
Hybrid Metaheuristics: An Automated Approach

Ahmed Hassana,∗, Nelishia Pillaya,b

aUniversity of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
bUniversity of Pretoria, Pretoria 0002, South Africa

Abstract

Hybrid metaheuristics have proven to be effective at solving complex real-world

problems. However, designing hybrid metaheuristics is extremely time con-

suming and requires expert knowledge of the different metaheuristics that are

hybridized. In previous work, the effectiveness of automating the design of relay

hybrid metaheuristics has been established. A genetic algorithm was used to

determine the sequence of hybridized metaheuristics and the parameters of the

metaheuristics in the hybrid. This study extends this idea by automating the

design of each metaheuristic involved in the hybridization in addition to au-

tomating the design of the hybridization. A template is specified for each meta-

heuristic, defining the metaheuristic in terms of components. Manual design of

metaheuristics usually involves determining the components of the metaheuris-

tic. In this study, a genetic algorithm is employed to determine the components

and parameters for each metaheuristic as well as the sequence of hybridized

metaheuristics. The proposed genetic algorithm approach was evaluated by us-

ing it to automatically design hybrid metaheuristics for two problem domains,

namely, the aircraft landing problem and the two-dimensional bin packing prob-

lem. The automatically designed hybrid metaheuristics were found to perform

competitively to state-of-the-art hybridized metaheuristics for both problems.

Future research will extend these ideas by looking at automating the deriva-

tion of metaheuristic algorithms without predefined structures specified by the

∗Corresponding author
Email addresses: ahmedhassan@aims.ac.za (Ahmed Hassan),

npillay@cs.up.ac.za & pillayn32@ukzn.ac.za (Nelishia Pillay)

Postprint submitted to Expert Systems with Applications August 12, 2019

templates.

Keywords: hybrid metaheuristic, meta-genetic algorithm, automated design

Declarations of Interest

Declarations of interest: none

1. Introduction

As we move into the fourth industrial revolution the automated design of

machine learning and search techniques is a rapidly growing field. There has

been a fair amount of research into the automated design of metaheuristics, with

metaheuristics often being used to design metaheuristics which has led to the

field of multilevel metaheuristics Sevaux et al. (2018). Tabli Talbi (2009) refer

to metaheuristics that optimize the parameters of other metaheuristics as spe-

cialist high level relay hybrid metaheuristics. Design decisions include deciding

on which parameters and operators to use, the control flow of algorithms, the

derivation of new operators, determining which methods to hybridize and how

to hybridize them. These design decisions are time-consuming, requiring many

man-hours and expert knowledge. Automated design of machine learning and

search techniques aims to alleviate researchers and practitioners from the la-

borious and time-consuming task of design, also enabling practitioners without

expert knowledge to rather focus on the application at hand Nyathi & Pillay

(2018).

In previous work the effectiveness of automating the design of relay hybrid

metaheuristics has been established Hassan & Pillay (2017, 2018). In these

studies a genetic algorithm has been used to determine which metaheuristics

to hybridize; the sequence in which to apply the metaheuristics and the pa-

rameter values for each metaheuristic in the hybridization. In the later study,

the effectiveness of the hybrid metaheuristics produced by the automated de-

sign over the individual metaheuristics tuned using irace was illustrated. The

study presented in this paper extends this work by automating the design of

2

each individual metaheuristic in addition to automating the hybridization of the

metaheuristics and selection of parameters simultaneously.

The hybrids that are produced by the genetic algorithm are high level relay

(HRH) metaheuristics Talbi (2009). Both S-metaheuristics and P-metaheuristics

are combined, these are referred to as single-point and multipoint search re-

spectively in the paper. The hybrid metaheuristics produced are heterogeneous

hybrids as they are composed of different metaheuristics and the hybrids are

global, general hybrids as they explore the space to solve a particular optimiza-

tion problem.

A template is defined for each metaheuristic, composed of components cor-

responding to design decisions, e.g. which operator to use. A genetic algorithm

is used to determine the components and parameters for each metaheuristic,

the metaheuristics to hybridize and the order in which the metaheuristics are

applied in the hybrid. The proposed approach for the automated design of

hybrid metaheuristics has been evaluated on two real-world problems, namely,

the aircraft landing problem and the two-dimensional bin packing problem. In

both these instances, the automated designed hybrid metaheuristics were found

to perform better than manually designed hybrid metaheuristics, producing

results competitive to the state of the art techniques. Hence, the main contri-

bution of the research presented in this paper is the automated design of the

individual metaheuristics in the hybridization in addition to the hybridization

of the metaheuristics. To the knowledge of the authors, this has not been pre-

viously investigated. Please note that the scope of the research is restricted

to the application of a metaheuristic, in this case a genetic algorithm, to com-

bine metaheuristics in sequence to produce a hybrid and does not include other

mechanisms for combining metaheuristics such as portfolios of metaheuristics.

The main aim of the study is to determine whether automating the design of

the metaheuristics and hybridization of the metaheuristic simultaneously pro-

duces hybrid metaheuristics that perform just as well as the manually designed

hybrid metaheuristics. Please note that the aim of the study is not to de-

termine how the performance of the hybridized metaheuristics compare to the

3

individual metaheuristics, previous work in the field has already ascertained

that hybridized metaheuristics perform better than individual metaheuristics

for the particular domains investigated in the study Hassan & Pillay (2018).

Furthermore, the study does not aim to ascertain that individual metaheuristics

produced by automated design perform as well as manually design metaheuris-

tics, the effectiveness of the automated design of individual metaheuristics has

also been established by numerous previous studies. The study is aimed at de-

termining whether automating the design of the individual metaheuristics and

hybridization of the metaheuristics simultaneously is at least just as effective as

the manual design of hybridizing the metaheuristics and the individual heuris-

tics in the hybridization. Hence the performance of the hybrid metaheuristics

produced by the automated design is compared to that of manually designed

hybrid metaheuristics for the same problems. The individual metaheuristics in

the latter are also manually designed.

The rest of the paper is structured as follows. In Section 2, a review of

related work is presented. The proposed automated approach is described in

Section 3. Section 4 presents the experimental setup. In Section 5, the results

are discussed. Section 6 concludes the paper.

2. Related Work

The autonomy of ai methods in general and search methods in particular has

been addressed by the ai community using various approaches including, but

not limited to, automatic algorithm configuration Hutter et al. (2007); López-

Ibánez et al. (2011), algorithm selection Rice (1976), algorithm portfolio Gomes

& Selman (2001), reactive search Battiti et al. (2008) and hyper-heuristics Burke

et al. (2013). Fuzzy logic has also been successfully applied for automated design

including parameter tuning in metaheuristics Olivas et al. (2019); Valdez et al.

(2014) and the design of neural networks González et al. (2015).

As explained in Section 1, the research presented in this paper extends pre-

vious work by automating the design of individual metaheuristics in terms of

4

the components of the metaheuristics and parameters as well as automating the

design of the hybridization of the individual metaheuristics. Hence, this section

provides an overview of previous studies conducted to automate the design of

metaheuristics with respect to deciding on the components of the metaheuristic

algorithm, the parameter values for the metaheuristic and the combination of

metaheuristics to solve the problem at hand.

Oltean (2005) proposes linear genetic programming (gp) to evolve evolu-

tionary algorithms (ea) using alternative genetic operators. Tavares & Pereira

(2012) use ge to design ant colony algorithms (aco) out of existing components

of aco such as solution construction, reinforcement and evaporation. Tavares &

Pereira (2011) use a gp algorithm to design a strategy for pheromone update in

aco. Dioşan & Oltean (2009) use a meta-genetic algorithm (mga) to automate

the discovery of optimal structures and parameters for ea where each individ-

ual of mga is an ea. Drake et al. (2013) use a GE hyper-heuristic to automate

two components of variable neighborhood search namely, solution construction

heuristics and neighborhood operators. Keller & Poli (2007) design basic meta-

heuristics using a linear gp hyper-heuristic relying on a simple grammar that

specifies general primitives such as loops and conditional statements as well as

problem-specific primitives such as the 2-opt and 3-opt operators for the tsp.

Sabar et al. (2013) use a ge hyper-heuristic that evolves local search heuristics

from three basic components which are move acceptance criteria, neighborhood

structures and neighborhood combinations. Bhanu & Gopalan (2008) propose

a hyper-heuristic with a greedy selection strategy to select the best perform-

ing metaheuristic from among a genetic algorithm and three hybrid genetic

algorithms. Grobler et al. (2010) propose a selection hyper-heuristic working

on a set of low-level heuristics containing ea, differential evolution and parti-

cle swarm optimization algorithms. That work is extended by Grobler et al.

(2012) through incorporating local search procedures. Garcia-Villoria et al.

(2011) present a hyper-heuristic consisting of a learning phase during which

single-point searches are used and a launching phase during which the best-

performing search during the learning phase is selected and applied to the best

5

solution. Tsai et al. (2012) use a simple random hyper-heuristic to hybridize

tabu search, simulated annealing, k-means algorithm and a genetic algorithm.

Hassan & Pillay (2017) propose a hyper-heuristic-like mga to automatically

decides the best sequence of metaheuristics to use as well as the parameter val-

ues of the metaheuristics in the sequence. Although not particularly related to

our work (as defined above), it is worth mentioning that automatic algorithm

configuration tools (aact) are used in the context of the automated design

of metaheuristics/hybrid metaheuristics; for instance Marmion et al. (2013);

López-Ibánez et al. (2017) use aact to automatically design stochastic local

searches and Lopez-Ibanez & Stutzle (2012) use aact to design multi-objective

aco algorithms. In this case, instead of the traditional use of aact to tune the

parameter of a well-defined algorithm, it is actually used to design metaheuris-

tics/hybrid metaheuristics (together with parameter tuning) through expressing

metaheuristics via a parameteric representation.

The study presented in this paper focuses on the automated design of re-

lay hybrid metaheuristics. Please note that our proposed approach is distinct

from prior related work in a number of major aspects. a) In this study, each

metaheuristic in the sequence is automatically designed and the best way by

which metaheuristics can be sequenced is also automatically decided. b) In this

study, single-point and multi-point metaheuristics are hybridized within a single

framework which is a lacking feature in most of the prior studies. c) This study

automates the design of hybrid metaheuristics unlike some of the prior studies

which automate the design of a specific metaheuristic such as ant colony opti-

mization algorithms. d) Our proposed approach caters for automatic parameter

tuning as part of the design process without relying on a third-party software

to perform this task.

3. Proposed Method

A steady-state meta-genetic algorithm mga is used to automate the design

of each metaheuristic in terms of selecting components for the defined templates

6

and parameter values as well as the hybridization of the metaheuristics to solve

the problem at hand. The proposed approach is illustrated visually in Figure

1. The end user provides the design choices for the predefined algorithmic tem-

plates; however, he/she is not responsible for carrying out the design manually;

hence, there is a design barrier in the figure to emphasize this aspect. The

provided design choices are used to create metaheuristics from the templates

during the chromosome initialization as will be explained in Section 3.1. The

created metaheuristics are combined sequentially and evolved using the mga.

The mga is explained in detail in following subsections.

Figure 1: Framework of the proposed approach.

End-user

Design choices

D
esign

b
arrier

ILS
Template

VNS
Template

MA
Template

low-level

hybrid

ILS

V
N

S

MA

MGA

high-level

hybrid

Hybrid MetaH.

IL
S

+
V

N
S

+
M

A

3.1. Initial Population and Chromosomes

The initial population is comprised of chromosomes of variable length rang-

ing from 1 to L where the minimum length is set to 1 to verify whether the

sequential hybridization is actually needed and the maximum length is set to

L to prevent too long chromosomes from being created in the first generation.

For later generations, longer chromosomes will not be created either as a result

of using an aggressive crossover operator that causes the offspring to inherit the

length as well as the genetic materials from the parents (see Section 3.3). Dupli-

cates are not allowed in the initial population. Two chromosomes are considered

duplicates if and only if they have the same length and the corresponding genes

7

in both chromosomes encode the same metaheuristics. Two metaheuristics are

the same if and only if they are instantiated from the same template using the

same design choices and the same parameter values. Therefore, one difference

in one parameter value can distinguish metaheuristics. This makes sense as the

performance of metaheuristics is sensitive to changing their parameter values.

A chromosome of length l is a sequence g1g2 . . . gl of l genes where each gene

encodes a metaheuristic. A gene gi is expressed in the form hi : si where hi

designates one of the templates and si is the specification needed to create a

functional metaheuristic from hi. In particular, si specifies the particular de-

sign choices and parameter values for the components of hi. To illustrate, let hi

refer to the template of iterated local search (ils) described in Algorithm 1 be-

low. The template consists of three components: localSearch, perturb and

acceptCriterion. Therefore, si should determine a specific design choice for

each one of these three components in order to have an operational ils algo-

rithm. For example, the localSearch component could be assigned a simple

hill-climbing local search, the perturb component could be assigned a ran-

dom perturbation operator and the acceptCriterion component could be

assigned accept-all-moves.

During the chromosome construction, each gene is created at random as

follows. First, hi is chosen at random from the three predefined algorithmic

templates described in algorithms 1, 2 and 3 below. Then, for each component

of hi, a design choice is chosen at random from a predefined set of available

design choices for that component (see Appendix A for a complete list of the

design choices). When a design choice depends on parameters, a specific value

for each parameter is chosen at random from a predefined range. The specifica-

tion si is passed to the template hi and decoded to instantiate an operational

metaheuristic. Although the initial population is comprised of chromosomes

that are created purely at random without an intelligent method, chromosomes

that encode poor design choices and/or bad parameter values will be eliminated

as the mga evolves the population over generations.

Algorithmic Templates. As mentioned earlier in this section, each gene

8

in the chromosome encodes a single metaheuristic created from a predefined

algorithmic template by assigning a specific design choice for each component

of the template. There are three algorithmic templates used. The first template,

presented in Algorithm 1, describes iterated local search (ils) generally without

reference to a particular instance of ils.

Algorithm 1 General Template of Iterated Local Search

Require: Initial Solution S0

1: S∗ ← localSearch(S0)

2: repeat

3: S′ ← perturb(S∗, ρ)

4: S′′ ← localSearch(S′)

5: S∗ ← acceptCriterion(S∗, S′′)

6: until Stopping condition is met

The routine pertrub generates a new solution S′ from the current local

opitmum S∗ by altering some components of S∗; the routine localSearch

performs local search on S′ to generate a new local optimum S′′ which over-

writes S∗ (accepted) according to the routine acceptCriterion. Please see

Gendreau & Potvin (2010) for more details about ils.

The second template is for variable neighborhood search (vns) which is

specified by Algorithm 2.

The routine shake generates a new solution S′ from the current solution

S using the kth neighborhood structure (ns). The routine localSearch

performs local search on S′ to generate a local optimum S′′. The routine

changeNeigh changes ns systematically using the feedback provided by S, S′′

and k. Please see Hansen et al. (2010) for further details about vns.

The last template is for memetic algorithms (ma) which is described by

Algorithm 3.

The routine select chooses parents for mating. The crossover and muta-

tion are done by the routine regenerate to produce offspring from the selected

parents. The routine localSearch performs local search on the generated off-

9

Algorithm 2 General Template of Variable Neighborhood Search

Require: Initial Solution S

1: repeat

2: k ← 1

3: repeat

4: S′ ← shake(S, k)

5: S′′ ← localSearch(S′)

6: keepBest(S, S′′)

7: changeNeigh(S, S′′, k)

8: until k ← kmax

9: until Stopping condition is met

Algorithm 3 General Template Memetic Algorithm

1: initialize the first population

2: evaluate each individual

3: repeat

4: matingPool ← select()

5: offspring ← regenerate(matingPool)

6: localSearch(offspring)

7: reproduce(offspring)

8: until stopping condition is met

spring. The routine reproduce replaces the worst individual by the offspring

if it is better. Please see Moscato et al. (1989) for more details about mas.

3.2. Fitness and Selection

Each chromosome is evaluated by using the metaheuristics encoded by the

genes of the chromosome to solve the training instances. As the aim of the

study is to produce a hybrid that will work well over a set of problem instances,

a training set is used instead of a single problem instance for evaluation. A

naive fitness measure is the average objective value over the training instances.

However, such a fitness measure is susceptible to exceptionally good/bad per-

10

formance in specific instances. In this study, the fitness of a chromosome is

defined relatively as done in Hassan & Pillay (2018).

Fi = 1 +

P∑
i=1

δij , j = 1, . . . , P, and j 6= i

where P is the population size and the stepwise function δij is one if the number

of instances in which chromosome i performs strictly better than chromosome j

is larger than the number of instances in which chromosome j performs no worse

than chromosome i and is zero otherwise. This fitness favors chromosomes with

good performance on the majority of the training instances.

To make the fitness evaluation meaningful, all chromosomes use the same

training instances and start from the same initial solutions constructed using

problem-specific procedures described in Appendix B. In addition, all chromo-

somes are allocated the same computational budget (number of iterations) to

prevent longer chromosomes from overtaking shorter ones just because of using

a more computational budget. If a chromosome consists of more than one gene,

the total computational budget is divided equally among the genes.

Tournament selection is used to choose parents for mating to produce the

individuals of the next generation. From the current population, t individuals

are chosen uniformly at random where t is the tournament size. Then, a tour-

nament is run and the individual with the best fitness wins the tournament, i.e.

is selected as a parent to produce offspring.

3.3. Regeneration

The design of hybrid metaheuristics is a time-consuming task such that it is

crucial to use crossover operators that accelerate the evolution. To this end, an

aggressive crossover is used which is tailored towards eliminating bad building

blocks. In this context, bad building blocks refer to genes representing meta-

heuristics that perform poorly due to either bad design choices or bad parameter

values. The crossover used in this study is an extension of the fitness-based scan-

ning crossover (fbs) Eiben et al. (1994). fbs is a multi-parent crossover operator

11

in which genes of the offspring are selected probabilistically from the parents

in the mating pool where the probability of selecting a gene from a particular

parent is proportional to its fitness. The extension of fbs covers two aspects.

First, fbs is extended to work on individuals of variable length by setting the

length of the offspring equal to the length of the best parent in the mating pool.

Second, the number of parents in the mating pool is made a uniform random

variable as apposed to being a predetermined fixed number. As a consequence

of having parents of variable length, it is necessary to update the probability

distribution whenever the offspring becomes longer than at least one parent be-

cause such a parent can no longer contribute to the subsequent genes of the

offspring.

The generated offspring is mutated at a single gene chosen at random by

replacing the chosen gene with a randomly created gene. The specific details

on the random creation of a gene is mentioned above under Initial Population.

The offspring replaces the worst individual if it is better.

3.4. Interaction Scheme

The communication between the genes of a chromosome enables later genes

to benefit from the effort of earlier genes. In general, the best solution found by

a preceding gene is passed to the subsequent gene as an initial solution except

when the subsequent gene is a population-based method in which case all the

best solutions found by the previous genes are embedded in the initial population

and the rest of the population is created at random. For the first gene, the initial

solutions are created using problem-specific solution construction methods; see

Appendix B.

4. Experimental Setup

In this study, the design phase is separated from the application phase. In the

design phase, the proposed approach uses the training instances to automatically

design a high-performing hybrid metaheuristic. In the application phase, the

12

automatically designed hybrid solver (adhs) is evaluated by solving the test set

instances. The automated approach plays the role of the human designer and

the adhs is the end product of the automated design process which corresponds

to the manually designed published methods. Therefore, the adhs is compared

with the published methods; not the automated approach itself.

4.1. Problem Domains

The aircraft landing problem and the two-dimensional bin packing problem

are used to evaluate the adhs generated by the proposed automated approach.

These problems are chosen since they hard to solve, have practical relevance

and have been subjects of research for a few decades; consequently, the existing

state-of-the-art approaches are advanced and hard to beat unless the proposed

automated solvers are well designed.

4.1.1. Aircraft Landing Problem

Aircraft Landing Problem (alp) is an np- hard problem Beasley et al. (2000)

that contains two subproblems which are sequencing and scheduling Ernst et al.

(1999). alp is hard to solve exactly even for medium-size instances Salehipour

et al. (2013). The task of alp is allocating runways and assigning landing times

for arriving planes at an airport such that a certain objective, such as air traffic

congestion, is optimized whereas each plane’s landing time falls within a time

window and a minimum separation criterion (also known as the safety constraint

Sabar & Kendall (2015)) between every pair of planes is not violated. Due to its

practical relevance, various models and methods are proposed for the alp Girish

(2016). There are two variants of alp in the literature: the static case and the

dynamic case. In the static case Beasley et al. (2000), complete information

about all planes in the planning horizon is known a priori. In the dynamic case

Beasley et al. (2004), new information is obtained as new arriving planes are

picked by the airport’s radar. In this study, the static case is considered.

13

4.1.2. Two-Dimensional Bin Packing Problem

The two-dimensional bin packing problem (2bpp) is a well-known np-hard

problem Lodi et al. (2002a,b). The classical one-dimensional bin packing prob-

lem is a special case of 2bpp Lodi et al. (2002b). 2bpp is concerned with packing

a finite number of 2d items into 2d bins such that the total number of used bins

is minimized Lodi et al. (2002a,b). In this study, the items and the bins are

assumed to be rectangular and bins are identical. The packing is orthogonal,

i.e, the sides of the packed items are either parallel or perpendicular to the sides

of the bin. In the literature Lodi et al. (1999b), there are four variants of the

orthogonal, rectangular 2bpp depending on whether the items have fixed orien-

tation and whether the guillotine constraint is imposed. The variant considered

in this study is well investigated by prior research and is known as 2bp|o|f where

o indicates that the items are oriented and f indicates that the cutting is free,

i.e. the guillotine constraint is not imposed. 2bpp has practical applications in

many industries especially those involving mass-production where small savings

on the raw material leads to a high reduction in cost Hopper (2000). Different

mathematical models are proposed for the 2bpp; see Lodi et al. (2002a).

4.2. Benchmark Datasets

ALP. The benchmark dataset of alp is proposed in Beasley et al. (2000,

2004) and is downloadable from or-library.1 The dataset contains 49 in-

stances ranging from 10 to 500 planes with a single runway to five multiple

runways.

2BPP. The benchmark dataset of the 2bpp is proposed by Berkey & Wang

(1987); Martello & Vigo (1998) and is downloadable from bpplib.2 The dataset

is grouped into 10 classes. Each class is subdivided into 5 categories. Each

category contains 10 instances of sizes 20, 40, 60, 80 or 100. In total, there are

500 instances.

1http://people.brunel.ac.uk/ mastjjb/jeb/orlib/airlandinfo.html.
2http://or.dei.unibo.it/library/two-dimensional-bin-packing-problem

14

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html
https://

In both problems, the dataset is divided into two subsets: the training set

which is used during the design phase to train the mga to evolve high-quality

hybrid metaheuristics and the test set which is used during the application

phase to evaluate the effectiveness of the evolved hybrid metaheuristics. In both

problems, the training set instances are chosen at random such that the training

set size is 10% of the size of the entire dataset. For the alp, the training set is

chosen as follows. First the entire dataset is divided into two subsets: the easy

instances (with sizes less than or equal 50) and the hard instances (with sizes

greater than 50). One instance from the easy instances is chosen at random and

its number of runways is also chosen at random. The same process is repeated

for selecting training instances from the set of hard instances. For the 2bpp,

one instance is chosen at random from each category.

4.3. Implementation Platform

As mentioned earlier in this section, the simulation conducted in this study

is of two phases: the design phase during which hybrid metaheuristics are au-

tomatically designed using the mga and the application phase during which

the automatically designed hybrid metaheuristic is used to solve the test set

instances. The design phase is run on a cluster having CPUs (2.6 GHz) and

interconnected with FDR 56 GHz InfiniBand with CentOS 7.0. The application

phase is run on a desktop computer with Intel Core i7 processor (3.10GHz) and

7.7 GiB of memory with Ubuntu 16.04 (64-bit). The programming language is

Java 8 in both cases.

5. Result and Discussion

The mga is run until convergence which is signaled by the absence of im-

provement for a number of generations. The best evolved algorithm (henceforth,

referred to as automatically designed hybrid solver (adhs)) is used to solve the

test set instances. Then, the results of adhs are compared with those of the

published methods. As one of the design decisions that have to be made is

15

which metaheuristics will be included in the hybrid and different designers use

different metaheuristics we compare the performance of the hybrid produced

by the automated design to more than one manually designed hybrid for each

problem domain.

The parameters of mga are determined manually as follows: population size

(50), tournament size (2) and the number of generations signaling convergence

(25), number of genes to mutate (1), maximum chromosome length (5) and

maximum number of parents in the mating pool (5).

5.1. Aircraft Landing Problem

The adhs evolved for alp is ils using a simple vns as an embedded local

search (1-level integration). The embedded vns does not use local search, al-

ways accept improving moves and changes ns if no improvement obtained from

the current ns. The perturbation of ils is a random multiple operators pro-

cedure similar to the perturbation procedure of Sabar & Kendall (2015). The

acceptance criterion accepts improving moves only.

The results obtained by adhs are compared with those obtained by the

state-of-the-art manually designed methods for alp. These methods include

a hybrid particle swarm optimization algorithm with a rolling horizon (rh-

hpso-ls) Girish (2016), a multiple perturbation operators iterated local search

with time-varying perturbation (mpo-ils) Sabar & Kendall (2015), a time dis-

cretization algorithm (tda) with constraints relaxation and a cut algorithm

Faye (2015), a hybrid genetic algorithm with tabu search (agir) Bencheikh

et al. (2013), a hybrid bat algorithm (hba) Xie et al. (2013), a simulated an-

nealing algorithm (psa) Awasthi et al. (2013) with an exact procedure for gen-

erating an optimal schedule for a given landing sequence and a scatter search

algorithm (ss) Pinol & Beasley (2006). To our knowledge, rh-hpso-ls is the

best-performing metaheuristic for alp (static case).

The results are presented in Table 1 in which the first column presents the

instance name, the second column presents the number of runways, the third

column presents a unique id for each instance, the fourth column presents the

16

best-known results (bkr) and from the sixth column to the last column, the

best results obtained by the methods are presented in terms of the percentage

deviation from bkr which is defined as follows.

∆ = 100× S − bkr

bkr
, (1)

where S is the result obtained by the method. Smaller values of ∆ indicate

better performance. If a method has ∆ = 0, the performance of the method is

equivalent to the best-known performance. All these methods perform almost

identically in the first 25 instances; hence not included in the table.

From the table, the evolved adhs outperforms all prior methods except rh-

hpso-ls which outperforms adhs especially in single runway instances. How-

ever, both methods tie in 16 instances out of 24. The adhs performs slightly

worse than rh-hpso-ls in 2 instances. The overall performance of adhs is com-

petitive with that of the best published method. Please note that the results

produced by the mpo-ils and marked with an asterisk indicate possible errors

as pointed out by Girish (2016). This is the case since Girish (2016) was able to

solve these instances to optimality using the cplex software and the results of

the mpo-ils are lower (better) than the optimal results found by Girish (2016).

Statistical analysis is used in order to ascertain the statistical significance of

the results of the adhs in relation to the results of the manually designed ap-

proaches. The application of statistical analysis is done carefully following the

guidelines of Derrac et al. (2011). The significance level α is 5%. The method

of Xie et al. (2013) is also excluded because it does not provide solutions for the

single-runway instances. The four instances for which the mpo-ils generates

erroneous results are excluded from the statistical analysis. When there are

three or more methods involved, it is encouraged to use multiple comparison

tests with the post-hoc analysis procedures in order to control the family-wise

error rate which may be inflated if many individual pairwise comparisons are

carried out Derrac et al. (2011). The Friedman multiple comparison test is

used. The rankings of the methods computed by the Friedman test is presented

17

Table 1: alp: comparison with the State-of-the-art Methods.

Instance R ID BKR RH-

HPSO-

LS

ADHS SS AGIR HBA PSA TDA MPO-

ILS

Airland9 1 26 5611.7 0 3.7 30.06 22.8 - 1.64 3.22 0

2 27 444.1 0 0 7.77 1.99 12.47 0 8.48 0.21

3 28 75.75 0 0 0 0 1.69 0 0 -2.31∗

4 29 0 0 0 0 0 0 0 0 0

Airland10 1 30 12292.2 0 4.0 45.4 15.75 - 9.95 7.93 0.24

2 31 1143.7 0 0 21.55 15.93 23.06 5.25 2.54 11.14

3 32 205.21 0 0 17.15 19.75 9.22 0 17.87 -2.53∗

4 33 34.22 0 0 16.74 23.5 0 0 31.91 -6.16∗

5 34 0 0 0 0 0 0 0 0 0

Airland11 1 35 12418.32 0 7.21 17.95 35.2 - 7.92 3.53 -0.05

2 36 1330.91 0 0.57 26.14 37.4 25.77 5.24 0.38 5.94

3 37 253.07 0 0 34.92 26.39 10.98 0.03 12.72 7.13

4 38 54.53 0 0 2.77 0 0 0 3.17 -6.47∗

5 39 0 0 0 0 0 0 0 ∞ 0

Airland12 1 40 16122.18 0 7.76 22.81 0.74 - 7.59 11.8 0.54

2 41 1695.62 0 0.10 37.42 16.38 46.39 3.42 5.58 15.67

3 42 221.97 0 0 53.15 45.95 9.83 5.19 11.93 22.55

4 43 2.44 0 0 431.55 43.03 0 0 0 39.36

5 44 0 0 0 0 0 0 0 0 0

Airland13 1 45 37064.11 0 9.56 24.88 20.96 - 16.16 13.04 11.65

2 46 3920.39 0 1.12 54.56 40.34 32.23 17.18 7.56 39.23

3 47 673.85 0 0 67.76 69.11 12.06 5.78 16.03 64.5

4 48 89.95 0 0 157.66 109.52 0.09 0 47.54 3.27

5 49 0 0 0 ∞ ∞ 0 0 ∞ ∞

18

in Table 2 which indicates that hs-hpso-ls is the best method followed by

our adhs whereas ss is the poorest. The Friedman statistic is 53.98 and the

p-value is 7.70E−10 which strongly suggests the existence of statistically sig-

nificant differences across the methods. The Friedman test detects differences

over multiple comparisons being incapable of establishing proper pairwise com-

parisons. Therefore, post-hoc analysis procedures are used to conduct pairwise

comparisons. The control method is the best-performing one (rh-hpso-ls).

The purpose of the test is to detect which methods (including the evolved adhs)

have a statistically equivalent performance to rh-hpso-ls. The Holm procedure

is used and its results are shown in Table 3. In the table, the first column shows

different algorithms (the underlying hypothesis for each algorithm is whether its

performance is equivalent to the best method or not), the second column shows

the unadjusted p-values, the third column shows the adjusted p-values and the

fourth column shows the adjusted significance level. Based on the test results,

adhs and psa perform statistically equivalent to the best performing method

(rh-hpso-ls). Although not reported here, different post-hoc procedures (Hol-

land, Hochberg, Rom, Finner and Li) lead to the same conclusion drawn from

the Holm procedure with respect to the performance of adhs compared to the

top method (rh-hpso-ls). Based on the statistical analysis, the evolved adhs

has a competitive performance with the state-of-the-art methods for alp which

assures the effectiveness of the proposed approach for automated design.

Table 2: Friedman: average rankings of the algorithms.

Algorithm RH-HPSO-LS ADHS PSA MPO-ILS TDA AGIR SS

Rankings 1.98 2.80 3.50 3.80 4.33 5.50 6.10

The runtime comparison can only be indicative since it is almost impossi-

ble to ensure fair comparison between several methods as it depends on many

factors that are difficult to control such as the computer specification, the op-

erating system, the programming language, the performance optimization and

the skill level of the programmer. However, we compare adhs with mpo-ils

in terms of runtime as mpo-ils is very similar to adhs in two key aspects.

19

Table 3: Holm: pairwise comparisons. The control method is rh-hpso-ls.

Algorithm unadj. p-value adj. p-value adj α

SS 1.56E−9 9.36E−9 0.0083

AGIR 2.47E−7 1.23E−6 0.01

TDA 5.82E−4 0.0023 0.0125

MPO-ILS 0.008 0.024 0.0167

PSA 0.026 0.052 0.025

ADHS 0.23 0.23 0.05

First, both algorithms are ils. Second, both algorithms use similar multiple

perturbation operators procedure and similar neighborhood structures. The

runtime comparison is summarized in Table 4. From the table, adhs outper-

forms mpo-ils substantially in multiple-runway instances whereas it performs

worse in single-runway instances.

Table 4: Average runtimes in seconds (rounded to integers).

Instance 26 27 28 29 30 31 32 33 34 35 36 37

mpo-ils 8 11 11 14 14 16 17 23 34 18 22 34

adhs 11 6 3 1 24 15 5 3 2 48 28 10

Instance 38 39 40 41 42 43 44 45 46 47 48 49

mpo-ils 37 55 198 310 402 398 358 486 1011 1123 1181 1152

adhs 5 3 102 54 18 11 7 699 402 106 45 24

5.2. Two-Dimensional Bin Packing Problem

The adhs evolved for 2bpp is a sequence consisting of iterated local search

(ils) and variable neighborhood search (vns). The ils uses an epsilon-greedy

perturbation; see Table 8. The local search of ils is performed by ls4; see

Table 8. The acceptance criterion accepts non-worsening proposals. The vns is

a simple search that generates a candidate solution at random using the current

ns (shake), uses ls2, ls3 and ls5 to perform local search and change ns with

Change1; see Table 9.

As explained in Section 3, problem-specific design decisions can also be au-

tomated by representing each design decision as an additional component of the

20

templates. There are two problem-specific design decisions that are automated

which are the objective function and packing heuristics and their alternative

design choices are presented in Table 11.

The performance of adhs is compared with that of the state-of-the-art

methods for 2bbp which are a biased random key genetic algorithm (brkga)

Gonçalves & Resende (2013), a hybrid evolutionary algorithm (ea-lgfi) Blum

& Schmid (2013), a hybrid grasp/vns algorithm (grasp) Parreño et al. (2010),

a guided local search algorithm (gls) Faroe et al. (2003), a tabu search algo-

rithm (ts) Lodi et al. (1999a) and an evolutionary particle swarm optimization

algorithm (epso) Omar & Ramakrishnan (2013). To our knowledge, brkga is

the best-performing metaheuristic for 2bpp on the variant of 2bpp considered

in this study. Although we are not interested in comparing our method with

problem-specific heuristics, we include the set covering heuristic (sch) Monaci

& Toth (2006) in our comparison because it is the best heuristic for the problem.

The results are shown in Table 5 where the performance is measured by

the average over the ten instances of each category in each class, see Section

4.2. The best results are highlighted in bold. From the table, the first column

shows the classes, the second column shows the instance sizes in each category,

the third column shows the lower bounds obtained by Monaci & Toth (2006)

and from the fourth column to the last column, the results of the methods are

shown. The closer the result of a method to the lower bound, the better the

performance of the method is. It can be observed that adhs finds the best results

in 42 categories out of 50 and fails to find the best results in 8 categories. adhs

outperforms espo, ts, gls and sch, performs almost equivalently to grasp and

performs slightly worse than brkga and ea-lfgi. The overall performance of

the automated adhs is competitive with the best-performing manually designed

methods.

Table 5: 2bpp: comparison with the state-of-the-art methods.

Class Size LB BRKGA GRASP SCH GLS TS EPSO EA-LGFi ADHS

Continued on next page

21

Table 5 – continued from previous page

Class Size LB BRKGA GRASP SCH GLS TS EPSO EA-LGFi ADHS

20 7.1 7.1 7.1 7.1 7.1 7.1 7.29 7.1 7.1

40 13.4 13.4 13.4 13.4 13.4 13.5 14.51 13.4 13.4

Class I 60 19.7 20.0 20.0 20.0 20.1 20.1 20.7 20.0 20.0

80 27.4 27.5 27.5 27.5 27.5 28.2 29.26 27.5 27.5

100 31.7 31.7 31.7 31.7 32.1 32.6 32.46 31.7 31.7

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.9 1.9 1.9 1.9 1.9 2.0 1.9 1.9 2.0

Class II 60 2.5 2.5 2.5 2.5 2.5 2.7 2.5 2.5 2.5

80 3.1 3.1 3.1 3.1 3.1 3.3 3.1 3.1 3.1

100 3.9 3.9 3.9 3.9 3.9 4 3.9 3.9 3.9

20 5.1 5.1 5.1 5.1 5.1 5.5 5.41 5.1 5.1

40 9.2 9.4 9.4 9.4 9.4 9.7 10.24 9.4 9.4

Class III 60 13.6 13.9 13.9 13.9 14 14 14.88 13.9 13.9

80 18.7 18.9 18.9 18.9 19.1 19.8 20.1 18.9 18.9

100 22.1 22.3 22.3 22.3 22.6 23.6 23.87 22.4 22.3

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Class IV 60 2.3 2.5 2.5 2.5 2.5 2.6 2.53 2.3 2.4

80 3.0 3.1 3.1 3.2 3.3 3.3 3.2 3.1 3.1

100 3.7 3.7 3.8 3.8 3.8 4 3.82 3.7 3.7

20 6.5 6.5 6.5 6.5 6.5 6.6 7.08 6.5 6.5

40 11.9 11.9 11.9 11.9 11.9 11.9 13.04 11.9 11.9

Class V 60 17.9 18.0 18.0 18.0 18.1 18.2 19.8 18.0 18.0

80 24.1 24.7 24.7 24.7 24.9 25.1 26.78 24.7 24.7

100 27.9 28.1 28.2 28.2 28.8 29.5 29.77 28.4 28.3

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.5 1.6 1.7 1.7 1.8 1.9 2.1 1.7 1.9

Class VI 60 2.1 2.1 2.1 2.1 2.2 2.2 2.21 2.1 2.1

80 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

100 3.2 3.3 3.4 3.4 3.4 3.4 3.41 3.2 3.2

20 5.5 5.5 5.5 5.5 5.5 5.5 6.11 5.5 5.5

40 10.9 11.1 11.1 11.1 11.3 11.4 11.8 11.1 11.1

Class VII 60 15.6 15.8 15.9 15.8 15.9 16.2 16.99 15.9 15.8

80 22.4 23.2 23.2 23.2 23.2 23.2 24.44 23.2 23.2

100 26.9 27.1 27.1 27.1 27.5 27.7 29.13 27.1 27.1

20 5.8 5.8 5.8 5.8 5.8 5.8 6.38 5.8 5.8

40 11.2 11.3 11.3 11.3 11.4 11.4 12.24 11.3 11.3

ClassVIII 60 15.9 16.1 16.1 16.2 16.3 16.2 17.47 16.1 16.2

80 22.3 22.4 22.4 22.4 22.5 22.6 24.33 22.4 22.4

100 27.4 27.8 27.8 27.9 28.1 28.4 29.81 27.7 27.8

20 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

40 27.8 27.8 27.8 27.8 27.8 27.8 28.41 27.8 27.8

Continued on next page

22

Table 5 – continued from previous page

Class Size LB BRKGA GRASP SCH GLS TS EPSO EA-LGFi ADHS

Class IX 60 43.7 43.7 43.7 43.7 43.7 43.8 44.31 43.7 43.7

80 57.7 57.7 57.7 57.7 57.7 57.7 59.2 57.7 57.7

100 69.5 69.5 69.5 69.5 69.5 69.5 70.82 69.5 69.5

20 4.2 4.2 4.2 4.2 4.2 4.3 4.73 4.2 4.2

40 7.4 7.4 7.4 7.4 7.4 7.5 7.96 7.4 7.4

Class X 60 9.8 10.0 10.0 10.1 10.2 10.4 10.46 10.1 10.1

80 12.3 12.8 12.9 12.8 13.0 13.0 13.11 12.8 12.8

100 15.3 15.8 15.9 15.9 16.2 16.6 16.31 16.0 15.9

Sum 7173 7234 7241 7243 7284 7360 7600.7 7239 7241

As done in Section 5.1, statistical analysis is used to ascertain whether the

evolved adhs is comparable with the manually designed approaches or signifi-

cantly worse. Again, the guidelines of Derrac et al. (2011) are followed as precise

as possible. The significance level α is 5%. The Friedman test is used to detect

statistical differences across the methods (multiple comparisons). The rankings

of the methods computed by the Friedman is presented in Table 6 which re-

veal that our method is the third best method. The rankings also reveal that

performance gap across the whole dataset between the top five methods (in-

cluding our adhs) is rather small. The Friedman statistic is 128.29 and the

p-value is 6.23E−10 which strongly suggests the existence of statistically sig-

nificant differences among the methods. Again, post-hoc analysis procedures

are used to detect pairwise significant differences. The control method is the

best-performing one (brkga). The purpose of the test is to detect which meth-

ods (including the evolved adhs) have a statistically equivalent performance

to brkga. The Holm procedure is used and its results are shown in Table 7.

Based on the test results, ea-lgfi, grasp, sch and the evolved adhs perform

statistically equivalent to the best performing method brkga. Although not

reported here, different post-hoc procedures (Holland, Hochberg, Rom, Finner

and Li) lead to the same conclusion drawn from the Holm procedure. Based

on the statistical analysis, the evolved adhs performs no worse than the state-

of-the-art methods for 2bpp which assures the competitiveness of the proposed

23

Table 6: Friedman: average rankings of the methods.

Algorithm BRKGA EA-LGFi ADHS GRASP SCH GLS TS EPSO

Rankings 3.24 3.47 3.60 3.61 3.74 4.95 6.28 7.12

Table 7: Holm: pairwise comparisons. The control method is brkga.

Algorithm unadj. p-value adj. p-value adj α

EPSO 1.21E−15 8.45E−15 0.007

TS 3.26E−10 1.96E−9 0.008

GLS 4.05E−4 0.002 0.01

SCH 0.30 1.21 0.0125

GRASP 0.44 1.33 0.0167

ADHS 0.45 1.33 0.025

EA-LGFi 0.63 1.33 0.05

approach for automated design compared to the traditional manual approach.

Further, from the result of the statistical analysis, it can be observed that

relatively recently proposed metaheuristics (brkga, ea-lgfi, grasp and our

adhs) perform well and equivalently whereas early proposed metaheuristics (ts

and gls) perform poorly and significantly worse. This may suggest that meta-

heuristics have advanced well enough in this variant of 2bpp and/or this stan-

dard benchmark dataset is not hard enough to distinguish between methods

which may raise the need for a new benchmark set.

The average runtime of adhs on 2bpp ranges from 0 seconds on the smallest

instance to less than 20 seconds on the largest.

It can be noted that for both problem domains the memetic algorithm was

not included in the best evolved hybrid, however for other problem domains it

may be included and this will be examined as part of future work. We conclude

this section by making a remark. In both domains (alp and 2bpp), it is found

that adhs perform statistically equivalent to the best-performing metaheuristics

on standard benchmark datasets. A lacking feature of the manual design is

reusability, i.e. the manual design has to be repeated whenever a new problem

domain is encountered. On the contrary, the automated approach is reusable,

i.e. the same approach is used to automatically design solvers for alp and 2bpp

24

at a cost of minimal adjustments, such as problem-specific implementation and

supplying new training instances.

6. Conclusion

This paper investigates the feasibility of the automated design of relay hy-

brid metaheuristics using a meta-genetic algorithm working on the space of

configurations of hybrid metaheuristics. The proposed approach extends prior

studies Hassan & Pillay (2017, 2018) which demonstrate the effectiveness of

meta-genetic algorithms for the design of hybrid metaheuristics. In Hassan &

Pillay (2017, 2018), a meta-genetic algorithm is used to automatically determine

which sequence of metaheuristics to use, with what parameter values (parameter

tuning) and in what order the metaheuristics should be applied. This paper ex-

tends these prior studies by automating the design of each metaheuristic in the

sequence in addition to automating the sequential hybridization and parameter

tuning. This is achieved by defining algorithmic templates consisting of com-

ponents representing key design decisions such as what acceptance criterion to

use. A meta-genetic algorithm is used to determine the suitable components for

each metaheuristic in the hybrid, the best sequential way of combining the meta-

heuristics and the parameter values for each metaheuristic in the sequence. The

proposed automated approach is evaluated by using it to automate the design of

hybrid metaheuristics for two hard, well-known problems: the aircraft landing

problem and the two-dimensional bin packing problem. The automatically de-

signed hybrid metaheuristics were found to perform competitively and in some

cases better than the previously proposed, best-performing hybrid metaheuris-

tics which were designed manually. This study has illustrated the potential of

automating the design of relay hybrid metaheuristics and the individual meta-

heuristics comprising the hybrid using two different problem domains. Given

the success for these two very different problem domains, future work will apply

the approach to additional problems such as logistics problems.

In the future, this work will be extended by considering the automation of

25

hybrid metaheuristics without relying on predefined templates (structures). In

this case, the automated approach is responsible for discovering the optimal

or near optimal structure as part of the design process. There has been prior

research in unifying the view of metaheuristics; see for instance Raidl (2006).

Once a unified view is established, a grammar can be used to describe meta-

heuristics generally based on the unified view without a particular reference to

a specific template. As a result, a grammatical evolution algorithm, a genetic

programming algorithm or an algorithm configuration tool can be used to navi-

gate the search space of hybrid metaheuristics as defined by the grammar. The

advantage of this bottom-up approach to the design of hybrid metaheuristics is

its ability to come up with new metaheuristics that might have not been discov-

ered before whereas the downside is its complexity and the possible limitation

as a result of the unified view, the grammar and/or both. In this study, an

equal amount of computational budget, i.e. iterations, have been allocated to

each metaheuristic in the hybrid. Future work will also investigate automating

the design of the time slices allocated to each metaheuristic in the hybrid.

Future work will also examine the reusability of the hybrid metaheuristics

produced. The idea would be to automate the design of the hybrid metaheuris-

tics on a training set and apply to a test set to see how well the hybrid meta-

heuristic performs. The study will examine whether the hybrid metaheuristics

are reusable for different classes of problems or across problem classes. This

work will also investigate the effect of evolving a hybrid for each problem in-

stance.

There are various alternatives to this approach such as portfolio algorithms

Caldeŕın et al. (2017) and agent-based cooperative approaches Moreno et al.

(2016). Future work will also investigate a comparison of such alternatives with

the approach presented in the paper.

26

Acknowledgment

The authors would like to thank the reviewers for the invaluable comments

to improve the quality of the paper. The authors would like to thank the

National Research Foundation (NRF), South Africa for funding this research

project [Grant number: 99811]. The authors would like to thank the Center

for High Performance Computing (CHPC), South Africa for providing access to

the cluster.

References

Awasthi, A., Kramer, O., & Lässig, J. (2013). Aircraft landing problem: An

efficient algorithm for a given landing sequence. In IEEE 16th International

Conference on Computational Science and Engineering (pp. 20–27). IEEE.

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search and intelligent

optimization. Springer Science & Business Media.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., & Abramson, D. (2004). Dis-

placement problem and dynamically scheduling aircraft landings. Journal of

the operational research society , 55 , 54–64.

Beasley, J. E., Krishnamoorthy, M., Sharaiha, Y. M., & Abramson, D. (2000).

Scheduling aircraft landings—the static case. Transportation science, 34 ,

180–197.

Bencheikh, G., El Khoukhi, F., Baccouche, M., Boudebous, D., Belkadi, A., &

Ouahman, A. A. (2013). Hybrid algorithms for the multiple runway aircraft

landing problem. International Journal on Computer Science & Applications,

10 , 53–71.

Berkey, J. O., & Wang, P. Y. (1987). Two-dimensional finite bin-packing algo-

rithms. Journal of the operational research society , 38 , 423–429.

27

Bhanu, S. M. S., & Gopalan, N. (2008). A hyper-heuristic approach for efficient

resource scheduling in grid. International Journal of Computers Communi-

cations & Control , 3 , 249–258.

Blum, C., & Schmid, V. (2013). Solving the 2D bin packing problem by means

of a hybrid evolutionary algorithm. Procedia Computer Science, 18 , 899–908.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., &

Qu, R. (2013). Hyper-heuristics: A survey of the state of the art. Journal of

the Operational Research Society , 64 , 1695–1724.

Caldeŕın, J. F., Masegosa, A. D., & Pelta, D. A. (2017). An algorithm portfolio

for the dynamic maximal covering location problem. Memetic Computing , 9 ,

141–151.

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold .

Derrac, J., Garćıa, S., Molina, D., & Herrera, F. (2011). A practical tutorial

on the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1 , 3–18.

Dioşan, L., & Oltean, M. (2009). Evolutionary design of evolutionary algo-

rithms. Genetic Programming and Evolvable Machines, 10 , 263–306.

Drake, J. H., Kililis, N., & Özcan, E. (2013). Generation of VNS components

with grammatical evolution for vehicle routing. In European Conference on

Genetic Programming (pp. 25–36). Springer.

Eiben, A. E., Raue, P.-E., & Ruttkay, Z. (1994). Genetic algorithms with

multi-parent recombination. In International Conference on Parallel Problem

Solving from Nature (pp. 78–87). Springer.

Ernst, A. T., Krishnamoorthy, M., & Storer, R. H. (1999). Heuristic and exact

algorithms for scheduling aircraft landings. Networks, 34 , 229–241.

28

Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided local search for the

three-dimensional bin-packing problem. Informs journal on computing , 15 ,

267–283.

Faye, A. (2015). Solving the aircraft landing problem with time discretization

approach. European Journal of Operational Research, 242 , 1028–1038.

Garcia-Villoria, A., Salhi, S., Corominas, A., & Pastor, R. (2011). Hyper-

heuristic approaches for the response time variability problem. European

Journal of Operational Research, 211 , 160–169.

Gendreau, M., & Potvin, J. (2010). Handbook of Metaheuristics. Springer US.

Girish, B. (2016). An efficient hybrid particle swarm optimization algorithm

in a rolling horizon framework for the aircraft landing problem. Applied Soft

Computing , 44 , 200–221.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning . Addison-Wesley Publishing Company.

Gomes, C. P., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence,

126 , 43–62.

Gonçalves, J. F., & Resende, M. G. (2013). A biased random key genetic

algorithm for 2D and 3D bin packing problems. International Journal of

Production Economics, 145 , 500–510.

González, B., Valdez, F., Melin, P., & Prado-Arechiga, G. (2015). Fuzzy logic in

the gravitational search algorithm enhanced using fuzzy logic with dynamic

alpha parameter value adaptation for the optimization of modular neural

networks in echocardiogram recognition. Applied Soft Computing , 37 , 245–

254.

Grobler, J., Engelbrecht, A. P., Kendall, G., & Yadavalli, V. (2010). Alterna-

tive hyper-heuristic strategies for multi-method global optimization. In IEEE

Congress on Evolutionary Computation (pp. 1–8). IEEE.

29

Grobler, J., Engelbrecht, A. P., Kendall, G., & Yadavalli, V. (2012). Investigat-

ing the use of local search for improving meta-hyper-heuristic performance.

In IEEE Congress on Evolutionary Computation (pp. 1–8). IEEE.

Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood

search: methods and applications. Annals of Operations Research, 175 , 367–

407.

Hassan, A., & Pillay, N. (2017). A meta-genetic algorithm for hybridizing meta-

heuristics. In Portuguese Conference on Artificial Intelligence (pp. 369–381).

Springer.

Hassan, A., & Pillay, N. (2018). An improved meta-genetic algorithm for hy-

bridizing metaheuristics. In IEEE Congress on Evolutionary Computation

(pp. 1453–1460). IEEE.

Hopper, E. (2000). Two-dimensional packing utilising evolutionary algorithms

and other meta-heuristic methods. Ph.D. thesis University of Wales. Cardiff.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configura-

tion based on local search. In The AAAI Conference on Artificial Intelligence

(pp. 1152–1157). AAAI.

Keller, R. E., & Poli, R. (2007). Linear genetic programming of parsimonious

metaheuristics. In IEEE Congress on Evolutionary Computation (pp. 4508–

4515). IEEE.

Lai, K., & Chan, J. W. (1997). Developing a simulated annealing algorithm for

the cutting stock problem. Computers & industrial engineering , 32 , 115–127.

Lodi, A., Martello, S., & Monaci, M. (2002a). Two-dimensional packing prob-

lems: A survey. European journal of operational research, 141 , 241–252.

Lodi, A., Martello, S., & Vigo, D. (1999a). Approximation algorithms for the

oriented two-dimensional bin packing problem. European Journal of Opera-

tional Research, 112 , 158–166.

30

Lodi, A., Martello, S., & Vigo, D. (1999b). Heuristic and metaheuristic ap-

proaches for a class of two-dimensional bin packing problems. INFORMS

Journal on Computing , 11 , 345–357.

Lodi, A., Martello, S., & Vigo, D. (2002b). Recent advances on two-dimensional

bin packing problems. Discrete Applied Mathematics, 123 , 379–396.

López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The

irace package, iterated race for automatic algorithm configuration. Technical

Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Bel-

gium.

López-Ibánez, M., Kessaci, M.-E., & Stützle, T. (2017). Automatic design

of hybrid metaheuristics from algorithmic components. Technical Report

TR/IRIDIA/2017-012, IRIDIA, Université Libre de Bruxelles, Belgium.

Lopez-Ibanez, M., & Stutzle, T. (2012). The automatic design of multiobjec-

tive ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 16 , 861–875.

Marmion, M.-E., Mascia, F., López-Ibánez, M., & Stützle, T. (2013). Automatic

design of hybrid stochastic local search algorithms. In International Workshop

on Hybrid Metaheuristics (pp. 144–158). Springer.

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite

bin packing problem. Management science, 44 , 388–399.

Monaci, M., & Toth, P. (2006). A set-covering-based heuristic approach for

bin-packing problems. INFORMS Journal on Computing , 18 , 71–85.

Moreno, M., Rosete, A., & Pavón, J. (2016). An agent based approach for the

implementation of cooperative proactive s-metaheuristics. Expert Systems

with Applications, 63 , 344–374.

Moscato, P. et al. (1989). On evolution, search, optimization, genetic algo-

rithms and martial arts: Towards memetic algorithms. Caltech concurrent

computation program, C3P Report , 826 , 1989.

31

Mühlenbein, H., Gorges-Schleuter, M., & Krämer, O. (1988). Evolution algo-

rithms in combinatorial optimization. Parallel Computing , 7 , 65–85.

Nyathi, T., & Pillay, N. (2018). Comparison of a genetic algorithm to gram-

matical evolution for automated design of genetic programming classification

algorithms. Expert Systems with Applications, 104 , 213–234.

Olivas, F., Valdez, F., Melin, P., Sombra, A., & Castillo, O. (2019). Interval

type-2 fuzzy logic for dynamic parameter adaptation in a modified gravita-

tional search algorithm. Information Sciences, 476 , 159–175.

Oltean, M. (2005). Evolving evolutionary algorithms using linear genetic pro-

gramming. Evolutionary Computation, 13 , 387–410.

Omar, M. K., & Ramakrishnan, K. (2013). Solving non-oriented two dimen-

sional bin packing problem using evolutionary particle swarm optimisation.

International Journal of Production Research, 51 , 6002–6016.

Parreño, F., Alvarez-Valdés, R., Oliveira, J., & Tamarit, J. M. (2010). A hybrid

grasp/vnd algorithm for two-and three-dimensional bin packing. Annals of

Operations Research, 179 , 203–220.

Pinol, H., & Beasley, J. E. (2006). Scatter search and bionomic algorithms for

the aircraft landing problem. European Journal of Operational Research, 171 ,

439–462.

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. In International

Workshop on Hybrid Metaheuristics (pp. 1–12). Springer.

Rice, J. R. (1976). The algorithm selection problem. Advances in computers,

15 , 65–118.

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2013). Grammatical evolution

hyper-heuristic for combinatorial optimization problems. IEEE Transactions

on Evolutionary Computation, 17 , 840–861.

32

Sabar, N. R., & Kendall, G. (2015). An iterated local search with multiple

perturbation operators and time varying perturbation strength for the aircraft

landing problem. Omega, 56 , 88–98.

Salehipour, A., Modarres, M., & Naeni, L. M. (2013). An efficient hybrid meta-

heuristic for aircraft landing problem. Computers & Operations Research, 40 ,

207–213.

Sevaux, M., Sörensen, K., & Pillay, N. (2018). Adaptive and multilevel meta-

heuristics. Handbook of Heuristics, (pp. 1–19).

Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John Wiley

& Sons.

Tavares, J., & Pereira, F. (2012). Automatic design of ant algorithms with

grammatical evolution. In European Conference on Genetic Programming

(pp. 206–217). Springer.

Tavares, J., & Pereira, F. B. (2011). Towards the development of self-ant sys-

tems. In The 13th Annual Conference on Genetic and Evolutionary Compu-

tation (pp. 1947–1954). ACM.

Tsai, C.-W., Song, H.-J., & Chiang, M.-C. (2012). A hyper-heuristic clustering

algorithm. In 2012 IEEE International Conference on Systems, Man, and

Cybernetics (SMC) (pp. 2839–2844). IEEE.

Valdez, F., Melin, P., & Castillo, O. (2014). A survey on nature-inspired op-

timization algorithms with fuzzy logic for dynamic parameter adaptation.

Expert systems with applications, 41 , 6459–6466.

Xie, J., Zhou, Y., & Zheng, H. (2013). A hybrid metaheuristic for multiple

runways aircraft landing problem based on bat algorithm. Journal of Applied

Mathematics, 2013 .

33

Appendix A

This appendix presents the problem-specific design choices and problem-independent design

choices for the iterated local search, variable neighborhood search and the memetic algorithm.

Design Choices for Iterated Local Search

The ils template consists of three basic components which are the perturbation, local search

and acceptance criterion. The design choices for each component are presented in Table 8.

Table 8: Design choices for the three components of the iterated local search.

Problem Choice Description

Design Choices for Peturbation

ALP

Move1 Pick a plane at random and move it to a different position in the

same runway.

Move2 Pick a plane at random and change its runway.

Swap1 Select two planes at random from the same runway and swap their

positions in the landing sequence.

Swap2 Same as Swap1 but the planes are chosen from different runways.

2BPP

Repack1 Sort bins in a non-increasing order of their occupancy. Remove

the last k packed items and add them to a packing queue which

contains the items that are not packed yet. Shuffle and repack

items in the queue.

Repack2 Sort bins as in Repack1. Remove the last k packed items from

each bin and add them to the packing queue. Shuffle and repack

items in the queue.

SplitHoriz Sort bins as in Repack1. Choose the Ns bins where Ns is chosen

at random from the range [N/2, N] and N is the total number

of used bins. Choose at random which part of the bins to empty

(upper/lower). Choose a horizontal split axis. Removes item in

the chosen part (upper/lower) and add them to the packing queue.

Shuffle and repack.

SplitVert Same as in SplitHoriz with the exception that the split axis is

vertical.

P
ro

b
le

m
-In

d
e
p

e
n
d
e
n
t

Random Choose a perturbtive operator at random and apply it to the cur-

rent solution.

RouletteWheel Choose a perturbative operator probabilistically where the prob-

ability of choosing a perturbative operator is proportional to its

value/merit.

Greedy Choose a perturbative operator that has the best value.

EpsilonGreedy Choose the best perturbative operator with probability 1−ε; oth-

erwise, choose a perturbative operator at random.

Cyclic Choose perturbative operators on a rotational basis where after

every q iterations the same perturbative operator is chosen.

Continued on next page

34

Table 8 – continued from previous page

Problem Choice Description

Design Choices for Local Search

ALP

LS1 Choose a runway at random. Iterate over all planes and change

their position within the same runway. Accept first improving

moves.

LS2 Same as LS1 but accept best improving moves.

LS3 Choose two runways at random. Iterate over all planes of the first

runway and schedule them on the other runway. Accept first-

improving moves.

LS4 Same as LS3 but accept best-improving moves.

LS5 Choose a runway at random. Try all possible swaps within the

same runway. Accept first-improving moves.

LS6 Same as LS5 but accept best-improving moves.

LS7 Choose two runways at random. Try all possible swaps between

the two runways. Accept first-improving moves.

LS8 Same as LS7 but accept best-improving moves.

LS9 Optimal block procedure described in Girish (2016).

2BPP

LS1 Sort bins as in Repack1. Remove all items from every two consec-

utive bins and add them to the packing queue. Repack the items

from the queue in the current two bins with the condition that the

first item to be packed is chosen from the items that were already

in the queue before emptying the two bins.

LS2 Same as LS1 but consider every three consecutive bins.

LS3 Same as LS1 but consider every four consecutive bins.

LS4 Same as LS1 but consider every two possible bins.

P
ro

b
le

m
-in

d
e
p

e
n
d
e
n
t

VND Variable neighborhood descent as described in Hansen et al.

(2010).

RVND Same as VND but the order by which the neighborhood structures

are visited is randomly changed every time RVND is called.

SA Simulated annealing as described in Gendreau & Potvin (2010).

RCR A template can call itself with different design choices causing an

inner instance of the same template to be used as an embedded

local search within another instance.

Acceptance Criterion

P
ro

b
le

m
-In

d
e
p

e
n
d
e
n
t

AcceptAll Accept all proposals.

AcceptImproving Accept improving proposals only.

AcceptNonWorse Accept non-worsening proposals.

ThresholdAccept Accept improving proposals always. Worsening proposals are ac-

cepted if they are at most δ% worse than the current solution.

MetropolisAccept Accept improving proposal always. Worsening proposals are ac-

cepted with a probability following Boltzmann distribution.

LateAccept Accepts candidate solutions that are no worse than that solution

which “was” the current solution M iterations ago.

35

Design Choices for Variable Neighborhood Search

The basic components of the variable neighborhood search (VNS) are shake, local search and

neighborhood change. The shake component has only one design choice which generate a new

solution using the current neighborhood structure. The design choices for the local search component

of VNS is the same as the design choices for the local search component of ILS which are presented

in Table 8. The design choices for the neighborhood change component are presented in Table 9.

Table 9: Variable neighborhood search: design choices for the neighborhood change.

Problem Choice Description

P
ro

b
le

m
-in

d
e
p

e
n
d
e
n
t

Change1 If current neighborhood k leads to an improving proposal, accepts it and

returns to the first neighborhood structure k = 1; otherwise, move the

next neighborhood k + 1.

Change2 Same as Change1 but accept worsening proposals with probability p.

Change3 Same as Change1 but accept worsening proposals that are no worse than

δ% of the current solution.

Change4 Same as Change1 but move to a random neighborhood if there is no im-

provement instead of moving to the next neighborhood k + 1.

Design Choices for Memetic Algorithm

The basic components of the memetic algorithms (MA) templates are selection, crossover, mu-

tation and local search. The design choices for the local search component are the same as the ones

presented in Table 8 with the exception of recursion. Recall that for recursion, a template calls itself

causing an inner instance of the template (metaheuristic) to be used as embedded local search. As

mentioned in Section 3, for practical reasons, a population-based method is not allowed to be used

as embedded local search. Therefore, all local searches mentioned in Table 8 are available for MA

except recursion. The design choices for the components of MA are presented in Table 10.

Table 10: Design choices for the components of the memetic algorithms.

Problem Choice Description

Design Choices for Selection

P
ro

b
.-in

d
e
p

e
n
d
.

Tournament NT individuals are chosen at random from the population. The

best individual is selected for mating.

RouletteWheel The probability of selecting an individual is proportional to its

fitness.

Design Choice for Crossover

P
ro

b
.-In

d
e
p

e
n
d
.

PMX Partially Mapped Crossover. Please refer to Goldberg (1989) for

explanation.

continued on next page

36

Table10– continued from previous page

Problem Choice Description

MPX Maximum Preservative Crossover. Please refer to Mühlenbein

et al. (1988) for explanation.

OCGS Order crossover with Gene Swapping. Please refer to Davis (1991)

for explanation.

Design Choices for Mutation

P
ro

b
le

m
-in

d
e
p

e
n
d
.

MFNG1 Mutate Fixed Number of Genes: select µ genes at random and

swap their positions in the chromosomes.

MFNG2 Same as MFNG1 but differs in restricting the choice of the two

genes to be swapped to be within a window of length l.

CPG Change Preserved Genes: consider the preserved genes in both

parents and mutate each with probability Pµ.

Problem-Specific Design Choices

As mentioned in Section 3, hard-to-make design decisions can also be automated. For the

ALP, there is no such design decisions to automate. For the 2BPP, there are two major design

decisions which are packing heuristics and objective function. These design decision are made

when initializing a metaheuristic from one of the templates. For each design decision, there are

design choices which are presented in Table 11.

Table 11: Problem-specific design choices for 2BPP.

Decision Choice Description

Design Choices for Objective Function
O

b
je

c
tiv

e
fu

n
c
tio

n
Occupancy This objective function is defined as fA = N + A where N is the

number of used bins and A is the ratio of the area of the items in

the least filled bin to the total area of the bin. Note that because

0 ≤ A ≤ 1, fA favors solution with lower number of bins. Ties

are broken using A in case of two solutions with the same N in

favor for the solution with the lower value of A. This objective

function is used by Gonçalves & Resende (2013)

continued on next page

37

Table11– continued from previous page

Decision Choice Description

Structure This objective function is defined as fT = N + (1−T) where N is

the number of used bins and T is the average normalized touching

perimeter across all bins. The normalized touching perimeter of a

bin is the ratio between the sum of the perimeters shared amongst

the items and/or the bin’s sides and the sum of the total perime-

ters of all items in the bin. Note that because 0 ≤ T ≤ 1, fT

favors solution with lower number of bins and breaks ties using T

in case of two solutions with the same N in favor for the solution

with the higher value of T , i.e. solution with good packing struc-

ture. This objective function has never been used before to our

knowledge.

Design Choices for Packing Heuristics

P
a
ck

in
g

h
e
u
ristic

s

BestAreaFit Best Area Fit: pack the current item in the maximal space that

results in the least wasted area. This packing heuristic favors

packing that results in the least wasted areas.

TouchingPerimeter Touching Perimeter: pack the current item in the maximal space

which maximizes the shared perimeters between the current item

and the already-packed items and/or the bin sides. This packing

heuristic favors packing that does not trap small areas between

items.

TopRightCorner Pack the current item in the maximal space that maximizes the

distance between the top right corner of the item and that of the

bin. This packing heuristic favors compact packing.

Please note that all the maximal space data structure Lai & Chan (1997) is used to track empty

areas in the bins.

Appendix B

In this appendix we provided initial solution construction methods used for the alp and 2bpp.

Initial Solution for ALP

The initial solution for the single-point searches is created as follows. First, a random landing

sequence is created using Algorithm 4. Then, the optimal block procedure Girish (2016). is used to

generate a complete landing schedule. For multiple runway instances, the plane is assigned to the

runway that minimizes the cost. Please note that landing sequences generated by Algorithm 4 can

lead to infeasible solution in which case the algorithm is tried three times and upon the failure for

the third times, a deterministic procedure is used as in Salehipour et al. (2013). For the ma, the

initial population is comprised of the landing sequences generated by Algorithm 4.

Please note that there is a definite need for a procedure for generating random landing sequences

for the alp as our experiments confirm that a pure random generation procedure leads to infeasible

38

solutions with very high probability. Thus, we developed a novel procedure for random landing

sequence generation which is described by Algorithm 4 in which an aircraft at position i in ST is

denoted by Ai. The experiments show that RLSG generates feasible landing sequence with high

probability if L = 5 for instances with n < 500 and L = 3 for instances with sizes n ≥ 500. If 3

trials are used, the probability of generating a feasible solution in any one of the trials is very close

to 1. The probability of generating the same sequence (generating duplicates) is very close to 0.

Algorithm 4 A procedure for generating random landing sequences.
Require: Maximum window length L

1 function RLSG(L)

2 LS ← an initial landing sequence (an array filled with minus ones).

3 ST ← sort aircraft according to their target landing time.

4 i← 0

5 repeat

6 Wi ← aircraft in ST from position i to position i+L (or to position i+n if i+L > n).

7 L′i ← the number of aircraft in Wi that can be scheduled earlier than Ai.

8 W ′i ← aircraft from position i to position i+ L′i in ST .

9 if L′i = 0 then

10 LS[i]← Ai

11 else

12 for each Ak in W ′i do

13 Jk ← set of positions within the range [i, i+ L′i] that can accommodate aircraft

Ak without conflicting with any aircraft in the window W ′i .

14 j ← pick an element from Jk at random

15 LS[j] = Ak

16 end for

17 end if

18 i← i+ L′i + 1

19 until i > n

20 end function

Initial Solution for 2BPP

The initial solution for single-point searches is created using BestAreaFit heuristic presented

in Table 11. For the ma, the initial population is represented by a sequence of integers determining

the order by which the items are supposed to be packed where each item is identified by a unique

integer.

39

	Introduction
	Related Work
	Proposed Method
	Initial Population and Chromosomes
	Fitness and Selection
	Regeneration
	Interaction Scheme

	Experimental Setup
	Problem Domains
	Aircraft Landing Problem
	Two-Dimensional Bin Packing Problem

	Benchmark Datasets
	Implementation Platform

	Result and Discussion
	Aircraft Landing Problem
	Two-Dimensional Bin Packing Problem

	Conclusion

