplete and 

uncertain data, the inclusion of prehistoric and historic information to constrain the results, 

uncertainties in event sizes, uncertainty in the applied occurrence models, and uncertainty in 

the occurrence of an event. The approach is applicable when event occurrence in time is non-

homogeneous or events are weakly dependent. The study shows how to different types of prior 

information can be combined for Bayesian inference. 

 

The methodology was tested on a synthetic earthquake dataset, as well as a tsunami dataset for 

Japan. In testing the effects of the different types of uncertainty, eight model variations were 

applied to the synthetic dataset. The recurrence parameters, the mean activity rate of event 

occurrence 𝜆, and the frequency-event size distribution parameter 𝛽 were estimated using 

Bayesian inference while keeping the area-characteristic, maximum possible event size 

constant. In this example, the estimated parameters closely followed the original recurrence 

parameters used to generate the dataset. It was shown that  the contribution of prehistoric, 

historic, and instrumental data, and prior information depended on the time span of the sub-

datasets and the combination of the different types of uncertainty introduced. Our synthetic 

example demonstrated that information on the rate of event occurrence 𝜆 derived mainly from 
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the  more-recent, instrumental datasets, whereas the information on the power law parameter  

𝛽, derived mainly from extreme events. The more uncertainty was included in the modelling 

process, the more the estimates depended on prior information. However, the opposite was 

observed in evaluating the tsunami dataset for Japan. Both model parameters 𝜆 and 𝛽 relied 

heavily on the historic dataset, of which the time span was substantially longer than that of the 

instrumental dataset. The introduction of the tsunami event validity index and prior information 

not only increased the hazard estimates with short return periods but also decreased the 

probabilities of exceedance of high tsunami intensities. Prehistoric and historic information can 

be unreliable or unavailable. Therefore, to avoid placing too much emphasis on these datasets, 

the methodology allows reducing their contribution or continuing with the instrumental data 

only.  

 

Three types of  uncertainty were introduced to account for the lack of knowledge that often 

causes continuous problems in natural hazard datasets. The convolution theorem was used to 

introduce event size uncertainty  and mixture distributions to allow for deviations from the 

strict Poisson  and power law  distributions. Employing the weighted likelihood function to 

account for the validity of an event is an effective tool to ensure that the rates of occurrence 

and return periods are not overestimated.  

 

The proposed methodology provides a useful and adaptable tool for the probabilistic 

assessment of various types of natural hazards by employing various modelling options to 

account for the different types of incompleteness and uncertainty commonly present in natural 

hazard datasets. The introduction of these types of uncertainty should be done prudently and 

with a thorough understanding of the data and the mechanics of the associated natural hazard.  
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Tables 

Table 1: Synthetic earthquake magnitude dataset for the shifted-truncated exponential-gamma 

distribution, with 𝑏 = 1 and 𝜆(𝑥𝑚𝑖𝑛 = 4) = 10. 

Input Prehistoric 

(𝑷) 

Historic 

(𝑯) 

Instrumental 1 

(𝒄𝟏) 

Instrumental 2 

(𝒄𝟐) 

Year begin 100,000 BC 1500-01-01 1970-01-01 2001-01-01 

Year end 1 AD 1969-12-31 2000-12-31 2017-12-31 

Time periods 5,000 years [50 – 2.5] years Annual Annual 

Level of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)

 

7.0 6.0 5.0 4.0 

Magnitude error 0.5 0.5 0.3 0.1 

Number of events 

 (𝑛𝑖) 
20 20 42 161 

Maximum observed 

magnitude (𝑥𝑚𝑎𝑥
𝑜𝑏𝑠 ) 

9.53 8.84 7.78 6.5 
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Table 2. Output of the estimated earthquake recurrence parameters 𝜆̂ and 𝛽̂ according to the 

mixture models for occurrence and the shifted-truncated magnitude distribution. 

Recurrence 

parameter 

Scenario 

Estimated 

para-

meter 

Percentage contribution 

Pre-

historic 

His-

toric 

Instru-

mental 

Prior 

Mean annual 

rate of 

occurrence 𝜆̂ 

for⁡𝑥𝑚𝑖𝑛 = 

(true 𝜆 = 10) 

LoC 9.7±0.7 3.5 8.8 87.7 0 

LoC_MAG 9.3±0.7 4.1 8.7 87.2 0 

LoC_MOD 7.4±1.3 0.1 31.9 68.0 0 

LoC_MAG_MOD 7.5±1.3 6.2 32.9 60.9 0 

LoC_OCC 4.9±0.5 3.5 8.0 88.5 0 

LoC_MAG_OCC 4.6±0.5 4.0 7.9 88.1 0 

LoC_MOD_OCC 4.6±0.9 2.6 24.9 72.5 0 

LoC_MAG_MOD_OCC 4.1±0.8 5.0 24.0 71.1 0 

Gutenberg-

Richter 

𝑏̂-value 

(𝛽̂ =

𝑏 ln(10))** 

LoC 0.97±0.02 7.36 10.6 13.3 2.8 

LoC_MAG 1.00±0.02 68.9 13.7 14.1 3.5 

LoC_MOD 1.08±0.03 68.3 11.6 14.9 5.2 

LoC_MAG_MOD 1.14±0.04 65.0 14.3 14.6 6.10 

LoC_OCC 0.93±0.03 65.2 11.4 17.7 5.7 

LoC_MAG_OCC 0.94±0.03 62.0 13.5 18.0 6.4 

LoC_MOD_OCC 1.05±0.04 58.6 13.5 18.9 9.0 

LoC_MAG_MOD_OCC 1.06±0.04 56.6 15.1 18.7 9.6 

** True Gutenberg-Richter 𝑏-value = 1.0 
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Table 3. Probabilistic tsunami hazard assessment input parameters for Japan 

 

Smit et al. (2017) datasets New datasets 

Historical Period  684 AD to 1960 684 AD to 1960 

Number of events 79 118 

LoC (𝑥𝑚𝑖𝑛
𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐) 1.0 1.0 

Intensity SE 0.5 0.5 

Complete Period 1961–2011 1961–2011 

Number of events 40 43 

LoC (𝑥𝑚𝑖𝑛
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

) -2.0 -2.0 

Intensity SE 0.1 0.1 

Observed maximum intensity 4.2±0.1 4.2±0.1 

Percentage variation 25 25 

Prior information b-value None 0.34 

Prior information b-value SE None 0.034 

Coastline-characteristic 

intensity (𝑥𝑚𝑎𝑥) 4.3±0.2 4.3±0.2 
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Table 4. Return periods, and probabilities of exceedance for tsunami intensities 1.5, 2.0, and 

2.5 and percentage contribution of datasets to the estimates. Results are provided for the time 

periods 1, 10, and 25 years. 

Estimated recurrence 

parameters 

Smit et al. 

(2017) 

LoC_MOD_MAG_ 

OCC_MLE 

LoC_MOD_MAG_ 

OCC_BI 

Uncertainties accounted 

for 

Model 

uncert. 

Intensity 

size 

Model uncert. 

Intensity size 

Validity index 

Model uncert. 

Intensity size 

Validity index 

Intensity size MLE MLE Bayesian Inference 

Mean annual rate of 

activity (𝜆) 1.5 ± 0.4 2.4 ± 0.8 1.8 ± 0.4 

Frequency-magnitude 𝑏-

value 0.4±0.04 0.4 ± 0.05 0.4 ± 0.03 

𝒙 ≥1.5 

   
Return period 15 11 10 

Prob. exceedance 1 year 7 0 0 

Prob. exceedance 10 

years 49 1 1 

Prob. exceedance 25 

years 80 1 1 

𝒙 ≥2.0 

 

  

Return period 23 17 16 

Prob. exceedance 1 year 4 0 0 
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Prob. exceedance 10 

years 35 0 1 

Prob. exceedance 25 

years 65 1 1 

𝒙 ≥2.5 

   
Return period 37 29 26 

Prob. exceedance 1 year 3 0 0 

Prob. exceedance 10 

years 24 0 0 

Prob. exceedance 25 

years 48 1 1 

Percentage contribution 

   
Historic 𝑏-value 92.9 94.3 73.1 

Complete 𝑏-value 7.1 5.7 5.3 

Prior Information 𝑏-

value 0 0 21.6 

Historic 𝜆 98.5 94.9 98.5 

Complete 𝜆 1.5 5.1 1.5 

Prior Information 𝜆 0 0 0 

 

 

 

 

 

 



41 

 

Figures 

 

Figure 1. Illustration of typical data used for assessment of model recurrence parameters based 

on prehistoric, historic and instrumental datasets. (Modified after Kijko et al. 2016).  

 

 

Figure 2. Schematic illustration of the proposed methodology, showing the types of data that 

can be used, nature of the uncertainties that can be considered, and the estimation techniques 

for the model parameters.  



42 

 

 

Figure 3. Comparison of return periods (on a log-scale) for the different model scenarios for 

earthquake magnitudes larger than or equal to 5.0.  

 

Figure 4: Percentage contribution of each sub-dataset to the Bayesian inference estimation of 

the Gutenberg-Richter 𝑏-value per scenario. 
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Figure 5. Percentage contribution of each sub-dataset to the Bayesian inference of the mean 

annual rate of occurrence per scenario. The uniform prior has no effect on the estimates. 

 

Figure 6. Percentage contribution of each sub-dataset to the maximum likelihood estimation 

and Bayesian inference (BI) of the 𝑏-value when taking into consideration the validity index 

associated with the Japan tsunami dataset. 


