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Abstract

This paper investigates an inverse analysis technique to find leaks in water networks and compares dif-
ferent solution strategies. Although a number of strategies have been proposed by different authors to
identify leaks on a vast selection of pipe networks, limited research has been done to compare strate-
gies and point out their weakness. Three strategies, a Bayesian Probabilistic Analysis, a Support
Vector machine and, an Artificial Neural Network were combined with the inverse analysis tech-
nique on different numerical and experimental networks to point out each strategies weakness. Two
numerical networks are investigated and one experimental network. It is shown that the Bayesian
Probabilistic Analysis struggles to find unique solutions when a few observations are available, while
the Support Vector Machine and the Artificial Neural Network struggle when only flow measurements
are available. Additionally it is shown that the Artificial Neural Network struggles to estimate unique
solutions for leak size and location.

1 Introduction

In the 2011 — 2012 National Non-Revenue Water assessment [1] in South Africa the average national
non-revenue water was found to be 37%. While the world average in that period was estimated to be
36.6% [1]. Currently, to reduce non-revenue water in South Africa, pressure management systems are
installed, minimum night flows are logged, and water balances are completed. The methods only reduce
the amount of leaked water, or raise the awareness. Contractors use listening sticks, geophones, ground
penetrating radar, and noise loggers to help assist in finding the leaks [1].

In recent years research to find leaks using on-line machine learning techniques with real time data
has intensified. Pérez et al. [2] applied this the model-based methodology to a real network in Barcelona.
Their case study focused on the Nova Icaria DMA (District Metered Area), where a real leak occurred.
Soldevila et al. [3] investigated Bayesian Reasoning with the model-based methodology on the Hanoi
DMA. They investigated four cases, leaks varying between 25 — 75 1/s, 5% noise on pressure, 5% uncer-
tainty in the demands and a case where all three these cases were combined. They compared their results
with previously found results using a k-Nearest Neighbors approach. Additonally they investigated us-
ing Bayesian Classifiers [4] with the model-based methodology. In this work they investigated two case
studies, the Hanoi and Nova Icaria DMA.

Additional to the techniques used to find the leaks, sensor placement for this method of leak detec-
tion is highly important. Fuchs-Hanusch et al.[5] compared six different sensor placement algorithms on
a real-world network. In their work they opened fire hydrants to simulate leakages within the network
ranging between 0.25 — 1 1/s. The six algorithms compare are shortest path 1, shortest path 2, Shannon
entropy [6], a binarized sensitivity matrix [7], a non binarized sensitivity matrix [8] and SPuDU [9].

The following sub-sections show work done by different authors to compare several techniques, as well as



work done in this field by using Artificial Neural Networks, Support Vector Machines and the Bayesian
Probabilistic analysis. These three techniques were chosen as a focus due to their and popularity.

1.1 Comparisons Between Different Strategies

A. Nowicki et al.[10] investigated data-driven models for fault detection in water distribution networks.
They investigated Kernel PCA (Principle Component Analysis) and applied the method for fault de-
tection to the water distribution network of Chojnice, located in northern Poland. They compared the
results of the Kernel PCA with a normal PCA and a simple Control Chart. M. Romano et al.[11] in-
vestigated geostatistical techniques for burst detection in water distribution networks. They compared
four different techniques, namely inverse distance weighted interpolation, local polynomial interpolation,
ordinary Kriging and ordinary CoKriging. They compared these techniques on a case study with a rural
water network consisting of 17.8km of pipes. They measured 13 pressure measurements throughout the
network and simulated bursts by opening fire hydrants.

1.2 Artificial Neural Networks

Caputo et al. [12] proposed a method of using artificial neural networks to estimate the leak location in
piping networks. They performed tests on a network where they generated input data for leaking and non
leaking states. Two neural networks were used in their proposal, the first identifying the leaking branch
and the second estimating the leakage amount and location. Applying the neural networks, they found
that the leaking branch could be correctly identified with the leak size estimated to between 2 — 10% of
the actual value. The location of the leak could be estimated within 50 — 100m of the actual leak location.

Mounce et al. [13] performed tests on an actual water supply network in the UK. Bursts in the net-
work were simulated by opening fire hydrants. Two sensor locations were used: one at the input of the
network and one at the output going to the neighboring DMA. The sensors measured both pressure and
flow. Five different burst locations were simulated. They found that they could locate the bursts with
an accuracy of 98.33%.

Salam et al. [14] investigated an on-line monitoring system to detect leakages in pipe networks. They
used a network from Makassar in Indonesia. They used pressure measurements at each junction as input
data. The input data were generated by simulating leaks in the network. They used a Radial Basis
Function Neural Network which could detect the leak location and sizes with an accuracy of 98%.

1.3 Support Vector Machines

De Silva et al. [15] investigated support vector machines to act as pattern recognisers to detect leaks in
pipe networks. They started with a SVM (Support Vector Machine) as a regressor to try and predict
emitter coefficients. Six monitoring nodes were used to act as sensor locations. They selected 10 can-
didate leaking nodes and generated a data set with varying emitter coefficients. The SVM could, after
training, achieve a testing accuracy of 76.8%.

They then used 40 candidate leaking nodes and created a data set, for which a testing accuracy of
57.2% was achieved. They found that the predicted leak location was within 500m of the actual leak
location in all cases for a network that could fit into a 1000 by 1100m square box.

They went on to investigate whether the SVM could detect small leaks in the network. The small-
est leak registered by EPANET to generate a pressure difference was a leakage of 90l/hour. A new data
set was created to which the SVM was trained. A testing accuracy of 35% was found.

1.4 Bayesian Probabilistic Framework

Poulakis et al. [16] investigated a Bayesian probabilistic framework to detect leaks in a water pipe
network. The derivation starts by assigning 6 as the parameter to be optimized. This parameter includes
the leaking pipe, location and size of the leak. It can also be written as x(0) to indicate the measured
values such as pressure and flow for a given set of leak parameter.

A model error can now be written as:

eij = Tij — 5(0), (1)



where ;; are the actual measurements from the system. Another parameter was added to be optimized,
namely o. This parameter represents the uncertainty within the error.

Using Bayes’ theorem and applying the uncertainty and parameter set to be quantified by a probability
density function, 7 (6, o), it follows that:

P(4,0|z) = c1 P(Z|0,0)7(0,0), (2)

where ¢; is a normalization constant, so that P(f,c|Z) integrates to one. Assuming the model error e;;
is independent, normally distributed with a zero mean, and standard deviation of o, the likelihood of
P(z|0,0) can be written as:
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where L is the total number of monitoring locations and N is the total number of flow tests. This equation
can be simplified by assuming the initial probability density function 7 (6, o) is constant and substituting
equation 3 into equation 2. The simplification can be written as:
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By maximizing this function the most probable leak location can be found within a network. Poulakis
considered a network that consists of 50 pipes, 31 nodes, and 20 loops. The network forms a grid network
supplied by one reservoir with one leak.

(4)

Pb,0|Z) = ca

They went on by introducing variation in pipe roughness coefficients, variation in the assumed demands,
and a variation in the model measurements. They found that when the model measurements had an
uncertainty of 2%, the location could be calculated. If the uncertainty in the model measurements was
increased to 5% the model was unsure about the actual leak location.

1.5 This Research

There was found that various theoretical and practical networks have been tested with machine learning
techniques such as Neural Networks, Support Vector Machines, and other statistical approaches. This
paper investigates the pressure-flow deviation method with different solution strategies to find the appli-
cation of each strategy for specific networks and an overall comparison between the strategies.

Three strategies are investigated: the Bayesian Probabilistic analysis, a Support Vector Machine, and an
Artificial Neural Network. The three investigated strategies are then applied to three water networks, of
which two are numerical and the other an experimental network, to gain a deeper understanding of the
networks and strategies.

The first two tested networks simulate a numerical transportation and distribution network. The so-
lutions for these networks are idealized, with no model or measurement error. This is to find limitations
within the solution strategies. The experiential network contains calibration of the model and there-
fore contains model and measurement errors. The experimental model is based on a simple distribution
network to offer some complexity to the problem.

2 The Algorithms

Three strategies investigated in this research are discussed in this section.

2.1 Strategy 1: Bayesian Probabilistic Analysis

This method was proposed by Poulakis et al. [16]. It uses the Mean Squared Error (MSE) calculation
to which a probability is calculated. An extra optimization parameter is introduced, namely o, which is
the uncertainty in the MSE calculation. The formulation is written as:

1 _ MSE(0)
P(9,0|f):0276( 2 ) (5)



where 6 is the optimized leak parameter. The optimization of this algorithm requires the equation to be
maximized for the largest probability. Therefore the log-likelihood of this function can be calculated as:

MSE(# LN
g9(0,0) = —In(P(0,0|Z) = 7() + - In(c?), (6)
where L is the total number of monitoring locations, N is the total number of flow tests and o is the
uncertainty within the error. The log-likelihood given by ¢(6, o) can now be minimized. For this strategy
no data set is generated. Within the optimization algorithm the EPANET model is simulated with the
estimated parameters which results in the pressure and flow measurements to calculate the error. This
is repeated until the error is minimized.

2.2 Strategy 2: Support Vector Machine

For the Support Vector Machine a data set is generated. SVMs aim to solve the problem as a classi-
fication or inverse regression problem. The input parameters for the SVM are the pressure and flow
measurements from a simulated model, and the output parameters are the leak location and size. Two
SVM types are used, the first estimating on which pipe a possible leak occurred, and the second to find
the possible leak size and location on all the pipes in the network.

For the classification SVM the outputs are an integer value depending on the number of pipes in the
network. For the regression SVM, the outputs are the leak size and leak location on the length of the
pipe. All the SVMs use a RBF kernel function and they are generated using scikit-learn [17] which is a
Python package used for machine learning.

2.3 Strategy 3: Artificial Neural Network

The Artificial Neural Networks considered the same input and output parameters as the SVMs. The
sizes of the ANNs (Artificial Neural Networks) vary between problems with the sizes being chosen for
each problem to result in the optimum results. This was completed by increasing the size of the ANN
until the accuracy of the prediction stopped increasing or before over fitting occurred. The output for
the classification ANN returns a string of numbers which suggest pipes with possible leaks.

Each pipe in the network has its own regression ANN which calculates the leak location and size. The
number of hidden layers and nodes in a layer is identical to that of the classification ANN. The output
for the regression ANN is the leak size and location of the leak. In Python the ANNs are created using
the scikit-learn [17] package similar to the SVMs.

For both the SVMs and ANNSs the training and testing data are split with a 70:30 ratio. Within the
training algorithm 10% of the training data is used as validation to ensure over fitting does not occur,
which is then validated using the testing data set.

3 Numerically Simulated Networks

The strategies were tested on two different numerical water networks. These networks include a simple
single pipe network and a distribution network found in the literature. The simple problem is chosen
to offer an in depth understanding of the performance of the solution strategies for the most simple
problem. The second numerically investigated problem is a complex network that is reproducible from
the literature. Both these networks are idealized with no model or measurement errors. This is to ensure
this method of leak detection have the ability to solve the leak size and location from the measured data.

3.1 Problem 1: Simple Single Pipe System

This network consists of two reservoirs connected together. Figure 1 shows a diagram of the network
layout. R; and R, indicate the two reservoirs, N1 and N> indicate the two nodes at which pressure will
be measured and P; indicates the pipe with a leak on it.

The height of R; and Ry is chosen to be 50m and 20m respectively. The elevation of N; and Ny is
the same and at Om. The length of P; is 100m with a diameter of 32mm. The location to the leak is
measured from N;. The leak is modeled with an emitter coefficient of 0.3. The flow though this network
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Figure 1: Diagram of Problem 1

was calculated by EPANET as 2.68m/s, giving a Reynolds Number of 85760 resulting in turbulent flow
in the pipe. The Hazen-Williams model was used to solve the EPANET model.

To solve this problem with the SVM and ANN, a data set of 1000 samples were generated with ran-
dom leaks at locations between 0 — 100m and leak sizes with emitter coefficients between 0 — 2. Pressure
and flow measurements could be generated by simulating the EPANET model with the randomly gener-
ated leak parameters. For this problem the input data for the strategies is the pressures, flows and the
leak location. The leak location was added to the input to help with the presentation of the results. The
output data for the SVM and ANN is simply the diameter of the leak.

3.1.1 Solutions

The solution found by the three solution strategies can be seen in Figure 2. The dot in the figures
shows the actual modeled leak. From the figure the Bayesian Probabilistic analysis error can be seen
as 0 throughout the length of the pipe. This indicates there is an infinite number of solutions for this
strategy. This is due to the Bayesian Probabilistic Analysis optimizing to find the minimum error for
the problem, which is the difference between the two measured pressures. For this problem a leak can
be added anywhere on the pipe which will result in the error being zero, giving an infinite amount of
solutions. Adding the flow within the pipe to the input of the algorithms could solve this problem since
the problem is no longer ill-posed. The dot in the figure indicates the actual leak location.

From the solution for the SVM it can be seen that the SVM gives a unique solution for this prob-
lem which is where the error is calculated to be 0.0005, at its minimum. The estimated solution was
found at a length of 58.4m and a emitter coefficient of 0.413. For the ANN it can be seen that a unique
solution was found for this problem. The minimum error of the ANN solution is found to be 0.02. This
results in a leak length of 42.9m and an emitter coefficient of 0.244. The difference between the Bayesian
Probabilistic analysis and the SVM or ANN is that the SVM and ANN uses the absolute values of the
pressures while the Bayesian Probabilistic analysis uses the pressure difference over the pipe.

3.2 Problem 2: Benchmark Network

The network consists of 20 loops, 30 nodes with demands, 1 reservoir supplying the network and 50
pipes. This network was introduced by Poulakis et al. [16] and they applied the Bayesian Probabilistic
framework to it. The same network was used by Nasirian et al. [19] to benchmark their new heuristic
genetic algorithm methodology to find leaks. In 2016 the same network was used by Asgari et al. [20]
where they investigated a new method of locating a leak by calculating a leak index.

The network is depicted in Figure 3. The supply to the network comes from reservoir R1, which has a
static head of 52m. Each junction has a demand of 50 1/s, which are numbered from N1 — N30. The
pipe lengths are 1000m and 2000m respectively, as depicted in the figure. The pipe diameters vary from
600mm, to 450mm, and finally 300mm as the flow decreases through the network.

Two cases are considered: the first only pressure is measured, and the other only flow rate is mea-
sured. For case A the pressure observation nodes are marked with circles around the nodes. For case
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Figure 2: Problem 1: Solutions found by the three strategies

B the flow rate observation pipes are marked with rounded rectangles. A leak of 22.8]/s is added to
the network. The leak is modeled at the center of P25, at node N55, which is marked with a square.
This leak is modeled as a demand. The same sensor placement was used as introduced by Poulakis et
al. [16]. The flow regime within this network was calculated and found to be turbulent, therefore the
Hazen-Williams formula is used within EPANET.

Similar to the previous problem, a data set was generated for different leak cases. The data set was
used for both the SVM and the ANN, which contained 10000 data samples. The data samples were
randomly generated with leak sizes between 10l/s and 50l/s. This data set contained two outputs, the
leaking pipe and size. The inputs for this data set were simulated with the EPANET model depending
on the tested case.

3.2.1 Solutions

The solution found by the solution strategies can be seen in Figure 4. This figure shows the solution for
the Bayesian Probabilistic analysis for case A, where the most probable leak location was found at P25,
with a probability of 43.1%. The leak size was estimated to be 22.81/s. For case B the most probable
leak location was calculated at pipe P25, with a probability of 39.9%. The leak size was estimated as
22.81/s.

The solution found after training the SVM to the generated data set can also be seen in this figure.
For case A it can be seen that a probability of a leak at P25 was calculated as 54.3%, with the adjacent
pipes with leak probabilities of 17% and 8%. For case B it was found that the actual leak location was
given a probability of 1.8%, with other pipes having higher probabilities of leaks. The leak size estimation
of the SVM was calculated between 291/s and 311/s, while the actual leak size was 22.81/s.

The solution found by the ANN after training shows a perfect classification solution as well as a leak
estimation of 22.81/s for case A. For case B it can be seen that an incorrect classification solution for the
location was found. The leak size estimation for this case was found to be 22.7/s.
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Figure 4: Problem 2: Solutions found by the three strategies

3.3 Discussion of Results

A comparison between these strategies showed that the Bayesian Probabilistic Analysis could not find
leaks in simple pipe networks due to the ill-posed nature of the problem, while the SVM and ANN could
solve the simple pipe network accurately by algorithmic regularization. This indicates that the Bayesian
Probabilistic Analysis have difficulties solving the problem when too little information is known about
the network.

The solutions for Problem 2 showed that the the Bayesian Probabilistic Analysis can solve the prob-
lem accurately using either pressure or flow measurements. This is not the case for the SVM and ANN



as both of these strategies could not find the leaking pipe or its size when only flow measurements are
used. Indicating that the error optimization methods have an advantage when using flow measurements.

4 Experimental Network

The solution strategies were tested on an experimentally built network. The experimentally measured
values are calibrated and tested to find the actual leak for two different cases.

4.1 Setup

The experimental network built can be seen in Figure 5. The experimental networks used twelve pressure
sensors, one at the start and end of each pipe. Additionally, seven flow meters are used: one measuring
the input of the network while six measure the output flows of each pipe. In this figure it can be seen
that six possible leaking pipes were used. These pipes are fed by a pump from a reservoir. The demands
in the network was modeled with 3mm holes, which fed back to the reservoir.

The reservoir used is a simple container holding 50/ of water and can not be seen in this photo. A
Pentax CM 210 pump was used which is capable of supplying the network with the necessary pressure
and flow. The lengths of each pipe is 3m with a diameter of 10mm. The pressure in this network with
the specified supply achieved a pressure in the network ranging between 2 — 3 bar, with an average flow
of about 0.1 — 0.2 1/s through each pipe, resulting in a Reynolds Number ranging between 100 — 200.
This results in the flow to be Laminar in this network, therefore the Darcy-Weisbach formula was used
within EPANET.

Three leak locations were added to the network of which only the first two leak locations were con-
sidered. The leaks was located on the first and third pipe with diameters of 3mm and 2mm respectively.
The leaks was located at a location of 2m and 1m. The valves between the pipes to change the network
layout are closed.

Figure 5: Photo of the Built Experimental Network



Figure 6: Actual Leak of 3mm Applied to the Experimental Network

Figure 6 shows the 3mm leak applied to the network. The leak is applied by clamping a saddle over the
pipe, and drilling the correct diameter hole through the pipe. The demands applied to each pipe were
created in the same way, resulting in the network being pressure driven. The pressure sensors had a
full scale error of 1.5% and could measure pressure from 0 — 5bar. The flow sensors used could measure
between 1 — 25]/min and had an error rating of 3%.

Figure 7 shows the EPANET model used to calibrate the experimental measurements. In this figure
P1 — P12 indicate the locations of the pressure sensors while F'1 — F'7 indicate the locations of flow
sensors. L1 — L6 indicate the leaks on the pipe. The calibration process consists of calculating an error
between the experimental measurements and the model measurements when there was no leaks. These
measurements include all 12 pressure and 7 flow measurements. The parameters optimized include the
roughness coefficient, a loss coefficient on each pipe, an emitter coefficient simulating the demand in the
network and the pump efficiency. Calibrating these parameters resulted in a total error of 2.56% when
there was no leak.
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Figure 7: EPANET model used to calibrate experimental measurements

To solve the experimental problem limits to the optimization of the Bayesian Probabilistic analysis and
the data sets for the SVM and ANN had to be set. For the three strategies, the leak size was limited to
an emitter coefficient between 0 — 0.1, while the leak location was limited between 0 — 3m. For the SVM
and ANN the data set contained 1500 data samples per pipe, with a total of 9000 samples.



4.2 Results of Experimental Measurements

The results found by the three strategies for the two leak cases can be seen in Figure 8. For the two leak
cases, the actual leak size and location was marked with a black dot. The leak size for the two leaks were
calculated from the flow measurements as 0.231/s and 0.0935!/s. The leak locations were at 2m and 1m.

In these figures it can be seen that the Bayesian Probabilistic analysis could find the leaking pipes
with probabilities of 27.9% and 23.4%. For the second leak case the leak was identified on the sixth pipe
with a probability of 25.4%. The Bayesian Probabilistic analysis calculated the leak size to be 0.481/s
and 0.211/s for the two leak cases, with the location calculated at 0.74m and 2.49m.

The SVM could identify the leaking pipe accurately for both cases with a probability of 51.0% and
45.1%. The leak size for the two cases was estimated to be 0.40l/s and 0.241/s, with the location of the
leaks estimated at 1.44m and 1.35m.
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Figure 8: Experimental Network: Solutions of the two leak cases

The ANN classified the two leaking pipes with probabilities of 32.4% and 23.2%. For the second leak
case the sixth pipe was estimated to be leaking with a probability of 30.2%. The leak size for the two
leak cases was estimated as 0.18]/s and 0.311/s. The location of the leaks was estimated to be at 1.39m
and 1.53m.

4.3 Discussion of Results

For the experiment the model calibration could be completed by optimizing 39 coefficients. These coeffi-
cients included the roughness coefficient, minor losses, emitter coefficients and the pump efficiency which
resulted in the model error of 2.56%.

The three strategies could all identify the first leak case correctly, with only the SVM finding the correct
leaking pipe for the second leak case. Both the Bayesian Probabilistic analysis and the SVM estimated
the leak to be nearly double of its actual size, with the ANN training to constant values for the leak size
and location in both cases.

5 Conclusion
The pressure-flow deviation method was used to find leaks in various water distribution and supply net-
works. The three solution strategies used could find leaks in all the networks tested. The algorithms used

were the Bayesian Probabilistic Analysis, a Support Vector Machine, and an Artificial Neural Network.

In the first numerical network it was seen that the ANN and SVM outperform the Bayesian Proba-
bilistic Analysis since the Bayesian Probabilistic Analysis make use of error calculations, removing the
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absolute pressure and flow values from its estimation. In the second numerical problem it was seen that
the ANN and SVM struggled to find the leaking pipe as well as its size when only flow measurements
were used, although the Bayesian Probabilistic analysis could find the leak in both cases.

In the experimental network the SVM could identify the leaking pipes for both cases, while the Bayesian
Probabilistic analysis and the ANN only identified the leaking pipe for the first case. Furthermore it was
seen that the Bayesian Probabilistic analysis and SVM estimated the leak to have nearly double its size.
The ANN was seen to train to constant estimations for the leak size and location.

From this work it can be seen that no strategy consistently outperform any of the other. This begs
the question whether these strategies should not be combined to work together to find better predictions.
This leak detection technique can also be combined with on-line monitoring systems allowing for quick
and accurate detection of leaks. Although this technique requires further investigation to find accurate
leak sizes and exact location estimations, it can accurately find leaks in networks and identify the pipes
they are on. In addition, this work shows more research needs to be completed on model calibration
techniques to help with the detection of the leaks, their sizes and locations.
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