Supporting Information

Diverse Coordination Modes of Bidentate COC and Tridentate CNC Ligands Comprising 1,2,3-Triazol-5ylidenes

Lewis C. Tolley, ${ }^{a}$ Ian Strydom, ${ }^{b}$ Wynand J. Louw, ${ }^{\text {b }}$ Manuel A. Fernandes, ${ }^{a}$ Daniela I. Bezuidenhout,,$^{,^{*}}$ and Gregorio Guisado-Barrios, ${ }^{c^{*}}$
${ }^{a}$ Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
${ }^{b}$ Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
${ }^{c}$ Institute of Advance Materials (INAM), Centro de Innovación en Química Avanzada Universitat Jaume I, Avenida Vicente Sos Baynat s/n, 12071 Castellon, Spain
Email: daniela.bezuidenhout@wits.ac.za, guisado@uji.es

Contents

S1. General Methods S2
S2. Synthesis and characterization of ligand precursors S4
S3. NMR Spectra S7
S4. Crystal Structure Details S25
S5. References S34

S1. General Methods

a. Method

All synthetic manipulations, unless otherwise stated, were performed under a $\mathrm{N}_{2}(\mathrm{~g})$ or $\mathrm{Ar}(\mathrm{g})$ atmosphere using oven or flame dried glassware and standard Schlenk or vacuum line techniques. Air sensitive solids were stored and handled in an InertLab glove box. Preparations of NMR and crystallization samples that also require an inert atmosphere were performed in a glove box.

b. Materials

The following ligand and metal precursors were synthesized in this study according to known synthetic procedures: 1,3-bis-(2,6-diisopropylphenyl)triaz-1-ene], ${ }^{1}$ sodium hypochlorite, ${ }^{2}$ N-(tertbutyloxy)carbonyl dipropargylamine, ${ }^{3}$ di- μ-chloro-bis(1,5 -cyclooctadiene)dirhodium(I), ${ }^{4}$ di- μ-chlorotetracarbonyldirhodium(I), ${ }^{5}$ and di- μ-chloro-bis(1,5 -cyclooctadiene)diiridium($\mathrm{I},{ }^{6}$ All other reagents were obtained from commercial sources and were used without any further purification.

Unless otherwise stated, only anhydrous solvents were used for the experimental procedures. Anhydrous THF (tetrahydrofuran) and DEE (diethyl ether) were obtained after distillation over sodium wire $\mathrm{Na}(\mathrm{s})$ and benzophenone under a $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere. Anhydrous toluene and hexane were obtained after distillation over sodium wire under a $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere. Anhydrous DCM (dichloromethane) was obtained after distillation over calcium hydride $\left(\mathrm{CaH}_{2}\right)$ under a $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere. Deuterated benzene was dried over sodium and distilled under an $\operatorname{Ar}(\mathrm{g})$ atmosphere. Deuterated acetonitrile, chloroform and dichloromethane were dried over calcium hydride under an $\mathrm{Ar}(\mathrm{g})$ atmosphere.

b. Characterization Techniques

Nuclear magnetic resonance (NMR) spectra were obtained using either a Bruker AVANCE-III-300 operating at 300.13 MHz for ${ }^{1} \mathrm{H}, 75.47 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 121.49 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$ and 282.40 MHz for ${ }^{19} \mathrm{~F}$; or AVANCE-III-400 operating at 400.21 MHz for ${ }^{1} \mathrm{H}, 100.64 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 162.01 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$ and 376.57 MHz for ${ }^{19} \mathrm{~F}$; or AVANCE-III-500 operating at 500.13 MHz for ${ }^{1} \mathrm{H}, 125.31 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 202.46 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$ and 470.59 MHz for ${ }^{19} \mathrm{~F}$. ${ }^{1} \mathrm{H}$ Chemical shifts are reported as $\delta(\mathrm{ppm})$ values downfield from $\mathrm{Me}_{4} \mathrm{Si}$ and chemical shifts were referenced to residual non-deuterated solvent peaks (CDCl_{3} : $7.260 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}$: 7.160 ppm; $\mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.32 \mathrm{ppm}$; and $\left.\mathrm{CD}_{3} \mathrm{CN}: 1.940 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ chemical shifts are also reported as $\delta(\mathrm{ppm})$ values
downfield from $\mathrm{Me}_{4} \mathrm{Si}$ and chemical shifts were referenced to residual non-deuterated solvents peaks $\left(\mathrm{CDCl}_{3}: 77.160 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 128.060 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: 54.00 \mathrm{ppm}\right.$; and $\mathrm{CD}_{3} \mathrm{CN}$: 118.260 ppm . Proton coupling constants (J) are given in Hz . The spectral coupling patterns are designated as follows: s singlet; d - doublet; t - triplet; q- quartet; quint - quintet; sept - septet; m - multiplet; dd- doublet of doublets; dt - doublet of triplets; td - triplet of doublets; br - broad signal. Quaternary carbons are designated as \mathbf{C}_{q}.

Chemical shift assignment in the ${ }^{1} \mathrm{H}$ NMR spectra is based on first-order analysis experiments. The ${ }^{13} \mathrm{C}$ shifts were obtained from proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra. Where necessary, the multiplicities of the ${ }^{13} \mathrm{C}$ signals were deduced from proton-decoupled DEPT-135 spectra. The resonances of the protonbearing carbon atoms were correlated with specific proton resonances using $2 \mathrm{D}\left({ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right)$ heteronuclear single-quantum coherence (HSQC) experiments. Standard Bruker pulse programs (298 K) were used in the experiments, while low temperature (243 K) NMR experiments were run for all of the fluxional 1,5cyclooctadiene metal complexes.

Solution IR spectra ($v(\mathrm{CO})$) were recorded on a Bruker ALPHA FT-IR spectrophotometer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent. The range of absorption measured was from $4000-400 \mathrm{~cm}^{-1}$.

Electrospray mass spectra (ESI-MS) were recorded on a Bruker QTOF Mass spectrometer with positive electron spray as the ionization techniques; nitrogen was employed as drying and nebulizing gas at a flow of $4 \mathrm{~L} / \mathrm{min}$. The m / z values were measured in the range of $100-1500$ with acetonitrile as solvent. Accurate mass measurements were performed by use of a Q-TOF premier mass spectrometer with electrospray source (Waters, Manchester, UK) operating at a resolution of ca. 16000 (fwhm).

S2. Synthesis and characterization of ligand precursors

Synthesis of $\left[\mathrm{H}_{\mathbf{2}}(\mathrm{COC})\right]\left(\mathrm{PF}_{6}\right)_{2}$

A round-bottom flask was loaded with dry 1,3-bis-(2,6-diisopropylphenyl)triaz-1-ene ($14.62 \mathrm{~g}, 0.04 \mathrm{~mol}$), $K^{K} F_{6}(7.36 \mathrm{~g}, 0.04 \mathrm{~mol})$, and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c a .500 \mathrm{~mL})$. Whilst stirring, dipropargyl ether (0.69 mL , $6.69 \mathrm{mmol})$ was added to the reaction vessel and cooled to $-78^{\circ} \mathrm{C}$. ${ }^{\mathrm{H}} \mathrm{BuOCl}(4.55 \mathrm{~mL}, 0.04 \mathrm{~mol})$ was added dropwise in the absence of light, and allowed to warm to room temperature (RT) overnight. The solvent was evaporated under reduced pressure, and the residue was washed with dichloromethane (DCM) to yield a pinkish-white solid. Excess KPF_{6} was removed by performing multiple $\mathrm{H}_{2} \mathrm{O} / \mathrm{DCM}(50 / 50)$ liquidliquid extractions. Combined organic fractions were then evaporated to dryness and the resulting solid washed with diethyl ether to yield $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}(6.46 \mathrm{~g}, 5.8 \mathrm{mmol}, 87 \%)$, as a white solid after vacuum filtration. Crystallization from DCM yielded single crystals suitable for XRD analysis.
${ }^{1} \mathbf{H}$ NMR $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}, 500.13 \mathrm{MHz}\right) 8.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Trz}}\right), 7.76\left(\mathrm{td}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}_{\text {Dipp }}\right), 7.54(\mathrm{dd}, 8 \mathrm{H}$, $J=7.9 \mathrm{~Hz}, 7.85 \mathrm{~Hz}, \mathrm{ArH}_{\text {Dipp }}$), $4.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.21\left(\mathrm{sept}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10$ (sept, $\left.4 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29\left(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18$ (dd, $24 \mathrm{H}, J=6.9 \mathrm{~Hz}, 7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)^{13} \mathbf{C} \mathbf{N M R} \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}, 125.31 \mathrm{MHz}\right) \delta 146.54\left(\mathrm{ArC} \mathrm{C}_{\mathrm{q}}\right)$, $146.27\left(\mathrm{ArC}_{\mathrm{q}}\right), 143.43\left(\mathbf{C}_{\mathrm{q} ~ \mathrm{Trz}}\right), 134.92\left(\mathbf{C H}_{\mathrm{Trz}}\right), 134.82,(\mathrm{ArCH}) 134.58(\mathrm{ArCH}), 131.19\left(\mathrm{ArC}_{\mathrm{q}}\right), 128.78$ $\left(\mathrm{ArC}_{\mathrm{q}}\right), 126.47(\mathrm{ArCH}), 126.13(\mathrm{ArCH}), 62.17\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3 \mathrm{t0} 0.17\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.02\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.60$ $\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 24.78\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 23.88\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 22.85\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right){ }^{19} \mathbf{F}$ NMR $\delta_{\mathrm{F}}\left(\mathrm{CD}_{3} \mathrm{CN}, 470.59\right.$ MHz) - $72.81\left(\mathrm{~d}, J=707.4 \mathrm{~Hz}, \mathrm{PF}_{6}\right){ }^{31} \mathbf{P}$ NMR $\delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{CN}, 202.46 \mathrm{MHz}\right)-144.58$ (sept, $J=707.0 \mathrm{~Hz}$, PF ${ }_{6}$). HRMS (FIA-ESI): Calculated for $\left[\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}\right]^{2+}\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$: 411.2962; found: 411.2946, $\left[\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{OPF}_{6}\right]^{+}\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}: 967.5565$; found: 967.5456 .

Synthesis of $\left[\mathbf{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$

Compound $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{B o c}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ was prepared by a similar procedure as employed for the synthesis of $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}$. A round bottom flask (RBF) was loaded with 1,3-bis-(2,6-diisopropylphenyl)triaz-1ene ($28.4 \mathrm{~g}, 0.08 \mathrm{~mol}$), $\mathrm{KPF}_{6}(17.2 \mathrm{~g}, 0.09 \mathrm{~mol})$, N -(tert-butyloxy)carbonyl dipropargylamine ($5.0 \mathrm{~g}, 0.03$ mol) and degassed, anhydrous DCM (ca. 500 mL). After cooling the reaction mixture to $-78^{\circ} \mathrm{C},{ }^{\mathrm{t}} \mathrm{BuOCl}$ $(8.8 \mathrm{~mL}, 0.08 \mathrm{mmol})$ was added dropwise in the absence of light and allowed to warm to RT overnight. The solvent was evaporated under reduced pressure, and the resulting solid was repeatedly washed with hexane, followed by diethyl ether (DEE), to yield $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{B o c}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(16.9 \mathrm{~g}, 0.014 \mathrm{~mol}, 54 \%)$ as a cream-coloured solid. Crystallization from DCM yielded single crystals suitable for XRD analysis.
${ }^{1} \mathbf{H} \mathbf{N M R} \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}, 500.13 \mathrm{MHz}\right) 8.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \mathbf{H}_{\mathrm{Trz}}\right), 8.83\left(\mathrm{~S}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{\mathrm{Tr}}\right), 7.77\left(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} \mathbf{H}_{\mathrm{Dipp}}\right), 7.54$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{ArH}_{\text {Dipp }}$), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.25\left(\mathrm{Sept}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.12 (sept, $\left.2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28(\mathrm{dd}, 18 \mathrm{H}, J=7.9 \mathrm{~Hz}, 7.9 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d}, 12 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(\mathrm{~d}, 12 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.07$ (dd, $6 \mathrm{H}, J=$ $\left.6.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}, 125.31 \mathrm{MHz}\right) \delta 154.58$ (BOC-CO), 146.64 (ArCH), $146.30(\mathrm{ArCH}), 146.18\left(\mathrm{ArC}_{\mathrm{q}}\right), 145.99,\left(\mathrm{ArC}_{\mathrm{q}}\right) 145.18\left(\mathbf{C}_{\mathrm{q}} \mathrm{Trr}\right), 135.11(\mathrm{ArCH}), 134.49\left(\mathrm{CH}_{\mathrm{Tr}}\right), 133.67$ (ArCH), $131.17\left(\mathrm{ArC}_{q}\right), 130.98\left(\mathrm{ArC}_{q}\right), 128.99\left(\mathrm{ArC}_{q}\right), 128.53\left(\mathrm{ArC}_{q}\right), 126.63(\mathrm{ArCH}), 126.10(\mathrm{ArCH})$, $85.25\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.28\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 44.86\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 30.22\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.96\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.83$ $\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.81\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.31\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.45\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.13\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.09$ $\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 24.64\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 24.02\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 22.75\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 22.47\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right) .{ }^{19} \mathbf{F}$ NMR δ_{F} $\left(\mathrm{CD}_{3} \mathrm{CN}, 470.59 \mathrm{MHz}\right)-72.85\left(\mathrm{~d}, J=705.8 \mathrm{~Hz}, \mathrm{PF}_{6}\right){ }^{31} \mathbf{P} \mathbf{N M R} \delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{CN}, 202.46 \mathrm{MHz}\right)-144.60(\mathrm{~d}, J=$ $706.4 \mathrm{~Hz}, \mathrm{PF}_{6}$). HRMS (FIA-ESI): Calculated for $\left[\mathrm{C}_{59} \mathrm{H}_{83} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{2+}\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}: 460.8304$; found: 460.8295, $\left[\mathrm{C}_{59} \mathrm{H}_{83} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{PF}_{6}\right]^{+}\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}: 1066.6250$; found: 1066.6184 .

Synthesis of $\left[\mathbf{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathbf{P F}_{6}\right)_{2}$

Compound $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ was obtained by a simple deprotection strategy whereby compound $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(16.9 \mathrm{~g}, 0.014 \mathrm{~mol})$ was treated with 3 N methanolic $\mathrm{HCl}(60 \mathrm{~mL}, 0.181 \mathrm{~mol})$ and was stirred for 2 days at $50^{\circ} \mathrm{C}$. The solution was neutralized with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, further basified with $\mathrm{KOH}(\mathrm{aq})$ until pH tested above 9 before frit filtration and solvent removal. Excess KPF_{6} was removed by performing multiple $\mathrm{H}_{2} \mathrm{O} / \mathrm{DCM}(50 / 50)$ liquid-liquid extractions. The organic fractions were combined and then evaporated to dryness. The product was washed with hexane, DEE and DCM, consecutively, to yield $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(13.2 \mathrm{~g}, 0.012 \mathrm{~mol}, 85 \%)$ as a pure white solid. Crystallization from DCM yielded single crystals suitable for XRD analysis.
${ }^{1} \mathbf{H} \mathbf{N M R} \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}, 500.13 \mathrm{MHz}\right) 10.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Tr}}\right), 7.71\left(\mathrm{td}, 4 \mathrm{H}, J=7.8, \mathrm{Ar}_{\text {Dipp }}\right), 7.51(\mathrm{dd}, 8 \mathrm{H}, J$ $=7.8 \mathrm{~Hz} \mathrm{ArH} \mathrm{H}_{\text {Dipp }}$), 4.44 (pent, $1 \mathrm{H}, \mathrm{N}-\mathbf{H}$), $3.82\left(\mathrm{~d}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.23$ (sept, $4 \mathrm{H}, J=6.7 \mathrm{~Hz}$, $\left.\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.21\left(\mathrm{Sept}, 4 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~d}, 12 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.19(\mathrm{~d}, 12 \mathrm{H}, J$ $\left.=6.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.15\left(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}, 125.31 \mathrm{MHz}\right) \delta 147.16\left(\mathrm{ArC}_{\mathrm{q}}\right), 146.51\left(\mathrm{ArC}_{\mathrm{q}}\right), 146.32\left(\mathbf{C}_{\mathrm{q} ~ \mathrm{Trz}}\right), 136.26\left(\mathrm{CH}_{\mathrm{Trz}}\right), 134.46(\mathrm{ArCH})$ $134.16(\mathrm{ArCH}), 131.62\left(\mathrm{ArC}_{q}\right), 129.02\left(\mathrm{ArC}_{q}\right), 126.31(\mathrm{ArCH}), 125.93(\mathrm{ArCH}), 43.59\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 29.95$ $\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.88\left(\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.42\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $24.56\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.20\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.04$ $\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right) .{ }^{19} \mathbf{F}$ NMR $\delta_{\mathrm{F}}\left(\mathrm{CD}_{3} \mathrm{CN}, 470.59 \mathrm{MHz}\right)-72.81\left(\mathrm{~d}, J=706.4 \mathrm{~Hz}, \mathrm{PF}_{6}\right) .{ }^{31} \mathbf{P} \mathbf{N M R} \delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, 202.46 MHz) $-144.58\left(\mathrm{~d}, J=707.0 \mathrm{~Hz}, \mathrm{PF}_{6}\right.$). HRMS (FIA-ESI): Calculated for $\left[\mathrm{C}_{54} \mathrm{H}_{75} \mathrm{~N}_{7}\right]^{2+}[\mathrm{M}-$ $\left.2 \mathrm{PF}_{6}\right]^{2+}: 410.8041$ found: 410.8075 , and also $\left[\mathrm{C}_{54} \mathrm{H}_{75} \mathrm{~N}_{7} \mathrm{PF}_{6}\right]^{+}\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}: 966.5725$ found: 966.5674 .

S3. NMR Spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$. [* annotates residual DCM $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{B o c}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$
(

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$
(

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}[\mathrm{Rh}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CDCl}_{3}[$ a annotates grease]

Figure S8: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a}[\mathrm{Rh}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CDCl}_{3}[*$ annotates grease $]$

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{1 b}[\operatorname{Ir}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}[*$ annotates grease $]$

Figure S10: ${ }^{13} \mathrm{C}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{1 b}[\operatorname{Ir}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}[*$ annotates grease $]$

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ in CDCl_{3}

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CDCl}_{3}[*$ annotates grease $]$

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
[* annotates residual chloroform $(\mathbf{C H})$, toluene $\left(\mathrm{CH}_{3}\right)$, and acetone $\left(\mathrm{CH}_{3}\right)$]

Figure S14: ${ }^{13} \mathrm{C}$ NMR spectrum of 2b $\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
[* annotates residual chloroform $(\mathbf{C H})$ and grease]

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{3 a}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in CDCl_{3}
[* annotates residual DCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and grease]

$\begin{array}{llllllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
Figure S16: ${ }^{13} \mathrm{C}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{3 a}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathrm{Cl}_{2}(\mu-\mathrm{COC})\right]$ in CDCl_{3}
[* annotates residual DCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and grease]

Figure S18: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in CDCl_{3}

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}\left[\mathrm{Ir}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in solvent CDCl_{3}
[* annotates residual toluene $\left(\mathrm{CH}_{3}\right)$ and grease]

Figure S20: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}\left[\mathrm{Ir}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in $\mathrm{CDCl}_{3}[*$ annotates grease $]$

Dipp-AI
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of $5\left[\mathrm{Ag}_{2} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in CDCl_{3}
[* annotates residual DCM $\left(\mathrm{CH}_{2}\right)$, diethyl ether $\left(\mathrm{CH}_{2}\right)$ and grease]

Figure S22: ${ }^{13} \mathrm{C}$ NMR spectrum of $5\left[\mathrm{Ag}_{2} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ in CDCl_{3}
[* annotates residual diethyl ether $\left(\mathbf{C H}_{2}\right)$ and grease]

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{6}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}(\mu-\mathbf{C N C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}[*$ annotates grease $]$

Figure S24: ${ }^{13} \mathrm{C}$ NMR spectrum $(243 \mathrm{~K})$ of $\mathbf{6}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}(\mu-\mathrm{CNC})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ [* annotates residual chloroform (CH)]

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of 7a $[\operatorname{Ir}(\operatorname{cod})(\mathbf{H C N C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S26: ${ }^{13} \mathrm{C}$ NMR spectrum of 7a $[\operatorname{Ir}(\operatorname{cod})(\mathbf{H C N C})]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 b}\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{H C N C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}[$

* annotates free $1,5-\operatorname{cod}$, water $\left(\mathbf{H}_{2} \mathrm{O}\right)$ and grease]

Figure S28: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 b}\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{H C N C})\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
[* annotates free $1,5-\mathrm{cod}$ and grease]

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathbf{C N C})\right]$ in $\mathrm{C}_{6} \mathrm{D}_{6}[*$ annotates grease $]$

Figure S30: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathbf{C N C})\right]$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum of intractable mixture of $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathbf{C N C})\right]$ (red) and $\mathbf{8 b}$ $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathbf{C}^{\mathrm{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)$ (Blue) in $\mathrm{C}_{6} \mathrm{D}_{6}\left[{ }^{*}\right.$ annotates grease $]$

Figure S32: ${ }^{13} \mathrm{C}$ NMR spectrum of intractable mixture of $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathbf{C N C})\right]$ (red) and $\mathbf{8 b}$ $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathbf{C}^{\mathrm{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)$ (blue) in $\mathrm{C}_{6} \mathrm{D}_{6}\left[{ }^{*}\right.$ annotates grease $]$

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 b}\left[\mathrm{Rh}(\mathrm{CO})\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S34: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 b}\left[\mathrm{Rh}(\mathrm{CO})\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$
[* annotates residual $\mathbf{C D C l}_{3} \&$ diethyl ether $\left(\mathbf{C H}_{2} \& \mathbf{C H}_{3}\right)$]

Figure S35: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}\left[\mathrm{Ag}_{2} \mathrm{Cl}_{2}\left(\mu-\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]$ in CDCl_{3}

Figure S36: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}\left[\mathrm{Ag}_{2} \mathrm{Cl}_{2}\left(\mu-\mathbf{C}^{\mathrm{H}} \mathbf{N C}\right)\right]$ in $\mathrm{CDCl}_{3}[*$ annotates residual grease]

S4. Crystal Structure Details

Single crystal X-ray diffraction data were collected on Bruker D8 Venture kappa geometry diffractometers using Mo-K ${ }_{a}$ radiation $(\lambda=0.71073 \AA$) ($I \mu s$ for 1a and sealed tube for 3a and $\left.\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}\right)$, Photon 100 CMOS detectors and Apex 3 control software. ${ }^{7}$ A Bruker Apex II three circle diffractometer using sealed tube Mo-K ${ }_{a}$ radiation ($\lambda=0.71073 \AA$), CCD detector and Apex 2 control software ${ }^{7}$ was used to collect data for $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2},\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{B o c}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}, \mathbf{1 b}, \mathbf{2 b}, \mathbf{4 a}, \mathbf{6}, 7 \mathbf{b}$ and 8a. Crystals were selected under oil, mounted on nylon loops and then immediately placed in a cold stream of N_{2} at 173 K or 150 K (for 1a). Data reductions were performed using SAINT, ${ }^{7}$ and multiscan absorption corrections were applied using $S A D A B S^{7}$ with the exception of $\mathbf{1 b}$ where the raw data was used, and $\mathbf{1 a}$ and $7 \mathbf{a}$ where face-indexed absorption corrections using $X P R E P^{7}$ were used. Structures were solved using SHELXT-2018/2 ${ }^{8}$ and refined using SHELXL-2018/3 3^{9} and Olex $2 .^{10}$ The crystal structures of $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}, \mathbf{3 a}, \mathbf{6}, 7 \mathbf{b}$ and $\mathbf{8 a}$ contained badly disordered solvent molecules. The contributions of these disordered molecules to the structure factors in these structures were calculated using PLATON SQUEEZE. ${ }^{11}$

S4.1 Crystal data for ligand salt $\left[\mathbf{H}_{\mathbf{2}}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{\mathbf{2}}$

Suitable crystals of compound $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from DCM. $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{OP}_{2} \mathrm{~F}_{12}(M=1113.13 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $P 2{ }_{1} / n$ (no.14), $a=12.3474(7) \AA, b=19.7123(10) \AA, c=13.7256(6) \AA, \alpha=90^{\circ}, \beta=99.325(2)^{\circ}, \gamma=90^{\circ}, \quad V=$ $3296.6(3) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.137 \mathrm{~mm}^{-1}$, Dcalc $=1.121 \mathrm{~g} / \mathrm{cm}^{3}, 90921$ reflections measured $\left(5.836 \leq \Theta \leq 50.996^{\circ}\right)$, 5793 unique (6117 with $\mathrm{I}>2 \sigma(\mathrm{I})$) $\left(R_{\text {int }}=0.0488, \mathrm{R}_{\text {sigma }}=0.0179\right)$ which were used in all calculations. The final R_{1} was 0.0829 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.2246 (all data).

Figure S37. X-ray crystal structure of complex $\left[\mathrm{H}_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)_{2}$. $(50 \%$ displacement ellipsoids)
[Counteranions $\left(2 \mathrm{PF}_{6}{ }^{-}\right)$and hydrogen atoms (except for H 1$)$ omitted for clarity]

Selected bond distances (\AA) and angles (${ }^{\circ}$): C1-C2 1.366(4), C1-N1 1.351(4), C2-N3 1.352(4), C2-C3 1.475(6), N2-N3 1.325(3), N2-N1 1.326(3), C3-O1 1.414(4), C4-O1 1.401(7), N1-C1-C2 105.6(2), C1-C2-C3 134.7(3), C2-C3-01 103.3(4), C3-O1-C4 113.2(4), C1-N1-N2 112.7(2), N1-N2-N3 103.6(2), N2-N3-C2 113.0(2), N3-C2-C3 120.1(3).

S4.2 Crystal data for ligand salt $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$

Suitable crystals of compound $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from DCM. $\mathrm{C}_{59} \mathrm{H}_{85} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~F}_{12}$ (Incl. solvent $\mathrm{H}_{2} \mathrm{O}$) ($M=1230.27 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group $P 2_{1} / n$ (no.14), $a=19.8012$ (13) $\AA, b=12.6035$ (9) $\AA, c=26.5305$ (19) $\AA, \alpha=90^{\circ}$, $\beta=105.6995(18)^{\circ}, \gamma=90^{\circ}, \quad V=6374.1(8) \AA^{3}, Z=4, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.151 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.282 \mathrm{~g} / \mathrm{cm}^{3}, 72816$ reflections measured $\left(5.614 \leq \Theta \leq 51.456^{\circ}\right), 12121$ unique (6117 with $\mathrm{I}>2 \sigma(\mathrm{I})$) $\left(R_{\text {int }}\right.$ $\left.=0.0482, \mathrm{R}_{\text {sigma }}=0.0395\right)$ which were used in all calculations. The final R_{1} was $0.0619\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1552 (all data).

Figure S38. X-ray crystal structure of complex $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathrm{Boc}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$. (50% displacement ellipsoids) [Counteranions ($2 \mathrm{PF}_{6}{ }^{-}$), hydrogen atoms (except for H 1 and H 6) and solvent molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$ omitted for clarity]

Selected bond distances (\AA) and angles (${ }^{\circ}$): C1-C2 1.358(3), C1-N1 1.352(3), C2-C3 1.493(3), C2-N3 1.364(3), C3-N7 1.460(3), C4-C5 1.491(3), C4-N7 1.454(3), C5-C6 1.361(3), C5-N6 1.363(3), C6-N4 1.354(3), C55-N7 1.366(3), C55-O1 1.207(3), C55-O2 1.332(3), C56-O2 1.482(3), N1-N2 1.327(3), N2-

N3 1.328(3), N4-N5 1.325(3), N5-N6 1.326(3); C1-C2-C3 129.9(2), C2-C3-N7 112.97(19), C3-N7-C4 118.63(19), C4-C5-C6 132.9(2), C3-N7-C55 124.41(19).

S4.3 Crystal data for ligand salt $\left[\mathrm{H}_{2}\left(\mathrm{C}^{\mathrm{H}} \mathrm{NC}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$

Suitable crystals of compound $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{H}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from DCM $/ \mathrm{CH}_{3} \mathrm{CN}$ mixture. $\mathrm{C}_{56} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{~F}_{12}\left(\right.$ incl. $\left.\mathrm{CH}_{3} \mathrm{CN}\right)(M=1153.20 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $P-1$ (no.2), $a=11.0352(2) \AA, b=12.3798(2) \AA, c=24.3690(4) \AA, \alpha=$ $81.3850(10)^{\circ}, \beta=89.281(10)^{\circ}, \gamma=65.5350(10)^{\circ}, V=2991.51(9) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=$ $0.153 \mathrm{~mm}^{-1}$, Dcalc $=1.280 \mathrm{~g} / \mathrm{cm}^{3}, 122057$ reflections measured $\left(3.386 \leq \Theta \leq 56.71^{\circ}\right)$, 14937 unique $(6117$ with $\mathrm{I}>2 \sigma(\mathrm{I}))\left(R_{\text {int }}=0.0415, \mathrm{R}_{\text {sigma }}=0.0280\right)$ which were used in all calculations. The final R_{1} was $0.0443(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1226 (all data).

Figure S39. X-ray crystal structure of complex $\left[\mathrm{H}_{2}\left(\mathbf{C}^{\mathbf{B o c}} \mathbf{N C}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$. (50% displacement ellipsoids)
[Counteranions $\left(2 \mathrm{PF}_{6}{ }^{-}\right)$, hydrogen atoms (except for $\mathrm{H} 1, \mathrm{H} 6$ and H 7) and solvent molecules $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ omitted for clarity] Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: C1-C2 1.3670(17), C1-N1 1.3518(16), C2C3 1.4901(18), C2-N3 1.3606(16), C3-N7 1.4553(17), C4-C5 1.4987(17), C4-N7 1.4652(16), C5-C6 $1.3636(18), \mathrm{C} 5-\mathrm{N} 41.3688(16), \mathrm{C} 6-\mathrm{N} 61.3521(16), \mathrm{N} 1-\mathrm{N} 21.3258(14), \mathrm{N} 2-\mathrm{N} 31.3280(15), \mathrm{N} 4-\mathrm{N} 5$ $1.3264(14)$, N5-N6 1.3240(14), C1-C2-C3 132.14(12), C2-C3-N7 109.64(10), C3-N7-C4 112.46(10), C4-C5-C6 131.50(12).

S4.4 Crystal data for complex 1b $[\operatorname{Ir}(\operatorname{cod})(\mathrm{COC})]\left(\mathrm{PF}_{6}\right)$.

Suitable crystals of compound $\mathbf{1 b}[\operatorname{Ir}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from a toluene / DCM mixture. $\mathrm{C}_{65} \mathrm{H}_{90} \mathrm{~N}_{6} \mathrm{OCl}_{6} \mathrm{IrPF}_{6}$ (Incl. 6 DCM$)(M=1521.29$
$\mathrm{g} / \mathrm{mol}$): triclinic, space group $P-1$ (no.2), $a=15.0178(9) \AA, b=15.1067$ (9) \AA, $c=18.2934$ (10) \AA, $\alpha=$ $76.729(3)^{\circ}, \beta=69.064(3)^{\circ}, \gamma=65.711(3)^{\circ}, V=3516.4(4) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=2.209 \mathrm{~mm}^{-}$ ${ }^{1}$, Dcalc $=1.437 \mathrm{~g} / \mathrm{cm}^{3}, 144803$ reflections measured $\left(2.972 \leq \Theta \leq 57.152^{\circ}\right.$), 17852 unique (6117 with I > $2 \sigma(\mathrm{I})\left(R_{\text {int }}=0.0358, \mathrm{R}_{\text {sigma }}=0.0226\right)$ which were used in all calculations. The final R_{1} was 0.0264 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0687 (all data).

Figure S40. X-ray crystal structure of complex 1b $[\operatorname{Ir}(\operatorname{cod})(\mathbf{C O C})]\left(\mathrm{PF}_{6}\right)$. (50\% displacement ellipsoids) [Counteranion $\left(\mathrm{PF}_{6}{ }^{-}\right)$, hydrogen atoms and solvent molecules (DCM) omitted for clarity]

Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: Ir1-C1 2.102(2), Ir1-C6 2.055(2), Ir1-C55 2.223(2), Ir1-C56 2.162(2), Ir1-C59 2.177(2), Ir1-C60 2.152(2), C1-Ir1-C6 92.74(8), C1-Ir1-C55 98.27(8), C1-Ir1-C56 91.90(9), C1-Ir1-C59 159.12(10), C1-Ir1-C60 163.36(10), C6-Ir1-C55 168.04(9), C6-Ir1-C56 147.91(10), C6-Ir1-C59 84.29(9), C6-Ir1-C60 89.29(9).

S4.5 Crystal data for complex $2 \mathrm{a}\left[\mathrm{Rh}(\mathrm{CO})_{\mathbf{2}}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$.

Suitable crystals of compound $\mathbf{2 a}\left[\operatorname{Rh}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from DCM. $\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{RhPF}_{6}(M=1125.07 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $P c$ (no. 7), $a=21.5202(11) \AA, b=10.7072(5) \AA, c=24.8940(13) \AA, \beta=105.722(2)^{\circ}, V=5521.5(5) \AA^{3}$, $Z=4, T=150.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.407 \mathrm{~mm}^{-1}$, Dcalc $=1.353 \mathrm{~g} / \mathrm{cm}^{3}, 209908$ reflections measured $\left(4.364^{\circ} \leq\right.$ $2 \Theta \leq 53.554^{\circ}$), 23488 unique ($R_{\text {int }}=0.0588, \mathrm{R}_{\text {sigma }}=0.0365$) which were used in all calculations. The final R_{1} was 0.0313 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0643 (all data).

Figure S41. X-ray crystal structure of complex 2a $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$. (50% displacement ellipsoids) [Counteranion $\left(\mathrm{PF}_{6}{ }^{-}\right)$and hydrogen atoms omitted for clarity]

Selected bond distances (\AA) and angles (${ }^{\circ}$): Rh1-C1 2.122(4), Rh1-C6 2.110(4), Rh1-C55 1.878(4), Rh1C56 1.878(4), C1-Rh1-C6 95.24(14), C1-Rh1-C55 93.09(15), C1-Rh1-C56 167.67(17), C6-Rh1-C55 167.76(15), C6-Rh1-C56 90.90(16).

S4.6 Crystal data for complex 2b $\left[\operatorname{Ir}(\mathrm{CO})_{2}\left(\mathrm{COC}_{\mathbf{2}}\right)\right]\left(\mathrm{PF}_{6}\right)$

Suitable crystals of compound $\mathbf{2 b}\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from $\mathrm{C}_{6} \mathrm{D}_{6} . \mathrm{C}_{56} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{IrPF}_{6}(M=1214.36 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $P 2_{1} / c$ (no.14), $a=21.527(3) \AA, b=10.6934(14) \AA, c=24.942(3) \AA, \alpha=90^{\circ}, \quad \beta=105.386(9)^{\circ}, V=$ $5535.7(13) \AA^{3}, Z=4, T=150.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=2.509 \mathrm{~mm}^{-1}$, Dcalc $=1.457 \mathrm{~g} / \mathrm{cm}^{3}, 72636$ reflections measured $\left(3.388^{\circ} \leq 2 \Theta \leq 50^{\circ}\right)$, 9747 unique ($R_{\text {int }}=0.5670, \mathrm{R}_{\text {sigma }}=0.5490$) which were used in all calculations. The final R_{1} was 0.0895 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1964 (all data).

Figure S42. X-ray crystal structure of complex 2b $\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathbf{C O C})\right]\left(\mathrm{PF}_{6}\right)$. (50% displacement ellipsoids)
[Counteranion $\left(\mathrm{PF}_{6}{ }^{-}\right)$and hydrogen atoms omitted for clarity]

Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: Ir1-C1 2.110(16), Ir1-C6 2.059(15), Ir1-C55 1.824(17), Ir1C56 1.868(19), C1-Ir1-C6 93.7(6), C1-Ir1-C55 91.5(7), C1-Ir1-C56 169.2(8), C6-Ir1-C55 172.6(7), C6-Ir1-C56 92.7(7).

S4.7 Crystal data for complex $3 \mathrm{a}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathbf{C l}_{2}(\mu-\mathrm{COC})\right]$

Suitable crystals of compound $\mathbf{3 a}\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathrm{Cl}_{2}(\boldsymbol{\mu}-\mathbf{C O C})\right]$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from $\mathrm{CDCl}_{3} . \mathrm{C}_{71} \mathrm{H}_{98} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{ORh}_{2}(M=1399.17 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=15.4130$ (8) $\AA, b=35.913(2) \AA, c=15.0642(8) \AA, \beta=111.6130(10)^{\circ}, V=$ $7752.2(7) \AA^{3}, Z=4, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.605 \mathrm{~mm}^{-1}$, Dcalc $=1.199 \mathrm{~g} / \mathrm{cm}^{3}$, 113394 reflections measured $\left(5.686^{\circ} \leq 2 \Theta \leq 55.996^{\circ}\right), 18698$ unique ($R_{\text {int }}=0.0458$, $\mathrm{R}_{\text {sigma }}=0.0264$) which were used in all calculations. The final R_{1} was 0.0411 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0968 (all data).

Figure S43. X-ray crystal structure of complex 3a $\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathrm{Cl}_{2}(\boldsymbol{\mu}-\mathrm{COC})\right]$. (50% displacement ellipsoids) (Hydrogen atoms and solvent molecules (DCM) omitted for clarity)

Selected bond distances (\AA) and angles (${ }^{\circ}$): Rh1-C1 2.030(2), Rh1-C11 2.3927(7), Rh1-C55 2.197(3), Rh1-C56 2.177(3), Rh1-C59 2.099(3), Rh1-C60 2.089(2), Rh2-C6 2.043(2), Rh2-C12 2.3741(7), Rh2C63 2.167(3), Rh2-C64 2.205(2), Rh2-C67 2.087(3), C1-Rh1-C11 86.46(7), C55-Rh1-C1 165.77(10), C56-Rh1-C1 157.78(10), C59-Rh1-C1 94.40(10), C60-Rh1-C1 93.06(9), C6-Rh2-Cl2 87.31(7), C6-Rh2-C63 155.92(11), C6-Rh2-C64 167.10(10), C6-Rh2-C67 95.81(10), C6-Rh2-C68 93.60(11)

S4.8 Crystal data for complex $4 \mathrm{a}\left[\mathrm{Rh}_{2}\left(\mathrm{CO}_{4}\right)_{4} \mathrm{Cl}_{2}(\mu-\mathrm{COC})\right]$

Suitable crystals of compound $\mathbf{4 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}(\mu-\mathbf{C O C})\right]$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from $\mathrm{CDCl}_{3} . \mathrm{C}_{58} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Cl}_{2} \mathrm{Rh}_{2}(M=1209.93 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $P-1$ (no. 2), $a=10.4449(4) \AA, b=15.9061(6) \AA, c=17.7631(7) \AA, \alpha=87.305(2)^{\circ}, \beta=76.657(2)^{\circ}, \gamma=$ 88.372(2) ${ }^{\circ}, \quad V=2867.81(19) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.720 \mathrm{~mm}^{-1}$, Dcalc $=1.401 \mathrm{~g} / \mathrm{cm}^{3}$, 35559 reflections measured $\left(2.564 \leq \Theta \leq 51.564^{\circ}\right), 10990$ unique (6117 with $\mathrm{I}>2 \sigma(\mathrm{I})$) ($R_{\text {int }}=0.0844$, $\mathrm{R}_{\text {sigma }}=0.1074$) which were used in all calculations. The final R_{1} was $0.0568\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1402 (all data).

Figure S44. X-ray crystal structure of complex $\mathbf{4 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}(\mu-\mathrm{COC})\right]$. (50% displacement ellipsoids) (Hydrogen atoms omitted for clarity)

Selected bond distances (\AA) and angles (${ }^{\circ}$): Rh1-C1 2.054(5), Rh1-Cl1 2.3434(16), Rh1-C55 1.831(7), Rh1-C56 1.899(7), Rh2-C6 2.041(5), Rh2-Cl2 2.3672(17), Rh2-C57 1.812(7), Rh2-C58 1.905(6), C1-Rh1-Cl1 87.50(15), C55-Rh1-C1 93.1(2), C56-Rh1-C1 172.9(2), C6-Rh2-Cl2 85.70(15), C6-Rh2C57 91.6(2), C6-Rh2-C58 174.0(2).

S4.9 Crystal data for complex $6\left[\mathbf{R h}_{2}(\operatorname{cod})_{2}(\mu-\mathbf{C N C})\right]\left(\mathrm{PF}_{6}\right)$

Suitable crystals of compound $6\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}(\mu-\mathbf{C N C})\right]\left(\mathrm{PF}_{6}\right)$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from a toluene / DCM mixture. $\mathrm{C}_{73} \mathrm{H}_{102} \mathrm{~N}_{7} \mathrm{Cl}_{6} \mathrm{Rh}_{2} \mathrm{PF}_{6}$ (Incl. 3 DCM) $(M=1641.10 \mathrm{~g} / \mathrm{mol}):$ triclinic, space group $P-1$ (no.2), $a=12.4173(11) \AA, b=16.7357(16) \AA, c=$ $20.3867(18) \AA, \alpha=81.880(6)^{\circ}, \beta=85.642(6)^{\circ}, \gamma=86.607(6)^{\circ}, V=4177.0(7) \AA^{3}, Z=2, T=173.15 \mathrm{~K}$, $\mu(\mathrm{MoK} \alpha)=0.661 \mathrm{~mm}^{-1}$, Dcalc $=1.302 \mathrm{~g} / \mathrm{cm}^{3}, 59766$ reflections measured $\left(2.022 \leq \Theta \leq 50^{\circ}\right), 14704$
unique (6117 with $\mathrm{I}>2 \sigma(\mathrm{I}))\left(R_{\text {int }}=0.0858, \mathrm{R}_{\text {sigma }}=0.0824\right)$ which were used in all calculations. The final R_{1} was $0.1040\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.2779 (all data).

Figure S45. X-ray crystal structure of complex $6\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}(\mu-\mathrm{CNC})\right]\left(\mathrm{PF}_{6}\right)$. $(50 \%$ displacement ellipsoids) [Counteranion ($\mathrm{PF}_{6}{ }^{-}$), hydrogen atoms and solvent molecules (DCM) omitted for clarity]

Selected bond distances (\AA) and angles (${ }^{\circ}$: Rh1-Rh2 3.1963(12), Rh1-C1 2.035(11), Rh2-C6 2.037(10), Rh1-N7 2.209(8), Rh2-N7 2.217(8), Rh1-C55 2.125(12), Rh1-C56 2.136(11), Rh1-C59 2.223(11), Rh1C60 2.191(11), Rh2-C63 2.207(11), Rh2-C64 2.179(12), Rh1-N7- Rh2 92.5(3), C1-Rh1-N7 80.8(4), C1-Rh1-C55 93.9(4), C1-Rh1-C56 94.7(4), C1-Rh1-C59 169.6(4), C1-Rh1-C60 153.9(4), C6-Rh2C63 167.9(4), C6-Rh2-C64 156.4(4), C6-Rh2-C67 95.4(5), C6-Rh2-C68 95.3(4).

S4.10 Crystal data for complex 7b $\left[\operatorname{Ir}(\mathbf{C O})_{2}\left(\mathrm{HCNC}^{2}\right)\right]\left(\mathrm{PF}_{6}\right)$

Suitable crystals of compound $\mathbf{7 b}\left[\operatorname{Ir}(\mathrm{CO})_{2}\left(\mathrm{HCNC}^{2}\right)\right]\left(\mathrm{PF}_{6}\right)$ for an X-ray diffraction analysis were obtained from DCM / Hexane by slow vapour diffusion. $\mathrm{C}_{58} \mathrm{H}_{77} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{IrN}_{7} \mathrm{O}_{2} \mathrm{P}$ (Incl. 2 DCM) ($M=1383.23 \mathrm{~g} / \mathrm{mol}$): triclinic, space group P-1 (no. 2), $a=12.0336(7) \AA, b=13.6319$ (9) $\AA, c=22.5444(15) ~ \AA, \alpha=96.465(5)^{\circ}$, $\beta=104.140(4)^{\circ}, \gamma=97.574(4)^{\circ}, V=3514.3(4) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=2.131 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.307 \mathrm{~g} / \mathrm{cm}^{3}, 34784$ reflections measured $\left(3.048^{\circ} \leq 2 \Theta \leq 50^{\circ}\right), 12322$ unique ($R_{\text {int }}=0.1339, \mathrm{R}_{\text {sigma }}=$ 0.1557) which were used in all calculations. The final R_{1} was $0.0770\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1845 (all data).

Figure S46. X-ray crystal structure of complex 7b $\left[\operatorname{Ir}(\mathrm{CO})_{2}(\mathrm{HCNC})\right]\left(\mathrm{PF}_{6}\right) .(50 \%$ displacement ellipsoids) (Hydrogen atoms, counteranion $\left(\mathrm{PF}_{6}{ }^{-}\right)$and solvent molecules (DCM) omitted for clarity)

Selected bond distances $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$: Ir1-C1 2.032(9), Ir1-N7 2.048(7), Ir1-C55 1.865(9), Ir1-C56 1.866(11), C1-Ir1-N7 78.0(3), C1-Ir1-C55 97.2(3), C1-Ir1-C56 174.3(4), N7-Ir1-C55 175.3(3), N7-Ir1-C56 96.3(3).

S4.10 Crystal data for complex $8 \mathrm{a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathrm{CNC})\right]$

Suitable crystals of compound $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\mu-\mathbf{C N C})\right]$ for an X-ray diffraction analysis were obtained by slow solvent evaporation from toluene. $\mathrm{C}_{57} \mathrm{H}_{72} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{ClRh}_{2}(\mathrm{M}=1144.48 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $P-1$ (no.2), $a=10.7323(18) \AA, b=13.222(2) \AA, c=21.491(3) \AA, \alpha=82.115(3)^{\circ}, \beta=78.984(4)^{\circ}, \gamma=$ $86.235(3)^{\circ}, \quad V=2962.7(8) \AA^{3}, Z=2, T=173.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.648 \mathrm{~mm}^{-1}$, Dcalc $=1.283 \mathrm{~g} / \mathrm{cm}^{3}, 18554$ reflections measured $\left(3.112 \leq \Theta \leq 51^{\circ}\right), 10960$ unique $(6117$ with $\mathrm{I}>2 \sigma(\mathrm{I}))\left(R_{\text {int }}=0.0869, R_{\text {sigma }}=\right.$ 0.1565) which were used in all calculations. The final R_{1} was $0.0758(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.2273 (all data).

Figure S47. X-ray crystal structure of complex $\mathbf{8 a}\left[\mathrm{Rh}_{2}(\mathrm{CO})_{3} \mathrm{Cl}(\boldsymbol{\mu}-\mathbf{C N C})\right]$. (50% displacement ellipsoids) (Hydrogen atoms omitted for clarity)

Selected bond distances (\AA) and angles (${ }^{\circ}$): Rh1-Rh2 2.9698(12), Rh1-C1 2.046(8), Rh1-C6 2.029(8), Rh1-N7 2.113(6), Rh1-C55 1.846(10), Rh1-C56 2.211(10), Rh2-N7 2.189(7), Rh2-C56 1.909(11), Rh2C57 1.819(15), Rh2-Cl1 2.385(3), C1-Rh1-C6 157.3(3), C1-Rh1-N7 79.3(3), C1-Rh1-C55 100.0(3), N7-Rh1-C56 87.3(3), Rh1-N7-Rh2 56 47.41(18), N7-Rh2-C57 177.7(4).

S5. References

1) (a) Nimitsiriwat, N.; Gibson, V. C.; Marshall, E. L.; Takolpuckdee, P.; Tomov, A.K.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J.; Dale, S. H. Mono- versus bis-chelate formation in triazenide and amidinate complexes of magnesium and zinc. Inorg. Chem. 2007, 46, 9988-9997. (b) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.; Kociok-Kohn, G.; Procopiou, P. A. Triazenide complexes of the heavier alkaline earths: Synthesis, characterization, and suitability for hydroamination catalysis. Inorg Chem. 2008, 47, 7366-7376.
2) (a) Mintz, C.; Walling, M. J. t-Butyl Hypochlorite. Org. Synth. 1969, 49, 9. (b) Wirschun, W.; Winkler, M.; Lutz, K.; Jochims, J. C. 1,3-Diaza-2-azoniaallene salts: Cycloadditions to alkynes, carbodiimides and cyanamides. J.Chem.Soc., Perkin Trans. 1, 1998, 0, 1755-1762.
3) Wu, J.; Lu, W.-Y.; Hou, J.-L.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Li, Z.-T.; Yu, Y.-H.; Dynamic [2]Catenanes Based on a Hydrogen Bonding-Mediated Bis-Zinc Porphyrin Foldamer Tweezer: A Case Study. J. Org. Chem. 2007, 72, 2897-2905.
4) Giordano G.; and Crabtree, R. H. Inorganic Syntheses: Reagents for Transition metal complex and Organometallic Syntheses, J. Wiley \& Sons, Hoboken. 1991, 28, 88.
5) McCleverty, J. A.; Wilkinson, G. Inorganic Syntheses: Reagents for Transition metal complex and Organometallic Syntheses, J. Wiley \& Sons, Hoboken. 1991, 28, 84.
6) a) Inorganic Syntheses: Reagents for Transition metal complex and Organometallic Syntheses, J. Wiley \& Sons, Hoboken. 1974, 15, 19. b) Choudhury, J.; Poddler, S.; Roy, S, Cooperative Friedel-Crafts Catalysis in Heterobimetallic Regime: Alkylation of Aromatics by π-Activated Alcohols. J. Am. Chem. Soc., 2005, 127 (17), 6162-6163.
7) Bruker (2012). Apex2, Apex3, Saint, SADABS, XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
8) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. (2015). Acta Cryst., 2015, A71, 3-8.
9) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst., 2015, C71, 3-8.
10) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
11) Spek, A. L. PLATON Squeeze: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst., 2015, C71, 9-18.
