Supplementary Information For

Cobalt and zinc halide complexes of 4-chloro and 4-methylaniline: syntheses, structures and magnetic behavior.

Cailyn Keely, ${ }^{[a]}$ Jonathan E. Chellali, ${ }^{\text {[a] }}$ Graham Bell, ${ }^{[a]}$ Kimberly L. Dimanno, ${ }^{[a]}$ Tran Tran, ${ }^{[a]}$ Christopher P. Landee, ${ }^{[b]}$ Diane Dickie, ${ }^{[c] 1}$ Melanie Rademeyer ${ }^{[d]}$ and Mark M. Turnbull, $*[a]$
[a] Carlson School of Chemistry and Biochemistry and
[b] Dept. of Physics, Clark University, 950 Main St., Worcester, Massachusetts 01610 USA
[c] Dept. of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02453, USA
[d] Dept. of Chemistry, University of Pretoria, University of Pretoria, Private bag X20, Hatfield 0028 South Africa

Figure S1: A plot of the molecular unit of compound $\mathbf{2}$ showing 50% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

Figure S2: A plot of the molecular unit of compound 3 showing 50\% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

[^0]

Figure S3: A plot of the molecular unit of compound $\mathbf{4}$ showing 50\% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

Figure S4: A plot of the molecular unit of compound 6 showing 50% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

Figure S5: A plot of the molecular unit of compound 7 showing 50\% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

Figure S6: A plot of the molecular unit of compound $\mathbf{8}$ showing 50% probability thermal ellipsoids. Hydrogen atoms are shown as spheres of arbitrary size. The asymmetric unit, copper coordination sphere and hydrogen atoms whose positions were refined are labeled.

SI-1: SIMULATION AND MODELLING

The numerical solution of magnetic susceptibility of the $S=3 / 2$ rectangular lattice was obtained by quantum Monte Carlo simulations with the "looper" application of the ALPS libraries.
${ }^{1}$ For all simulations, the spins were arranged on a $64 x 64$ square lattice (ignoring 3D interaction). Along the edges two antiferromagnetic interactions J, J ' were present in the single- J form Hamiltonian, and the ratio J^{\prime} / J was defined as α ($0 \leq \alpha \leq 1$, step size 0.05). The scaled temperature window for the simulation was set to $[0.05 T / J$ to $300 T / J]$. The simulated data for each α were fitted to the ratio of polynomial expressions with given C, J to extract the coefficients $A_{n, \alpha}$ and $B_{n, \alpha}$ according to Equation (1)

$$
\begin{equation*}
\chi(\alpha, T)=\frac{C}{T} \frac{1+\sum_{n=1}^{5} A_{n, \alpha}(J / T)^{n}}{1+\sum_{n=1}^{5} B_{n, \alpha}(J / T)^{n}} \tag{1}
\end{equation*}
$$

The empirical formulas are found to be valid for the temperature range $T / J>0.4$ and the values of $A_{n, \alpha}$ and $B_{n, \alpha}$ are listed in Table S1. The square lattice model corresponds to the $\alpha=1$ case.

Table S1. Fitted values of $A_{n, \alpha}$ and $B_{n, \alpha}$ for building the expression of susceptibility [Equation
(1)] of the $S=3 / 2$ rectangle model.

α	$A_{l, \alpha}$	$A_{2, \alpha}$	$A_{3, \alpha}$	$A_{4, \alpha}$	$A_{5, \alpha}$	$B_{1, \alpha}$	$B_{2, \alpha}$	$B_{3, \alpha}$	$B_{4, \alpha}$	$B_{5, \alpha}$
0	0.396205	0.963443	0.093099	-0.00936	0.000112	2.897135	5.67027	6.98343	2.55916	-0.14614
0.05	0.769989	2.213246	0.901033	0.422884	-0.00062	3.394935	7.993201	12.28081	12.0844	5.434277
0.10	-0.65041	0.499495	-0.35749	0.192128	-0.00034	2.100521	2.458959	1.688069	-3.85436	2.256264
0.15	-0.817	0.666312	-0.34065	0.274691	-0.00054	2.058582	2.123834	1.480604	-3.00184	3.139848
0.20	-1.03865	0.839758	-0.36229	0.390542	-0.00082	1.962022	1.595264	1.156154	-2.57609	4.457846
0.25	-1.26431	1.040523	-0.39691	0.511196	-0.00121	1.861439	1.041646	0.923753	-2.11181	5.871482

0.30	-1.42706	1.210714	-0.40996	0.636565	-0.00157	1.823712	0.624263	0.887352	-1.55887	7.447175
0.35	-1.63518	1.457654	-0.46745	0.748126	-0.00233	1.740843	0.105638	0.877573	-0.86552	8.806197
0.40	-1.77652	1.657993	-0.50187	0.900245	-0.0031	1.724577	-0.25986	1.05198	-0.22754	10.81874
0.45	-1.91938	1.864754	-0.54213	1.042632	-0.00362	1.706946	-0.64516	1.257447	0.422289	12.83349
0.50	-2.01474	2.029443	-0.56131	1.273862	-0.00405	1.736645	-0.90925	1.569569	0.916277	16.24473
0.55	-2.11508	2.216227	-0.60568	1.496705	-0.00476	1.761713	-1.18457	1.957346	1.41143	19.6484
0.60	-2.25168	2.454528	-0.68157	1.706434	-0.00556	1.750198	-1.5506	2.278049	2.036454	22.95271
0.65	-2.34065	2.632797	-0.71374	1.93295	-0.00643	1.786567	-1.79948	2.629892	2.838001	26.7375
0.70	-2.46305	2.894968	-0.84127	2.240106	-0.00816	1.789328	-2.11252	3.130903	3.186335	31.66576
0.75	-2.50336	3.000677	-0.83271	2.637955	-0.00797	1.874206	-2.23455	3.559377	3.497411	38.89372
0.80	-2.5847	3.172927	-0.86155	2.877478	-0.00879	1.917893	-2.45657	3.842443	4.601108	43.5635
0.85	-2.66801	3.405841	-1.00162	3.37745	-0.011	1.960369	-2.65083	4.522825	4.491997	52.43699
0.90	-2.79326	3.682372	-1.13719	3.606621	-0.01315	1.95997	-2.98127	4.897639	5.502365	57.03889
0.95	-2.81764	3.778448	-1.12938	4.159222	-0.01308	2.060566	-3.01454	5.297742	5.955627	68.20129
1.00	-2.93113	4.10106	-1.39978	4.769242	-0.01599	2.072726	-3.28065	6.168849	5.084592	79.81426

SI-2 Magnetic data for 5 and 7

Figure S7. Temperature dependence of $\chi(\mathrm{O})$ and $\chi \mathrm{T}$ (\square for5 . The solid line, dotted line, dashed line are fits using the Curie-Weiss model, 1D chain model and 2D square lattice model, respectively.

Figure S8. Temperature dependence of $\chi(\mathrm{O})$ and $\chi \mathrm{T}$ (\square for7 . The dotted lines and dashed lines are fits using the 1D chain model and 2D rectangle lattice model, respectively.

[^1]
[^0]: ${ }^{1}$) Present address: Dept. of Chemistry, U. of Virginia, McCormick Road, Charlottesville, VA 22904 USA

[^1]: 1. B. Bauer, L.D. Carr, H.G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S.V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawłowski, J.D. Picon, L. Pollet, E. Santos, V.W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall, P. Werner and S. Wessel (ALPS collaboration) J. Stat. Mech. 2011, P05001.
