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Abstract:  

Purpose: The purpose of this paper is to assess the efficiency of agricultural production in South 

Africa from 1970 to 2014, using an integrated two-stage fuzzy approach. 

Design/methodology/approach: Fuzzy technique for order preference by similarity to ideal 

solution is used to assess the relative efficiency of agriculture in South Africa over the course of 

the years in the first stage. In the second stage, fuzzy regressions based on different rule-based 

systems are used to predict the impact of socio-economic and demographic variables on 

agricultural efficiency. They are compared with the bootstrapped truncated regressions with 

conditional α levels proposed in Wanke et al. (2016a). 

Findings: The results show that the fuzzy efficiency estimates ranged from 0.40 to 0.68 implying 

inefficiency in South African agriculture. The results further reveal that research and 

development, land quality, health expenditure–population growth ratio have a significant, 

positive impact on efficiency levels, besides the GINI index. In terms of accuracy, fuzzy 

regressions outperformed the bootstrapped truncated regressions with conditional α levels 

proposed in Wanke et al. (2015). 

Practical implications: Policies to increase social expenditure especially in terms of health and 

hence productivity should be prioritized. Also policies aimed at conserving the environment and 

hence the quality of land is needed. 

Originality/value: The paper is original and has not been previously published elsewhere. 
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1. Introduction 

 The crucial position of agricultural productivity in the economic and social agenda of developing 

countries was reiterated by the Malabo Declaration of June 2014, which puts agricultural productivity 

growth as key to achieving agriculture-led growth and fulfillment of food and nutrition security targets in 

Africa. To bring hunger in Africa to an end by 2025, the Declaration noted that at least a doubling of 

agricultural productivity is needed from current levels (Global Strategy to Improve Agricultural and Rural 

Statistics, 2017). Although the adoption of new technologies have been widely accepted as a means of 

increasing productivity, output growth is determined by the efficiency with which available technologies 

are used aside technological innovations (Aye and Mungatana, 2013). In other words, agricultural 

productivity depends on two components (Global Strategy to Improve Agricultural and Rural Statistics, 

2017): the first is the type and quality of the inputs used in the production process and could well be thought 

of as the production technology. The second component relates to how well these inputs are combined and 

hence refers to the technical efficiency of the production process. Although agricultural policies have 

mainly focused on promoting agricultural productivity through technological innovation, there is need to 

refocus on improving agricultural efficiency given the scarcity of natural resources such as, land and water. 

Also in the era of pursuing limited environmental footprint of agricultural production (Vlontzos and 

Pardalos, 2017), the need to rebalance agricultural policies toward improved efficiency cannot be 

overstressed. A country’s agriculture is considered technically efficient if it is producing the maximum 

potential (frontier) output and inefficient if it is producing below the optimal output given the inputs at its 

disposal (Ludena, 2012). Achieving high agriculture efficiency has implications for food security and 

poverty reduction especially for emerging economies. This paper assesses the efficiency of South African 

agricultural production using the fuzzy technique for order preference by similarity to ideal solution (fuzzy 

TOPSIS) and fuzzy regressions.  

 There are a growing number of studies conducted with different methods to assess performance in 

agriculture. These studies are often grouped into two main approaches, i.e., parametric and non-parametric 

(Aye and Mungatana, 2011). The most popular parametric method is known as the stochastic frontier 

approach (SFA), whereas the most popular non-parametric method is data envelopment analysis (DEA) 

(Tan et al., 2010; Aye and Mungatana, 2011). When put into perspective, however, non-parametric methods 

are widely used in agricultural efficiency in various countries and regions around the globe (Malana and 

Malano, 2006; Gomes et al., 2009; Heidari et al., 2012; Aye and Mungatan, 2013; Toma et al., 2015; Iliyasu 

and Mohamed, 2016; Iliyasu et al., 2016; Vlontzos and Pardalos, 2017; Nsiah and Fayissa, 2017; 

Gebrehiwot, 2017). Broadly speaking, parametric models allow different types of inferences to be drawn 

directly from the performance estimates (Kumbhakar et al., 2013). Non-parametric models on the other 

hand fall short because they need statistical properties for a robust examination of the roots of inefficiency 

in light of contextual variables. Thus far, bootstrapping – i.e., performance error resampling – is the only 

statistical tool available to remedy this situation (Bogetoft and Otto, 2010). Studies on agriculture efficiency 

in South Africa include Piesse et al. (1996), van Zyl et al. (1995), Pauw et al. (2007), Meliko et al. (2010), 

Lovo (2010), Baloyi et al. (2012), Dobrowsky (2013), Obi and Kibirige (2014), Kibirige and Obi (2015) 

and Conradie and Piesse (2015). These studies were conducted mainly at the micro- or meso-level implying 

that the results may not be generalized for the entire economy. Majority of the studies on agriculture 

efficiency used DEA in the first stage to obtain efficiency values and OLS or correlation in the second stage 

to analyze efficiency determinants. A few, however, used the stochastic production frontier, a one-stage 

approach that simultaneously estimates the production function (with its associated efficiency scores) and 

the inefficiency effect model for examining determinants of efficiency. 

In a traditional DEA model, performance is calculated using ex post information (Berger and 

Humphrey, 1997; Charnes et al., 1978) collected from historical data with respect to inputs and outputs. 

Battese and Rao (2002) showed that examining performance with DEA presents better discrimination – i.e., 

efficiency scores that are less biased toward one – if this set of inputs/outputs is considered under a meta-
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frontier that encompasses several years of observation, similarly to what is emulated within the ambit of 

multi-criteria decision-making models (MCDM). MCDM are also non-parametric by nature because there 

are no underlying statistical properties whatsoever. Thus far, to the best of our knowledge, MCDMs, such 

as TOPSIS, have not been used to assess efficiency in agricultural production as is evidenced in the 

literature review section.  

As regards the fundamentals of TOPSIS, this MCDM is based on the concept that the positive ideal 

alternative has the best level for all criteria considered or for the input/output set, while the negative ideal 

is the one with the worst values for the input/output set (Wanke, Azad, Barros and Hadi-Vencheh, 2016). 

Despite its general resemblance to DEA where outputs may be maximized and/or inputs minimized, the 

determination of the weights of the relative importance of each criteria (namely, benefits and costs, or 

simply outputs and inputs, respectively) is exogenously defined in TOPSIS, whereas in the case of DEA 

these weights are endogenously calculated within the ambit of the model (Behzadian et al., 2012). Besides, 

TOPSIS is computationally simpler because there are virtually no constraints with respect to the number of 

criteria (inputs/outputs) that can be assessed (Wanke, Azad, Barros and Hadi-Vencheh, 2016). 

 Although applying these non-parametric methods might be sufficient to determine performance 

levels, they do not afford details of how contextual variables impact them. To remedy this, several studies 

proposed two-stage approaches for measuring and explaining performance in different sectors using either 

DEA or any MCDM as cornerstones (e.g., Wanke, Azad, Barros and Hadi-Vencheh, 2016, Wanke, Barros 

and Nwaogbe, 2016; Wanke, Barros and Faria, 2015). In the first stage, these methods are used to compute 

performance levels, while regression models are employed in the second stage to explain their respective 

drivers (Wanke, Pestana Barros and Chen, 2015). It is important to mention that the underlying uncertainty 

in performance levels and, therefore, in the input/output set and their relationships with contextual variables, 

encompasses both randomness and fuzziness. While randomness is related to the intrinsic statistical 

fluctuation inherent to the data that were collected, fuzziness is related to the underlying vagueness 

associated to the data collection (Wanke, Barros and Emrouznejad, 2015). 

 This paper, therefore, fills a literature gap by analyzing and exploring the sources of efficiency in 

South African agriculture by using a two-stage fuzzy approach, in light of the inherent uncertainty that 

surrounds the collection of agricultural data in South Africa, scattered over more than four decades. It 

innovates in this context not only by applying fuzzy TOPSIS to assess efficiency levels but also by adopting 

different fuzzy regressions to assess the impact of demographic and socio-economic variables on these 

fuzzy efficiency levels. These results are further compared to those obtained using bootstrapped truncated 

regressions with conditional α-levels, as proposed in Wanke, Barros and Emrouznejad (2015). This 

combination of fuzzy and probabilistic approaches also represents a contribution to the emerging literature 

on possible analytical venues within the ambit of two-dimensional Fuzzy Monte Carlo Analysis (2D 

FMCA). 

In this research, the choice of the techniques used in the two-stage approach adopted here observes 

the fact that new developments in scientific computing technologies, such as the software R, can be used 

to support systematic theory testing and development (James et al., 2013). Here, fuzziness implies in 

adopting the fuzzy version of the TOPSIS technique in the first stage, while in the second stage bootstrapped 

truncated regressions are employed as proposed by Wanke, Barros and Emrouznejad (2015) to evaluate the 

sign and significance of contextual variables on performance scores. Fuzzy regressions are further used to 

boost the predictive power of these significant variables in light of different modeling assumptions. Fuzzy 

regressions typically do not require any a priori knowledge of a bound on the disturbance and noise and of 

a bound on the unknown parameters values. They can be used for the robust and adaptive identification of 

slowly time varying non-linear systems (Kumar et al., 2004). 

In summary, the contributions of the present research are the following. First, this research 

evaluates the evolution of the relative efficiency in South African agricultural production, adding to the 
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scarce literature on this subject. Second, this research uses a fuzzy TOPSIS method to compute efficiency 

based on triangular fuzzy numbers (TFN) to assess vagueness in agricultural inputs and outputs. As a matter 

of fact, the agricultural outputs and inputs present different forms of uncertainty within their relationships. 

For example, credit granting is an input embedded in fuzziness because of the ex ante risks associated with 

farming non-performing loans (World Bank, 2009; Maurer, 2014). On the other hand, the value of the 

production, which is not a constant number, changes on account of the market value of the commodities. 

To evaluate agricultural efficiency more realistically and accurately, this study employs the fuzzy TOPSIS 

model with data specified in bounded forms to capture vagueness and uncertainty to some extent. Third, 

this research also expands the existing literature due to the use of fuzzy regressions and different rule-based 

systems to predict and interpret the role of major contextual variables in achieving higher levels of 

efficiency. Fourth, our analysis covers the period from 1970 to 2014. Finally, our analysis is based on a 

representative timespan of a given country.. 

Results presented in this research constitute a contribution to the growing literature on 

agricultural performance at the country level. These results are consistent with and extend the 

findings of recently conducted studies as shown in the literature review section, thus adding to 

the body of knowledge. As regards the findings presented here, although the socio-economic and 

demographic variables are positively related to agricultural efficiency, it is worth noting that 

capital accumulation, proxied by the GINI, is also positively related to efficiency levels. 

The remainder of the paper is organized as follows: Section 2 presents the contextual 

setting; Section 3 covers the literature review; and Section 4 presents the methodology. The 

empirical results are presented and discussed in terms of policy implications in Section 5. 

Conclusions follow in Section 6. 

 

2. Contextual Setting 

Agricultural productivity in South Africa has been fluctuating over the years. The growth 

is stagnant in some years and in other years, it is either at an increasing rate or at a decreasing rate. 

For instance, the growth of agricultural productivity was 0.65% per annum prior to 1965, no 

growth in 1965, and 2.15% between 1965 to 1981, 3.98% between 1981 to 1989, 0.28% between 

1989 and 1994  and stagnant around 2008  (DAFF, 2011; Liebenberg and Pardey, 2010). As far 

back as 1910/11, agriculture contributed about 21% of the total GDP and employed 781,359 people 

with 54% of these numbers permanently employed in agriculture. Hartzenberg and Stuart (2002) 

find that the agricultural sector was one of only a few sectors that experienced positive total factor 

productivity (TFP) growth over all the time periods examined, while Vink (2000) and Thirtle et 

al. (2000) find evidence of a recovery in agricultural TFP growth during the 1990s. Despite the 

growth of the agricultural economy in absolute terms from R10.9 billion (US$1.7 billion) in 1910 

to R40.9 billion (US$6.4 billion) in 2010 (both measured in 2005 prices), its contribution to GDP 

has shrunk to as low as 2.5% (Liebenberg, 2013). The number of commercial farmers have dropped 

from 76,149 in 1918 to 39, 982 by 2007. Looking at the horticultural, field crop and livestock 

components of South Africa’s agriculture, there has been noticeable changes. As at 1918, the 

contribution of livestock, field crop and horticultural to agriculture GDP was 55%, 33% and 12% 
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respectively. By 2010, horticulture’s contribution had more than doubled to 26.1% while livestock 

and field crops share dropped to 50.1% and 23.3% respectively (Liebenberg, 2013). The 

fluctuation in South Africa’s agricultural productivity has been attributed to a number of factors 

including cost – price squeeze experienced by agricultural producers (Vink, 2000), input prices 

relative to output prices (van Zyl et al., 1993; Kirsten et al, 2003), quick adjustment of farmers to 

the effects of deregulation (Liebenberg and Pardey, 2010), inflation rates, increased use of 

mechanization, fertilizer, herbicides, pesticides (DAFF, 2011) and other inputs (Conradie et al., 

2009).    

Theoretically, agricultural productivity may be improved by either increasing input use 

especially acreage expansion, improvement in resource use efficiency and or technological change 

derived from use of new technologies (Aye, 2011). Similar idea was shared by Yang and Xu (2012) 

who noted that reasons for agricultural productivity decline and sometimes slow growth are 

increasingly resource scarcity, limited technological innovation, environmental degradation, and 

insufficient agricultural policy support among others. Where acreage expansion is not possible as 

it is in many developing countries given increasing population, productivity increase will be left 

with the option of improved efficiency and technological change. This study focuses on efficiency 

in agriculture in South Africa. Understanding efficiency therefore has implications for agricultural 

productivity and hence food prices. This is particularly important for South Africa given the 

continuing food price rises which has raised concern among consumers and policy makers. The 

year 2014 started with increase in inflation rate of which energy and food prices were the main 

contributors. For instance, between December 2013 and January 2014, food prices rose by 1.6% 

(Statistics South Africa, 2014). Pauw et al. (2007) noted that increased efficiency gains in domestic 

agricultural sectors is associated with a reduction in food prices, which is an important contributor 

to the fight against poverty. One of the emphasis in South African agricultural policy is to increase 

the income of the poorest group by making small-scale agriculture more efficient and 

internationally competitive, so as stimulate increase in number of small-scale and medium-scale 

farmers and conserve agricultural natural resources (Meliko et al., 2010; IPTRID, 2000; NDA, 

1998). Since South African government emphasises the need for resource use efficiency, a natural 

step towards this would be to unveil how efficient the agricultural sector is currently and to seek 

for ways of enhancing it. Hence, the objective of this study and its significance cannot be 

overemphasized. 

 

3. Literature Review 

 There is a growing literature on agricultural efficiency. We start with studies outside 

South Africa. For instance, Vlontzos and Pardalos (2017) assess GHG emissions efficiency and 

efficiency change of 25 EU countries agriculture sectors using data from 2006 to 2012. Results 

based on DEA Window analysis and artificial neural networks show that efficiency levels differ 

significantly across EU countries with less developed countries and countries that depend largely 

on arable crop production having low efficiency rates. Parichatnon et al. (2017) examine the 

technical efficiency of rice production in four regions of Thailand using a three-stage DEA 

during the period from 2006 to 2015. They find relatively high level of technical efficiency 

ranging from 75 to 94 percent with the highest obtained for the northeastern region (94 percent). 

Also, environmental factors (temperature and rainfall) were found to have significant effect on 
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the production efficiency. Gebrehiwot (2017) analyzed the impact of agricultural extension on 

farmers’ technical efficiencies in Ethiopia using a stochastic production frontier approach. The 

findings indicate that the average level of technical efficiency is 48 percent and that variables 

such as gender, the number of crops grown and the number of dependants explained the 

differences in efficiency levels. 

Iliyasu et al. (2016) estimate the bias-corrected technical efficiency of different culture 

systems and species of freshwater aquaculture in Malaysia using bootstrapped DEA. The 

findings indicate that all technical efficiency scores for all culture systems and species are below 

the optimal level (i.e. 100 percent). Depending on the culture system and specie, the scores range 

from 63 to 80 percent. In addition, the results show that farmers’ experience, contact with 

extension workers and household size have a positive and statistically significant impact on 

technical efficiency. Age of the farmers has a negative and statistically significant impact on 

technical efficiency. In a related paper, Iliyasu and Mohamed (2016) use DEA in the first stage 

to estimate technical efficiency and OLS in the second stage to analyze the determinants of 

efficiency of freshwater pond culture systems in Peninsular Malaysia. Findings show a mean 

efficiency of 86 percent and that farmers’ age, experience, extension training and water 

management have positive and statistically significant impacts on technical efficiency. Koirala et 

al. (2016) investigate the impact of land ownership on the productivity and technical efficiency 

of rice farmers in the Philippines using a 2007–2012 Loop Survey and a stochastic frontier 

function method. The results show that mean technical efficiency is 79 percent, and that educated 

females and farmers leasing land have higher technical inefficiency. Labajova et al. (2016) use 

multidirectional efficiency analysis (MEA) to calculate technical efficiency indices of each input 

and output for different pig production types in Sweden and farm efficiency indices by DEA. 

They further use correlation analyses to identify which of the “farm-specific characteristics”were 

related to the efficiency indices. Efficiency scores from MEA approach ranges from 85 to 97 

percent while those from DEA ranges from 93 to 90 percent. While advisory services, farm 

location and housing practices were not significant, use of written instructions for feeding and 

for preventing infectious diseases was associated with higher technical efficiency. 

Mekonnen et al. (2015) examine how different components of an agricultural innovation 

system interact to determine levels of technical inefficiency in 85 developing country agriculture 

using latent class stochastic frontiers and data from 2004 to 2011. The mean technical efficiency 

score in class 1 countries is 44.1 percent whereas it is 62.7 percent for countries in class 2. 

Mobile phone subscriptions and the number of scientific and technical journal articles were 

found to improve technical efficiency of agricultural production in these countries. 

Aravindakshan et al. (2015) use slack-based DEA model to estimate the technical energy input 

efficiency of wheat farmers under different tillage options in the eastern Indo-Gangetic Plains in 

South Asia. Results show that the mean efficiency scores ranged from 68 to 91 percent, with 

conservation tillage farmers being more efficient than traditional ones. Subsequent analysis to 

examine determinants of energy efficiency using fractional regression model show that 

conservation tillage training and experience, educational level, credit, split application of NPK 

fertilizers and distance to input market had positive and significant effect on technical energy 

efficiency. However, farm size, farmers’ reliance on input dealers for crop management advice, 

negatively affected energy efficiency, distance of farm from main roads and distance to 

conservation tillage extension advice had negative effect. Using DEA models with production 
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trade-offs between different crops, Atici and Podinovski (2015) analyze the efficiency of 

agricultural farms in eight regions of Turkey. Results based on both VRS and CRS versions of 

the DEA model show that efficiency estimates fall between 21 and 98 percent depending on the 

range of the trade-off. Toma et al. (2015) employ DEA to analyze the agriculture efficiency in 

plain, hill and mountain areas. They find that in majority of the countries, the overall efficiency 

of agriculture is not reached, with these regions needing to decrease the input levels (especially 

work hours that are too high compared with productivity) or to increase the output levels 

(production value) through a better use of fixed capital and higher yields. Using local maximum 

likelihood (LML) methods, Guesmi et al. (2015) assess the technical efficiency of arable crop 

Kansas farms and compare results with conventional methods. They find that technical 

efficiency scores derived from the LML approach (90.5 percent) are higher than those of the 

DEA model under CRS (80.8 percent) and SFA (80.4 percent) and close to DEA–VRS (91.7 

percent) ratings. 

Ndlovu et al. (2014) analyze the productivity and efficiency of maize production under 

conservation agriculture using panel data from 2008 to 2010 on smallholder farming households 

across 15 rural districts in Zimbabwe. Using joint stochastic production frontier, the productivity 

and technical efficiency between conservation agriculture and conventional farming were 

estimated and compared. The results show that although farmers produce more in conservation 

agriculture compared with conventional farming, their technical efficiency levels are essentially 

equal (68 percent) in both technologies. While physical asset and time were positively related to 

technical efficiency, land was negatively related to efficiency. Ray and Ghose (2014) use DEA to 

evaluate technical efficiency of individual states over the years 1970–1971 through 2000–2001. 

Overall output and input efficiency is 79 and 85 percent, respectively, while the Pareto 

Koopmans efficiency was 70 percent. The second stage regression results show that a number of 

institutional and demographic factors including education, export orientation, literacy rate, 

agricultural credit, crop diversification have positive effect on efficiency while Gini ratio of land 

distribution has negative effect. Ogundari (2014) investigates African agricultural efficiency 

levels and its drivers over the years based on 442 frontier studies using meta-regression analysis. 

The results show that the mean efficiency estimates from these studies decrease significantly as 

year of survey in the primary study increases. Further, education, experience, extension and 

credit are the major drivers of agricultural efficiency levels in Africa. Baležentis et al. (2014) 

evaluate the efficiency of Lithuanian family farms using data from 2004 to 2009. They use 

bootstrapped DEA in the first stage and a non-parametric regression in the second stage to assess 

the impact of selected determinants on efficiency. Results show that average technical efficiency 

is 50 percent and that production subsidies might be having a negative effect on efficiency. 

Diagne et al. (2013) investigate rice productivity in the Senegal River Valley using panel 

data from 2002 to 2006 and a fixed effects simplified translog production function. They 

obtained technical efficiency scores ranging between 55 and 60 percent. Further, they find that 

fertilizer, herbicides, bird-chasing efforts, date of sowing and the use of post-harvest 

technologies such as a thresher-cleaner significantly improved the technical efficiency of rice 

producers. Bayyurt and Yılmaz (2012) estimate the efficiency of 64 countries for the period 

2002–2008 using DEA and subsequently examine the impacts of governance and education on 

agricultural efficiency using panel data regression. They find that while regulatory quality and 

type of country (developed or developing) has positive and significant impact of agricultural 



8 
 

efficiency, education has a negative effect. Efficiency estimates are however not reported. Hadi-

Vencheh and Matin (2011) utilizes an imprecise DEA (IDEA) model to evaluate efficiency of 

Iranian wheat producer provinces. Out of the 15 provinces studied, 4 were found to be efficient 

where the remaining 11 were inefficient. This is robust to both irrigation and dry wheat farming. 

Zhu and Lansink (2010) analyze the impacts of CAP subsidies on technical efficiency of crop 

farms in Germany, the Netherlands and Sweden using output distance function estimated 

together with an inefficiency effects model. Their results show that the average technical 

efficiency from 1995 to 2004 is 64 percent in Germany, 76 percent in the Netherlands and 71 

percent in Sweden. They find a negative impact of the share of total subsidies in total farm 

revenues on technical efficiency in all three countries but the impact of the share of crop 

subsidies in total subsidies is mixed. Larsén (2010) analyzes the effects of machinery-sharing 

arrangements on farm efficiency using data for Swedish crop and livestock farms for the time 

period 2001–2004. Efficiency scores obtained from bootstrap DEA suggest that efficiency is, on 

average, higher among partnership farms compared to non-partnership farms. Second stage 

analysis based on Tobit regression shows that partnership arrangements have a positive and 

statistically significant impact on farm efficiency. 

Lio and Hu (2009) use the stochastic frontier production function estimated together with 

the inefficiency effects model to examine the relationship between six governance indicators and 

agricultural efficiency for a panel of 118 countries over the 1996, 1998, 2000 and 2002 periods. 

Their results show that the aggregate agricultural efficiency for all countries over 1996–2002 

period is 64.7 percent. For high income countries, the efficiency score is 76.4 percent, upper 

middle income is 57.7 percent, lower middle income is 64.6 percent and for low income 

countries is 62.1 percent. Gregg (2009) evaluates the efficiency of Cherokee agriculture using 

output distance function in the first stage and truncated regression in the second stage. Results 

show that racial hierarchy was a significant determinant of agricultural efficiency. He also finds 

a significant inverse-U relationship between efficiency and farm size and significant positive 

effect of market access, farming experience, age and soil quality. Their results further show that 

different dimensions of governance have different impacts on agricultural efficiency. Barnes 

(2008) analyzes the technical efficiency of the cereals, dairy, sheep and beef sub-sectors of 

Scottish agriculture over the period 1989–2004. Results based on stochastic production frontier 

indicate that average technical efficiency scores vary between 71 percent for cereals and 82 

percent for sheep farms. Also, less favored area’ status, farms which either have land or no land 

within an environmentally sensitive area, and tenure has positive and significant effect on almost 

all sub-sectors while utilized agricultural area and trend variables have negative effect. Debt ratio 

has positive and significant effect on dairy and sheep sector’s efficiency only. 

For South Africa, there are also some studies that have analyzed agriculture efficiency. 

For instance, van Zyl et al. (1995) use DEA to estimate efficiency of farms in the former home 

land in South Africa. Their findings show that for KaNgwane, the mean level of total efficiency 

is 35.8 percent, Lebowa (42.7 percent) and Venda (47.6 percent). Using ordinary regression, they 

find an inverse relationship between farm size and efficiency in the commercial farming areas for 

the range of farms analyzed. Piesse et al. (1996) use DEA and 1990–1991 maize production data 

for small-holders in the Northern Transvaal homelands of KaNgwane, Lebowa and Venda to 

assess efficiency. They show that mean overall efficiency score is 35.8 percent in KaNgwane, 

42.7 percent in Lebowa and 47.6 percent in Venda. Pauw et al. (2007) rather looked at the effect 
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of agricultural efficiency gain on welfare in South Africa using a computable general equilibrium 

model. The simulation results show that technological advances in agriculture leads to welfare 

gains from declining prices albeit a negative impact on agricultural employment. 

Meliko et al. (2010) determine the efficiency of the small-scale irrigation sector of 

Limpopo province for the production 2006/2007 year using policy analysis matrix. Their results 

show that all 12 production systems studied were profitable under market condition with existing 

policies and all except dry land maize had comparative advantage suggesting efficiency in the 

systems. Lovo (2010) examines liquidity constraints and household technical efficiency using a 

sample of farm households in the KwaZulu Natal province of South Africa. Results based on 

DEA revealed the presence of large inefficiencies with Vhembe having the highest efficiency of 

46 percent while Zululand had the lowest (26 percent). The overall efficiency for all nine 

districts is 36 percent. OLS and 2SLS regression results show that access to liquidity, income 

diversification and district-level employment rate have a positive effect on household technical 

efficiency. Baloyi et al. (2012) investigate the determinants of efficiency among 120 small-scale 

maize producers in GaMothiba, Limpopo province in South Africa. Using Cobb-Douglas, their 

results show that there is significant positive relationship between farm size and fertilizer with 

technical efficiency while cost of tractor hours (the proxy for capital) had negative effect. Using 

both DEA and SPF models, Dobrowsky (2013) assessed technical and allocative efficiency in the 

organizational form of agriculture in South Africa. The results show that mean technical 

efficiency score is 96 percent under the VRS DEA and 80 percent under the CRS DEA while it is 

86 percent under stochastic frontier analysis. 

Obi and Kibirige (2014) examine the relationship between farmers’ goals and efficiency 

in small-scale maize production in Eastern Cape province of South Africa. On average, 

smallholder farmers were technically inefficient in maize production with a score of about 44 

percent. The perceived farmers’ goal found to have a positive and significant impact on technical 

efficiency was farm status, while farmers’ goal related to business (profit maximization) had a 

negative relationship with technical efficiency. Farm and farmers’ characteristics found to be 

significantly related to technical efficiency included household size, years spent in school, access 

to training on agronomy, crop incomes and government social grants. Kibirige and Obi (2015) 

estimate the allocative and technical efficiencies of smallholder farmers in Eastern Cape 

province of South Africa using Cobb-Douglas production function and stochastic frontier 

analysis. The findings indicate smallholder farmers were, however, technically efficient at 

approximately 98.8 percent and determinants of this efficiency based on OLS regression include 

household size, farming experience, use of agro-chemicals, off-farm income, and gross margins 

earned from maize, and household commercialization level. Conradie and Piesse (2015) employ 

DEA to benchmark extensive sheep operations in Laingsburg in the Central Karoo, South Africa, 

with data from the 2012 production season. The top third producers’ overall efficiency score was 

99 percent while the bottom third was 34.6 percent. Correlation analysis shows that the overall 

efficiency was correlated with stocking density, flock size, unit production cost and profitability, 

cumulative family experience of farming and the use of family labor. Nsiah and Fayissa (2017) 

estimate the trends in the agricultural sector production efficiency using data for 49 African 

countries from 1995 to 2012. Employing Malmquist Total Factor Productivity Index and 

dynamic GMM, they find that 12 African countries in including South Africa were on the 

efficiency frontier each year of the analysis while 17 countries were never efficient in any of the 
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period under consideration. Their results further show that agriculture aid, capital infrastructure 

for the agriculture industry, sanitation and good governance are the main determinants of 

agriculture efficiency and its growth. Clearly, the foregoing shows that none of these studies 

have employed fuzzy TOPSIS in analyzing efficiency in agriculture. Hence, we contribute in this 

regard. 

 

4. Methodology 

 This section presents the major methodological steps adopted in this research. After 

presenting in Section 4.1 the data collected in terms of inputs, outputs, and contextual – socio-

economic and demographic - variables, the two stage fuzzy approach is explained in detail. Section 

4.2 presents a preamble on Triangular Fuzzy Numbers and Triangular Fuzzy Matrices, which is 

deemed necessary to follow the subsequent sections. Section 4.3 depicts the Fuzzy TOPSIS 

method used in the first stage, while Section 4.4 sets out the fundamentals and origins of fuzzy 

regression. In section 4.5, the bootstrapped truncated regression with conditional α-levels, 

proposed by Wanke et al. (2016a), is reviewed in light of the emerging literature on 2-Dimensional 

Fuzzy Monte Carlo Analysis. At last, section 4.6 addresses a number of different possible rule-

based systems embedded within the ambit of fuzzy regressions, as discussed in Riza et al. (2015). 

 

4.1. The data 

 The data on South African agriculture were obtained from different sources such as 

FAOSTAT and World Bank Development Indicators and encompassed the period from 1970 to 

2014. The inputs and the outputs considered observed not only those commonly found in the 

literature review but also the availability of data. The input variables included the land or cultivable 

area (in 1000 Ha); the fertilizer or the consumption of nutrients (in tonnes of nutrients); the labor 

or the employment in agriculture (in 1000 persons); and the capital stock of equipment used in 

agriculture (in million Rands, 2005 prices). Output variables included a desirable one, the total 

agricultural production in value (in million Rands, 2005 prices) and an undesirable one, the CO2 

emissions (in CO2 equivalent Gigagrams). Their descriptive statistics are presented in Table 1. 

Within the ambit of the Fuzzy TOPSIS model depicted in Section 4.3, the inputs and the 

undesirable output were considered with a negative sign, and the desirable output, with a positive 

one. 

In addition, a number of socio-economic and demographic variables were collected to 

explain differences in the efficiency levels. These variables are also presented in Table I and are 

related to the: agriculture research spending (R&D), measured as a percentage of GDP; land 

quality, measured as a percentage of cultivable area that is dedicated to permanent crops; health 

expenditure, measured as a percentage of GDP; education level, measured as the primary gross 

enrollment ratio of both sexes (percent); annual GDP growth (percent); annual population growth 

(percent); net inflows of foreign direct investment (FDI), measured as a percentage of GDP; and 

the GINI inequality index, as estimated by the World Bank. 
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Based on the literature (Mekonnen et al., 2015; Gregg, 2009; Obi and Kibirige, 2014; 

Ray and Ghose, 2014; Toma et al., 2015; Zhu and Lansink, 2010; Kinkingninhoun-Mêdagbé et 

al., 2010; Quiroga et al., 2014; Ostry et al., 2014; The Economist, 2014), our a priori 

expectations on the contextual variables are: R&D (+), land quality (+), health expenditure (+), 

education (+), FDI (+), GDP growth (+), GINI(±) and population growth (±). 

 

Table 1. Descriptive statistics for the inputs, outputs and the contextual variables 

Variables Min Max Mean SD CV 

In
p

u
t 

Land 12446 14197 13172 531.355 0.040 

Fertilizer 347260 24378253 5682522 6963239 1.225 

Labour 613.7 11964.2 4362.2 3498.714 0.802 

Capital 162.2 14832.9 4139.1 4257.258 1.028 

O
u

tp
u

t 

Production 
18869 46456 32511 7837.56 0.241 

CO2 
6760 35679 28010 4092.073 0.146 

S
o

ci
o

-e
co

n
o
m

ic
 a

n
d

 

d
em

o
g

ra
p

h
ic

 v
ar

ia
b

le
s 

R&D 1.970 9507.796 1418.654 2446.129 1.724 

Land Quality 0.200 0.643 0.355 0.073 0.206 

Education 75.41 117.34 99.53 13.18 0.132 

Health Expenditure 7.275 8.933 8.049 0.518 0.064 

Population 1.267 2.597 2.035 0.426 0.209 

GDP Growth -2.137 6.621 2.598 2.258 0. 869 

FDI -0.866 5.983 0.834 1.242 1.489 

GINI 57.77 75.96 64.68 4.403 0.068 

 

4.2. Background on TFNs and TFMs 

TFNs (triangular fuzzy numbers) are commonly found in Fuzzy TOPSIS uses ( Izadikhah, 

2009). On the other hand, it is well known that the matrix formulation of a mathematical formula 

provides additional ease of handling for a specific problem (Shyamal and Pal, 2007). This being 

the case, Shyamal and Pal (2007) introduced and derived the properties of TFMs (triangular fuzzy 

matrices) in a seminal work. On the other hand, fuzzy matrices were introduced for the first time 

by Thomason (1977), who discussed the convergence of powers of fuzzy matrices. In this line, 

several authors have presented a number of results on the convergence of the power sequence of 

fuzzy matrices (Hashimoto, 1983; Kandel, 1996; Kolodziejczyk, 1988). Broadly speaking, a 

Triangular Fuzzy Number "𝑎" may be represented by (𝑎 − 𝛼, 𝑎, 𝑎 + 𝛽), where 𝛼 and 𝛽 represents, 

respectively, the spreads to the left and to the right from 𝑎. Alternatively, fuzzy numbers of these 

kind can be expressed such as 〈𝑎, 𝛼, 𝛽〉. If M is a TFN expressed as 𝑀 = 〈𝑎, 𝛼, 𝛽〉 its membership 

function is given by: 
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𝜇𝑀(𝑥) =  

{
 
 

 
 

0                                           𝑓𝑜𝑟 𝑥 ≤ 𝑚 − 𝛼

1 −
𝑚−𝑥

𝛼
                                  𝑓𝑜𝑟 𝑚 − 𝛼 < 𝑥 < 𝑚

1                                          𝑓𝑜𝑟 𝑥 = 𝑚          

1 −
𝑥−𝑚

𝛽
                                  𝑓𝑜𝑟 𝑚 < 𝑥 < 𝑚 + 𝛽   

0                                         𝑓𝑜𝑟 𝑥 ≥ 𝑚 +  𝛽  

           (1) 

 The membership function equals 1 when x reaches the mean value, m. Besides, considering 

𝛼   and  𝛽 to be, respectively, the spreads to the left and to the right of the TFN 𝑀, it is possible to 

affirm that this number is symmetrical around the mean if both spreads assume the same value, 

that is, if 𝛼 =  𝛽 . 

 Several researches have attempted to define the arithmetic operations of TFNs over the 

course of time. They were pioneered by Dubois and Prade (1980), who introduced the definitions 

of their arithmetic operations. Consider 𝑀 = 〈𝑚, 𝛼, 𝛽〉 and 𝑁 = 〈𝑛, 𝛾, 𝛿〉 to be two Triangular 

Fuzzy Numbers. Their arithmetic operations are defined as it follows (Shyamal and Pal, 2007):  

Addition:  𝑀 + 𝑁 =  〈𝑚 + 𝑛, 𝛼 + 𝛾, 𝛽 + 𝛿〉. 

Scalar multiplication:  If 𝜆 is scalar,   𝜆𝑀 =  〈𝜆𝑚, 𝜆𝛼, 𝜆𝛽〉  when 𝜆 ≥ 0. 
      Otherwise 𝜆𝑀 = 〈𝜆𝑚,−𝜆𝛽,−𝜆𝛼〉  when 𝜆 ≤ 0. Particularlly, −𝑀 =  〈−𝑚, 𝛽, 𝛼〉 

Subtraction:  𝑀 − 𝑁 = 〈𝑚, 𝛼, 𝛽〉 − 〈𝑛, 𝛾, 𝛿〉 =  〈𝑚 − 𝑛, 𝛼 + 𝛿, 𝛽 + 𝛾〉. 
       Given two triangular Fuzzy Numbers,𝑀 and 𝑁, their addition, subtraction, and  
       scalar multiplication, i. e. , 𝑀 + 𝑁,𝑀 − 𝑁 and 𝜆𝑀 are all TFNs. 

Multiplication:  One may show that the membership function shape of 𝑀. 𝑁 
        is not necessarily triangular. However, if the spreads of 𝑀 and 𝑁 are sufficiently small 
        compared to their mean values 𝑚 and 𝑛, then this shape follows a trianglular form. 
        A robust decision rule is given next (Shyamal 𝑎𝑛𝑑 𝑃𝑎𝑙, 2007): 
        (a)  When 𝑀 ≥ 0 and  𝑁 ≥ 0 (𝑀 ≥ 0, if 𝑚 ≥ 0) 
                𝑀.𝑁 =  〈𝑚, 𝛼, 𝛽〉. 〈𝑛, 𝛾, 𝛿〉  ≃  〈𝑚𝑛,𝑚𝛾 + 𝑛𝛼,𝑚𝛿 + 𝑛𝛽〉. 
        (b) When 𝑀 ≤ 0 and 𝑁 ≥ 0 
               𝑀.𝑁 =  〈𝑚, 𝛼, 𝛽〉. 〈𝑛, 𝛾, 𝛿〉  ≃  〈𝑚𝑛, 𝑛𝛼 − 𝑚𝛿, 𝑛𝛽 −𝑚𝛾〉 
        (c) When 𝑀 ≤ 0 and 𝑁 ≤ 0 
               𝑀.𝑁 = 〈𝑚, 𝛼, 𝛽〉. 〈𝑛, 𝛾, 𝛿〉  ≃  〈𝑚𝑛,−𝑛𝛽 −𝑚𝛾,−𝑛𝛼 −𝑚𝛾〉  
               When spreads are not small compared with mean values, a better 
              approximation is given next: 
 〈𝑚, 𝛼, 𝛽〉. 〈𝑛, 𝛾, 𝛿〉  ≃  〈𝑚𝑛,𝑚𝛾 + 𝑛𝛼 − 𝛼𝛾,𝑚𝛿 + 𝑛𝛽 +  𝛽𝛿〉 for M > 0, 𝑁 > 0. 
 

 On the other hand, a Triangular Fuzzy Matrix (TFM) of order 𝑚 × 𝑛 can be given as A =

 (aij)m×n
, where aij = 〈mij , αij , βij〉 is the ijth elements of A, mij is the mean value of aij and 

αij, βij are, respectively, the left and right spreads of aij. Likewise classical matrix algebra, let us 

consider the following operations involving TFMs, given that A = (aij) and A = (bij) are two 

TFMs of same order. In such cases, the following relationships are observed (Shyamal and Pal, 

2007).  
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  (i) A + B = (aij + bij) 

  (ii) A − B = (aij − bij), 

  (iii) For A = (aij)m×n and B = (bij)n×p , C= A. B = (cij)m×p
 

            cij = ∑aik .  bkj

n

k=1

 , i = 1,2, … ,m and j = 1, 2, … , p 

(iv) A′ = (aji) (the transpose of A) 

(v) k. A = (kaij),where k is a scalar. 

 

4.3. Fuzzy TOPSIS 

The TOPSIS method (Technique for Order Preference by Similarity Ideal Solution) 

suggested by Hwang and Yoon (1981), belongs to the group of pattern linear ordering methods of 

multidimensional objects. Broadly speaking, the ordering of objects from the best one to the worst 

one considering an assumed synthetic measure, which is not subjected to a direct measurement, 

belongs to the task of linear ordering (Dudek and Jefmanski, 2015). A characteristic feature of 

TOPSIS is a way to evaluate a synthetic criterion’s values, which takes into consideration the 

distance of an evaluated object from a positive-ideal solution as well as from a negative-ideal 

solution. Barros and Wanke (2015) and Wanke et al. (2015a, 2015b) are examples of applications 

of the TOPSIS method in efficiency measurement problems. 

The fuzzy TOPSIS method was proposed by Chen (2000). An example of applying this 

method can be found, among others, in the studies of: Chang and Tseng (2008), Uyun and Riadi 

(2011), Madi and Tap (2011), Yayla et al. (2012), Jannatifar et al. (2012), Erdoğan et al. (2013), 

Ataei (2013) and Kia et al. (2014). The major difference between the fuzzy TOPSIS method and 

the original one is that fuzzy numbers are used in the computation of the rankings and the 

performance scores of the observations. In this research, TFN are used to capture vagueness in 

agricultural inputs and outputs. As previously discussed, a TFN may be represented by (l, m, u) 

where l, m and u denote, respectively, the minimal, the mean and the maximal value of a given 

variable. A TFN may be symmetrical around the mean or not. Broadly speaking, TFNs are the 

most common and intuitive form for representing vagueness since they allow inputs and outputs 

to be measured simultaneously in terms of their mean, minimal and maximal values. TFNs 

constitute a simple but effective way for assessing vagueness (Wanke, Azad, Barros and Hadi-

Vencheh, 2016). 

Several assumptions were made about the nature of output and input data in South 

African agriculture over the course of time to capture the vagueness in the collection. First, 

variations in inputs and outputs were considered to be linear. Second, inputs and outputs were all 

represented by means of TFNs. Third, the minimum inputs and outputs during the researched 

timespan were considered as the lower values of the TFNs. Likewise, the maximum values of 

inputs and outputs were considered as the upper values of the TFNs, while the mean values of 

inputs/outputs were considered as the middle values of the respective TFNs. 
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Let us assume that a certain set of objects A = {Ai | i =1,..., n} and a set of criteria C = {Cj 

| j =1,...,m}, where 𝑋̃ = {𝑥̃𝑖𝑗|𝑖 = 1,… , 𝑛, 𝑗 = 1, … ,𝑚} stand for a set of fuzzy evaluation criterion 

and 𝑊̃ = {𝑤̃𝑗| 𝑗 = 1,… ,𝑚} a set of fuzzy weights. The linear ordering of objects with the 

application of the fuzzy TOPSIS method with the above outlined assumptions requires the 

accomplishment of the following steps (Chen, 2000): 

Step 1. Calculation of normalized fuzzy evaluation criteria: 

𝑍̃𝑖𝑗 =
𝑥̃𝑖𝑗

√∑ 𝑥̃𝑖𝑗
2𝑛

𝑖=1

  , 𝑖 = 1, … , 𝑛;   𝑗 = 1,… ,𝑚. 
(2) 

Step 2. Calculation of weighted normalized fuzzy evaluation criteria: 

𝑣̃𝑖𝑗 = 𝑤̃𝑗𝑧̃𝑖𝑗 (3) 

Step 3. Appointing positive-ideal solution A+ and negative-ideal solution A- development: 

𝐴̃+ = {𝑣̃1
+, 𝑣̃2

+, … , 𝑣̃𝑚
+} = {(max

𝑖
𝑣̃𝑖𝑗|  𝑗 ∈  𝐽1), (min

𝑖
𝑣̃𝑖𝑗 |𝑗 ∈  𝐽2)  |  𝑖 = 1, … , 𝑛} (4) 

𝐴̃− = {𝑣̃1
−, 𝑣̃2

−, … , 𝑣̃𝑚
−} = {(min

𝑖
𝑣̃𝑖𝑗|  𝑗 ∈  𝐽1), (max

𝑖
𝑣̃𝑖𝑗 |𝑗 ∈  𝐽2)  |  𝑖 = 1, … , 𝑛} (5) 

where J1 and J2 are respectively the benefit criterion and the cost criterion. 

Step 4. Calculation for each object of a distance from positive-ideal solution 𝑑𝑖
+ and 

negative-ideal solution 𝑑𝑖
− (in the original work it is a Euclidean distance). 

Step 5. Calculation of a synthetic measure: 

𝐶𝐶𝑖
+ = 

𝑑𝑖
−

𝑑𝑖
+ + 𝑑𝑖

−   , 𝑖 = (1,… , 𝑛). (6) 

Measure values (6) are normalized in an interval < 0;1> . The smaller the distance of an 

object from a positive-ideal solution and the bigger from a negative-ideal solution, the closer the 

value of a synthetic measure is to cohesion. 

Step 6. Establishing the objects’ ranking. The best object has the biggest value of a 

synthetic measure. 

In summary. the fuzzy TOPSIS method assumes in the first step of procedure, the 

normalization of fuzzy numbers according to the formula of linear scale transformation. According 

to the second step of the fuzzy TOPSIS method’s procedure, the weights of particular criteria can 

be expressed in the form of TFN. In this research, for the sake of simplicity, the same system of 

weights has been assumed for all variables, therefore the parameters’ values of fuzzy numbers 

representing weights are the same and come to 1. Besides, R codes provided in Dudek and 

Jefmanski (2015) were used in this research for computation of the fuzzy TOPSIS scores. 

 

4.4. Fuzzy Regression 

 Fuzzy regression was introduced by Tanaka et al. (1982) to model situations in which the 

practitioner cannot accurately measure the dependent variable. As long as traditional statistical 
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regression models can only fit crisp data, fuzzy linear regression models can be used to fit both 

fuzzy and crisp data (Chang and Ayyub, 2001). For such data, fuzzy set theory provides a means 

for modelling linguistic variables utilizing membership functions. In contrast to the traditional 

statistical regression models which are based on probability theory, fuzzy regression is based 

simultaneously on possibility theory (Dubois and Prade, 1988) and fuzzy set theory (Zadeh, 1965; 

1978). 

 Since the introduction of fuzzy linear regression, the literature on the subject has grown 

rapidly (Pasha et al., 2007). Traditionally, there are two approaches in fuzzy regression analysis: 

the linear programming-based method (Hojati et al., 2005; Nasrabadi and Nasrabadi, 2004; Peters, 

1994; Sakawa, 1992) and the fuzzy least squares method (Chang et al, 1996; Dubois and Prade, 

1980; Modarres et al., 1995, Savic and Pedrycz, 1991). The first method is based on minimizing 

fuzziness as an optimal criterion. Its major advantage is simplicity in programming and 

computation. The second method uses a fuzzy least-squares approach to minimize the errors 

between the observed and predicted values. 

 In statistical regression analysis, the errors derived from the adjustment of a regression 

model into the observed data are assumed to be observational errors caused by a random variable 

following some statistical distribution (e.g., normal, with constant variance and zero mean). 

However, fuzzy regression analysis views these errors as the underlying uncertainty or fuzziness 

that exists within the model structure, as proposed by Tanaka et al. (1982, 1988, 1989). This being 

the case, according to Chang and Ayyub (2001), statistical regressions are meant for handling 

random errors determined from crisp estimated and observed data. These errors are different in 

nature from fuzziness or uncertainty. On the other hand, fuzzy regression analyses are meant to 

model observed fuzzy data.  

 As one would expect, when fuzzy data approach their crisp state in fuzzy regression (e.g. 

α = 1), the results should approach those obtained from the statistical regression analysis (Chang 

and Ayyub, 2001). This property, however, still does not exist in actual fuzzy regression models. 

The basic reason is that fuzzy regression takes the fuzziness assumption as a substitute for the 

randomness assumption in statistical analysis. In other words, fuzziness is treated as a replacement 

to randomness, rather than being modeled in a complementary fashion to the underlying 

randomness. Chang and Ayyub (2001) called this aspect as the "limiting behavior" of fuzzy 

regression methods. This behavior has unfortunately segregated the used of fuzzy regression from 

the well-received ordinary least-squares regression. For the same reason, the use of fuzzy 

regression methods has drawn some criticism from statisticians, for example, Redden and Woodall 

(1994). Two distinct approaches that try to overcome such limitations are discussed next: the 

bootstrapped Truncated Regression with conditional α-levels proposed in Wanke et al. (2016a) the 

application of different fuzzy rule-based systems within the ambit of fuzzy regressions (Riza et al., 

2015). 

 

4.5. Bootstrapped Truncated Regression with conditional α-levels 

Before proceeding, and for the sake of the readability of this section, it is worth mentioning to 

readers the intrinsic characteristics of the α-level approach and its operationalization into different α values 

when assessing vagueness during the measurement process of a variable. The fuzzy α-level analysis (also 

known as α-cut analysis) is widely used in assessing uncertainty or vagueness in the measurement of a 
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variable. Uncertain variables can be treated as fuzzy numbers such as the TFN previously discussed. They 

can be manipulated by specially designed operators, in our case, the different levels of α, by assigning a 

given value ranging between 0 and 1 (say, 0, 0.1, …). In fact, the α-level is the degree of sensitivity of a 

given variable to vagueness. At some point, as the information value diminishes (lower values of α, thus 

implying higher values of fuzziness or vagueness), one no longer wants to be “bothered” by the data. In 

many systems, due to the inherent limitations of the mechanisms of observation, the information becomes 

suspect below a certain level of reliability. When α is equal to one, it is possible to say there is no fuzziness 

(vagueness) and there is full reliability (apart, of course, from random intrinsic effects). 

Wanke et al. (2016a) departed from the approach of Simar and Wilson (2007) and proposed 

conditional bootstrapped truncated regression to analyze the crisp values derived from fuzzy 

efficiency models – where scores range between 0 and 1 - based on α-levels. The following 

conditional modeling was proposed: 

njFZk jjjj ,....,1,|         (7) 

The modeling can be understood as the first-order approximation of the unknown true 

relationship. In eq. (7),   is a real value bounded between 0 and 1 and represents the α-level of 

the membership function for the efficiency score, k  is the constant term, j  is statistical noise, jF  

is vector of dummy variables that represent the fixed effects for the type of the fuzzy models used, 

whenever different models are used, and jZ  is a vector of the contextual variables for observation 

j  that is expected to be related to the observation’s efficiency score, j , taken as a crisp value.  

 Specifically, noting that the distribution of j  is restricted by the condition 

 jjj FZk 1  (since both sides of (7) are bounded by unit), the steps proposed in Simar 

and Wilson (2007) were followed in Wanke et al. (2015a, 2015b), and it was assumed that this 

distribution is truncated normal with zero mean (before truncation), unknown variance, and (left) 

truncation point determined by this very condition. Furthermore, replacing the true but unobserved 

regressand in (6), j , by the respective fuzzy efficiency estimate, j , the conditional econometric 

model formally becomes: 

njFZk jjjj ,....,1,|   ,      (8) 

where 

),0(~ 2

 Nj , so that ,,...,1,1 njFZk jjj       (9) 

which is evaluated via maximal likelihood estimation as regards ),( 2

  obtained from the data. It 

should be noted that in this research only one type of fuzzy TOPSIS model was used, thus implying 

the discard of vector jF . Besides, the respective computations for the parametric bootstrap for this 

conditional regression were carried out with R codes developed by Wanke et al. (2015a, 2015b).  

 The bootstrapped truncated regression with conditional α-levels lends a contribution to the 

emerging literature on combined probabilistic-fuzzy approaches, where randomness and 

uncertainty have their useful properties jointly considered (Arunaj et al., 2013). More specifically, 
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2-Dimentional Fuzzy Monte Carlo Analysis (2D FMCA) uses a combination of probability and 

possibility theory to include probabilistic and imprecise information in the same analytical model. 

In this research, a specific application of the 2D FMCA approach is developed to assess the 

efficiency levels and their determinants in the South African agriculture. More precisely, the 

approach used here starts off from the Fuzzy TOPSIS models – where production inputs and 

outputs are treated as triangular fuzzy numbers (as in Puri and Yadav, 2013; Wanke et al., 2016a) 

with a 20% offset from their central values – and culminates with the proposed conditional 

bootstrapped truncated regression. They are performed each time for a given α-level (say 0; 0.1; 

0.2; ... ; 1, as in Hsiao et al., 2011). Readers should be aware that the α-level values within this set 

are primarily used in the Fuzzy TOPSIS so as to determine crisp values for the input and the output 

bounds, thus allowing the computation of their respective efficiency levels. 

 

4.6. Rule-based systems in fuzzy regression 

Fuzzy set theory was proposed by Zadeh (1965), as an extension of the classical set theory 

to model sets whose elements have degrees of membership. So, instead of just having two values: 

member or non-member, fuzzy sets allow for degrees of set membership, defined by a value 

between zero and one. A degree of one means that an object is a member of the set, a value of zero 

means it is not a member, and a value somewhere in-between shows a partial degree of 

membership. During the last forty years, scientific research has been growing steadily and the 

available literature is vast (Riza et al., 2015). A lot of monographs provide comprehensive 

explanations about fuzzy theory and its techniques, for example in Klir and Yuan (1995); Pedrycz 

and Gomide (1998). One of the most fruitful developments of fuzzy set theory are fuzzy-rule based 

systems (FRBSs).  

FRBSs are an extension of classical rule-based systems (also known as production systems 

or expert systems). Basically, they are expressed in the form “IF A THEN B” where A and B are 

fuzzy sets. A and B are called the antecedent and consequent parts of the rule, respectively. During 

the modeling of an FRBS, there are two important steps that need to be conducted: structure 

identification and parameter estimation (Riza et al., 2015). Nowadays, there exists a wide variety 

of algorithms to generate fuzzy IF-THEN rules automatically from numerical data, covering both 

steps. Approaches that have been used in the past are, e.g., heuristic procedures, neuro-fuzzy 

techniques, clustering methods, genetic algorithms, squares methods, etc. With respect to the 

structure of the rule, there exist two basic FRBS models: the Mamdani and Takagi-Sugeno-Kang 

(TSK) models. Other variants have been proposed in order to improve the accuracy and to handle 

specific problems. Their drawback is that they usually have higher complexity and are less 

interpretable. For example, the disjunctive normal form (DNF) fuzzy rule type has been used in 

González, et al. (1993). 

Constructing an FRBS means defining all of its components, especially the database and 

rulebase of the knowledge base. Basically, there are two different strategies to build FRBSs, 

depending on the information available (Wang, 1994). The first strategy is to get information from 

human experts. The second strategy is to obtain FRBSs by extracting knowledge from data by 

using learning methods (Riza et al., 2015). Generally the learning process involves two steps: 

structure identification and parameter estimation (Sugeno and Yasukawa 1993; Pedrycz 1996). In 

the structure identification step, we determine a rulebase corresponding to pairs of input and output 
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variables, and optimize the structure and number of the rules. Then, the parameters of the 

membership function are optimized in the parameter estimation step. The processing steps can be 

performed sequentially or simultaneously. Learning methods are usually classified into five groups 

(Riza et al., 2015): space partition; genetic algorithms; clustering; neural networks; and gradient 

descent A FRBS can be used just like other regression models and their corresponding packages 

in R and technique principles are duly described in Table 2. 
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Table 2. Learning methods and implementation details in R (built upon Riza et al., 2015). 

Learning method FRBS model Model acronym in R Acronym meaning Description of the technique 

Fuzzy neural Networks 

TSK ANFIS 
Adaptive-network-based fuzzy 

inference system 

The systems in this group are commonly also called neuro-fuzzy systems or fuzzy 
neural networks (FNN; Buckley and Hayashi 1994) since they combine artificial 

neural networks (ANN) with FRBSs. An FRBS is laid upon the structure of an ANN 

and the learning algorithm of the latter is used to adapt the FRBS parameters, usually 
the membership function parameters. There exist many variants of methods based 

on FNNs, such as the adaptive network-based fuzzy inference system ("ANFIS") and 

the hybrid neural fuzzy inference system ("HYFIS"). 
Adaptive-network-based fuzzy inference system ("ANFIS"). This method was 

proposed by Jang (1993). It considers a TSK FRBS model which is built out of a 

five-layered network architecture. The "ANFIS" learning algorithm consists of two 

processes, the forward and the backward stage. The forward stage goes through the 

five layers as follows: 

Layer 1: The fuzzification process which transforms crisp into linguistic values 
using the Gaussian function as the shape of the membership function. 

Layer 2: The inference stage using the t-norm operator (the AND operator). 

Layer 3: Calculating the ratio of the strengths of the rules. 
Layer 4: Calculating the parameters for the consequent parts. 

Layer 5: Calculating the overall output as the sum of all incoming signals. 

The backward stage is a process to estimate the database which consists of the 
parameters of the membership functions in the antecedent part and the coefficients 

of the linear equations in the consequent part. Since this method uses the Gaussian 

function as membership function, we optimize two parameters of this function: mean 
and variance. In this step, the least squares method is used to perform the parameter 

learning. For the prediction phase, the method performs normal fuzzy reasoning of 

the TSK model. 

MAMDANI HYFIS 
Hybrid neural fuzzy inference 

system 

Hybrid neural fuzzy inference system ("HYFIS"). This learning procedure was 

proposed by Kim and Kasabov (1999). It uses the Mamdani model as its rule 

structure. There are two phases in this method for learning, namely the knowledge 
acquisition module and the structure and parameter learning. The knowledge 

acquisition module uses the techniques of Wang and Mendel. The learning of 

structure and parameters is a supervised learning method using gradient descent-
based learning algorithms. The function generates a model that consists of a rule 

database and parameters of the membership functions. "HYFIS" uses the Gaussian 

function as the membership function. So, there are two parameters which are 
optimized: mean and variance of the Gaussian function for both antecedent and 

consequent parts. Predictions can be performed by the standard Mamdani procedure. 

Clustering CLUSTERING SBC Subtractive clustering 

Subtractive clustering ("SBC"). This method is proposed by Chiu (1996). For 

generating the rules in the learning phase, the "SBC" method is used to obtain the 
cluster centers. It is an extension of Yager and Filev’s mountain method (Yager and 

Filev 1994). It considers each data point as a potential cluster center by determining 

the potential of a data point as a function of its distances to all the other data points. 
A data point has a high potential value if that data point has many nearby neighbors. 

The highest potential is chosen as the cluster center and then the potential of each 

data point is updated. The process of determining new clusters and updating 
potentials repeats until the remaining potential of all data points falls below some 

fraction of the potential of the first cluster center. After getting all the cluster centers 

from "SBC", the cluster centers are optimized by fuzzy c-means. 
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CLUSTERING DENFIS 
Dynamic evolving neural fuzzy 
inference system 

Dynamic evolving neural fuzzy inference system ("DENFIS"). This method is 
proposed by Kasabov and Song (2002). There are several steps in this method that 

are to determine the cluster centers using the evolving clustering method (ECM), to 

partition the input space and to find optimal parameters for the consequent part of 
the TSK model, using a least squares estimator. The ECM algorithm is a distance-

based clustering method which is determined by a threshold value, Dthr. This 

parameter influences how many clusters are created. In the beginning of the 
clustering process, the first instance from the training data is chosen to be a cluster 

center, and the determining radius is set to zero. Afterwards, using the next instance, 

cluster centers and radius are changed based on certain mechanisms of ECM. All of 
the cluster centers are then obtained after evaluating all the training data. The next 

step is to update the parameters on the consequent part with the assumption that the 

antecedent part that we got from ECM is fixed. Actually, ECM can perform well as 
an online clustering method, but here it is used in an offline mode. 

Gradient descent 

TSK FIR.DM 
Fuzzy inference rules by 
descent method 

Fuzzy inference rules with descent method ("FIR.DM"). This method is 

proposed by Nomura, Hayashi, and Wakami (1992). "FIR.DM" uses simplified 
fuzzy reasoning where the consequent part is a real number (a particular case within 

the TSK model), while the membership function on the antecedent part is expressed 

by an isosceles triangle. So, in the learning phase, "FIR.DM" updates three 
parameters which are center and width of the triangle and a real number on the 

consequent part using a descent method. 

TSK FS.HGD 
FRBS using heuristics and 
gradient descent method 

FRBS using heuristics and the gradient descent method ("FS.HGD"). This 

method is proposed by Ishibuchi et al. (1994). It uses fuzzy rules with non-fuzzy 
singletons (i.e., real numbers) in the consequent parts. The techniques of space 

partitioning are implemented to generate the antecedent part, while the initial 
consequent part of each rule is determined by the weighted mean value of the given 

training data. Then, the gradient descent method updates the value of the consequent 

part. Furthermore, the heuristic value given by the user affects the value of weight 
of each data point. 

Genetic fuzzy systems APPROXIMATE GFS.FR.MOGUL 

Genetic fuzzy for fuzzy rule 

learning based on the MOGUL 

methodology 

Genetic fuzzy systems for fuzzy rule learning based on the MOGUL 

methodology ("GFS.FR.MOGUL"). This method is proposed by Herrera et al. 

(1998). It uses a genetic algorithm to determine the structure of the fuzzy rules and 
the parameters of the membership functions simultaneously. To achieve this, it uses 

the approximative approach as mentioned in Section 2.2. Each fuzzy rule is modeled 

as a chromosome, which consists of the parameter values of the membership 
function. So, every rule has its own membership function values. A population 

contains many such generated chromosomes, based on the iterative rule learning 

approach (IRL). IRL means that the best chromosomes will be generated one by one 
according to the fitness value and covering factor. The method carries out the 

following steps: 

Step 1: Genetic generation process involving the following steps: Create an initial 

population, evaluate individual fitness, perform genetic operators, obtain the best 

rule and collect it, and repeat this process until the stopping criterion has been met.  

Step 2: Tuning process: Repetitively adjust the best individual until the stopping 
criterion is met. 

Step 3: Obtain an FRBS model as the output. 
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Space partition MAMDANI WM Wang and Mendel’s technique 

Wang and Mendel’s technique ("WM"). It was proposed by Wang and Mendel 
(1992) using the Mamdani model. For the learning process, there are four stages as 

follows: 

Step 1: Divide equally the input and output spaces of the given numerical data into 
fuzzy regions as the database. In this case, fuzzy regions refer to intervals for the 

linguistic terms. Therefore, the length of the fuzzy regions is related to the number 

of linguistic terms. For example, let us assume a concept of temperature between 1 
and 5. Then, we define the linguistic terms “cold”, “neutral”, and “hot”, and we 

define the length of fuzzy regions as 2. This now gives us the fuzzy regions as 

intervals [1, 3], [2, 4], [3, 5], respectively, and we can construct triangular 
membership functions. E.g., in the first case, we have the corner points a = 1, b = 2, 

and c = 3 where b is a middle point whose degree of the membership function equals 

one. 

Step 2: Generate fuzzy IF-THEN rules covering the training data, using the database 

from Step 1. First, we calculate degrees of the membership function for all values in 

the training data. For each instance and each variable, a linguistic value is determined 
as the linguistic term whose membership function is maximal in this case. Then, we 

repeat the process for all instances in the training data to construct fuzzy rules 

covering the training data. 
Step 3: Determine a degree for each rule. Degrees of each rule are determined by 

aggregating degrees of membership functions in the antecedent and consequent 

parts. In this case, we are using the product aggregation operators. 
Step 4: Obtain a final rulebase after deleting redundant rules. Considering the 

degrees of rules, we can delete a redundant rule with a lower degree. 
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 The parametrization of the respective models in the frbs R package (Riza et al., 2015) is 

given in Table 3. 

Table 3. Parameters for the FRBS. 

Methods Parameters 

ANFIS num.labels = 5, max.iter = 300, step.size = 0.01, type.mf = 3  

HYFIS  num.labels = 5, max.iter = 200, step.size = 0.01  
SBC r.a = 0.3, eps.high = 0.5, eps.low = 0.15  

DENFIS Dthr = 0.15, max.iter = 5000, step.size = 0.01, d = 2 "  

FIR.DM num.labels = 5, max.iter = 1000, step.size = 0.01  
FS.HGD num.labels = 5, max.iter = 100, step.size = 0.01, alpha.heuristic = 1  

GFS.FR.MOGUL persen_cross = 0.9, max.iter = 300, max.gen = 200, max.tune = 500, persen_mutant = 0.3, epsilon = 0.95  

WM num.labels = 15, type.mf = 3, type.defuz = 1, type.tnorm = 1, type.snorm = 1 

 

5. Results and Discussion 

 The distributions of the efficiencies scores calculated using Fuzzy TOPSIS for South 

African agriculture from 1970 to 2014, using a meta-frontier (O’Donnell et al., 2007) and the set 

of inputs and outputs generated based on TFN and the α-level approach, are given in Fig. 1. In 

general terms, the fuzzy estimates mostly ranged from to 0.40 to 0.68 and appear to be increasing 

again, after a period of decay (1970-1980) and stagnation (1980-2000). This finding may not be 

surprising given that agricultural productivity trend in South Africa has equally been fluctuating 

and one of the reasons for this was attributed to changing resource use (DAFF, 2011; Liebenberg, 

2013; Kirsten et al., 2003)  

It is interesting to note that, in a quite analogous way to what happen with bootstrapped 

estimates in frontier methods, fuzzy TOPSIS efficiencies are higher when there is no fuzziness at 

all (α-level = 1, represented by the solid bold line in Fig. 1 on the left). On the other hand, fuzzy 

TOPSIS efficiencies systematically decay with the value of α-level (thus representing increased 

fuzziness). Their minimal values are obtained when α-level = 0 and fuzziness is maximal. The 

dashed fine line in Fig. 1 on the left represents this. Under bootstrapping, the newer efficiency 

estimates computed statistically tend to be lower than the original ones. 

 

  
Fig. 1. Fuzzy estimates of South African agricultural efficiency levels. 

 Results for the conditional bootstrapped truncated regression performed on different α-

levels reflect the impact of socio-economic and demographic variables on agricultural efficiency 

in South Africa under different levels of fuzziness. They are presented in Fig. 2. From a quick 
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inspection, several conclusions can be drawn. A solid line marks the zero in each graph, thus 

indicating whether a contextual variable is significant or not for a given value of α. Several 

contextual variables are not statistically significant, regardless of the uncertainty level in inputs 

and outputs: education, FDI, and GDP growth. 

 

Fig. 2. Coefficient estimates for the conditional bootstrapped truncated regression. 

 

 However, the reminder contextual variables are significant regardless of the α-values: R&D 

expenditure, land quality, health expenditure–population growth ratio and GINI index. They all present a 

positive impact on agricultural efficiency levels in South Africa, thus suggesting that, although land quality 

may be a prerequisite for higher productivity in agricultural systems, the impact of R&D expenditure on 

genetic modified seeds, new fertilizers, equipment/machinery for grain harvest and storage and other 

production methods cannot be neglected. Besides, there is an interesting counterbalance of social welfare 

and capital accumulation in agricultural productivity in South Africa. Although efficiency tends to increase 

with a higher health expenditure–population growth ratio, higher GINI levels, which reflects income 

inequality and capital accumulation to some extent also, exerts a positive effect on efficiency. These results 

suggest that agricultural efficiency in South Africa is driven not only by wealth accumulation, but also by 

the dissemination of social welfare. Generally speaking, this would imply a macro-economic trade-off to 

be managed by policy-makers. 

It is also interesting to note that the sign of the significant impact did not depend upon the 

fuzziness level that the input and output data are subjected to. This suggests that uncertainty and 

randomness do not interact in the input/output level. This lack of ambiguity -which is not so often 

found in fuzzy systems applied to efficiency measurement (Wanke et al. 2016b and Wanke et al., 

2016a) - opens the room for researchers and practitioners to investigate further the actual sources 

of efficiency using different rule-based systems within the ambit of fuzzy regressions. The inherent 

statistical limitations of fuzzy regressions previously discussed in Section 4.4 should be, of course, 

observed. 

 Bootstrapping was also used to build confidence intervals for the log-likelihood 

measurements for the conditional regression models considering different α-values. These results 

are presented in Fig. 3. Although one cannot claim that these log-likelihoods are significantly 

different, since their error bars overlap, it is interesting to note how the regression’s performance 

is affected by the extreme values of uncertainty in the measurement of inputs and outputs. The best 

fit to the data was verified under α = 0, that is, when fuzziness was maximal. A similar behavior 
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was found in Wanke et al. (2015a, 2015b) and Wanke et al. (2016a, 2016b) when applying this 

bootstrapped regression to different decision-making contexts. This also suggest the use of 

different rule-based systems to assess the problem of predicting efficiency levels in South African 

agriculture. 

 

Fig. 3. Log-likelihood confidence intervals for the conditional bootstrap truncated regressions. 

Therefore, the results of the rule-base systems methods presented in Tables 2 and 3 and 

considered for comparison within the ambit of fuzzy regressions are now discussed. To compare 

the results, we computed the APE – Average Percent Error. Two panels with the full set of results 

are shown in Figs. 4 and 5. One is organized by alpha-levels; the other, by methods. It can be seen 

that the eight FRBS methods tested outperformed bootstrapped truncated regression results in 

terms of MAPE, with the exception of DENFIS method for α-levels 0.8 and 0.9. With respect to 

the distribution of the APEs, the average errors were substantially smaller under HYFIS, SBC, 

FS.HGD, GFS.FR.MOGUL, and WM models, and comparable in central tendency and 

distributional characteristics to those obtained via bootstrap under ANFIS, DENFIS, and FIR.DM. 

This suggests that outperformance in terms of APE and MAPE can be achieved in several FRBS 

models, regardless of the underlying learning method. The absence of interaction between 

fuzziness and randomness, as detected in the bootstrapped regression, altogether with the fact that 

the best likelihood model is the one obtained for highest input/output fuzziness, may help in 

explaining why several FRBS methods performed superiorly best. Further research, however, is 

deemed necessary to confirm this conjecture under circumstances where there are interactions 

between randomness and fuzziness. 
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Fig. 4. FRBS regression results grouped by α-levels. 

 

 On the other hand, Figure 5 illustrates the impact of the fuzziness level on the errors achieved by 

each FRBS model. It illustrates that the different α-levels do not impact much on the distributional aspect 

of the APE and its central tendency (median), although average errors (MAPE) tend to slightly increase 

with increasing fuzziness (α-level = 0) only under the HYFIS approach. Under the remainder approaches, 

either the APE increases or remains stagnant with lower fuzziness levels. This suggests that FRBS generally 

works better under higher fuzziness environments. The methodological implications of these findings may 

be related to the learning power of neural networks, the underlying assumption within the HYFIS model, 

where the linguistic terms used to connect efficiency with contextual variables – i.e. higher land quality 

imply higher agricultural efficiency – prevail to the detriment of other rules such as space partition or 

clustering. The possibility of deriving a discourse on how things happen rather than fitting parameters for 

space partition or cluster membership helps not only theory consolidation, but also in establishing a 

common basis of comparison for quantitative unreliable data obtained from different sources scattered over 

the course of time, although qualitatively comparable in meaning. 
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Fig. 5. FRBS regression results grouped by models. 
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The ruling implications for decision-makers based on this practical application in South 

African agriculture are related to very nature of the fuzziness and randomness of the problem under 

analysis. Considering that such interactions may exist, and can be detected in sign reversal for 

different alpha levels, one should consider using bootstrapped conditional regressions and FRBS 

regressions in a complimentary fashion. The first one should be used in detecting significant 

contextual variables; the other one, for prediction purposes. On the other hand, putting the case for 

the South African agriculture into perspective and considering that there was no interaction found 

between randomness and fuzziness embedded within the collected data, decision makers should 

adopt a combination approach, where different forecasts are weighted and combined into a final 

number.  

 

6. Conclusion 

 This paper presents an analysis of South African agricultural efficiency using Fuzzy 

TOPSIS and fuzzy based regressions in a two-stage approach. Fuzzy TOPSIS enables different 

sources of uncertainty and vagueness to be handled while computing the efficiency scores. Based 

on the results of the fuzzy analysis performed in the second stage, it is possible to explain the 

causes of inefficiency in terms of socio-economic and demographic variables. Agricultural 

efficiency in South Africa appears to be explained by the countervailing forces of capital 

accumulation and social-welfare, building upon land quality and R&D expenditure. These findings 

have implications for policy in South Africa. Policies to increase social expenditure especially in 

terms of health is necessary. This will enhance the productive capacity of the farm families. More 

health care facilities in both the urban and rural areas with adequate and qualified personnel needs 

to be provided and at affordable costs. Also there is need to put up policies that will conserve the 

environment and hence the quality of land. This can be done side by side with increased investment 

in R&D to enable the farming units access to genetically modified seeds, new fertilizers, 

equipment/machinery for grain harvest and storage, and other production methods that can 

improve efficiency and subsequently productivity yet leave the environment sustainable.  

 As regards the two-stage fuzzy approach developed here, the technical contributions of this paper 

are built upon two pillars. In the first stage, fuzzy logic was employed to assess the relative differences and 

rankings obtained from TOPSIS. These scores have proved to be useful in accounting for the impact of 

higher levels of vagueness, over the course of time. In the second stage, different fuzzy regression models 

were employed in a competitive fashion. This allowed the determination of the discourse structure of the 

most relevant contextual variables in terms of explaining agricultural efficiency levels in South Africa. 

 The methodology employed in this research also constitute an advance in the field of agricultural 

efficiency measurement using fuzzy approaches, building upon previous studies in the area, besides using 

a comprehensive data set of countries over several decades. First of all, it adds to the scant previous studies 

conducted at the macro-economic level that have recognized the importance of using fuzzy logic to handle 

inherent uncertainty in input/output measurement. Second, this study for the first time used fuzzy 

regressions and a comprehensive set of different inference systems to map the relationships between 

efficiency scores and their major socio-economic and demographic drivers. Rather than focusing on the 

statistical properties of randomness, a different venue of uncertainty, this paper aimed at the predictive 

power of fuzzy regressions and their capability of unveiling hidden non-linear relationships covered up 

with vagueness. 

 The implications for policy-makers are related to a number of measures that can assure that 

agricultural efficiency can be multi-dimensional and be explained beyond the technological choices. 

Indeed, those choices may be determined by social and environmental factors and political decisions. Thus, 

a transition to a more efficient agricultural sector in South Africa will depend on how we address certain 
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socio-political factors, such as pursuing a more health care, while managing social inequality and capital 

accumulation.  
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