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SYNOPSIS

Amoss is a generic equation-orientated stochastic simulation platform specifically de-

signed to facilitate the development and simulation of stochastic models, using Sasol’s

in-house MOSS methodology. In the current situation in Sasol, modelling stochastic pro-

cesses with recycle streams (feedbacks) using the MOSS methodology is a laborious task.

To simulate these models with acceptable accuracy and simulation speed the model equa-

tions were derived and ordered manually. This human input leads to long development

times and makes it hard to alter an already created model. Amoss aims to automate the

development of MOSS simulation hence the name automatic-MOSS and is an extension

of the MOSS methodology.

The automation was achieved by automatically creating the bulk of the model equa-

tions and leave only the inputs that make each model unique as user inputs. The aspects

that make each model unique were identified as the characteristics of the unit operations,

how these operational units are connected, the heuristic rules that govern how the pro-

cess is operated and the stochastic elements. Given these inputs, a stochastic model is

automatically created and ordered to the bordered lower triangular form.

The created models are simulated using Euler’s algorithm for integration, coupled with

automatic differentiation and multidimensional Newton’s method to find the roots of the

system of equations at each time step. The models created using MOSS are embarassingly

parallel, and simulation speed was increased by employing parallel processing to exploit

the decoupled nature of these simulations.

Amoss consists of all the necessary building blocks to create and simulate stochastic

simulations and provides a good platform from which improvements in usability and

expansions to the MOSS methodology can be made.

KEYWORDS: stochastic simulation, Monte Carlo, flow-sheeting, equation orientated,

equation ordering

i



SINOPSIS

Amoss is ’n generiese vergelyking-gebaseerde stochastiese simulasieplatform wat spesifiek

ontwerp is om die ontwikkeling van Sasol se MOSS-metodologie te bevorder. Soos dit tans

staan in Sasol is dit ’n moeisame taak om ’n stochastiese proses wat ’n hersirkuleer stroom

(terugvoerlus) bevat te modelleer volgens die MOSS-metodologie. Om hierdie prosesse

met aanvaarbare akuraatheid en simulasiespoed te simuleer is die model vergelykings met

die hand afgelei en ge-orden. Hierdie menslike inset het gelei tot lang onwikkelingstyd en

het die verandering van ’n bestaande model gekompliseer. Die doel van Amoss is om die

ontwikkeling van MOSS-simulasies te outomatiseer en gevolglik die naam outomatiese-

MOSS en dus is Amoss ’n uitbreiding van MOSS.

Outomatisering is bereik deur die grootste gedeelte van die model vergelykings outo-

maties te genereer en slegs die insette wat elke model uniek maak as ’n gebruikerinset

te los. Die gëıdentifiseerde gedeeltes wat elke simulasie uniek maak is die karakteristieke

eienskappe van die bedryfseenhede, die konnektiwiteit van dié eenhede, die heuristiese

reëls wat die bedryf van die eenhede bepaal en die stochastiese elemente. ’n Stochastiese

simulasie kan ontwikkel en geörden word na die begrensde laer driehoekige vorm gegewe

hierdie instette.

Die ontwikkelde modelle word gesimuleer deur Euler se algoritme te gebruik vir inte-

grasie saam met outomatiese differensiasie en multidimensionele Newton se metode om

by elke tydstap die wortels van die stelsel van vergelykings te bereken. Die modelle

wat deur die MOSS-metodologie onwikkel word is almal onafhanklik van mekaar en die

simulasiespoed is vinniger gemaak deur die simulasies in parallel te prosesseer.

Amoss bevat al die nodige boustene om stochastiese simulasies te genereer en te

simuleer en bied ’n goeie platvorm waarop verbeterings gemaak kan word ten op sigte

van die gebruiker asook die uitbreiding van die MOSS metodologie.

SLEUTELWOORDE: stochastiese simulasie, Monte Carlo, vloeidiagramstudie, verge-

lyking gebaseerde, ge-ordende vergelykings
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CHAPTER 1

INTRODUCTION

1.1 Background

Sasol is an integrated energy and chemicals industry in South Africa and leads the world

in producing liquid fuels from natural gas and coal (Meyer et al., 2011). The whole

coal-to-liquid operation can be grouped into many value chains. A value chain normally

consists of a group of interlinked plants, designed to produce a basic component which is

then distributed and converted by consumer plants into value-added products and then

supplied to their respective markets.

These value chains and their external influences are studied and improved as a unit

to ensure a global optimisation instead of considering only individual plants to prevent

local optimisation. Factors such as limited plant capacity, insufficient plant availability

and sub-optimal operational philosophies, are often the main constraints.

A value chain can become quite complex when recycle streams are present. In such a

case, a change in one part of the process can have a big impact on a completely different

part of the process. In this situation, it is difficult for the plant Subject Matter Experts

(SME) to grasp fully and even harder to quantify the cause and effect which is always

required for a capital expenditure motivation.

This is a classic case where process simulation can be applied with significant effect.

Since the model must be able to simulate plant availabilities, operational philosophies

and storage vessels, the model must be dynamic, stochastic and heuristic in nature. The

strength of such a simulation lies in the ability to quantify the impact of a change over the

whole value chain and in the process reduce the amount of subjective decision-making.

Over the years, Sasol has developed a modelling methodology, Modeling Operations

using Stochastic Simulation (MOSS) (Meyer et al., 2011), to determine the impact of

modifications on value chains.
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1.2 MOSS

The MOSS methodology was pioneered by Meyer et al. (2011). MOSS was created to

better understand the effect of variability and dynamics in Sasol’s decision-making. It

uses a discrete-event simulation approach to model how liquids and gases move through

an interactive, continuous petrochemical process at regular (discrete) intervals.

In the past, an average-based approach was used to support decisions (Meyer et al.,

2011). These models were created in Simio, spreadsheets and/or posed as linear pro-

gramming problems. These approaches lacked the statistical variability that occurs in

everyday operations as well as the non-linear and dynamic nature of the value chains.

Amoss (Automatic-MOSS) is an extension of MOSS and was created because the

current method of creating MOSS simulations is hindering their effectiveness. The points

listed in section 1.4 list the shortcomings currently experienced in way MOSS simulations

are created and are subsequently the requirements of Amoss.

1.2.1 The methodology

The list below summarises how a MOSS model is constructed (Meyer et al., 2011):

1. Translation of the process plant to a flowsheet model.

2. Translation of plant data to discrete events (incidents), probability density functions

and operating rules are fitted to data.

3. Identification of failures (cause and effect), the frequency they occur and the time

that is required to fix these failures. These failures must also feature in a MOSS

simulation and is added as a simulation input.

4. Set-up of optimisation problems like blending of fuel.

5. Validation of models against current conditions.

6. Analysis of the simulated scenarios to support decision-making.

1.3 Justification of Amoss

The existing implementation of the MOSS simulation method does not easily deal with

value chains that have tightly coupled feedback loops where resource optimisation is a

prerequisite. It was necessary to change the existing simulation method to simulate these

operations with an acceptable level of accuracy. The modification included many complex

mathematical formulae that had to be derived, programmed and tested, which added a

significant amount of model development time, resulting in a delayed, but accurate set

2



of results. The resulting time delay to develop a new model triggered the search for an

alternative set of stochastic simulation tools.

The commercial software that was considered was: AnyLogic (The AnyLogic Com-

pany, 2017) and Simul8 (SIMUL8 Corporation, 2017).

AnyLogic is a modular-orientated simulation platform with an interactive GUI. It sup-

ports stochastic variables, development of statistical models and stochastic simula-

tion. It can also accommodate system dynamics, but it cannot solve algebraic loops,

hence, mass balances can not be stated directly. Another problem with AnyLogic

is that it currently does not support multicomponent flow models.

Simul8 is a discrete event simulation platform. It is best suited to simulate discrete

rather than continuous processes. Handling continuous flow is problematic in

Simul8 (Concannon, 2006: 29)

The commercial software also has a relativity high licence fee (IM cost) and Sasol

would ideally want a solution that can be distributed to any employee that wants to

create simulations using the MOSS methodology.

The University of Pretoria was contacted and requested to submit a modeling solution.

The existing stochastic model (Streicher, 2013), the existing optimisation and steady-state

models were handed to the University as references.

1.4 Deliverables

The University of Pretoria’s liaison at Sasol (Gerrit Streicher) identified the following

points that need to be satisfied in order to make Amoss useful to Sasol’s simulation

department:

Reduction in development time. With the existing simulation method, it takes too

long to build or modify an existing simulation model of a complex value chain.

Amoss must reduce development time and not be affected by the complexity of the

model.

Generic application. Amoss must be able to model any value chain in Sasol irrespec-

tive of the combination and configuration of plants. There is also need to convert

the existing legacy models to the new modelling solution. One of the measurements

of success of Amoss will be determined by the ease with which the conversion can

be done.

Development flexibility. Once the basic model exists, a new request that requires

modification to the existing model must be easy and simple to incorporate.
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Simulation flexibility During simulation the ability to activate or deactivates a par-

ticular portion of the value chain is required. The idea is that significant changes

can coexist in a single model instead of building separate models for each scenario.

Acceptable accuracy. The simulation must be appropriately accurate to answer the

questions arising from value chain improvement scenarios. The accuracy must be

independent of the complexity of the value chain.

Fit for purpose. The modelling environment must be focused on supporting the stochas-

tic modelling methodology of Sasol and must also have the ability to add new

features.

Linear scalability. The resulting simulation must scale linearly, i.e. if the number of

equations describing the process doubles the simulation time may not increase more

than double.

Quick learning curve. A quick learning curve is required for the end user, but it is

accepted that the learning curve for a developer will take longer.1

IM Cost. Simulation packages are expensive, and it will be difficult to justify purchasing

a new simulation tool which will only partially solve Sasol’s problem. The initial

cost, as well as the annual maintenance cost, must thus be low. It is also vital that

there is continual support from the University of Pretoria to develop the model

further on the Sasol’s request.

Version control of model development. As more than one person can use the same

model at any time, the solution must allow for simultaneous modification and de-

velopment in a controlled manner.

Debug capability. The solution must be able to guide the user to quickly and easily

locate a bug in a faulty model. The solution must also be able to replicate an error

situation in the same replication and scenario in which has occurred.

Cause identification. Sometimes a model gives counter-intuitive results. It is expected

from the modeller to interpret and identify the reason for an outcome which is often

not an easy task. The model solution must be able to identify causes for results

and assist in finding bottlenecks.

Fast simulation time. The simulation time must be as short as possible as this will

allow for an increased number of replications per scenario as well as more runs

during validation and verification of the model.

1A user is a person that will use Amoss to model systems whereas a developer is a person that will
work on the Amoss project.
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Software package stability. Amoss must be stable for all cases especially when final

scenario runs are done which are predominantly automated. The model must cal-

culate a value for each variable in each time increment for all replications for all

the scenarios.

The above set of thoroughly thought requirements sat narrow but well-defined path for

the Amoss project. In the remainder of this document chapter 2 covers all the theoretical

knowledge that was required to build Amoss, chapter 3 gives an overview of the current

Amoss solution, chapter 4 and chapter 5 provide more detail on how Amoss was created

and chapter 6 evaluates Amoss against the requirements above and give suggestions on

how to proceed with the project.

5



CHAPTER 2

THEORETICAL BACKGROUND

This chapter covers all the theoretical principals that was used to build Amoss. Chapters

3 and 4 discuss how these principles are applied and it is assumed that the reader are

then familiar with these concepts.

2.1 Stochastic simulation

According to Ripley (2006: 1) simulation is the use of a model instead of experiments on

a real system (eg. physical changes to a chemical factory like increasing buffer capacity)

to produce results. The use of simulations above experiments can be due to the system

not existing yet (eg. design phase of chemical factory) or to predict observations in a

“what-if” analysis of an existing system. On a big system like a chemical factory the

ability to perform experiments are limited due to its high cost. This is why simulations

are extensively used on chemical factories to assist in decision-making and fault-finding.

A stochastic simulation is simply a model which contains a stochastic1 element. The

term Monte-Carlo simulation is sometimes used interchangeably with stochastic simula-

tion. (Ripley, 2006: 1-3)

2.1.1 The Monte-Carlo Principle

The principle of Monte-Carlo simulation is that the behaviour of a stochastic element can

be revealed by repeatedly sampling of its distribution function and observing its results.

By implementing the Monte-Carlo strategy an “artificial world” is effectively created

which mimics the real world as closely as possible. This “artificial world” can then be

used to see how these elements behave across different samples. (Mooney, 1997: 3-4)

1having a probability distribution
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The basic Monte-Carlo procedure is as follows (Mooney, 1997: 4):

1. Define an appropriate distribution function which reflects the behaviour of the

stochastic element.

2. Take samples from the distribution function in such a way that it will reflect the

desired statistical behaviour, e.g. the same sampling strategy, sample size etc.

3. Calculate the expected value (µ = E(X)) dependent on the stochastic elements.

4. Repeat steps two and three for the desired number of replications r.

5. Draw a relative frequency distribution of the resulting µr values which are the

Monte-Carlo estimates of the distribution of µ.

The Monte-Carlo method is based on the strong law of large numbers which states

that the arithmetic mean of a sequence of independently, identically distributed random

variables X converges to the expected value µ = E(X) (Korn et al., 2010: 57). That

is the more samples are drawn (experiment replications) the better the estimate µ will

become. This can be related to the range of the 95% confidence interval of µ which can

be calculated using the 2σ-rule for an approximate 95% interval in Equation 2.1

[X̄N −
2σ̄√
N
, X̄N +

2σ̄√
N

] (2.1)

where

σ̄ =
1

N − 1

N∑
i=1

(Xi − X̄N)2

(Korn et al., 2010: 59) The range of the confidence interval is proportional to 1√
N

and

therefore to decrease the range by a factor of 0.1, 100 additional experiments are required.

To illustrate the Monte-Carlo principle by Mooney (1997) the classical example to

estimate the value of π is used.

If a square of 1 × 1 is taken and a circle segment with radius 1 is drawn within the

square (seen in Figure 2.1) the probability of a point P = (y1, y2) being encircled can be

used to estimate π when y1 and y2 are sampled from a uniform random distribution

Let C be the collection of all the points which are encircled and Xi = 1 when Pi ∈ C.

The probability that Pi is within C (P(Pi ∈ C)) is the area the circle segment encircles in

the square divided by the total area of the square. Equation 2.2 shows how the P(Pi ∈ C)

was calculated

P(Pi ∈ C) =
π
4
r2

r2
=
π

4
(2.2)

This is only true because Pi has the same probability to be anywhere within the square.

The fraction of the square encircled by the circle segment is π
4

and therefore the probability

of Pi being encircled is also π
4
.
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Figure 2.1: 1x1 square with a circle segment with radius 1.

The steps by Mooney (1997)

1. The distribution that is chosen for this simulation is the uniform random distribu-

tion.

2. Two variable y1 and y2 was sampled form the distribution at every experiment.

3. The experiment will be conducted for N = 100000.

4. The estimate for π (µ) is calculated by µ = 4
N

∑N
i=1(Xi) (Korn et al., 2010: 61).

5. The frequency diagram for the estimates µ was drawn in Figure 2.2.

The convergence of µ is plotted in Figure 2.2. See how µ moves closer to the true

value of π as the number of experiments increase.

2.1.2 Discrete event simulation

Discrete event simulation is used to model the behaviour of a system in a variety of

applications like production, scheduling, traffic and many more. Discrete event simulation

consists of two main parts (Kroese et al., 2011: 283):

System state: The set of variables or parameters that are required to describe the

system.

Event: An instantaneous occurrence that may change the system state. The event con-

sists of the event time which is the time when the event occurs and the event type

identifying how the event affects the system state after the event time.
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Figure 2.2: Convergence of µ to π for the first 500 experiments.

In discrete event simulations, the system is only observed at the event times. Between

event times the system must behave in a deterministic way. Discrete event simulations

require an internal timekeeping mechanism called a simulation clock to advance the sim-

ulation time from one event to another. This clock is necessary because of discrete event

simulation’s dynamic nature. An event list is used to keep track and maintain all the

pending events in chronological order. The event list always has the most imminent event

at its head. (Kroese et al., 2011: 283)

At the start of the simulation, the events are added to the event list, and the first

event is executed. Next, the simulation clock is advanced and the next imminent event

executed and removed from the event list. The advance of the simulation clock, execution

and removal of events are repeated until a stop criterion is reached (fixed simulation time

or last event simulated). (Kroese et al., 2011: 287 - 285)

When implementing discrete event simulation, two approaches can be followed (Kroese

et al., 2011: 284):

� Event-orientated approach: Separate subroutines are executed for every event, and

the result updates the system state. In this approach, the purpose of the main

program is to progress through the event list.

� Process-oriented approach: An event is a deterministic sub-processes rather than a

single stochastic event. In the process-orientated approach, a sub-process is inter-
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rupted at the event time, and a different sub-process is activated. The event list

contains a set of sub-processes.

2.1.3 Why use stochastic simulation

Models are used to help in understanding how a real-life process behaves, to predict the

behaviour of a process in the future or to aid in decision-making (Ripley, 2006: 3). To

make use of a model one has to choose if model analysis or simulation will solve the

problem (Ripley, 2006: 3):

Analysis: Make use of mathematical analysis of the model to try and understand the

behaviour of the model. This method becomes increasingly more difficult the more

complex the model becomes.

Simulation: Experiment with the model by changing some parameters and observe how

it affects the model.

The choice between simulation and analysis depends on the purpose of the model. As

a general rule simulation is used to answer “what-if” questions and to aid in decision-

making and analysis is usually used to understand the model. (Ripley, 2006: 3)

A distinction can also be drawn between two different models: mechanistic or conve-

nient. Stochastic models are usually convenient whereas physical models are mechanistic

and deterministic. Well-defined complex physical models are difficult to simulate due to

the high computational cost. By making use of a stochastic model, a complex model can

be reduced to a convenient model, and the convenient model can be simulated instead.

(Ripley, 2006: 3)

In other cases, the choice between a deterministic or a stochastic model is made for

you. An example in the petrochemical industry is that the failure rates in an opera-

tional unit or their equipment are stochastic in nature. Critical events like pump and

compressors failures or even shut-down events like fires can be simulated by sampling the

stochastic variables from a distribution which represents these events.

2.2 Graph theory basics

A graph is denoted by G and G is a pair of sets, G = (V,E), where E is the 2-element

subset of V (E ⊆ [V ]2). The set V is known as the vertices or nodes of the graph G and

E the edges. A graph can be represented graphically shown in Figure 2.3. An edge is

named by an ordered pair of vertices for a directed graph or an unordered pair of vertices

for an undirected graph, eg. {x, y} is written as xy or yx in an undirected graph. A

trivial graph G is an empty graph (G = (∅, ∅)) or a graph with a single vertex. For

practicality, a graph will always be assumed to be non-trivial. (Diestel, 2000: 2)
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A directed graph D is a graph with a pair (V,E) together with the maps init : E → V

and ter : E → V . The maps init and ter assigns an initial (start) vertex and terminal

(end) vertex for ∀e ∈ E. The edge e is said to be directed from init(e) to ter(e). (Diestel,

2000: 25)

3

6

2

5

4

1

7

Figure 2.3: Graphical representation of a graph G with V = {1, 2, 3, 4, 5, 6, 7} and E =
{{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}} adapted form Diestel (2000: 2)

Two vertices x, y are said to be adjacent or neighbours if the edge xy forms part of G,

e.g. vertices 1 and 2 in Figure 2.3 are adjacent because the edge 1, 2 exists but vertices 1

and 3 are not adjacent. The two non-equal edges e and f (e 6= f) are adjacent if they have

an end in common, e.g. edge 1,2 and edge 1,5 in Figure 2.3. A set of edges or vertices

are called independent if none of the elements are adjacent, e.g. an independent vertex

set in Figure 2.3 will be {1, 3, 6, 7} and edge set will be {{1, 2}, {3, 4}, {5, 7}} (Diestel,

2000: 3)

A path is a non-empty graph P with P = (V,E) given that

V = {x0, x1, ..., xk} E = {x0x1, x1x2, ..., xk−1xk}

and xi are all distinct. A path P can also be represented as P = x0x1...xk. The length,

k, of a path is equal to the number of edges in the path. (Diestel, 2000: 6-7)

A cycle is a path that starts and ends at the same vertex. If the path P = x0...xk−1

has a length larger or equal to three (k ≥ 3) then the graph C := P + xk−1x0 is called a

cycle.(Diestel, 2000: 6-7)

A simple cycle does not have any repeating vertices or edges. Two or more simple

cycles are called distinct if non of the cycles in question are a cyclic permutation of the

one another (Baharev et al., 2016a).
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2.2.1 Bipartite graphs

The graph B = (V,E) is called bipartite if the vertex set V can be divided into two

classes. Vertices in the same class may not be neighbours with any of the vertices of

the same class but only to vertices in the other class. The graphical representation of a

bipartite graph is shown in Figure 2.4. A graph is considered bipartite if and only if it

contains no odd cycles. (Diestel, 2000: 14-15)

2

41

5

63

Figure 2.4: Graphical representation of a bipartite graph G with V = {1, 2, 3, 4, 5, 6} and
E = {{1, 5}, {2, 5}, {2, 6}, {3, 4}}

Matching in bipartite graph

A matching M is a set of independent edges in the graph B = (V,E). M is a matching

of U ⊆ V if every vertex in U is incident with an edge in M . The vertices in U are said

to be matched by M whereas the vertices not incident with the edges in M , i.e. V − U ,

are unmatched. (Diestel, 2000: 29)

A maximal matching is the edge set M ′ with the highest number of matches for B

were |M ′| ≥ |M | for any matching M , where |M | is the number of edges in M (Baharev

et al., 2016a). A complete matching is a matching where all the vertices (V ) are matched.

2.3 Optimisation

Optimisation is used to solve problems over a large range of fields from engineering

to finance. Optimisation is used to assist in decision-making where the answer is not

necessarily intuitive. A typical optimisation problem can be posed as a system represented

by a set of equations or experimental data with a single performance criterion subjected

to various constraints. This criterion can be to reduce operational costs, increase system

performance or to provide a compromise between the two. The goal of optimisation is

to find values of the variables in a system that yield the best value of the performance

criteria. (Edgar et al., 2001: 4-5)
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2.3.1 Formulation of an optimisation problem

To formulate an optimisation problem a model representing the system under study

together with a suitable performance criterion2 is required. Every optimisation consists

of three essential categories:

1. At least one objective function.

2. Equality constraints.

3. Inequality constraints.

(Edgar et al., 2001: 14)

The mathematical way an optimisation problem is presented is shown in Equation 2.3

Minimise: f(x) objective function (2.3a)

Subject to: h(x) = 0 equality constraints (2.3b)

g(x) ≥ 0 inequality constraints (2.3c)

which contains all three essential categories of an optimisation problem (Edgar et al.,

2001: 16).

Consider the following definitions used in optimisation:

Feasible solution of the optimisation problem is a set of variables that satisfy the equal-

ity and inequality constraints.

Optimal solution is the set of values that simultaneously satisfy the equality and in-

equality constraints and provides an optimal value of the objective function. The

optimal solution is not guaranteed to be unique.

Feasible region is the region where the equality and inequality constraints are satisfied.

All feasible solutions and ultimately the optimal solution(if it exists) is found in this

region. Figure 2.5 is a graphical illustration of the feasible region.

In optimisation the degrees of freedom (DOF) of the system under study is important

and will determine if an optimal solution can be found. A DOF analysis separates the

problem into three categories (Edgar et al., 2001: 66-67):

1. DOF = 0: The problem is fully determined because the number of independent

equality constraints is equal to optimisation variables. In this case, the problem is

no longer one of optimisation but simulation.

2Also known as an objective function.
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Figure 2.5: Illustrating the concept of feasible region. The dashed lines show the sides where
the inequalities are violated. The heavy line shows the feasible region. (Edgar
et al., 2001: 15)

2. DOF > 0: The problem is undetermined, and the number of optimisation variables

are more than the independent equality constraints. In undetermined systems, at

least one variable can be optimised.

3. DOF < 0: The problem is overdetermined, and the number of optimisation vari-

ables are less than the independent equality constraints. For overdetermined prob-

lems, the set of equality constraints cannot be satisfied. Some constraints can,

therefore, be relaxed. Another option would be to find a solution closest to the

feasible region (Edgar et al., 2001: 16).

Edgar et al. (2001: 19) lists four steps to formulate an optimisation problem and two

steps to solve it:

1. Analyse the system and list all the variables of interest.

2. Determine the criteria for optimisation and formulate the objective function in

terms of the variables identified in step 1 together with its coefficients.

3. Using mathematical expressions develop a system model that relates the input-

output relation between variables its associated coefficients. In this step add the

equality and inequality constraints.
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4. If the problem formulation is too large subdivide it into smaller manageable parts

or simplify the objective function or model.

5. Use a suitable optimisation technique to solve the optimisation problem.

6. Check the answer and examine the sensitivity of the result to changes in the problem

coefficients or assumptions.

It must be noticed that steps 1-4 (problem formulation) are dependent entirely on

the developer of the optimisation problem. If the optimisation problem is not formulated

correctly, difficulty and problems can be expected in step 5. Today there are a variety of

optimisation packages available that can perform steps 5-6, but if the formulation is not

done correctly, the well-known saying of “garbage in, garbage out” can be applied.

2.3.2 Difficulties of optimisation

Some optimisation problems are easier to solve than others. Objective functions and

constraints that are all linear can be solved more easily than non-linear problems. The

advantage of linear problems is that it is explicitly known that the solution is unique if

it exists.

Edgar et al. (2001: 26-27) lists five common situations in optimisation that can cause

failure in the calculation:

1. The objective function or the constraints have finite discontinuities in the contin-

uous parameter values. Discontinuities are common in objects having fixed prices.

Take a desktop computer as an example, the price of the CPU is fixed and jumps

discontinuously between different models while the required processing power (mea-

sured in GHz) can be continuous.

2. The objective function or the constraints are non-linear. Non-linearity is almost

always present.

3. The variables in the objective function or the constraint functions may have strong

interactions with one another. For an example the objective function f(x1, x2) =

x1 × x2 prohibits the determination of a unique value for x1 and x2.

4. The objective function or constraints may exhibit nearly “flat” behaviour in some

regions and exponential behaviour in other. An illustration of this behaviour is

displayed in Figure 2.6.

5. The objective function may have many local optima where a global optimum is

required. An illustration of such a function is shown in Figure 2.7.
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Figure 2.6: The Easom function exhibit a large flat plane with a steep exponential.

2.3.3 Optimisation methods

There are a variety of different approaches to solving an optimisation problem which will

be briefly discussed with the focus on the branch and bound (BB) method because it is

used in Amoss. The two principal optimisation methods are: 1) methods that rely on

function values only (zero order) and 2) techniques that make use of gradient information

The zero order techniques evaluate the objective function and check the results to

determine the direction or area to search for the optimum. Under some circumstances,

these methods are effective but are mostly ineffective compared to methods exploiting

the gradient information. Some of these zero-order methods are:

� The random search method which randomly assigns values to the optimisation

variables compares the current position to the best previous position and updates

the best value when a better solution is found (Edgar et al., 2001: 183).

� The grid search method forms a grid of values around a reference point. The

point with the most optimal value becomes the next reference point, but now the

grid is condensed (consisting of the same number of evaluations but in a smaller

are) (Edgar et al., 2001: 183).
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Figure 2.7: The Ackley function showing many local minimums between a global minimum.

� The simplex method selects points at the vertices of the simplex to evaluate the

objective function. In 2D space, the simplex is an equilateral triangle, and in 3D

space, it becomes a regular tetrahedron and so on. In the simplex method the

search direction is determined by moving away from the vertex which has the least

optimal value. (Edgar et al., 2001: 185)

The other methods make use of first or second order derivative information to de-

termine a search direction in which to approach the optimum. Some of these methods

are:

� The steepest decent method uses first-order derivatives to find the direction of

steepest descent for minimisation and assent in maximisation at the current iterative

point. A step is made in that direction, and the gradient is evaluated again to find

a new direction. (Edgar et al., 2001: 190)

� Newton’s method makes use of the second order derivatives to determine a search

direction. It is analogous to the steepest descent method if the steepest descent is

interpreted as a linear approximation of the objective function. Newton’s method

makes use of the second order derivatives and makes a quadratic approximation of
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the objective function. The minimum of the approximated quadratic function is

determined which serves as the new direction. The advantage of this method, as

opposed to steepest descent, is that it can account for the curvature of the objective

function. (Edgar et al., 2001: 197)

2.3.4 Branch and bound

The branch and bound (BB) method is a technique that is used to solve mixed integer

non-linear programming (MINLP) problems which contain both continuous and integer

variables. The method involves the relaxation of the integer constraints and making

these variables continuous, e.g. a binary3 variable y is relaxed to be a continuous variable

bounded between 0 and 1 (0 ≤ y ≤ 1). The relaxed problem is called the NLP relaxation

of the MINLP (Edgar et al., 2001: 355, 362).

BB starts by solving the relaxed NLP relaxation using an NLP solver (Edgar et al.,

2001: 355, 362). If all the discrete variables in the NLP relaxed problem have integer

values, the NLP relaxed problem also solves the MINLP. If one or more of the binary

variables have a fractional value the next step in BB is to start branching and create two

NPL sub-problems by fixing one of the fractional variables to 0 in the one sub-problem

and 1 in the other (see Edgar et al. (2001: 358) for a non-binary example). If one of

the sub-problems have an integer solution then a solution to the MINLP is found, and

that branch needs no further investigation. If a branch contains a fractional value for a

discrete variable that branch may need further branching.

To decide whether a branch may need further branching depends on the best solution

of the MINLP at that point. If the NLP sub-problem has a better value for the objective

function than the best MINLP, then it warrants further branching. When the NLP sub-

problem has a worse value for the objective function, it needs no further branching. The

value for the objective function of an NLP will not increase when enforcing the discrete

constraint and will always lead to a worse value.

To explain the BB method better consider the mixed integer linear programming

(MILP) problem in Equation 2.4 and its solution in Figure 2.8

Maximise: f = 86y1 + 4y2 + 40y3 (2.4a)

subject to: 774y1 + 76y2 + 42y3 ≤ 875 (2.4b)

67y1 + 27y2 + 53y3 ≤ 875 (2.4c)

y1, y2, y3 = 0, 1 (2.4d)

3Either 0 or 1
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Figure 2.8: Decomposition of the optimisation problem in Equation 2.4 using the branch and
bound method (Edgar et al., 2001: 356)

The relaxed problem was solved in node 1 with y2 a fractional value therefore branch-

ing was required. In node 2 y2 was fixed to 0 which resulted in a solution to the MILP

problem with f = 126.0 and a possible optimal solution. In node 3 y2 was fixed to 1 but

y1 is fractional and thus not a solution to the MILP. The objective function of node 2

has a value of f = 128.1 and is higher than the best MILP solution of 126.0 and requires

further branching. In node 4 y1 was fixed to 0 and resulted in a solution to the MILP

with f = 44.0 but the objective function value is worse than in 126.0 and was discarded

as a possible optimal solution. In node 5 y1 is fixed to 1 and resulted in f = 113.8 with y3

fractional. The objective function value of node 5 is worse than in node 2 and therefore

node 5 needs no further branching. The result in node 2 is the solution to the MILP.

Noticed that after every branching the value of the objective function was always

worse than the node it branched form.
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Disjunctive programming

Disjunctive programming is a special case of MINLP problem (Edgar et al., 2001: 371).

A disjunctive constraint is a type of constraint where a variable has two or more valid

regions separated by invalid regions. An example would be a variable x with the constraint

x ≤ 0 or x ≥ 1 (the region (0, 1) is invalid). This type of constraint is known as a logical

condition, and exactly one of these conditions must be true.

Disjunctive programming problems are solved by reformulating it as a MINLP problem

by introducing binary variables using the big-M approach (Edgar et al., 2001: 372). The

big-M approach uses an arbitrary large constant denoted by M to switch between different

disjunctive constraints.

An optimisation problem with the disjunctive constraint of x above can be reformu-

lated in Equation 2.5 by introducing new variables y1 and y2 and an equality constraint

in Equation 2.5b

Minimise: f(x) (2.5a)

subject to: y1 + y2 = 1 (2.5b)

x− 1 ≥ −My1 (2.5c)

x ≤My2 (2.5d)

y1, y2 = 0, 1 (2.5e)

The problem in Equation 2.5 can now be solved as an MINLP using BB. The con-

straint in Equation 2.5b ensures that only y1 or y2 is 1 at any given point which in effect

“switches” constraints on and off. With M sufficiently large if y1 = 0 then constraint 2.5c

is enforced and 2.5d is switched off. This is achieved by making constraint 2.5d “easy” to

be satisfied because M is large whereas constraint 2.5c is one of the original constraints

for x. The same applies if y2 = 0 but now constraint 2.5d is enforced.

2.4 Flowsheeting simulation

Flowsheeting is the calculation of steady-state heat and mass balances and costing cal-

culations of a chemical process. In flowsheeting a process block diagram (flowsheet) is

analysed together with the complete system characteristics. This analysis does not in-

clude any dimensions, structural design parameters, instrumentation or piping network

system. Flowsheeting simulation involves the analysis of the flowsheet by creating the

necessary equations describing the mass and heat flow through the process given equip-

ment parameters (reactor conversion and separator split ratios) and system inputs to

calculate the outputs of the flowsheet. The principal approaches to flowsheeting simula-
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tion are the sequential modular and equation orientated approaches. (Ludwig & Coker,

2007)

2.4.1 Equation orientated vs modular orientated strategy

An equation orientated strategy gathers all the equations of the flowsheeting4 problem in

a single large set of algebraic equations and attempts to solve the equations simultane-

ously using multidimensional root-finding software. A modular strategy attempts to solve

modular units sequentially by tearing the recycle streams and iterating to convergence.

(Barton, 2000)

The equation orientated strategy consists of the following steps:

1. Equations and variables are created at the modular level even though it is not used

to simulate the process.

2. These equations and variables are combined into one large system of non-linear

equations.

3. Some variables are specified to make the degrees of freedom (DOF) of the entire

system zero.

4. The system of equations are solved simultaneously by using general root-finding

software.

Advantages and disadvantages of the equation orientated approach

The equation orientated approach has many advantages over the modular approach and it

is more suitable for a variety of different modelling requirements, even outside pure flow-

sheeting problems. The equation orientated approach has also received much academic

attention, resulting in improved methods for general root-finding (Barton, 2000).

The advantages of equation based strategies is listed below (Barton, 2000):

� It is much more efficient. Although modular approaches are efficient at solving

unidirectional problems (equation orientated approaches can take even greater ad-

vantage of such systems), it becomes much more computationally expensive when

recycles or design specifications are introduced, due to the high increase in required

passes through the flow-sheet because of the nested strategies used in converging

the tear steams.

� The barrier between simulation and design specifications are effectively removed.

By specifying the design requirements in step 3 of the equation orientated strategy,

4Flowsheeting is the steady-state simulation of a process(Shacham et al., 1982)
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the design specifications can be calculated. Similarly, by specifying the design spec-

ifications, the outputs in a simulation can be calculated. In a well-posed problem,

the computational load stays the same in both these situations unless the linearity

or the block decomposition are significantly changed between the two specifications

sets.

� It is much easier to extend or modify existing model libraries because the model

is simply viewed as a set of equations and variables. All equations are handled

in the same manner and therefore the libraries can simply incorporate additional

equations describing new operational units or modifying existing units. Whereas

in a modular approach a subroutine with a system of equations and an embedded

solution procedure may be required.

� The primary advantage of this strategy is its capability to be extended in a variety

of different modelling requirements which includes design, flowsheeting simulation,

optimisation and dynamic simulation. This versatility is due to the architecture of

this method making it possible to interface with the model using different subrou-

tines.

� The debugging of certain model formulation errors is possible even in situations

where a poorly posed problem is not localised to a single modular unit but combi-

nation of different equations. The debugging of non-localised (not on modular level)

problems is achieved by analysing the entire problem for errors such as singularities,

which is not possible in the modular approach.

The advantages of the equation orientated approach seems like it is overwhelmingly

superior, but it is not without its drawbacks. The disadvantages of the equation orientated

approach are listed below (Barton, 2000):

� The general purpose root-fining software is not as robust and reliable as the sequen-

tial modular methods.

� It has a larger demand for computer resources, in particular memory (although the

restriction on these hardware pieces has essentially been eliminated with the wide

availability of powerful machines).

Multidimensional Newton’s method

At the heart of the equation orientated strategy is the multidimensional root-finding

software. The ability to find the roots of a multidimensional system of equations is a

key to this strategy. One method to finding the roots of a multidimensional system of

equations is to use Newton’s method. (Barton, 2000)
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Newton’s method approximates f(x) = 0̂ where x is a vector of the independent

variables and 0̂ the zero vector using a first order Taylor expansion of f .

f(x) ≈ f(a) + J |a · (x− a) (2.6)

where a is the point around which the Taylor expansion is applied and J |a is the Jacobian

matrix of f evaluated at a. (Barton, 2000)

The goal of Newton’s method is to find x∗ that satisfy the equality f(x∗) = 0. With

rearrangement of Equation 2.6, Equation 2.7 shows an iterative method to find x∗ known

as Newton’s method

xk+1 = xk − J |−1
xk
f(xk) (2.7)

and when k is sufficiently large xk+1 u x∗. (Barton, 2000)

With reference to Equation 2.7 the algorithm to the multidimensional Newton’s

method is given below:

1. k = 0 (x0) the initial guess.

2. Evaluate f(xk).

3. Check for conversion using some stopping criteria eg. if |f(xk)| ≤ ε then stop.

4. Evaluate J |xk .

5. Get J |−1
xk

.

6. Calculate xk+1 using Equation 2.7.

7. k = k + 1. Repeat from step 2.

(Barton, 2000) This iterative multidimensional Newton’s method converges rapidly close

to the solution.

In modern root-finding software the basic Newton method as described above is mod-

ified in several ways:

� Any updated xk+1 must obey some physical bounds on the variables of x and only

a fraction of the full Newton step can be applied to ensure that these bounds are

not violated and a term in Equation 2.7 is modified to

xk+1 = xk − αJ |−1
xk
f(xk) (2.8)

where 0 ≤ α ≤ 1.

� The system of equations to solve in flowsheeting problems are usually sparse and

appropriate sparse linear equation solvers are used to solve the linear equation

J |a · (x∗ − a) = −f(a) in step 5 instead of calculating the inverse directly.
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� Modifications to the iterative process is required if the Jacobian becomes numeri-

cally singular at one or more rows and the inverse J |−1
xk

can not be calculated.

(Barton, 2000)

2.5 Equation tearing

The purpose of tearing algorithms is to reduce the amount of computational time that is

required to solve a system of equations. This is achieved by ordering the original system

of equations f(x) = 0,where f : Rn → Rm, and reducing it to a smaller (usually much

smaller) system H(z) = 0. This is achieved by reordering the equation vector f and the

variable vector x in Equation 2.9 using permutation matrices P and Q[
g

h

]
= Pf,

[
y

z

]
= Qx (2.9)

so that most of the variables y can be solved sequentially. The transformation must

produce equations gi(y, z) = 0 (equation i in equation vector g) that can be rewritten in

an explicit form (shown in Equation 2.10)

yi = g̃i(y1:i−1, z) (2.10)

using appropriate symbolic transformations. It is important to note that the transformed

equation g̃i contains only variables z and a row slice of the variable vector y from the

index 1 to i− 1 (y1:i−1). (Baharev et al., 2016a)

Given a reordering, f(x) = 0 can be rewritten in Equation 2.11

g(y, z) = 0 (2.11a)

h(y, z) = 0 (2.11b)

The requirement for Equation 2.10 is that it must be able to transform g(y, z) =

0 explicit in yi. This means that g(y, z) = 0 can be transformed to y = g̃(z). By

substituting g̃(z) for y in Equation 2.12a

h(y, z) = 0 (2.12a)

h(g̃(z), z) = 0 (2.12b)

H(z) = 0 (2.12c)

results in Equation 2.12c which is usually a much smaller system to solve. (Baharev

et al., 2016a)
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To minimise the number of variables that need to be guessed is the same as maximising

the number of variables solved through assignment (making the g vector as large as

possible). The assumption is usually made that a reduction in the number of variables

that need to be guessed z will lead to a reduction in computational time. The time

required to solve a system is dependent on many factors, but it would be too difficult to

minimise solving time directly, hence the assumption. However, there no guarantee that

this reduction will lead to lower computational time and it is even possible for it to lead

to an increase in computational time (Baharev et al., 2016a).

2.5.1 Identifying feasible assignments

If equation i in f (fi(x) = 0) can be solved symbolically for variable j in x (xj) and the

solution is unique, explicit and numerically stable then, and only then, can the equation

variable pair (i, j) represent a feasible assignment. The more feasible equation variable

pairs can be identified, the more flexibility there is in finding the optimal tearing order.

When identifying feasible assignment pairs Baharev et al. (2016b) follows a conserva-

tive approach and any assignment pair that does not satisfy the three conditions (unique,

explicit and numerically stable) for a feasible assignment is not considered. (Baharev

et al., 2016b)

Unique and explicit solutions

Baharev et al. (2016b) uses Sympy (Certik et al., 2008) to solve the equations symbolically.

A variable is only considered as a feasible assignment if Sympy returns one explicit

solution5. Consider Equation 2.13 for an example

x1 + x2 × x3 = 0 (2.13)

When Equation 2.13 is solved for x1, x2 and x3, respectively, Sympy will produce the

results in Equation 2.14

x1 = −x2 × x3 (2.14a)

x2 =
x1

x3

(2.14b)

x3 =
x1

x2

(2.14c)

All three the equations (Equation 2.14a to Equation 2.14c) are explicit and unique

and the equation variable pairs are considered as candidates for feasible assignments (it

needs to be proven that it is numerically stable) (Baharev et al., 2016b).

5Sympy is a mature symbolic-math library and if a closed form solution exists Sympy often finds it
(Baharev et al., 2016b)
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Not all equations that have an explicit solution are unique. Equation 2.15 is an

example of such an equation

x2
1 + x1 × x2 − 1 = 0 (2.15)

By solving Equation 2.15 for x1 will result in Equation 2.16

x1 = −x2 +
√
x2

2 + 1 (2.16a)

x1 = −x2 −
√
x2

2 + 1 (2.16b)

The two results in Equation 2.16 are explicit but are not unique because of the two

possible solutions and thus the variable equation pair is not considered for a feasible

assignment. (Baharev et al., 2016b)

Some equations do not have a closed form solution, or Sympy fails to find one (on a

practical level it is the same as not having a closed form solution), and these equation

variable pairs are also not considered as feasible assignments (conservative approach)

(Baharev et al., 2016b).

Identify numerically stable solutions

Examples of a numerically unstable solutions would be Equation 2.14b and Equation 2.14c,

if x2 and x3 are allowed to be zero resulting in zero division. Baharev et al. (2016b) as-

sumes that all the variables have reasonable (not big-M see section 2.3.4) lower and

upper bounds. To check for numerically stable assignments Sympy’s interval arithmetic

implementation was used. Interval arithmetic is a cheap computational way to obtain

a guaranteed lower and upper bound on the range of a function over the domain of its

variables. Guaranteed here means that the true lower and upper bound (if a bound is

found) will always be included in the result but the result is not necessarily tight, and

the resulting lower and upper bound may be far from the true bounds. To illustrate this

point three examples are considered (Baharev et al., 2016b):

Example 1 When the equation f(x1, x2) = x1−x2
x1+x2

with x1 ∈ [3, 9] and x2 ∈ [1, 2] is

evaluated with interval arithmetic the resulting range is [0.09, 2.0]. The true

range is [0.2, 0.8]. The obtained range contains the true range but also over

estimates it.

Example 2 When the equation f(x) = 1
x2−x+1

with x ∈ [0, 1] is evaluated with interval

arithmetic the resulting range is [0.5,∞]. The true range is [1, 0.75] and

again the true range is included but grossly over estimated but when f is

rewritten as g(x) = 4
(2x−1)2+3

and f(x) = g(x) evaluating g(x) with interval

arithmetic obtains the true range. This shows the result of interval arithmetic

is dependent on how a function is presented.
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Example 3 When the equation f(x) = log(x) with x ∈ [−1, 1] an exception is raised

stating that “logarithm of a negative number” was encountered.

A solution is considered numerically stable if and only if the interval arithmetic eval-

uation did not raise any exceptions and resulting range r falls within the bound [−M,M ]

(r ⊆ [−M,M ]) with M = 1015 as a default bound. Therefore, as long as the variables

are within their stated bounds performing a floating-point arithmetic will not fail due to

zero division of illegal function arguments errors. (Baharev et al., 2016b)

2.5.2 Incidence matrix

Tearing algorithms almost always start with the incidence matrix or a representation

thereof. The incidence matrix is essentially a mapping of what variables are present in

each equation. The primary structural properties of a system of equations is located in

the pattern of the non-zero entries, and an incidence matrix makes it possible to represent

these entries (Barton, 1995).

Equation 2.18 (Barton, 1995) is an example of a system with five equations and five

variables. Equation 2.17 is the corresponding 5× 5 incidence matrix of Equation 2.18.

[
A
]

=



x1 x2 x3 x4 x5

f1 1 1

f2 1 1 1 1

f3 1 1 1

f4 1 1

f5 1 1 1

 (2.17)

The rows of an incidence matrix represent the equation in the system, and the columns

represent the variables. The matrix is filled by allocating a 1 to every index ij where the

equation in row i contains within it the variable in column j. All the blank unallocated

entries are zero and are called the zero entries.

f1(x) = x1 + x4 − 10 = 0 (2.18a)

f2(x) = x2
2 × x3 × x4 − x5 − 6 = 0 (2.18b)

f3(x) = x1 × x1.7
2 × (x4 − 5)− 8 = 0 (2.18c)

f4(x) = x4 − 3x1 + 6 = 0 (2.18d)

f5(x) = x1 × x3 − x5 + 6 = 0 (2.18e)

The incidence matrix can also be represented as a bipartite graph in Figure 2.9.
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The graph is constructed by making a single vertex for all the rows and columns in

Equation 2.17. Edges are created connecting all the row vertices to the column vertices

if there is a non-zero entry (Barton, 1995).

Figure 2.9: The incidence matrix in Equation 2.17 represented in a bipartite graph.

2.5.3 Block triangular decomposition

The block lower triangular decomposition is a special case of the Dulmage-Mendelsohn de-

composition when the incidence matrix is square and structurally non-singular (Baharev

et al., 2016a). Amoss strictly performs simulations and requires that the incidence matrix

is at least square. If the matrix is not square the DOF is not zero and the simulation

may not continue.

The block lower triangular decomposition method uses the graph representation of the

incidence matrix to identify subsystems of equations that must be solved simultaneously.

The first task is to identify an output set assignment. The output set assignment

assigns a single variable to a unique equation. Take the equation x1 = f(x2) as an

example. In this equation x1 is the output set assignment to the equation f(x1, x2) = 0

(Barton, 1995). Equation 2.19 shows an output set assignment for the system of equations

in Equation 2.18
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[
A
]

=



x1 x2 x3 x4 x5

f1 1 1

f2 1 1 1 1

f3 1 1 1

f4 1 1

f5 1 1 1

 (2.19)

The output set assignment is not unique and in Equation 2.19 the assignment to f1

could also have been x4 and as a result the assignment to f4 will be x1. The assignment

to f2, f3 and f5 will remain the same.

A matching in the bipartite representation of the incidence matrix is similar to an

output set assignment (Barton, 1995). Therefore, a maximal matching algorithm can be

used to identify an output set assignment automatically. For this strategy to work the

system of equations must adhere to two conditions: the number of equations and variables

must be equal (fully determined system), and all the equations must be independent.

When these conditions are met, it ensures that the maximal matching will also be a

perfect matching which produces a valid output set assignment.

Once the output set assignment is obtained by obtaining the perfect matching in the

bipartite graph an additional directed graph is created by the following steps (Barton,

1995):

1. Create a directed graph with a vertex for each row in the incidence matrix.

2. Start walking through the matched bipartite graph by staring at a row vertex and

walking along the matched edge. This edge will lead to a column vertex. From that

column vertex identify all the row vertices connected to the column vertex except

the vertex connected through the matched edge.

3. In the directed graph add directed edges from the initial row vertex in step 2 to all

the other row vertices identified in step 2.

4. Remove the matched edge from the bipartite graph.

5. Repeat steps 2-4 until there are no matched edges left in the bipartite graph.

Figure 2.10 shows the resulting directed graph of Equation 2.18. The directed graph is

used to identify the strongly connected components. The order to solve the subsystems of

equations is from the least strongly connected components to the most strongly connected

components. All the vertices in strongly connected component set need to be solved

simultaneously. (Barton, 1995)
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Figure 2.10: Directed graph created from Figure 2.9 using the list described above.

For Figure 2.10 the strongly connected components listed from least to most is {f1,

f4}, {f3} and {f2, f5}. This means that f1, f4 should be solved simultaneously first then

f3 and then f2, f5 are solved simultaneously afterwards. The permuted incidence matrix

from Equation 2.17 is shown in Equation 2.20

[
B
]

=



x1 x4 x2 x3 x5

f1 1 1

f4 1 1

f3 1 1 1

f5 1 1 1

f2 1 1 1 1

 (2.20)

2.5.4 Bordered lower triangular tearing

It is common practice to perform a block lower decomposition first and then apply tearing

to the irreducible6 blocks on the diagonal, but this can lead to suboptimal results. It is

possible to achieve better results by performing tearing directly to the original incidence

matrix (Baharev et al., 2016a).

Figure 2.11 shows an example of a small system that was torn by block lower triangular

decomposition first and then tearing of the irreducible blocks against an optimal tearing

algorithm performed directly on the original incidence matrix. Figure 2.11 displays the

incidence matrices in an alternative way where all the coloured blocks represent a 1 in the

incidence matrix and the grey blocks are the variables that needs to be guessed. Notice

that in Figure 2.11 optimal tearing requires only one variable to be guessed to solve the

system whereas the block lower triangular tearing requires two variables.

Baharev et al. (2016b) developed an optimal tearing as well as a custom branch and

6Irreducible in this section means that the blocks from the block lower decomposition cannot be
reduced further by applying the Dulmage-Mendelsohn decomposition.
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Figure 2.11: Left: Block lower triangular decomposition first and then tearing on the irre-
ducible blocks. Right: Direct tearing of the incidence matrix. The variables that
need to be guessed are shown in grey. (Baharev et al., 2016a)

bound algorithm which performs tearing on the original incidence matrix. Baharev et al.

(2016b) implemented the algorithms in Python (Baharev, 2017a).

Optimal tearing with integer programming by Baharev et al. (2016b)

The optimal integer programming tearing algorithm requires the bipartite representation

of the incidence matrix B = (V,E) as well as the matrix its self. Refer back to subsec-

tion 2.5.2 which explains how to represent the incidence matrix as a bipartite graph. Let

F ⊆ E be the subset of edges containing all the feasible assignment pairs (see subsec-

tion 2.5.1).

The main idea behind the optimal integer programming tearing algorithm is broken

down into the following steps with reference to Figure 2.12:

Maximal matching: Find a maximal matching M ′ of B (the solid lines represents

matched edges in Figure 2.12). The arrow in Figure 2.12 represents an infea-

sible matched edge.

Feasible assignments: Remove the edges in M ′ that are not in F to get the matching

M (M = M ′ ∩ F ) Baharev et al. (2016a).

Orientation: B is orientated with the edges in M pointing to the variable nodes and

all the other edges towards the equation nodes resulting in the directed graph D

(Baharev et al., 2016a). The variable nodes set is represented by C ⊂ V and the

equation nodes by R ⊂ V with C ∩R = ∅ and V = R ∪C, i.e. V is partitioned by

C and R.
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Feedback edge set: By solving the feedback edge set problem the variables to tear

are identified. The purpose of the feedback edge set problem is to identify the

minimum amount of edges to reverse (see the solid arrow in Figure 2.12 bottom

right) (Baharev et al., 2016a). Go to section 2.5.4 to see how the cycles are created

and how an acyclic graph is obtained.

Figure 2.12: The steps of tearing: Top left a maximal matching M ′ → top right a matching M
after removing infeasible edges→ bottom left create a directed graph→ bottom
right solve the feedback edge set problem.

Feedback edge set problem

The feedback edge set problem will be explained using the directed graph D from the

orientation of B in the optimal tearing algorithm above.

The way B is orientated given the matching M induces a certain cycle structure in D.

An unmatched node c ∈ C is a source and unmatched node r ∈ R is a sink. Sources and

sinks may not be part of a cycle in D but only the matched nodes of M . The matched

edge of a node n must partake in all the cycles n is involved in and by reversing this

edge and only this edge must destroy all the cycles n is involved in as well. Reversing

a matched edge (u, v) ∈ M of D effectively removes the edge (u, v) from M and D and

adds the new edge (v, u) to D. M − (u, v) is still a matching, and u and v becomes a

source and sink accordingly (Baharev et al., 2016a).

The subset of edges T ⊆ M that need to be reversed to make D acyclic is called a

feedback edge set. The minimum feedback edge set problem is the problem to obtain the

smallest feedback edge set T as possible. (Baharev et al., 2016a)

32



Integer linear program

The integer program used by Baharev et al. (2016b) to maximise the number of matches

M but ensuring D is acyclic is given in Equation 2.21 (Baharev et al., 2016b)

max
y

∑
e∈F

ye (find the maximal matching) (2.21a)

s.t.
∑
e∈E

ureye ≤ 1 for each r ∈ R (equation node may only be matched once)

(2.21b)∑
e∈E

vceye ≤ 1 for each c ∈ C (each variable node may only be mathced once)

(2.21c)∑
e∈E

aseye ≤
`s
2
− 2 for each s ∈ S (no cycles are allowed) (2.21d)

ye is a binary variable which is 1 if the edge e ∈ M and 0 otherwise. ure is a binary

variable and is 1 if node r is incident to edge e and 0 otherwise. vce is a binary variable

which is 1 if node c is incident to edge e and 0 otherwise. S is a set of simple cycles in

the cycle matrix A = (ase) (see (Baharev et al., 2016a)). The entry ase is 1 if the edge e

participates in a simple cycle s and is 0 otherwise. `s is the length of the simple cycle s.

(Baharev et al., 2016b)

When the acyclic graph D is obtained, the system can be ordered in a bordered lower

triangular form.

Custom branch and bound by Baharev et al. (2016b)

To understand the custom branch and bound algorithm the heuristic ordering algorithm

of Fletcher & Hall (1993) (which was also the inspiration behind the custom branch and

bound) to the lower Hessenberg form is first studied.

The lower Hessenberg form also results in a block lower triangular matrix, but instead

of having square blocks on the diagonal it has fully dense rectangular blocks.

Algorithm by Fletcher & Hall (1993)

The matrix A ∈ Rn×n is a square irreducible incidence matrix. The algorithm to per-

mute A to the Hessenberg form searches the active sub-matrix and progressively removes

rows and columns based on a heuristic to determine an ordering (Baharev et al., 2016b).

The active sub-matrix is a sub-matrix of A containing rows and columns that have not

been included in the permutation. It is referred to as active because it is in this matrix

where further permutations take place. At the start of the algorithm the whole matrix
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A is the active sub-matrix and when the algorithm terminates the active sub-matrix is

empty. Figure 2.13 shows the location of the active sub-matrix of a partially permuted

A.

Active
sub-
matrix

ρ

κ

Figure 2.13: Partially reordered matrix when applying the inconplete perutation π = (ρ, κ)
(Baharev et al., 2016b).

The removed rows and columns are assembled in the permutation vectors ρ and κ

respectively. The pair π = (ρ, κ) is referred to as the incomplete permutation of A.

When π is known the active sub-matrix is also known. It is from this fact that the

notation ri(π) and cj(π) refers to the number of non-zero entries in row i and column j

of the active sub-matrix, respectively (Baharev et al., 2016b).

Figure 2.14 (Baharev et al., 2016b) shows the algorithm by Fletcher & Hall (1993) to

order a square non-singular irreducible incidence matrix A.

A as the active sub-matrix turns the entire incidence matrix A to the active sub-

matrix.

Find a row rn = mini(ri(π)) in the active sub-matrix which has the lowest number

of non-zero entries. This is the heuristic of this algorithm.

Move columns intersecting rn to the left and consider them as removed.

Update row count in Π updates the row counts in the active sub-matrix taking the

removed columns into account and is represented by the incomplete permutation

Π.

Move rows where ri(Π) = 0 in the active sub-matrix to the top and consider them as

removed.

Empty ASM checks if the active sub-matrix (ASM) is empty. If it is empty the al-

gorithm terminates otherwise the algorithm repeats until the active sub-matrix is

empty.
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Start

A as the active
sub-matrix

Find a row
rn = mini(ri(π))

Move columns
intersecting rn

Update row
count in Π

Move rows
where ri(Π) = 0

Empty
ASM

Stop

No

Yes

Figure 2.14: The heuristic Hessenberg ordering by Fletcher & Hall (1993).

The algorithm by Fletcher & Hall (1993) is for a square non-singular irreducible inci-

dence matrix A. Baharev et al. (2016b) proposes the following extension to accommodate

rectangular and reducible full rank m × n incidence matrices to the lower Hessenberg

form: If m ≥ n A is ordered into the form A =
[
AT
AB

]
where AT ∈ Rn×n is structurally

non-singular and in the Hessenberg form. If m ≤ n A then A is ordered into the form

A = [AL AR] where AR ∈ Rm×m is structurally non-singular and in the Hessenberg form.

Note that the AT and AR do not need to be irreducible but only require a structural full

rank.

Algorithm proposed by Baharev et al. (2016b)

The algorithm is very similar to that of Fletcher & Hall (1993) but instead of using a

heuristic to determine the tiebreaks it explores all the possibilities in a branch and bound

algorithm to reduce a cost function. The custom branch and bound algorithm can also

handle a rectangular incidence matric A ∈ Rm×n as long as it has full structural column

rank when m ≥ n and row rank when m ≤ n. For this section it is assumed that all

the equations in A can be symbolically transformed into an assignment with any of its

variables and a function containing the remaining variables.
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Consider the following definition:

Row elimination is the process of solving the equations for one of its variables repre-

sented by the corresponding row in the incidence matrix.

The algorithm is based on the cost of a row elimination. The cost associated by

eliminating a row i (row cost of row i) is the number variables left when row i is eliminated.

Equation 2.22 expresses the row cost of row i in terms of the non-zero entries in row i

zi = max(0, ri(π)− 1) (2.22)

Due to the assumption that all variables in A are valid eliminations it means that at most

the number of non-zero entries minus one (ri(π)− 1) variables need to be guessed if that

row is eliminated.

The cost of a particular incomplete permutation π = (ρ, κ) is given in Equation 2.23

z = z(ρ) =
∑
i

zi; i ∈ ρ (2.23)

The cost is simply the sum of all the eliminated rows in κ. The algorithm seeks to find

the permutation π that transforms A into the lower Hessenberg form with the lowest

cost.

Lower bounds based on the cost function using row and column count

Equation 2.24 gives a lower bound on the cost for the best possible complete permu-

tation possible given an incomplete permutation π

z(ρ) = z(ρ) + min
i

(zi) (2.24)

The lower bound rests on the fact that the cost z(ρ) is fixed and at least mini(zi) variables

need to guessed in order to continue with the elimination. Therefore, if all the remaining

elimination have zero cost the minimum cost for the complete permutation is z(ρ). This

means that the lower bound is sharp.7

For an m ≥ n incidence matrix A the optimal cost of a complete permutation z∗ can

not be lower than the row with the minimum cost as shown in Equation 2.25

z∗ ≥ min
i

(ri(π)− 1) (2.25)

where i ∈ row indices of A. A result form Equation 2.25 is that any non-singular square

matrix A will have at least one guessed variable if the minimum row count is equal or

7The best possible lower bound that can exist.
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larger than two (≥ 2). Stated otherwise: it is impossible to order A into a lower triangular

form when the minimum row count is ≥ 2.

For an m ≤ n incidence matrix A a minimum of n−m variables need to be guessed for

any permutation. When A is underdetermined, the goal is to assign as many variables as

possible to the m available equations. A square non-singular m×m sub-matrix AR with

A = [AL AR] is therefore constructed with the objective of finding AR that will result

in the lowest possible permutation cost of AR. AL is an m × (n −m) sub-matrix which

contains the remaining DOF and these variables will have to be guessed in any case. To

find the best AR the ordering is based on a column cost. Ordering in this fashion stays

the same as the algorithm by Fletcher & Hall (1993), but instead of row count (ri(π))

column count (cj(π)) is used and the ordering starts from the bottom right to the top

left of AR.

If the last column in a full rank Hessenberg ordering of AR has cl non-zero entries the

permutation cost of AR is at least cl − 1 (see (Baharev et al., 2016b) for the proof). A

lower bound on cl is given in Equation 2.26

cl ≥ min
j

(cj(π)) (2.26)

where j ∈ column indices of A. Notice that the lower bound of cl is calculated over the

entire A and not just AR. This is because the lowest column count in AR can not be

lower than the lowest column count in A. As a result of the lower bound on cl a lower

bound on z∗ is calculated in Equation 2.27

z∗ ≥ min
j

(cj(π)− 1)︸ ︷︷ ︸
lower bound on cost

+ (n−m)︸ ︷︷ ︸
remaining DOF

(2.27)

with j ε column indices of A and m ≤ n.

The lower bounds in Equation 2.25 and Equation 2.27 are sharp because it is possible

that after removing the row (when m ≥ n) or column (when m ≤ n) that the remaining

permutations can have zero cost.

Column slice relaxation

Column slice relaxation is another method to obtain a lower bound on the cost of a

complete permutation z∗. The previous section used row and column counts to derive

the lower bounds whereas column slice relaxation finds a lower bound by the relaxation

of partitioned columns.

Let Ã be an arbitrary column slice of A. The columns included in Ã must either

be eliminated variables or guessed variables and must include all the rows that can be

used for elimination. A lower bound for z∗ can be calculated by accumulating the lower
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bounds of z for each column slice in A. All the columns not in Ã will only pose further

constraints on the lower bound z of Ã but it is ignored or relaxed for the calculation of

z∗.

The usefulness of the lower bound z∗ calculated using column relaxation is greatly

dependent on the choice of the partitioning of Ã. Baharev et al. (2016b) found the best

results when walking the upper envelope8 of the Hessenberg form by stepping either right

or down and moving along a direction as far as possible before changing direction. The

matrix is partitioned horizontally and vertically whenever two or more (≥ 2) steps in the

right direction is possible. The partitioning takes place at these places after the first step

right and effectively cuts off the columns which cause the row cost to be larger than one

(zi ≥ 1).

Distinguishing features

Features that make the branch and bound algorithm by Baharev et al. (2016b) custom

is discussed. The branch and bound algorithm uses the lower bounds on the cost function

utilising the row and column count as well as column relaxation to determine the best tie

breaks. Baharev et al. (2016b) lists the following points that set their algorithm apart

from others:

1. The search tree is navigated by a depth-first search order.

2. When branching the best-first rule is used. The node with the lowest score (z(ρ) in

Equation 2.24) is explored first, breaking ties arbitrarily. A min-priority queue was

implemented to explore the lowest costing rows first.

3. An initial feasible solution is calculated using the algorithm by Fletcher & Hall

(1993) before the branch and bound starts. A lower bound on the optimal cost z∗

is calculated using Equation 2.25 and Equation 2.27.

4. When a new complete permutation is found (a leaf node9 is reached by the branch

and bound algorithm) column relaxation is run on the permutation to improve the

lower bound.

5. The algorithm keeps track of all the trailing sub-matrices that have been fully

discovered by the depth-first search. Whenever an active sub-matrix is encountered

that has previously been discovered the optimal ordering and cost is simply retrieved

by a bookkeeping method that was implemented.

6. The “back-track rule” of Hernandez & Sargent (1979) was implemented to discard

entire sub-trees in the branch and bound procedure by excluding sequences that

8Walking the lower Hessenberg form from the top left to the bottom right.
9A node with no child nodes. Just like a leaf which is at the end of a branch a leaf node is also at

the end of a branch in a graph.
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have strict lower bounds on z∗ that are higher than already found orderings. See

(Hernandez & Sargent, 1979) for more info.

7. It is possible for the bipartite graph of the incidence matrix to become disconnected.

Whenever this happens, the connected components are processed separately.

2.5.5 Alternative ordering

An alternative to the bordered lower triangular ordering is the spiked lower triangular

ordering. Figure 2.15 is an example of an incidence matrix ordered to the spiked lower

triangular form. The spiked lower triangular form is nearly lower triangular with some

columns having entries above the diagonal. These columns are called spiked columns. In

this form the non-spiked columns must have a non-zero entry on the diagonal however

spiked columns are allowed to have a zero entry. (Baharev et al., 2016a)

Figure 2.15: Example of a spiked lower triangular ordered incidence matrix (Baharev et al.,
2016a).

In Figure 2.15 a block is drawn around each spike. The block starts at the highest

point of the spike and is extended left and down until the diagonal is reached and the

square closed. These blocks indicate which rows (equations) belong to that particular

spike. The spiked lower triangular form also has the following distinguishing feature: for

any two given spiked columns (left and right) the rows belonging to the left spike is either

contained within the right spike or is completely disjoint from the right. This requirement

means that smaller bordered lower triangular forms can be created on the diagonal at

the spikes where the blocks are properly nested (the one spike completely contains the

other) or disjoint (Baharev et al., 2016a).
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The advantage of this form above the conventional bordered lower triangular form

is that it is possible to solve smaller system of equations sequentially instead of solving

all the guessed variables in a single block. Smaller systems are easier to solve and it is

expected that the spiked lower triangular form may be more computationally efficient.

2.5.6 Failure of tearing

When using tearing to solve a system of equations, it is possible to obtain completely

incorrect results, or it is possible that solving a system of equations without tearing is

solved quicker than applying tearing.

The reason for these failures can be due to the residual equation of the guessed variable

being too sensitive or too insensitive to the guessed variable. Below these two failures

will be discussed together with an example.

Too sensitive

As an example consider the system in Equation 2.28

xi−1 + 10xi + xi+1 = 1.2 i = 1, 2, . . . , 20 (2.28)

where x0 = 0.1 and x21 = 0.1. The only tear variable is x1 with the last equation (i = 20)

the residual. In the bordered lower triangular form x1 is in the border and the rest

of the incidence matrix is lower triangular. The solution to the system of equations is

xi = 0.1 for i = 1, 2, . . . , 20. Baharev et al. (2017) reported that the solvers Dymola

and OpenModelica returned completely incorrect results for x20 with Dymola returning

x20 = 32.03 and OpenModelica x20 = 85.82.

In this example the failure occurred because residual equation is too sensitive to x1

(the tear variable). Given an initial guess for x1 the equations in the lower triangular

section can be substituted one into the other as shown in Equation 2.29

xi+1 = −xi−1 − 10xi + 1.2 i = 1, 2, . . . , 19 (2.29)

with the residual r = −x19 − 10x20 + 1.1 a univariate function of x1 (r(x1) = 0). Due

to the factor 10 in Equation 2.29 the error in the guess of x1 is also roughly multiplied

by 10 for every substitution in Equation 2.29. There is a total of 19 substitutions in

Equation 2.29 which mean that an error in x1 will be roughly magnified by a factor of

1019 by the time the residual is calculated. This is a catastrophic consequence resulting

from the tearing of Equation 2.28. Using a 64-bit floating-point number to represent x1

the two closest numbers enclosing 0.1 will result in x20 = 85.82 and x20 = −101.03 after

substitution in Equation 2.29. This large error in x20 is a consequence of the roughly
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1019 magnification of the very small error in x1 and therefore Equation 2.28 is unsolvable

with a 64-bit machine (Baharev et al., 2017).

Too insensitive

This example is the polar opposite of the example in Equation 2.28. Consider the system

in Equation 2.30

xi−1 + xi + 15xi+1 = 17 i = 1, 2, . . . , 20 (2.30)

where x0 = 1 and x21 = 1. Again x1 is the tear variable with the last equation (i = 20)

the residual. In the bordered lower triangular form x1 is in the border and the rest

of the incidence matrix is lower triangular. The solution to the system of equations is

xi = 1 for i = 1, 2, . . . , 20. Baharev et al. (2017) reported that the solvers Dymola and

OpenModelica failed with Dymola not producing any results and OpenModelica giving

warnings and returns the initial guess for x1 (Baharev et al., 2017).

In this example failure occurred because the residual equation is too insensitive to x1

(the tear variable). Given an initial guess for x1 the equations in the lower triangular

section can be substituted one into the other as shown in Equation 2.31

xi+1 =
1

15
(−xi−1 − xi + 17) i = 1, 2, . . . , 19 (2.31)

with the residual r = −x19 − x20 + 2 a univariate function of x1 (r(x1) = 0). The error

for x1 in the initial guess is divided by 15 for each substitution in Equation 2.31. As a

consequence the magnitude of the error is reduced at every substitution. This results in

the residual being equal to r = 0.0000000000 (10 decimal points) for either x1 = −1 or

x1 = 3. The tearing in this example failed because the residual that is used to update x1

does not provide any useful information on the error of x1 (Baharev et al., 2017).

2.6 Non-uniform random variable generation

2.6.1 Probability functions

Continuous

A probability density function f(x) describes how the probabilities of a continues random

variable X is distributed across X. A probability density function of a random variable

X is characterised by the following:

1. f(x) ≥ 0 Probability is a positive number.

2.
∫∞
−∞ f(x)dx = 1

3. P (a ≤ X ≤ b) =
∫ b
a
f(x)dx for a, b ∈ R
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(Montgomery & Runger, 2011: 109)

The cumulative distribution function is calculated in Equation 2.32

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du for x ∈ R (2.32)

(Montgomery & Runger, 2011: 112)

In Figure 2.16 is a normal probability density and cumulative distribution function.

Notice that the region with the highest probability in the probability density function in

Figure 2.16 (highlighted from −1 to 1) corresponds to the region with the steepest slope

in the cumulative distribution function. This fact will help in the later understanding for

generating non-uniform random variables from a given cumulative distribution functions.
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Figure 2.16: Probability density function of a normal distribution (top) and the corresponding
cumulative distribution function (bottom).

Discrete

A probability distribution describes how the probabilities of a discrete random variable X

is distributed across X. For discrete random variables, the distribution is often specified

in a simple list of possible values along with its probability. Just like the continuous case,

42



the distribution can be described by a function known as the probability mass function

which has the following characteristics:

1. f(xi) ≥ 0 Probabilities are positive.

2.
n∑
i=1

f(xi) = 1 The sum of all the discrete probabilities equals to one.

3. f(xi) = P (X = xi) The evaluation of f(xi) is the probability that the discrete

random variable X = xi.

(Montgomery & Runger, 2011: 68)

The cumulative distribution function is calculated in Equation 2.33

F (x) = P (X ≤ x) =
∑
xi≤x

f(xi) for x ∈ X (2.33)

(Montgomery & Runger, 2011: 72)

Figure 2.17 shows the binomial probability mass and cumulative distribution function.

Similar to the continuous case notice that the region in the probability mass function

containing the three random variables with the highest probabilities (4, 5, 6) corresponds

to the largest discontinuity jumps in the cumulative distribution function.

2.6.2 Generation from a probability function

In stochastic simulations, a source of non-uniform random variables is required. Accord-

ing to Devroye (1986: 28) a non-uniform variable can be created given a uniform random

variable generator and a probability density or mass function. To generate these random

numbers the cumulative distribution is required.

Consider a continuous distribution function F on R the inverse F−1 is defined by

Equation 2.34

F−1(u) = inf {F (x) = u, 0 < u < 1} (2.34)

If U is uniform random variable on [0, 1] then F−1(U) has a distribution function F . If X

has a distribution function F then F (X) is also uniformly distributed on [0, 1]. (Devroye,

1986: 28)

Equation 2.34 can be used to generate random variable with any arbitrary continuous

distribution function F (Devroye, 1986: 28) and by definition any probability density

function where F can be calculated. A random variable is created by generating a uniform

random variable U and calculating a non-uniform variable X using F−1.

The use of the infimum in Equation 2.34 is important to make F−1 valid in all cases

of F . The use of the infimum is easier explained by example. Figure 2.18 is an arbitrary

probability density function where there is a region of zero probability. Figure 2.19 shows

the cumulative distribution and its inverse of Figure 2.18.
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Figure 2.17: Probability mass function of the binomial distribution (top) and the correspond-
ing cumulative distribution function (bottom) with p = 0.5 and n = 10.

Notice that the cumulative distribution in Figure 2.19 has a region of zero slope

(highlighted) and in the inverse corresponds to an infinite slope at 0.5. This is why the

infimum is required which will produce a single value when F−1(0.5) is evaluated. For

F−1(0.5) in Figure 2.19 the set of values Z = {x ∈ R, π ≤ x ≤ 2π} is possible and the

inf {Z} = π which will ensure that the values of zero probability will not be generated.

The generation of non-uniform random variables for a discrete probability mass func-

tion is a little different but follows the same logic. If U is a uniformly generated random

variable on [0, 1], X can be obtained by a monotone transformation of U such that

P (X = i) = pi. If X is defined by Equation 2.35

F (X − 1) =
∑
i<X

pi < U ≤
∑
i≤X

= F (X) (2.35)

then P (X = 1) = F (i)− F (i− 1) = pi.
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Figure 2.18: Probability density function where there is a region of zero probability in-between
regions which has a probability.

Graphical interpretation

The graphical interpretation to generate non-uniform random numbers is discussed. Fig-

ure 2.20 is the normal cumulative distribution function used in section 2.6.1. Given a

uniform random variable U it is possible to graphically obtain the non-uniform random

variable X.

With reference to Figure 2.20 the random variable X is found graphically by first

sampling the random variable U (for Figure 2.20 U = 0.6). Then locate the position

of U on the y-axis of the cumulative distribution function. Next, draw a horizontal line

from the y-axis in the positive x-direction until the curve of the cumulative distribution

function is reached. The corresponding x-value at this point is the generated random

variable X.

The graphical explanation of why it is possible to generate a non-uniform random

variable given a uniform random variable is due to the change in slope of the cumulative

distribution function. Refer back to Figure 2.16 and see that a high probability in the

density function relates to a steep slope in the cumulative distribution and this steep

slope causes that a small range of X in the density function accounts for a large range
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Figure 2.19: Probability distribution function (left) and its inverse (right) of Figure 2.18.

in F (x). This result illustrates how the uniform random variable produces non-uniform

random variables. U has the same probability to be anywhere on the y-axis but because

the X values with the higher probability account for a larger range on the y-axis the

higher probability X values are generated more frequently.

The discrete case in Figure 2.17 acts very similarly to the continuous case, but the

higher probability X values correlate to higher discontinuous jumps in the cumulative

distribution function which also accounts for a higher range in F (x). Therefore, the

higher probability X values are generated more frequently.

2.7 Algorithmic- or automatic differentiation (AD)

Algorithmic differentiation (also referred to as automatic differentiation) is a technique

which numerical calculates values to evaluate derivatives with comparable accuracy and

efficiency (Griewank, 2000: 2) with evaluation time a small multiple larger than the time

to evaluate the original set of equations (Griewank, 2000: 9).

Before we look at how AD evaluates derivatives lets first establish what AD is and what

it is not. AD is not a numerical (using numerical in the conventional sense) method to de-
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Figure 2.20: Grapical method to find a non-uniform random variable X given a uniform vari-
able U and a cumulative distribution function.

termine derivatives nor does it generate derivatives symbolically like computer algebraic

packages (Griewank, 2000: 2-3). AD is rather a technique that calculates some interme-

diate values (numeric) given input values x to calculate output values y (Griewank, 2000:

4-5). These intermediate values can then be used to calculate derivatives (Griewank,

2000: 4-5).

In the above statement it is clear that AD is not symbolic but there might be some

confusion about it being numerical. It was also stated that AD does not determine

derivatives in the “conventional” numerical sense. What is meant by this is that AD does

not approximate derivatives using a difference approach like in Equation 2.36

f ′(x) ' f(x+ h)− f(x)

h
or f ′(x) ' f(x+ h)− f(x− h)

2h
(2.36)

(Griewank, 2000: 2). The approach in Equation 2.36 does not provide accurate values:

when h is small then cancellation errors reduces the number of significant figures of f ′(x)

but if h is not small truncation errors in terms like h2f ′′′ become significant (Griewank,

2000: 2). AD does not incur truncation errors and usually yields accurate derivatives

(Griewank, 2000: 2).

The efficiency of AD stems from the fact that it is not symbolic. Take the expression

f(x) = x2 for example: AD yields the derivative 2x exactly but it does not create the

symbolic expression 2x but instead the numerical value of x (in memory) is multiplied by

2 and returned as the derivative (Griewank, 2000: 3). This is an important distinction

to make especially when equations become larger and more complex. Take Equation 2.37
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as an example

f(x) =
n∏
i=1

xi (2.37)

then

∇f(x) =

(
n∏
j 6=i

xj|i=1...n

)
When n is large in Equation 2.37 the amount of memory required to represent ∇f(x)

symbolically is very large but AD exploits common sub-expressions in ∇f(x) and uses

them to evaluate ∇f(x) at any point (Griewank, 2000: 3). AD does not first generate

symbolic expressions and then simplify them again after but instead calculate intermedi-

ate numerical values and calculates ∇f(x) using the chain rule (Griewank, 2000: 3-4).

AD uses a forward and reverse mode to calculate the derivatives. The basic principles

of these two modes will be discussed in the remainder of this section. This section serves

only as an introductory overview of how AD calculates derivatives. These two modes will

be illustrated using an example of a lighthouse model whose light beam hits a quay-wall

in Figure 2.21. The equations that describes the coordinate y = (y1, y2) of the light beam

on the wall are given in Equation 2.38

y1 =
ν tan(ωt)

γ − tan(ωt)
(2.38a)

y2 =
γν tan(ωt)

γ − tan(ωt)
(2.38b)

where γ is the slope of the quay-wall, ν the horizontal distance of the lighthouse from

the wall, ω the angular velocity of the revolving beam and t the time of the model

(Griewank, 2000: 16-17). Equation 2.38 is the equations of the function F : R4 → R2 so

that Y = [y1, y2] = F (X) with X = [ν, γ, ω, t].

ωt

ν

y2

y1

y2 = γy1

Q
ua
y-
W
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l

Figure 2.21: Diagram of a lighthouse shining a light on a quay-wall (Griewank & Walther,
2003).

Before the forward and reverse modes are described first consider how AD abstracts a

system of equations to a directed graph called an evaluation trace (Griewank, 2000: 5).
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This graph is acyclic and can be ordered in a lower triangular incidence matrix with no

guessed variables.

Decomposition into atomic operations

The expressions in AD are decomposed into atomic operations to evaluate derivatives

more economically (Griewank, 2000: 17). Take Equation 2.38 as an example the ex-

pression tan(ωt) is present in both the equations. Evaluating this expression twice is

avoided by assigning it to an intermediate variable (Griewank, 2000: 17). The process

of assigning intermediate variables effectively abstracts the direct dependence of the de-

pendent variables Y from the independent variables X, but instead is now dependent on

an evaluation procedure (Griewank, 2000: 17).

Table 2.1 shows how intermediate variables are assigned to Equation 2.38. The

first section in Table 2.1 maps the independent variables X to the internal variables

ν−3, ν−2, ν−1, ν0. The second section is where the actual calculations take place and the

third section maps the internal variables to the independent variables Y . The equation

ν6 = ν5 was introduced to make y1 = ν6 and y2 = ν7 mutually independent. A physical

numerical example is also shown. The following values were assigned: the light is 100 m

form the wall (ν = 100), the slope of the wall is 1.5 (γ = 1.5), the light revolves with

angular velocity of 2 · π/60 rad
s

(ω = 2 · π/60) and t is 5 s (Griewank, 2000: 18).

Table 2.1: Decomposition into atomic operations of F from Equation 2.38 (Griewank, 2000:
18).

Variables Equation Calculation Result

ν−3 = x1 = ν = 100.0 m
ν−2 = x2 = γ = 1.500
ν−1 = x3 = ω = 2 · π/60 = 0.1047 rad

s

ν0 = x4 = t = 5.000 s

ν1 = ν−1 × ν0 = 0.1047× 5.000 = 0.5235 rad
ν2 = tan(ν1) = tan(0.5235) = 0.5772
ν3 = ν−2 − ν2 = 1.500− 0.5772 = 0.923
ν4 = ν−3 × ν2 = 100.0× 0.5772 = 57.72 m
ν5 = ν4/ν3 = 57.74/0.923 = 62.6 m
ν6 = ν5 = 62.6 m
ν7 = ν5 × ν−2 = 62.6× 1.500 = 93.9 m

y1 = ν6 = 62.6 m
y2 = ν7 = 93.9 m

The directed graph representing Table 2.1 is shown in Figure 2.22.
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Figure 2.22: Directed graph showing the computational flow of the lighthouse example.

Forward mode

Suppose the partial derivative of ∂y2
∂x1

(or ∂ν7
∂ν−3

according to the decomposition) is required.

One way of achieving this would be to calculate all the partial derivatives of all the

variables (ν−3 to ν7) with respect to independent variable ν−3. This was done in Table 2.2

and by applying the chain rule to every line in Table 2.1 the goal of ∂ν7
∂ν−3

can be calculated.

Therefore, in the forward mode a new variable ν̇i = ∂νi
∂x1

is associated with every variable

νi. (Griewank, 2000: 6)

Table 2.2: Example of the forward mode of applying the chain rule (Griewank & Walther,
2003).

Variables Equation Calculation Result

ν̇−3 = ẋ1 = 1.000
ν̇−2 = ẋ2 = 0.0000
ν̇−1 = ẋ3 = 0.0000
ν̇0 = ẋ4 = 0.0000

ν̇1 = ν0 × ν̇−1 + ν−1 × ν̇0 = 5.000× 0.0000 + 0.1047× 0.0000 = 0.0000
ν̇2 = ν̇1/ cos2(ν1) = 0.0000/ cos2(0.5235) = 0.0000
ν̇3 = ν̇−2 − ν̇2 = 0.0000− 0.0000 = 0.0000
ν̇4 = ν2 × ν̇−3 + ν−3 × ν̇2 = 0.5772× 1.000 + 100.0× 0.0000 = 0.5772
ν̇5 = (ν̇4 − ν5 · ν̇3)/ν3 = (0.5772− 62.6× 0.0000)/0.9228 = 0.625
ν̇6 = ν̇5 = 0.625
ν̇7 = ν−2 × ν̇5 + ν5 × ν̇−2 = 1.500× 0.625 + 62.6× 0.0000 = 0.938

ẏ1 = ν̇6 = 0.625
ẏ2 = ν̇7 = 0.938

By applying the chain rule to every line as shown in Table 2.2 to calculate the partial

derivative of ∂y2
∂x1

the partial derivative of ∂y1
∂x1

was also calculated in the process. The
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calculation of all the output derivatives is a consequence of the forward mode where one

sweep of the derivative trace for a specific independent variable (in this case x1) will

result in the partial derivative of all the outputs (y1 and y2) to that specific independent

variable.

By analysing Table 2.2 further it can be also be seen that the partial derivative of eg.
∂y2
∂x2

(or ∂ν7
∂ν−2

) can just as easily be calculated by simply letting ẋ2 = 1 and ẋ1, ẋ3, ẋ4 = 0

without changing any of the equations in Table 2.2. This is also a consequence of the

forward mode and to calculate all the partial derivatives of a function F : Rm → Rn will

require m sweeps of the derivative trace. Therefore, if n >> m it is more efficient to use

the forward mode.

Reverse mode

The reverse mode is also known as the adjoint mode. In contrast to the forward mode,

an output variable (Y ) is chosen and the partial derivatives calculated with respect to all

the intermediate variables (νi) instead of choosing an input variable and calculating the

partial derivatives calculated of all the intermediate variables with respect to the input

variable. The adjoint partial derivatives (ν̄i) are calculated by moving backwards in the

graph (Figure 2.22). (Griewank, 2000: 8)

As an example the partial derivative of y2 to x1 is again calculated but in the reverse

mode. To calculate this in the reverse mode a variable ν̄i = ∂y2
∂νi

is associated with every

variable νi (Griewank, 2000: 8). Calculating the derivatives in the reverse mode is a

bit more tricky and using the computational graph (e.g. Figure 2.22) is a useful way

to find the correct connection. Take ν̄2 as an example which was calculated as follows:

ν̄2 = ∂y2
∂ν4

∂ν4
∂ν2

+ ∂y2
∂ν3

∂ν3
∂ν2

and because ν̄4 = ∂y2
∂ν4

and ν̄3 = ∂y2
∂ν3

it simplifies to ν̄2 = ν̄4
∂ν4
∂ν2

+ ν̄3
∂ν3
∂ν2

.

The tricky part is to find out which variables (in this example ν4 and ν3) have an effect on

y2 (Griewank, 2000: 8). To find these variables find all the paths from the base variable

(in this case ν2) to the required output variable (in this case y2) and the second vertex

in each path is a variable that should be used in the chain rule. For the current example

there are two paths (P1 = {ν2, ν4, ν5, ν7} and P2 = {ν2, ν3, ν5, ν7}) from the base variable

ν2 and the second vertices are ν4 and ν3.

By applying the chain rule to every line as shown in Table 2.3 to calculate the partial

derivative of ∂y2
∂x1

the partial derivatives of ∂y2
∂x2
, ∂y2
∂x3

and ∂y2
∂x4

was also calculated in the

process. This is a consequence of the reverse mode where one sweep of the derivative

trace for a specific dependent variable (in this case y2) will result in the partial derivative

of all the inputs (x1, x2, x3 and x4) to that specific dependent variable.

By analysing Table 2.3 further it can be also be seen that the partial derivative of

eg. ∂y1
∂xi

can just as easily be calculated by simply letting ȳ1 = 1 and ȳ2 = 0 without

changing any of the equations in Table 2.3. This ability to change only the inputs is also
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Table 2.3: Example of the reverse mode of applying the chain rule (Griewank & Walther,
2003).

Variables Equation Calculation Result

ν̄7 = ȳ2 = 1.000
ν̄6 = ȳ1 = 0.0000

ν̄5 = ν̄7 × ν−2 + ν̄6 = 1.0000× 1.500 + 0.0000 = 1.500
ν̄4 = ν̄5/ν3 = 1.500/0.923 = 1.63
ν̄3 = (−ν̄5 × ν5)/ν3 = −(1.500.6)/0.923 = −102
ν̄2 = ν̄4 × ν3 − ν̄3 = 1.63× 100.0− (−102) = 265
ν̄1 = ν̄2/ cos2(ν1) = 265/ cos2(0.5235) = 353
ν̄0 = ν̄1 × ν−1 = 353.1047 = 37.0
ν̄−1 = ν̄1 × ν0 = 353× 5 = 1765
ν̄−2 = ν̄7 × ν5 + ν̄3 = 1.000× 62.6 + (−102) = −39
¯ν−3 = ν̄4 × ν2 = 1.63× 0.5772 = 0.941

x̄1 = ν̄−3 = 0.941
x̄2 = ν̄−2 = −39
x̄3 = ν̄−1 = 1765
x̄4 = ν̄0 = 37.0

a consequence of the reverse mode and to calculate all the partial derivatives of a function

F : Rm → Rn will require n sweeps of the derivative trace. Therefore, if m >> n it is

more efficient to use the reverse mode.

The difference in values of ∂y2
∂x1

between the reverse mode is due to rounding error and

is equal if rounded to 2 decimal points.

2.7.1 CasADi

CasADi (Andersson, 2013) is a tool that can be used for AD. Although it started out as a

tool for AD it has expanded since its inception to a tool for gradient-based optimisation

and other numerical methods like multidimensional Newton’s method.

CasADi itself is not an optimisation package but interfaces with well-known optimi-

sation packages like IPOPT (Wächter & Biegler, 2006).

CasADi forms an integral part of Amoss not only due to its ability to evaluate deriva-

tives automatically but how it interfaces with other optimisation packages and numerical

methods on behalf of the user.

2.8 Parallel processing

Parallel processing is a method where a problem is divided into separate parts and com-

putations executed on separate processors simultaneously. Embarrassingly parallel pro-

52



cessing, or sometimes referred to as ideal processing, is a sub-branch of parallel processing

where the computations can be divided into completely independent parts.

To parallelise these problems are usually simple and do not require special techniques

and or algorithms to obtain results. These problems usually do not require communication

between the separate processes and are completely disconnected from one another as

shown in Figure 2.23. (Wilkinson & Allen, 2005: 79 - 80)

Input data

Processes

Results
Figure 2.23: Embarrassingly parallel problem represented as a disconnected computational

graph adapted from Wilkinson & Allen (2005: 80).

2.8.1 Celery

Celery (Ask Solem et al., 2017) (a Python library) can be used to execute embarrassingly

parallel problems easily. A job is created for each computational part and handed to

Celery. Celery manages these jobs and distributes the jobs to available processors as

they become available. The speed-up factor that can be expected is a small number less

than the integer division of the number of separate parts by the number of available

processors.

2.9 Big O notation

Big-O notation is used to express an asymptotic upper bound on the running time growth

of a program given an input size. The upper bound on the running time of a binary search

is written as O(log n). This means that the worst-case running time is k log(n) for some

constant k and input size n (when n is large enough). The big-O notation gives an upper

bound on the running time growth and not the absolute running time growth. Big-O

indicates that the growth will not be larger than the upper bound but it may also be

lower. (Khan Academy, 2017)

53



The big-O notation of some common problems are: O(n) for finding an item in an

unordered list, O(n2) for solving a system of linear equations, bubble- and selection sort

algorithms and O(n!) for solving the travelling salesman problem via brute-force.
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CHAPTER 3

OVERVIEW

3.1 Relation with MOSS

Amoss is an extension of Sasol’s MOSS methodology with the goal of improving the

effectiveness of these simulations. The problems of MOSS are outlined in section 1.4 and

the Amoss project was started to solve these problems.

MOSS is currently used to answer and quantify difficult “what if” questions like:

would increase in buffer tank size significantly reduce product loss or would additional

process equipment increase production (increasing the production capability of a unit

does not guarantee overall production increase due to bottlenecks in the process). For a

specific model, a scenario table is created containing all the different “what if” questions

and these scenarios are then simulated for some number of replications (experiments).

The results form these scenarios are used in decision-making.

3.2 What is Amoss

Amoss is an equation orientated discrete event simulation platform to create and sim-

ulate flowsheeting problems containing stochastic elements. Although Amoss simulates

continuous systems, the differential equations are discretised using a backward difference

approximation (Euler’s algorithm) and the stochastic elements are sampled at every time

step.

The goal of Amoss is to create and simulate stochastic simulations in the most logical

and user-friendly way. The emphasis of Amoss was to relieve the user from most of

the repetitive work in making simulations and to focus on the aspects that make each

simulation unique. The basic aspects that make each simulation unique are:
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Operating units. The specifications of the operating units are different from process

to process, e.g. the split ratios of different distillation columns or conversions in

reactors. The operating units available in Amoss are reactors, separators, buffer

tanks and mixing points.

Connectivity. The mapping that indicates how the different operating units are con-

nected to each other.

Operating rules. Heuristic rules that govern how a process should be operated (high-

level control).

Stochastic elements. The variables that have a distribution function (this may include

common distributions or a custom user-defined distributions).

Amoss is designed from the ground up to use the equation orientated approach due

to the many advantages over the modular approach (see subsection 2.4.1). This also

resulted in faster simulation speeds and the ability to handle feedback loops. The modular

approach is efficient in solving unidirectional (no feedback loops) systems, but as soon as

feedback loops are introduced multiple iterations are required for convergence.

One of the major factors for choosing the equation orientated strategy is its expand-

ability. In the modular approach, the user is limited to the available modules or has to

create his/her own. The lack of ability to add operating rules that work across modules

makes the modular approach even more restrictive; whereas in the equation oriented ap-

proach, these equations are simply added to the larger system of equations where it is

treated as just another equation.

To illustrate this point consider the small unit in Figure 3.1. In this unit the distillation

column and the buffer is located downstream of the reactor. These downstream unit

operations will affect the reactor operation. In the scenario the downstream units are

not operational or processing less material (could be due to buffer reaching its capacity

or inadequate cooling or steam supply at the distillation column) the feed to the reactor

need to be adjusted otherwise the reactor products will be discarded leading to financial

loss.

In this example the downstream units dictate the feed to the reactor. In the equa-

tion orientated approach equations are created relating the downstream conditions to

upstream conditions (eg. when the buffer reaches full capacity stop feed to the reactor),

but in the modular approach different modular units will need to be created that can

still interface with the rest of the flow-sheet. In this particular example, the dependence

of the upstream units on downstream information (flow-rate, temperature, composition

etc.) adds an information feedback loop which reduces the modular approach’s efficiency.
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Buffer

Figure 3.1: A small unit with a reactor, distillation column and a buffer tank.

3.3 Project software

Amoss is written in Python (Python Software Foundation, 2017) utilising Open Model-

ica’s Connection Editor (OMEdit) (Open Source Modelica Consortium, 2017), Microsoft

Excel (Microsoft, 2017) and Atom text editor (GitHub Inc, 2017) to facilitate with the

user interface.

Python was chosen as the programming language for the reasons listed below:

� Python has a large variety of libraries created and maintained by a large community.

� The Python Software Foundation License (PSFL) allows Python to be used and

distributed without paying royalties. Therefore, developing in Python makes it

possible to distribute Amoss among many users without the obligation to pay a

licensing fee.

� The PSFL does not place any licencing restrictions on software developed with

Python so it is possible to distribute Amoss without making it open source.

� Python is open source software and easily accessible.

� Python has a large community enabling support for new Python programmers.

� Python’s accessibility and support enable a larger population of people the ability

to contribute to the Amoss project.

OMEdit is used as a graphical interface for the user to define a process’ connectivity

as displayed in Figure 4.1. Microsoft Excel is available to all Sasol’s office employees,

and most are familiar with the software; therefore, Microsoft Excel is used as a way for

the user to supply specific data structures to Amoss. Atom is used as a platform for the

user to supply external equations to the simulation. Atom describes itself as “a hackable

text editor” GitHub Inc (2017). This customisability was utilised to give a user-friendly

platform to add additional information.

The combination of these software makes Amoss.

57



3.4 Amoss work-flow

The basic work-flow of Amoss is illustrated in Figure 3.2 with an in-depth analysis of

each of the steps, 1-7, in Figure 3.2 explained in chapter 4. A high-level description of

the Amosswork-flow is described below:

Step 1 requires the user to draw a process diagram in OMEdit together with operational

unit specific data in Excel.

Step 2 takes the OMEdit diagram which contains the process connectivity and opera-

tional unit information and parses it to a network graph.

Step 3 iterates through the graph creating all the necessary equations.

Step 4 tears the equations using the block lower triangular method and symbolically

solves the smaller blocks. This is referred to a pre-solving the equations, because

a subset of the complete model equations are solved before the entire model is

solved during the simulation. Pre-solving is done to decrease the border width in

Step 6 making it easier to solve the system of equations.

Step 5 requires the user to define additional equations to describe how the unit is op-

erated (operating rules) together with identifying which variables or parameters

are stochastic and provide a distribution.

Step 6 takes the system of equations in Step 4 and concatenates it with the equations

in Step 5 and tears these equations using the bordered block lower triangular

method producing the full system of equations.

Step 7 simulates the process.
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Figure 3.2: Work-flow of the Amoss project from problem description to simulation with 1)
Process digram in Modelica, 2) Process digarm to network graph, 3) Equation
generation, 4) Equation tearing using block lower triangular decomposition, 5)
External equations from user, 6) System equation (4) and user equations (5)
concatenated and tor using bordered block lower triangular decomposition, 7)
Stochastic simulation.
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CHAPTER 4

ANALYSIS

In this chapter each aspect of Amoss shown in Figure 3.2 will be discussed and analysed

individually.

4.1 Process diagram

Figure 4.1 shows an example of a process diagram in OMEdit. Amoss is distributed with

an OMEdit package containing different models representing the different unit operations.

The icons and the unit types available are discussed below. It is important to use the

correct icon that describes the operational unit that is required because in Step 2 this

information is translated to different vertex attributes and in Step 3 the unit type will

lead to the creation of different equations.

Buffer Sink2

Figure 4.1: Example of the graphical process interface by utilising OMEdit.
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The model icons and their functionality in a simulation is described below:

Source is the location where mass enters the simulated process (when thinking of

the process in isolation this is the location where mass is generated).

Sink is the location where mass exits the simulated process (in isolation, mass is

consumed at this location).

Mix Point is an operational unit where streams of different compositions are

mixed and the streams leaving the Mix Point all have the same composition. It is

allowed that more than one stream may exit a Mix Point with different flow rates.

Buffer
0

is a tank within the process.

Reactor is an operational unit where components can be converted to different

components.

Pipe is the model type used to give flow-streams names and indicate the pos-

itive flow direction. All the calculations of Amoss are based on the names given to

the Pipes and the positive flow direction.

Separator is the operational unit that models a distillation column. This model can

split streams into streams with different compositions. It is the opposite of the Mix

Point where the outputs all have the same composition.

Visual Unit
0

is a unit to indicate that a unit is present visually but concerning

mass flow acts the same as a Mix Point.

To draw a diagram in OMEdit, the model icons are dragged and dropped in the

diagram worksheet. The locations where mass enters (Source) the process and exits

(Sink) the process needs to be indicated by the Source and Sink models. It is an Amoss

rule that every unit operation must be separated by adding a Pipe model between them.

This rule can be observed in Figure 4.1. It is important for the creation of the equations

in Amoss that the operational units are separated by a Pipe.

To complete a process diagram each of the units needs to be connected with a con-

nector (thin line in Figure 4.1 connecting the Pipes to the other units) in OMEdit. The

order or direction of the connection does not indicate the positive flow direction; there-

fore, these connections can be added in any direction. The positive flow direction is

determined by the Pipe arrow direction and the inlet and outlet of all the other units.

With a careful look at model icons each model icon has a small arrow entering or

exiting the model. These arrows indicate the positive flow direction. The blue arrow

indicates the inlet to the unit and the red arrow the outlet.
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Together with the diagram Amoss also requires additional information to be added

in the Excel file as tables in different sheets. All the units, excluding the Source, Sink

and Pipe, require additional information together with the component names and the

input variables to the simulation. All the information is added to an Excel file called

simulation description.xlsx. The Excel sheets names mentioned in the subsections below

all belong to the simulation description.xlsx file.

4.1.1 Component information

The component information is simply a list of names of the components that are found

in the simulation added in the component list sheet. It is important that the list contains

all the components that take part in the system (if the value is required) and not only

the components that are fed through the Sources. An example of the component list is

in Table 4.1. The component names must be valid Python variable names.

4.1.2 Input information

The input data are those variables that are required to make the degrees of freedom

(DOF) equal to zero and will always be the flow-rate of a Pipe. These inputs are listed

in the inputs sheet. In each simulation, the component flow-rate, as well as the total

flow-rate of each pipe, will be calculated and therefore the inputs can be a total flow-rate

or a single component flow-rate.

An example of an input data table is in Table 4.1. To list an input the specific Pipe

name together with the Pipe flow variable (a component name for a component flow-rate

and total for the total flow-rate) is required. In Table 4.1 a few inputs are listed with the

Pipe name under the stream heading and the Pipe flow variable under comp. In Table 4.1

row 1 the input variable is the total flow-rate in Pipe S1 (variable name S1 total) and in

row 2 is the comp1 flow-rate in Pipe S2 (variable name S2 comp1).

Table 4.1: Example tables show how to add the component list (left) and the simulation inputs
(right).

Components stream comp

comp1 S1 total
comp2 S2 comp1

...
...

...
compn Sn compn

Below is a guideline for choosing the input variables. This guideline does not cover

all the possible valid inputs, but by following this guideline all the selected inputs will be

valid. The guideline uses a modular approach to identify the input variables, but because

62



Amoss is equation orientated a variety of other input variable combinations can also be

valid.

A fully defined stream means that every Pipe that enters a unit will have a known

value for all the component flow-rates as well as the total flow-rates. This guideline

will assume that all the streams entering a unit is fully defined. This assumption is not

unrealistic and in most cases valid. Most of the time what enters a unit is known but the

output needs to be calculated and the calculated output of a unit serves as the input to

another.

The guideline:

� For every Source that is encountered the number of inputs that are required is equal

to the number of components (nC) listed in the component list sheet. The number

of required inputs can simply be all the component flow-rates of the Pipes exiting

a Source or the total flow-rate of a Pipe together with nC − 1 component flow-rates

of that Pipe.

� For every Mix Point, Reactor or Visual Unit that is used require the number of Pipes

(nP ) connected to the outlet of the unit negative one (nP − 1) as its the number of

input variables (this can be a component flow-rate or a total flow-rate).

Always specify stream flows with an out direction from these operational units

because it guarantees that all inputs are valid. It is important not to list all the

streams exiting these model because it will result in an over specified system. The

remaining stream will be calculated with a mass balance.

� Every Buffer that is used require the same number of input variables as the number

of Pipes connected to the outlet of the Buffer (this can be a component flow-rates

or a total flow-rates).

4.1.3 Separator information

Every Separator that is added in the diagram requires a corresponding entry in the sep-

aration data sheet table. The number of rows that are required in the separation data

sheet table per each Separator is equal to the number of Pipes connected to the Separator

outlet negative one (nP − 1). An example of how this table should look like is shown in

Table 4.2.

The number of columns of the table is the number of components plus two (nC + 2).

The first two columns contain the name of the Separator and the relevant Pipe name.

The remaining columns indicate which fraction of that component flow-rate entering the

Separator will report at the Pipe listed under the attribute column of that same row.
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The automatic set-up of the separation data table based on the component list and

the process diagram is not currently a feature of Amoss and is recommended for future

improvement.

As an example take row 1 in Table 4.2 with the fraction variable S6 f1 equal to 0.5

(S6 f1 = 0.5) then 50% of the total mass flow of comp 1 entering the Separator will report

in Pipe S6. The same logic applies to comp 2 and S6 f2. The fraction S6 f2 of the total

mass flow of comp 2 will report in S6. As a sanity check the columns of each Separator

must sum to a value less than 1, eg. in Table 4.2 the column of row 1 and 2 in must sum

to less than 1 and the columns of row 3 must be less than 1.

Currently Amoss has no automated checks to ensure that the columns of each sepa-

rator sums to a value less than one, but it is recommended as a future improvement.

The fraction entries may also be a rational number and are not limited to symbolic

names. The advantage of giving fraction entries symbolic names is the ability to change

the fractions during the simulation or different scenarios. If the fractions do not change

during the simulation, entering the real numbers will make the simulation set-up cleaner

because these values do not need to be defined elsewhere.

Table 4.2: Example table of the information that is required for every Separator.

node attribute comp 1 comp 2 · · · comp n

Separator S6 S6 f1 S6 f2 . . .
...Separator Sx Sx f1 Sx f2

VL101 S101 S101 f1 S101 f2 · · · S101 fn

4.1.4 Reactor information

Every Reactor that is added in the diagram requires a corresponding entry in the reac-

tor data sheet table. Table 4.3 is an example of a reactor data table.

The number of rows that are required per Reactor is equal to the number components

in the component list (nC). The number of columns of the table is nC + 2. Column 1

contains the name of the Reactor and column 2 is the list of components with the word in

next to it. The remaining column headings also contain the component list but with the

word, out next to it. The conversion fractions of the components entering the Reactor to

the other components are the entries in columns containing the word out in the heading.

The automatic set-up of the reactor data table based on the component list and

the process diagram is not currently a feature of Amoss and is recommended for future

improvement.

The table contains the conversion of each component entering the Reactor (comp x in)

to another component (comp x out). For example R1 c1i c2o (short for Reactor1 comp 1
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in comp 2 out) is the fractional conversion of comp 1 to comp 2. As a sanity check, all

the columns for each Reactor must sum up to 1.

Currently Amoss has no automated checks to ensure that the columns of each reactor

sums to a value of one, but it is recommended as a future improvement.

It is not required for the conversion fractions to be symbolic names, but rational

numbers are also allowed. The same advantages hold for either giving the conversions

symbolic names or rational fractions, depending on the situation, as in the case of the

Separator mentioned above.

Table 4.3: Example table of the information that is required for every Reactor.

node comp comp 1 out comp 2 out · · · comp n out

Reactor comp 1 in R1 c1i c1o R1 c1i c2o · · · R1 c1i cno
Reactor comp 2 in R1 c2i c1o R1 c2i c2o . . .

...
Reactor

...
...

...
Reactor comp n in R1 cni c1o R1 cni c2o · · · R1 cni cno

Cracker1 comp 1 in . . .

...

Cracker1
...

Cracker1 comp n in · · · R2 cni cno

4.2 Process graph

A directed graph D = (V,E) is extracted from the process diagram and created in

NetworkX (NetworkX developers, 2017), a Python library with a variety of graph theory

algorithms. All the operational units in the diagram are the vertices, and the pipes

indicate an edge between vertices together with the edge direction. The diagram is

transformed into a directed graph because it is easier to interact with the graph than the

diagram.

A graph makes it possible to iterate through a network and to find the number of

edges connected in the in direction and the out direction of a vertex. NetowrkX also

makes it possible to store information for every vertex and edge known as attributes.

Vertices contain the name given in the diagram as well as the unit operational type, e.g.

separator, reactor or buffer. It is also possible to add the data tables in Table 4.2 and

Table 4.3 for the Separators and Reactors to their specific vertices. The Pipe names in the

diagram are the names given to the edges.

The reason the process diagram in OMEdit is used instead of creating a graph directly

is that it is easier for a human to understand and interpret a visual representation of the
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process rather than a graph table containing the connectivity of the units and their

attributes.

4.3 Automatic equation generation

The basic equations that describe how mass flows through the network are automatically

created by using the directed graph D = (V,E) extracted from the process diagram.

These equations are: the component mass balances, mixing equations around Mix Points,

component conversion equations for the Reactors, the component split equations for the

Separators and integral equations for the Buffers.

Equations are created by iterating through all the vertices in D and depending on the

vertex type (Separator, Reactor, etc.) different sets of equations are created as discussed

below.

All the examples in section 4.3 will use the diagram in Figure 4.1 with two components

comp 1 and comp 2. In the subsections, a DOF analysis will also be performed alongside

the examples. It should be noted that all the DOF analyses that are done are made

with the assumption that the all the edges entering a vertex are fully defined. These

DOF analyses serve to support the suggestions made in the guideline for choosing inputs

(section 4.1.2)

4.3.1 Component mass balance equations

Component mass balances are performed over most of the operational units excluding all

Sources, Sinks and Pipes. In the environment consisting solely of D, Sources are locations

where mass enters the system and Sinks where mass exits the system. No mass balances

are performed over Sources, Sinks and Pipes because the mass balances around these units

are redundant.

A component mass balance is created by the summation of all the single component

flow-rates in the edges entering a vertex and subtracting the summations of the component

flow-rates in the exiting edges. This component balance is done for each of the components

listed in the component list Table 4.1.

Example

The Mix Point connected to the Pipe S source on the left of Figure 4.1 is used as an example

of a component balance. The equations that will be created are shown in Equation 4.1

and Equation 4.2

S source comp 1 − (S1 comp 1 + S2 comp 1) = 0 (4.1)

S source comp 2 − (S1 comp 2 + S2 comp 2) = 0 (4.2)
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The number of edges entering a vertex N is calculated with Equation 4.3 and the

number of edges exiting N is calculated with Equation 4.4. The total number of edges

connected to N is the sum of Equation 4.3 and Equation 4.4

nEi : V → N0 (4.3)

nEx : V → N0 (4.4)

nE = nEi + nEx (4.5)

The number of equations (nEq) and the number of variables (nV ar) that will be created

at each vertex are dependent on the nC and the number of edges (nE) connected to the

vertex. The nEq and nV ar that will be created per vertex around which component mass

balances are performed is calculated in Equation 4.6 and Equation 4.7

nEq = nC (4.6)

nV ar = nE(N)× nC (4.7)

DOF = nE(N)× nC − [ nEi(N)× nC︸ ︷︷ ︸
fully defined inputs

+nC ] (4.8)

= (nE(N)− nEi(N))× nC − nC
= (nEx(N)− 1)× nC

where N is the current vertex.

It is important to notice that DOF > 0 when nEx(N) ≥ 2 because it will increase

the DOF for every vertex around which these equations are applied. More equations

or inputs are required to specify the system fully. These additional equations that are

required are discussed in the remainder of this section.

4.3.2 Total flow equations

For every edge in D, a total flow equation is created. This equation is simply a summation

of all the components in the stream.

Example

Equation 4.9 uses S1 in Figure 4.1 for the example equation

S1 comp 1 + S1 comp 2 − S1 total = 0 (4.9)

Equation 4.10 and Equation 4.11 calculates the nEq and nV ar create per vertex
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nEq = nE(N) (4.10)

nV ar = nE(N) (4.11)

DOF = 0

where N is the current vertex.

The DOF = 0 because the Total flow equations introduces the same amount of equa-

tions and variables.

4.3.3 Mix Point equations

These equations ensure that the composition of each edge exiting the vertex is equal to the

combined composition of the edges entering the vertex. These equations are created by

subtracting the mass fraction of component x in a single exiting edge from the combined

mass fraction of component x in all the edges entering the vertex N .

Example

Equation 4.12 is the equation that will be created for the Mix Point in Figure 4.1 on the

bottom left with entering streams S8 and S9 and exiting streams S13 and S14

S8 comp 1 + S9 comp 1

S8 total + S9 total

− S13 comp 1

S13 total

= 0 (4.12)

The number of equations that will be generated is dependent on the number of edges

exiting a vertex (nEx) and the nC . Equation 4.13 and Equation 4.14 calculated the

number of equations and variables created

nEq = (nEx(N)− 1)× (nC − 1) (4.13)

nV ar = 0 (4.14)

DOF = −(nEx(N)− 1)× (nC − 1) (4.15)

where N is the current vertex. The DOF = 0 in Equation 4.15 when nEx(N) = 1 or

nC = 1 and DOF < 0 when nEx(N) ≥ 2 and nC ≥ 2 therefore reducing the DOF.

Around every Mix Point Component mass balance equations and Total flow equations

are created in addition to the Mix Point equations. In Equation 4.13 a Mix Point equations

is created for only nEx(N)−1 edges and nC−1 components which means that one exit edge

and one component is not used in the creation of the Mix Point equations. The removal

of this edge and component is necessary to ensure that the equations around every Mix
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Point are all independent together with the Component mass balance equations and Total

flow equations.

Equation 4.16 is a DOF analysis of a Mix Point vertex including the Component mass

balance equations and Total flow equations

DOF = [(nEx(N)− 1)× nC︸ ︷︷ ︸
mass balance

] + [ 0︸︷︷︸
total flow

]+

[− (nEx(N)− 1)× (nC − 1)︸ ︷︷ ︸
mix

]
(4.16)

= nC (nEx(N)− nEx(N))− nC + nC + nEx(N)− 1

= nEx(N)− 1

Equation 4.16 shows that for every Mix Point nEx(N) − 1 variables need to be specified

as inputs as reported in section 4.1.2. The DOF = 0 when nEx(N) = 1 otherwise DOF

> 0 when nEx(N) ≥ 2.

The nEx(N) − 1 guideline is not a rule and different input combinations can exist,

but ensuring their validity becomes much harder. An example of another valid input to

a Mix Point not covered by the guideline would be to specify all the exit edge’s (nEx(N))

total flow-rates as inputs which in turn will require that one of the input edge’s vari-

ables is unknown (input to the Mix Point is not fully determined). This different input

configuration will backpropagate through D which will leave a Source with one variable

that must not be added as an input and a Sink with one variable that should be added.

Specifying inputs in this manner, though possible, is not always an intuitive way to think

of a simulation and in most cases, the Sources are known; therefore, the guideline is a

good place to start when it is unknown what inputs are required.

Choosing the exit edge to exclude in the Mix Point equations

Equation 4.13 shows that one of the exiting edges and one component is not used

to form an equation. By analysing the equations that are created, it was found that

including an edge which does not have a corresponding edge variable as an input in the

inputs list leads to a system which has a significantly higher stiffness. Take the Mix

Point in the example, if all the entering edge variables are fully defined, and S14 total is

specified as the input five equations (two component balances, two total flow equations

and Equation 4.12) will need to be solved simultaneously. That is 5 out of 7 equations

that need to be solved simultaneously. By only changing the input from S14 total to

S13 total requires no simultaneous solution (0 out of 7). The reason S13 total as the input

leads to an easier system to solve is because S13 total features in Equation 4.12. For the

example the edge that was excluded was S14 total.
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The number of variables that will require simultaneous solution when an edge is

included in the Mix Point equations, but do not have a corresponding edge variable in

the inputs list, has a linear relationship with the number of components in the system as

shown in Equation 4.17

nEq = 2× nC + 1 (4.17)

when nC ≥ 2.

A decrease in stiffness of the simulation makes it easier to solve reducing simulation

time. To avoid the edges that will lead to a stiff systems, logic was added to Amoss to

check the inputs list and include any edges that have an input variable linked to it.

A similar effect is observed when the input is specified as a component flow instead of

the total flow, but the effect is less severe. For the case above selecting either S13 comp 2 or

S14 comp 2 as an input will require two equations to be solved simultaneously. Currently,

the last component in the component list is excluded in the Mix Point equations and no

logic is added to select the correct components according to the inputs list. This logic

has not been included yet because of the lower impact on stiffness and because it is less

likely to specify a component flow as an input relative to a total flow.

4.3.4 Reactor equations

Reactor equations calculates how components are transformed to other components.

Around a Reactor, a component mass balance will not hold due to the reaction tak-

ing place. This is why the reactor data table (Table 4.3) requires the reactor output to

be fully specified for all the components.

Reactors are allowed to have multiple edges exiting the Reactor’s vertex (see the

Cracker top right in Figure 4.1). To enable this ability and create the necessary equations

each Reactor unit is substituted with a Reactor unit connected to Mix Point as shown in

Figure 4.2

Reactor
Reactor_out

Reactor Reactor_out

Figure 4.2: Effective representation of a Reactor unit.

The Reactor equations are created by taking a component in the out column, e.g.

comp 1 out in Table 4.3 and multiplying all the fractions under that column with the

corresponding component in the comp in row (comp 1 in to comp n in) which are the

entering component flow-rates to the Reactor and summing them all together. The result
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of the summation is the component flow-rate of the component in the out column out of

the Reactor.

Example

Using the Reactor named Reactor in Figure 4.1 and the reactor data table in Table 4.4 an

example of the Reactor equations are illustrated with Equation 4.18 and Equation 4.19

Table 4.4: Reactor data table used for the equation example

node comp comp 1 out comp 2 out

Reactor comp 1 in c1i c1o c1i c2o
Reactor comp 2 in c2i c1o c2i c2o

Reactor out comp 1 = (c1i c1o× S3 comp 1) + (c2i c1o× S3 comp 2) (4.18)

Reactor out comp 2 = (c1i c2o× S3 comp 1) + (c2i c2o× S3 comp 2) (4.19)

The number of equations (nEq) and the number of variables (nV ar) that are created

by each Reactor unit is equal to the number of component shown in Equation 4.21

nEq = nC (4.20)

nV ar = nC (4.21)

DOF = 0

A DOF analysis of a Reactor unit is done in Equation 4.22

DOF = nEx(N)− 1︸ ︷︷ ︸
mix

+ 0︸︷︷︸
reactor

(4.22)

= (nEx(N)− 1)

where N is the Mix Point vertex.

The DOF analysis indicates that the variables required for inputs can be handled in

the same manner as that of the Mix Point equations.

4.3.5 Separator equations

Separator equations calculates how components are split into different streams given cer-

tain split ratios. The Separator equations that are created for each Separator calculate
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the component flow-rates for all the edges listed under the attribute column in the sepa-

ration date table.

To create the equations a single row is selected with a specific exit edge listed under

the attribute column in the separation data table. The equations for the component flow-

rates of the exit edge is created by multiplying the fractions under remaining columns

with its corresponding component flow-rate entering the Separator unit. All the equations

are created by iterating through all the rows. In addition to the Separator equations

Component mass balance equations and Total flow equations are also created.

Example

Using the Separator called VL101 in Figure 4.1 and the separation data table in Table 4.5

Equation 4.23 - 4.26 show the equations that will be created

Table 4.5: Separation data table used for the equation example

node attribute comp 1 comp 2

VL101 S6 S6 f1 S6 f2
VL101 S7 S7 f1 S7 f2

S6 comp 1 = S4 comp 1 × S6 f1 (4.23)

S6 comp 2 = S4 comp 2 × S6 f2 (4.24)

S7 comp 1 = S4 comp 1 × S7 f1 (4.25)

S7 comp 2 = S4 comp 2 × S7 f2 (4.26)

Equation 4.27 and Equation 4.28 shows how many equations and variables are created

for every Separator vertex

nEq = (nEx(N)− 1)× nC (4.27)

nV ar = 0 (4.28)

DOF = nC − nEx(N)× nC

where N is the Mix Point vertex.

The number of equations created per Separator vertex is equal to the number of edges

exiting the vertex negative one (this is a requirement when setting up the separation data

table) multiplied by the number of components. No new variables are introduced.

The DOF analysis around every Separator is calculated in Equation 4.29
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DOF = (nE(N)− 1)× nC︸ ︷︷ ︸
mass balance

+ 0︸︷︷︸
total flow

+ nC − nEx(N)× nC︸ ︷︷ ︸
separation

− nEi(N)× nC︸ ︷︷ ︸
fully defined inputs

(4.29)

= (nE(N)− nEx(N)− nEi(N))× nC
= 0

No additional inputs are required for a Separator.

4.3.6 Buffer equations

The Buffer equations calculates the composition of the Buffer contents at every times step

and subsequently the composition of the edges exiting (assume perfect mixing) the Buffer

vertex as well as the level (measured in mass units) of the Buffer by creating the integral

equations. To create the necessary equations, each Buffer unit is effectively substituted

with a Mix Point with some additional edges connected to it shown in Figure 4.3.
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Source Sink

Figure 4.3: Effective representation of a Buffer unit.

All the equations associated with the Mix Point equations are created around the

effective Buffer unit. From the input line mentioned in section 4.1 it required that all

the exiting edges from the Buffer have a corresponding input in the inputs list. On each

Buffer vertex, an extra exiting edge is added (shown in Figure 4.3) which is not visible to

the user and is the one input that does not need to be specified as an input. With this

knowledge the guideline for specifying the inputs for a Mix Point still holds.

It may seem that the edge connected to the Source requires additional inputs to the

inputs list, but it is not necessary. The edge exiting the Source represents the contents

of the Buffer of the previous time step, and the Buffer level variables are carried over

between the Euler iteration. The edge entering the Sink, on the other hand, represents

the net flow of content in or out of the Buffer. This is the accumulation term of a non-
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steady state component mass balance integrated using Euler’s algorithm with a single

time unit (e.g 1 s, 1 min or 1 h) step size.

When the Amoss project was started it was decided to work on a single time unit

step size. That means that if the mass flows rates are given on a per minute basis, the

Euler integration will have a one-minute time step and if the flow rates are given on a

per hour basis, a one-hour time step will be used. It was also decided to integrate at the

beginning of every time step which means that the simulation results that are recorded

starts at t = 0 instead of t = 1.

Example

Using the Buffer in Figure 4.1 for the example Equation 4.30 and Equation 4.31 shows

the integrations variables that are created

Buffer level comp 1 = Buffer level comp 1 (t - 1) + Buffer accumulation comp 1 (4.30)

Buffer level comp 2 = Buffer level comp 2 (t - 1) + Buffer accumulation comp 2 (4.31)

The current time Buffer level variables is calculated by adding the Buffer accumulation

variable to the previous time step’s Buffer level variables.

nEq = (nEx(N)− 1)× (nC − 1) (4.32)

nV ar = 0 (4.33)

DOF = −(nEx(N)− 1)× (nC − 1) (4.34)

where N is the Mix Point vertex. Note that N has the additional edges connected to it.

Equation 4.34 is exactly the same as Equation 4.15 because a Buffer is essentially a Mix

Point but the additional edges carry different meaning.

In addition to the Buffer equations Component mass balance equations and Mix Point

equations are also created. The DOF analysis of the combined equaitons around a Buffer

unit is

DOF = [(nEx(N)− 1)× nC︸ ︷︷ ︸
mass balance

] + [ 0︸︷︷︸
total flow

]+

[− (nEx(N)− 1)× (nC − 1)︸ ︷︷ ︸
mix

]
(4.35)

= nC (nEx(N)− nEx(N))− nC + nC + nEx(N)− 1

= nEx(N)− 1
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Equation 4.35 is also the same as Equation 4.16 and nEx(N) − 1 inputs are required

but in the case of the Buffer unit one edge is not known to the user and from the user

perspective nEx(N
∗) (where N∗ is the Buffer vertex excluding the additional added edges)

inputs are required

4.4 Pre-solve equations

Pre-solving refers to the analytical solving of the system of equations created in section 4.3

before running the simulation. The logic behind this step is to perform most of the solving

work before simulations are run to make simulations faster by avoiding numerical solving

of equations.

Before any steps are taken to pre-solve the equations, a DOF analysis is done. This

analysis ensures at least that the correct number of inputs are specified. At the current

date, there is no mechanism in place to guide a user to identify which inputs are required

or should be omitted if the DOF 6= 0. It is possible to use the guideline to check the inputs

and in that manner assist the user to select or discard inputs as required, but due to Amoss

using the equation orientated approach it would undermine some advantages by using

this approach if inputs are required on a modular level. The general guideline provided

in section 4.1 stems from a modular approach and is guaranteed to work, but other input

combinations are also valid and more difficult to check its validity automatically.

Sympy (Certik et al., 2008) is used to convert all the equations created in section 4.3

to symbolic mathematical expressions. The tearing method described in subsection 2.5.3

is used to tear the system of equations and identify the subsets of equations that re-

quire being solved simultaneously. Sympy has a symbolic solver included and it was

used to solve the subsets of equations. Initial trials showed that solving a subset larger

than around 10 equations was not tractable. This led to the current heuristic of only

attempting solution of subsets less than 10.

4.5 External user equation

Amoss also provides a platform, called the operating instructions, where relationships and

equations can be written to assign a numerical value to the variables listed in the Inputs

sheet. The operating instructions is also the place where the user can add additional

equations.

These equations are used to describe additional process activities and operational

philosophy which is impossible to determine from the process connectivity alone. When

an input variable or parameter does not stay constant throughout the simulation or a

statistical distribution needs to be sampled the operating instructions file is where these

equations should be defined.

75



The operating instructions is saved in a file called “operating instructions.txt”.

4.5.1 Special operating instruction functions and methods

Special operating instructions functions and methods are available in Amoss and can be

used in the operating instructions file. These functions include allocate (), allocate opt ()

and sample dist() (sample dist() is a sampling method from the Distribution object).

allocate () and allocate opt () were created due Sasol’s specific request for their function-

ality. In the MOSS methodology creating the relationships to assign numerical values to

the input variables of Mix Points are a common phenomenon and is repetitive exercise.

Figure 4.4 is an example of a typical Mix Point that is expected with three or more

exiting streams. Determining how the feed to the Mix Point should be split to mimic

current or desired plant behaviour can become difficult because each stream is dependent

on the flow limits (maximums and minimums) associated with that specific stream.

The purpose of allocate () and allocate opt () is to maximise the flow through the network

based on minima and maximum constraints together with allocation priorities. Sasol

requested that the functions allocate () and allocate opt () should automatically set-up the

equations to distribute mass according to a preferred allocation order.

With reference to Figure 4.4 if the preferred allocation order is S3, S4 and then S5

the available mass (S1 + S2) is first allocated to S3 until the maximum is reached the

remainder to S4 until its maximum is reached and the remainder is allocated to S5.

Another constraint frequently encountered when distributing mass is disjoint minimum

constraints. These constraints require that the flow must be larger than a minimum or

be zero when this minimum cannot be reached. This approach where mass is distributed

according to a priority order subject to constraints is common feature in the MOSS

methodology.

The allocations can also be viewed as an optimisation problem to minimise the cost

through the network given the minimum and maximum constraint with the stream which

should be allocated first having the lowest cost with the cost increasing as the priority

decreases. If the constraints are local to the distribution point (as it is in Figure 4.4

to the streams S3 and S4) the optimal distribution (according to the priority orders)

can be calculated analytically without the use of optimisation software, but when the

constraints are not local (downstream or upstream of the distribution point) then a

general optimisation is required.

allocate ()

allocate () is used to distribute mass according to a preferred priority order with the

minimum and maximum constraints being local to the point of distribution. allocate () is

one of two instances were the use of multiple assignments are allowed with the other being
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S5

Figure 4.4: Typical example where mass must be distributed to multiple destinations.

allocate opt (). When using allocate () particular care must be taken in the order assignments

and arguments are written. In Python code the order of variable assignments have no

influence on the inner workings of a function, but the operating instructions is not Python

code and in the case of allocate () the order of variables assignment is important.

The documentation explaining how to use

allocate ( available , minimum priority, minimum constraints, maximum priority, maximum constrains)

is given below:

Purpose: allocate () is used to distribute mass and allocate mass flow values to the as-

signment variables based on priority orders and local constraints.

Assignment order: In allocate () the order of the assignment variables are used as a base

to determine the index order of the function arguments e.g. for the assignment:

x0, x1, x2, ..., xn = allocate(...) allocation x0 corresponds to index 0 in all the

arguments and allocation x1 corresponds to index 1 etc.

Parameters

available (type: float): The mass available to distribute. This is a maximum con-

straint were the sum of the assignment variables must be less than or equal to the

available e.g.
∑

x0, x1, x2, ..., xn ≤ available

minimum priority (type: list of ints): A list containing the priority order in which

the minimum allocations need to be satisfied. The value of index 0 corresponds to

the priority of assignment 0 (x0) and the value of index 1 to the priority of assign-
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ment 1 (x1) etc. A value of 0 is the highest priority with the priority decreasing as

the value increases e.g.

[0, 1, 2, ..., n] indicates that the attempts to satisfy the minimum constraints must

be in the order of x0, x1, x2, ..., xn and

[2 , 0, 1, ... n] indicates that the attempts must be in the order of

x1, x2, x0, ..., xn.

If all the minimum constraints can not be satisfied (available<
∑

minimum constraints)

then some allocation must be set to zero. This is why the priority order is required.

The minimum constraints are attempted to be satisfied according to the priority

order and therefore the allocation with the lowest priority will be the first to receive

a zero allocation if its minimum constraint is not satisfied.

minimum constraints (type: list of floats): A list containing the minimum constraints

of the allocations e.g.

[10, 20, 30, ..., y] indicates the following constraints:

x0 ≥ 10 or x0 = 0

x1 ≥ 20 or x1 = 0

x2 ≥ 30 or x2 = 0

xn ≥ y or xn = 0

maximum priority (type: list of ints): A list containing the priority order in which

the maximum allocations need to be satisfied. The value of index 0 corresponds

to the priority of assignment 0 (x0) and the value of index 1 to the priority of

assignment 1 (x1) etc. A value of 0 is the highest priority and with the priority

decreasing as the value increases e.g.

[0, 1, 2, ..., n] indicates that the attempts to satisfy the maximum constraints must

be in the order of x0, x1, x2, ..., xn and

[2 , 0, 1, ... n] indicates that the attempts must be in the order of

x1, x2, x0, ..., xn.

If the minimum constraints have been allocated the remaining mass is distributed

based on the maximum priorities. Starting from the highest priorities mass is

allocated until all the remaining available mass is zero.

maximum constrains (type: list of floats): A list containing the maximums con-

straints of the allocations eg.:

[40, 50, 60, ..., z] indicates the following constraints:

x0 ≤ 40

x1 ≤ 50
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x2 ≤ 60

xn ≤ z

Returns

allocations (type: tuple): The calculated allocations based on the constraints and pri-

ority orders.

allocate () is very flexible with the priority order of the constraints. The minimum and

maximum constraint priorities orders can be different from one another, and it can be

changed independently during each time step in the simulation. This changeable priority

order makes allocate () very versatile with the ability to accommodate different control

philosophies across a simulation and can even be extended to change during different

scenarios.

Figure 4.4 is used to demonstrate an example of how to use allocate (). For this

example let the available mass (S1 + S2) = 55. The disjoint minimum constraint are

S3 ≥ 10 or S3 = 0 and S4 ≥ 20 or S4 = 0 with S3 having the higher minimum priority.

The maximum constraints imposed are S3 ≤ 30 and S4 ≤ 40 with S4 having the higher

maximum priority priority.

If the guideline on selecting the inputs are followed only two of the three exit streams

can be inputs, and no allocation can be done on the remaining stream. In this example,

it was chosen to list S3 and S4 as inputs, and therefore no allocation can be done on S5.

The exclusion of S5 will ensure that the mass balance still holds; therefore, allocations

can only be made on input variables.

To calculate the allocation for S3 and S4 the following line could be used:

S3, S4 = allocate(50, [0, 1], [10, 20], [1, 0], [30, 40])

The allocation will result in S3 = 15 and S4 = 40. The algorithm that is followed

(Figure 4.4) will ensure that the minima are allocated but because S4 has the higher

maximum priority the maximum constraint on S4 was reached. The remaining mass that

was left after the S4 allocation was allocated to S3.

allocate opt ()

When the constraints are not local to the distribution point allocate opt () can be used

to distribute the mass while taking downstream or upstream constraints into account.

Similar to allocate () the assignment order is also important but it does not form the base

order of the function arguments but instead serves as the preferred allocation order.

When the constraints are not local the idea to link a minimum and maximum priority

order to an allocation variable does not make sense anymore. This idea of a priority order

does not work because the influence on a single constraint variable cannot necessarily be

isolated to a single allocation variable and more than one allocation variable can have
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an interacting influence on the constraint variable. Due to this, it was decided to have a

minimum constraint priority and an allocation priority.

The difference between the allocate () minimum constraint priority and allocate opt ()

minimum priority is that with allocate () the minimum priority coincided with a specific

allocation variable whereas with allocate opt (), values are assigned to any allocation vari-

able in order to meet the constraint. When all the minimum constraints have been met

the flow through the network is optimised based on the maximum allocation priority

without exceeding a maximum constraint.

allocate opt () is not as flexible as allocate () and a fixed priority order is forced through-

out the simulation because the ability to change objective function or the implemented

branch and bound procedure (see parsing allocate opt ()) interchangeable during each time

step is not currently possible. The documentation explaining how to use

allocate opt ( available , minimum constraints, maximum constraints) is given below:

Purpose: allocate opt () is used to distribute mass and allocate mass flow values to the

assignment variables based on priority orders and constraints.

Assignment order: In allocate opt () the order of the assignment variables are used to

determine the preferred flow allocations when the minimum constraints are satisfied.

The objective function is created by giving a lower cost to the assignments that are

writen first and increasing the cost progressively e.g. for the assignment:

x0, x1, x2, ..., xn = allocate opt(...) the objective function is set up in the following

manner: -x0·f 0 - x1·f−1 - x2·f−2 - ... - xn·f−n

In the objective function f is the scale factor and has a value of 2 (2 was somewhat

arbitrarily chosen but provided the desired result) giving the first allocation the

lowest cost (-1) and progressively increasing the cost (−0.5 → −0.25 → ... →
−1/2n). f is currently hard coded and not changeable by the user.

Parameters

available (type: float): The mass available to distribute. This is a maximum con-

straint were the sum of the assignment variables must be less than or equal to the

available e.g.
∑

x0, x1, x2, ..., xn ≤ available

minimum constraints (type: dict or None): A dictionary with the keys the vari-

ables with minimum constraints and the values are the minimum constraints. The

order in which the keys are added is used to determine the minimum priority order

e.g.

{z0: 10, z1: 20, z2: 30} have a minimum priority order of z0, z1 and then z2 (where

z0, z1 and z2 may be non-local constraints). It will be attempted to satisfy the z0

constraint first then z1 etc.
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The minimum constraint dictionary will produce the following disjointed constraints:

z0 ≥ 10 or z0 = 0

z1 ≥ 20 or z1 = 0

z2 ≥ 30 or z2 = 0

The argument None will indicate that there are no minimum constraints.

maximum constraints (type: dict or None): A dictionary with the keys the vari-

ables with the maximum constraints and the value are the maximum constraints.

For the maximum constraints the order of the dictionary has no meaning. For a

maximum dictionary of e.g. {y0: 40, y1: 50, y2: 60} the following constraints are

created:

y0 ≤ 40

y1 ≤ 50

y2 ≤ 60

The argument None will indicate that there are no other maximum constraints

Returns

Allocations (type: tuple): The optimised allocations based on the constraints and

priority orders.

In Python, the order in which dictionaries are created are not persistent, but in

Amoss the order is exploited to convey meaning in allocate opt () making the function

more compact and the operating instructions cleaner.

sample dist()

The distribution object contains all the distributions that are listed in scipy . stats together

with any user-defined distributions. To define a custom distribution an Excel file called

“stochastic distributions.xlsx” is required together with a table with values and its corre-

sponding probability. For every new distribution, a new sheet is required, and the sheet

name is the name that should be used to sample the distribution in operating instructions.

Table 4.6 is an example of a custom user-defined distribution.

To activate the option to sample the distribution discretely set the value next to

“Discrete” in the distribution table to 1 (0 indicates that the distribution is to be sampled

continuously). The values and its corresponding probability are listed in the columns

“values” and “p” respectively.

On a technical level, any distribution defined by the user is discrete. To sample these

distributions continuously the probability density function is approximated by linearly

interpolating between the data points making it piecewise linear. Therefore, if more
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Table 4.6: Example of how a user can define a distribution.

Discrete 0

value p

0 0
1 0.0625
2 0.1250
3 0.1875
4 0.2500
5 0.1875
6 0.1250
7 0.0625
8 0

data points are supplied it will increase the accuracy, but if the required distribution is

available in scipy . stats it is recommended to use these because analytical equations are

used to sample these distributions.

The user-defined distributions are numerical representations; therefore, numerical in-

tegration is used to find the cumulative distribution. For the continuous case, the trapez-

ium rule with a variable step size1 is used for integration. If it is assumed that the

piecewise linear approximation is the most accurate approximation of the probability

density function, then the trapezium rule will have zero error for the integration of the

piecewise linear density function. The piecewise linearity of the approximation is ex-

ploited by using a variable step size which is the difference between each of the listed

values in Table 4.6. Using the variable step size in this manner eliminates the need to

provide a step size making the integration calculation much simpler without the loss of

accuracy. In the discrete case, the numerical integration is 100% accurate.

Listing 4.1 shows how a probability density function is integrated using Numpy.

1 import numpy

2

3 # c a l c u l a t e the pe rpend i cu la r he ight o f each trapezium

4 h = va lue s [ 1 : ] − va lue s [ : −1 ]

5

6 # c a l c u l a t e the sum of the p a r a l l e l s i d e s

7 s u m p a r a l l e l s i d e s = p r o b a b i l i t i e s [ : −1] + p r o b a b i l i t i e s [ 1 : ]

8

9 # c a l c u l a t e the area o f each trapezium and c a l c u l a t e the cumulat ive sum to

get the cumulat ive d i s t r i b u t i o n

10 cum integrate = numpy . cumsum( 0 . 5*h* s u m p a r a l l e l s i d e s )

11

12 # ensure the cumulat ive sum equa l s to 1

1not fixed
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13 cum integrate /= cum integrate [−1]

14

15 # the cumulat ive sum does not s t a r t at zero and a zero i s added at the

s t a r t making the cumulat ive d i s t r i b u t i o n s t a r t at zero

16 cum integrate = numpy . append ( [ 0 ] , cum integrate )

Listing 4.1: Numerical integration of the piecewise linear approximation of a user-defined

probability density function using the trapezium rule.

In line 13 the cumulative distribution is divided by the last value in the cum integration

array to ensure that the approximated F is bounded by [0, 1] because this is a requirement

of a cumulative distribution.

The discrete integration is far simpler than the continuous case shown in Listing 4.2.

1 import numpy

2

3 # obta in the cumulat ive sum of a l l the p r o b a b i l i t i e s

4 cum integrate = numpy . cumsum( p r o b a b i l i t i e s )

5 cum integrate /= cum integrate [−1]

Listing 4.2: Numerical integration of a discrete user defined probability mass function.

As a safety measure, the cumulative distribution is scaled to ensure that it is bounded

by [0, 1] if the user made a mistake.

To generate the non-uniform random numbers the same principles in subsection 2.6.2

are applied, but because the cumulative distributions are numerical and also piecewise

linear the graphical approach is followed. Figure 4.5 shows the graphical approach that

is followed.

A uniform random variable U on [0, 1] is created and a horizontal line on y = U is

drawn. The x value which corresponds to the location where y crosses the cumulative

distribution curve is the non-uniform generated variable. In Python the random() function

from the random library is used to generate U .

In Amoss the graphical approach is achieved by using the interp() method in Numpy.

Listing 4.3 shows how the graphical method was implemented in Python. The cum integrate

arrays that were created in Listing 4.1 and Listing 4.2 contains only discrete endpoint

on of the cumulative distribution curve but because it is piecewise linear the in-between

values can be obtained by simple interpolation.
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Figure 4.5: Graphical method followed to generate non-uniform random variables with a con-
tinuous example left and a discrete example right.

1 import numpy

2 import random

3

4 # generate a uniform random v a r i a b l e on [ 0 , 1 ]

5 random number = random . random ( )

6

7 # c a l c u l a t e the non−uniform random v a r i a b l e X

8 X = numpy . i n t e r p ( random number , cum integrate , p r o b a b i l i t i e s )

Listing 4.3: Graphical non-uniform random variable generation implemented in Python using

numpy.interp().

4.5.2 Parsing the operating instruction

The operating instructions.txt file is parsed using the ast (abstract syntax tree) library in

Python. The ast library makes it possible to parse a string and break it down into node

objects with a specific meaning which can be used to identify different forms of grammar.

Only three different Python grammar types are allowed in Amoss: assignments, if-blocks

and augmented assignment types. A description of these grammar types are given below:

Assignment (assign) is when a variable or multiple variables are assigned to an ex-

pression. These expressions can range from a mathematical expression to objects

and function calls. An assignment is identified by variables followed by the equal

operator eg. a = ... or x, y = ...
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If-block is the entire collection of the if and else-if and an else conditions together with

the equations belonging to each condition.

Augmented assignment (augassign) is assignment type where the assignment vari-

able also features in the expression but is not written explicitly eg. a = a + b is

equivalent to the augmented assignment of a by using the += assignment in a += b.

Listing 4.4 is an example that shows how ast .parse() parses a string. The string is

created in line 3 and contains all the grammar types allowed in Amoss. When ast .parse

() is called it creates an object with the variable .body which contains a list with node

objects. The assignment in line 5 and 8 are parsed as Assign types and corresponds to

index 0 and 1 in parse ast .body. The if-block which stretches from line 11 to 18 is pared

as an If type in index 2. Note that all the information of the entire if-block is contained

in the If object as an ast. Last is the AugAssign type in line 20 which was parsed and

can be found in index 3. A further advantage of using the ast library is that it recognises

comments within a string and does not parse it.

1 import a s t

2

3 p a r s s t r i n g = ”””

4 # simple ass ignment

5 a = b

6

7 # assignment c a l l i n g a func t i on

8 c = min ( a , 1 , 2)

9

10 # i f−block c o n s i s t i n g o f an i f−statement , e l s e i f−statement and an e l s e

11 i f c > 0 :

12 d = 5

13

14 e l i f c <= 0 :

15 d = −5

16

17 e l s e :

18 d = 0

19

20 e += d

21 ”””

22 p a r s e a s t = as t . parse ( p a r s s t r i n g )

Listing 4.4: Example of how the ast .parse() methods parse a string into a list of node objects.

The syntax trees that are created by calling ast .parse(pars string ) is shown in Figure 4.6

to Figure 4.9. These trees can be navigated in the variable parse ast.

Depending on which of these grammar types are encountered in the iteration through

the .body list different procedures are followed to emit the operating instructions.

85



Figure 4.6: The ast created for the assignment variable
a.

Figure 4.7: The ast created for the assignment variable c.

Figure 4.8: The ast created for the if-block.

Figure 4.9: The ast created for the augmented assignment variable e.
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Assign type

If a node form the parsed operating instructions is identified as an assignment, the node

value2 is further examined to identify if a function call was made. If the node is not an

ast .Call type it is assumed to be a mathematical equation and is added to the system of

equations.

For Amoss only specific function calls are allowed: min(), max(), allocate (), allocate opt

() and sample dist(). The function name can be identified by accessing the id parameter

in value.func.id. If the function name is min or max the assignment is emitted as a

normal equation and the assignment variable is stored for use in the code generation

(see subsection 4.6.1) part of Amoss. If the function name is sample dist an equation is

created which samples the desired distribution and the assignment variable is stored for

use in the code generation (see subsection 4.6.1) part of Amoss.

allocate()

When allocate () is identified as a function call, extra equations are created which will

calculate how the flow is allocated. The exact equations that are formed are a bit cumber-

some to write here, and therefore the algorithm which these equations follow will rather

be explained.Figure 4.10 is the algorithm diagram which the created equations follow.

2Right-hand side of the assignment.
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Figure 4.10: Algorithm that is followed by the created allocate equations.
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Calculate corrected maximum is a calculation where the minimum constraint of a

stream is subtracted from its maximum constraint. This subtraction is done to

accommodate the manner in which the streams are allocated. Allocations are per-

formed in two steps: first, the minimum allocations are made and then only after

the minima are allocated is the maximum constraint considered. If there is enough

mass to reach the maximum constraint the corrected maximum is added to the

already allocated minimum constraint value. To make this calculation easier the

difference is already taken into account and called the corrected maximum.

Calculate mass available is performed at the start of each iteration. This calculation

involves all the allocated streams subtracted from the total available mass (first

argument for allocate ()). On the first iteration, no streams have been allocated and

the available mass is the total available mass.

Any priorities left is a check which is added to terminate the iteration. If all the

priorities have been allocated, and there are none left the algorithm terminates,

but if there are any unallocated priorities left proceed with the algorithm.

Identify the next priority variable identifies the assignment variable with the cur-

rent iteration’s highest priority. As it is explained in section 4.5.1 the assignment

variables have different minimum and maximum constraint priority orders. The

minimum constraints have the highest priority and are first identified, and the

maximum priority order is identified afterwards. In the example in section 4.5.1

the priority order will be S3 minimum, S4 minimum, S4 maximum and S3 maxi-

mum.

Min or max allocation identifies if the current priority is a maximum or a minimum

allocation.

Avail ≥ min constraint checks if the available mass is greater than the minimum con-

straint, but if the available is less than the minimum constraint then the allocation

should be zero (allocate zero). If the available mass is larger than the minimum,

then allocate the minimum constraint (allocate min constraint).

Zero min allocation is a check to identify if a variable was allocated a zero in the

avail ≥ min constraint decision. If the variable was allocated a zero, then no

additional mass may be allocated to that variable because the minimum constraint

can already not be satisfied. An example where this may occur is when one of the

variables (call it S10) has a very high minimum constraint which can almost never

be met with other variables (call them Sx) with low maximum constraints. By the

time the maximum constraints are allocated all the other maxima (Sx maxima)

can be satisfied with available mass left. This mass that is left cannot be allocated
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to S10 because the high minimum constraint cannot be satisfied and the available

mass left will never be enough to satisfy this constraint.

Avail ≥ max constraint checks if the available mass is greater than the minimum

constraint (corrected maximum). If the available mass is larger than the maximum,

then allocate the maximum constraint, but when the available is less than the

maximum constraint it works differently to the minimum constraint allocation. In

this case the all the available mass is allocated to that variable.

allocate opt()

When allocate opt () is identified as a function call an NLP optimisation problem is

created as opposed to an additional set of equations in allocate (). In allocate () the min-

imum and maximum constraints are local to the point of distribution and it is possible

to find the optimal solution analytically, whereas it is not possible in all cases when the

constraints are not local. Equation 4.36 shows the NLP problem that is created

Minimise: f(x) (4.36a)

subject to: Σ x ≤ available (4.36b)

h(x) ≤ max (4.36c)

g(x) ≥ min (4.36d)

where x is the allocation variables, h is the relationship of the allocation variables to the

maximum variable constraints and g the relationship of the allocation variables to the

minimum variable constraints.

When two or more allocate opt () calls are made they are combined together under one

single optimisation problem as it is presented in Equation 4.36. In this case the order

they appear in the operating instructions file is important and it is assumed that they

appear in the same order as they are encountered in the graph when moving in a forward

manner. The highest priorities are assigned to the allocations in the fist allocate opt () call

and the lowest to the last allocations in the allocate opt () call that appears last.

Considering the feasible region of Equation 4.36 and notice that it is possible to have

no feasible region. As an example take the case where available is 0 then Equation 4.36b

and Equation 4.36d will never be satisfied if
∑
min > 0. In such a case there is no feasible

solution and the problem can not be solved. In section 4.5.1 it was explained that when a

situation like this occurs that some variables in Equation 4.36d are removed and replaced

by equality constraints of zero. The modified NLP problem is given in Equation 4.37
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Minimise: f(x)

subjected to: g(y) = 0; y ⊆ x

Σ x ≤ available

h(x) ≤ maxima

g(z) ≥ minima; z = {x} − {y}

(4.37)

The challenge in solving Equation 4.37 is identifying what subset y of x must be equal

to zero especially when two or more allocate opt () calls are encountered. By recognising

that the minimum constraints are in fact disjunctive3 (g(x) ≥ minima or g(x) = 0) a

big-M approach could be implemented. Another option, which was easier to implement

(referring to coding considerations) and was the implemented4 method in Amoss is to

remove the maximum constraint (Equation 4.36c) and turn the minimum constraint

(Equation 4.36d) into binary constraints of zero or the minimum. The MINLP of this

formulation is given in Equation 4.38

Minimise: f(x) (4.38a)

subjected to: Σ x ≤ available (4.38b)

g(x) = 0,minima (4.38c)

A branch and bound approach is followed to solve Equation 4.38. The optimal solution

of Equation 4.38 will identify the minimum constraints that must equal zero (g(y) = 0,

y ⊆ x). Due to this method, it is of paramount importance that the distribution point

must be fully bounded by minima (no allocation variables x may have a path in the

process graph that has no minimum constraint) otherwise it is possible that optimisation

may falsely identify minima that need to be zero.

Figure 4.11 shows the algorithm that determines the optimal distribution of the com-

bined allocate opt () optimisation problem.

NLP Equation 4.36 attempts to find the optimum distribution given the constraints.

NLP feasible is a check that determines if Equation 4.36 has a feasible solution, and if

a feasible solution is found the algorithm terminates. It is expected that in most

iteration the solution will be found by Equation 4.36. If an infeasible problem is

detected, it is most likely due to the available mass not being enough to meet all

the minimum constraints, and the branch and bound procedure is started.

3See section 2.3.4
4At this stage time restrictions for the project was starting to be reached and the method that could

be implemented easier was used
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Figure 4.11: Algorithm that is followed by allocate opt to solve the disjunctive constraints.

NLP Equation 4.38 solves the relaxed optimisation problem with Equation 4.38c re-

laxed to 0 ≤ g(x) ≤ minima.

0 < g(x) < minima checks if any minimum constraint is not at its boundary (at 0

or minima). If all the minima satisfy Equation 4.38c then continue to find the

optimum solution otherwise branching is required.

Next zero minimum is the branching step in the branch and bound procedure. It is

known that if any of the minima are not at their boundary that the available mass

is not enough and that at least one minimum must be zero. Due to this fact it is

not necessary to solve both of the binary branches but only the branch which fixes

one minimum to zero. Thus, only a single branch needs to be calculated effectively

cutting the computational load in half compared to a traditional branch and bound.

This situation was exploited in Amoss and the remaining branch will not be cal-

culated. The next zero minimum block therefore only needs to identify the

minimum that needs to be fixed to zero. The decision made in this block is based

on the priority of the minimum. The minima that will be fixed to zero is identified
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by starting at the lowest priority and working its way up the rank as the iteration

continues.

If there is more than one allocate opt () then the minimum with the lowest priority

starts at the first allocate opt () and the minimum with the highest priority ends at

the minimum with the highest priority in the last allocate opt (). In this configu-

ration, it starts with the minima with the lowest priority equal to zero first and

also starting with the allocation that is first encountered in the graph. First chip-

ping away at the first allocation and working it downstream is important because

the distribution decided upstream will determine how much mass is available for

distribution downstream.

Solve optimum Equation 4.37 finds the optimal distribution. The subset y is found

in the branch and bound procedure and is all the minima that were set to zero.

The cost of implementing the easier branch and bound instead of using the big-M

approach is seen in this block which requires one additional optimisation problem

to solve to find the optimal distribution. Equation 4.38 is a completely different

optimisation problem than the one stated in Equation 4.36 and by solving Equa-

tion 4.38 only assists in determining which minima need to be fixed to zero. This

information is then used to find the optimal distribution.

If type

When an if-block is identified the entire block is parsed as an additional set of equations.

For every if-blocks in the operating instructions a unique base variable is created based

on its location in the operating instructions file. The first if-block in the operating

instructions will have the base variable if0 with the second if1 etc. These base variable

are used to create additional auxiliary variables to parse an if-block into a set of equations.

An if-block consist of the following four parts:

If-statement is the first condition found in an if-block and identified by the Python

grammar word if . It is required that there is only one if-statement per if-block.

Elif-statement is the follow-up conditions of the if-statement and any other elif-statements

that came prior and is identified by the Python grammar elif . There can theoreti-

cally be any number of elif-statements, including none.

Else is the last condition of the if-block. The else is an implied condition which is True if

all other conditions before the else is False. Else is identified by the Python grammar

word else and is optional.

Conditional equations are the equations that should be evaluated if any of the condi-

tions in the if-block are True.
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The equations that are created when parsing an if-block is better explained using the

example if block in Listing 4.4 which is rewritten in Python grammar in Listing 4.5.

1 i f c > 0 :

2 d = 5

3

4 e l i f c <= 0 :

5 d = −5

6

7 e l s e :

8 d = 0

Listing 4.5: Extraction of the if-block example in Listing 4.4.

In this example, the base variable will be if0. When parsing an if-block, the following

equations are created:

� Using the base variable the if-statement is parsed to if0 0 = c > 0. The if-statement

will always have the 0 extension to the base variable.

� The elif-statements are parsed from the top to bottom of the if-block. In the exam-

ple the elif-statement is parsed as if0 1 = c ≤ 0 and if0 0 == 0. The extension 1 is

the distance of the elif-statement from the if-statement. Notice that there is a sec-

ond condition when parsing elif-statements. The second condition will always stay

the same except the extension of the auxiliary if variable is one less the extension

of the currently pared if variable. In this case, the extension number was 1 and the

second condition extension was 0 (1 - 1). This second condition ensures that only

one of the auxiliary if variable evaluates to 1 (one5).

� The else is parsed to the equation if 2 = if 1 == 0. The extension of the else 2

is also the distance of the else from the if-statement. The condition in the else

equation is the same as the second condition in the elif equation.

� The conditional equations are parsed based on the condition it belongs to and

the auxiliary if variable created for that condition. In this example the following

equations will be created if0 0 d = 5; if0 1 d = −5; if0 2 d = 0. The equations are

simply the auxiliary if variable with the assignment name as the extension.

� Finally, the true value of the assignment is calculated by creating the equation

d = if0 0 d× if0 0 + if0 1 d× if0 1 + if0 2 d× if0 2. The equation is the sum of the

conditional equation multiplied by its auxiliary if variable. Due to one auxiliary if

variable evaluating as 1 all the other variable are 0, and in this manner, the correct

conditional equation is selected.

5When a statement is True it evaluates to 1 and when it is False 0
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The method described above to parse an if-block has a drawback: all conditional

equations and all conditions are evaluated and costs computing time. For example if the

if-statement in Listing 4.5 is true only two calculations are needed. One to evaluate the

condition and the other evaluating the equation. In the method that is implemented seven

calculations will always be required no matter which condition is True. The sole reason

this was done is because it made it possible to order the if-block as normal equations

in section 4.6. Attempts were made to parse an if-block as a single dummy equation,

but the problem was that this dummy equation would sometimes feature in a residual

equation which did not make sense. In the implemented manner the entire if-block is just

another set of equations.

Augassign type

The augmented assignments are parsed as is and are not considered as part of the set of

equations. In the simulation these equations are evaluated before the set of equations is

solved. The assignments of these equations are considered inputs to the set of equations.

4.6 Ordering to bordered lower triangular form

The purpose of ordering the full system of equations (including the parsed equations

(subsection 4.5.2)) was to create a system which is easier to solve than the unordered

system. Figure 4.12 is and example of an incidence matrix using a test process of Amoss

with 171 variables and equations.

To solve a system in the state as it is in Figure 4.12 will require the entire system of

171 variables to be solved simultaneously. Using the bordered lower triangular ordering

algorithm of Baharev (2017a) on the system in Figure 4.12 results in the incidence matrix

in Figure 4.13. The order system in Figure 4.13 requires only 19 variables that need to

be guessed. Notice that the first block in Figure 4.13 is completely lower triangular

and these first 152 equations can be solved explicitly and sequentially. The remaining

variables have to be solved using a numerical solver, and the remaining equations are the

residual equations used in the root-finding software.

Due to the advantage of tearing it was decided to make tearing a part of Amoss. The

code written by Baharev (2017a) requires as an input a sparse incidence matrix A, but the

full system of equations are saved in string form. To create A, a list is created containing

all the variables that are created in the automatic equation generator (section 4.3) as

well as any new variables introduced in the parsing of the operating instructions. The

indices of these variables in this list (called the variable list) correspond to a variable

ID (the variable ID is the index plus one). To identify which variables occur in each

equation (excluding the created equations for the if-, elif-, and else statements as well
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dence matrix of 171 rows
and columns.

0 25 50 75 100 125 150

0

20

40

60

80

100

120

140

160

Figure 4.13: Reorder incidence matrix to
the bordered lower triangu-
lar form.

as stochastic variable sampling equations) are converted to Sympy expression trees using

sympy.sympify(). The variables taking part in an equation can very easily be obtained

by calling the .free symbols parameter of a Sympy expression. The following example

illustrates this:

Consider the Sympy expression eq = sympy.sympify(’’’a − b*c’’’). By calling the eq.

free symbols parameter the following Python set will be returned: {a, b, c}.

Before the matrix is built, a DOF check is done to ensure that the number of variables

and equations are still equal. If the check passes, only then A will be built. A is built by

iterating through the equations (matrix rows) and finding the variables (matrix columns)

partaking in the equation and adding the variable ID as the entry in the correct column

(the variable index still corresponds with the column index of A). This why the variable

IDs can not correspond to the variable list’s indices. The variable in the 0’th index will

then correspond to a zero entry in A, effectively not being there. The use of the variable

ID will become clear in subsection 4.6.1 when retrieving the equation order.

The bordered lower triangular method by Baharev (2017a) does not establish the fea-

sible assignments automatically and the infeasible assignments need to be indicated by

making the corresponding entry (ID) in A negative for that variable in the corresponding

row. To identify the feasible and infeasible assignments Baharev (2017b) made a reposi-

tory available on GitHub called safe-eliminations (Baharev, 2017b). The module requires

a sympy equation and bounds for the variable in the equations. The module returns a

Python dictionary with the feasible assignment as the key and the symbolically solved

equation as the value. When iterating through the equations to build A each equation

is checked for feasible assignments and if any variable is infeasible for that equation the

negative value of the ID is entered in A.

The if-block equations not converted to Sympy expression trees are stored as special
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equations and the variables identified and stored when they were parsed. They are added

to A in the same way, except Sympy is not used to find the variables partaking in the

equations. The reason why these variable were not sympified is because Sympy cannot

create expression trees for all types of logic statements. Below is a list explaining the

shortcomings:

� An equation containing an equality condition is evaluated and a Sympy tree is not

built eg. eq = sympy.sympify(’’’a == b’’’) results in a False. This is for any equality.

� Sympy is unable to sympifiy an equation containing the and/ or operator and returns

an TypeError. It is well able to sympifiy equations looking like: sympy.sympify(’’’a == b

and a > c’’’) or sympy.sympify(’’’True and a > c’’’) or sympy.sympify(’’’False or a == b and

a > c’’’). The result of these exceptions are still only True or False.

� It can only successfully sympifiy equations having a single inequality eg. eq = sympy

.sympify(’’’a >= b’’’).

It is not feasible to limit the user to a single inequality per statements and that is why

these equations are added as special equations to A. These if-block equations are not

strict analytical equations where it is possible to eliminate a variable by symbolic manip-

ulation. Therefore, all the variables in these equations are infeasible assignments except

the assignment variable created from the base if-variable and are indicated accordingly

by making the IDs negative in A.

The other equation type that was not sympified was stochastic variable sampling

equations. These equations are numerical (not analytical) in the way they are presented

in Amoss and these variables are not differentiable, which poses problems when the

simulation code is generated (see subsection 4.6.1). These equations are removed from

the full system of equations and are regarded as inputs to the system. The consideration

of the variables as inputs inadvertently requires these variables to be sampled at every

iteration.

The argument against this is that some stochastic variables may not require such

frequent sampling and the simulation time could be shortened by only sampling when

necessary. It is possible to make the stochastic variables differentiable by breaking it

down to its linear parts (piecewise linear), but the uniform random variable will still

need to be generated at every time step regardless. Therefore, making these variables

differentiable is a futile attempt.

It was possible to sample only as needed when derivative information was not used to

solve the system (see subsection 4.6.1 and section 4.7) but the solving speed was greatly

increased when derivative information was incorporated to solve the system.
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4.6.1 Model generation

The results from the lower triangular ordering need to be interpreted and a model of the

ordered system needs to be constructed. This model must then be solved using some

numerical root-finding software.

Interpreting the results

The results from the bordered lower triangular method (Baharev, 2017a) are two per-

mutation matrices P and Q so that matrix multiplication–PAQ–results in the ordered

incidence matrix A′. Equation 4.39 shows how A′ is subdivided

A′ =

[
A′
î,̂i

A′
î,n

A′
m,̂i

A′m,m

]
(4.39)

where A′
î,̂i

is the lower triangular part of A′. The index î is identified by simply searching

through A′ and finding the first column with an entry above the diagonal. The assign-

ment variables can easily be obtained by identifying all the variable IDs that are on the

diagonal of A′
î,̂i

. The order of these assignment variables is simply the order in which they

appear on the diagonal (the column index). To determine the equation order is not as

straightforward and a square m×m auxiliary matrix R was created with a single entry in

each row corresponding to the row number. This entry may be in any column. In R, the

entry number corresponds to the equation row number in A (if the equation was added

to A first it has row number 1 the second has row number 2 etc.). By remembering the

order in which the equations were added to A the equation order can now be obtained

by the matrix multiplication of PRQ = R′. The same as in R, R′ also only has one entry

per row but the number is not sequential as in R. The order the values appear in R′ is

the equation order. The value in row 1 corresponds to the equation number that needs

to be solved first, and the value in row 2 corresponds to the equation that needs to be

solved second etc. Now that the variable and equation order is known the ordered system

of equations is available and the model can be built.

When the identification of the feasible assignments in safe-eliminations (Baharev,

2017b) was done, it solved each equation for all its variables. This process is very time-

consuming when ordering to A′. Although it is time-consuming, it means that all possible

eliminations were already calculated and can be used when building the model. To save

some processing time in the model generation part, all the results from safe-eliminations

were saved and the correct symbolically solved equation can be matched to corresponding

assignment saving time by not redoing the same calculation.

The variables and equations that are not in A′
î,̂i

are the variables that need numerical

solving and the equations are the residuals that need their roots determined.
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Building the model

The entire model is built in CasADi (Andersson, 2013). The need for an algorithmic

differentiation tool arose when allocate opt () (section 4.5.1) was introduced to Amossbe-

cause optimisation without derivative information did not succeed. CasADi was also

implemented to find the roots of the system of equations with great success (see sec-

tion 4.7). Depending on the presence of allocate opt () two different models will be built.

These two methods are discussed below.

Absence of allocate opt ()

When allocate opt () is not used in the operating instructions no optimisation is required

and the system of equations simply needs to be solved. A CasADi function is built which

takes the variables that need to be solved numerically as its inputs together with any

additional inputs and parameters to the system and returns the residual equations. To

show how to solve a system of equations with CasADi Equation 2.18 was ordered to the

border lower triangular form (equation f1 was modified to f1(x) = x1 + x4 − 10 − a

introducing a parameter a) which resulted in A′
î̂i

having the variable order x1, x2, x3 and

equation order f1, f3, f2 when all variables are bounded to between 10 and 100 (10 ≤ xi ≤
100 for i = 1, . . . , 5). Variables x4 and x5 need to be solved numerically with residual

equations f4 and f5. Listing 4.6 shows how to use CasADi to solve the 5×5 system using

CasADi’s syntax

1 from casad i import SX, Function , r o o t f i n d e r , v e r t c a t

2

3 # d e f i n e the CasADi v a r i a b l e s

4 x4 = SX. sym( ”x4” )

5 x5 = SX. sym( ”x5” )

6 a = SX. sym( ”a” )

7

8 # equat ions in A′
î̂i

9 x1 = a − x4 + 10

10 x2 = 3.39804717687081*(1/( x1 *( x4 − 5) ) ) **0.588235294117647

11 x3 = ( x5 + 6) /( x2**2*x4 )

12

13 # r e s i d u a l equat ions

14 r1 = x4 − 3*x1 + 6

15 r2 = x1*x3 − x5 + 6

16

17 # a n a l y t i c a l model

18 model = Function ( ’ model ’ , [ v e r t c a t ( x4 , x5 ) , v e r t c a t ( a ) ] , [ v e r t c a t ( r1 , r2 ) ] )

19

20 # c r e a t e r o o t f i n d i n g ob j e c t us ing the newton method

21 newton = r o o t f i n d e r ( ’ newton ’ , ’ newton ’ , model )

22
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23 # f i n d roo t s

24 r e s = newton ( [ guess x4 , guess x5 ] , [ parameter a ] )

Listing 4.6: Solving of Equation 2.18 when order to bordered lower triangular form (equation

f1 was modified to f1(x) = x1 + x4 − 10− a).

Presence of allocate opt ()

When allocate opt () is present the system is not solved using root-finding methods,

instead the objective function is minimised together with equality and inequality con-

straints. All the variables identified in the bordered lower triangular ordering that need

to be solved numerically are now considered as optimisation variables and the residual

equations are now equality constraints to the optimisation.

The procedure is very similar to the case when allocate opt () is absent but instead the

model takes only the optimisation variables (not any other parameters and inputs) and

outputs the constraints equations. Any other equality or inequality constraints are also

added to the model function output. The additional parameters and inputs to the system

of equations are added when the optimisation object is defined.

To illustrate how the optimisation works Listing 4.7 is used as an example. The

equations in Listing 4.7 is the same as Listing 4.6 except equation f4 was removed to

obtain DOF = 1 and adding an objective function f = −x4 (maximise x4). In Listing 4.7

the remaining residual equation r2 is now an equality constraint. The other covariants

g1 and g2 are arbitrary inequality constraints. In CasADi the equality and inequality

equations are handled in exactly the same manner but the defining of the upper and

lower bound on these equations determines if it is an equality or an inequality constraint.

In Listing 4.7 r1 is an equality constraint r1 = 0 (upper and lower bound is 0), g1 and g2

are inequality constraint with g1 constrained between 50 and a 1000 (50 ≤ g1 ≤ 1000)

and g2 constrained between 10 and a 100 (10 ≤ g2 ≤ 100). The optimisation variables,

parameters and inputs, constraint equations and the objective function are added to the

optimisation object via a Python dictionary with the keys ”x” the optimisation variables,

”p” parameters and inputs, ”g” constraint equations and ”f” the objective function.

1 from casad i import SX, Function , r o o t f i n d e r , ver tcat , n l p s o l

2

3 # d e f i n e the CasADi v a r i a b l e s

4 x4 = SX. sym( ”x4” )

5 x5 = SX. sym( ”x5” )

6 a = SX. sym( ”a” )

7

8 # equat ions in A′

9 x1 = a − x4 + 10

10 x2 = 3.39804717687081*(1/( x1 *( x4 − 5) ) ) **0.588235294117647

11 x3 = ( x5 + 6) /( x2**2*x4 )
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12

13 # e q u a l i t y equat ions

14 r2 = x1*x3 − x5 + 6

15

16 # o b j e c t i v e func t i on ( minimise )

17 f = −x4

18

19 # i n e q u a l i t y c o n s t a i n t s

20 g1 = x1/x5

21 g2 = x4

22

23 # a n a l y t i c a l model

24 model = Function ( ’ model ’ , [ v e r t c a t ( x4 , x5 ) ] , [ v e r t c a t ( r2 , g1 , g2 ) ] )

25

26 # c r e a t e opt im i sa t i on ob j e c t us ing IPOPT

27 nlp = { ’ x ’ : [ v e r t c a t ( x4 , x5 ) , ’p ’ : v e r t c a t ( a ) , ’ g ’ : model ( v e r t c a t ( x4 , x5 ) ) ,

’ f ’ : f }
28 opt = n l p s o l ( ’ n l p s o l ’ , ’ ipopt ’ , nlp )

29

30 # d e f i n e bounds

31 lbg = [ 0 , 50 , 10 ]

32 ubg = [ 0 , 1000 , 100 ]

33

34 r e s = opt ( x0=[ guess x4 , guess x5 ] ,

35 lbg=lbg

36 ubg=ubg )

Listing 4.7: Optimising Listing 4.6 by removing f4.

The branch and bound method as described in section 4.5.1 is not shown in List-

ing 4.7. Listing 4.7 only shows how an optimisation problem is set up in CasADi, but

the optimisation problem in Listing 4.7 corresponds to the “NLP Equation 4.36” block

in Figure 4.11.

4.7 Simulation

In the simulation part of Amoss, the model built in subsection 4.6.1 is executed for every

active scenario for the number of replications required and the results written to a file. In

this section, the focus will be on the improvements made to the simulation speed by the

implementation of different techniques together with factors that influence the simulation

speed.

The implementation of the HDF5 (The HDF Group, 2017) file format, bordered lower

triangular tearing and CasADi each had a fundamental influence on the simulation time.

Figure 4.14 shows how each of these improved the combined simulation time. These
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improvements are cumulative meaning that every new improvement is implemented on

top of the previous. The base simulation time was recorded when block lower triangular

tearing was used instead of the bordered lower triangular tearing and a CSV file was

used to save the results. All the tests were run for 1000 iterations and 250 replications.

Therefore, the results in Figure 4.14 is an average of 250 data points. The computations

were carried out with the following hardware and software configuration. Processor:

Intel® Core� i7-3770 CPU @ 3.40GHz, disk: Samsung SSD Evo 850, operating system:

Windows 7 Ultimate © 2009 Microsoft Corporation and Python 3.5.2. The complete

defined system that was used is found in section A.2.
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Figure 4.14: Combined simulation and result write (to disk) time and how it improved by
implementing the method on the x-axis.

HDF5 The HDF5 file format was introduced to increase the write time to disk. It was

found that speed-up achieved by implementing the HDF5 file format was purely

due to the size reduction. On average an HDF5 file is 15 times smaller than a CSV

file and directly responsible for the faster write time.

BLT Block lower triangular ordering was used to increase the simulation speed. The

simulation speed-up seen by implementing the bordered lower triangular tearing is

due to a reduction in the number of variables that need to be solved numerically.
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For this particular simulation (see section A.2) the reduction was from 57 to 7

variables. The solver scipy .optimize. fsolve with no derivative information supplied

was used for both cases.

CasADi The implementation of CasADi shows the power of derivative information.

CasADi’s core is also written in C++ (Andersson, 2013: 72) which is a language

with a fast execution time.

Parallel processing

The simulations Amoss simulates are embarrassingly parallel and the scenarios can be

simulated completely independently from one another. In Amoss, scenarios are run in

parallel instead of the replications, because the replications of a single scenario depend on

the last values of the previous replication as its initial values; therefore, the replications

are not independent of one another and not embarrassingly parallel. So it is not pos-

sible to parallelised the replications without using other parallel processing techniques.

Sasol specifically requested that replication need to follow one another in this manner,

but should this constraint be removed and replications are allowed to have their own

independent initial values it is possible to run replications in parallel as well.

Celery is used to parallelise the scenarios.

Linear scaling

Amoss was tested to see if it does scale linearly with the number of equations. The

following set of equations

xi = xi−1 + 0.001xi−2 + 1.5 (4.40)

with x0 = 1 and x−1 = 1 was created for i = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
and simulated for 1000 iterations and 250 replications. The results of Equation 4.40 were

plotted in Figure 4.15.

Figure 4.15 show that the simulation time increase linearly as the number of equations

increase which was expected, but unfortunately this linearity is dependent on the solving

difficulty of the system. It was observed through a variety of test processes that different

systems of equations will solve faster than others even if the number of equations are

roughly the same. Based on observation it seemed that this discrepancy was due to the

number of equations that are required to be solved numerically. It was hypothesised that

and increase in variables requiring numerical solving will increase simulation time. To

test this hypothesis, the following set of equations were used

xi = xi−1 + 0.001xi+1 + 1.5 i = 1 : r + 1

xi = xi−1 + 0.001xi−1 + 1.5 i = r + 2 : n
(4.41)

103



1 2 3 4 5 6 7 8 9 10
i

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
e
co

n
d
s 

p
e
r 

1
0
0
0
 i
te

ra
ti

o
n
s

R 2 = 0. 999

Figure 4.15: Simulation time in Amoss using the system of equations in Equation 4.40 for
different i together with a linear regression fit.

with x0 = 1 and r controls the number of equations that will need numerical solving and

n is the total number of equations that will be created.

Using r = {1, 10, 20, 30, 40, 90} did not produce the expected result. Instead of seeing

an increase in simulation time a slight decrease was observed. Figure 4.16 shows this

phenomenon. Due to this result, it is now hypothesised that the difficulty to solve a

system of equations is dependent on the factors described in subsection 2.5.6. The sen-

sitivity of the guessed variables to the residual equations can lead to more iterations in

the multidimensional Newton method leading to longer simulation time. The decreases

observed in Figure 4.16 could be because a majority of the floating-point operations are

executed in C++ as opposed to the Python interpreter.

The result of Equation 4.41 shows that it is difficult to predict the simulation time

and that some models may simulate a faster than others. Therefore, no estimate can

be given on the simulation speed given the number of equations or guessed variables.

The only way to predict the simulation time is to quantify the difficulty of the system of

equations.
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Figure 4.16: Simulation time in Amoss using the system of equations in Equation 4.41 for
different r together with a linear regression fit.
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CHAPTER 5

USER INTERFACE (UI)

The UI is a combination of the simulation description.xlsx file (the documentation of

how to populate this file is in section 4.1), the stochastic distributions.xlsx file (explained

in section 4.5.1), an editing environment and a graphical user interface. The UI is the

gateway for the user to interacted with the code written for Amoss.

Currently Sasol supports Microsoft and every engineer has access to Excel. The use of

.xlsx files are a simple way for the user to input structured and specific data into Amoss

and because the user already has access to this software it was the chosen format.

The editing environment is a platform which enables the user to edit the operat-

ing instructions.txt file (see section 4.5 for the content that appear in this file). The

operating instructions file is .txt file which can be edited by any number of text editors.

For a better user experience it was chosen to use the Atom text editor (GitHub Inc, 2017).

Atom calls itself the “hackable text editor” and it is utilised to create a more interactive

editing environment.

The graphical user interface was created to assist the user to execute all the tasks

in section 4.2 to section 4.7. The GUI is also used to create new models and change

simulation settings.

5.1 Editing environment

When creating a model from the ground up, the modeller has a natural feeling of the

available variables and what it represents, but because Amoss automatically creates the

bulk of the equations and variables, there is a disconnect between the modeller and the

model. To bridge this disconnect, it was necessary to create a more interactive editing

environment which provides feedback to the modeller on the available variables. This

feedback mechanism saves time and eliminates unnecessary errors by identifying spelling
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mistakes or undefined variables. To create the desired environment, four key features

were identified: the ability to add comments, tab completion of the created variables,

syntax highlighting and general error detection (linting) when writing the equations.

The operating instructions file is not incorporated in Amoss as pure code but is parsed

(as discussed in subsection 4.5.2) and interpreted as an additional set of equations.

The Atom text editor can fulfil all the mentioned requirements to make a functional

and usable environment. With Atom being a community-based project a large variety of

packages are available to create the desired environment. A large portion of the require-

ments was solved by simply using Python grammar.

By simply installing Python grammar and linting packages in Atom, comments can be

added without it being parsed and syntax highlighting and linting can be achieved. The

tab completion was achieved by defining all the created variables in a separate Python

file and importing it into the operating instruction environment using Python syntax

and the installed Atom package. These packages will recognise the file and make these

variables available. The possibility still exists that a created variable can be misspelled,

an undefined variable is used or Python grammar syntax errors can be made. The linter

will see the operating instructions as a Python script and will point out any syntax errors

or misspelt and undefined variables.

Even though the environment forces a user to define a variable before it is used in

other equations, the order that equations appear in the operating instructions file carries

no meaning. It is technically still valid to use a variable and define it later in the operating

instructions, but the linter will see this as an error. This error is by no means an issue that

should be fixed because it will ensure that the user has defined all required variables. This

behaviour of the editing environment can also create the illusion that code is executed

by from top to bottom tempting a user to re-purpose or update a variable (defining a

variable more than once in the operating instructions file). See the rules for the operating

instruction environment for more detail.

Figure 5.1 to Figure 5.4 is a summary of all the necessary features that are required

to make a user-friendly editing environment.

Due to heavy use of Python syntax and grammar the operating instruction environ-

ment may look “too familiar” to an experienced Python programmer which may lead to

the feeling or urge to view the operating instructions as a Python script. The operat-

ing instructions must be viewed as additional equations and not as code and the use of

Python objects (lists, dictionaries etc.), libraries and loops (while and for loops) are not

allowed.

Below is a list consisting of the rules for using the operating instruction environment:

� Only valid Python variables are allowed.

� Any variable starting with “Amoss ”, “allocate{}” or “if{}” (where {} is a number)
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Figure 5.1: Adding comments to equations.

Figure 5.2: Tab completion of created variables.

Figure 5.3: Syntax highlighting.

Figure 5.4: Error indication.

are forbidden from being created or used. These variables have inner meaning to

Amoss and using these variables can lead to errors.

� Update or re-purpose1 of variables is not allowed because the operating instructions

must be seen as equations and when a variable is updated or re-purposed it creates

different equations for the same variable which are conflicting and will lead to an

ill-defined equation set.

� When using conditionals the variables defined in the if-statement must also be

defined in the following elif- and else- statements. All variables that are not defined

for all conditions will be zero when the condition evaluates true.

� When making use of the min of max function the equation may only contain the

min or max call with no other additional mathematical operations allowed on the

1Re-purpose refers to using the same variable name but representing a new quantity
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min or max function itself. Mathematical operations are allowed inside the call.

� The use of nested min or max functions is not allowed.

� Multiple variable assignment in a single line (see subsection 4.5.2).

� Mathematical functions or constants (sin, log, π) are not supported and can not be

used.

5.2 Graphical user interface (GUI)

The GUI consists out of two windows: a navigation and execution window together

with a small info window which displays information related to the different tasks. The

combination of these two windows are known as the GUI. When starting Amoss the initial

windows that are displayed are shown in Figure 5.5.

Figure 5.5: The user interface that appears when Amoss is started. Top the UI and bottom
the info window.

The first button on the GUI (Create New Model) Figure 5.6 is used to create a new

blank process in the folder of choice containing all the necessary files to create a full

model. These files include: process.mo the OpenModelica file where the process diagram

is drawn in, simulation description.xlsx the Excel file containing all the information to

create equations, operating instructions.txt file containing the operating instructions and

stochastic distributions.xlsx the file containing the user-defined distributions. The info

window will display “Creating new model” while the new location and its files are created

and “New model created” when the process is complete.

109



Figure 5.6: The user interface that appears when a new model is created.

The “Edit Model” (Figure 5.5) button is used to edit the simulation information and

the operating instructions. To change the process that needs to be edited the “Select

process” button can be used to select another process model. The name of the selected

process model name (Simulation-X in this example) is displayed on the right. The next

button “Edit Operating Instructions” will open operating instructions.txt with the Atom

editor (if installed). The info in the info window will read “Opening Atom” when Atom

is opening and “Atom opened” when the Atom editor process is started.

Figure 5.7: User interface to edit simulation information and edit the operating instructions.

“Update Variables” will gather all the variables that were automatically created to-
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gether with additional variables created in the scenario table and make them available in

the Atom environment where the operating instructions are edited. All these variables

will appear in the Atom environment as variables that have already been created with

tab completion.

The remaining settings are related to the simulation itself. “Hours” indicates the time

span of the simulation and “Replications” the number of times a scenario is repeated.

“Iterations” is the maximum number of function evaluations allowed in the root-finder

(currently not implemented for the CasADi version). As a default 70 128 hours (8 years),

30 replications and a maximum of 10 function evaluation are shown. These values can be

changed by entering new values with the keyboard. The “Accept” button will save any

changes to the number of Hours, Replication and Iterations and “Cancel” will display

the UI in Figure 5.5.

The “Run Model” button (Figure 5.5) will show the UI in Figure 5.8. At the top,

the UI displays the model which will be executed as well as the run settings (Hours,

Replications and Iterations). To change any of these the “Edit” button will lead to

the UI in Figure 5.7 where it can be changed. The “Balancer” button will execute the

code that automatically creates the equations (section 4.2 to section 4.4). The “Process

equations” button will execute the code that orders the automatically created equations,

and the equations in operating instructions to the bordered lower triangular form in

section 4.6. The “Balancer” and “Process equations” were separated to make it possible

to get access to the automatically created variables in the operating instructions before

the equations are ordered.

Figure 5.8: User interface to execute different parts of Amoss. The UI top left is when a
simulation is not being run, and the UI top right shows the UI when a simulation
is being executed.

111



In the UI (top left) in Figure 5.8 the “Run” button will start the execution of the model

(section 4.7). When the button is pressed the UI (top right) will appear, and the “Run”

button will change to a “Stop” button to stop the simulation if required. The UI also

has a progress bar to show the progress of the simulation. Due to the simulations being

run in parallel the progress bar is divided into parts equal to the number of scenarios.

Therefore, each segment represents the progress of a single scenario. The info window

displays the progress of each replication.

The “Cancel” button will show the UI in Figure 5.5.
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CHAPTER 6

CONCLUSION AND

RECOMMENDATIONS

Amoss successfully provides a platform to create and simulate stochastic simulations. It

encompassess a variety of different aspects from automatic equation generation, equation

ordering, optimisation and parallel processing to provide this platform. The success of

Amoss can be measured by the listed deliverables in section 1.4. The deliverables that

are satisfied by Amoss are:

Reduction in development time. This is one of the largest improvements Amoss of-

fers. The ability to generate equations automatically given a process diagram to-

gether with the equation ordering drastically reduced the development time. In

MOSS equations are manually derived for systems having feedbacks, solved sym-

bolically to avoid numerical root-finding software and ordered intuitively in an

attempt to reduce the simulation time. Creating simulations in this manner could

take upwards of a month whereas a similar simulation can be completed in about

a week using Amoss.

Generic application. Amoss was designed from the ground up as a general stochastic

simulation platform. This is evident in the use of a process diagram and the operat-

ing instructions file to create a model of a process with any configuration provided

that the operational unit is defined in Amoss. If the operational unit is not defined

in Amoss it can be added to the automatic equation generation code and because

of the equation orientated approach does not require any additional changes to the

downstream code.

Development flexibility. Changing the operating instructions or the physical plant in

MOSS for an existing model poses a huge problem. In MOSS any change requires

113



additional equations to be derived and can lead to the symbolically solved equa-

tions to be invalid. Depending on the severity of the change it could setback the

developer a week to a month. Changing an existing model in Amoss simply re-

quires the modification of the process diagram (and the affected input tables) and

the operating instructions with minimal effort and time.

Simulation flexibility. In Amoss, sections of the plant can be activated and deactivated

by simply adding an if-block in the operating instructions which will set the inputs

to the plant section to zero (deactivate) or allocating a value to the inputs (activate).

This on-off capability is possible due to Amoss’s equation orientated design and the

feasible assignments by Baharev (2017a) which will avoid zero division errors.

Acceptable accuracy. On condition that the Newton root finder successfully finds a

solution under 1000 function evaluations any residual equation will be solved with

an absolute error of 1−12 or if a single absolute Newton step is less than 1−12. When

the Newton root finder succeeds the equations will be satisfied at each Euler step,

but this does not guarantee that the integration is within acceptable accuracy. The

accuracy of the integration is dependent on the dynamic behaviour of the Buffer

tanks. A Buffer with a small time constant will not integrate with acceptable

accuracy but a Buffer with a large time constant will.

Fit for purpose. Amoss is an extension of the MOSS methodology and was developed

with the guidance of Sasol and follows the modelling methodology of Sasol. Amoss

is written in Python which is a common language with a large community making

it possible for a person with moderate programming experience to contribute to

Amoss.

Linear scalability. Linear scalability as initially defined by Sasol does not take the

model complexity into consideration. The difficulty of the system depends on the

complexity of the process and the size of the feasible assignments. A process with a

high number of feedback streams or equations with possible zero divisions can lead

to a more difficult system to solve independent of the number of equations of the

process. It is also uncommon to find problems that scale linearly. Even solving a

set of linear equations has a worst-case time of O(n2) and it is expected that the

Amoss with its non-linear equations will at least scale worse. However, Figure 4.15

shows that simulation time can scale linearly with the number of equations when

the difficulty stays constant.

Quick learning curve. The learning curve is low to moderate. The most difficult part

is to learn basic Python grammar and how to create an OpenModelica flow sheet

together with rudimentary coding skills. The other skills required to create a sim-

ulation is editing a text file and spreadsheets, as well as modelling knowledge. A
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modeller with no prior knowledge of Python grammar or OpenModelica was able

to create small process models within a week.

IM Cost. The IM cost for Amoss is low relative to other commercial software due to

the use of open source software like Python and OpenModelica. The University of

Pretoria has also agreed to continue development beyond the delivery date at the

end of 2017.

Version control of model development. Version control of the project is done with

git (Software Freedom Conservancy, 2017) using Bitbucket (Atlassian, 2017) as

the cloud repository. It is also possible use git and a repository to put any created

models under version control, because all the information required to define a model

is text based (even the .mo file).

Debug capability. Rudimentary debugging is added in the form of the information

window in the GUI. Common errors a modeller would make has been identified

and will display an appropriate message and a recommended course of action. An

example would be when the DOF is not zero a message will inform the modeller

and urge them to add or remove inputs in the inputs list.

Cause identification. Rudimentary cause identification is added by identifying when

an if-, elif- or else statements of any if-block evaluated true. This identification is

a direct consequence of the way if-blocks are parsed and converted to equations.

The statements in an if-block are parsed to equations using a base if-variable and

evaluate to 1 when true and 0 when false. The if-variable equal to 1 indicates that

that particular statement was triggered. A list linking the created if-variables to

the statement is made available to the modeller.

6.1 Recommendations

This section will discuss some recommendations to improve Amoss. These recommenda-

tions are divided into two parts. Near future and future recommendations. The near fu-

ture recommendations are suggestions that will improve Amoss in the short term whereas

the future recommendations will discuss a possible expansion of Amoss.

6.1.1 Near future recommendations

Two of the deliverables of Amoss listed in section 1.4 could not be met. These are fast

simulation time and software package stability.

Even though improvements were made in the simulation speed, it is not up to the

required standard. When comparing a model built in Amoss against the same model using
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the MOSS methodology in VBA the VBA model speed is superior to that of Amoss. The

benchmark process (which can not be disclosed here) takes 1.7 minutes to complete a

replication of 70 128 hours whereas Amoss simulates the same process in 24 minutes.

This problem is due to the high number of variables (100) that need to be solved

numerically as well as an increase in difficulty of the system. A high number of these

variables (84) stems from infeasible assignments. When feasible assignments are not taken

into account when ordering to the bordered lower triangular form only 14 variables need

be solved numerically. The single largest source of these infeasible assignments stems

from the Mix Point equations (subsection 4.3.3). The example in Equation 4.12 shows

the sources of the possible zero division. The benchmark process recorded a total of 14

Mix Points and Buffers resulting in 92 equations with possible zero division. Therefore,

a speed increase can be achieved by reducing the infeasible assignments. Some ways of

reducing the infeasible assignments are listed below:

� A crude way to avoid zero division is to add a small constant to the denominator,

eg. b
a+ε

where ε is the small constant. By adding ε will make all denominators

larger than zero only if a falls within the range [0, ∞). This condition is true for

all models that do not allow reverse flow. It is important that b → 0 when a → 0

otherwise the fraction will result in a very large number. Implementing this will

lead to a loss of accuracy.

� For the given simulation the bounds for the variables were not accurately given

when the feasible assignments were identified. In a simulation consisting of 633

variables assigning proper bounds to all variables will be a tremendous task. A

more targeted approach is recommended by identifying the variables that could

lead to zero division and requesting accurate bound for these variables only.

� Using the spiked Hessenberg form to identify smaller subsystems of the bordered

lower triangular form to solve. This method will not directly reduce the number

of infeasible assignments but rather solve smaller subsystems containing a small

number of variables that need to be solved numerically.

Improving the stability of Amoss is the other deliverable that needs more attention.

Amoss is stable in the sense that it does not crash (close unexpectedly), but the GUI

is considered as unstable. More specifically the “Edit Model” section (Figure 5.7). The

stochastic setting (Hours, Replications and Iterations) does not save properly. When

these settings have been changed the settings that will be used in the simulation is the

old settings even though the newly changed number will appear on the screen. Only when

the GUI is closed, do these changes take effect and will be changed once a new session is

started.
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The remaining recommendations are features and checks that will increase the overall

usability of Amoss and are listed below:

� Check if all the inputs correspond to a valid created variable. Currently, the inputs

are only counted, and the use of invalid variables can lead to a DOF = 0 solution

even if one of the input variables does not feature in the model.

� When the DOF analysis is performed in the automatic equation generation (sec-

tion 4.3) and the DOF 6= 0 it could be useful to assist the user in removing variables

when DOF < 0 or identifying variables to add when DOF > 0. The equation block

orientated way to approach this would be to check if the guidelines are followed and

identify any input that may be wrong. The equation orientated approach would be

to use the maximal matching of the bipartite representation of the incidence matrix

to identify these inputs.

� Check that the rows in the reactor table add up to 1 (see subsection 4.3.4).

� Check that the right number of streams are specified in the separation table (see

subsection 4.3.5).

� Check that all the input variables are assigned to a value in the scenario table or

an equation in the operating instructions file.

� Inform the user if the piecewise integration of a discrete probability mass function

is not exactly 1. It is expected that the piecewise integration of a continuous

probability density function will not be exactly 1, but when some tolerance value is

exceeded there might be an error and the user should be informed. (see section 4.5.1)

� The ability to add multiple variable assignments in a single line (see section 5.1).

� Inform the user when the number of assignment variables and any of the arguments

of allocate () does not match (see section 4.5.1).

� Inform the user when a minimum constraint is higher than a maximum constraint

when using allocate () (see section 4.5.1).

� The ability to define optimisation problems in the operating instructions file.

� The ability to use for-loops in the operating instructions file. For-loops could make

the operating instructions file cleaner by reducing the number of written equations.

When parsing the for-loop, each loop will create additional equations. Rules and

restrictions will need to be set in place when using for-loops in Amoss but CasADi

can handle the creation of equations via a for-loop.
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� Currently a Celery server is started when the “Run” button in the GUI (Figure 5.8)

is pressed which produces some overhead and clutters the info window. It will be

better to start the Celery server when a new session of Amoss is started.

� Place created models under version control and expand the GUI to facilitate with

git.

6.1.2 Future

If Amoss becomes a common simulation package in Sasol, it could be useful to link up two

or more different models into a single large model. Linking of models can be achieved by

adding the equations of the different model together and mapping the sinks that correlate

to sources in other simulations.

Currently, the MOSS methodology and, subsequently, Amoss are used extensively to

answer what-if questions given a set of operating instructions. A key variable (buffer size,

source feed rate etc.) is changed between scenarios and the effect on profit is investigated

under the current operating philosophy specified in the operating instructions. It may

be interesting to use Amoss in reverse to determine the best operating philosophy given

the current process set-up or determining the best operating philosophy after a change

to the process. Implementing this capability will involve stochastic optimisation given

some objective function.
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APPENDIX A

TIME SIMULATION DATA AND INPUTS

A.1 Simulation time frequency distributions

Figure A.1 - Figure A.4 shows the frequency plots of the improvements made in the

total simulation time by implementing the HDF5 file format, bordered lower triangular

ordering and CasADi.
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Figure A.1: Frequency plot for the base implementation.
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Figure A.2: Frequency plot for the HFD5 implementation.

A.2 Simulation time inputs

The user inputs for the simulation on which Figure 4.14 is based is given below.

Figure A.5 is a very stiff system with a 4 recycle streams.

The probabilities in Table A.4 were intentionally wrongfully added so that the integral

does not add to 1. This was done to test if the correct normalisation is applied.

Listing A.1 is a relatively arbitrary set of operating instructions to test the total

simulation time. It purposely does not include the allocate () or allocate opt () functions

because not all the versions of the code timed supports these functions.
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Figure A.3: Frequency plot for the bordered lower triangular implementation.
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Figure A.4: Frequency plot for the CasADi implementation.
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Figure A.5: Process flow diagram of the process used to time the improvements in simulation
time.
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Table A.1: The component list (left) and the inputs list (right) of the Figure A.5.

Components stream comp

comp1 S1 comp1
comp2 S1 comp2
comp3 S1 comp3
comp4 S1 comp4
comp5 S1 comp5

S2 comp1
S2 comp2
S2 comp3
S2 comp4
S2 comp5
S3 comp1
S3 comp2
S3 comp3
S3 comp4
S3 comp5
S4 comp1
S4 comp2
S4 comp3
S4 comp4
S4 comp5
S5 total
r1 total
r2 total
r3 total
r4 total

Table A.2: Separation data table of Figure A.5.

node attribute comp1 comp2 comp3 comp4 comp5

Separator S6 eff c1 eff c2 eff c3 eff c4 eff c5

Table A.3: Reactor data table of Figure A.5.

node comp comp1 out comp2 out comp3 out comp4 out comp5 out

Cracker comp1 in c1 i c1 o 0 0 0 0
Cracker comp2 in c2 i c1 o c2 i c2 o 0 0 0
Cracker comp3 in c3 i c1 o c3 i c2 o c3 i c3 o 0 0
Cracker comp4 in c4 i c1 o c4 i c2 o c4 i c3 o c4 i c4 o 0
Cracker comp5 in c5 i c1 o c5 i c2 o c5 i c3 o c5 i c4 o c5 i c5 o
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Table A.4: Distribution table of Figure A.5. Left (random1) is a continuous- and right
(random2) a discrete distribution.

Discrete 0 Discrete 1

values p values p

0 1 0 1
1 1 1 1
1 2 2 2
2 2 3 3
2 3 4 2
3 3 5 1
3 2
4 2
4 1
5 1

1

2 r 4 t o t a l = 0 .1
3

4 # c a l c u l a t e a remainder
5 remain1 = to mix − r 1 t o t a l − r 2 t o t a l
6 i f remain1 > 0 :
7 r 3 t o t a l = 0 .1
8 e l s e :
9 r 3 t o t a l = 0 .1

10

11

12 i f r 1 t o t a l == 0 . 1 :
13 r 2 t o t a l = 0 .1
14 e l s e :
15 r 2 t o t a l = 0 .1
16

17

18 # t o t a l f low to MixPoint
19 to mix = ( S 5 t o t a l + S 6 t o t a l + S 7 t o t a l + S 8 t o t a l + S 9 t o t a l )
20

21 # i f the l e v e l o f the b u f f e r lower than h a l f the max s low ly f i l l the tank
22 # e l s e i f i t i s h igher dump to a l e v e l o f 1
23

24 i f B u f f e r f u l l n e s s r a t i o <= 0 . 5 :
25 r 1 t o t a l = 0 .1
26 S 5 t o t a l = B u f f e r l e v e l t o t a l *0 .9
27 t e s t s t o c h a s t i c 2 = samp l e d i s t ( random1 )
28 e l s e :
29 S 5 t o t a l = B u f f e r l e v e l t o t a l + S 1 t o t a l − 1
30 r 1 t o t a l = 0 .1
31 t e s t s t o c h a s t i c 2 = samp l e d i s t ( random2 )
32

33 t e s t s t o c h a s t i c = samp l e d i s t (norm , 10 , 5)

Listing A.1: The operating instructions for the simulation in Figure A.5.
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Table A.5: Scenario table for the simulation in Figure A.5.

scenario nr 1

scenario active 1

S1 comp1 10
S1 comp2 10
S1 comp3 10
S1 comp4 10
S1 comp5 10
S2 comp1 10
S2 comp2 10
S2 comp3 10
S2 comp4 10
S2 comp5 10
S3 comp1 10
S3 comp2 10
S3 comp3 10
S3 comp4 10
S3 comp5 10
S4 comp1 10
S4 comp2 10
S4 comp3 10
S4 comp4 10
S4 comp5 10

eff c4 0.6
eff c3 0.7
eff c1 0.9
eff c2 0.8
eff c5 0.5

c1 i c1 o 1
c2 i c1 o 0.1
c2 i c2 o 0.9
c3 i c1 o 0.1
c3 i c2 o 0.2
c3 i c3 o 0.7
c4 i c1 o 0.1
c4 i c2 o 0.2
c4 i c3 o 0.3
c4 i c4 o 0.4
c5 i c1 o 0.1
c5 i c2 o 0.2
c5 i c3 o 0.3
c5 i c4 o 0.39
c5 i c5 o 0.01

Buffer max 100
Buffer min 1
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