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Synopsis

Numerous modifications were made to simple basin solar stills with the aim to improve

the performance of the stills and develop an understanding of the operation of the system.

The changes were focused on reducing energy losses from the system, and increasing the

rate of both evaporation and condensation. The stills had a cover area of 0.5 m2 and were

coated with Duram c© Durapond as the absorber surface and waterproofing. A cost target

of 0.08 ZAR per litre was set in order for the system to be competitive with existing

small-scale desalination systems.

To reduce energy losses the effect of insulation thickness was tested. Using ArmaflexR©

foamed nitrile rubber insulation, increasing the thickness such that the thermal resis-

tance values were increased by 0.25 K ·W−1, 0.33 K ·W−1, and 0.58 K ·W−1 resulted in

increases in yield of 9 %, 30 %, and 27 % on average when compared to the reference still.

It was observed that the back wall of the still reached exceptionally high temperatures,

between 70 ◦C and 80 ◦C; to decrease losses through the back wall and better utilise that

energy, aluminium panels were added to the inside of the still. This resulted in a higher

rate of increase of water temperature and maximum water temperature in the still. The

aluminium panels successfully redirected energy from the back wall of the basin still,

reducing the temperature of the surface by around 10 ◦C. This did not result in the

desired increase in yield as it was observed that condensation occurred on the panels

themselves, overnight, thus resulting in a loss of condensate that would otherwise have

been collected.

The evaporation rate was modified primarily by increasing the absorbance of solar irradi-

ation, this was done by testing a polyvinyl chloride (PVC) coated textile as the absorber

surface, adding a carbon black nanofluid, adding activated charcoal, and adding a carbon

felt. The PVC absorber improved the yield by 98 % on average when compared to the
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reference still. The nanofluid proved impractical as the fluid degraded and the particles

settled out with multiple heating-cooling cycles, additionally the increase in yield when

compared to the reference still increased from 46 % to 72 % as the particles settled sug-

gesting that the nanofluid performed worse when the particles were in suspension. The

activated charcoal resulted in an increase in yield of 98 % on average, and the carbon

felt gave a 110 % increase. The carbon felt caused lower bulk water temperatures due

to the tendency of the felt to float just beneath the surface of the water and allowing

for evaporation to occur from a thin film of water which heated up significantly quicker

due to its small thermal mass. All modifications significantly reduced the time between

start-up and the onset of condensate collection which was shown to increase the yield.

Observation of the still during operation suggested condensation to be a limiting step

in the process due to the speed at which droplets would re-form after running down the

cover plate. Attempts at increasing the condensation rate included increasing the internal

area by milling grooves into a portion of the plate, when compared to the reference still

an improvement between 7 % and 27 % was observed in the yield. Other modifications

included the addition of a heat sink to the top of the cover plate on the outside of the

still where the temperature was highest; visually it could be seen that condensate formed

more quickly around the heat sink but no significant effect on the yield or overall cover

temperature was observed. Manually tapping on the cover improved the yield by forcing

drop movement down the cover, this suggests drop movement to be a limiting step in the

production of condensate.

A final still was designed and constructed using the information gained from the exper-

iments performed. The still achieved water temperatures up to 11 ◦C hotter than the

reference still and resulted in a 180 % increase in yield when compared to the reference

still.

Analysis of the energy balance for the solar still indicates that the majority of the losses

are linked to the cover plate - reflective, radiative, and convective losses, as well as

radiative losses from the base of the still. It is of course necessary for some heat to be

removed from the cover in order for condensation to occur, but the high temperature of

the cover results in unnecessary losses which greatly reduce the efficiency of the system.

It is recommended that steps be taken to reduce the cover temperature and provide an

additional surface on which condensation can occur.
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1 Introduction

Fresh water is a limited resource. South Africa has low levels of rainfall compared to

global averages and is facing a potential water crisis (Hedden & Cilliers, 2014). Corrigan

(2009) states that one of the main socio-economic problems that Africa is currently facing

is water shortage, this impacts the economic growth of the continent, the well being of

the population, and reflects poorly on the scientific community.

Desalination is a method of producing distilled water through the removal of salt from

seawater or brackish water. Desalination is a highly energy intensive process and conse-

quently has high operating costs associated with it. Due to the high and rising cost of

energy in South Africa as well as the fact that many rural communities do not have access

to the electric grid it is desirable to use renewable energy sources, such as solar energy,

to drive the desalination process and produce distilled water. For this type of situation a

simple basin-type solar still is attractive due to its low operating and maintenance costs

as well as its ease of construction (Bouchekima, 2003), however, solar stills have low daily

yields in the range of 3 L ·m−2 (Li, Goswami & Stefanakos, 2013; Chandrashekara & A

Yadav, 2017; S Yadav & Sudhakar, 2015; Bouchekima, 2003; He & Yan, 2009).

Significant research has been done on improving the performance of simple basin solar

stills. Some of the areas of focus are improving the absorbance of solar irradiation (Ma-

trawy, Alosaimy & Mahrous, 2015; Rabhi et al, 2017; Velmurugan et al, 2008; Murugavel,

Chockalingam & Srithar, 2008), optimising the still geometry (Feilizadeh, Soltanieh, et al,

2017; El-Swify & Metias, 2002; Rajaseenivasan et al, 2017; Jamil & Akhtar, 2017; GN

Tiwari, Thomas & Khan, 1994; Khalifa & Hamood, 2009c), redirecting energy onto the

water (Omara, Kabeel & Abdullah, 2017; Monowe et al, 2011; Estahbanati et al, 2016),

and adding heat storage materials (Murugavel et al, 2008; Deshmukh & Thombre, 2017),

among many others. Despite this, achieving substantial yields in a basin solar still at a

competitive price is not an easy task.

Basin solar stills commonly utilise less than 35 % of the incident irradiation to produce

water (Kalogirou, 2014 p. 442). Constraints imposed by heat and mass transfer limita-

tions and losses inherent to the system make achieving a high yield in a simple basin solar

still very difficult. Typically designs which have high efficiencies make use of expensive

materials or costly additions to the stills (Al-Hussaini & IK Smith, 1995; Eldalil, 2010);

in an off grid passive system low efficiencies are near impossible to avoid.

The objective of this project was to maximise the yield, and efficiency, of a simple basin

solar still using passive modifications. This was to be done with a cost target of 0.08 ZAR

per litre in order for the system to be competitive with existing small scale desalination

1



systems (Li et al, 2013). The system was required to be completely off grid, to be

robust, and easy to operate and maintain. The objective included gaining a fundamental

understanding of the system in order to isolate where improvements can be made in future

designs and variations of the still. The information gained should be applicable to more

complex systems, possibly those including active modifications, for future investigations.

The objective was considered by reducing energy losses from the system, and increasing

the rate of both evaporation and condensation. Energy losses were investigated through

the addition of insulation to the outside of the still, and aluminium panels to the inside.

The evaporation rate was modified by the addition of a carbon black nanofluid, activated

charcoal, carbon felt, and PVC tarpaulin. And finally the condensation rate was changed

by increasing the area for condensation, removing additional energy from the condensa-

tion surface, and forcing movement of water droplets from the condensation surface. The

investigation was limited to a single geometric design of the basin still in order to allow

for better comparison of results, all modifications involved simple additions that could

be made to the stills post construction. Due to the requirement of passive modifications,

any circulation of air, or water, within the still was not considered.
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2 Literature Review

Desalination is the process of removing salt from seawater or brackish water to obtain

water with an acceptable concentration of dissolved solids (Joseph, Saravanan & Ren-

ganarayanan, 2005). To date desalination has been one of the most expensive ways of

producing potable water due to large energy requirements as well as the capital cost

associated with it. However, its presence in the production of potable water is rapidly

becoming more prominent despite these drawbacks. (Li et al, 2013; He & Yan, 2009)

2.1 Solar Desalination

As the use of alternative energy sources is increasing solar energy is rapidly becoming

more viable as an energy source for desalination processes (He & Yan, 2009). This is par-

ticularly relevant in developing countries where population growth requires large amounts

of water but there are insufficient funds for traditional desalination to be feasible. These

countries generally have high levels of solar irradiation which makes solar desalination

even more promising. (Li et al, 2013) South Africa is marked as a country which has high

potential for implementation of solar desalination according to Pugsley et al (2016).

Solar desalination makes use of solar energy to heat and evaporate salt water in order

to obtain distilled water (He & Yan, 2009). There are two types of solar desalination,

indirect and direct processes. Indirect methods involve two subsystems: a solar collector

to absorb and collect the solar energy, and a separate desalination unit where the distilled

water is produced. Alternatively in direct systems both collection of solar energy and

production of distilled water occur together in the same unit. Direct solar desalination

processes are typically better suited for small scale applications. (Chandrashekara & A

Yadav, 2017)

Solar desalination systems generally have low costs of operation and maintenance but

do require large installation areas as well as large capital investments (He & Yan, 2009;

Delyannis, 1987). In most solar desalination systems the production rate of distilled water

is directly proportional to the area of solar collection; this means that the cost of water

remains constant regardless of the capacity of the plant and typical cost improvements

due to economy of scale do not apply. This results in solar desalination systems often

being more suited to small scale applications. (Kalogirou, 2005) Advantages of small scale

desalination include the lower capital costs, the ability to operate near the water source

thus reducing cost of transportation of the salt or brackish water, and the adaptivity

to different water sources (Song et al, 2017). For these reasons small scale desalination
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is particularly attractive when considering the applications to rural communities and

small towns (Bouchekima, 2003). However, despite the lower energy requirements these

systems generally produce distilled water at a higher cost per volume than large scale

desalination plants (Ayoub & Alward, 1996; Karagiannis & Soldatos, 2008).

In direct solar desalination the most commonly used method is a basin solar still (Chan-

drashekara & A Yadav, 2017; Bouchekima, 2003), the typical set-up is shown in Figure 1.

Basin solar stills typically operate in such a manner that heat collection and distillation

occur in the same system; the water evaporates and condenses on the transparent cover

through which solar radiation enters the system (Li et al, 2013).

Figure 1: Simple basin-type solar still (Sharon & Reddy, 2015).

The main problems with traditional basin-type solar stills are brought about by evapo-

ration and condensation occurring in the same unit. These problems include difficulties

in rejecting the latent heat of condensation, as well as complications in obtaining a high

enough temperature for evaporation while lowering the condensation temperature simul-

taneously (He & Yan, 2009). These drawbacks ultimately result in low yields of between

3 L ·m−2 · day−1 and 4 L ·m−2 · day−1 (Li et al, 2013; Chandrashekara & A Yadav, 2017;

Bouchekima, 2003). Due to these low yields solar still desalination is not considered

viable to address water shortages on a regional scale as of yet (S Yadav & Sudhakar,

2015). However, solar still desalination is the cheapest desalination method available and

is feasible when water is desired in very small quantities (Kalogirou, 2005).

Additional disadvantages of solar stills are that they require a large amount of area to

produce sizeable amounts of distilled water, require a large initial investment, and require

daily maintenance to clean the cover and flush the basin. The maintenance requirements

are simple but necessary in order to ensure that the still continues to operate at its
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optimum; a build up of dust on the cover hinders incoming radiation and an excess of

salt in the still makes evaporation more difficult. (Malik et al, 1982 pp. 40–41)

Many investigations have been carried out in attempts to achieve higher yields by ad-

dressing these two main problems in a number of different ways. Additionally, many

different still designs have been developed from the traditional basin still.

2.2 Principles of Operation

The operation of a simple basin solar still is as follows: a transparent cover allows for

solar radiation to enter the still where it is absorbed by an absorber plate beneath the

water. The absorber plate causes the water to heat up and evaporate where it can then

condense on the cover. (Malik et al, 1982 pp. 3-5) This is a simplistic view of the actual

energy transfers occurring in the still.

2.2.1 General Heat Transfer Processes

In the solar still system there is both external heat transfer and internal heat transfer

occurring. The external heat transfer is losses from the still to the surroundings and

includes convection, conduction, and radiation. Internal heat transfer deals primarily

with the energy transfers from the water to the cover, as well as from the absorber to the

water, and also includes convection, conduction, and radiation.

Conduction is described by Equation 1 (Fourier, 1822), where k is the thermal conduc-

tivity of a material and has only a weak dependence on temperature.

Q̇cond = −kAdT
dx

(1)

The driving force for conduction is the temperature difference in the direction of interest.

Convection also uses a temperature difference as the driving force for heat transfer, the

equation is shown below (Çengel & Ghajar, 2015 p. 26):

Q̇conv = hconvA∆T (2)

However, hconv is a complicated function of the geometry of the surface, the flow and

physical properties of the fluid, as well as the temperatures of operation. For natural
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convection the relationship (Malik et al, 1982 p. 9; Çengel & Ghajar, 2015 p. 539)

Nu = C(GrPr)n (3)

can be used to describe the heat transfer coefficient. Where C and n are constants

describing geometry and the physical behaviour of the system. Empirical relationships

are commonly used for these constants. In the case of forced convection Equation 4 can

be used to describe heat transfer (Çengel & Ghajar, 2015 p. 440);

Nu = CRemPrn (4)

where the dimensionless parameters are calculated as:

Nu =
hconvLc

k
(5)

Gr =
gβLc

3ρ2∆T

µ2
(6)

Pr =
µCp

k
(7)

Re =
ρvLc

µ
(8)

The convective heat transfer coefficient is strongly dependent on the wind speed in the

case of forced convection.

Radiative heat transfer from the cover of the still is modelled using the Stefan-Boltzmann

law shown in Equation 9 (Çengel & Ghajar, 2015 p. 29),

Q̇rad = σε
(
(Ts + 273)4 − (Tsky + 273)4

)
(9)

The subscript s refers to the temperature of the surface from which radiation is occurring.

2.2.2 Internal Heat Transfer

The most important heat transfer processes occurring inside the still are conduction from

the absorber surface to the water, evaporation from the water surface, convection from

the water surface to the cover surface, and condensation of water onto the cover surface.

In a solar still convection occurs, most commonly, in the form of natural convection.

Equation 3 is used to describe this process. However, as simultaneous mass and heat
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transfer is taking place inside the still a modified Grashof number should be used. A

common form of this modified Grashof number is shown in Equation 10 (Malik et al,

1982 p. 10).

Gr′ =
gLc

3ρ2

µ2

(
M∞ (To + 273)

Mo (T∞ + 273)
− 1

)
(10)

The subscripts o and ∞ refer to the conditions at the evaporation surface and at a point

far away from the surface.

Manipulation of the equations and relevant empirical correlations yields Equation 12

(Malik et al, 1982 pp. 10–11) to describe the heat transfer by convection inside a basin

solar still:

Q̇conv = hconvA (Tw − Tci) (11)

Q̇conv = 0.884

[
Tw − Tci +

(Pw − Pci) (Tw + 273)

(269.9× 103 − Pw)

]( 1
3)
A (Tw − Tci) (12)

where the subscripts w and ci refer to the conditions at the water surface and at the

inside cover surface respectively.

While many models exist to model the evaporative heat transfer occurring in a basin

solar still (C Elango, Gunasekaran & Sampathkumar, 2015), the most commonly used

model for evaporation in a basin solar still is that of Dunkle (1961),

Q̇e = 16.273× 10−3hconvA(Pw − Pci) (13)

where the vapour pressures are calculated with the following relationship:

Pi = exp

[
25.317−

(
5144

Ti + 273

)]
(14)

The rate of evaporation in kg · s−1 can further be calculated using the latent heat of

vaporisation and the evaporative heat transfer rate.

ṁe =
Q̇e

λvap
(15)

This relationship is largely empirical but is widely used in the field and has been tested

extensively. It is clear from these relationships that the driving force for evaporation is

the temperature difference between the water and the condensation surface.
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The two main mechanisms for condensation are film condensation and dropwise con-

densation. In a simple basin solar still dropwise condensation is the observed mode of

condensation. In dropwise condensation the vapour condenses as droplets of varying sizes

which slide down the surface when they reach a specific size exposing the surface to allow

for more drops to form. As there is no film of water hindering heat transfer between the

vapour and the solid surface the rate of heat transfer is orders of magnitude larger than

that associated with film condensation. (Çengel & Ghajar, 2015 p. 612; Coulson et al,

1999 pp. 476–478) In order for these drops to move along the condensation surface they

must become large enough to overcome adhesive forces due to surface tension.

The presence of non-condensable gases in the system can cause a drastic reduction in

the rate of condensation. The non-condensable gases collect near the surface and form a

barrier which the vapour must first diffuse through subsequently hindering condensation.

However, a higher velocity of the gas mixture aids in removing the non-condensable gases

from the area adjacent to the surface which reduces this effect. (Çengel & Ghajar, 2015

p. 620) This is a problem in the simple basin solar still as the only movement of the air

within the still is due to buoyancy forces and natural convection. Increased temperature

differences between the absorber and the cover would aid in increased movement of air

within the still.

2.2.3 The Energy Balance

In order to understand the system and determine where inefficiencies and losses are most

prevalent it is important to do an energy balance of the system.

The general form of the energy balance is given in Equation 16 (JM Smith, Van Ness &

Abbott, 2005 p. 48),

d(mU)cv
dt

= Q̇+W −∆

[
ṁ

(
H +

1

2
v2 + zg

)]
fs

(16)

where subscripts cv and fs refer to the control volume and flowing streams respectively.

For the basin solar still there is only an outlet stream, no inlet, and kinetic and potential

energy of this stream is negligible. Additionally there is no work input or output in the

system, this reduces the equation to

d(mU)cv
dt

= Q̇net − ṁoutH (17)

8



The terms of Equation 17 can be further expanded to a place where the fundamental laws

of heat transfer can be applied. Working from left to right, the first term represents the

internal energy change of the system. The internal energy change of the system will be

the sum of the internal energy changes of the various components included in the control

volume. The control volume is not a general control volume and will be discussed in

depth in Section 3.3.3.

Expanding the heat transfer term,

Q̇net = Q̇in − Q̇out (18)

where the subscripts in and out could be replaced by incident irradiation and losses.

In a passive solar still the only significant heat input to the system is in the form of

solar irradiation, thus allowing for the Q̇in term to be replaced with Q̇I where Q̇I is the

incident solar irradiation.

Losses from the system are numerous, and dependent on the control volume selected.

They can include convective losses from the cover plate, radiative losses from the cover,

reflective losses from the cover, and conductive losses through the insulation. These can

in turn be expressed using the heat transfer relations described previously. The losses

are considered in depth in Section 3.3.3.

2.2.4 Thermal Efficiency

The thermal efficiency of a solar still is traditionally calculated as the ratio of water

produced to the input of solar energy. In a passive solar still the instantaneous thermal

efficiency can be calculated as the ratio of the rate of heat transfer related to evaporation

to the rate of incident solar radiation, this is seen in Equation 19 (GN Tiwari, A Tiwari

& Shyam, 2016 pp. 523–524),

ηi =
Q̇e

Q̇I

(19)

and can be rewritten as

ηi =
heA(Tw − Tcover)

Q̇I

(20)

showing that as the temperature difference between the water and the cover increases the

theoretical thermal efficiency of the still increases. Similarly an overall thermal efficiency
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can be determined by Equation 21:

η =
λvap

∫ tn
t0
ṁedt∫ tn

t0
Q̇Idt

(21)

2.3 Modifications of Simple Basin Solar Stills

A main factor to consider throughout all of the modifications is the temperature difference

between the water and the still cover (Sharshir, Yang, et al, 2016; Sharshir, Peng, et al,

2017). Increasing this temperature difference can increase the movement of humid air in

the still and improve both the condensation rate and the evaporation rate. There are

many ways to increase this temperature difference, such as active cooling of the cover

with air or water, which results in an increase in production of distilled water (Omara,

Abdullah, et al, 2017).

The performance of a solar still is a function of many different parameters which can be

classified as design, operational, and meteorological parameters. As the meteorological

parameters are not controllable variables within the system they will not be discussed in

great detail. However, it is known that as the wind velocity increases the yield of the still

increases, and as ambient temperature increases the yield also increases. (Malik et al,

1982 pp. 54) The design parameters include the size of the basin, the material of the

absorber plate, the inclination angle of the cover, the material and thickness of the cover,

and the type and thickness of insulation. While operational parameters include the depth

of water in the still, and the temperature of water fed to the still. (Taghvaei et al, 2014;

Jamil & Akhtar, 2017) Optimisation of the design and operational parameters are key to

maximising the yield of the solar still.

The following subsections discuss many of the modifications that can be made regarding

both design and operational parameters in order to improve the yield of a simple basin

solar still.

2.3.1 Basin Height

Optimisation of the geometry of the basin still is of the utmost importance to this work

as different geometries are not to be investigated in this project. It is for that reason

that literature pertinent to the height of the basin still is relevant in order to design and

construct a good base still to which further modifications can be made. The following
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two sections, Section 2.3.2 and Section 2.3.3, are also relevant to the geometry of the

basin still and are important for the same reason.

The height of the basin is an important parameter in the design of the solar still. The

main effects of changing the basin height are that the volume available for evaporation

increases, the distance water vapour must travel to condense increases, and additional

shadows are added to the still. Additionally, if the ratio of the height of the back wall

to the front wall is not kept constant changing the height can cause an increase in cover

area.

Feilizadeh, Soltanieh, et al (2017) investigated the effect of basin height on the yield of

the solar still while keeping the inclination angle of the cover constant. They found that

increasing the height decreases the yield. The same result was found by Rajaseenivasan

et al (2017) where they observed that decreasing the height from 0.45 m to 0.15 m re-

sulted in a 84 % increase in yield. Jamil & Akhtar (2017) investigated heights varying

from 0.366 m to 0.266 m and found that as the height decreased the yield increased from

1.341 L ·m−2 · day−1 to 4.186 L ·m−2 · day−1, a 212 % increase in yield. Feilizadeh, Es-

tahbanati, et al (2016) achieved similar results for heights between 0.09 m and 0.23 m,

observing approximately a 27 % increase in yield as the height of the basin decreased in

summer conditions and 35 % in winter.

The explanation for this increase in yield for decrease in height is that the distance for

the vapour to travel before it condenses decreases while the driving force remains more

or less constant, a lower basin height also promotes convective heat transfer within the

still due to the reduced distance between evaporation surface and condensation surface.

Decreasing the volume of air in the still causes there to be more heat available per unit

volume of vapour in the still and for there to be less volume that must be saturated before

condensation can occur. Finally the additional shadows, which higher walls produce,

hinder incoming radiation and decrease the temperature, and consequently yield, of the

still.

2.3.2 Basin Aspect Ratio

Modifying the geometry of the still is a simple and cheap change that can be made in

order to increase the yield. The change is implemented in the design and manufacturing of

the still and changes nothing of the day to day operation of the solar still. The geometry

of a simple basin solar still is shown in Figure 2.
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Figure 2: Geometry of simple basin type solar still.

Feilizadeh, Soltanieh, et al (2017) investigated the effect of basin geometries on the yield

of a solar still. For a constant width of 1 m they found that increasing the ratio of length

to width as lengths varied from 0.5 m to 1 m increased the yield by 26 % while increasing

the lengths from 3.5 m to 4 m only increased the yield by 2 %, yields were reported in

L ·m−2 · day−1 so the results compensated for the increase in area. The large increase at

small length to width ratios is due to the shadows cast by the walls as well as the walls

receiving a large portion of the incoming radiation instead of the basin. They concluded

that for length to width ratios greater than two the change in yield is insignificant and

the lowest possible length should be used to minimise maintenance costs. The length to

width ratio of two is also recommended by El-Swify & Metias (2002). It is necessary to

note that this does depend on the orientation of the still; the length of the still should

be parallel to the equator, with the low side nearest to the equator.

When changing the width of the still while maintaining a constant inclination angle the

height of the still changes accordingly, meaning that the effects discussed in Section 2.3.1

are relevant. Feilizadeh, Soltanieh, et al (2017) found that as the width is increased the

yield of the still increases up to a point after which the yield decreases. They found that

the optimum ratio of width to length is around a value of 0.4 (or a length to width ratio

of 2.5). This optimum point is likely due to the trade off between additional incoming

solar radiation and the effects of increased basin height.

The modifications in this section and in Section 2.3.1 are easy to make and do not influence

the operational costs of the still significantly. For this reason they are attractive options

to optimise the performance of a simple basin solar still.

2.3.3 Angle of Inclination of Cover

The tilt angle of the cover is harder to discuss than some other factors as the optimum

depends on both the latitude and season of where the tests are being done.
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Changing the angle of inclination causes a number of changes within the still such as the

speed at which condensed water collects, the volume available for water to evaporate into,

the cover area available for heat transfer, and the amount of radiation that is reflected

by the cover. (Khalifa & Hamood, 2009c; Lal et al, 2017)

The speed of water collection is important because if the water travels too slowly along

the cover it is more likely to fall from the condensation surface back into the still. Ad-

ditionally, slow movement of the water on the cover can result in a lack of cover space

for new water to condense on. GN Tiwari, Thomas, et al (1994) state that a minimum

inclination angle of 10◦ is required to prevent condensate falling back into the basin.

Considering the volume available for evaporation, a larger volume requires a larger

amount of time in order to become saturated with vapour at which point condensation

begins. This is mentioned briefly in Section 2.3.10 as the depth of water in the still will

contribute to the available volume, and was discussed in full in Section 2.3.1 where the

height of the still basin was considered. The net effect is that an increase in cover angle

results in an increase in height which decreases the yield as was previously discussed.

The effect of the cover area influences both the losses and the amount of incoming ra-

diation. For a constant basin area as the angle of inclination increases the area of the

cover increases. Larger cover areas increase the losses which occur as the cover is the

only uninsulated surface in the still, but it also increases the area through which solar

radiation can enter the still. These are two competing effects and an optimum angle

should therefore exist.

Khalifa & Hamood (2009c) attempted to obtain a general relationship between the pro-

ductivity of the still and the tilt angle of the cover, they found that as the angle of

inclination increased the yield increased, passed through an optimum, and decreased.

The investigation done by Nafey et al (2000) showed that in winter months increasing

the inclination angle increased the yield while in summer months the opposite held true.

For this reason it is suggested that the optimum angle of inclination is the latitude of

where the still is located; this is confirmed by GN Tiwari, Thomas, et al (1994) and

Singh & GN Tiwari (2004). Note that the above results were all for stills in the northern

hemisphere.

The cover angle is a simple way to optimise the still and should always be taken into

account in the design of the solar still.
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2.3.4 Absorber Surface

In a conventional basin solar still the bottom of the basin, or the absorber surface, is

responsible for capturing energy from the incident solar radiation in the form of heat and

transferring this energy to the water in the basin. Evidently the properties of this surface

will affect the still performance.

One of the main things to consider is the surface area of the absorber, increasing the

surface area improves the transfer of heat between the absorber surface and the water

within the still due to increased area for heat conduction. An increase in area can be

achieved through many different means such as corrugating the absorber plate, adding

fins, pins, or wicks to the plate, or by the addition of a porous medium such as a sponge.

Matrawy et al (2015) compared a still with a corrugated wick absorber to a conven-

tional still, both with external reflectors, and observed that the modified still reached

higher temperatures and consequently had a higher yield: the modified still achieved

5.9 L ·m−2 · day−1 while the conventional still achieved 4.4 L ·m−2 · day−1, indicating a

35 % increase in yield due to the corrugated wick absorber. This result is similar to

that obtained by Velmurugan et al (2008) who observed a 30 % increase in yield when

comparing a conventional still to a still with wicks on the absorber plate.

Velmurugan et al (2008) also compared a conventional still and a finned still and achieved

a 49 % increase in yield in the modified still with yields of 1.88 L ·m−2 · day−1 and

2.81 L ·m−2 · day−1 for the conventional and modified still respectively. Similarly Rabhi

et al (2017) compared a conventional unmodified solar still to a solar still with a pin

fins absorber. They found that both the cover temperature, and the absorber tempera-

ture were higher in the still with the pin fins absorber plate and that the modified still

produced 2.83 L ·m−2 · day−1 of distilled water compared to the 2.47 L ·m−2 · day−1 pro-

duced by the conventional still, only a 15 % increase in yield. The difference in these

numbers illustrates the large effect that a finned absorber can have on the performance

of the still and how the effect is dependent on the specific dimensions of the fins (neither

of which were well documented in the respective papers for the sake of comparison).

As mentioned, the addition of a porous medium serves to increase the exposure area

of the water to the absorber surface. An example of this is shown by Abu-Hijleh &

Rababa’h (2003) where sponge cubes are added to the still. The sponge is most useful

when it protrudes from the water surface allowing capillary action to draw water into the

sponge. The water in the sponge, above the water surface, can be heated more quickly

due to volume of water exposed to the solar irradiation being smaller. Additionally,

the small pores in the sponge can cause a reduction in the surface tension of the water
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allowing for easier evaporation. (Murugavel et al, 2008; Abu-Hijleh & Rababa’h, 2003)

This is observed again in the study done by Velmurugan et al (2008) where they achieved

yields of 1.88 L ·m−2 · day−1 in a conventional still and 2.26 L ·m−2 · day−1 in a still with

sponges; a 20 % increase in yield between the two stills. Madani & Zaki (1995) used a

2.5 cm layer of soot, which is essentially a porous mass, to increase the absorbance and

when compared to a simple black painted absorber they found that the soot increased

the yield by approximately 35 %.

While the absorbing surface is typically the bottom of the still it is of great benefit if the

heat can be absorbed near the surface of the water instead of at the absorber plate at

the bottom. This can be achieved using a suspended absorber which separates the water

into two sections causing a smaller volume to receive heat and for the heat to be added

nearer to the surface. The use of a suspended absorber is advantageous as it removes

the need for the entire volume of water in the still to be heated before evaporation can

begin. Small volumes of water above the absorber are heated much quicker allowing for

evaporation to occur at an increased rate due to the effective decreased thermal mass of

the water capturing heat. A disadvantage of the warm up period experienced when heat is

absorbed from the bottom is that heat is lost in this period largely by conduction through

the basin to the environment, maintaining the base of the still at a cooler temperature

reduces losses to the surroundings. (Szulmayer, 1973)

El-Sebaii et al (2000) compared the use of four different materials on the effect of the sus-

pended absorber plate. They observed that the metallic absorber materials: aluminium,

copper, and stainless steel all caused between a 15 % and 20 % increase in yield compared

to a conventional still while a mica absorber plate caused a 42 % increase in yield. Not

only the material type but also the amount of water above it influences the effect it has

on the yield. A perforated black aluminium sheet increases the yield by 15 % and 40 %

for water layers of 3 cm and 6 cm respectively (Murugavel et al, 2008).

Szulmayer (1973) investigated the use of different floating absorber surfaces, suspended

between 2 mm and 6 mm below the surface of the water. They made use of a woven

shading cloth over a polyethylene lining, carbon black powder, a black plastic grid with

6 mm holes over a polyethylene lining, and a simple polyethylene sheet. They found the

combination of shading cloth and liner to have been the most effective in increasing the

evaporation rate within the still. Similarly, Srivastava & Agrawal (2013) placed floats

covered with black burlap on the surface of the water, this allowed for capillary action to

draw the water from the basin into the cloth to be evaporated, and observed a significant

improvement in the still performance.

In general the absorber material is required to have a high radiation absorbance, to be
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corrosion resistant, and to have a low cost (Madani & Zaki, 1995). The absorber is one of

the most important parts of the still and it is clear that extensive research has been done

on modifications to enhance the absorber performance. The modifications that have been

investigated in this section all involve improving the absorbance of solar irradiation or

improving the rate of heat transfer from the absorber to the water. As Equation 13 and

Equation 15 state that the evaporation rate is proportional to the temperature difference

between the water and the cover, it is clear that increasing the water temperature through

modifications to the absorber could result in an increase in evaporation rate.

2.3.5 Agitation of Fluid

The use of agitation to improve the productivity of a simple basin solar still in an active

modification as additional energy is required to power the agitation tool. The purpose

of the agitator is to increase the contact area of the water and the air, and to break

the surface boundary layer. These result in an improved rate of evaporation. The slight

vibration of the still can also increase the frequency at which condensate runs off the cover

and collects as distillate. This could potentially reduce the number of droplets which fall

back into the still by reducing the time that a drop spends on the cover surface. (Eltawil

& Zhengming, 2009; Rajaseenivasan et al, 2017)

The most common way of agitating the fluid is with a rotating shaft (Eltawil & Zheng-

ming, 2009; Kumar, Esakkimuthu & Murugavel, 2016; Abdel-Rehim & Lasheen, 2005)

Comparison of a conventional still with a still modified to have a rotating shaft showed

that the yield was increased by on average 25 % in the modified still (Abdel-Rehim &

Lasheen, 2005). Rajaseenivasan et al (2017) achieved similar results and saw a 30 %

increase in yield due to the addition of rotating shaft stirrers to the solar still.

There are other methods of achieving agitation within the still, an example of this is seen

in the research done by Eldalil (2010) where the use of harmonic vibrations within the

still was investigated. It was found that the yield was increased by 70 % when compared

to a solar still without vibrations.

Agitating the fluid in the still is an effective modification but is more costly than passive

modifications as it increases the operating costs of the still through the additional energy

requirements. This modification is unlikely to be useful in an off grid system, and is

beyond the scope of this work due to it being an active modification. However, the

principle that by disturbing the boundary layer and increasing contact area between

water and air the evaporation rate can be increased is relevant to the objective.
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2.3.6 Reflectors

Reflectors are relatively cheap additions to solar stills which increase the incident solar

radiation on the solar still which in turn improves the efficiency (Omara, Kabeel &

Abdullah, 2017). Both external and internal reflectors can improve the production of a

solar still. Internal reflectors help minimise the energy loss from the still and redirect

some solar radiation onto the surface of the water (Omara, Kabeel & Essa, 2015), they

are generally most useful when the solar radiation intensity is low (Omara, Kabeel &

Abdullah, 2017). External reflectors are used primarily to change the direction of solar

radiation in order to add flexibility to the still design. Compared to internal reflectors,

external reflectors have the drawback of increasing the cover temperature simultaneously

with the brine temperature which decreases the temperature difference between the brine

and the cover and subsequently the driving force for evaporation (Estahbanati et al, 2016).

External reflectors also increase the effective area of the still; this is not considered by

most literature sources in the report of the yield and should be taken into account.

Figure 3: Typical reflector configuration for simple basin solar stills (Omara, Kabeel & Ab-
dullah, 2017).

Figure 3 shows the typical configuration of both internal and external reflectors for a

basin type solar still. The angle of the external reflector is of significant consequence to

its performance and becomes most important as the angle of the sun changes. Tanaka

(2009a) noted that in winter months when the sun is lower in the sky the reflector

should be angled slightly forwards in order to ensure that reflected radiation enters the

still. The opposite would then hold true for summer months; the reflector should be

angled backwards due to the sun being higher in the sky. Care must be taken as the

external reflector produces a shadow which can fall on the basin surface and result in a

decrease in incident radiation entering the still. Tanaka (2009a) developed a model and
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theoretically illustrated the aforementioned concept, showing that in summer the yield of

distilled water can be increased by changing the inclination angle of the external reflector

such that it is tilted slightly backwards. Similarly for winter months, Tanaka (2009b)

experimentally showed that the productivity of the still could be increased by inclining

the external reflector forwards. Shanmugan, Rajamohan & Mutharasu (2008) used an

external reflector to increase the performance of a solar still and found that it increased

the yield by approximately 30 % when compared to a conventional still.

Estahbanati et al (2016) investigated the use of internal reflectors. They observed a 16 %

increase in yield in summer months in the still with the internal reflector compared to a

still with no reflector, and a 41 % increase in yield in winter months. They also compared

the use of front and side reflectors versus back wall reflectors and found that front and

side reflectors increase the yield by approximately 18 % consistently while the effect of

back wall reflectors varies greatly throughout the year but can be averaged to an increase

in yield of 22 %. Internal reflectors were used by Abdallah, Badran & Abu-Khader (2008)

and a 32 % increase in yield was obtained compared to a conventional still in summer.

The combination of reflector types is also effective: Monowe et al (2011) investigated a

solar still with internal reflectors and an adjustable external reflector. Comparing the still

with both sets of reflectors to a still with only internal reflectors resulted in an increase

in yield of 43 %. This result is larger than the increase in yield obtained by using only a

single reflector type.

Reflectors, especially internal reflectors, are worth considering as a modification to a

basin solar still. The improved utilisation of solar irradiation can significantly improve

the yield of the still for minimal additional cost.

2.3.7 Cover Surface

In a conventional solar still the cover of the still is the same surface on which condensation

occurs. This results in a decrease in the amount of solar radiation entering the still as more

condensate is generated due to increased reflection of the incident radiation. Reflection

occurs on both the surface itself and the condensed water on the surface; characterising

the amount of reflected radiation is non-trivial due to the dependence on the shapes of

the water drops.

The material of the cover surface can have a significant effect on the productivity of the

still. Studies up to now indicate that glass is preferential to other transparent plastics

due to properties such as transmittance and roughness. Bhardwaj, ten Kortenaar &
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Mudde (2013) investigated the effect of different cover materials on the yield of a solar

still using glass and polyethylene terephthalate (PET). They achieved a yield of 27 %

more in the glass covered still than in the PET covered still. The reasons for this are

the droplet shapes on the respective materials; on glass the drops are flatter and more

spread out which allows for more light to pass through compared to the drops on the

PET. Additionally, the water vapour that collects on the PET remains in place for much

longer than it does on the glass due to the higher contact angle of PET. This decreases

the yield as the water fails to collect and allow additional condensation to occur. Glass

is generally the preferred cover material due to its high transmittance for a wide range

of angles of incidence (Murugavel et al, 2008).

The contact angle of a material is important to the condensation for more than the

above mentioned reason; in the wetted condition materials with low contact angles allow

more solar irradiation to pass through them than materials with high contact angles.

The contact angle is therefore directly related to the production rate of distilled water.

(Bhardwaj et al, 2013)

Another factor to consider with regard to the cover surface is the thermal conductivity.

A higher thermal conductivity is better as it is easier for the cover to reject heat (Dimri

et al, 2008). The thickness of the cover is also of concern, a thinner cover surface produces

better yields than the same still with a thicker cover surface (Bhardwaj et al, 2013), this

is again explained by the ability of the cover to lose heat to the surroundings (Dimri et al,

2008). Two glass covers of 3 mm thickness and 6 mm thickness were compared and it was

observed that the thinner cover resulted in an increase in yield of 16.5 % (Murugavel et al,

2008).

Increasing the area of the cover can also affect the yield; an increase in area increases

the amount of radiation which enters the still but also increases the area through which

energy can be lost to the surroundings. Additionally, increasing the condensation surface

area improves the yield of the still by providing additional area for the vapour to con-

dense on, increasing the condensation rate results in a decrease in vapour pressure which

consequently increases the rate of evaporation.

Bhardwaj, ten Kortenaar & Mudde (2015) increased the area for condensation without

significantly increasing the entry area for solar radiation through the use of an irregularly

shaped cover. They observed that as the area increased initially a large increase in yield

was obtained but that after a point the effect of changing the area became less and a

very large change in area was required for a small change in yield. Part of the reason

Bhardwaj et al (2015) claimed for the increase in yield was that more heat was capable

of leaving the still which increased the rate of condensation. Recall that a problem with

19



conventional solar stills is optimising the operating temperature between the optimum

evaporation, and condensation, temperatures. Thus increasing the condensation surface

area without increasing the area for incident radiation will result in a decrease in still

temperature. This effect explains why Bhardwaj et al (2015) also observed that the yield

of water versus condenser area went through an optimum, as there is an area above

which too much heat is lost and there is insufficient energy for evaporation to proceed at

a satisfactory rate.

There are many factors to consider regarding the cover surface of the still as it is re-

sponsible for both energy entering the system and energy leaving the system. It is not

a simple parameter to optimise in the design of the still, and much work has been done

on trying to understand the different ways it affects the still’s performance. Modifying

the cover surface is one of the few ways to directly influence the condensation rate in the

system, either by changing the amount of time which drops spend on the cover, or by

changing the amount of area available for drops to form on.

2.3.8 Insulation

Insulation is an important part of a basin solar still as it ensures that minimum amounts

of heat are lost from the still to the surroundings. It is undesirable to lose heat and

preferential that the energy be retained within the system and used to heat the water.

Basin type solar stills are typically insulated on both the sides and the bottom of the

still. There are certain requirements that the insulating material must meet; it must be

strong enough that the weight of the basin does not cause it to compress or deform, and

it must be capable of withstanding high temperatures. (Khalifa & Hamood, 2009a)

Studies have been done on determining the degree to which the insulation improves the

performance of the still, as well as determining the optimum thickness of the insulation

material. Khalifa & Hamood (2009a) used polystyrene insulation and investigated three

thicknesses: 3 cm, 6 cm, and 10 cm. The insulated stills were compared to a still with no

insulation. They found that all the stills with insulation had a larger yield than the still

without, and that the presence of insulation could improve the performance by more than

80 %. They also observed that the increase in yield from 3 cm insulation thickness to the

6 cm thickness was large, but that from 6 cm to 10 cm there was practically no change in

the productivity of the still. This is in agreement with the results shown in Malik et al

(1982 pp. 31) where the yield of the still increases rapidly up to an insulation thickness

just larger than 4 cm, after which the effect the additional thickness has on the yield is

minimal.
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The above results can be generalised in terms of the thermal resistances. Polystyrene

has a thermal conductivity of 0.04 W ·m−1 ·K−1 (Çengel & Ghajar, 2015 pp. 914), the

thermal resistances calculated for a unit area of material and corresponding to thicknesses

of 3 cm, 6 cm, and 10 cm are 0.75 K ·W−1, 1.5 K ·W−1, and 2.5 K ·W−1. It can now be

suggested that around a thermal resistance of 1 K ·W−1 the insulation is at an optimum

thickness.

There are many different types of insulating material that can be used and the thermal

conductivity of the insulating material will determine how effective it is as an insulator.

A material with a lower thermal conductivity will keep more of the heat inside the still

than a material with a higher thermal conductivity. Madani & Zaki (1995) evaluated the

effect of the presence of a 4 cm layer of glass wool insulation on the yield of the still and

found that the presence of insulation resulted in approximately a 15 % increase in yield

which appears low compared to the increases reported by Khalifa & Hamood (2009a)

with polystyrene.

Adding insulation to the system seems like an obvious addition to the still in order to

reduce energy losses from the system. It is, however, important to understand the effect

which it has on the system in order to optimise the still economically as well as to obtain

the maximum yield. Knowing that after a certain thickness the effect of adding additional

insulation is negligible is of great benefit to the economic optimisation of the still.

2.3.9 External Condenser

The addition of an external condenser can be advantageous to the performance of the

still. Based on one of the primary drawbacks of a simple solar still being that evaporation

and condensation must occur in the same unit it is likely that using a separate condenser

unit could be a key aspect to improving the performance. An external condenser acts as

a heat and mass sink which results in a decrease in heat loss by convection from the water

to the transparent cover, increases the condensation rate, and can theoretically increase

the distillate yield by 56 % compared to a traditional solar still (Kabeel, Omara & Essa,

2017).

Rabhi et al (2017) compared a conventional unmodified solar still to a solar still with

an external condenser, and an inlet to allow for air to move into the condenser. They

observed that both the cover and absorber temperatures were lower in the still with the

external condenser, and that the still with the condenser produced 3.15 L ·m−2 · day−1

compared to the conventional still which produced 2.38 L ·m−2 · day−1, a 32 % increase

in yield.
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Parameters such as the volume and area of the condenser are important to its perfor-

mance. Al-Kharabsheh & Goswami (2003) found that varying the condenser area influ-

enced the evaporation rate; doubling the fin area on the condenser increased the yield by

9 %.

In practice the use of an external condenser is usually combined with a vacuum fan to

aid circulation of air from the still into the condenser. A study by Kabeel, Omara & Essa

(2014a) investigated a basin still with an external condenser and a vacuum fan drawing

the evaporated water from the still to the condenser. They tested the still with and

without the vacuum fan and found that the presence of the fan increased the yield by up

to 53 % depending on the power of the fan. Similarly Monowe et al (2011) investigated a

solar still with an external condenser and a vacuum fan pulling humid air from the still

into the condenser. The vacuum fan was powered by a PV panel of 1 m2. They found

that the presence of the vacuum fan increased the yield by 60 % compared to the still

with just the external condenser.

If a vacuum fan is used in the still there are a few additional advantages. The vacuum

fan can increase the turbulence of the air above the water which results in an improved

evaporation rate (Omara, Kabeel & Essa, 2015), the reduction in pressure can decrease

the operating temperature which can result in a decrease in losses (Ibrahim & Elshamarka,

2015; Al-Hussaini & IK Smith, 1995), and the movement of air within the still can also

reduce the effect non-condensable gasses have on condensation (Al-Hussaini & IK Smith,

1995).

It is easy to understand how the use of vacuum and an external condenser in a solar still

will increase the yield, research shows that it has a significant effect on the performance.

Adding only an external condenser is a once off capital cost while the addition of a

vacuum fan adds to the operating costs. It will be necessary to consider the economic

implications of these modifications, but purely considering maximising the yield both are

effective and worthwhile.

2.3.10 Brine Depth

The depth of water in the still has a large impact on the performance of the still. This is

because the volumetric heat capacity of the still is largely determined by the volume of

water available to absorb heat; if the incident radiation remains constant a larger volume

of water will achieve lower temperatures than a smaller volume would. The depth of water

is a parameter that is easily adjusted and is a cheap way to improve the performance of

the still as it does not require additional components.
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All literature indicates that increasing the depth of the water in the still decreases the

yield. This has been observed by Badran & Al-Tahaineh (2005) who investigated water

depths ranging from 2 cm to 5 cm and found a constant decrease in productivity as the

depth increased, AK Tiwari & GN Tiwari (2006) who looked at larger water depths of

4 cm to 16 cm and observed approximately a 30 % decrease in the yield of the still, and

Khalifa & Hamood (2009c) who found a linear relationship between the productivity

of a solar still and the brine depth and found that reducing the depth of the brine

can increase the productivity of the still by 33 % for depths between 10 cm and 1 cm.

Feilizadeh, Estahbanati, et al (2016) investigated water depths of 2 cm, 4 cm, 8 cm, and

16 cm, while keeping the distance between the water and the cover constant, and found

a 75 % decrease in yield as the depth increased from 2 cm to 16 cm in summer and 68 %

decrease in winter. In general the relationship between water depth and still productivity

is that as the depth increases the productivity decreases (Khalifa & Hamood, 2009b;

Phadatare & Verma, 2007).

The studies mentioned above all focused on water depths larger than 1 cm and there are

very few studies which have been done on fluid depth less than 1 cm. Sharshir, Peng, et al

(2017) did a study on depths ranging from 0.25 cm to 5 cm and observed an optimum

water depth within the still of between 0.5 cm and 1 cm. It is likely that below 0.5 cm dry

spots develop in the still which negatively affect the yield of the still. (Sharshir, Peng,

et al, 2017)

There is one advantage of a larger water depth; stills with a small depth of water are

extremely sensitive to small changes in solar irradiation due to cloud cover or other

fluctuations because of their low volumetric heat capacity, this can severely affect the

yield. On the other hand, stills with more water are not as sensitive due to the higher

thermal capacity of the system. (Murugavel et al, 2008)

The depth of brine in the still adds no significant cost to the still and is therefore an

attractive way of optimising the yield. It is clear from the above discussion that it has a

large impact on the performance of the still and is definitely worth careful consideration.

Due to the varying volumetric heat capacity with varying depth, it is possible that the

maximum temperature can be influenced thus affecting the evaporation rate.

2.3.11 Additives to Brine

In a conventional still the majority of the solar radiation is absorbed by the absorber

plate and then transferred to the brine in the still as was discussed in Section 2.3.4.

This is suboptimal as the water is heated from the bottom and must first rise to the top
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before it can evaporate. Also, there are additional losses when the absorber plate is at

elevated temperatures. For this reason the addition of nanoparticles or dyes to the brine

is advantageous as it allows for a greater portion of the incoming radiation to be absorbed

by the brine directly thus avoiding the heating of an absorber plate. (Malik et al, 1982

pp. 33)

Nanofluids are suspensions of nanoparticles in a fluid and are often characterised by their

excellent thermal characteristics which can be used to improve the performance of other

thermal systems (Mahian et al, 2013). Many studies have been carried out to determine

how nanofluids affect solar collectors and to evaluate the possibility for their integration

into solar energy.

Recently nanofluids have been used in conjunction with solar stills, instead of just solar

collectors, and their effects evaluated. Kabeel, Omara & Essa (2014b) investigated the

effect of different concentrations of metallic nanoparticles in the salt water. They found

that as the nanoparticle concentration increased so did the yield, however, the increase in

yield was asymptotic and after a certain concentration there appeared to be no additional

effect on the performance of the still. This result corresponds to the trend observed when

adding nanoparticles to solar collectors (Mahian et al, 2013).

A study done by T Elango, Kannan & Murugavel (2015) compared the use of three differ-

ent nanoparticles: Al2O3, ZnO, and SnO2, in simple basin solar stills. The concentrations

of nanoparticles used was 0.1 % on a mass basis. They noticed a relationship between the

still temperature and the thermal conductivity of the nanofluid; a higher thermal con-

ductivity resulted in higher still temperatures and consequently higher production rates.

Similarly, Gupta et al (2016) investigated the use of CuO nanoparticles at a concentra-

tion of 0.12 % on a mass basis. They achieved higher distillate yields when using the

nanofluid than in the conventional solar still. The use of CuO and graphite nanoparticles

was compared by Sharshir, Peng, et al (2017), they found that the graphite improved the

performance of the still more than the CuO, likely due to the higher thermal conductivity

and lower density of graphite which results in a better suspension. Furthermore, they

observed the same asymptotic behaviour previously described.

Darkly coloured soluble dyes can also be used to increase the amount of solar radiation

which the fluid absorbs which results in an increase in water temperature. The presence

of a dye, specifically a black or violet dye, can improve the performance of the still

greatly. The most significant improvement is seen when the water depth is large; at

small depths the effect of the dye is mostly insignificant. (Malik et al, 1982 pp. 33-36)

Akash et al (1998) observed a 60 % increase in yield in a still with black dye compared

to a conventional still with only a steel absorber plate. They also used a black ink, this
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resulted in only a 45 % in yield.

One problem with the use of brine additives in a simple basin still without other modifi-

cations such as an external condenser or cover cooling is that as the rate of evaporation

increases due to increased heat capture the temperature of the cover also increases. This

is undesirable as a large temperature difference between the water and the cover is nec-

essary for optimal performance. The use of a nanofluid or dye does improve the yield of

the still through an increase of evaporation rate, but the potential of the additive is not

fully realised due to the heating of the cover.

2.3.12 Heat Storage

Heat storage is effective in improving the performance of a solar still partly because it

increases the operating hours; a solar still is reliant on the presence of the sun to raise

the temperature of the water, if sufficient energy is stored the system can operate for a

period of time without the presence of the sun.

A possible heat storage method is using a sensible heat storage material such as sand

or thermal fluids and to place this underneath the basin. Due to a significant portion

of heat losses occurring through the bottom of the still this also serves to reduce those

losses. This form of heat storage captures heat during daylight hours when there is an

abundance of solar radiation, and releases the heat when the solar radiation is no longer

present.

Deshmukh & Thombre (2017) did an investigation on solar stills with and without sensible

heat storage. The thicknesses of heat storage material were 0.5 cm, 1 cm, and 1.5 cm

and two different types of heat storage material were investigated, sand and servotherm

medium (SM) oil. The different thicknesses corresponded to 4.1 kg, 8.2 kg, and 12.3 kg

of sand and 2.1 kg, 4.2 kg, and 6.3 kg of SM oil. They found that the temperature of

the sand was significantly lower than the water temperature likely due to poor contact

between the sand and the basin bottom while the SM oil temperature was nearly identical

to the water temperature due to convection improving the heat transfer between the

basin and the heat storage medium. They observed the following trends: the daylight

yield decreased with increase in mass of sensible heat storage and the overnight yield

increased with the addition of heat storage but then remained approximately constant

for the different masses. The total yield combining overnight and daylight experienced

an optimum around 0.5 cm of sensible heat storage material.

Other heat storage methods include the addition of black rubber or black gravel to the

still. Experimental results have shown that they both increase they yield by approxi-
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mately 20 % (Murugavel et al, 2008). Abdel-Rehim & Lasheen (2005) investigated the

use of glass balls as thermal storage; they covered the basin surface with glass balls of

a 13.5 mm diameter and compared the operation of the modified still to that of a con-

ventional still. They found that the packing allowed for basin temperatures to remain

elevated as the incident radiation decreases towards the end of the day. The modified

still showed on average a 45 % increase in yield.

Heat storage is most useful if the still is to be run during the night when there is no solar

radiation available. However, results indicate that the addition of small amounts of heat

storage can increase the yield during daylight hours. The cost of adding heat storage

material versus the additional water produced must be carefully considered.

2.4 Summary of Literature

As the demand for water increases it is necessary to find alternative sources of water.

Desalination is a viable method of producing distilled water to supplement the existing

fresh water reserves.

There are many desalination techniques which are suited to different situations; consid-

ering a rural community without access to the electric grid a simple solar still is the

recommended desalination method due to its low maintenance requirements, ease of con-

struction and operation, and low cost. Solar stills have low daily yields and much research

has been done on ways to improve the yield of the still, these include:

• Decreasing the height of the basin to improve the yield due to a reduced distance

for vapour to travel before condensation as well as a smaller volume which must

become saturated.

• Increasing the ratio of length to width to increase the yield due to more solar

radiation reaching the water for a given orientation.

• The inclination angle of the cover should be equal to the latitude of where the still

is located.

• Increasing the area of the absorber surface through the use of corrugation, wicks,

fins, pins, or the addition of a porous medium to improve the yield of the still. This

results in an improved rate of heat transfer from the absorber to the water and a

subsequent increase in evaporation rate.

• Using a suspended absorber surface to increase the yield by reducing the amount

of convective heat transfer that must occur in order for the heated water to reach
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the surface. This also causes a decrease in the conductive losses from the base of

the still due to lower base temperatures.

• Agitating the fluid within the still to disrupt the surface boundary layer and con-

sequently increase the yield through an increase in evaporation rate.

• The use of internal and external reflectors to improve the yield by reducing the

amount of energy lost to the sides of the still.

• The correct selection of cover material and thickness; thinner cover materials appear

to improve the yield by improving the rate of condensation.

• Addition of an external condensing unit can also significantly improve the yield of

the still by influencing the condensation rate.

• Using the correct depth of water in the still to reach higher temperatures and

increase the evaporation rate.

• Adding nanoparticles or dyes to the water in the still to increase the yield by

increasing the thermal properties of the water and modifying the evaporation rate.

• Adding small amounts of heat storage such as sand to improve the yield of the still

by reducing heat loss.

As can be seen there is extensive literature available regarding parameters affecting the

performance of a simple basin solar still. If correctly implemented these modifications and

combinations of them will result in an improved yield from the solar still thus increasing

its potential for use in rural communities.

Based on the operating principles of a simple basin solar still the variables deemed most

likely to have the largest effect on the performance of the still are the temperature of

the water, the temperature of the cover surface, the area available for evaporation, and

the area available for condensation. The latter two variables can be directly changed

by adding area to one of the two surfaces, while the first two variables require more

indirect methods to effect a change in the desired variable. These can be grouped into

two categories; condensation rate which includes the cover surface temperature and the

area available for condensation, and evaporation rate. These two categories combined

with heat losses from the still were investigated in this work.
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3 Experimental

3.1 Apparatus

3.1.1 Configuration of Basin Solar Still

The basin solar still was designed using as far as possible the optimum geometric param-

eters obtained in literature. In specific:

• The ratio of length to width was designed to be 2, as recommended by Feilizadeh,

Soltanieh, et al (2017) and El-Swify & Metias (2002).

• The average height of the still was minimised within practical constraints; primarily

the need for a water catchment system with sufficient angle to allow flow of con-

densed water (Feilizadeh, Soltanieh, et al, 2017; Rajaseenivasan et al, 2017; Jamil

& Akhtar, 2017).

• The inclination angle of the cover was designed to be 25◦; the latitude of Preto-

ria, South Africa, the location where the experiments would be run (GN Tiwari,

Thomas, et al, 1994; Singh & GN Tiwari, 2004).

The stills were designed to have a cover area of 0.5 m2, this being the area through which

solar irradiation enters the still.

The stills were raised in order to prevent conduction to the ground from the base of the

still as well as to allow for the condensate collection system to be mounted on the frame.

Photographs of the stills during operation can be seen in Figure A.1 and Figure A.2 in

Appendix A.

The still body was made of 18 mm ShutterPly, a type of plywood. It was chosen as it

is cheap, strong, and readily available. The still body needs to be rigid and sufficiently

durable to withstand exposure to ambient conditions. Wood is not the best solution as it

must be maintained when left outdoors for extended periods of time, the cost constraints

were the deciding factor. The plywood has an approximate thermal conductivity of

0.12 W ·m−1 ·K−1 (Çengel & Ghajar, 2015 p. 912). The wood was coated on the inside

with black Duram c© Durapond which is a non-toxic, polyurethane waterproofing with

a service temperature range of −44 ◦C to 120 ◦C making it suitable for the use in the

solar still (Data Sheet: Waterproofing, Durapond 2014). The absorber, as mentioned in

Section 2.3.4, must have a high absorptivity, be resistant to corrosion, non-toxic, and able
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to handle the high temperatures which the still experiences. Durapond was selected for

its ability to act as both the waterproofing and the absorber surface. Due to a lack of

available data for the emissivity of Durapond a value of 0.97 was used in later analysis,

as this is the commonly used emissivity of black paint, the corresponding absorptivity

for black paint is also taken as 0.97 (Çengel & Ghajar, 2015 p. 743).

The stills were later coated with polyvinyl chloride (PVC) coated textiles, such as those

used in dam linings, to replace the Durapond absorber. The Durapond proved to be

unreliable and the quality of the waterproofing deteriorated over time, it is uncertain if

this was due to an incorrect service temperature range of the Durapond or if there were

unfavourable interactions between components of the still (This is discussed further in

Section 4.1). The PVC is a black coated fabric which is UV stabilised to discourage

degradation of the polymer.

The cover material was chosen with the aim being to use cheap and robust materials in

order to make the design practical. This eliminated glass as it is more likely to break. The

cover must have high transmittance, be smooth, retain structural integrity at elevated

temperatures, and be stable in UV. The comparison in Table 1 led to the selection of

polymethyl methacrylate (PMMA) as the cover material. A sheet thickness of 5 mm was

used.

Table 1: Comparison of relevant material properties for common transparent polymers.
(Wypych, 2016)

PMMA PC PS

Thermal conductivity [W ·m−1 ·K−1] 0.19 0.22 0.128

Transmittance [%] 92 82-91 89-90

Refractive Index 1.49 1.58 1.6

Contact Angle of water 69.1-74.7 81.3-84 85.3-88.5

UV Stability yes limited limited

Flexural Strength [MPa] 107-117 94-120 66-95

Two of the stills were insulated using two layers of 13 mm ArmaflexR© sheet, which is

a foamed nitrile rubber, and has a thermal conductivity of 0.035 W ·m−1 ·K−1 at 0 ◦C

increasing to 0.039 W ·m−1 ·K−1 at 40 ◦C and a service temperature range of −40 ◦C to

105 ◦C (Class O ArmaflexR© 2013).

The third still was insulated using 50 mm of a polyurethane foam, with a thermal con-

ductivity of 0.026 W ·m−1 ·K−1 (Çengel & Ghajar, 2015 p. 914). It should also be noted

that the outside of stills 1, 2, and 3 were coated with a reflective aluminium tape.
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Figure 4: A section view of the basin still that was designed and constructed for this project.

The schematic in Figure 4 shows the following components of the still.

1. The aluminium frame that was used to seal the still. It was hinged at the top of the

wooden structure, riveted to the PMMA cover sheet, and had clasps at the bottom

to hold it shut. The hinged cover was necessary to allow for ease of maintenance.

2. The neoprene seal to ensure the still was properly closed.

3. The cover plate.

4. The ArmaflexR© insulation.

5. The wooden body of the still.

What was not shown in Figure 4 is the condensate collection channel which was mounted

to the front wall of the still. Figure 5 shows the two cross sections of the different

collection channels. The U-channel, on the right, was used in Still 1 and Still 2 while the

angled channel pictured on the left was used in Still 3. The channel was raised in the

middle slanting down towards the sides of the still in order to allow for water to move

easily.

30



Figure 5: A cross section view of the two channel shapes used for water collection in the stills.

Figure 6 shows the internal dimensions of the basin stills that were built. All stills had

identical internal dimensions.

Figure 6: Schematic showing dimensions of the constructed basin stills, all lengths in mm.

One additional still was built at the end of the project, the still had the same dimensions,

used PVC as the absorber surface, used the angled channel from Still 3 but was raised

on the sides sloping down towards the middle. The main difference with this still, Still

4, was that the body of the still was built from 40 mm Isoboard extruded polystyrene

insulation and the outside of the still was painted black. The Isoboard insulation has

a thermal conductivity of 0.024 W ·m−1 ·K−1 (IsoBoard, 2018). The plywood was built

around the Isoboard to act as structural support but was not in contact with the water.
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3.1.2 Data Acquisition

In order to monitor the performance of the stills it was necessary to carefully monitor

temperatures of water, air, and surfaces inside the still, humidity inside the still, mass

of water produced by the still, as well as the ambient conditions. An Arduino
TM

MEGA

2560 microcontroller with a data logging shield was used for all data capture within the

still, measurements were logged to the SD card every minute.

DS18B20 temperature sensors were used for the temperature measurements in the still.

The waterproof version of the sensor was used for liquid temperature measurements

while the chip version was used for all surface temperatures. The DS18B20 temperature

sensors are addressable allowing for multiple sensors to be connected in series using a

single data pin on the Arduino for communication with the microprocessor. The sensors

are capable of measuring temperatures in the range of −55 ◦C to 125 ◦C and have an

accuracy of ±0.5 ◦C for temperatures above −10 ◦C and below 85 ◦C. The resolution of

the measurements is either 9-bit or 12-bit. Each sensor has a ground, live, and data pin

and makes use of a pullup resistor of 4.7 kΩ connecting the live and data pins. (DS18B20

- Programmable Resolution 1-Wire Digital Thermometer 2018)

DHT22 temperature and humidity sensors were used for humidity measurements and

measuring the air temperature within the still. The humidity sensor has a resolution of

0.1 % with a range of 0 % to 99.9 % and an accuracy of ±2 %. The temperature sensor

has a resolution of 0.1 ◦C, or 16-bit, with an accuracy of ±0.5 ◦C and a range of −40 ◦C

to 80 ◦C. (Temperature and Humidity Module - AM2302 Product Manual 2018)

To measure the amount of water produced over the course of the day a TAL220, 10 kg

load cell, and a HX711 load cell amplifier was used. The load cell was observed to be

accurate to 0.1 g after calibration.

Apogee SP-215 silicon-cell pyranometers were used to monitor the intensity of solar irra-

diation. The pyranometer has a range of 0 W ·m−2 to 1250 W ·m−2 and measures global

short-wave radiation, not direct normal radiation (Owner’s Manual, Pyranometer, Mod-

els SP-212 and SP-215 2018). The pyranometer was mounted on the cover plate of the

still, perpendicular to the cover.

A Microbit Weatherbit was used for measuring all ambient conditions; wind speed and

direction and ambient temperature and humidity.

Figure 7 shows the locations of the various sensor types inside the stills and Figure 8

shows the sensors on the cover plate as well as on the outside of the still. The only
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sensors not shown in these figures are the load cell and temperature sensor measuring the

temperature of the collected condensate.

Figure 7: The location of sensors on the inside of the basin still.

Figure 8: The location of sensors on the cover and on the outside of the basin still.

Note that not all sensors were present in all of the stills, Table 2 shows which sensors

were in which of the four stills.
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Table 2: Summary of which sensors, shown in Figure 7 and Figure 8, were in which of the four
basin stills.

Sensor Type Sensor Number Still 1 Still 2 Still 3 Still 4

DS18B20 Chip 1 X X X

2 X X X X

3 X X X

4 X X X

5 X X X

6 X X

7 X X

8 X X

9 X X

10 X X

11 X X

12 X X X

13 X X X X

14 X

15 X

16 X X

17 X X

18 X X

19 X X

DS18B20 Waterproof 1 X X X

2 X X X

3 X X X

4 X X X

5 X

6 X X X

DHT 22 1 X X X

2 X X X X

3.2 Experimental Design

Considering the physical phenomena occurring within the system, discussed in Sec-

tion 2.2, certain variables can be identified as those likely to improve the performance

of the still the most significantly. These were covered in Section 2.2 and decided to be
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the temperature of the water, the temperature of the inside cover surface, the area for

evaporation, and the area for condensation. This work was focused on decreasing heat

losses to the surroundings as well as favourably changing the aforementioned variables.

3.2.1 Baseline Experiments

Due to inherent variations between the different stills it was important to perform exper-

iments where all of the stills would run with the same conditions in order to characterise

the difference between the stills due to variability in materials and construction. This

was done for ten days initially and repeated sporadically throughout the experiments to

ensure repeatability.

All variables were monitored during these baseline tests and the differences between the

stills observed. An average difference in yield between each still and the reference still

was determined in order to correct for the inherent variability when evaluating the effects

of modifications made to the stills.

In all experiments done Still 2 acted as the reference still, Still 1 and Still 3 were modified

over the course of the project, and Still 4 was built near the end of the project taking

into account the information that was gathered during the duration of the project.

3.2.2 Reducing Energy Loss

In reducing energy losses from the system two modifications were made. The first in-

volved testing various insulation thicknesses to minimise losses. This was discussed in

Section 2.3.8 and is a vital part of the basin still.

There were six different configurations of insulation that were tested, listed below are the

configurations as well as the corresponding thermal resistances of the still calculated for

a unit area of the still:

1. No additional insulation (only the ShutterPly still body), thermal resistance of

0.16 K ·W−1.

2. 13 mm of ArmaflexR© insulation, thermal resistance of 0.49 K ·W−1.

3. 13 mm of ArmaflexR© insulation and 10 mm of polystyrene, thermal resistance of

0.74 K ·W−1.

4. 26 mm of ArmaflexR© insulation, thermal resistance of 0.83 K ·W−1.
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5. 26 mm of ArmaflexR© insulation and 10 mm of polystyrene, thermal resistance of

1.1 K ·W−1.

6. 50 mm of polyurethane expanded foam insulation, thermal resistance of 2.1 K ·W−1.

While the final still design made use of 40 mm Isoboard insulation, which when applied

to the still has a thermal resistance of 1.5 K ·W−1 calculated for a unit area of the still,

the results could not be compared to the experiments described here due to the difference

in the material of construction of the still body.

Table 3 shows the experiments done with different insulations where the configuration

number refers to the list above.

Table 3: A summary of the experiments done with varying insulation thicknesses and types.

Configuration 1 2 3 4 5 6

Experiment 1 Still 1 X

Still 2 X

Still 3

Experiment 2 Still 1 X

Still 2 X

Still 3

Experiment 3 Still 1 X

Still 2 X

Still 3

Experiment 4 Still 1 X

Still 2 X

Still 3 X

Each experiment was run for a minimum of five days in order to ensure repeatability of

results.

The second set of tests done to reduce energy losses was the redirection of energy from

the sides of the still to the water using 2 mm aluminium sheets as internal reflectors.

In Section 2.3.6 internal reflectors are discussed with their primary purpose being to

direct more solar irradiation onto the water. However, in the experiments done the main

intention of utilising the aluminium as an internal reflector was to lower the temperature

of the sides of the still by redirecting the energy to the water. This was in order to reduce

conductive losses from the sides and better utilise the energy.
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Still 2 was the reference still and remained unmodified in these experiments while Still 1

ran for five days with the aluminium added only to the back wall, and five days with the

aluminium added to the sides and back of the still.

It should be noted that throughout all of the experiments described in this section the

absorber surface of all three stills was the Durapond waterproofing.

3.2.3 Increasing Evaporation Rate

In order to increase the evaporation rate different materials were added to Still 1 to

modify the amount of solar irradiation which would be absorbed by the water, Still 2 was

the reference still and remained unchanged throughout the experiments.

The first test which was done was changing the absorber in Still 1 to black PVC tarpaulin.

This material is less reflective than the Durapond waterproofing and was expected to

improve the performance. Experiments were run comparing Still 1 and 2 for four days

sequentially, and repeatedly between each additional modification that was made resulting

in a total of twenty days comparing the two different absorber materials. The PVC

tarpaulin was also added to Still 3 at a later point in time. Still 4 was built with the

PVC tarpaulin as the absorber material from the beginning as a result of the observations

made in the previous experiments.

The second test involved the addition of a carbon black nanofluid. The nanofluid was

tested previously by Bester (2017) and the method of preparation described by Bester

(2017) was used. As discussed in Section 2.3.11 nanofluids have been shown to have a

positive effect on the performance of basin solar stills due to the improved rate of heat

capture and absorbance. Based on the work done by Bester (2017) a nanofluid with a

0.005 % volume concentration of carbon black was selected for testing.

The nanofluid was prepared by coating the carbon black, REGALR© 400R carbon black

sourced from CABOT, nanoparticles with TWEEN-20, a non-ionic surfactant, in a 1:2

carbon black to surfactant mass ratio. These particles were then added to a synthetic sea

water solution of 35 g · L−1 of NaCl in water and sonicated for 60 min. A concentrated

masterbatch was produced like this and was later diluted to the required concentration.

Reference samples were left in the laboratory under approximately constant temperature

conditions to observe the nanofluid over time, specifically watching for settling of particles.

This was the control to compare the nanofluid behaviour against.

The nanofluid was analysed using particle size analysis in a Mastersizer Hydrosizer 3000

(Malvern Instruments, Malvern, UK) before and after being used in the still in order to
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determine the presence of agglomerates in the fluid as well as variations in the particle

size distribution over time. Agglomerate formation is the primary indicator of nanofluid

degradation and a good indicator of the stability of the fluid. The nanofluid was also

analysed in a T60 UV-VIS spectrophotometer (PG Instruments Limited, Leicestershire,

UK) to observe the absorbance of the fluid. This was done using a spectral scan between

the wavelengths of 190 nm and 1100 nm, a blank was run simultaneously with the samples

to correct for the instrument background. Changes in absorbance could also be used give

an indication of the stability of the fluid; whether or not the particles remained dispersed.

The required volume of nanofluid was added to Still 1 and experiments run for three days

sequentially.

The third test involved the addition of activated charcoal to Still 1. Activated charcoal

has a large surface area which aids absorbance of solar irradiation, and increases the rate

of heat transfer from the absorber to the water. The irregular shape and surface can

also reduce reflection back out of the still. A mass of 1 kg of activated charcoal particles,

varying in size and shape, were added to the still. The experiments were run for five days

sequentially.

The final test was the addition of a 12.7 mm carbon felt to Still 1. The felt floated beneath

the surface of the water increasing the area for evaporation as the surface of the felt was

coated by a very thin layer of water and the fibrous nature of the material still visible.

This test was run for four days comparing Still 1 and 2. This utilises the ideas behind a

suspended absorber mentioned in Section 2.3.4.

3.2.4 Increasing Condensation Rate

The experiments focused on improving condensation were performed in Still 3. The

experiments focused on increasing the area for condensation as well as improving the

driving force for condensation by decreasing the cover temperature.

The first test involved increasing the internal area of the cover by milling grooves into

the PMMA. The grooves are shown in Figure 9. The grooves were semi-circular with a

diameter of 3 mm, each groove had a length of 480 mm and 24 grooves were milled in

total. This resulted in an increase in internal area of 0.02 m2, a 4 % increase in area.
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Figure 9: A cross section of a portion of the cover plate showing the dimensions of the grooves
which were milled into the cover plate.

It was unknown whether or not the grooves would have a negative effect on the still,

possibly due to increased reflectance of incident radiation. Possible advantages, additional

to the increased area, were the increased scattering of light expected on the inside of the

still as well as increased adhesion of drops which formed in the grooves. These experiments

were run for nine days and the performance of Still 2 and 3 compared.

The following test involved the addition of two aluminium heat sinks to a portion of the

top of the cover. The geometry of the heat sink can be seen in Figure 10. The contact

area between each heat sink and the cover was 0.0105 m2, making the total contact area

0.021 m2. The heat sinks were partially shaded to reduce the temperature of the metal.

This was added to the same cover plate that had been milled, after the previous set of

experiments had concluded. Tests were run for thirteen days in this configuration.

Figure 10: The geometry of the heat sinks that were added to the cover, length of a single
heat sink was 150 mm, height and width both 70 mm.

A crude test was done by manually tapping the cover to force drop movement. The cover

was tapped approximately every 30 minutes when possible, hourly otherwise, from the

time that the surface was covered with water droplets. This was done for three days

intermittently during the experiments with the heat sink added to the cover.
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To increase the external condensation area two aluminium tubes, each of length 840 mm

and internal diameter of 12.7 mm, were added to the back of the still. The tubes had an

inlet and outlet at the top and bottom of the still, with an additional pipe draining to

the condensate collection. This is shown in Figure 11.

Figure 11: Picture showing one of the external tubes added to the still. The outlet from the
still is shown at 1., 2. shows the inlet to the still, and 3. is the pipe collecting the
condensate.

3.2.5 Revised Design

As mentioned, Still 4 was designed using information gained over the duration of the

project. Still 4 was run for several days and its performance compared to that of the

existing stills to evaluate the effect which the design modifications had.

3.2.6 Summary of Experiments

All four stills were built with the same internal dimensions, the differences in base designs

of the still are shown in Table 4.
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Table 4: A summary of the differences between the base designs of the four stills.

Still 1 Still 2 Still 3 Still 4

Still body 18 mm ShutterPly X X X

40 mm Isoboard X

Cover 5 mm PMMA X X X X

Absorber Durapond waterproofing X X X

PVC Tarpaulin Xa Xa X

Insulation/ 26 mm ArmaflexR© X X

Outer Layer 50 mm Polyurethane foam X

18 mm ShutterPly X

a Due to deterioration of the Durapond, the Durapond in Still 1 was replaced with PVC Tarpaulin

after the first set of tests involving the carbon black nanofluid and in Still 3 at the start of the tests

involving external tubes for condensation.

In all experiments done, aside from the insulation experiments detailed in Table 3, Still

2 remained unchanged from the base design summarised in Table 4. The list below

summarises the changes made to the remaining stills for each of the experiments described

in Section 3.2.1 to Section 3.2.5.

1. Baseline Experiments

Stills 1, 2, and 3 used for comparison. Stills were run with the base designs as given

in Table 4.

2. Reducing Energy Loss

2.1 Insulation: Stills 1, 2, and 3 used for comparison. See Table 3 for detailed

summary of changes.

2.2 Internal Reflectors: Still 1 and Still 2 were compared. Still 1 had aluminium

sheeting added first to the inside back wall, and then to the side walls.

3. Increasing Evaporation Rate

3.1 PVC Tarpaulin: Still 1 and Still 2 were compared. Still 1 had the Durapond

absorber replaced with PVC tarpaulin.

3.2 Carbon Black Nanofluid: Still 1 and Still 2 were compared. Still 1 effective

absorber material was the carbon black nanofluid.
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3.3 Charcoal: Still 1 and Still 2 were compared. Still 1 effective absorber material

was the activated charcoal.

3.4 Carbon Felt: Still 1 and Still 2 were compared. Still 1 effective absorber material

was the carbon felt.

4. Increasing Condensation Rate

4.1 Grooved Cover: Still 2 and Still 3 were compared. Still 3 had grooves milled

into the cover plate.

4.2 Heat Sink: Still 2 and Still 3 were compared. Still 3 had heat sinks added to

the top of the milled cover plate.

4.3 Tapping on Cover: Still 2 and Still 3 were compared. Still 3 had the cover (with

grooves and heat sinks) tapped regularly.

4.4 External Tubes: Still 2 and Still 3 were compared. Still 3 had tubes attached

to the back of the still creating external condensation area.

5. Revised Design

Still 2 and Still 4 were compared. Stills were run with the base designs as given in

Table 4.

3.3 Methods

3.3.1 Experimental Procedure

All experiments were carried out on the roof of Engineering Building 2 at the University of

Pretoria, the different stills were placed next to each other, all facing the same direction.

The stills were always run in parallel to allow for comparison between the stills using

data collected on the same day. The stills were started each morning as early as possible,

the start up procedure was as follows:

1. Begin the logging of weather data using the microbit-weatherbit.

2. Clean the inside and outside of the cover plates.

3. Fill each still with the required 9.2 kg of water and close the stills.

4. Calibrate the load cells on each still with a 4 kg calibration mass and the respective

zero weights.

5. Begin logging data for the stills.
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6. Add 0.2 kg of water to each collection container to act as a baseline measurement.

It should be noted that the stills were not emptied and filled with the complete 9.2 kg

every single day, this happened every week or two, or when changes were made to the

still. Instead, the stills were filled each day with the required amount to make up for

the water lost, they were simply topped up to the 9.2 kg. A mass of 9.2 kg was selected

as this results in a water depth of 20 mm in the still which was the minimum practical

depth to ensure accurate measurements of water temperatures in the still.

Before start up, the data from the previous day would be collected from the SD cards

and the final volumes of condensate measured to check accuracy of the load cells.

3.3.2 Data Analysis

Analysis and post processing of the measured data was done using Python.

The load cell data was adjusted, using the baseline measurement, and any spikes in

the data that occurred due to wind or sensor noise removed. These points were found

by checking the difference between sequential data points and setting the point to the

previous value if the difference exceeded 20 g (Differences between load cell readings do not

typically exceed 3 g, points with a large difference were due to external interference in the

measurement). Due to the instantaneous nature of the erroneous values, the frequency at

which measurements were taken, and the slow rate of change of the load cell date, this was

an acceptable technique to apply. This data was also smoothed using a moving average

smoothing technique, the smoothed data was only used in locating the point at which the

curvature of the graph changes significantly indicating an effective onset of condensate

collection. The change in curvature was found by calculating the second derivative of the

curve, starting at a guess value and moving both forwards and backwards in increments

to find the point with the highest second derivative; this approach proved to be robust

for variability in the data sets and was accurate to within 10 min on average.

Rates of change of the condensate mass (which can be considered to be the rate of

condensation) as well as of various temperature measurements were calculated. This was

done by taking a time increment, assuming a linear change in the variable of interest

during the increment, fitting a straight line to the data points in that increment using

least squares linear regression techniques, and obtaining the slope of that line. Different

increment sizes could be used to ensure linearity within the range. The reason for not

using a common numerical differentiation method such as Newton’s method was that

noise in the data made taking discrete points difficult as one erroneous point would have
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a huge effect on the derivative, using a regression technique to reduce the effect of noise

was preferable.

All integrals were calculated numerically using the midpoint rule; due to the small time

steps it was deemed sufficiently accurate and its simplicity made it an attractive solution.

Integrals were used to determine total energy content of incident radiation as well as the

totals for the various losses that were calculated at discrete time points over the course

of the day.

Certain of the DS18B20 chip sensors gave erratic errors during operation due to corrosion

of the soldered joints or simply damaged or wet connections. These errors could be dealt

with by predicting the correct value using asymmetric least squares signal correction

algorithms (Eilers, 2003). For days where certain sensors were completely non-functional,

some of the values could be predicted using relationships between variables that were

observed in the system. For example, it was observed that a linear relationship exists

between the air temperature within the still and the temperature of the cover plate.

Using days where the cover plate sensors were operating correctly an equation for this

relationship could be obtained using linear regression techniques and used to predict

the temperature on other days. This relationship can be observed in Figure A.3 in

Appendix A for a selection of days.

Each day was assigned a numerical value representing the amount of incident solar irradi-

ation that it received. This fraction could be used to compare yields across vastly different

days by dividing the mass produced by the fraction of irradiation for that day. This was

to ensure that results for varying amounts of incident irradiation could be compared,

within reason, and the results would not be biased.

Where percentage increases in yield were calculated the following equation was used:

Y ield Increase =
Y ield(still i) − Y ield(reference still)

Y ield(reference still)
(22)

In Section 4, all data labelled corrected yield increase was calculated according to the

following method.

1. The baseline yield increase for the relevant still was obtained.

2. The predicted yield of Still i was calculated using the baseline yield increase and

the yield of the reference still.

3. The corrected yield increase was calculated according to Equation 23.
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Corrected Y ield Increase =
Y ield(still i) − Predicted Y ield(still i)

Predicted Y ield(still i)
(23)

3.3.3 Energy Balance Analysis

It is necessary to explicitly define the control volume selected for the energy balance. This

is shown in Figure 12 where the dotted red line indicates the boundary of the control

volume. As can be seen in Figure 12, the cover, and the body of the still are included in

the control volume while the insulation material is not.

Figure 12: A cross section view of the basin still showing the control volume for the energy
balance. 1. is the cover plate, 2. the insulation, 3. the wooden still body, and 4.
the water in the still.

As data was collected minutely, the energy balance as shown in Equation 17 could be

solved in the following way:

∫ tn

t0

d(mU)cv =

∫ tn

t0

(
Q̇net − ṁoutH

)
dt (24)

∆(mU)cv =
n−1∑
i=0

[
Q̇

(i)
net + Q̇

(i+1)
net

2
(ti+1 − ti) +

(
H(i) +H(i+1)

)
2

(
m(i+1) −mi

)]
(25)

where tn refers to the time at the end of the experiment and t0 to the beginning. The

internal energy, ∆(mU)cv, was separated into its various components and each one cal-

culated as follows:

∆(mU)water = mwater
(n)Uwater

(n) −m(0)
waterU

(0)
water (26)
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∆(mU)air = mairCvair

(
T

(n)
air − T

(0)
air

)
+mair

(
H(n)

absU
(n)
water −H

(0)
absU

(0)
water

)
(27)

∆(mU)cover = mcoverCpcover

(
T (n)
cover − T (0)

cover

)
(28)

∆(mU)wood = mwoodCpwood

(
T

(n)
wood − T

(0)
wood

)
(29)

Due to the fact that the mass of air, essentially, remains constant, the mass of wood

is constant, and the mass of the cover is constant, the (∆mU) terms could be solved

without difficulty.

The internal energy change of the system when the energy balance is applied over the

whole day is rarely significant when compared to the other terms present in the energy

balance. This is due to the start and end temperatures being almost the same, internal

energy is a state variable so if the change in temperature over the whole process is

negligible the change in internal energy will be negligible too. A positive value for the

internal energy change indicates that energy was accumulated in the wood, water, cover,

or air and not released to the surrounding environment. This accumulated energy is not

useful energy as it could not be used to produce condensate. If the change in internal

energy is negative then that energy can be considered as energy that was made available

to contribute to condensate production. The values for Uwater and H were obtained from

Lemmon, McLinden & Friend (2018). The condensate leaving the system is assumed to

leave the system at the temperature of the cover, this is a good assumption as the air

temperature in the still is higher than the cover temperature so it is unlikely that the

condensate will be at a lower temperature, it is a conservative value for the energy of the

condensate.

The Q̇out term included in Q̇net considered the reflection of incident irradiation from the

cover, the radiative and convective losses from the cover, conductive losses from the still

body, and radiative losses from the still base. This is shown in Equation 30. Radiative

losses from the inside walls of the still were not considered.

Q̇out = Q̇ref,cover + Q̇rad,cover + Q̇conv,cover + Q̇cond,body + Q̇rad,base (30)

Based on the defined boundaries of the control volume the conductive losses from the

cover were not required, nor were convective or radiative losses from the outside of the

still body. It should further be noted that the cover losses were calculated based on

the internal surface temperature of the cover which is a few degrees warmer than the

outside surface, this results in the cover losses being slightly overestimated. The cover

temperature is remarkably difficult to measure accurately as it is in direct sunlight. The

cover sensors were covered with a reflective tape to try and reduce the amount of sunlight
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heating up the sensor directly, however this is not a perfect solution as the tape heats up

due to not being perfectly reflective. Additionally, poor contact between the sensor and

the cover surface can result in a higher temperature being measured.

The conductive losses were obtained using Fourier’s law in Equation 1 with the cor-

rect thicknesses, areas, and thermal conductivities. A linear temperature gradient was

assumed through the insulation in order for the equation to be simplified to

Q̇cond =
−kA∆T

x
(31)

where x is the thickness of the material. All conductive losses were calculated using this

equation.

The convective losses were found from Equation 2 obtaining hconv from the relevant

Nusselt relation using the temperatures and wind speed. The cover surface was assumed

to be a flat plate to simplify the solution of the convective heat transfer coefficient. As a

consequence of the flat plate assumption it was necessary to modify the wind speed, based

on the wind direction, to account for the actual geometry of the system. If the direction

of the wind was such that it would hit the back wall of the still first the wind speed

was multiplied by a factor between 0.5 and 0.75, depending on if it was perpendicular

to the back or at a slight angle. This was to compensate for the flat plate equations not

considering how the wind speed would change if it were to hit the back of the still and

be redirected downwards over the cover.

The radiative losses were calculated using the Stefan-Boltzmann law for radiation in

Equation 9. The temperature of the sky was taken to be 6 ◦C below the ambient temper-

ature (C Elango et al, 2015). For the radiation from the base of the still, the base and

cover were assumed to be parallel surfaces and the transmittance of the cover was taken

into account.

In the energy balance analysis, an unaccounted energy term was calculated as

Eun =

∫ tn

t0

(
Q̇net − ṁoutH

)
dt−

∫ tn

t0

d(mU)cv (32)

A positive value for the unaccounted energy could mean that the losses are underesti-

mated (larger losses reduce the value of Q̇net), while a negative value could mean the

reverse, an overestimation of the losses. Possible explanations for unaccounted energy

include the radiative losses from the sides of the still which are excluded from the calcu-

lations, the overestimation of losses from the cover due to using the higher temperature

to calculate these terms. Re-evaporation from the collected condensate could contribute

to the unaccounted energy as this would mean an underestimation in condensate energy.
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And finally the assumptions made in calculating the loss terms: no temperature gradients

across the surfaces in the still, a linear temperature gradient through the walls, cover, and

insulation, and the flat plate assumption and wind speed modifications for the convective

losses.

The different loss terms, energy of condensate, and unaccounted energy were expressed

as percentages of the total energy where the total energy was calculated as

Etotal =

∫ tn

t0

Q̇Idt−
∫ tn

t0

d(mU)cv (33)

These percentages were used in the discussion to discuss the different losses on different

days.

The efficiency was calculated slightly differently from Equation 21 which only considers

the incident irradiation as energy which can be utilised to produce condensate. The

efficiency of the still was calculated as

η =

n−1∑
i=0

[(
m(i+1) −mi

)
λvap

]
Etotal

(34)

in order to account for the production of water overnight due to energy stored in the

system.
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4 Results and Discussion

4.1 Observations from Experiments

During the several months of experimental work there were various observations made

during the operation of the stills that are necessary to note.

Condensate began forming on the covers within minutes of closing the stills. The droplet

size increased until the drops began running consistently down the cover every few sec-

onds. As soon as a drop had run and cleared the area in its path, condensate reformed

on this area immediately, drop formation could be observed in real time.

All of the stills had problems with drops dripping back into the stills from the cover.

If the drop began to run from the top half of the cover it would become too large to

adhere to the cover and would fall back into the still before reaching the channel where

condensate was collected. Counting, for a few minutes, the drops that ran all the way to

the bottom and the drops that fell into the still indicated that for every drop collected

a portion of another drop could be lost. This was for the period of time when the cover

was most saturated with large drops, when smaller drops exist on the cover there is less

water for them to collect as they run down and fewer drops are lost in this manner.

The Durapond sealant caused numerous problems. The surface looked like the sealant had

bubbled (See Figure A.4 in Appendix A). It is unclear if this was due to poor adhesion of

the sealant to the wood, the temperatures experienced inside the still causing degradation

of the polyurethane sealant, air pockets trapped beneath the sealant, or solvent which

had not evaporated properly when the sealant was drying. Regardless of the reason, the

Durapond sealant began to leak at some point in time and had to be replaced with the

PVC tarpaulin used in the later experiments. Due to the design of Still 3 the leak was

not noticed until much later, this resulted in the polyurethane foam becoming wet and

inconsistent results being obtained from a selection of experiments done in that still.

The collection channel in Still 1 and Still 2 was the aluminium U-channel shown in

Figure 5. This channel did not allow for quick enough movement of water, a significant

number of drops had to collect for the water to run properly through the pipes and to

the collection system. This delayed movement of water could have resulted in a small

portion of re-evaporation from the collection channel.
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4.2 The Energy Balance

The energy balance analysis was used to understand the operation of the still and wher-

ever possible to evaluate changes in performance when modifications were made.

Shown in Figure 13 is the energy balance analysis for a selection of days considering both

sunny and cloudy days. The energy balance and energy term percentages were calculated

as described in Section 3.3.3.

Figure 13: Energy balance analysis for Still 2 versus total daily solar irradiation seen by the
still, considering the 0.5 m2 area, for a selection of days where the first two columns
represent cloudy days and the last two show sunny days.

Immediately evident is the large portion of energy lost through radiation from the inside

of the still, in excess of 30 %. As the base of the still is black to allow for maximum

absorbance it has a correspondingly high emissivity, as discussed in Section 3.1.1, it is

also one of the hottest surfaces in the system commonly reaching temperatures higher

than 60 ◦C. It is not unexpected that it would account for such a large portion of the

energy. Large improvements could be made if this radiation leaving the still could be

blocked by the cover.

The cover losses consist of three parts and sum to around 50 % of the total energy on

average. Excluding the reflective losses, a portion of this energy lost from the cover is

necessary in order for condensation to occur. The heat transfer coefficients for conden-

sation are in the order of magnitude of 200 000 W ·m−2 ·K−1 for drop-wise condensation

and 10 000 W ·m−2 ·K−1 for film condensation (Çengel & Ghajar, 2015 pp. 618–627),
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huge amounts of energy are transferred to the cover during condensation and must be

removed from the cover for there to be a continued driving force for condensation.

The importance of being able to lose energy through the cover is illustrated in Figure 14.

This Figure shows the condensate produced in Still 3 for two days, on day number 288 the

still was left to operate normally, on day 289 the cover plate was insulated with 40 mm of

Isoboard insulation after the sun had set. From the graph the absence of any condensate

formation after the addition of the Isoboard is easy to see by the negligible slope from

the point at which the Isoboard was added. This small slope indicates a negligible rate

of condensation.

Figure 14: Mass of condensate produced in Still 3 on two consecutive days showing the impor-
tance of cover losses. The x-axis shows the minutes that have passed since 06h00;
e.g. 200 correspond to a time of 09h20, 400 to a time of 12h40, and 600 to a time
of 16h00.

However, trying to characterise the useful portion of the cover losses is not trivial. The

efficiency, calculated as described in Section 3.3.3, can be considered a rough descriptor

of the amount of useful cover losses. For the four days shown in Figure 13 the efficiencies

were 9.2 %, 8.5 %, 12.3 %, and 10 %. With the cover losses ranging from 36 % to 43 %

(excluding reflection) it is clear that only a small portion of the cover losses was efficiently

utilised in the system. The note made in Section 4.1 regarding condensate dripping back

into the still should be kept in mind when comparing the efficiency and the cover losses; to

produce condensate the energy must be lost from the cover, if the water is not recovered

the calculated efficiency is lower than it could be if all the condensate had been collected.

It should be noted that the reflective losses are an underestimate. They are calculated
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theoretically, as described by Kalogirou (2014 pp. 83–85), and only consider the reflec-

tion from the PMMA cover plate, it excludes the water droplets that collect on the cover.

Early during the experiments an additional pyranometer was placed inside the still and

the amount of radiation received on the inside and outside were compared. It was found

that on average the total irradiation on the inside of the still was 21.5 % less than the irra-

diation incident on the outside of the still. This is significantly larger than the theoretical

reflectance values seen in Figure 13 of 8 % and 9 %.

In Figure 15 the cover and base losses are shown for the course of the day. The convective

losses are erratic due to the variation in wind speed, it is clear that larger wind speeds

can greatly increase the convective losses from the still cover. The radiative losses from

both the cover and the base of the still are high, reaching maximums near 100 W, and

remaining consistently high due to the high system temperatures. The losses via reflection

are significantly lower than both the radiative and convective losses, however, if these

losses could be reduced further it could improve the performance of the still.

Figure 15: Losses from the cover plate plotted against time, for day number 274, a day rep-
resentative of normal operation.

In Figure 13 the conductive losses are seen to remain relatively constant around 10 %

of the total energy, there is little improvement that can be made on this that is cost

effective and is discussed further in Section 4.5.1. Figure 16 shows the conductive losses

from the still body for day 274, the last column in Figure 13. The conductive losses

reach a maximum around 13 W, a near negligible value in comparison to the other energy

terms. The back conductive losses could be reduced by reducing the area of the back

wall or directing the energy away from the surface, but additional insulation on the still
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body is not a cost effective solution considering the small amount of energy that could

be gained.

Figure 16: Losses from the still body plotted against time, for day number 274, a day repre-
sentative of normal operation.

The energy removed from the system by the collected condensate is minuscule in com-

parison to the other loss terms and the total incident radiation.

Energy enters the system as solar radiation, and is lost through several surfaces through

convection, conduction, and back-radiation. The energy that is absorbed by the water

and which causes vaporisation is then transferred to the cover (and other surfaces of the

interior of the still if condensation occurs there) when droplets form. The vast majority

of this energy is then lost through radiation and convection from the cover. The fact that

energy is only used once to vaporise a mass of water and then removed through losses

from the cover is the reason that the total energy extracted in the form of condensate is

so small.

Ideally, one would want the energy released during condensation to be re-used to evapo-

rate more water. However, as the energy is at a lower quality (at a lower temperature)

than the water in the still it cannot be re-used efficiently. Storing the energy and using

it to reduce the heat loss of the still during the night is a potential method of re-using

the energy released in condensation.

The unaccounted energy seen in Figure 13 is relatively small and can be explained with

the various suggestions made in Section 3.3.3.
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Figure 17 shows the incident solar irradiation over the course of the day. The maximum

value nears 500 W on the 0.5 m2 cover surface which is more than four times larger than

any of the individual loss terms, there is more than enough energy available to produce

water should the losses be efficiently managed.

Figure 17: Incident irradiation, considering the 0.5 m2 area, plotted against time, for day
number 274, a day representative of normal operation.

The total efficiency for the day under consideration, was 9.95 %, calculated as described

in Section 2.2 and Section 3.3.3. Figure 18 shows the efficiency for each 30 minute interval

over the course of the day. The efficiencies during the night time period are significantly

higher due to the lack of incident irradiation but continued production of water. This

suggests that heat storage could greatly improve the performance of the still; the energy

received during the day that cannot be efficiently used could be released back into the

system over night to increase the production of water.
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Figure 18: Efficiencies calculated for 30 minute intervals for day number 274, a day represen-
tative of normal operation.

4.3 Effects of Disturbance Variables

It is necessary to understand the effects which disturbance variables have on the perfor-

mance of the still. These variables are the wind speed, wind direction, ambient tempera-

ture, and intensity of solar irradiation. Many of the independent variables in the system

can be classified as disturbance variables making it even more important to understand

their effects. The discussion in this section will focus primarily on the results from Still

2 as it remained unmodified throughout the entirety of the project and for that reason

its results can easily be compared.

4.3.1 Ambient Conditions

Theory suggests that the wind speed will affect the convective heat losses from the cover

plate and change the temperature of the cover. Wind speed and direction changes errati-

cally during a day and characterising the wind behaviour over a day using simple averages

or variances did not yield any direct observable correlations with still performance.

Figure 19 shows the amount of water produced in Still 2 as a function of the total solar

irradiation received by the still in that day. The data points in Figure 19 are coloured

based on the average daily ambient temperature with the dark red dots representing

the warmest temperatures and the dark blue dots the coldest. The points with inci-

dent irradiation values in the excess of 14 000 kJ are possibly anomalies; the irradiation
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measurements for several consecutive days was abnormally high, the measured values de-

creased again after this period. However, the linear relationship observed would support

the validity of the points despite their large irradiation intensities.

Figure 19: Mass of condensate versus total daily solar irradiation seen by the still, considering
the 0.5 m2 area, with dots coloured based on average daytime ambient temperature.

The data strongly suggests a linear relationship between the incident solar irradiation and

the yield of the still. Considering the energy balance, the only energy that is added to the

system is due to solar irradiation in the Q̇net term, or a negative change in the internal

energy of the system, hence the large effect which this variable has on the system. While

Figure 19 shows that the days with the lowest yields experienced cooler temperatures than

the days with the highest yields, there is no clear relationship that can be seen between

the yield of the still and the ambient temperature. This is perhaps better illustrated in

Figure 20.

In Figure 20 the yield of Still 2 is plotted against the average ambient temperature during

daylight hours. A weak linear relationship between the two variables might be suggested,

this would be in agreement with theoretical predictions. The ambient temperature is

expected to have an effect on the heat losses included in Q̇net. These losses are functions

of the ambient temperature, wind speed, and wind direction.
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Figure 20: Mass of condensate versus average daytime ambient temperature.

Figure 21, shows that the radiative losses from the cover plate, as a percentage of the

total energy, are also weakly influenced by the ambient temperature. This would be

better seen by neglecting the outliers, the two points between 32 % and 34 % as well as

the point around 20 %. A small upward slope in the radiative losses is seen as the average

temperature increases. The radiative losses are the largest loss from the system and vary

between 26 % and 32 % on average. Figure 22 suggests that the conductive losses from

the still body may decrease as the average ambient temperature increases.

Figure 21: Radiative losses from the cover expressed as a percentage of the total energy enter-
ing the system, plotted as a function of the average daytime ambient temperature.
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Figure 22: Conductive losses from the still body expressed as a percentage of the total en-
ergy entering the system, plotted as a function of the average daytime ambient
temperature.

The other losses to consider are the convective losses from the cover plate as well as the

reflective losses. The reflective losses are purely dependent on the intensity of incident

irradiation, they are independent of ambient conditions, and the convective losses are

likely to be strongly dependent on the wind speed and direction as previously mentioned.

Figure 23 shows the efficiency, calculated as described in Section 2.2, for the varying

ambient temperatures. While the various loss terms are weakly dependent on the aver-

age ambient temperature, the effect which they have on the efficiency is insufficient for

the efficiency to express any observable dependence on the temperature, this is seen in

Figure 23. Due to the linear relationship between the amount of water produced and the

amount of incident irradiation, the efficiency is seen, in Figure 24, to be mostly indepen-

dent of the amount of incident irradiation seen by the still. It should be noted that there

are limits to this independence. The outliers in Figure 23 and Figure 24 are from days

where unusually low amounts of solar irradiation were present.
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Figure 23: Efficiency of the still plotted as a function of the average daytime ambient temper-
ature.

Figure 24: Efficiency of the still plotted as a function of the total incident irradiation, consid-
ering the 0.5 m2 area.

4.3.2 Seasonal Variation

Experiments were run from the 30th of May up until the 2nd of November. This spans the

South African autumn, winter, and spring in that order. For this reason it is important

to observe the effect of seasonal variation on the performance of the still.
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Figure 25 shows the change in average daytime ambient temperature over the course of

the year. The gradual change in season is immediately evident from the roughly 15 ◦C

increase in temperature that can be observed.

Figure 25: Average daytime ambient temperature plotted against day number to observe the
change in season.

Figure 26: Total daily solar irradiation seen by the still, considering the 0.5 m2 area, plotted
against day number to observe the change in season.

Figure 26 however, does not show a strong correlation between the day of the year and the

intensity of solar irradiation, this is expected as the pyranometer measures global short-

wave radiation. The abnormally large amounts of radiation can be seen again between
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days 239 and 254; clear anomalies in the amount of energy received by the stills, but

producing results agreeing with the measured intensity as seen in Figure 19. In South

Africa the winters are usually less cloudy while the summers are often very sunny which

can account for the little seasonal variation in intensity of irradiation. Finally, Figure 27

shows the amount of condensate produced in Still 2 over the course of the year. Very little

correlation is seen as is expected given the minimal change in incident irradiation and

the strong relationship between the incident irradiation and the mass of water produced.

Figure 27: Mass of condensate plotted against day number to observe the change in perfor-
mance over the change in season.

4.4 Baseline Experiments

Inherent differences exist in the stills as a result of small differences in materials of

construction or inaccuracies introduced during construction. Baseline tests were run to

determine the extent of these differences and to quantify the effect which they have on

the performance of the stills to allow for comparison of results.

4.4.1 Still 1 Baseline

Early in the project the baseline tests were run for Still 1 and 2, as described in Sec-

tion 3.2.1. Table 5 shows the final masses of water produced by each still as well as the

improvement in yield when comparing Still 1 to Still 2.
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Table 5: Efficiencies and Water Produced in Still 1 and 2 in the Still 1 Baseline Experiments.

Day

Number

Still 2

Yield

Still 1

Yield

Increase

in Yield

Still 2

Efficiency

Still 1

Efficiency

204 0.222 kg 0.250 kg 12 % 7.4 % 8.4 %

205 0.502 kg 0.587 kg 17 % 11.4 % 13.5 %

206 0.504 kg 0.595 kg 18 % 11.5 % 13.6 %

207 0.490 kg 0.562 kg 14 % 11.5 % 13.2 %

208 0.566 kg 0.586 kg 3 % 12.5 % 13.0 %

211 0.493 kg 0.571 kg 16 % 11.3 % 13.1 %

212 0.495 kg 0.571 kg 15 % 11.4 % 13.1 %

213 0.503 kg 0.594 kg 18 % 11.5 % 13.6 %

214 0.479 kg 0.586 kg 22 % 11.5 % 14.1 %

The difference remains within a reasonable tolerance and the average increase in yield

was 17 % with a standard deviation of 3 %, excluding the outlier on day number 208. This

difference was used when analysing future results to correct for the variations between

the stills when they operated under the same conditions.

Figure 28 shows the energy balance analysis for Still 1 and 2 for a selection of days from

the baseline experiment.

Figure 28: The energy balance for both Still 1 and Still 2 for a random selection of days during
the baseline experiments.
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The conductive losses do not appear to vary significantly between the two stills, and the

reflective losses are calculated theoretically and cannot vary as they do not consider the

condensate on the cover. The cover convective losses and radiative are slightly lower

in Still 1 which is likely the reason for Still 1 producing more water. Figure 29 shows

the cover temperatures for the two stills, Still 1 is seen to have a slightly lower cover

temperature than Still 2 which explains the reduced cover losses seen in Figure 28. The

difference in the maximum cover temperature ranges between 2 ◦C and 4 ◦C. An increased

driving force for evaporation and condensation is present when the cover temperature is

lower.

Figure 29: Cover temperatures for both Still 1 and Still 2 for a random selection of days during
the baseline experiments.

Figure 30 shows that the water temperature in each still is nearly identical, this is impor-

tant as many experiments done were focused on increasing the water temperature in the

still. The similarity in water temperature explains the similar values for base radiation

seen in the energy balance. If the water in each still is at the same temperature the

base temperatures are approximately the same as well. Furthermore Figure 31 makes it

clear that despite Still 1 producing more water than Still 2 the time at which the rate

of condensate collection increases significantly remains approximately constant in both

stills around 420 minutes after 06h00, at 13h00.
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Figure 30: Water temperature for both Still 1 and Still 2 for a random selection of days during
the baseline experiments.

Figure 31: Mass of condensate versus time for both Still 1 and Still 2 for a random selection
of days during the baseline experiments.

4.4.2 Still 3 Baseline

As described in Section 3.1.1, Still 3 differs from Still 2 in its insulation; while Still 2

uses 26 mm of Armaflex foamed Nitrile rubber insulation Still 3 is insulated with 50 mm

of polyurethane foam. This affects the conductive losses from the still and the overall
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performance. The effect of the insulation is discussed in detail in Section 4.5.1 but a brief

discussion of the differences between stills 2 and 3 is included here.

Table 6: Efficiencies and Water Produced in Still 2 and 3 in the Still 3 Baseline Experiments.

Day

Number

Still 2

Yield

Still 3

Yield

Increase

in Yield

Still 2

Efficiency

Still 3

Efficiency

206 0.504 kg 0.744 kg 47 % 11.5 % 16.5 %

207 0.490 kg 0.657 kg 34 % 11.5 % 15.5 %

208 0.566 kg 0.694 kg 22 % 12.5 % 15.4 %

211 0.493 kg 0.670 kg 35 % 11.3 % 15.4 %

212 0.495 kg 0.648 kg 30 % 11.4 % 14.9 %

213 0.503 kg 0.661 kg 31 % 11.5 % 15.0 %

214 0.479 kg 0.628 kg 31 % 11.5 % 15.1 %

215 0.492 kg 0.606 kg 23 % 12.0 % 14.7 %

From the data in Table 6 an average improvement in yield of 32 % when comparing Still

3 to Still 2 is observed, with a standard deviation of 2 % when excluding the following

outliers. Day 208, as mentioned previously, is an outlier in the data due to the unusually

high yield of Still 2. The reasons for this are uncertain as the starting conditions in Still 2

were comparable with the other stills. Additionally day 206 saw a larger yield from Still

3 than on the other days; Still 3 had been freshly filled with water while Still 2 had been

running an experiment the previous day, this resulted in the water temperature in Still

3 being roughly 6 ◦C higher than in Still 2 to begin with and can explain the high yield.

Day 215 saw an unfortunate combination of higher than normal yield in Still 2 and lower

than normal yield in Still 3 which caused an unusually low difference between the stills.

Figure 32 shows that the maximum water temperature in Still 3 is slightly higher than in

Still 2, by approximately 2 ◦C, and Figure 33 shows the difference in condensation rate;

the onset time for condensate collection did not vary by more than 10 minutes between

the two stills.
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Figure 32: Water temperature for both Still 2 and Still 3 for a random selection of days during
the baseline experiments.

Figure 33: Mass of condensate versus time for both Still 2 and Still 3 for a random selection
of days during the baseline experiments.

4.5 Reducing Energy Losses

From the energy balance analysis the relative magnitudes of the different loss terms can

be seen. While some energy must be lost from the cover plate in order to allow for

condensation to occur it is possible to try and reduce the conductive losses from the still
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body. The following sections discuss the results from the experiments where the aim was

to reduce the energy losses from the stills.

4.5.1 Insulation

Figure 34 shows the final mass of condensate produced in each still for each of the

experiments described in Section 3.2.2, the experiment numbers in Figure 34 refer to

those in Table 3. The final masses were corrected using the amount of solar irradiation

received on a given day, as described in Section 3.3.2, to make the comparison easier.

Figure 34: Mass of condensate plotted against the thermal resistance calculated for a unit area
of the still, the masses have been corrected for the amount of incident irradiation
received on a given day.

It is clear from Figure 34 that the higher thermal resistance results in a larger yield of

condensate. However, diminishing returns are expected; at some point the effect which

increasing the thickness of insulation has on the performance of the still is not large

enough to compensate for the additional cost. This is perhaps better seen in Figure 35.

In Figure 35 the change in thermal resistance for a given experiment is plotted on the

x-axis and the resulting improvement in yield on the y-axis (Refer to Table 3 for the

different experiment descriptions).
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Figure 35: Percentage increase in yield for each day plotted against the corresponding change
in thermal resistance between the different stills for each experiment set.

Experiment one, three, and four had vastly different changes in thermal resistance asso-

ciated with each, but the improvement in yield shown in Figure 35 is comparable for all

three of the experiments. Looking at Figure 34, as the thermal resistance changed from

0.16 K ·W−1 to 1.1 K ·W−1 the amount of condensate produced increased from around

0.4 kg to 0.65 kg. This is a large improvement in productivity for a sizeable increase

in thermal resistance. However, increasing the thermal resistance from 1.1 K ·W−1 to

2.1 K ·W−1 only caused the yield to increase from 0.65 kg to 0.8 kg, the increase in yield

is smaller for a larger increase in thermal resistance.

Figure 36 shows the condensate collection over time for a random day representing each

thermal resistance. It can be seen that both the final mass of condensate and the rate of

condensation increase as the thermal resistance is increased. This is expected, increasing

the amount of insulation improves the energy retention capability of the system which

should allow for accelerated evaporation and subsequently condensation. To comment on

the energy retention the maximum water temperatures experienced by each still are seen

in Figure 37.
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Figure 36: Mass of condensate for stills with specific thermal resistances, calculated for a unit
area of the still, selected from various days over the course of the experiments.

Figure 37: Maximum water temperature plotted against the thermal resistance calculated for
a unit area of the still.

To some extent the maximum water temperature is seen to increase with an increasing

thermal resistance, these temperatures could not be corrected in a similar fashion to the

yield data to account for varying intensities of solar irradiation so it should be taken

into consideration that the effect of the thermal resistance was not isolated in Figure 37.

The outliers in experiments two and three are from days that experienced unusually low

amounts of solar irradiation, up to 30 % less than the other days, due to cloud cover.
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Despite the maximum water temperatures being low on those two days the difference

between Still 1 and 2 is still observed.

4.5.2 Internal Reflectors

Aluminium was added to the back of the still in order to redirect energy from the back

wall into the water and reduce conductive losses, Figure 38 shows how the back wall

temperature was changed.

Figure 38: Temperature of the back wall of the still for days where aluminium was added to
the back of Still 1, Still 2 was the reference still.

The temperature of the back wall was decreased by more than 10 ◦C when compared to

the reference still, Still 2. Visual inspection of the stills during operation showed that

condensate formation on the covers differed between Still 1 and Still 2. Still 1, having

the aluminium panel, had condensate forming over the entire cover plate from early on

while Still 2 took longer for condensate to form on the portion of cover nearest to the

back wall. This can be seen in figures A.5 and A.6 in Appendix A. The energy balance

for a selection of days where aluminium was added to the back of Still 1 can be seen in

Figure 39.
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Figure 39: The energy balance for days where aluminium was added to the back of Still 1,
Still 2 was the reference still.

The results from the energy balance do not differ greatly from the baseline tests shown

previously in Figure 28 except for the significantly larger percentage of unaccounted

energy in both of the stills. The cover losses are greater in Still 2 than in Still 1, and

Still 1 has a higher amount of unaccounted energy. The unaccounted energy is probably

due to reflection within the still. Previously, any light that was reflected from the surface

of the water would likely meet one of the dark walls of the still. Given that the largest

wall was now a reflective surface it is possible that this reflected light was reflected once

more, up and out of the still.

Additionally, the reflective backplate would no longer absorb as much of the radiation

emitted from the base as it previously would. Given that the radiation originates at the

base of the still it is likely that much of it would be reflected up and out of the cover.

Looking at the effect which the addition of the aluminium had on the water temper-

ature, in Figure 40. Considering that the approximate heat capacity of plywood is

1210 J · kg−1 ·K−1 whereas the heat capacity of water is 4186 J · kg−1 ·K−1 the large

decrease in wood temperature (around 10 ◦C) for a relatively small increase in water

temperature, 3 ◦C on average, is not unexpected. The lower water temperature in Still 1

in the evening can be explained by the absence of a significant amount of energy which

would otherwise have been stored in the wood and released to the air in the still during

the night.
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Figure 40: Temperature of the water for days where aluminium was added to the back of Still
1, Still 2 was the reference still.

Table 7 summarises the yields of the two stills as well as the change in performance due to

the addition of the aluminium. The column containing the corrected increase in yield is

calculated taking into account the inherent difference in performance determined during

the baseline tests previously discussed in Section 4.4.

Table 7: Water Produced in Experiments with Back Reflectors.

Day

Number

Still 2

Yield

Still 1

Yield

Increase

in Yield

Corrected

Yield Increase

240 0.606 kg 0.798 kg 31 % 12 %

241 0.624 kg 0.793 kg 27 % 8 %

247 0.589 kg 0.646 kg 9 % −6 %

On days 240 and 241 the addition of aluminium proved beneficial to the performance of

the still, but on day 247, after the aluminium had been in the still for several days, the

performance of the still was hindered by the presence of the aluminium. This reflects the

results observed in the energy balance analysis in Figure 39, and the efficiencies shown

in Table 8. On day 247 from the energy balance in Still 1 it can be seen that there was

an unusually large amount of unaccounted energy and reduced cover losses. Recall that

a portion of the cover losses are necessary for condensation to occur, if the cover losses

become too small condensation is less likely to occur. As the aluminium reflected the

majority of incident radiation while the wood absorbed the energy, the aluminium was
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typically at a significantly lower temperature than the wood when there was no incident

irradiation. If the temperature of the aluminium was similar to that of the cover, where

condensation was meant to occur, it is likely that condensation would have occurred on

the aluminium and resulted in a decrease in yield due to that condensate being lost.

Oxidation of the aluminium over time increased the surface area by roughening it and

adding nucleation sites for condensation. The presence of nucleation sites while being at a

lower temperature promoted condensation; this condensate formation on the aluminium

was observed during operation of the still. Additionally, as mentioned previously, the

reflective surface may have reflected a portion of the energy out of the still instead of

directing all the energy to the water resulting in a higher unaccounted energy than usual.

Table 8: Efficiencies for Experiments with Back Reflectors.

Day Number Still 1 Efficiency Still 2 Efficiency

240 12.7 % 9.8 %

241 11.9 % 9.5 %

247 9.8 % 9.0 %

When aluminium panels were added to the sides of Still 1 in addition to the panel on

the back, the still performed significantly worse than when there was only aluminium

on the back. Figure 41 shows the energy balance for these experiments. The energy

balance in Still 1 looks much the same as it did on day 247 in Figure 39, large amounts

of unaccounted energy and unusually low cover losses.

The yield result for these experiments are shown in Table 9, the progressive deterioration

in the performance of Still 1 can be seen clearly in the decrease in improvement when

referenced to Still 2 as well as the rapid decrease in efficiency of Still 1 in Table 10.
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Figure 41: The energy balance for days where aluminium was added to the back and sides of
Still 1, Still 2 was the reference still.

Table 9: Water Produced in Experiments with Back and Side Reflectors.

Day

Number

Still 2

Yield

Still 1

Yield

Yield

Increase

Corrected

Yield Increase

242 0.644 kg 0.743 kg 15 % −1 %

243 0.579 kg 0.622 kg 7 % −8 %

246 0.588 kg 0.582 kg −1 % −15 %

248 0.506 kg 0.487 kg −3 % −17 %

249 0.497 kg 0.465 kg −6 % −20 %

Table 10: Efficiencies for Experiments with Back and Side Reflectors.

Day Number Still 1 Efficiency Still 2 Efficiency

242 11.2 % 9.8 %

243 9.7 % 9.1 %

246 8.6 % 8.8 %

248 8.2 % 8.6 %

249 7.9 % 8.4 %

Figure 42 shows the condensate collected over time for the two stills, for a selection of

days where the side and back aluminium panels were in Still 1. The condensate collection
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begins earlier and appears to occur at a higher rate in Still 1 over the course of the day,

but the rate decreases rapidly as the experiment progresses. Table 11 shows the amount

of water produced in each still during the day and night respectively.

Figure 42: Mass of condensate produced on days where aluminium was added to the back,
and sides, of Still 1, Still 2 was the reference still.

Table 11: Day-time and Night-time yield comparison.

Day

Number

Still 2

Day Yield

Still 1

Day Yield

Still 2

Night Yield

Still 1

Night Yield

242 0.476 kg 0.623 kg 0.168 kg 0.121 kg

243 0.443 kg 0.536 kg 0.134 kg 0.085 kg

246 0.443 kg 0.503 kg 0.145 kg 0.079 kg

248 0.389 kg 0.427 kg 0.116 kg 0.060 kg

249 0.380 kg 0.425 kg 0.116 kg 0.039 kg

From this data it can be seen that Still 1, with the aluminium panels, consistently pro-

duces more water than Still 2 during daylight hours while Still 2 produces more water

over night. There are two possible explanations for this behaviour. The sides of the still

do not reach temperatures as high as the back wall due to the sides being in shadow

for more of the day, due to the lower heat capacity of aluminium when compared to the

wood it is likely that overnight the temperature of the aluminium is low enough that

condensation occurs preferentially on the aluminium side panels instead of on the cover,

explaining the decrease in night-time yield seen in Still 1. Additionally, as the wood
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temperature has been lowered by approximately 10 ◦C on all sides by the addition of the

aluminium there is less energy stored in the system to be released back into the water

overnight to aid evaporation.

While literature suggests that the addition of internal reflectors is good for the perfor-

mance of the still the results do not reflect this. The increased driving force for evapo-

ration was seen, and is shown in Figure 43, but due to the absence of sufficient area for

condensation to occur the net effect was negative. The reflector surface should preferably

be resistant to corrosion and oxidation in order to eliminate the formation of nucleation

sites and discourage condensate formation on the reflector surfaces. The conductivity and

angle of the reflector is also likely to affect the performance and should be investigated

further.

Figure 43: Difference between water temperature and cover temperature for days where alu-
minium was added to the back of Still 1, Still 2 was the reference still.

4.6 Increasing Evaporation Rate

4.6.1 PVC Tarpaulin

In the first set of tests with the PVC tarpaulin added to Still 1 a definite improvement

in performance was seen when compared to the reference still, Still 2. After running the

experiment with the carbon black nanofluid the PVC was tested again and an additional

improvement immediately seen. Consider the yields given in Table 12. Days 261 through

to 264 were the initial tests with PVC, the percentage improvement was 38 % on average
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with small variance. From day 274 onwards, the percentage improvement in yield in Still

1 when compared to Still 2 was 98 % on average. This was excluding the outliers on days

285 and 296, these days experienced slightly lower amounts of incident irradiation as well

as rain. Rain, in particular, makes results difficult to compare.

Table 12: Water Produced in Experiments with PVC.

Day

Number

Still 2

Yield

Still 1

Yield

Yield

Increase

Corrected

Yield Increase

261 0.549 kg 0.895 kg 63 % 39 %

262 0.497 kg 0.821 kg 65 % 41 %

263 0.413 kg 0.647 kg 56 % 34 %

264 0.223 kg 0.362 kg 62 % 38 %

274 0.462 kg 1.07 kg 132 % 98 %

275 0.469 kg 1.13 kg 140 % 106 %

285 0.320 kg 0.91 kg 184 % 143 %

292 0.425 kg 1.06 kg 150 % 113 %

295 0.457 kg 0.977 kg 113 % 82 %

296 0.372 kg 0.773 kg 107 % 77 %

297 0.486 kg 1.08 kg 122 % 90 %

298 0.452 kg 1.05 kg 133 % 98 %

299 0.461 kg 1.09 kg 137 % 102 %

In Figure 44 the energy balance analysis for a day before the change in improvement,

and two days after the change, is shown. The first thing to note is the increased base

radiative losses from Still 1 due to increased absorbance of irradiation and subsequently

higher base temperatures. The reduced cover losses in Still 1 are also noteworthy; if the

absorbance of the base of the still has been increased the reflection would be decreased

and likely result in a lower cover temperature causing the reduced losses. The reason

for the change in the percentage of unaccounted energy between the initial experiments

and later experiments seen in both stills is unclear. A small increase in the energy of the

condensate leaving the system can be seen in the energy balance for Still 1 indicating

substantially more water is being produced in this still.

77



Figure 44: The energy balance analysis for a selection of days where PVC was added to Still
1, Still 2 was the reference still.

Figure 45: Water temperatures for a selection of days where PVC was added to Still 1, Still
2 was the reference still.

Figure 45 shows the higher water temperatures seen by Still 1. In the first four days of the

PVC experiments the water temperature was on average 2 ◦C hotter in Still 1 than in Still

2, increasing to between a 3 ◦C and 4 ◦C difference in the later experiments. This suggests

that the absorbance of the PVC was modified between the sets of experiments. This is

not impossible as something present in the nanofluid, such as the surfactant, may have

modified the surface. An alternative is that traces of nanoparticles may have remained
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on the surfaces despite the extensive cleaning of the still. The surface was not tested for

modification at this point in time as removing the PVC to sample would result in the

Still being un-usable, the stills are being used for additional tests and cannot currently

be disassembled.

The cover temperatures for the two stills can be seen in Figure 46. The temperature

in Still 1 is significantly lower, confirming the reason for the reduced cover losses seen

in Figure 44. The cover losses were reduced but condensation rate increased, as seen

in Figure 47. Recall in Section 4.2 it was shown that cover losses are necessary for

condensation to occur; the decrease in cover losses and increase in condensation observed

in the PVC experiments indicates that an optimum should exist between cover losses and

driving force for condensation.

Figure 46: Cover temperatures for a selection of days where PVC was added to Still 1, Still 2
was the reference still.

In Figure 47 the increased rate of condensation in Still 1 is seen. The difference between

day 263 and the other two days is immediately visible in the decreased yield and the

reduced rate of condensation. The onset time for condensate collection is also between

10 and 20 minutes earlier in Still 1 than in Still 2.
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Figure 47: Mass of condensate for a selection of days where PVC was added to Still 1, Still 2
was the reference still.

Looking at Table 13, the efficiency of Still 1 is more than double that of Still 2 in the

later experiments. The PVC is definitely a better absorber surface than the Durapond

sealant.

Table 13: Efficiencies for Experiments with PVC.

Day Number Still 1 Efficiency Still 2 Efficiency

261 21.1 % 12.9 %

262 19.5 % 11.8 %

263 16.6 % 10.5 %

264 14.9 % 9.2 %

274 23.1 % 10.0 %

275 24.1 % 10.0 %

285 21.7 % 7.5 %

292 23.6 % 9.2 %

295 20.9 % 9.7 %

296 20.0 % 9.6 %

297 23.5 % 10.6 %

298 23.3 % 10.0 %

299 26.2 % 11.0 %

80



4.6.2 Carbon Black Nanofluid

The addition of the carbon black nanofluid to Still 1 was intended to increase the ab-

sorbance as described in Section 2.3.11. The energy balance for these experiments is

shown in Figure 48.

Figure 48: The energy balance analysis for the experiments where a carbon black nanofluid
was added to Still 1, Still 2 was the reference still.

The energy of condensate is larger in Still 1 than in Still 2, indicating an improvement

in performance of the still. The cover losses are lower in Still 1 than in Still 2, as with

the PVC. Literature states (Section 2.3.11) that a problem with the use of nanofluids is

that the cover heats up significantly in the presence of the nanofluid so it is unexpected

for the cover losses to be so much lower. Reduced cover losses could be caused by the

nanofluid modifying the surface tension of the water in a way that reduces the amount

of evaporation for a given increase in water temperature. Figure 49 shows the cover

temperatures for the experiments in question.

While the difference in maximum cover temperatures between the two stills remains

between 2 ◦C and 4 ◦C, the cover temperature in Still 1 was significantly cooler than in

Still 2 in the later part of the day, from around 17h00 onwards. This is likely the reason

for the reduced cover losses. The lower cover temperature over night could be due to an

increased heat capacity of the fluid caused by the addition of the carbon black particles,

if the fluid retains more heat there is less energy being released back to the cover.
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Figure 49: Cover temperatures for both stills for the experiments where a carbon black
nanofluid was added to Still 1, Still 2 was the reference still.

Figure 50: Water temperatures for both stills for the experiments where a carbon black
nanofluid was added to Still 1, Still 2 was the reference still.

Figure 50, showing the water temperatures, does not support the suggestion of heat

retention in the water as the water temperature drops to roughly the same temperature

in both stills. An alternative explanation is the nanoparticles causing a diffused emittance

of light reducing the amount directly incident on the cover. Figure 50 shows that Still

1 experienced maximum water temperatures roughly 3 ◦C higher than Still 2 and that

those maximums were reached between 30 and 40 minutes earlier than in Still 2. This
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suggests that the nanofluid did improve the absorbance of solar irradiation. The earlier

maximums in water temperature suggest that an earlier onset of condensation would be

observed in Still 1. This can be seen in Figure 51 and the values of the onset time for

condensate collection are given in Table 14.

Figure 51: Mass of condensate produced in both stills for the experiments where a carbon
black nanofluid was added to Still 1, Still 2 was the reference still.

Table 14: Onset Time comparison for experiments with carbon black nanofluid.

Day Number Still 1 Still 2

268 11h10 12h10

269 11h30 12h30

270 11h20 12h30

From Figure 51 it appears that the rate of condensation is higher in Still 1 than in Still 2.

The calculated condensation rate and modelled evaporation rate, obtained as described

in Section 3.3.3 are plotted for each of the stills in Figure 52. It is immediately evident

that the rate of evaporation and condensation were higher in Still 1 than in Still 2.
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Figure 52: Calculated condensation rate and modelled evaporation rate in both stills for the
experiments where a carbon black nanofluid was added to Still 1, Still 2 was the
reference still.

Table 15 shows the final yields and the improvement in yield in Still 1 when compared

to Still 2. The results show a progressive improvement in yield. Looking at the mass of

condensate in Figure 51 it appears that the yield in Still 2 on day 269 was larger than

usual and the increase in yield calculated for that day may be lower than expected due

to this.

Table 15: Water produced by each still in experiments using the carbon black nanofluid, and
the increase in yield.

Day

Number

Still 2

Yield

Still 1

Yield

Yield

Increase

Corrected

Yield Increase

268 0.536 kg 0.920 kg 71 % 46 %

269 0.481 kg 0.908 kg 88 % 61 %

270 0.450 kg 0.909 kg 101 % 72 %

Considering the efficiencies in Table 16 it can be seen that the efficiency of Still 1 in-

creased over the course of the experiments. This improvement in performance over time

is unexpected as the nanofluid was observed to degrade rapidly over the three day pe-

riod. The particles began settling out of solution from the first day. A control sample

of the nanofluid was kept at a constant temperature in the laboratory to compare the

behaviour; the lab sample remained stable. When discussing the stability of a nanofluid,
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agglomeration is one of the main factors to consider. When the particles begin forming

agglomerates the surfactant is no longer managing to maintain an even suspension of par-

ticles in the nanofluid. Figure 53 shows the particle size distribution within the nanofluid

at the start and at the end of the experiments.

Table 16: Efficiencies for experiments with carbon black nanofluid.

Day Number Still 1 Efficiency Still 2 Efficiency

268 21.2 % 12.3 %

269 21.5 % 11.3 %

270 22.1 % 11.2 %

Figure 53: Particle size analysis results for the carbon nanofluid, before addition to the solar
stills and after three days of operation.

The nanofluid, post synthesis, had an average particle size of 0.132µm diameter, following

exposure to sunlight and multiple heating-cooling cycles in the operation of the solar

still, the average particle size increased to a diameter of 3.44µm. This shows severe

agglomerate formation within the nanofluid, indicative of a deterioration in stability, and

can explain the settling observed in the system.

A sample of the nanofluid was taken each day and analysed in the UV-VIS spectropho-

tometer and the results shown in Figure 54. The results were compared to the control

sample from the laboratory. It can be seen that the absorbance of the fluid decreased dras-

tically as the particles settled out over the three days. However, the increase in efficiency
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indicates that the nanofluid is as effective when the particles are simply agglomerated on

the base of the still forming a highly absorptive layer.

Figure 54: UV-VIS analysis results for the carbon nanofluid, day 0 refers to before the fluid
was added to the still, days 1, 2, and 3, are after each of the days that the fluid
was in the still.

The reason for the erratic nature of the absorbance spectrum of the control experiments

was the high concentration of particles, some of which scattered the light or completely

stopped light from passing through the cell.

4.6.3 Charcoal

Activated carbon is known for its large surface area, when used in the solar still this

area is used to absorb incident irradiation. The additional area for absorbance of solar

irradiation should increase the rate at which the energy is absorbed. In Figure 55 the

energy balance for a selection of days is shown.

86



Figure 55: Energy balance analysis for a selection of days where activated charcoal was added
to Still 1, Still 2 was the reference still.

The base radiative losses in Still 1 are likely underestimated as the charcoal will be at a

slightly higher, but unknown, temperature. The effect of the charcoal on the absorbance

is seen in the increase in radiative losses indicating higher internal temperatures, as well

as the increased energy of condensate. The reduced cover losses can be explained by

reduced reflection and back radiation from the base of the still leaving via the cover; the

irregular shape of the charcoal results in much of the irradiation being reabsorbed by the

charcoal as it is reflected and radiated at erratic angles.

To better comment on the cover losses, Figure 56 shows the cover temperatures in the

two stills. The difference in maximum cover temperatures is between 3 ◦C and 5 ◦C which

is larger than before, but the cover does not remain as cool overnight so the overall effect

on the losses is not as prominent as when the carbon black nanofluid was added to the

still.
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Figure 56: Cover temperatures for a selection of days where activated charcoal was added to
Still 1, Still 2 was the reference still.

The water temperatures are seen in Figure 57, with Still 1 reaching temperatures around

2 ◦C higher than Still 2. The rate of increase of water temperature was not seen to vary

significantly between the stills.

Figure 57: Water temperatures for a selection of days where activated charcoal was added to
Still 1, Still 2 was the reference still.

Figure 58 shows that the relative humidity in Still 1 is lower than in Still 2. This would

suggest evaporation as a limiting factor in the performance of the still. However, the
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mass of condensate produced in Still 1 was significantly more than in Still 2, this is seen

in Figure 59. The data thus suggests that the small temperature differences in Still 1 had

a huge effect on the condensation ability.

Figure 58: Relative humidity for a selection of days where activated charcoal was added to
Still 1, Still 2 was the reference still.

Figure 59: Mass of condensate produced for a selection of days where activated charcoal was
added to Still 1, Still 2 was the reference still.

Table 17 shows the yields of the two stills and Table 18 the efficiencies. The addition

of charcoal to Still 1 resulted in efficiencies more than double that in Still 2 making it a

promising addition.
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Table 17: Water produced by each still in experiments using the activated charcoal, and the
increase in yield.

Day

Number

Still 2

Yield

Still 1

Yield

Yield

Increase

Corrected

Yield Increase

276 0.204 kg 0.473 kg 130 % 98 %

277 0.295 kg 0.640 kg 116 % 85 %

278 0.437 kg 1.005 kg 129 % 96 %

281 0.416 kg 0.996 kg 139 % 104 %

282 0.396 kg 0.971 kg 144 % 109 %

Table 18: Efficiencies for experiments with charcoal.

Day Number Still 1 Efficiency Still 2 Efficiency

276 19.8 % 8.2 %

277 18.6 % 8.5 %

278 21.6 % 9.4 %

281 21.9 % 9.1 %

282 21.8 % 8.2 %

4.6.4 Carbon Felt

When the carbon felt was added to the still it floated just beneath the surface of the

water and the entirety of the carbon felt was wetted by a thin layer of water.

Figure 60 shows the energy balance analysis for a selection of days during the experiments.

As with the previous sets of experiments the cover losses were lower in comparison to

Still 2, the energy of condensate was higher, and the unaccounted energy was also higher.

The larger unaccounted energy in Still 1 is likely due to the radiative base losses being

underestimated; the surface radiating towards the cover is the top of the felt. The

temperature of the top of the felt is unknown as the water film was too thin for it to

be measured accurately, the radiative losses were calculated using the base temperature

which would have been lower than the top surface of the felt.
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Figure 60: Energy balance analysis for a selection of days where carbon felt was added to Still
1, Still 2 was the reference still.

Figure 61: Temperature of the water for days where carbon felt was added to Still 1, Still 2
was the reference still.

In Figure 61 it can be seen that the bulk water temperature was lower for the first half of

the day in Still 1, the still with the carbon felt, this is due to the solar irradiation being

absorbed by the carbon felt near the surface of the water and heating up the thin film of

water above the felt quicker, and to higher temperatures, than the bulk. The higher water

temperatures in Still 1 overnight can be explained by the carbon felt retaining more energy

in the water due to the additional thermal mass. This lower bulk temperature during
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the portion of the day where most evaporation and condensation occurs is beneficial; the

water heats up from the surface reaching higher temperatures due to the small volume of

water directly exposed to irradiation, unfortunately, as mentioned previously, due to the

thinness of the film an accurate measurement of the temperature of the film could not

be obtained. This surface heating effect allows for significantly higher evaporation rates,

and subsequently condensation rates, as can be seen in Figure 62.

The onset time for condensate collection is consistently 30 to 50 minutes earlier in Still 1

than in Still 2, and the rate of condensation in Still 1 is significantly higher, and remains

so for a longer period of time likely due to the higher water temperatures overnight.

Figure 62: Load cell curves for a selection of days where carbon felt was added to Still 1, Still
2 was the reference still.

Looking at the relative humidities within the stills in Figure 63, Still 2 very quickly

reached a relative humidity of 100 % indicating saturation of the air within the still. Still

1, however, remained at a comparably low relative humidity for the entire portion of

the day where most of the condensation occurs. This indicates that the condensation in

Still 1 was significantly better than in Still 2, if evaporation was responsible for the low

relative humidity the amount of condensate produced would not be higher in Still 1 than

in Still 2. This is a very similar result to those observed with the addition of charcoal.
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Figure 63: Relative humidities for a selection of days where carbon felt was added to Still 1,
Still 2 was the reference still.

Figure 64: Cover temperatures for a selection of days where carbon felt was added to Still 1,
Still 2 was the reference still.

This difference in condensation rate is unexpected as the modifications were focussed on

increasing the evaporation rate. The cover temperatures in Figure 64 suggest that the

increased condensation rate was due to the lower cover temperature in Still 1; a higher

driving force for condensation to occur exists when the temperature of the condensation

surface is lower. The air temperatures in the stills show that Still 1 had a higher air

temperature, indicating an improved rate of evaporation in Still 1 compared to Still 2.
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Figure 65: Air temperatures inside the stills for a selection of days where carbon felt was
added to Still 1, Still 2 was the reference still.

The lower cover temperature in Still 1 can be explained by the difference in absorber

surface between the stills. The absorber surface in Still 1 is the carbon felt while the

absorber surface in Still 2 is the Durapond coated base of the still. The carbon felt absorbs

significantly more of the incident irradiation and reflects less of the energy, the surface

is matt in comparison the the Durapond. Reducing the reflection from the absorber can

result in a decrease in cover temperature. Another contributing factor is the texture of

the absorber surface. Still 2 has a relatively smooth absorber surface, this means that the

reflection of incident irradiation, and radiation from the absorber are all directed to the

walls and cover of the still. In Still 1, the rough fibrous nature of the carbon felt causes a

large portion of the reflected irradiation and energy radiated back from the absorber to

be reabsorbed by the carbon felt instead of the cover.

Table 19 shows the yields in each of the two stills as well as the increase in yield due to

the addition of the carbon felt.
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Table 19: Water produced by each still in experiments using the carbon felt, and the increase
in yield.

Day

Number

Still 2

Yield

Still 1

Yield

Yield

Increase

Corrected

Yield Increase

288 0.368 kg 0.921 kg 150 % 114 %

289 0.411 kg 1.042 kg 153 % 116 %

290 0.354 kg 0.844 kg 138 % 104 %

291 0.336 kg 0.808 kg 139 % 105 %

It is clear that the presence of the carbon felt greatly improved the performance of the

still, while it was intended to increase the evaporation rate the apparent increase in con-

densation rate was of equal benefit. Attempts should be made to obtain the temperature

of the water film to better comment on the increase in evaporation rate in isolation. The

efficiencies observed in Table 20 are comparable and, possibly slightly higher on average,

to those in the charcoal experiments.

Table 20: Efficiencies for experiments with carbon felt.

Day Number Still 1 Efficiency Still 2 Efficiency

288 21.8 % 8.6 %

289 22.2 % 8.7 %

290 21.1 % 8.6 %

291 20.4 % 8.4 %

4.7 Increasing Condensation Rate

While most of the experiments were focussed on reducing the energy losses from the still

and increasing the evaporation rate some tests were done on increasing the rate of con-

densation or simply trying to gain a better understanding of the process of condensation

within the system.

4.7.1 Grooved Cover

As described in Section 3.2.4 grooves were added to a portion of the cover plate of Still

3. These grooves increased the internal area of the cover plate by 4 %. An additional
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effect of the addition of grooves to the cover is the increased scattering of light when it

enters the still, possibly resulting in the water heating up more uniformly, and also more

reflection back into the still of light reflected from the inside of the cover. The geometry

is modified such that the light is more likely to remain in the still.

The effects of this are seen in Figure 66 where the maximum water temperatures in Still

3 are as much as 4 ◦C higher than in Still 2.

Figure 66: Water temperatures inside the stills for a selection of days where the grooved cover
was on Still 3, Still 2 was the reference still.

Figure 67: Mass of water produced for a selection of days where the grooved cover was on
Still 3, Still 2 was the reference still.
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Figure 67 shows the mass of condensate produced in the two stills. While the onset time

for condensate collection remains roughly constant at around 12h30, the rate of water

production is higher in Still 3 than in Still 2, as it was in the baseline tests in Section 4.4.

The summary of the yields in Table 21 indicates an improvement in performance when

compared to the baseline experiments.

Table 21: Water produced by each still in experiments with a grooved cover, and the increase
in yield.

Day

Number

Still 2

Yield

Still 3

Yield

Yield

Increase

Corrected

Yield Increase

246 0.588 kg 0.924 kg 57 % 20 %

247 0.589 kg 0.830 kg 41 % 7 %

248 0.506 kg 0.708 kg 40 % 7 %

249 0.497 kg 0.676 kg 36 % 4 %

250 0.049 kg 0.103 kg 106 % 60 %

253 0.518 kg 0.863 kg 66 % 27 %

254 0.540 kg 0.842 kg 56 % 19 %

255 0.559 kg 0.881 kg 57 % 20 %

Taking day 250 as an outlier, the improvement in yield varies from 4 % to 27 %. Day

250 was a day with particularly low solar irradiation, only 31 % of the normal irradiation

intensity on a sunny day. On these days with low irradiation the still’s behaviour was

observed to be relatively erratic; insufficient data is currently available at these low

irradiation intensities to correctly comment on the reasons for the performance of the

stills on these days. The reason for the poor performance of Still 3 on days 247, 248, and

249 is not clear from the available data; water temperatures and cover temperatures were

comparable to the other days, no obvious differences were observed.

One additional thing worth noting, drops that form in the grooves have a chance of being

larger than drops that form on the flat surface and also have a higher chance of making it

to the bottom of the cover without dropping back into the still. This is due to the larger

contact area which a drop will have with the PMMA cover when in the groove. Due to

PMMA being slightly hydrophilic the adhesion is significantly larger when the contact

area is increased. Given the observation made in Section 4.1 regarding drops falling back

into the still this is likely a contributing factor to the improvement offered by the grooves.
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4.7.2 Heat Sink

Figure 68 shows the condensate collection in Still 2 and 3 for days where the heat sink

was added to a portion of the cover on Still 3. While this looks remarkably similar to the

previous set of results it can be seen that the onset of condensate collection was earlier in

Still 3 than in Still 2, with the difference being 30 minutes on average. This is explained

best by Figure 69. It was observed in Still 3 that the drops on the cover plate grew

quickest in the area under the heat sink and began to move down the cover much earlier

than other droplets.

Figure 68: Mass of water produced for a selection of days where the heat sink was on Still 3,
Still 2 was the reference still.

98



Figure 69: A top down view of the cover of Still 3, with the heat sink and grooves, showing
the preferential movement of droplets in the area under the heat sink.

This preferential drop formation in the area under the heat sink is due to the additional

energy which the heat sink is able to dissipate from the cover. This suggests that if more

energy is allowed to leave the cover plate accelerated drop formation can be achieved and

the performance of the still potentially improved.

Table 22 shows the final yields in each of the two stills as well as the increase in per-

formance between Still 2 and 3. It should be recalled that Still 3 experienced a leak at

some point during the experiment (See Section 4.1) resulting in the insulation material

becoming wet with water from inside the still. This could explain the erratic behaviour

observed in the results from Still 3.
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Table 22: Water produced by each still in experiments with the added heat sink, and the
increase in yield.

Day

Number

Still 2

Yield

Still 3

Yield

Yield

Increase

Corrected

Yield Increase

261 0.549 kg 0.742 kg 35 % 3 %

262 0.497 kg 0.636 kg 28 % −2 %

263 0.413 kg 0.544 kg 31 % 0.5 %

264 0.223 kg 0.347 kg 55 % 18 %

267 0.427 kg 0.641 kg 50 % 14 %

268 0.536 kg 0.723 kg 35 % 3 %

269 0.481 kg 0.663 kg 37 % 5 %

276 0.204 kg 0.364 kg 77 % 36 %

278 0.437 kg 0.781 kg 78 % 36 %

4.7.3 Tapping on Cover

As described in Section 3.2.4, to check if drop movement was hindering the rate at

which condensation occurred the cover was tapped on at regular intervals to force drop

movement down the cover. It was observed that the vibrations resulted in a large portion

of water falling back into the still instead of running down the cover, but despite this the

following was seen.

Figure 70: Mass of water produced for two of the days where the cover of Still 3 was tapped,
Still 2 was the reference still.
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In Figure 70 spikes in the rate of condensation can be seen in the form of steps in the

condensate mass curve. These represent the points at which the cover was tapped and

all the drops that had accumulated on the cover were collected. The condensate began

forming immediately after the cover was cleared of drops, and no dips in the humidity

of Still 3 can be seen in Figure 71 indicating that the rate of evaporation was more than

sufficient to keep up with the increased rate of condensation.

Figure 71: Relative humidity for two of the days where the cover of Still 3 was tapped, Still
2 was the reference still.

Table 23 shows the final masses and improvement in yield between the two stills. It

should be noted that the yield improvement data for day 270 is not comparable to the

other days as the system experienced a power failure and stopped logging before the end

of the experiment.

Table 23: Water produced by each still in experiments where the cover of Still 3 was tapped,
and the increase in yield.

Day

Number

Still 2

Yield

Still 3

Yield

Yield

Increase

Corrected

Yield Increase

270 0.450 kg 0.658 kg 46 % 11 %

274 0.462 kg 0.803 kg 73 % 32 %

275 0.469 kg 0.821 kg 75 % 33 %

It appears that should accelerated droplet movement be achieved more water can be

produced due to the area being available for condensation to occur on. Drop-wise con-
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densation is the preferred mode of condensation and is achieved when the cover has

minimal stationary drops already on the cover.

4.7.4 External Tubes

The addition of the external tubes produced no noteworthy results. They did not modify

the temperatures in the still or greatly improve the yield. On average only between

0.01 kg and 0.02 kg of water were collected in the tubes. This shows that the natural

convection in the still was insufficient to allow for the movement of wet air into the cooler

tubes where condensation could occur. If circulation was forced it is likely that the tubes

would have a larger effect. Another possibility would be to increase the diameter of the

tubes, at the cost of additional losses, to allow for easy, unrestricted, movement of air.

It should be noted that the scope of this investigation excluded forced circulation of air

within the still.

4.8 Revised Design

As discussed in Section 3, Still 4 was built at the end of the project making use of

knowledge gained during the project. In Figure 72 the energy balance analysis is shown.

The conductive losses in Still 4 are roughly a third of those in Still 2, Still 4 also has

higher radiative losses due to higher temperatures inside the still. The cover losses of the

two stills are relatively similar with neither being consistently higher or lower than the

other. Still 4 also has a higher energy of condensate indicating better performance.

Figure 72: Energy balance analysis for a selection of days comparing Still 2 and Still 4.
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Figure 73 shows the water temperatures, Still 4 experiences significantly higher water

temperatures due to the absence of the plywood which absorbs large amounts of energy.

The maximum temperature of water in Still 4 is on average 11 ◦C higher than in Still 2. It

also reaches this maximum temperature earlier, approximately 45 minutes earlier, which

results in an earlier onset in condensate collection as can be seen in Figure 74. The lower

water temperatures in Still 4 overnight are partially due to the absence of the plywood

which, in Still 2, releases the energy it stored during the day causing the water to cool

down more slowly.

Figure 73: Water temperatures for a selection of days comparing Still 2 and Still 4.

Figure 74: Mass of condensate produced for a selection of days comparing Still 2 and Still 4.
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In Figure 74 the high rate of condensation in Still 4 when compared to Still 2 can be

seen. This high rate of condensation is a contributing factor to the lower overnight water

temperatures observed in Still 4. The onset of condensate collection is also on average

30 minutes earlier in Still 4. Table 24 shows the yields, improvement in yields, and

efficiencies of the two stills. Excluding the outliers on days 305 and 306 which can be

attributed to rain, Still 4 is significantly better than Still 2 and operates with the highest

efficiency of any of the modifications made throughout the project.

Table 24: Efficiencies and Water Produced in Still 2 and Still 4 During Comparison Experi-
ments.

Day

Number

Still 2

Yield

Still 4

Yield

Increase

in Yield

Still 2

Efficiency

Still 4

Efficiency

297 0.486 kg 1.29 kg 164 % 10.6 % 27.1 %

298 0.452 kg 1.25 kg 176 % 10.0 % 27.2 %

299 0.461 kg 1.24 kg 169 % 11.0 % 28.4 %

302 0.410 kg 1.20 kg 193 % 9.3 % 26.4 %

303 0.455 kg 1.18 kg 158 % 7.6 % 26.2 %

304 0.256 kg 0.726 kg 183 % 7.7 % 24.6 %

305 0.066 kg 0.232 kg 250 % 4.9 % 16.5 %

306 0.314 kg 1.05 kg 232 % 7.5 % 24.6 %
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5 Conclusions and Recommendations

Four simple basin solar stills were built and analysed. The stills operated completely

off grid and were easy to maintain. While the capital investment of the stills was small

enough to obtain the cost target, the yields of the stills were not high enough. The

energy balance analysis could be used to identify points of improvement in the system.

Areas where improvements could be made include the radiative losses from the base, the

conductive losses from the body of the still, and the cover losses.

The yield of the still was observed to have a strong linear relation to the amount of incident

irradiation received by the still and a weak linear relation to the ambient temperature

with the yield improving as the ambient temperature increases. Looking at the loss terms

it was considered likely that the improvement in performance was due to a decrease in

losses when ambient temperatures were higher. However, the efficiency was not strongly

dependent on the temperature or the incident irradiation.

The effect of insulation was found to be significant as the yield was higher in stills with

higher thermal resistance. However there were diminishing returns on investment ob-

served as the thermal resistance increased past 0.74 K ·W−1. Increasing the thermal

resistance by 0.25 K ·W−1, 0.33 K ·W−1, and 0.58 K ·W−1 resulted in increases in yield

of 9 %, 30 %, and 27 % on average.

Adding aluminium as an internal reflector significantly decreased the temperatures of the

sides of the still but had numerous negative effects. These were increasing the amount of

radiation which was reflected out of the still as well as providing an alternative surface

for condensation to occur on. The net effect of the addition of aluminium was negative

despite the reduction in side temperatures of 10 ◦C and increase in water temperature

of 3 ◦C which was achieved. The performance worsened over time as oxidation caused

an increase in nucleation sites on the aluminium. Should reflectors not susceptible to

oxidation be used, and angled better, the performance may be improved, however it is

clear that many factors are involved in the addition of internal reflectors.

Based on the experiments which focused on increasing the evaporation rate the following

observation was made: increasing the absorbance of solar irradiation can increase the

yield not only due to the higher water temperature but due to the reduced reflection of

radiation from the base which results in lower cover temperatures. The addition of PVC

resulted in an increase in yield of 98 % on average when compared to the reference still

and had efficiencies in the range of 20 % to 26 %. This indicated that a significantly larger

portion of the cover losses were usefully utilised.
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The carbon black nanofluid degraded with the heating cooling cycles but the efficiency of

the still remained roughly constant at 21 % despite the settling of particles. This suggests

that a layer of highly absorbent material at the base of the still would be as, if not more,

effective than the nanofluid given the cost and complications involved in the synthesis of

the nanofluid. The increase in performance when compared to the reference still varied

between 46 % and 72 %. The main advantage of the nanofluid was the significantly cooler

cover temperatures experienced in the latter half of the day.

The addition of activated charcoal had similar results as the cover temperature was

decreased, water temperature was increased, and yield improved by 98 % compared to

the reference still. The efficiencies observed in the still with charcoal were on average

20 %, slightly less efficient than with the nanofluid despite the larger improvement in

yield. Adding carbon felt to the still caused the bulk water temperatures to be lower

due to heating a thin film of water on the surface of the felt at a higher rate. The cover

temperatures were lower and the yield was improved by up to 110 % with efficiencies of

21 %.

The addition of grooves to the cover did improve the performance slightly. It is unclear if

this was due to the increased area, larger drops which formed in the grooves, or increased

scattering of light inside the still and allowing less radiation to leave the still. The

addition of the heat sink had no obvious effect on the yield of the still but did cause

drops to form more quickly in the area underneath the heat sink which resulted in earlier

drop movement in this area. The erratic behaviour of these two tests could be due to

the leak which occurred in Still 3. Manual tapping on the cover improved the yield

significantly, suggesting that should the area be cleared of droplets more quickly the

performance of the still could be improved. The addition of external condensation area

had no conclusive results at this stage.

The revised design of the basin still, using information gained during the project, per-

formed significantly better than the reference still. The water was up to 11 ◦C hotter in

Still 4 and heated up at a significantly higher rate. The improvement in yield was roughly

180 % when compared to the reference still and the efficiency was on average 26 %, the

highest efficiency achieved yet.

It is recommended that future stills be built of materials with low heat capacity in order

to increase the rate at which the water heats up. The stills should also make use of an

absorber material with a low reflectivity as well as high absorbance in order to reduce

the cover temperature.

The use of a textured, or grooved, cover should be further investigated as the shape and

orientation of the grooves may be able to significantly reduce the amount of condensate
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that drips back into the still. It would be beneficial to future analysis if a method could

be found to determine the amount of condensate that is lost in this manner.

Further experiments should be performed regarding the addition of external condenser

area, possibly implementing forced convection, to determine if this is a viable addition to

a basin solar still.
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A Additional Figures and Images

Figure A.1: A photograph from the front of two of the basin stills during operation, clearly
showing the stills mounted on their frames.

Figure A.2: A photograph of two of the basin stills during operation; the pyranometer is
visible on the foremost still.
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Figure A.3: The linear relationship between the inside cover temperature and the air temper-
ature within the still for a selection of days, the equation Tcover = 0.75Tair + 0.2
was found to accurately represent this relationship.

Figure A.4: The inside surface of the still after a couple months of operation, showing the
deterioration of the Durapond sealant.
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Figure A.5: A top down view of the cover plate of Still 2 on day 240, photo taken at 10h20.

Figure A.6: A top down view of the cover plate of Still 1 on day 240, where aluminium had
been added to the back wall of the still, photo taken at 10h21.
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