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Highlights 
 

• Review of 40-years of published pinniped entanglement records. 
• Entanglement rates are biased to North America and Oceania despite plastic pollution and   
   fishing hotspots off Asia. 
• Arctocephalus gazella and Zalophus californianus are most frequently recorded to be 
entangled. 
• Abandoned, lost and discarded fishing gear contribute almost all entanglement material. 
• Knowledge of trends and drivers of pinniped entanglement in oceanic plastic pollution is  
   poor. 
 

Abstract 
 
Oceanic plastic pollution is a growing worldwide environmental concern, endangering numerous 
marine species. Pinnipeds are particularly susceptible to entanglement, especially in abandoned, 
lost or discarded fishing gear and packaging straps. We searched three international databases 
to compile a comprehensive review of all reported pinniped entanglements over the last 40 
years, with the aim to identify areas of concern and foci for mitigation. The majority of published 
records of entanglement emanate from North America and Oceania and are focused on a few 
populous species (notably, Zalophus californianus and Arctocephalus gazella). Reporting bias, 
skewed research effort, and incomplete understanding of plastic pollution and pinniped 
abundance overlap combine to cloud our understanding of the entanglement problem. Broader 
geographical effort in entanglement data collection, reporting of such data, and improved 
quantification of the proportions of populations, sexes and ages that are most susceptible, will 
aid our efforts to pinpoint priority mitigation measures.  
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Graphical abstract 
 

Arctocephalus gazella juvenile entangled in a fishing net (presumably from ALDFG) at remote 
Bouvet∅ya in the Southern Ocean. Photo credit: Nico de Bruyn 
 

 
 

Introduction 
 
The invention of Bakelite, the precursor to plastic, in 1907 by Leo H. Baekeland revolutionized 
many aspects of human lives, from initially insulating electrical cables to being part of most 
products today (Crespy et al. 2008). Its mass production commenced in earnest after World War 
II (Carpenter & Smith 1972). Plastic products remain favoured over natural materials, as they are 
comparatively affordable, do not rot, melt, become deformed, or scratch easily (Crespy et al. 
2008). However, the intrinsic qualities that made it so popular have distinct disadvantages; most 
plastics are not biodegradable due to high molecular weights and structures that are too rigid for 
organismal digestion (Klemchuk 1990). Many plastics end up in landfills or oceans, can persist for 
decades, diminish environmental aesthetic value, and endanger biodiversity (Palmisano & 
Pettigrew 1992; Tudor & Williams 2003). Mounting public outcry over the state of plastic 
pollution, especially in our oceans, is frequently headlining international media (e.g. Parker 
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2018). Indeed, research findings underpin the public perception of this very real, global-scale 
environmental problem (e.g. Ryan et al. 2009; Law et al. 2018; Worm et al. 2018). 
 
Plastics can be dangerous to marine organisms in a number of ways; through consumption, 
accumulation on the sea floor, facilitating invasions by non-native species, and entanglement of 
marine organisms (Derraik 2002). A wide diversity of marine taxa through multiple trophic levels, 
including zooplankton, fish, birds, cetaceans, pinnipeds and turtles have been shown to ingest a 
range of oceanic plastic from microplastics to plastic bags that resemble prey items (Gramentz 
1988; Derraik 2002; Cole et al. 2011; Setälä et al. 2014). Ingestion can upset the animals’ energy 
balance, affect behaviour, or even block the intestinal tract resulting in severe sub-lethal effects 
or even death (Kühn et al. 2015). Additionally, many plastics include polychlorinated biphenyls 
(PCBs) that can disrupt reproduction, increase animal susceptibility to diseases, alter hormone 
production and kill (Ryan et al. 1988; Lee et al. 2001; Derraik 2002). The accumulation of oceanic 
plastic on the sea floor can halt gas exchange and lead to hypoxia and anoxia in sediments, 
thereby altering ecosystem functioning (Goldberg 1994). The facilitation of invasive species to 
new environments is possible through organism transport on floating oceanic plastic (Carpenter 
& Smith 1972; McKinney 1998).  
 
Entanglement in oceanic plastic pollution is a threat for at least 243 marine species; fewer species 
than for plastic ingestion, although entanglement is responsible for more known mortalities (Gall 
& Thompson 2015). Most of the plastics that cause entanglements appear to be monofilament 
lines, ropes and other fishing related gear that enter the water near coastal cities, via commercial 
fishery activities and in shipping corridors (Laist 1997). Before the middle of the 20th century, 
fishing gear was made from natural fibres such as hemp or cotton that disintegrate over time. 
However, the advent of synthetic material in its stead resulted in long-lasting plastics that 
withstand disintegration (Gregory 2009). Many such fishing material (especially ropes and nets) 
are abandoned, lost or purposefully discarded and continue to entangle through a phenomenon 
known as ghost-fishing (Kim et al. 2016). Although entanglement in active fishing gear is an 
important and widely studied problem (e.g. Wickens et al. 1992), our review is specifically 
focussed on the passive threat of entanglement in abandoned, lost or discarded fishing gear 
(ALDFG) and other oceanic plastic pollution (Gregory 2009). For the reader’s convenience, we 
combine ALDFG and other plastics unrelated to fishing activities in the phrase ‘oceanic plastic 
pollution’ unless otherwise stated. 
 
Notwithstanding the taxa, the consequences of being entangled are often the same: the animal 
may get caught on stationary objects by the material they are entangled in, they may become 
exhausted and drown, they may be entangled in such a way that they do not have full range of 
motion and may not be able to forage, or they may be physically cut by the material with the 
possibility of infections occurring in the wounds (Laist 1987). Most animals that become 
entangled are able to rapidly free themselves, but if unsuccessful their survival is usually 
compromised (Angliss & DeMaster 1998). 
 
Despite the persistence of the entanglement problem, relatively few published works have 
attempted to draw together case studies to identify potential trends and identify mitigation 
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potential. In one early major study on oceanic plastic entanglement, Laist (1997), outlined some 
important unresolved issues through compilation of an exhaustive list of all species known to be 
entangled, the effect that entanglement had on individuals and populations, and reviewing of 
management and mitigation procedures. Of the 115 extant marine mammal species (Kaschner et 
al. 2006), 54% are especially vulnerable to oceanic plastic pollution entanglement or ingestion 
(Gall & Thompson 2015), with particularly high rates among pinnipeds (Laist 1997). Gall & 
Thompson (2015), and Wilcox & Hardesty (2016) showed entanglement to be more detrimental 
to marine wildlife than plastic ingestion; marine mammals more so than sea turtles and sea birds. 
Stelfox et al. (2016) reviewed the effect that ghost-fishing has on marine megafauna, highlighting 
over 40 species that are affected (mostly marine mammals) and indicating geographical areas 
lacking information for this phenomenon, including the Indian, Southern, and Arctic oceans. Of 
the 33 extant pinniped species worldwide, the majority have been recorded with entanglements 
(Wehle & Coleman 1983).  
  
‘Otariids’ (suborder Pinnipedia, family Otariidae - ‘eared seals’ including fur seals and sea lions, 
comprising 15 species) are more prone to entanglement than ‘phocids’ (Family Phocidae - ‘true 
seals’, comprising 18 species) (Laist 1997). Pinnipeds are generally associated with cold-water 
environments and most species are found in the North Atlantic, North Pacific, Arctic, and 
Southern oceans (Kovacs et al. 2012), coinciding with some regions where information on 
phenomena such as ghost-fishing is lacking (Stelfox et al. 2016). Otariids are distributed along the 
west coast of the Americas, Southern Africa and Australia as well as the sub-Antarctic, while 
phocids are more concentrated along both coasts of North America as well as the Antarctic, sub-
Antarctic, limited areas of southern Australia and the west coast of South America (Davies 1958; 
Pompa et al. 2011; Kovacs et al. 2012). Pinnipeds, especially younger animals, tend to be 
attracted to oceanic plastic pollution due to their innate curiosity and playfulness, which 
purportedly makes them likelier candidates for entanglement (Pemberton et al. 1992). They poke 
their heads through holes and the material can get caught on their fur or appendages (Mattlin & 
Cawthorn 1986). As they grow, these artificial collars get tighter and more abrasive until they 
begin to cut the skin (Pemberton et al. 1992). It is a vicious cycle as once the animal has died and 
decomposed the plastic can then make a victim of another individual (Mattlin & Cawthorn 1986).  
 
Yet, despite the overwhelming evidence that oceanic plastic pollution entanglements occur in 
many marine taxa and appear to be a widespread problem, a lack of spatial and temporal 
contextualization, knowledge of the proportions of populations affected, search effort and 
unsystematic reporting of the problem limit effective efforts for mitigation. Here we focus on one 
group of widespread marine vertebrate, the Pinnipedia; known to be entangled with ostensibly 
higher reporting rates than for other taxa, to critically assess the state of knowledge of 
entanglement in discarded oceanic plastic pollution. 
 
Our review of pinniped entanglements worldwide specifically aims to:  
(1) identify the spatial and temporal variation of publications (as a proxy for robust reporting) 
and search effort related to entangled pinnipeds,  
(2) quantify the spatial and temporal trends in entanglements, sex and age demographics of 
entangled pinnipeds, the severity of the entanglements, and responsible material, 
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(3) identify where there are any reporting/knowledge gaps with regards to pinniped 
entanglements worldwide, and  
(4) utilise these trends in pinniped entanglements (aims 1 & 2) to attempt to identify key driving 
factors, which may assist mitigation.  
 
 

Materials and Methods 
 
Literature search 
 
Science Citation Index Expanded Web of Science, Elsevier’s Scopus, and Google Scholar 
publication indexing databases were interrogated using broad search terms (“seals”, “plastic 
pollution”, “entanglement”, “pinniped”, “fishing nets”, “ghost fishing”, “abandoned, lost or 
discarded fishing gear (ALDFG)”, “marine mammals” and “marine debris” with the Boolean 
operators AND/OR in various combinations). The search terms “entanglement AND seals”, and 
“entanglement AND pinniped” returned the most relevant results. Replacement of 
‘”entanglement” with “fishing nets”, “plastic pollution” or “ALDFG” in combination with “seal” or 
“pinniped” returned very similar results to simply using “entanglement”. From these search 
queries within the three chosen databases, 1818 results were obtained but ~96% were not 
relevant to the aims of this review . The majority were eliminated because the articles did not 
contain relevant data, were duplicates, or pertained to bycatch or interactions with active fishing 
gear. The latter aspects were excluded from this study, since our aims were not to investigate 
active fisheries-pinniped interactions, which are relatively widely studied, but rather the less-well 
understood passive threat of discarded oceanic plastic pollution for entanglement.  
 
A total of 69 articles (~4%) contained pertinent information related to pinniped entanglement in 
oceanic plastic pollution.  The following data was extracted from each paper: author(s), year of 
publication, journal, impact factor of the journal, location of the primary author, geographic 
location of the study, years when the study took place, total number of individual pinnipeds 
‘sampled’ (entangled or not) in the study, the number of entangled individuals of each species, 
the species of the entangled pinnipeds, the age and sex distributions (pup, juvenile, subadult, 
adult; male, female) of the entangled pinnipeds, the categorized fate of the entangled individuals 
reported per paper (majority disentangled, majority not disentangled, majority dead), the type 
of oceanic plastic pollution involved, and the severity of the injury (loose, tight, severe, very 
severe). The classification of the severity of the injury was based on Croxall et al. (1990) where 
loose is a lack of constriction, tight is when the constricting material is snug but not breaking the 
skin, severe leads to lesions, and very severe when the material is cutting through the skin and 
underlying fat or muscle.  
 
Identifying the presence or absence of observer or reporting bias was of interest. Quantification 
of such biases could only be attempted analytically in certain cases; such as with the number of 
entanglements per year (to determine whether the number of papers published per year had an 
effect) or the number of entanglements per species (if the number of entanglement studies 
conducted per species had an effect). Other potential sources of bias could merely be identified 
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as being likely or not, with the aim that simply identifying these can aid the focus of future 
studies. Such biases included but were not limited to: likelihood of under-reporting/ non-
reporting of entanglements when there is reasonable evidence for the presence of pinnipeds and 
oceanic plastic pollution in the same area (geographic bias);  the possibility that certain human 
demographics may be less likely to report entanglement incidents (e.g. fishermen); or that 
entanglement records are reported in obscure  publications not indexed by the searched 
databases. Further details are provided in the discussion. 
 
Data analysis 
 
Data was analysed in program R (RStudio Core Team 2016). All data was tested for normality 
using a Shapiro-Wilkes test, found not to be normally distributed and consequently subjected to 
appropriate non-parametric analyses, or normalized using log-transformations. Wilcoxon signed 
rank tests were used to investigate the relationship between the number of papers published 
and year, the spatial distribution of the primary author as well as of the study location, the 
number of articles published per journal and the relationship between the number of entangled 
pinnipeds and the year of publication. To test for possible bias between year and the number of 
publications or an interaction between the two on the number of entanglements recorded, a 
quasi-poisson distribution model was implemented. A Wilcoxon signed rank test was used to 
determine entanglement rates of different species, and to ensure there was no bias between the 
number of studies conducted on a species and the entanglements recorded for that species a 
quasi-poisson distribution model was run. Finally, Spearman’s rank correlation tests and Welch 
two-sample t-tests were used to determine if sex or age class had an influence on entanglement 
rates, and both age class and fate of the pinnipeds were examined in decadal divisions to better 
determine trends over time.  
 

Results 
 
Spatial and temporal variation in publications and reported pinniped entanglements 
 
Publications spanned the years 1980-2018 with an average length of 7.5 years of research per 
study. The number of article publications as a function of year was significant (Wilcoxon signed 
rank test, p < 0.01) but overall lacking a trend (Figure 1). The spatial distribution of study locations 
reported in articles was non-random (Wilcoxon signed rank test, p < 0.01, Figure 2) as was the 
location of the primary author (Wilcoxon signed rank test p < 0.05, Figure 3). The majority of 
articles focused on, and emanated from, North America followed by Oceania (Australia, New 
Zealand and associated islands) (Figure 2). The average impact factor of the journals publishing 
these papers was 1.685 (range: 0.44 – 5.099) although the bulk (67.3%) were published in 
journals with impact factors between 1.5 and 4.31 (Note: the data did not always come from a 
published journal, e.g. NOAA technical memorandum) (Figure 4). As expected, the number of 
articles per publication source was not random (Wilcoxon signed rank test, p < 0.01) with 17 of 
the 69 papers (24.6%) published in Marine Pollution Bulletin, and the majority of the remaining 
journals hosting just one relevant article (Figure 4). 
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Figure 1: The number of papers published on pinniped entanglements per year. 

 

 
Figure 2: Global map depicting the study locations of all the papers included in this review from which data 

was sourced. 
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Figure 3: The location of the primary author of the papers sourced for this review. North America hosted the 

vast majority (n=32) and Asia the least (n=1). 
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Figure 4: The number of articles per publication source (journals and other sources) as well as their 

respective impact factors. 

 
A total of 27 (39.13%) papers focused solely on entangled pinnipeds while the remaining 42 
(60.87%) included a broader focus and recorded all encountered pinnipeds, whether entangled 
or not. When excluding the studies where only entangled animals were reported (to avoid 
skewed results) and only focusing on studies that recorded all pinniped numbers, regardless of 
entanglement status, the percentage of entangled individuals was 0.37% (2518 of 676233 
individuals). The relationship between the number of entangled pinnipeds and year was positive 
(Wilcoxon signed rank test, p < 0.01) (Figure 5a), however the relationship was significantly 
associated with the number of publications (quasi-poisson distribution model, p < 0.05, Figure 
5b) and not to the year (quasi-poisson distribution model, p > 0.05, Figure 5a) or the interaction 
between the two (quasi-poisson distribution model, p > 0.05). The average number of entangled 
individuals per study was 120, and with the average study lasting 7.5 years that equates to 16 
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entanglements per year, or over one per month. Individuals from 22 of the 33 extant pinniped 
species were recorded with entanglements (67%). The distribution of entangled species was 
significantly skewed (Wilcoxon signed rank test, p < 0.01) with Arctocephalus gazella and 
Zalophus californianus being the most frequently recorded (Figure 6a). Moreover, these two 
species were also the most commonly studied species, so entanglements were more likely to be 
recorded whether or not it was the focus of the study. However, the number of studies 
performed on a certain species was not enough to explain the observed entanglement rates 
(quasi-poisson distribution model, p > 0.05). 
 

 
Figure 5: (A) Observer bias leading to the false impression that the year of the study has a significant effect on 

the number of entangled pinnipeds recorded, when in fact (B) the number of publications is the significant 

factors effecting the number of entangled pinnipeds recorded. 
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Figure 6: The number of recorded entangled individuals of each species. 

 
Sex, and age demographics of entangled pinnipeds 
 
Not all papers contained information on the sex, or age distribution of the entangled pinnipeds. 
Sex was only recorded in 42% of the studies and for those it was not significantly correlated with 
entanglement (Spearman’s rank correlation, p > 0.05); roughly 45% were male, 31% female and 
24% unknown. A total of 43.5% of the studies recorded age class but there was no significant 
difference in entanglement rates of juveniles, subadults, and adults (Spearman’s rank correlation, 
p > 0.05) while pups were entangled significantly less often (Welch two sample t-test, p < 0.05) 
(Figure 7a). Figure 7b illustrates the number of entanglements per decade (1980-1989, 1990-
1999, 2000-2009, 2010-2019),  (Figure 7b). Otariids (n=7043) were more prone to entanglements 
than phocids (n=1195)(Spearman’s rank correlation, p < 0.01). 
 
Responsible material, severity of entanglements, and fate of the pinnipeds 
 
All articles claimed ALDFG (including but not limited to monofilament lines, trawling nets, rope) 
and packaging strapping (often presumed to be from bait boxes) to be responsible for the vast 
majority of entanglements. Only 26% of the studies recorded the severity of the entanglements 
according to a benchmark (e.g. Croxall et al. 1990) (Figure 8). Injuries from loose entanglements 
were reported significantly less frequently (Welch two sample t-test, p < 0.01) than from other 
severity classifications (Welch two sample t-test, p < 0.01). The fate of entangled individuals was 
difficult to decipher from many articles due to missing information, however, when analysed 
according to the total known number of entangled individuals per study, the vast majority of 
pinnipeds appeared to be disentangled (70% freed, 28% left alone, and 2% found dead). Decadal 
divisions showed that in more recent times there appeared to be greater success in 
disentanglement of pinnipeds (Figure 9). 
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Figure 7: The age class distribution for all entangled individuals for (A) all years combined, and (B) by 

decade. 
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Figure 8: Proportional comparisons of the severity of entanglements classified according to Croxall et al. 

(1990). 

 

 
 

Figure 9: The fate of the majority of the individuals (as grouped by study) when divided into decadal 

divisions.   
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Discussion 
 
Despite the global upturn in concern over plastics in the environment (e.g. Hartley et al. 2018) 
we show that temporal and spatial trends in pinniped entanglements are not well studied on a 
global scale. We show clear discrepancies in study effort and/or reporting around the world and 
with concern find that trends in known pinniped entanglements are best explained by 
observer/reporting effort rather than clear evidence of actual trends in entanglements of 
pinnipeds globally. While it is widely recognised that sampling methodology and reporting are 
lacking in detection and quantification of oceanic plastic pollution, there is broad consensus on 
the ubiquity of its presence in all the world’s oceans (Law 2017). An estimated 10-20 million tons 
of plastic material end up in the oceans each year; the North Pacific is the most polluted, followed 
by the Indian, North Atlantic, Mediterranean, South Pacific, and South Atlantic oceans (Eriksen 
et al. 2014; Gourmelon 2015). All of these locations, with the exception of the Mediterranean, 
are sites where there are ocean gyres that have led to high concentrations of oceanic plastic 
pollution or “garbage patches” (Kershaw et al. 2011; Cózar et al. 2014). Additionally, worldwide 
fishing effort (source of ALDFG) has increased since the 1970’s, and is globally distributed 
(Anticamara et al. 2010). The majority of the world’s fishing effort occurs in tropical and 
subtropical regions with hotspots in Southeast Asia as well as on continental shelves (Watson et 
al. 2013). Many studies reviewed here (Figure 2) also coincide with continental shelf areas - 
where pinnipeds haul out and fishing intensity is high. Immediately evident in our results (Figure 
2) is that global pinniped distribution (Kovacs et al. 2012) extends into many areas where few or 
no entanglements have been reported in published literature, despite the presence of fishing 
activities (Anticamara et al. 2010) and oceanic plastic pollution (Law 2017). Although fishing 
hotspots would obviously translate to hotspots in ALDFG, the worldwide distribution of fisheries 
combined with the action of currents and gyres, and the interconnectedness of ocean basins 
(Hays 2017) mean that ALDFG often mixes with other plastic pollution moving similarly around 
the world’s oceans and ALDFG is thus categorised for our purposes within the term ‘oceanic 
plastic pollution’.  
 
Spatial and temporal variation in publications and entanglements 
 
The overall lack of a temporal trend and the spatial disparity in publications related to pinniped 
entanglement in oceanic plastic pollution over time (Figure 1) has several potential explanations: 
(1) that most entanglements are not reported or published (e.g. publishing bias); (2) that 
reported entanglement trends are shrouded by observer bias (e.g. geographic spread of 
pinnipeds and research, entanglement data and research effort cannot be disentangled); (3) that 
there simply has not been an increase in entanglement of pinnipeds over time. These possibilities 
all require added research and aside from identifying, these patterns are currently difficult to 
explain, although we do elaborate on each of these options below.  
 
(1) Our literature search was extensive within the largest scholarly publication repositories. 
However, other sources of information that were published in obscure or foreign language 
scholarly outlets, or in grey literature were not included. Sourcing relevant articles from these 
types of publications is not only practically complex, but the robustness of reported data can also 
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be variable and difficult to ascertain, especially if communicated in a foreign language. Chiefly 
however, the robustness of our bibliometric search methodology could not be maintained if we 
extended the search to these potential sources, simply because our own search effort could not 
be standardised in finding and including such literature. This may have added an additional 
source of bias to our results. Unpublished data from government monitoring agencies, non-
governmental organizations (NGO’s), rehabilitation centres, citizen science projects and other 
public sighting records would be an extremely valuable and potentially large data source. 
However, such data is either embargoed, in the process of being published, or in need of 
extensive analysis and thus fell outside the scope of what would be achievable in this review. 
That such data should be published is of course key, and is one of the aims of this review – 
creating awareness of this need. Published work found using our search criteria emanates mostly 
from more developed nations. Perhaps these nations have greater inclination to publish on the 
topic (e.g. awareness, or because there are greater numbers of scientists with more resources to 
do research and publish in general), or such published work is more visible (e.g. indexed global 
platforms being hosted by these developed nations), or because the problem of pinniped 
entanglement is greater in areas where scientists from developed nations work. To determine if 
there is a true bias towards pinniped entanglements occurring around developed nations, more 
studies need to be conducted in developing countries/regions, or such nations need to publish 
their data in appropriate outlets. These could be driven either by researchers, governments, 
NGOs or even citizen science projects. The disparity in scientific publishing between developed 
and developing nations is well known and proposing solutions to this broad issue is outside the 
scope of this review. Demand for products that contain plastic is not restricted to developed 
nations, nor are fisheries activities, which are an important source of oceanic plastic pollution 
(Bauman 2004; Gregory 2009; Gourmelon 2015; Jambeck et al. 2015). Indeed, ocean currents 
and circulation effectively blurs distinction between developed and developing nation maritime 
territory by dispersal of floating matter (including plastic) over the world’s oceans (Hays 2017; 
Law 2017). Clearly then, with oceanic plastic pollution not being restricted to developing nation 
waters, either there are no pinnipeds to become entangled therein in some regions or 
entanglements are not reported. From our analyses (Figure 2, 3) and known pinniped distribution 
(e.g. Kovacs et al. 2012) it seems most likely that developing nations generally have lower 
reporting/publishing rates on this topic specifically (Todd et al. 2010). Asia is especially 
conspicuous in the absence of publications, which is concerning since for example China receives 
56% of the world’s plastic waste for reprocessing by small unregulated businesses (Gourmelon 
2015). China also ranks highest globally in mismanagement of plastic waste, much of which 
makes its way into the oceans (Jambeck et al. 2015). Fishing activities as a source for ALDFG are 
also intense in Asian waters (Anticamara et al. 2010). Less accessible publications from Asia, 
perhaps due to a proclivity for Asian authors to publish in local or non-English journals may skew 
results (Meneghini & Packer 2007).  
 
(2) Observer bias plays an important role in the confidence with which we can evaluate 
entanglement trends. Variation in pinniped distribution will obviously be a key driver in where 
interactions with plastics can occur. The overlap between the distribution of many pinniped 
species (of varying population sizes) and the most polluted (and heavily fished) waters globally is 
cause for concern given our limited understanding of the population proportions and dynamics 
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of pinniped entanglement. The distribution of study sites represented in our search results 
(Figure 2) would be linked to prevalence of entanglement. However, the strength of interaction 
between pinniped abundance, oceanic plastic pollution (including ALDFG) quantity, distribution, 
and entanglement rates is unclear. The majority of studies (Figure 2) focused attention on North 
American waters, Oceania (especially southern Australia), and the sub-Antarctic. All have large 
populations of both phocids and otariids, and additionally, several countries have territories in 
the sub-/Antarctic, allowing easier access to these Southern Ocean sites. These studies focussed 
on or near coastal shores and although pinnipeds feed in both coastal and pelagic waters, they 
haul out on land for breeding and parturition (Bartholomew 1970; Burton & Koch 1999) allowing 
easier access to large numbers of individuals for surveying. The rest of the world contributed few 
studies, sometimes due to a lack of pinnipeds, lack of reporting (as above) or other difficulties 
relating to the site including, for example, remoteness, funding, study permission, or lack of 
interest. Stelfox et al. (2016) found a lack of entanglement related information from the Arctic 
and Indian Oceans, corroborating our findings. Despite the potential reporting and observer 
biases mentioned, it appears that there is a collective interest (at a global scale) in the better 
understanding of entanglement and pinniped interactions. This is evidenced by most studies 
being published in the journal Marine Pollution Bulletin (impact factor of 3.146) (Figure 4), which 
is an outlet of good standing with international readership.  
 
(3) The relationship between the number of entanglements per year and the number of papers 
published, might suggest that the rate of pinniped entanglement has not increased (Figure 5B). 
This could be due to better plastic waste management through recycling or stricter regulations, 
but we know this is not the case on a global scale (e.g. Kershaw et al. 2011; Cózar et al. 2014, 
Xanthos & Walker 2017). It is likely again that incomplete reporting and skewed study effort 
explain this finding, or that trends are variable at different spatio-temporal scales. For example, 
Henderson (2001) found no trend in the rates of pinniped entanglements over his 17-year study. 
Conversely, Stewart and Yochem (1987) and Hofmeyr et al. (2002), showed increasing 
proportions of entangled pinnipeds over the course of their respective long-term studies. 
Zalophus californianus and Arctocephalus gazella, the two most commonly entangled species, 
may be more susceptible to entanglement. However, they also have particularly large 
populations (Zalophus californianus > 300,000 - Szteren et al. 2006; and Arctocephalus gazella > 
3 million - Reid & Forcada 2005) as compared to other pinnipeds such as Monachus monachus 
(500-600 individuals - Kiraç & Güçlüsoy, 2008), making them statistically more vulnerable to 
plastic encounters and entanglements, and are widely studied making entanglements more likely 
of being recorded.  
 
Trends in entanglements for different pinniped species and in different regions are thus shrouded 
by skewed reporting and/or accessibility to reported encounters, variable global research effort, 
and uncertainty of the magnitude of oceanic plastic pollution, fisheries and pinniped abundance 
overlap. 
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Influence of individual pinniped entanglement on population trajectories 
 
Information on the proportions of populations that are at risk of entanglement, or that actually 
become entangled is scant. Only for Monachus monachus is there evidence for significant 
demographic impact of entanglements on the population given that it is such a highly endangered 
pinniped species with a small global population (Karamanlidis et al. 2008).  
 
While 11 species of pinnipeds have increasing population trends, four remain stable, seven are 
decreasing, and the population trajectories for 11 species are unknown (IUCN Red List, 2014-
2016). Of the seven species that are facing population decline, individuals from six species have 
been recorded with entanglements; four are listed as endangered (Neomonachus schauinslandi, 
Neophoca cinerea, Phocarctos hookeri, and Zalophus wollebaeki), one as vulnerable (Callorhinus 
ursinus), and one as least concern (Arctocephalus gazella) (IUCN Red List, 2014-2015). The 
endangered species all have current population sizes below 15,000 individuals with the result 
that entanglements have the potential to heavily impact their populations. For example, the 
vulnerable (IUCN Red List, 2015) C. ursinus, is found in the North Pacific which is the most plastic 
polluted ocean (Eriksen et al. 2014).  
 
Of the four species that have stable populations, two have entanglement reports (Arctocephalus 
tropicalis and Mirounga leonina). Both inhabit the Southern Ocean which is less plastic polluted 
than other oceans although fisheries sources for ALDFG are present (Eriksen et al. 2014), and 
both have populations over 400,000 individuals (IUCN Red List, 2014), meaning that 
entanglements are unlikely to impact the population dynamics.  
 
Ten of the 11 species with positive population trends are reported as having been entangled. 
Eight of these are listed as least concern (Arctocephalus australis, Arctocephalus forsteri, 
Arctocephalus pusillus, Arctocephalus townsendi, Halichoerus grypus, Mirounga angustirostris, 
Pagophilus groenlandicus, and Zalophus californianus), one as near threatened (Eumetopias 
jubatus), and one as endangered (Monachus monachus) (IUCN Red List, 2014-2016). Eumetopias 
jubatus has a relatively large population (160,000) but inhabits areas with high oceanic plastic 
pollution occurrence. However, Monachus monachus, which has a population of only 500-600 
individuals (IUCN Red List, 2015) as well as other species with small populations like 
Neomonachus schauinslandi with a population of 1200 individuals (IUCN Red List, 2014) are likely 
to suffer severe demographic consequences if, regularly, even a few individuals are entangled.  
 
Three of the 11 species with unknown population trajectories have been recorded with 
entanglements. Two of these species are listed as least concern (Hydrurga leptonyx and Phoca 
vitulina), and one as endangered (Pusa caspica) (IUCN Red List, 2015). Pusa caspica has an 
estimated population size of 135,000 (IUCN Red List, 2015) but are geographically restricted to 
the Caspian Sea, and increased entanglement rates could negatively impact this species.  
 
Notwithstanding the possible conservation effects for populations, entanglement of individual 
animals remains an animal welfare issue since entangled individuals are prone to unnatural 
suffering or death. 
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Sex and age demographics of entangled pinnipeds 
 
IUCN Red List data indicates there to be around 23 million individual pinnipeds worldwide. If the 
estimate that 0.37% (2518 of 676233 individuals assessed for the presence/absence of 
entanglement) of pinnipeds that are entangled is expressed in absolute terms, the current global 
estimate of entangled individuals will be ~85,100. The majority of these are juveniles, subadults, 
and adults (Figure 7A), and are equally likely to be male or female. This lack of discrepancy 
between sexes is fortunate in that a biased entanglement propensity for specific sexes could 
exacerbate population risk. For example, pups of entangled females have higher mortality rates 
(Delong et al. 1988). The results for age-related risk in particular contradict several previous 
findings that juveniles face the highest risk of entanglement (Fowler et al. 1989; Pemberton et 
al. 1992; Arnould & Croxall 1995). This discrepancy may be an artefact of studies not always 
reporting the age categories (or categories not being consistent between studies) of entangled 
individuals. For example, Henderson (2001) classified juveniles and subadults within a single 
category. Pups have the lowest entanglement rates primarily because they remain ashore waiting 
to be fed, thus spending less time in the water (Charrier et al. 2001). Additionally, once pups 
enter the water they face several other high mortality risks (Doidge et al. 1984; Baker & Baker 
1988) and so are more likely to die before the opportunity for entanglement arises. Otariids are 
significantly more likely to become entangled than phocids, which corroborates earlier findings 
(Laist 1997). These higher rates of entanglement could be due to the way otariids propel 
themselves in water, or their elongated fore flippers inhibiting them from freeing themselves 
from the responsible material. Phocids propel themselves with their hind flippers and keep their 
forelimbs close to their bodies while otariids use their fore flippers as propellers which could also 
cause them to be more easily entangled (Adam 2009). Additionally, phocids generally dive and 
forage much deeper in the water column than otariids (Costa 1993; Levenson & Schusterman 
1999) and so may be less likely to encounter the floating oceanic plastic pollution.  
 
Responsible material, severity of entanglements, and fate of the pinnipeds 
 
Abandoned, lost or discarded fishing gear and fisheries associated material such as bait box 
packaging straps are responsible for almost all reported entanglements. It is not uncommon 
practice for ships to throw used ropes and nets overboard or to simply lose them (Sheavly & 
Register 2007). Packaging straps to bind boxes (mostly of bait for fishing vessels) are frequently 
removed from boxes without being cut, retaining their continuous loop design. Such packaging 
straps are serious culprits for neck-collar entanglements (Hofmeyr et al. 2002). The majority of 
reviewed studies did not record the severity of the entanglement. The significantly fewer number 
of ‘loose’ entanglements (Figure 8) recorded may result from many of the pinnipeds in this 
category escaping the entangling material by virtue of its ‘looseness’ before being observed. 
Instances of intervention to disentangle entangled pinnipeds were not more common than 
merely recording the entanglement (and presumably leaving the pinnipeds to their fate; Figure 
9). This may be an artefact of reporting or the practicality of access to observed entangled 
pinnipeds, and/or inaction because pinnipeds can be dangerous. A higher proportion of 
pinnipeds are being disentangled in more recent decades possibly indicating that researchers 
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have become more concerned for the fate of the individuals or that equipment and protocols 
improved to allow disentanglement of individuals. 
 
The future? 
 
With 67% (22 of 33; Figure 6) of extant pinniped species recorded as susceptible to entanglement, 
this phenomenon is taxonomically widespread. If the entanglement rates are extrapolated to 
unreported encounters or unstudied areas and populations, the global rate of pinniped 
entanglement is potentially higher than shown in this review. Unwillingness to report 
entanglements exacerbates the problem and may be a tendency amongst some groups who have 
higher probability of encountering entangled animals, such as fishermen, potentially because 
their own activities are often the source of entanglement. Further investigations are required to 
determine if the non-entangled species are actually evading entanglement, or if they are 
understudied. Some of the studies encompassed in this review included data that were 
interview-based, and the validity of such data is an important factor to continue to investigate, 
given potential biased reporting due to fear of recrimination.  
 
Ultimately, removing the source of the entanglement is clearly a necessary part of finding a 
holistic solution to this global problem. Plastics have to be removed from the marine 
environment. Marine clean-up initiatives are integral given the longevity of plastics in the 
environment. Innovative techniques are constantly proposed to aid in clean-ups. For example, 
floating booms are designed to concentrate floating oceanic plastics, which can then be collected 
and eliminated (Sainte-Rose et al. 2016); or trawls dragged behind boats, and automated 
machines that tow trapping nets that then suction in all the oceanic plastic pollution floating in 
the waters are in use (Sigler 2014). However, many of these techniques are in early stages of 
development and can currently only target relatively small areas. Another frequently cited 
solution is to use biodegradable plastics which would disintegrate and ultimately be completely 
eliminated from the environment (Gross & Kalra 2002). Importantly, such plastics need to be 
completely degradable (Vaverková et al. 2012) and should not simply deteriorate into smaller 
pieces because microplastics are also a danger to the environment and biodiversity (Cole et al. 
2011). In reality however, these materials are often more expensive to produce and market and 
thus are not at the forefront of plastic production (Amass et al. 1998). The drive for more durable 
and long-lasting engineered plastics also tends to decrease degradability (Philp et al. 2013). 
Currently, no commonly used plastics are biodegradable, and biodegradable plastics accounted 
for only 1% of total plastic production in 2015 (Geyer et al. 2017). By 2020 this number is 
expected to reach 2.5%, mainly in the production of food packaging, utensils, bags, and for 
agricultural uses (Van den Oever et al. 2017). For increased production of biodegradable plastics 
the cost-performance ratio has to be better than that of synthetic plastics and governments have 
to mandate for further research to be done in this field (Kolybaba et al. 2006). Some industries 
are responding faster than others (Kolybaba et al. 2006), however, few mega-corporations are 
currently incentivized to take responsibility for improving the environment (Smith & Ward 2007).  
 
Perhaps foremost in mitigating pinniped entanglement is through intervention with fisheries 
activities and associated gear. Wilcox & Hardesty (2016) state three main ways to reduce the 
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consequences of ALDFG: 1) Lower the ghost-fishing ability of the nets when they have been lost, 
such as through biodegradability or making them able to collapse when unattended; 2) increasing 
the chances of recovering lost gear, such as through mapping the losses or marking which can be 
economically and environmentally beneficial; 3) Make the nets harder to lose by adding markers 
or lights to them. Additionally, it has been proposed that using acoustics on fishing nets may help 
reduce entanglements and other interactions between fishing gear and marine mammals (Gearin 
et al. 1994; Jefferson & Curry 1996), however, this is more likely to be successful with active 
fishing/bycatch and not with ghost-fishing as these acoustic measures will not last long if not 
maintained. Simple materials such as cotton or jute ropes are not efficient for fishing activities as 
they degrade too rapidly in seawater (Cho 2011). Recently, a team from the Central Salt and 
Marine Chemicals Research Institute in India created biodegradable fishing ropes made from 
seaweed extracts (Herlekar 2015). These do not last as long as synthetic ropes but are said to not 
be hazardous to marine biota or the environment and have higher tensile strength than that of 
the synthetic ropes (Herlekar 2015). Kim et al. (2016) developed nylon fishing gear that degrades 
completely in salt water within a few years, faster in warmer water (Kim et al. 2016). Although 
an improvement, a few years of post-use persistence is still long enough to be able to entangle 
and maim or kill marine wildlife (Wilcox & Hardesty 2016). Fisheries management, especially on-
board gear management is extremely important. Acts such as the Conservation Measure 63/XII 
for the Reduction in Use of Plastic Packaging Bands put forward by the Convention on the 
Conservation of Antarctic Marine Living Resources (CCAMLR), which restricts the use of 
packaging bands and if they are used mandates they be cut so they cannot entangle, are 
important steps toward reducing ALDFG and protecting pinnipeds as well as other marine fauna 
from entanglement. Reducing the number or fishing vessels, and therefore fishing effort, can 
both stop the overexploitation of marine life and lower the chances of ALDFG entering the water 
(Beddington et al. 2007). Additionally, management measures such as regulating mesh size in 
nets, and marking the fishing gear, both have the potential to lower entanglement rates 
(Flewwelling 1999). Drinkwin (2017) suggested strategies for the removal of ALDFG such as the 
use of acoustic sonar to scan seafloors, and boat-based, aerial, underwater, or dragging surveys 
for areas that have high concentrations of oceanic plastic pollution. To be able to locate and 
remove this ALDFG, its characteristics have to be understood, the likely high-density locations 
have to be found and then the material must be directly detected (McElwee et al. 2012). Groups 
such as the Global Ghost Gear Initiative (GGGI) work on different facets of this problem - from 
prevention of ALDFG entering the water to clean-up initiatives to remove it. Other mitigation 
measures include stricter monitoring of pinniped haul-out beaches and limiting or prohibiting 
fishing, and other facets of anthropogenic activity in such regional waters. These marine 
protected areas, or no-take zones (Halpern & Warner 2002) benefit many marine taxa, increase 
biodiversity, biomass and population sizes (Kelleher et al. 1995; Halpern 2003; Grantham et al. 
2011). Some laws exist worldwide that prohibit dumping of wastes (both plastic and otherwise) 
in the ocean, but these are difficult to enforce (Leitzell 1972; Kite-Powell et al. 1998) and a re-
evaluation of these measures is required. Clearly an ultimate solution to entanglements is elusive 
in that plastics continue to be produced en masse and existing products have a long post-
production life in the environment. Our collective hope rests with adequate symptomatic 
mitigation. 
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We show that reporting bias, skewed research effort and limited understanding of the abundance 
overlap of ocean plastic pollution and pinniped populations combine to cloud our understanding 
of the interplay between such plastics and pinniped entanglement. Broader geographical effort 
in reporting of entanglements and improved quantification of the proportions of populations, 
sexes and ages that are entangled, will aid our efforts to pinpoint priority mitigation regions. Hurt 
or maimed animals, such as is often associated with entanglements, can enthuse emotive public 
action through awareness campaigns. Public participation through citizen science initiatives 
should be encouraged (e.g. Nelms et al. 2017), both in reporting and mitigation. 
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