
RELATIVE WEAK MIXING OF W*-DYNAMICAL
SYSTEMS VIA JOININGS

ROCCO DUVENHAGE AND MALCOLM KING

Abstract. A characterization of relative weak mixing in W*-
dynamical systems in terms of a relatively independent joining is
proven.

1. Introduction

This paper studies relative weak mixing for W*-dynamical systems
in terms of joinings. Here a W*-dynamical system refers to a von Neu-
mann algebra with a faithful normal tracial state which is invariant
under the dynamics, given by iteration of a fixed ∗-automorphism of
the von Neumann algebra (i.e. we focus exclusively on actions of the
group Z). The main result is a characterization of relative weak mix-
ing in terms of relative ergodicity of the relative product of the system
with its mirror image on the commutant (in the cyclic representation).
The relative product system is defined using the relatively independent
joining obtained from the conditional expectation onto the von Neu-
mann subalgebra relative to which we are working. Generalizing the
classical case, the subalgebra in question is always taken to be globally
invariant under the dynamics of the W*-dynamical system.

The proof involves a careful analysis of the interplay between the
von Neumann algebra, its commutant, and the conditional expectation.
Some results of independent interest obtained on the way to the main
result, do not require the state to be tracial. In this case, we need to
restrict ourselves to subalgebras which are globally invariant under the
modular group, to ensure the existence of the conditional expectation.

In classical ergodic theory it is well known that a dynamical system
is weakly mixing if and only if its product with itself is ergodic. Our
main result is essentially noncommutative and relative version of this.

A noncommutative theory of joinings has been developed in [7], [8]
and [9], generalizing some aspects of the classical theory (see [17] for a
thorough treatment, and [13] as well as [23] for the origins). It included
a study of weak mixing, relative ergodicity and compact subsystems.
Subsequent work was done in [4], which among other things developed
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various characterizations of joinings and also obtained a more complete
theory for weak mixing, building on an approach to noncommutative
joinings outlined in [21, Section 5]. Also see [3] for connected results.
Earlier work related to noncommutative joinings appeared in [24], con-
nected to entropy, and [11], regarding ergodic theorems.

An investigation of relative weak mixing is a natural next step in
the development of the theory of noncommutative joinings. Relative
weak mixing has already been studied and used very effectively in the
noncommutative context in [22] and [2], but not from a joining point
of view.

In particular, the authors of [2] proved quite a remarkable structure
theorem, namely that an asymptotically abelian W*-dynamical system
is weakly mixing relative to the center of the von Neumann algebra.
This allowed them to apply classical ergodic results to the system on the
center, and then extend these results to the noncommutative system.
They defined relative weak mixing in terms of a certain ergodic limit,
which is the approach taken in this paper as well. However, we adapt
their definition to a form which is more convenient in the proof of our
main result. The two definitions are nevertheless equivalent when the
invariant state is tracial. To prove this, we make use of the semi-finite
trace obtained in the basic construction from the von Neumann algebra
and the subalgebra relative to which we are working.

Since systems which are not asymptotically abelian do occur, we do
not assume asymptotic abelianness in this paper.

Furthermore, systems can be weakly mixing relative to nontrivial
subalgebras other than the center. This includes cases where the von
Neumann algebra of the system is a factor (i.e. when the center is
trivial). Therefore we work relative to more general von Neumann
subalgebras.

In the classical case, relative weak mixing is often defined in terms
of a relatively independent joining, or relative product, illustrating the
importance of this characterization in the classical case. However, it
is in many cases just stated for ergodic systems, since any system can
be decomposed into ergodic parts. See for example [14, Theorem 7.5],
[30, Definition 7.9] and [17, Definition 9.22]. But we note that in [16]
and [15, Definition 6.2], on the other hand, ergodicity is not assumed.

In the noncommutative case the assumption of ergodicity becomes
problematic, as typically some form of asymptotic abelianness is re-
quired to do an ergodic decomposition. See for example [5, Subsection
4.3.1] for an exposition. Therefore we study the joining characteriza-
tion of relative weak mixing without the assumption of ergodicity. In
particular the proof of our main result has to deal with the difficulty
of the system not being ergodic.

A number of other noncommutative relative ergodic properties have
already been studied in the literature, for example in [10], building
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on ideas from [12], which was based in turn on variations of unique
ergodicity as studied in [1]. Those properties, however, are more of
a topological nature, rather than purely measure theoretic in origin,
if one thinks in terms of classical ergodic theory, and the techniques
involved are quite different from those in this paper.

The required background on relatively independent joinings is re-
viewed in Section 2, which also sets out much of the notation used
later in the paper. The definition of relative weak mixing is formu-
lated in Section 3. Some relevant characterizations in terms of ergodic
limits are then derived. A noncommutative example is subsequently
presented to illustrate the points made above regarding asymptotic
abelianness, the center, and ergodicity. The main result of the paper,
and its proof, appear in Section 4.

2. Relatively independent joinings

For convenience we summarize the special case of relatively indepen-
dent joinings that we need here, along with some additional definitions.
Simultaneously this fixes notation that will be used throughout the pa-
per. We use the same setup as in [7, 8, 9]. Please refer in particular to
[9, Sections 2 and 3] for further discussion. Also note that we use the
convention where inner products are linear in the right and conjugate
linear in the left.

In the remainder of this paper W*-dynamical systems are referred
to simply as “systems” and they are defined as follows:

Definition 2.1. A system A = (A, µ, α) consists of a faithful normal
state µ on a (necessarily σ-finite) von Neumann algebra A, and a ∗-
automorphism α of A, such that µ ◦ α = µ.

In the rest of the paper, the symbols A, B and F denote systems
(A, µ, α), (B, ν, β) and (F, λ, ϕ). For A we assume without loss that A
is a von Neumann algebra on the Hilbert space H, with µ given by a
cyclic and separating vector Ω ∈ H, i.e.

µ(a) = 〈Ω, aΩ〉
for all a ∈ A.

Definition 2.2. A joining of A and B is a state ω on the algebraic
tensor product A � B such that ω (a⊗ 1B) = µ(a), ω (1A ⊗ b) = ν(b)
and ω ◦ (α� β) = ω for all a ∈ A and b ∈ B.

The modular conjugation associated to the state µ, will be denoted
by J , and we let

j : B(H)→ B(H) : a 7→ Ja∗J.

The dynamics α of a system A can be represented by a unitary
operator U on H defined by extending

UaΩ := α(a)Ω.
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It satisfies
UaU∗ = α(a)

for all a ∈ A.

Definition 2.3. We call F a subsystem of A if F is a von Neumann
subalgebra of A (containing the unit of A) such that µ|F = λ and
α|F = ϕ. If F is globally invariant under modular group associated to
µ, then F is called a modular subsystem of A.

Throughout the rest of the paper, F will be a modular subsystem of
A. Note that if the state µ of the system A is a trace (i.e. µ(ab) = µ(ba)
for all a, b ∈ A), then all of its subsystems are modular. Much of our
work, in particular our main result, Theorem 4.2, is for the case where
µ is tracial.

Given a system A, carry the state and dynamics of A over to A′ in
a natural way using j, by defining a state µ′ and ∗-automorphism α′

on A′ by
µ′(b) := µ ◦ j(b) = 〈Ω, bΩ〉

and
α′(b) := j ◦ α ◦ j(b) = UbU∗

for all b ∈ A′, since UJ = JU . This defines the system

A′ := (A′, µ′, α′).

Since F is a modular subsystem of A, we obtain a modular subsystem

F̃ =
(
F̃ , λ̃, ϕ̃

)
of A′ as follows: Set

F̃ := j(F ) ⊂ A′

(note that by the symbol ⊂ we mean inclusion, with equality allowed),
and let

λ̃ := µ′|F̃
and

ϕ̃ := α′|F̃ .
We can now construct the relatively independent joining of A and

A′ over F:
Since F is a modular subsystem of A, we know by Tomita-Takesaki

theory (see for example [28, Theorem IX.4.2]) that we have a unique
conditional expectation

D : A→ F

such that λ ◦D = µ. Then

D′ := j ◦D ◦ j : A′ → F̃

is the unique conditional expectation such that λ̃ ◦D′ = µ′.
Let P be the projection of H onto

HF := FΩ = F̃Ω,



RELATIVE WEAK MIXING OF W*-DYNAMICAL SYSTEMS 5

where the last equality follows from JHF = HF . Then

D(a)Ω = PaΩ

for all a ∈ A. This follows from the general construction of such con-
ditional expectations; see for example [27, Section 10.2]. Similarly,

D′(b)Ω = PbΩ

for all b ∈ A′. Also note that

D ◦ α = α ◦D = ϕ ◦D,
and analogously for D′, since

PU = UP,

as is easily verified from α(F ) = F .
Define the unital ∗-homomorphism

δ : F � F̃ → B(H),

to be the linear extension of F × F̃ → B(H) : (a, b) 7→ ab. Defining
the diagonal state

∆λ : F � F̃ → C
of λ by

∆λ(c) := 〈Ω, δ(c)Ω〉
for all c ∈ F � F̃ , allows us to define a state µ�λ µ′ on A� A′ by

(1) µ�λ µ′ := ∆λ ◦ E
where

E := D �D′.
Note that µ �λ µ′ is indeed a joining of A and A′, with the property
that (µ �λ µ′)|F�F̃ = ∆λ, and it is called the relatively independent
joining of A and A′ over F. We also denote this joining by

ω := µ�λ µ′.

Remark 2.4. Notice that the framework we have set up so far, in
particular the relatively independent joining, fits in very naturally with
the modular theory of von Neumann algebras:

Note firstly that similar to the fact that ω is a joining of A and A′,
we also have

ω ◦ (σµt � (σµt )′) = ω

where σµt denotes the modular group associated to µ, and (σµt )′ is de-
fined analogously to α′. This follows, since D ◦ σµt = σµt ◦ D and

D′ ◦ σµ
′

t = σµ
′

t ◦D′, and where we also note that (σµt )′ = σµ
′

−t. From the
point of view of von Neumann algebras (i.e. noncommutative measure
theory), this is a very natural property for a joining to have, and indeed
in [4, Definition 3.1] it is included as part of the definition of joinings
more generally, even though here we have not required it in Definition
2.2.
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Secondly, by [18, Lemma 1 of Section 1] (or see [28, Corollary VIII.1.4])
it follows that α−1 ◦ σµt ◦ α = σµ◦αt = σµt , so

σµt ◦ α = α ◦ σµt

and analogously for α′ and σµ
′

t , again showing that the framework used
here fits in very neatly with of modular theory.

We write

A�F A′ := (A� A′, µ�λ µ′, α� α′)
and call A �F A′ the relative product system (of A and A′ over F).
It is an example of a ∗-dynamical system, namely it consists of a state
ω = µ�λ µ′ on a unital ∗-algebra A�A′, and a ∗-automorphism α�α′
of A� A′ such that ω ◦ (α � α′) = ω. However, this is typically not a
(W*-dynamical) system as given by Definition 2.1.

The cyclic representation of A � A′ obtained from ω by the GNS
construction will be denoted by (Hω, πω,Ωω). Since ω can be extended
to a state on the maximal C*-algebraic tensor product A⊗mA′ (see for
example [8, Proposition 4.1]), we know that πω is a ∗-homomorphism
from A� A′ into the bounded operators B(Hω). Let

γω : A� A′ → Hω : t 7→ πω(t)Ωω.

Furthermore, let W denote the unitary representation of

τ := α� α′

on Hω, i.e. it is defined as the extension of

Wγω(t) := γω(τ(t))

for all t ∈ A� A′.
The cyclic representation obtained from ω, allows us to construct

cyclic representations (Hµ, πµ,Ωω) and (Hµ′ , πµ′ ,Ωω) of (A, µ) and (A′, µ′)
respectively, which are naturally embedded into Hω (as in [7, Construc-
tion 2.3]), by setting

Hµ := γω(A⊗ 1) and πµ(a) := πω(a⊗ 1)|Hµ
for every a ∈ A, and similarly for Hµ′ and πµ′ .

The representation (Hµ, πµ,Ωω) is unitarily equivalent to our initial
representation (H, idA,Ω) of (A, µ), but we make use of both repre-
sentations later on. I.e., whereas a ∈ A is in the initial cyclic repre-
sentation, we always write it explicitly as πµ(a) when using the cyclic
representation (Hµ, πµ,Ωω).

Now we consider cyclic representations of (F, λ) and (F̃ , λ̃):
Note that (HF , δ,Ωω) is a cyclic representation of (F � F̃ ,∆λ), since

HF = δ(F � F̃ )Ω. However, (γω(F � F̃ ), πω|F�F̃ ,Ωω) is also a cyclic

representation of (F�F̃ ,∆λ), so these two representations are unitarily
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equivalent via the unitary operator V : HF → γω(F � F̃ ) defined as
the extension of δ(t)Ω 7→ γω(t) for t ∈ F � F̃ . Therefore

Hλ := γω(F ⊗ 1) = V δ(F ⊗ 1)Ω = V HF = V δ(1⊗ F̃ )Ω = γω(1⊗ F̃ ),

which means that (F, λ) and (F̃ , λ̃) are cyclicly represented on the same
subspace Hλ of Hω by

πλ(f) := πµ(f)|Hλ and πλ̃(f̃) := πµ′(f̃)|Hλ
for all f ∈ F and f̃ ∈ F̃ .

3. Relative weak mixing

This section presents the definition and two closely related charac-
terizations of relative weak mixing in terms of ergodic averages. These
characterizations do not yet involve the relative independent joining.
An example of relative weak mixing is also given.

In terms of the notation in the previous section, our main definition
is the following:

Definition 3.1. We call a system A weakly mixing relative to the
modular subsystem F if

(2) lim
N→∞

1

N

N∑
n=1

λ
(
|D(bαn(a))|2

)
= 0

for all a, b ∈ A with D(a) = D(b) = 0.

In the classical case this is often also expressed by saying that A is
a weakly mixing extension of F.

Remark 3.2. We recover the absolute case of weak mixing from this
definition, by using F = C1A. Indeed, in this case we have D(a) =
µ(a)1A for all a ∈ A. Thus, Eq. (2) becomes

lim
N→∞

1

N

N∑
n=1

|µ(ban(a))|2 = 0,

or equivalently,

(3) lim
N→∞

1

N

N∑
n=1

|µ(ban(a))| = 0,

for all a, b ∈ A such that µ(a) = µ(b) = 0.
The reason for this equivalence is that for any bounded sequence (cn)

of non-negative real numbers, bounded by c > 0, say, we have

1

N

N∑
n=1

c2
n ≤

c

N

N∑
n=1

cn
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and, using the Cauchy-Schwarz inequality,

(4)
1

N

N∑
n=1

cn ≤

(
1

N

N∑
n=1

c2
n

) 1
2

.

Therefore,

lim
N→∞

1

N

N∑
n=1

c2
n = 0⇔ lim

N→∞

1

N

N∑
n=1

cn = 0.

Condition (3) in turn is easily seen to be equivalent to the following:

lim
N→∞

1

N

N∑
n=1

|µ(ban(a))− µ(b)µ(a)| = 0

for all a, b ∈ A (simply replace a and b by a − µ(a) and b − µ(b)
respectively in Eq. (3)). This is the standard definition of weak mixing.

Our first simple characterization of relative weak mixing, which will
also be used in the proof of this paper’s main theorem in the next
section, is the following:

Proposition 3.3. The system A is weakly mixing relative to F if and
only if

(5) lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= 0

for all a, b ∈ A.

Proof. Assume that A is weakly mixing relative to F. For any a, b ∈ A,
setting a0 := a−D(a) and b0 := b−D(b), we have D(a0) = D(b0) = 0
and

D(b0α
n(a0)) = D (bαn(a))−D(b)D(αn(a)).

Hence Eq. (5) follows from Definition 3.1. The converse is trivial by
assuming either D(a) = 0 or D(b) = 0. �

This gives us variations of this characterization as well, for example,
A is weakly mixing relative to F if and only if Eq. (2) holds for all
a, b ∈ A with D(a) = 0.

Next we are going to show that when µ is a trace, Definition 3.1 is
equivalent to [2, Definition 3.7]. To do this, we use the basic construc-
tion in a similar way to how it was used in [2, Sections 3 and 4] to
prove their structure theorem.

The von Neumann algebra generated by A and eF = P (the projec-
tion of H onto FΩ) will be denoted by

〈A, eF 〉
and is referred to as the basic construction. When µ is a trace, we
obtain from it a faithful semifinite normal tracial weight µ̄ : 〈A, eF 〉+ →
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[0,∞]. It is also defined and tracial on the strongly dense ∗-subalgebra
AeFA := span{aeF b : a, b ∈ A} of 〈A, eF 〉 via the equation

µ̄(aeF b) = µ(ab).

For more on the basic construction and the trace µ̄, see [25, Chapter
4]. Some of the early literature on this topic can be found in [26], [6]
and [19].

We can extend the dynamics of α to 〈A, eF 〉 using the equation

ᾱ(a) = UaU∗

for a ∈ 〈A, eF 〉. That µ̄ ◦ ᾱ = µ̄, is not elementary, but it is a simple
consequence of the following result:

Theorem 3.4. [25, Theorem 4.3.11] Let ϕ be a weight on 〈A, eF 〉 with
ϕ = µ̄ on (AeFA)+. If ϕ is normal, then ϕ = µ̄.

Next, similar to the case of U , we have a unitary operator Ū : H̄ → H̄
representing ᾱ on the Hilbert space H̄ arising from the GNS construc-
tion for (〈A, eF 〉, µ̄), which is described for example in [20, Section 7.5].
We denote the quotient map of this construction as

Nµ̄ → H̄ : x 7→ x̂,

where Nµ̄ := {x ∈ 〈A, eF 〉 : µ̄(x∗x) < ∞}. Since µ̄ ◦ ᾱ = µ̄, we can
define the unitary Ū : H̄ → H̄ via

Ū x̂ = α̂(x).

In order to prove the equivalence with [2, Definition 3.7], we need
three lemmas which we present now. The first is just a slight variation
of the calculations that appear at the beginning of the proof of [2,
Proposition 3.8]:

Lemma 3.5. Assume that µ is a trace. Let a, b ∈ A. Then

µ̄(b∗eF bᾱ
n(aeFa

∗)) = λ(|D(bαn(a))|2).

Proof. µ̄(b∗eF bᾱ
n(aeFa

∗)) = µ̄(D(c)eFD(c∗)) = µ(D(c)D(c∗)) in terms
of c := bαn(a). �

The following is a version of the van der Corput lemma:

Lemma 3.6. [29, Lemma 2.12.7] Let (vn) be a bounded sequence of
vectors in a Hilbert space H such that

(6) lim
M→∞

1

M

M∑
h=1

(
lim sup
N→∞

1

N

N∑
n=1

〈vn, vn+h〉

)
= 0.

Then

lim
N→∞

1

N

N∑
n=1

vn = 0.

Putting these two lemmas together, we obtain the following:
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Lemma 3.7. Assume µ is a trace. Let a ∈ A satisfy

(7) lim
N→∞

1

N

N∑
n=1

λ(|D(a∗αn(a))|2) = 0.

Then, for all b ∈ A, we have

(8) lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = 0.

Proof. Let x := aeFa
∗ and y := b∗eF b. Observe that µ̄(yᾱn(x)) ≥ 0 by

Lemma 3.5, and

1

N

N∑
n=1

µ̄(yᾱn(x))2 =
1

N

N∑
n=1

〈ŷ, Ūnx̂〉2 =

〈
ŷ,

1

N

N∑
n=1

〈ŷ, Ūnx̂〉Ūnx̂

〉

≤ ‖ȳ‖

∥∥∥∥∥ 1

N

N∑
n=1

〈ŷ, Ūnx̂〉Ūnx̂

∥∥∥∥∥(9)

Let vn := 〈ŷ, Ūnx̂〉Ūnx̂, for every n ∈ N. Clearly, the sequence (vn)
is bounded. We can estimate, for every n, h ∈ N,

| 〈vn, vn+h〉 | ≤ ‖x̂‖2 ‖ŷ‖2 µ̄(xᾱh(x)).

This, together with Lemma 3.5 and our assumption Eq. (7), imply

Eq. (6). Thus, from Lemma 3.6, we have limN→∞
1
N

∑N
n=1 vn = 0.

Therefore, from (9), we obtain

lim
N→∞

1

N

N∑
n=1

µ̄(yᾱn(x))2 = 0.

Consequently, from (4),

lim
N→∞

N∑
n=1

µ̄(yᾱn(x)) = 0.

Again by Lemma 3.5, we are done. �

This finally implies the following characterization of relative weak
mixing (which in [2] was used as the definition):

Proposition 3.8. Assume that µ is a trace. Then A is weakly mixing
relative to the subsystem F if and only if

lim
N→∞

1

N

N∑
n=1

λ(|D(a∗αn(a))|2) = 0,

for all a ∈ A such that D(a) = 0.
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Remark 3.9. Essential to the proof of the commutative version of
Lemma 3.7 (outlined in [29, Exercise 2.14.1]), is a conditional version of
the Cauchy-Schwarz inequality in terms of the conditional expectation
E:

|E(f̄ g|Y )| ≤ ‖E(|f |2|Y )‖L2(X|Y )‖E(|g|2|Y )‖L2(X|Y )

where f, g belong to the L∞(Y )-module L2(X|Y ) = {h ∈ L2(X) :
E(|h|2|Y ) ∈ L∞(Y )} ([29, Section 2.13]). In the noncommutative case,
however, our approach above allows us to simplify the argument and
avoid some snags. We essentially used a noncommutative translation
of the proof of the absolute case [29, Corollary 2.12.8], but in terms of
the basic construction, to prove Lemma 3.7.

Before we get to an example, we note a few simple general facts:
Firstly, D(a) = 0 for a ∈ A, if and only if a is of the form a = c−D(c)

for some c ∈ A.
Secondly,

λ(D(αn(a∗)b∗)D (bαn(a))) = ‖PbUnaΩ‖2

for all a, b ∈ A, by a straightforward calculation. If, in addition λ is a
trace, then we have

(10) ‖PbUnaΩ‖ =
∥∥PUna∗U−nb∗Ω

∥∥
for all a, b ∈ A, by a similar calculation for λ(D (bαn(a))D(αn(a∗)b∗)).

To show that relative weak mixing is indeed relevant in noncom-
mutative W*-dynamical systems, in particular for non-ergodic systems
which are not asymptotically abelian, we provide the following exam-
ple:

Example 3.10. Let G be any discrete group, and let A be the group
von Neumann algebra obtained from it. In other words, A is the von
Neumann algebra on H = l2(G) generated by the following set of uni-
tary operators:

{l(g) : g ∈ G}
where l is the left regular representation of G, i.e. the unitary repre-
sentation of G on H with each l(g) : H → H given by

[l(g)f ](h) = f(g−1h)

for all f ∈ H and g, h ∈ G. Equivalently,

l(g)δh = δgh

for all g, h ∈ G, where δg ∈ H is defined by δg(g) = 1 and δg(h) = 0
for h 6= g. Setting

Ω := δ1

where 1 ∈ G denotes the identity of G, we can define a faithful normal
trace µ on A by

µ(a) := 〈Ω, aΩ〉
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for all a ∈ A. Then (H, idA,Ω) is the cyclic representation of (A, µ).
Given any automorphism T of G, we define a unitary operator on H

by

Uf := f ◦ T−1

for all f ∈ H. From this we obtain a ∗-automorphism of A by setting

α(a) := UaU∗

for all a ∈ A, which satisfies α(l(g)) = l(T (g)) for all g ∈ G.
Then A = (A, µ, α) is a system which we call the dual system of

(G, T ). (See [8, Section 3] for more background on this type of system
in the context of quantum groups, W*-algebraic ergodic theory and
joinings.)

Define a subsystem F = (F, λ, ϕ) of A by letting F be the von
Neumann subalgebra of A generated by

{l(g) : g ∈ K}

whereK := {g ∈ G : TN(g) is finite}. Here TN(g) := {T (g), T 2(g), T 3(g), ...}
is the orbit of g. Furthermore λ := µ|F and ϕ := α|A.

We call F the finite orbit subsystem of A.
We can find D explicitly in this case: The projection P above is now

the projection of H onto the Hilbert subspace spanned by {δg : g ∈ K}.
Therefore we have

(11) D(l(g)) =

{
l(g) for g ∈ K

0 for g /∈ K

for all g ∈ G.
Note that the unital ∗-algebra generated by {l(g) : g ∈ G} is exactly

A0 = span{l(g) : g ∈ G}.
Suppose that for any g, h ∈ G with g /∈ K, it is true that

(12) D(l(hT n(g))) = 0

for n large enough, i.e. for n > n0 for some n0. Then, for any c0, b0 ∈
A0, and a0 := c0 −D(c0), we have

Pb0U
na0Ω = 0

for n large enough. Since A0 is strongly dense in A, it follows that

lim
n→∞

Pb0U
naΩ = 0

for all a ∈ A such that D(a) = 0, by simply considering any c ∈ A and
some c0 ∈ A0 such that ‖c0Ω− cΩ‖ < ε for an ε > 0 of our choosing,
and setting a := c−D(c).

Since λ is a trace, we can apply a similar argument to ‖Pb0U
naΩ‖ =

‖PUna∗U−nb∗0Ω‖ (see Eq. (10)) to show that

lim
n→∞

PbUnaΩ = 0
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and therefore

lim
n→∞

λ(D(αn(a∗)b∗)D (bαn(a))) = 0

for all a, b ∈ A such that D(a) = 0. It follows easily from this that A
is weakly mixing relative to F. The limit above could be interpreted
as A having a stronger property, namely that A is “strongly mixing
relative to F”.

What remains is to show specific cases for which Eq. (12) holds and
which illustrate the points made above about noncommutative systems.

A simple case is when G is the free group on a countably infinite
set of symbols S. We then consider any bijection T : S → S which
has both finite and infinite orbits in S, say T is a permutation when
restricted to some finite non-empty subset, or to each of infinitely many
finite non-empty subsets, while it shifts the remaining infinite subset
of S. We obtain a automorphism T of G from this bijection. Then Eq.
(12) follows from Eq. (11).

But at the same time, F is then not trivial, i.e. F strictly contains the
subalgebra C1, and is in general not abelian. In fact, F is ∗-isomorphic
to the group von Neumann algebra of the free group K on the symbols
with finite orbits. That F 6= C1, also implies that A is not ergodic (see
[8, Theorem 3.4]). Furthermore,

‖[αn(l(g)), l(h)]Ω‖ =
√

2

if T n(g)h 6= hT n(g), which is the case if g and h are in two separate
orbits, or if g = h has an infinite orbit. Hence A is not asymptotically
abelian in the sense of [2, Definition 1.10]. Furthermore, A is a factor.

We summarize the key conclusions from this example, as they con-
cretely illustrate a number of remarks made in Section 1, motivating
this paper:

Proposition 3.11. Let A be the dual system of (G, T ), where G is the
free group on a countably infinite set of symbols S, and T is an auto-
morphism of G induced by a bijection T |S : S → S which has both finite
and infinite orbits (the former on non-empty subsets of S). Then A is
weakly mixing relative to its non-trivial finite orbit subsystem (which in
general consists of a noncommutative von Neumann subalgebra), but A
is neither ergodic, nor asymptotically abelian, and furthermore its von
Neumann algebra A is a factor.

4. The joining characterization

This section presents the main result of the paper, still using the
notation from Section 2.

Let HW
ω denote the fixed point space of W . The relative independent

joining (or the relative product system) will connect to relative weak
mixing via the following notion:
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Definition 4.1. We say that A�FA′ is ergodic relative to the modular
subsystem F of A, if HW

ω ⊂ Hλ.

Our main goal in this paper is to prove the following characterization
of relative weak mixing:

Theorem 4.2. Assume that µ is a trace. Then A is weakly mixing
relative to F if and only if A�F A′ is ergodic relative to F.

The rest of this section is devoted to the proof of this theorem. We
break the proof into a sequence of smaller results. Some of these are of
independent interest (in particular Propositions 4.5, 4.9 and 4.10, and
Remark 4.8), and do not require µ to be tracial.

The following lemma and proposition proves one direction of The-
orem 4.2. In the classical case, this direction is also proven in [15,
Proposition 6.2] and [16, Lemma 1.3], but using different arguments.

Lemma 4.3. Consider a modular subsystem F of the system A. For
any a ∈ A with D(a) = 0 and any b ∈ A′, we have

πω(a⊗ b)Ωω ⊥ Hλ.

Proof. For any c ∈ F ,

〈πλ(c)Ωω, πµ(a)Ωω〉 = 〈Ωω, πµ(c∗a)Ωω〉 = µ(c∗a)

= λ(D(c∗a)) = λ(c∗D(a))

= 0.

Hence, πµ(a)Ωω ∈ Hµ 	 Hλ. So πµ(a)Ωω ⊥ Hµ′ by [9, Proposi-

tion 3.6]. On the other hand, πµ′(b
∗f)Ωω ∈ Hµ′ for any f ∈ F̃ , so

〈πµ′(b∗f)Ωω, πµ(a)Ωω〉 = 0. Therefore,

〈πλ̃(f)Ωω, πω(a⊗ b)Ωω〉 = 〈πω(1⊗ b∗)πµ′(f)Ωω, πω(a⊗ 1)Ωω〉
= 〈πµ′(b∗f)Ωω, πµ(a)Ωω〉
= 0,

proving the lemma, since πλ̃(F̃ )Ωω is dense in Hλ. �

Using this lemma we can show one direction of Theorem 4.2:

Proposition 4.4. Assume that µ is a trace and that A�FA′ is ergodic
relative to F. Then

lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a)) |2

)
= 0

for all a, b ∈ A such that D(a) = 0 or D(b) = 0.
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Proof. Let Q be the projection of Hω onto the fixed point space HW
ω

of W . By the mean ergodic theorem we then have

lim
N→∞

1

N

N∑
n=1

ω(τn(s)t) = lim
N→∞

1

N

N∑
n=1

〈W nπω(s∗)Ωω, πω(t)Ωω〉

= 〈Qπω(s∗)Ωω, πω(t)Ωω〉

for all s, t ∈ A � A′. This holds in particular for s = a∗ ⊗ j(a) and
t = b∗ ⊗ j(b), where a, b ∈ A, and D(a) = 0 or D(b) = 0.

Suppose D(a) = 0 (the case D(b) = 0 is similar, by taking Q to
the other side in the inner product above). Then πω(s∗)Ωω ⊥ HW

ω

by Lemma 4.3, so Qπω(s∗)Ωω = 0. This means, by the definition of
ω = µ�λ µ′ in Eq. (1), that

0 = lim
N→∞

1

N

N∑
n=1

〈Ω, D(αn(a∗)b∗)D′(α′n(j(a))j(b))Ω〉

= lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗)b∗)D(bαn(a))),

as required, since

D′(α′n(j(a))j(b))Ω = PJαn(a∗)b∗Ω = D(bαn(a))Ω,

where we have used the fact that µ is a trace (so JcΩ = c∗Ω for all
c ∈ A). �

Next we consider the other direction of Theorem 4.2. We don’t have
a reference to a proof of the classical case of this direction. Our first
step is the following:

Proposition 4.5. A�F A′ is ergodic relative to F if and only if

(13) lim
N→∞

1

N

N∑
n=1

ω(tτn(s)) = lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s)))

for all s, t ∈ A � A′. Both limits exist, whether A �F A′ is ergodic
relative to F or not.

Proof. Let Q be the projection of Hω onto the fixed point space HW
ω

of W . Let R be the projection of Hω onto Hλ.
By the mean ergodic theorem, for all s, t ∈ A� A′,

lim
N→∞

1

N

N∑
n=1

ω(tτn(s)) = 〈γω(t∗), Qγω(s)〉

and

lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s))) = 〈γω(E(t∗)), Qγω(E(s))〉 .
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Let Pµ be the projection of Hµ onto Hλ, and Pµ′ the projection of
Hµ′ onto Hλ. Consider s = a ⊗ b, where a ∈ A and b ∈ A′. Then,
because πµ′(D

′(b))Ωω ∈ Hλ, we know by the construction of D (see for
example [27, Section 10.2]) that

γω(E(s)) = πµ(D(a))πµ′(D
′(b))Ωω = πλ(D(a))πµ′(D

′(b))Ωω

= Pµπµ(a)πµ′(D
′(b))Ωω = Pµπµ(a)Pµ′πµ′(b)Ωω

= Rπµ(a)Rπµ′(b)Ωω.

since R|Hµ = Pµ and R|Hµ′ = Pµ′ .
For y ∈ Hµ′ 	Hλ and f ∈ F , we have

〈πλ(f)Ωω, πω(a⊗ 1)y〉 = 〈πµ(a∗f)Ωω, y〉 = 0,

since πµ(a∗f)Ωω ∈ Hµ ⊥ (Hµ′ 	Hλ) by [9, Proposition 3.6]. So πω(a⊗
1)y ⊥ Hλ, which means that

γω(E(s)) = Rπω(a⊗ 1)πµ′(b)Ωω = Rπω(a⊗ b)Ωω.

So

γω(E(s)) = Rγω(s)

for all s ∈ A� A′. Hence,

〈γω(E(t∗)), Qγω(E(s))〉 = 〈Rγω(t∗), QRγω(s)〉

for all s, t ∈ A� A′.
Now, if A�F A′ is ergodic relative to F, i.e. Q ≤ R, it follows that

〈γω(E(t∗)), Qγω(E(s))〉 = 〈γω(t∗), Qγω(s)〉

from which we see that Eq. (13) holds for all s, t ∈ A� A′.
Conversely, if Eq. (13) holds for all s, t ∈ A� A′, then we have

〈Rγω(t∗), QRγω(s)〉 = 〈γω(t∗), Qγω(s)〉

for all s, t ∈ A � A′. It follows that RQR = Q, so Q ≤ R, meaning
A�F A′ is ergodic relative to F. �

As a consequence of this proposition, we have the following lemma
towards the proof of Theorem 4.2:

Lemma 4.6. Assume that µ is a trace. Then A �F A′ is ergodic
relative to F if and only if

(14) lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

for all a, b ∈ A. Both limits exist, whether A�F A′ is ergodic relative
to F or not.
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Proof. Suppose A�F A′ is ergodic relative to F, then Eq. (13) holds.
Applying it to s = a ⊗ c and t = b ⊗ d, for a, b ∈ A and c, d ∈ A′, we
obtain

lim
N→∞

1

N

N∑
n=1

ω([bαn(a)]⊗ [dα′n(c)])

= lim
N→∞

1

N

N∑
n=1

ω([D(b)D(αn(a))]⊗ [D′(d)D′(α′n(c))]).

Using the definition of ω, this is equivalent to

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))D′(dα′n(c))Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))D′(d)D′(α′n(c))Ω〉 .

Setting c = j(a∗) = JaJ and d = j(b∗) = JbJ , we have in particular

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))JD(bαn(a))Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))JD(b)D(αn(a))Ω〉 .

Since µ is a trace, this is equivalent to

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))D(αn(a∗)b∗)Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))D(αn(a∗))D(b∗)Ω〉 .

Since λ is a trace, this is equivalent to Eq. (14).
Note that from the manipulations above we also see that

lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

ω(tτn(s))

and

lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2) = lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s))

exist by Proposition 4.5, whether A �F A′ is ergodic relative to F or
not, where s = a⊗ (JaJ) and t = b⊗ (JbJ).
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Now, suppose Eq. (14) holds, then we have by the equivalences
above, that

lim
N→∞

1

N

N∑
n=1

ω([bαn(a)]⊗ [JbJα′n(JaJ)])

= lim
N→∞

1

N

N∑
n=1

ω([D(b)D(αn(a))]⊗ [D′(JbJ)D′(α′n(JaJ))]),

i.e.

lim
N→∞

1

N

N∑
n=1

ω((b⊗ (JbJ))τn(a⊗ (JaJ)))

= lim
N→∞

1

N

N∑
n=1

ω(E(b⊗ (JbJ))τn(E(a⊗ (JaJ)))).

Because of the polarization identity, applied in turn to the two ap-
pearances of the sesquilinear form A × A 3 (a, c) 7→ a ⊗ (JcJ) above
(once inside τn and once outside), Eq. (13) then follows, so A �F A′

is ergodic relative to F by Proposition 4.5. �

In order to proceed, we need the notion of relative ergodicity for a
system itself:

Definition 4.7. We say that A is ergodic relative to F if HU ⊂ HF ,
where HU is the fixed point space of U : H → H, and HF = FΩ.

This generalizes ergodicity of A, which is the special case HU = CΩ.

Remark 4.8. In [9, Definition 4.1] an alternative condition was used
instead of HU ⊂ HF to define relative ergodicity, namely

Aα ⊂ F,

where Aα := {a ∈ A : α(a) = a}. For our purposes here, Definition 4.7
is the more convenient definition, but the question nevertheless arises
whether the two conditions are equivalent. From [9, Proposition 4.2]
we know that HU = AαΩ, so if Aα ⊂ F , then HU ⊂ HF . This fact is
used in Proposition 4.9.

We do not need the converse. However, it does hold, since F is a
modular subsystem, as we now explain. The conditional expectation
D is determined by

D(a)|HF = Pa|HF
for all a ∈ A; see for example [27, Section 10.2]. The subalgebra
Aα is easily seen to be globally invariant under the modular group as
well (see [9, Proposition 4.2]), hence we also have a unique conditional
expectation DAα : A → Aα such that µ ◦DAα = µ, which is similarly
determined by

DAα(a)|HU = Qa|HU
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where Q is the projection of H onto HU . Assuming HU ⊂ HF , it
follows that

D(DAα(a))|HU = PDAα(a)|HU = Qa|HU = DAα(a)|HU

and therefore D(DAα(a)) = DAα(a), since Ω ∈ HU is separating for A.
So, for a ∈ Aα, we have

a = DAα(a) = D(DAα(a)) ∈ F

which means that Aα ⊂ F .
To summarize: A is ergodic relative to F, if and only if Aα ⊂ F .

The following generalizes the standard fact that weak mixing implies
ergodicity:

Proposition 4.9. If A is weakly mixing relative to F, then A is ergodic
relative to F.

Proof. From Proposition 3.3, we have λ(|D(ba)−D(b)D(a)|2) = 0 for
a ∈ Aα and all b ∈ A. Since λ is faithful, it follows that D(b(a −
D(a))) = D (ba)−D(b)D(a) = 0. In particular, setting b = (a−D(a))∗,
we conclude that a = D(a) ∈ F , since µ is faithful and λ ◦D = µ. So
Aα ⊂ F , hence HU ⊂ HF by the first part of Remark 4.8. �

Next we consider a version of Proposition 4.5 for a system itself.

Proposition 4.10. A is ergodic relative to F if and only if

(15) lim
N→∞

1

N

N∑
n=1

µ(bαn(a)) = lim
N→∞

1

N

N∑
n=1

λ(D(b)αn(D(a)))

for all a, b ∈ A. Both limits exist, whether A is ergodic relative to F
or not.

Proof. Essentially the same argument, using the mean ergodic theorem,
as in the proof of Proposition 4.5, but with Q now the projection of H
onto HU , and with R replaced by P . �

Using the last three results, we can now prove the remaining direction
of Theorem 4.2:

Proposition 4.11. Assume that µ is tracial and that A is weakly mix-
ing relative to F. Then A�F A′ is ergodic relative to F.

Proof. Note that for all a, b ∈ A,

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= λ(|D(bαn(a))|2)

− λ(D(αn(a∗)b∗)D(b)D(αn(a)))

− λ(D(αn(a∗))D(b∗)D(bαn(a)))

+ λ(D(αn(a∗))D(b∗)D(b)D(αn(a))).
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Consider the second term and use the trace property of µ:

λ(D(αn(a∗)b∗)D(b)D(αn(a))) = λ(D(αn(a∗)b∗D(b)D(αn(a))))

= µ(αn(a∗)b∗D(b)D(αn(a)))

= µ(b∗D(b)αn(D(a)a∗)).

Since A is ergodic relative to F by Proposition 4.9, we now have by
Proposition 4.10 that

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗)b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(D(b∗)D(b)αn(D(a)D(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

Similarly

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(bαn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

and

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

µ(D(b∗)D(b)αn(aD(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

Keep in mind that all these limits exist by Proposition 4.10. Then by
Proposition 3.3,

0 = lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= lim

N→∞

1

N

N∑
n=1

[λ(|D(bαn(a))|2)− λ(|D(b)D(αn(a))|2)],

so

lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2),
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since both limits exist (see Lemma 4.6). By Lemma 4.6 we are done.
�

This completes the proof of Theorem 4.2. To summarize: the one
direction is given by Proposition 4.4, the other by Proposition 4.11.

To connect this to the structure theorem in [2], we mention the fol-
lowing: Suppose that we have an asymptotically abelian W*-dynamical
system A with a tracial invariant state, as defined in [2, Definition
1.10]. According to [2, Theorem 1.14] (and Proposition 3.8), such a
system is weakly mixing relative to the central system C := (A ∩
A′, µ|A∩A′ , α|A∩A′). Theorem 4.2 then shows that A �C A′ is ergodic
relative to C.
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