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Abstract 

In regions where air quality data are scarce or access thereto is limited, a comprehensive understanding of 

air pollution is hindered by a lack of emission data and ambient air pollution measurements. Therefore, in 

this pilot study, we assess the feasibility of estimating particulate matter (PM) mass concentrations from a 

meteorological index. Measured PM concentrations from air quality monitoring stations (2013–

2016) situated in and around South African air pollution priority areas were analysed. Simulated 

meteorological parameters were used to calculate the newly-developed Air Dispersion Potential (ADP) 

index, which describes the meteorological potential for pollution dispersion in the atmosphere. For most 

conditions, there exists weak (r=0.1–0.29) to moderate (r=0.30–0.49) correlations between the ADP 

index and PM classes. At the three stations with adequate data availability, it was found that the ADP index 

was relatively successful in predicting conditions of high PM concentrations. An investigation of the effect 

of meteorological conditions on the diurnal variation of PM concentrations led to both the quantification of 

this effect, and the realization that at these diverse sites, up to 29% of variation in hourly PM concentrations 

can be explained by variations in meteorology. The application of the index in this way can play an 

important role in air quality management by quantifying the impacts of meteorological drivers on PM 

peaks. 

Keywords: Air pollution; South Africa; Particulate Matter; pollution dispersion; Air Dispersion Potential 

(ADP); meteorological parameters 



2 

1. Introduction  

Particulate matter (PM) pollution is an important global issue due to its effects on health and the 

environment. Owing to these negative impacts, countries need to set standards for and attempt to lower PM 

concentrations. Dangerously high concentrations of PM are especially problematic for rapidly growing and 

developing countries throughout the world (Cohen et al., 2005; Mannucci and Franchini, 2017; Panyacosit, 

2000). South Africa (SA) is also affected by high levels of ambient PM; this becomes especially clear when 

considering the World Health Organization (WHO) Global Urban Ambient Air Pollution Database (World 

Health Organization (WHO), 2016), wherein several South African sites were studied. In this analysis, the 

annual South African National Ambient Air Quality Standard (SA NAAQIS) for PM10 (40 µgm-3) was exceeded 

by over 60% of the sites, and the annual SA NAAQIS for PM2.5 (20 µgm-3) was exceeded at almost 70% of the 

sites. In all cases, for all sites, the WHO annual recommendations (PM10 = 20 µgm-3, PM2.5 = 10µgm-3), which 

are stricter than the SA NAAQIS, were exceeded. In many developing countries, as in SA, exposure to high 

concentrations of air pollution is worse in regions where population and, consequently, anthropogenic 

emissions are concentrated (Hersey et al., 2015). 

A comprehensive understanding of air pollution in SA, and other developing countries, is hindered 

by the lack of emission and measured air pollution concentration data. It is improbable for air quality to 

improve in countries where these types of data are scarce (Fajersztajn et al. 2014). In SA, there is no default 

government emission inventory, emission factors and activity data are difficult to attain, and available 

datasets often contain large uncertainties (Garland et al., 2017; Naidoo et al., 2014). Only recently has the 

government developed a system for the reporting and tracking of annual emissions from regulated industrial 

sources (i.e. National Atmospheric Emissions Inventory System). Air quality modelling in SA is further 

complicated by the diverse and numerous emission sources contributing to the air pollution problem. These 

include emissions from sources as diverse as industry, vehicles, biomass burning, biogenic, domestic fuel use, 

waste burning, and wind-blown dust. 

While there are some measurements of air quality in South Africa, (e.g. Alade, 2010; Belelie et al., 

2019; Hersey et al., 2015; Josipovic et al., 2009; Witi, 2005; Wright et al., 2011) in general, monitoring is 

limited.  There is a countrywide network of air quality monitoring stations, however, making use of ground-

based measured air pollution concentration data from compliance monitoring stations for research purposes 

in SA is challenging. This is due in part to issues such as limited spatial and temporal coverage, and varying 

degrees of data quality.  The use of remote sensing data, e.g. estimating PM ground-level concentrations from 
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satellite-derived Aerosol Optical Depth (AOD), provides great opportunity to estimate PM concentrations in 

areas with sparse measurements, at good spatial coverage (Chu et al., 2016). Although this opportunity exists, 

translating column AOD to surface level PM concentration for SA is not a trivial process and more research is 

needed (Hersey et al., 2015). Many developing countries face large uncertainties in emissions and a lack of 

observational data, but still require an understanding of air quality in order to combat their pollution 

problems. Meteorological science is an important tool in the field of air pollution research. This is especially 

true when access to good quality air pollutant concentration and emission data are limited.  

Daily PM concentrations and their diurnal cycles respond to variations in atmospheric stability, 

mixing depth, and local and meso-scale winds (Tyson and Preston-Whyte, 2000). Southern Africa is situated 

in the subtropics. General circulation over the region is dominated by a semi-permanent, subtropical high-

pressure cell. The mean circulation over southern Africa is anti-cyclonic throughout the year (except at the 

surface) and associated with divergence and subsidence, which results in clear skies and mostly rain-free 

conditions (Tyson and Preston-Whyte, 2000). This circulation exists for prolonged periods and causes 

increased stability over the region. Consequently, very persistent absolutely stable layers, which can occur 

over SA throughout the year, form at distinct levels throughout the troposphere and inhibit vertical mixing 

(Cosijn & Tyson, 1996; Garstang et al., 1996).  

The meteorology of an area, together with the characteristics of an emission source, are the two most 

important factors determining the way in which pollutants disperse in the atmosphere (Kanevce & Kanevce, 

2006). Not considering the amount of pollutant emitted, its resultant concentration depends on vertical 

dispersion, horizontal movement of air, and rate of deposition (Holzworth, 1971). Since pollution 

concentrations in the atmosphere are heavily dependent on meteorological variables, a way to investigate 

and predict air pollution without the use of the emission data has led researchers to quantify the influence of 

atmospheric variables and meteorology on pollutant concentrations. 

Numerous international studies have investigated the use of individual meteorological parameter to 

describe atmospheric pollutant concentrations (e.g. Grundström et al., 2015; Kim et al., 2005; Li et al., 2017a; 

Alvarez et al., 2018; Zhang et al., 2015). Individual parameters such as temperature, vertical temperature 

gradient, wind speed (WS), relative humidity, surface pressure, and weather type are relevant to the air 

pollutant transport process, but an individual parameter is not solely responsible for the spread and 
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dispersion of pollutants. Therefore, by making use of multiple meteorological variables, as in the index 

described in this paper, a more comprehensive representation of the air pollution climate is likely.  

This pilot study investigates the possibility of using an index, calculated from simulated 

meteorological data, to estimate PM concentrations in SA, a region where emission data are not freely 

available and ambient PM data are limited. Defining a relationship between meteorological parameters and 

PM concentrations in SA could lead to the possibility of using these simulated meteorological parameters as 

a proxy for pollutant concentrations, or as a method to characterize variation in PM concentrations. The 

development of an index based on only simulated meteorological parameters has many benefits for countries 

lacking the capacity to forecast air pollution or the infrastructure to measure pollutant concentrations. 

Pollutant concentration forecasts can be vital in health and early warning systems for high-risk groups. Thus, 

a multi-parameter index is proposed and its performance in air quality hotspots in SA is assessed as a case 

study. 

2. Air Dispersion Potential 

The combined characterization of the ability of the atmosphere to adequately dilute and disperse any 

admixture is often referred to as Air Pollution Potential (APP) and was proposed by Niemeyer (1960). The 

criteria for APP is related to the simultaneous occurrence of conditions associated with slowly moving 

anticyclones (low wind speed and stable atmospheric conditions), which are forecasted to continue for at 

least 36 hours. In South Africa, these conditions occur mostly in winter, and are often disrupted by synoptic 

scale weather systems (e.g. cold fronts and cut off lows). In summer, these conditions generally do not prevail. 

Therefore, for the study region, APP is restrictive as the aforementioned synoptic conditions are seasonal and 

do not occur regularly.  

In this paper, we present Air Dispersion Potential (ADP), a comprehensive and contemporary 

representation of the characteristics of air pollution dispersion. ADP is a joint probability distribution that 

considers the combined effect of relevant dynamic, thermodynamic, and turbulence processes that determine 

the conditions of air pollutant dispersion in the atmosphere. The ADP calculation is used to determine the 

potential for air to disperse pollutants based on three meteorological parameters; atmospheric stability in 

the form of Monin-Obukhov Length (MOL) and Mixing Height (MH), both measured in metres (m), as well as 

WS, which is measured in metre per second (ms-1). The ADP index is calculated per hour. 
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The ADP index uses input information required to run a contemporary air pollution model, which 

includes the following dynamic factors; wind velocity (|V⃗⃗ |), appropriate atmospheric stability information 

(MOL (𝐿)), height of the Planetary Boundary Layer (PBL) (𝐻) and/or inversion height (Hinversion) (Swart, 2016). 

The ADP index is based on the conditional probability distribution of these parameters, which allows for 

constructing the relevant probability tree. Probability of the comprehensive ADP index (Eq. 1) is the multiple 

of probabilities for WS [P(|�⃗� |)], MH [𝑃(𝐻)], and stability [𝑃(𝐿)]. 

Therefore, the probability tree for individual realization of ADP will be: 

P(ADP)=P(|�⃗� |)P(H)P(L)   (1) 

The unit of the ADP is m3s-1 and its value describes how many cubic meters per second (ventilation 

rate) are passing through a certain point and thus, what the conditions are for the pollutants to diffuse.  

The intervals for WS, MH, and MOL are quantified by proxy for very unfavourable, unfavourable, 

moderate, favourable, and very favourable for pollution dispersion (Table 1). The thresholds for the relevant 

meteorological parameters are based on a combination of existing classifications. WS was classed according 

to the Beaufort Wind Scale, MH classes for ADP calculation were adapted from definitions of stable and 

unstable PBL conditions, as defined in Seibert et al. (2000), and MOL was classed as in Gryning et al. (2007), 

Peña et al. (2010), and Sathe et al. (2013). 

Table 1. Wind Speed (WS), Mixing Height (MH) and Monin-Obukhov Length (MOL) intervals, as well as resultant ADP 

value ranges. 

Meteorological 

parameter 

Very 

unfavourable 
Unfavourable Moderate Favourable 

Very 

favourable 

WS 0 to 0.2 ms-1 0.3 to 1.5 ms-1 1.6 to 3.3 ms-1 3.4 to 5.4 ms-1 > 5.4 ms-1 

MH 0 to 200 m > 200 to 400 m > 400 to 500 m > 500 to 800 m > 800 m 

MOL 10 to 200 m 200 to 500 m > 500 or < -500 m -200 to -500 m -50 to -200 m 

ADP 20 > 20 to 40 > 40 to 60 > 60 to < 80 >= 80 

 

Depending on the classification of each variable, it is assigned a coefficient from which the ADP value 

is calculated.  The coefficients for the components of the ADP index are chosen in such a way that the resultant 

ADP values range from 20 to 100. A value of 20 is very unfavourable, 50 is moderate and 100 represents 

absolutely favourable air dispersion conditions. Table 1 provides the resultant ADP values, which are then 

classed as; Class 1 (very unfavourable), Class 2 (unfavourable), Class 3 (moderate), Class 4 (favourable) or 

Class 5 (very favourable). 
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ADP Class 1 differs from the rest of the ADP classes in that it is a single value of 20, and not a range. 

This is attributed to the coefficients assigned to very unfavourable contributions of parameters in Class 1. The 

remaining classes (2 to 5) have ranges of ADP values so that a combination of classes for WS, MH and MOL 

may result in these classifications.  

3. Data and methodology 

3.1 Study region 

All the air quality monitoring stations investigated (Table 2) are located in South Africa’s 

industrialized regions. Their location in, or in close proximity to residential and rural areas, mines and power 

stations, make for elevated pollution levels. Three South African pollution Priority Areas have been declared 

(Fig. 1), namely the Vaal Triangle Airshed Priority Area (VTAPA), the Highveld Priority Area (HPA), and the 

Waterberg-Bojanala Priority Area. The declarations are based on the fact that ambient air quality standards 

are exceeded in these areas, or a situation exists that is causing or may cause a significant negative impact on 

air quality in these areas (SAAQIS, 2018). These areas require specific air quality management action, in order 

to rectify the situation. 

Table 2. Sites for which hourly PM pollution concentration data were obtained from SAAQIS. 

Site name Latitude Longitude Elevation (m) Classification Data period Pollutants 

Xanadu -25.75º 27.92º 1192 Residential background 2014 - 2016 PM10, PM2.5  

Lephalale -23.68º 27.72º 834 Rural, residential 2013 - 2016 PM10, PM2.5 

Camden -26.62º 30.11º 1637 Industrial background 2013 - 2016 PM10, PM2.5 (only 2016) 

Zamdela -26.84º 27.86º 1486 
Industrial and residential 

(low-income) 
2013 - 2016 PM10, PM2.5 

Witbank -25.88º 29.19º 1629 
Urban, industrial, rural (low-

income) 
2013 - 2016 PM10, PM2.5, PM1 

 

Five air quality monitoring stations (Table 2) were chosen for this study based on their location (near 

or in the declared priority areas), site classification, types of pollutants monitored, and availability of data. 

Site classifications are based on the location of the monitoring station and sources of pollution that affect the 

station. 
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Figure 1. South African Air Quality Priority Areas; the insert shows the locations of five sites chosen for this study 

(Adapted from SAAQIS, 2018). 

3.2 Measured hourly PM concentrations 

The South African Air Quality Information System (SAAQIS) website provides researchers and 

stakeholders with air quality and some meteorological data at locations throughout the country. Hourly PM 

concentration and wind-speed data for five ambient air pollution measurement stations (Table 3) were 

obtained for the period 2013 to 2016 from SAAQIS. The hourly WS data were used for the verification of 

simulated WS produced by the meteorological model, while PM concentrations are used to investigate its 

relationship with the ADP index. Data Quality Control (QC) includes the removal of unrealistic values, negative 

values, and, repeated values; repeated values were identified as periods where more than two hourly values 

in a row were exactly the same (US EPA, 2017; Zahumensky, 2004). Table 3 summarises the availability of 

hourly PM concentration data prior to and after the QC procedure.   

Table 3. Combined availability of PM10, PM2.5 and PM1 (Witbank only) hourly data prior to, and after QC, for the entire 

period. 

Station name PM concentration data availability 

 Prior to QC After QC 

Xanadu 39.90% 38.77% 

Lephalale 95.11% 94.03% 

Camden 66.84% 65.76% 

Zamdela 76.75% 66.34% 

Witbank 83.56% 82.73% 
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Hourly WS, MOL and MH were simulated and used to calculate the ADP index. The performance of 

the meteorological model in the prediction of WS was assessed using the following statistical parameters: 

mean (M), standard deviation (SD), mean absolute error (MAE), mean squared error (MSE), and Pearson 

product-moment correlation coefficient (R). 

Simulated MOL and MH data were not verified in this manner because these parameters are not 

measured at the monitoring stations. MH values are expected to be low during the night when conditions are 

stable, and can increase to as much as 3000 m in the noon and afternoon when convective conditions 

dominate (Quan et al., 2013; Seibert et al., 2000). MOL values are based on the same principle as PBL height, 

whereas unstable conditions with values less than -50 m, occur predominantly in the noon and afternoon 

when solar radiation peaks. MOL length values that represent stable conditions (>10 m) occur mostly during 

the night when the PBL height is low and atmospheric conditions are stable (Ashrafi & Hoshyaripour, 2008). 

3.3 The Air Pollution Model (TAPM) 

The Air Pollution Model (TAPM), developed by the Australian CSIRO Atmospheric Research Division, 

is a prognostic air pollution model that also simulates meteorology. Air pollution models typically require 

observed data from a surface meteorological station or a diagnostic wind-field model. TAPM differs from 

these models as its meteorological component solves the momentum equations, the incompressible 

continuity equation, scalar equations, the Exner pressure function, and the Poisson equation for the 

prediction of meteorology (Hurley, 2008a). Predicted meteorological parameters include; temperature, WS, 

wind direction, relative humidity, radiation, heat flux, MH, MOL and rainfall rate.  

TAPM predicts the flows that are important to local-scale air pollution transport (e.g., sea breezes, 

terrain-induced flow, etc.) against a background of larger scale meteorology provided by synoptic analyses. 

The model includes parameterizations for the micro-physical processes associated with cloud and 

precipitation, turbulence, fluxes, and soil processes. The databases provided with TAPM include gridded 

global terrain height, vegetation and soil type, Leaf Area Index (LAI), sea-surface temperature, and synoptic-

scale meteorology. From a summary of international verification studies presented by Hurley (2008b), it was 

found that the meteorological component of TAPM performs well in coastal, inland, and complex terrain, in 

subtropical to mid-latitude conditions, for both short periods, i.e. case studies and year-long simulations.  

The meteorological component of TAPM was used to simulate hourly meteorological parameters, for 

the period 2013 to 2016, as required for the calculation of the ADP index. The model simulations were set up 
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to run with four nested grids of 27 km, 9 km, 3 km and 1 km resolution. The grids were chosen in this way so 

that a resolution of 1 km could be achieved for the inner grid. Meteorological parameters were simulated for 

specific station locations in Table 2 separately. Therefore, the model output was at the location of the 

observational stations, and it was not necessary to adopt any interpolation scheme (other than those used by 

TAPM) to extract the simulated meteorology. 

3.4 Evaluation of relationships and ADP index performance 

In order to statistically investigate the relationship between PM concentrations and the ADP index, 

both variables are classed according to predetermined intervals. Categories used for PM concentrations are 

site specific and based on 20th percentiles of the actual measured pollutant-concentration data after quality 

correction. Very favourable ADP and very low PM concentrations were allocated classifications of 5, while 

very unfavourable ADP and very high concentrations of PM were classed as 1 (Table 4). This process assists 

in establishing a relationship between the two variables. 

Table 4. Description of all PM concentration and ADP classifications. Class combination used to assess ADP’s performance 

as predictor are underlined. 

  
 

PM concentration classes 

  
 
1 

 
2 

 
3 

 
4 

 
5 

A
D

P
 c

la
s
s
e
s
 

 
1 

ADP very 
unfavourable, PM 

concentrations very 
high (CLASS 1) 

ADP very 
unfavourable, PM 

concentrations high 

ADP very 
unfavourable, PM 

concentrations 
moderate 

ADP very 
unfavourable, PM 
concentrations low 

ADP very 
unfavourable, PM 

concentrations very 
low 

 
2 

ADP unfavourable, 
PM concentrations 

very high 

ADP unfavourable, 
PM concentrations 

high (CLASS 2) 

ADP unfavourable, 
PM concentrations 

moderate 

ADP unfavourable, 
PM concentrations low 

ADP unfavourable, 
PM concentrations 

very low 

 
3 

ADP moderate, PM 
concentrations very 

high 

ADP moderate, PM 
concentrations high 

ADP moderate, PM 
concentrations 

moderate (CLASS 3) 

ADP moderate, PM 
concentrations low 

ADP moderate, PM 
concentrations very 

low 

 
4 

ADP favourable, PM 
concentrations very 

high 

ADP favourable, PM 
concentrations high 

ADP favourable, PM 
concentrations 

moderate 

ADP favourable, PM 
concentrations low 

(CLASS 4) 

ADP favourable, PM 
concentrations very 

low 

 
5 

ADP very favourable, 
PM concentrations 

very high 

ADP very favourable, 
PM concentrations 

high 

ADP very favourable, 
PM concentrations 

moderate 

ADP very favourable, 
PM concentrations low 

ADP very favourable, 
PM concentrations 
very low (CLASS 5) 

 

Visually examining the bivariate data with the use of a scatterplot (not shown) was the first step to 

find a relationship. Thereafter, the classed data were ranked and the Spearman rank correlation coefficient 

(r) was calculated in order to statistically measure the degree of relationship between the two variables 
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(Wilks, 2011). The strength of the absolute value of the Spearman rank correlation coefficient is classified as 

follows: Small/weak: r=0.1 to 0.29; medium/moderate: r=0.30 to 0.49; and large/strong: r=0.50 to 1.0 

(Cohen, 1988). 

Contingency tables were used to verify categorical forecasts and to show the joint distribution of 

forecast and observations in various categories (Jolliffe and Stephenson, 2012). These tables assisted in 

identifying under which ADP conditions PM is predicted successfully. In order to calculate statistics from 

contingency tables, all data was classified as hits (event forecasted and observed); misses (event not 

forecasted, but observed); false alarms (event forecasted, but not observed); and correct negatives (event 

forecasted not to occur and was not observed). When evaluating the ADP index performance, we considered 

statistics calculated from a multi-category contingency table as described in Table 5.  

Table 5. Description, equation and ranges for the chosen categorical statistics, which include; AOF (Accuracy of Forecast), 

POD (Probability of Detection), SR (Success Ratio), and FAR (False Alarm Ratio). These statistics use data classified as H 

(Hits), M (Misses), FA (False Alarms), and CN (Correct Negatives) to evaluate forecast performance (Adapted from 

CAWCR, 2015; Done et al., 2004). 

 

3.5 Quantifying the effect of meteorology on diurnal PM variation 

We consider known patterns in emissions and meteorology (diurnal and weekday/weekday 

variation) to attempt to estimate the effects of emissions and meteorological conditions on PM concentration 

levels. It is known that air quality monitoring stations over the interior of SA generally measure higher PM2.5 

and PM10 concentrations between Monday and Friday, and a decrease on Saturday and Sunday, because of 

differences in emissions between weekdays and weekends (Feig et al., 2016).  

Considering diurnal variation, aerosol concentrations typically have two peaks, one in the morning 

and another in the evening, as well as a concentration minimum during the day, typically between 12:00 and 

14:00 Local Time (LT). The occurrence of the two peaks results from a combination of diurnal variations of 

Statistic Description Equation Range Perfect score 

AOF AOF gives the fraction of correct forecasts in each category. AOF=(H+CN)/Total 0 to 1 1 

POD POD (hit rate) gives an indication of the observed events in 
classes that were correctly forecasted. POD does not 

consider false alarms. 

POD=H/(H + M) 0 to 1 1 

SR SR gives an indication of the forecasted events in classes 
that were correctly observed. SR does not consider misses. 

SR=H/(H+FA) 0 to 1 1 

FAR FAR is an indication of the predicted events that did not 
occur. 

FAR=FA/(FA+CN) 0 to 1 0 



11 

emissions and meteorological factors, which includes the PBL (Tie et al., 2007). The morning decrease in PM 

concentrations corresponds with the break-up of the PBL, the formation of the mixed layer (unstable 

conditions), and the rapid increase in MH. The afternoon increase in PM concentrations corresponds with 

meteorological conditions becoming unfavourable for pollution dispersion, which includes with the 

formation of the stable nocturnal BL and a decrease in MH. Along with PBL height and stability conditions, 

changes in emissions also affect PM concentrations on a diurnal scale (Quan et al., 2013). This can especially 

be seen at urban and/or low-income sites, where morning and afternoon peaks correspond to increased 

emissions from sources like domestic burning (Hersey et al., 2015; Mdluli, 2008).  Since there are many 

emission sources (e.g. vehicular, domestic burning, industrial, etc.) contributing to the diurnal variation in 

PM concentrations, it is difficult to quantify the relative impacts of changing emissions and the changing PBL 

on ambient concentrations from measurements alone.  

We attempt to quantify the impact of meteorological drivers, like the changing PBL, on PM peaks. 

Diurnal variations of PM concentrations were examined in order to identify the optimum period of study at 

each site. Thereafter, the Coefficient of Determination (R2) was calculated during the relevant hours. Wilks 

(2011) defines R2 as the “proportion of variation in the predictand that is described or accounted for by the 

regression”. Based on the preceding information, the effect of change in meteorological conditions 

(represented by the ADP index) on PM concentrations is quantified as a percentage (%) deduced from the R2 

statistic.  

4. Results 

4.1 Verification of simulated WS 

Hourly observed WS, as simulated by TAPM, were compared against WS from the SAAQIS 

observational stations in Table 6. For the period considered, all sites have mean (M) simulated WS within 0.4 

ms-1 of observed mean WS, except for Witbank, where the mean observed (1.9 ms-1) and mean simulated (3.2 

ms-1) WS differ considerably. Standard deviation (SD) values for simulated WS are relatively close to the 

mean, with values varying between 1 ms-1 and 1.6 ms-1. SD values for observed WS have a similar range, 

except for Camden, where the SD is 2.4 ms-1. All correlations between simulated and observed WS range from 

0.4 to 0.6 and, according to a Student’s t-test, the relationship between the simulated and observed WS data 

for all sites is statistically significant at a 95% confidence interval. 
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Table 6. Statistics for assessment of simulated and observed wind speed (WS) measured in ms-1 for each site. Statistics 

used to assess model performance include; mean (M), standard deviation (SD), mean absolute error (MAE), mean squared 

error (MSE), and Pearson product-moment correlation coefficient (R). 

   Xanadu Lephalale Camden Zamdela Witbank 

Observed WS M 2.5 1.6 3.1 2.1 1.9 

 SD 1.5 1.1 2.4 1.6 1.4 

Simulated WS M 2.9 1.6 3.0 2.5 3.2 

  SD 1.3 1.0 1.6 1.4 1.5 

Observed & MAE 1.3 0.7 1.7 1.1 1.5 

Simulated WS MSE 2.6 1.0 4.9 2.1 3.3 

  R 0.4 0.5 0.5 0.6 0.6 

MAE of simulated WS ranges from smallest at Lephalale (0.7 ms-1) to largest at Camden (1.7 ms-1). 

This means that the sum of the absolute differences between observed and model simulations are below 1.7 

ms-1 for all sites. MSE values closer to zero indicate better model performance. MSE for Lephalale is 1 ms-1, 

this is the lowest for all sites. Camden has the largest MSE (4.9 ms-1); this can be attributed to some very high 

hourly measured WS in the observed data. All simulated wind speeds are considered acceptable for the task 

of calculating the ADP index.  

MOL and MH could not be verified in the same way as WS as there are no measurements at these 

sites. Their diurnal variations do coincide with the expected diurnal variation of these variables found in 

previous studies (not shown). Simulated average MH values are at a minimum throughout the night (<500m), 

starts to increase at 08:00 LT, and reaches a peak at 15:00/16:00 LT. These night-time lows and daily peaks 

coincide with the findings of Liu and Liang (2010), who considered soundings collected in 14 major field 

campaigns around the world. Seasonally, simulated MH also produce the expected cycle with MH being higher 

during summer and spring, and lower in winter and autumn (El-Shazly et al., 2012). MOL is an indication of 

atmospheric stability; its classes are classified as unstable, neutral, or stable. Simulated MOL values exhibit 

mostly stable conditions throughout the night, while unstable conditions prevail throughout the day 

(approximately 09:00 to 17:00 LT); from literature, this is what is expected (Ashrafi & Hoshyaripour, 2008). 

Overall, stable atmospheric conditions dominate more than 50% of the time in the simulated MOL data. As 

for the seasonality of atmospheric stability, stable conditions dominate during summer and winter. Summer 

months experience a higher frequency of unstable hours, while stable conditions are more frequent during 

the winter. These seasonal patterns are reproduced in the simulated MOL data.  
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4.2 ADP and PM concentrations 

All sites show a similar pattern when it comes to the diurnal variation of ADP, with values peaking 

during the day, between 07:00 and 18:00 Local Time, and reaching a maximum at 14:00/15:00 LT (Fig. 2). 

Values stay mostly constant during the night, ranging between 20 and 40, and dropping to a minimum at 

20:00 LT. The ADP calculation is based on parameters such as MOL and MH that are influenced by solar 

radiation, and it is expected that ADP values will be more favourable (larger) during the day, when solar 

radiation is at its maximum. ADP is more favourable for pollution dispersion during summer months 

(December, January and February (DJF)). Due to the prevalence of low mixing heights and dominant stable 

atmospheric conditions during the winter in this region, ADP is less favourable during winter months (June, 

July and August (JJA)) (not shown).   

While ADP peaks during the day, PM pollution concentrations peak in the morning and again in the 

evening at all of the sites except Camden. The PM peak in the morning and afternoon may be attributed to 

increased emissions from sources, such as traffic and domestic fuel burning, as well as unfavourable 

meteorological conditions for pollution dispersion. Increased atmospheric mixing, due to the break-up of the 

PBL, causes the decrease in PM concentration throughout the day. Although the diurnal PM variations for 

most of the sites are similar, with a peak in the morning and evening (Fig. 2), PM mass concentration levels 

between sites vary greatly. On average, PM2.5 values are between 40% and 50% of average hourly PM10 values.  

PM concentrations at Camden differ from the typical pattern, only showing a slight peak in the 

afternoon between 18:00 and 19:00 LT. The Camden monitoring station is located near various mining and 

power-generation activities, including a coal-fired power station. All of the other stations are located within 

residential areas, while Camden is not.  
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Figure 2. Average hourly PM concentrations in units of µgm-3 (lines) and ADP values (bars), demonstrating diurnal 

variation, for all sites for the entire period. Error bars indicate ± 1 standard deviation (SD) of hourly PM concentrations. 

4.3 Identifying relationships 

The distribution of PM10, PM2.5 and PM1 per ADP class was investigated. The dominant ADP class for 

all observations is Class 2, this may be interpreted as meaning that most of the hours with PM observations 

experienced unfavourable conditions for pollution dispersion. The dominant class combination is PM Class 1 

(high pollutant concentration) and ADP Class 2 (unfavourable conditions). Very unfavourable ADP conditions 

(Class 1) occur the least. 
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In order to investigate the strength of the relationship between ADP and PM classes, correlations 

between the two datasets were calculated (Table 7). The entire period, summer (DJF), and winter (JJA) are 

investigated to identify the conditions under which ADP and PM classes show the strongest correlation. 

Summer and winter seasons are investigated separately due to the significantly different meteorological 

conditions that dominate in each period over the study region. During summer, PM concentrations are 

generally lower, due to a decreased need for heating (by domestic burning), unstable atmospheric conditions, 

and an increase in wet deposition (all sites are within the summer rainfall region). PM concentrations are 

higher during the cold winter months due to increased emissions from domestic burning (e.g. coal and wood) 

for heating. In addition, meteorological conditions are typically not conducive to pollution dispersion; in the 

winter at these sites, atmospheric conditions tend to be more stable, MH can be extremely low, and therefore 

PM is confined near the earth’s surface (Hersey et al., 2015). 

Table 7. Correlations (r) between ADP and PM classes for the entire period, summer and winter. The underlined values 

show correlations of moderate strength (0.30–0.49).  

Station name Period Summer (DJF) Winter (JJA) 
 

PM10 PM2.5 PM1 PM10 PM2.5 PM1 PM10 PM2.5 PM1 

Xanadu 0.13 0.22   0.07 0.14   0.31 0.48   

Lephalale 0.22 0.22   0.08 0.08   0.34 0.38   

Camden 0.18 0.31   0.20 0.24   0.11 0.46   

Zamdela 0.22 0.24   0.21 0.20   0.25 0.32   

Witbank 0.10 0.36 0.46 -0.02 0.30 0.41 0.07 0.41 0.48 

 

Although the correlations between ADP and PM classes vary only from weak (0.1–0.29) to moderate 

(0.30–0.49) strength, most are at least positive. This means that higher classes (more favourable) ADP are 

related to higher classes (lower concentrations) of PM. All correlation coefficients in Table 7 have calculated 

p-values less than 0.05; this means that the observed differences between PM concentration and ADP index 

classes are unlikely to be due to chance.  Xanadu and Lephalale have relatively good correlations in the winter 

for both PM10 and PM2.5, and very weak correlations in the summer. At Zamdela, correlations are between 

0.20 and 0.32 for all cases. For all sites, except PM10 at Camden , the correlation between ADP and PM classes 

is stronger in the winter. In most of the cases considered, coarse particulates show a weaker relationship 

between their PM classes and ADP, and fine particulate show more promising results with medium-strength 

relationships, especially during winter. It is well documented that higher concentrations of PM2.5 and PM10 

are associated with stable atmospheric conditions, low wind speeds, and the occurrence of inversion layers 

(Czernecki et al., 2017; Di Virgilio et al., 2018; Perrino et al., 2008; Xu et al., 2018). The results suggest that, 
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because PM2.5 presents stronger correlations with the ADP index than PM10, it is influenced by these 

meteorological variables to a larger extent. Additionally, at higher wind speeds, PM10 concentrations in some 

areas may increase due increased wind-blown dust. This influences the relationship between PM10 and WS 

classes, because larger WS could lead to higher PM10 concentrations. 

Wet deposition plays an important role in the removal of PM, especially fine particulates, from the 

atmosphere (Wu et al., 2018). The process of wet deposition might negatively affect the correlations between 

the ADP index and PM concentration classes as rainfall is not considered in the ADP index. The study region 

is situated in the austral summer rainfall region of SA (Tyson and Preston-Whyte, 2000). Therefore, the 

process of wet deposition may explain some of the weaker correlations in Table 7 during summer.  

Since the diurnal cycles of PM concentrations and ADP index values differ remarkably (Fig. 2), we 

consider the average daily PM and ADP classes to investigate the effect of meteorological conditions on daily 

average PM levels. Hourly ADP and PM classes were used to calculate these daily averages.  

Table 8. Correlations (r) between hourly and daily average ADP and PM classes for the entire period. The underlined 

values indicate moderate (0.30–0.49) and strong (0.50 to 1.0) correlations.  

Station name Hourly Daily average 
 

PM10 PM2.5 PM1 PM10 PM2.5 PM1 

Xanadu 0.13 0.22   0.48 0.45   

Lephalale 0.22 0.22   0.58 0.53   

Camden 0.18 0.31   0.35 0.38   

Zamdela 0.22 0.24   0.35 0.34   

Witbank 0.10 0.36 0.46 0.62 0.66 0.67 

Table 8 correlations show that relationships between average daily ADP and PM classes are 

significantly stronger than between hourly ADP and PM classes. From daily averages, the effect of 

meteorological condition are more noticeable because emissions tend to be quite similar from day-to-day. It 

should be noted that the thresholds for the variable classes contained in the ADP calculation (Table 1) were 

developed for hourly, and not daily, values. Therefore, although the daily values appear to produce stronger 

relationships, a proper comparison and conclusion would require the calculation of daily average ADP with 

its own thresholds. In addition, the averaging of ADP values from hourly to daily dilutes the data to a point 

where certain classes no longer occur. Before the averaging of hourly data, all ADP classes (1 to 5) were 

represented in the data for every site. After averaging to daily values, only ADP classes 2 to 4 are present in 
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the data. Consequently, while these daily average correlations indicate stronger relationships, hourly values 

were used in the following analyses.  

4.4 Individual meteorological parameters 

Individual parameters were examined to assess their performance compared to the ADP index. The 

variables contained in the ADP calculation, namely MH, MOL and WS, were classed as in Table 1 and examined 

in the same manner as ADP. The association between MH, MOL, WS and PM classes was investigated, in order 

to identify their influence on ADP as a predictor, as well as their individual performance to predict PM 

concentrations. 

On average, the individual variables have stronger relationships with PM classes in winter and for 

finer particulates (i.e. PM2.5 and PM1). MOL, MH and WS correlations for all cases vary from weak to strong. 

PM concentrations in the winter are very much dependant on variables influenced by the diurnal cycle of 

solar radiation such as MOL and MH, and less by WS. In the summer, PM concentrations are overall more 

reliant on MOL and WS, and MH was never the variable with the strongest correlation (Table 9). The sites 

investigated are situated in the summer rainfall region of South Africa. Winters in this region are 

characterized by stable atmospheric conditions and cloud-free skies, whereas summers experience mainly 

conditions of atmospheric instability, as well as frequent thunderstorms in the afternoon and early 

evenings (Tyson and Preston-Whyte, 2000). Of the individual variables in the ADP index, MOL is the best 

performer producing strongest relationships with PM classes for 13 out of the 22 cases.  

Table 9. Variable in the ADP index (MOL, Mixing Height (MH) or Wind Speed (WS)), which produced the strongest 

correlation (r) with hourly PM classes at each site during summer and winter. Strength of the correlations are indicated 

in brackets. The underlined values indicate moderate (0.30–0.49) and strong (0.50 to 1.0) correlations.  

Station name Summer (DJF) Winter (JJA) 

  PM10 PM2.5 PM1 PM10 PM2.5 PM1 

Xanadu WS (0.07) MOL (0.13)   MH (0.39) MH (0.53)   

Lephalale WS (0.21) WS (0.20)   MH (0.37) MH (0.38)   

Camden MOL (0.26) MOL (0.28)   MOL (0.14) MOL (0.45)   

Zamdela MOL (0.23) MOL (0.22)   MOL (0.25) MOL (0.32)   

Witbank WS (0.10) MOL (0.31) MOL (0.41) WS (0.22) MOL (0.41) MOL (0.48) 

 

 

Since MOL is the individual variable with the strongest relationship with PM, we compare 

correlations between PM and ADP (Table 7) with correlations between PM and MOL (not shown). Although 

differences in correlation strengths between the above mentioned are in some cases quite small, ADP 

outperforms MOL 55% of the time for the cases considered in Table 9.  
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Data from all stations were considered for the previous analyses (Section 4.2 to 4.4) because the 

calculation of correlations consider data hour by hour. However, the following results (Section 4.5 and 4.6) 

consider the number of cases present in various class combinations, and are based on the diurnal variation 

of ADP and PM, respectively. As such, Xanadu was not considered for any further analysis due to data 

availability being less than 40% after QC (as shown in Table 3), and Camden was left out because of 

insufficient PM2.5 data. 

4.5 Forecast performance 

Data contained in multi-category contingency tables are used to assess the performance of ADP as a 

predictor in the different classes. Plotted in Fig. 3 are POD, SR and FAR for Zamdela, Lephalale and Witbank.  

POD and SR are plotted together with the FAR, in order to assess the performance of ADP as a 

forecasting tool. Lephalale in winter (Fig. 3) produces a high SR score in Class 1. This means that a relatively 

large fraction of Class 1 PM events forecasted by ADP were observed correctly. However, this score may be 

misleading because of the small fraction (<1%) of events forecasted in Class 1. FAR is also at its lowest level 

(0.5) in Class 1. In contrast to Class 1, Class 2 has a high POD score, which translates to Class 2 having many 

PM-observed events that were correctly forecasted by ADP, for both summer and winter. 

In both summer and winter, Zamdela has a relatively high FAR for all classes, never dropping below 

0.6. The best performing class with respect to POD is Class 2, whereas Class 5 has the highest score for SR. 

POD for the forecasts in Class 1, in both seasons, are close to zero. The fact that POD scores in Class 1 are close 

to zero means that there were very little forecasts for very unfavourable ADP for Zamdela. Witbank has 

relatively high SR for Class 1 in winter, and POD is the highest in Class 2 for both summer and winter. 

Accuracy of Forecast (AOF) is the level of agreement between the forecast and measurements. All 

cases considered have an AOF of less than 0.30. This means that the fraction of forecasts in the correct 

category is less than 30% for each case considered. Based on POD and SR scores, the ADP index forecasts best 

for high (Class 2), but not highest (Class 1) PM concentration events. The relatively high POD scores (>0.5) 

for Class 2 indicate that unfavourable ADP conditions correctly forecast high PM concentrations at least 50% 

of the time. Class 2 is by far the most commonly occurring ADP class; this undoubtedly has a favourable 

influence on its performance scores. 
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The poor performance of ADP forecasts in Class 1 are due to very few hours (less than 1%) being 

classed as having very unfavourable conditions for ADP. In future research, it would be worthwhile to 

reconsider the MOL, MH and WS intervals used in the ADP calculation in order to improve ADP forecasts, and 

decrease false alarms, in Class 1. 

Figure 3. Probability of detection (POD), success ratio (SR), and False Alarm Ratio (FAR) scores for Zamdela, Lephalale 

and Witbank in both the winter (JJA) and the summer (DJF) for PM10. High POD and SR scores (close to 1) indicate better 

performance, whereas lower FAR scores (close to 0) indicate a better forecast with less false alarms. Classes 1 to 5 on the 

x-axis refer to the class combinations, as described in Table 4. PM2.5 graphs (not shown) exhibit very similar patterns for 

all sites.  
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4.6 Effect of meteorology on diurnal PM variation 

In this section, we consider known patterns in emissions and meteorology (diurnal and 

weekday/weekday variation) to estimate the effects of emissions and meteorological conditions on PM 

concentration levels. There is no significant difference in the strengths of weekday and weekend correlations 

between ADP and PM (not shown). Therefore, we can conclude that the weekday/weekend variances in 

emissions are not driving the relationship between ADP and PM for the sites considered here.   

The next aspect to consider the diurnal variation of PM concentrations. Meteorological conditions 

(represented by the ADP index) have an effect on the morning decrease and afternoon increase of PM 

concentrations. This effect was calculated for Lephalale, Zamdela and Witbank, in both summer and winter 

periods. Lephalele results are presented in detail in Fig 4, while all sites are summarized in Table 10.  

Figure 4. Diurnal variation of PM10 and PM2.5 concentrations (µgm-3) at Lephalale for both winter and summer. Arrows 

and percentages (PM10 underlined) indicate the direction and amount of change in PM concentrations attributed to the 

change in meteorological conditions (i.e. ADP). 

PM concentration levels at Lephalale (Fig. 4) follow the typical diurnal variation, with two PM peaks 

(morning and evening)and a minimum at noon, as expected (Mdluli, 2008; Hersey et al., 2015). The 

percentages displayed on Fig. 4 are based on the R2 statistic (Coefficient of Determination) and display the 
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proportion of variation in PM that is accounted for by ADP.  The afternoon increase in PM concentrations is 

largely affected by the onset of unfavourable conditions for pollution dispersion in the evening, especially 

during winter (29% PM10, 24% PM2.5). 

Zamdela PM concentrations have a morning and afternoon peak in winter and summer. At this site, 

afternoon PM increases are influenced more by the change in meteorological conditions, than PM decreases 

in the mornings (Table 10). Witbank PM10 concentrations are less dependent on changes in meteorological 

conditions than PM2.5. Considering PM10 in winter, only 10% of the morning decrease and 13% of the 

afternoon increase in concentrations is attributed to change in ADP, compared to 27% and 26% for PM2.5. 

This is also true during the summer months, when PM2.5 is more dependent on change in meteorological 

conditions than PM10. 

Table 10. Percentage change in PM concentrations attributed to the change in meteorological conditions for all sites 

investigated.  

 PM10 PM2.5 
 

Winter Summer Winter Summer 

  PM 
decrease 

PM 
increase 

PM 
decrease 

PM 
increase 

PM 
decrease 

PM 
increase 

PM 
decrease 

PM 
increase 

Zamdela 6% 24% 4% 13% 12% 22% 6% 11% 

Lephalale 26% 29% 12% 4% 22% 24% 10% 4% 

Witbank 10% 13% 0.3% 1% 27% 26% 9% 9% 

 

PM concentrations levels are affected by meteorological conditions studied to a different degree at 

each site, but there are some common threads. In general, meteorological conditions have a stronger 

influence on the diurnal variation of PM concentrations in the winter as compared to the summer, and the 

afternoon increase in PM concentrations is influenced more by a change in the meteorological conditions than 

the morning decrease. 

The onset of “bad” meteorology (unfavourable conditions) in the afternoon has a significant effect 

on PM concentrations at most sites, especially in the winter. “Good” meteorology, associated with the mixed 

layer, influences the decrease in PM concentrations, but to a lesser extent than unfavourable conditions, in 

most cases. Diurnal variation in PM concentrations, at the sites investigated, is dominated by variability of 

emissions rather than meteorological conditions contained in the ADP index.  

Here we investigated the PM concentration slopes that should be highly influenced by the variables 

contained in the ADP index. The remaining two slopes (PM increase in the morning and PM decrease in the 
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evening) should not be affected by these meteorological parameters to the same extent. Therefore, when R2 

for the remaining slopes were calculated, all results were less than those presented in Table 10. On average 

across all sites, the influence of change in ADP on morning PM increase was 2.7%, and on evening PM 

decrease, only 1.3%. 

5. Discussion and Conclusions 

The ADP index is based on meteorological variables instructive to the dispersion of air pollution in 

the atmosphere on an hourly timescale. ADP was developed and presented for the first time here, and the 

estimation of PM concentrations at sites in SA, using this new index, was investigated. ADP varies diurnally, 

with a clear peak in values between 14:00 and 15:00 LT, and remains mostly constant during the night, with 

values between 20 and 40. PM pollution concentrations peak in the morning and again in the evening at most 

of the sites investigated.  

There exists a relationship between PM classes and ADP; PM concentration classes are positively 

correlated with ADP classes under all circumstances investigated. Due to the inverse relationship between 

meteorological parameters such as WS, MH, MOL and pollutants in the atmosphere, this result is expected. 

PM10 has a weaker relationship with ADP, whereas PM2.5 performs best in most cases. Correlation coefficients 

vary from weak to moderate. On average, the degree of relationships in summer is weaker than in winter. A 

possible explanation for this phenomenon is the fact that all sites investigated are situated in the summer 

rainfall region of SA. During precipitation days, wet deposition and the mechanism of scavenging of PM has a 

lowering effect on PM concentration and, at the same time, weaken the effect of other meteorological 

variables (like those contained in the ADP index) on its concentration (Holst et al., 2008). Additionally, there 

are other meteorological influences, not considered here, that most likely influenced the strength of 

relationships found. Strong wind speeds can lead to increases in wind-blown dust instead of facilitating 

dispersion, transformation of particles by photochemical processes intensified by high air temperature, and 

high air temperature aiding in vertical dispersion of pollutants (Li et al., 2017a). Future studies could 

investigate the impact of these variables on ADP performance.  

In the presented research, the correlation strengths vary significantly between sites, seasons and 

particulate size. Correlation strengths range from; a weak negative correlation found between PM10 and ADP 

at Witbank (summer), to moderate strength relationships for PM2.5 and PM10 at Lephalale (winter), and a 

correlation as strong as a 0.48 for PM1 at Witbank (winter). In other studies where the relationship between 
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meteorological parameters and pollutant concentrations were investigated, the correlations strengths were 

similar. For instance, Zhang et al. (2015) studied the relationships between meteorological parameters and 

ambient air pollutant concentrations in three megacities in China. Correlations between pollutants and 

meteorological parameters differed considerably and varied from weak to moderate in strength, with some 

strong correlations (> ~0.70) also found. Li et al. (2017a) investigated PM2.5 and PM10 and their relationships 

with different meteorological parameters for 11 monitoring stations in Shenyang, China. Correlations 

strengths and directions differed significantly between season and PM sizes, and all were weak to moderate 

in strength (no correlation larger than ~0.52). Alvarez et al. (2018) assessed the impact of temperature, 

relative humidity, and WS on the variability of PM2.5 at three sites in El Paso, Texas, USA. Again, correlations 

varied greatly in strength between seasons and sites, and for most sites, correlations either changed from 

positive to negative or dissolved depending on the season. Most of the correlations calculated were weak (< 

~0.30), with some moderate strength cases (between ~0.30 and ~0.50).  

Noticing only weak- to moderate-strength relationships between hourly ADP and PM classes in this 

study led to the consideration of the meteorological variables contained in ADP, separately. Previous studies 

by Li et al. (2017b), Nath & Patil (2006), Yin et al. (2016), as well as Ziomas et al. (1995) have shown the 

possibility of predicting pollutant concentrations based on relationships between pollutants and individual 

meteorological parameters (relative humidity, MH, temperature, etc.). It was found that PM concentrations 

in the winter are more dependent on variables influenced by solar radiation such as MOL and MH and less by 

WS. In the summer, PM concentrations are overall more reliant on MOL and WS; in this instance, MH has the 

least influence. Overall relationships between hourly WS and PM classes are the weakest, while MOL is the 

best-performing individual variable. In terms of relationship strength with PM classes, ADP outperforms MOL 

55% of the time for the cases considered. 

The forecast performance was assessed (using SR, POD and FAR); all sites produced very similar 

results for PM10 and PM2.5. A combination of POD and SR scores indicated that, for all cases, ADP predictions 

work best in the frequently occurring Class 2. Class 2 represents unfavourable ADP and high PM 

concentrations. Since there are serious health risks associated with high concentrations of particulate 

pollution, this is a significant result. Non-meteorological influences contribute to weak correlations, POD 

scores, and SR scores. 
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The ADP index, as used in this pilot study, is not sufficient to estimate PM concentration at the sites 

considered because of relatively weak correlations, and low SR and POD scores. The ADP index may be 

applied elsewhere, but further research and optimization of the index for South African conditions is 

recommended first. MOL, MH and WS intervals need to be re-evaluated in order to find the ideal thresholds 

for use in SA. In future research, precipitation could be included in the index to account for the effect that 

rainfall has on ADP index performance. Although this might add value to the index, accurately forecasting 

hourly precipitation is not a trivial task, especially due to the spatial heterogeneity of rainfall over the study 

region. The classification of the monitoring stations must be taken into account when considering the results 

obtained. The sites studied here are located either in rural low-income areas near mines, power stations and 

industries or close to residential areas. The pollutant concentrations measured, and fluctuations observed at 

these stations are heavily influenced by residential (including domestic burning), industrial, and traffic 

pollution, and not purely by meteorological factors. Due to a lack of data, no proper background sites, located 

away from industry, residential areas or roads, could be considered. Further research could therefore include 

the index being tested at appropriate background sites. The forecast capabilities of the ADP index may also 

be significantly improved by a complete dataset of good quality PM concentration data from a well-

maintained monitoring station.  

The ADP index was designed for variables that vary on an hourly scale. While the strength of the 

relationship between ADP and PM did improve using daily averaged classes, this averaging decreased the 

range of the data (e.g. decreased the number of classes with data). Future studies could investigate the 

optimal time-resolution of the variables driving and contained in ADP on PM concentrations. Since acute 

exposure to PM is regulated through ambient standards using 24-hour averages, a re-designed index based 

on a daily timescale may be something to consider. 

Even though the relationship between ADP index and PM concentrations is weak overall, there are 

cases and periods where ADP correlates well with PM concentrations. The typical morning decrease in PM 

concentrations (coincides with the formation of the mixed layer), and afternoon increase of PM 

concentrations (coincides with the formation of the stable boundary layer) is influenced, to a degree, by the 

meteorological variables contained in the ADP calculation. Using the R2 statistic to describe this influence has 

led to the quantification of the influence of “good” (favourable) and “bad” (unfavourable) meteorological 

conditions on PM concentrations. These finding allowed us to quantify the impact that these meteorological 
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variables (i.e. ADP) have on the diurnal cycle of the PM. The application of this index in this way can play an 

important role in air quality management when quantifying the impacts of drivers of PM peak concentrations.  

It was found that each site is affected differently by meteorological factors, but in general, ADP has a 

stronger effect on the diurnal variation of PM concentrations in the winter. The afternoon increase in PM 

concentrations is also influenced more by meteorology than the morning decrease. For both PM10 and PM2.5, 

ADP accounted for more than 20% of the afternoon increase in PM levels at 2 of the 3 sites studied in the 

winter. This is an important result for air quality management in the area, as it quantifies, for the first time to 

our knowledge, the role that meteorology plays in this diurnal cycle across these sites, and highlights the large 

role that emissions play in the diurnal cycle.  
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