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Abstract

Dynamic multi-objective optimization problems (DMOOPs) are an interesting and a 
relatively complex class of optimization problems where elements of the problems, such as 
objective functions and/or constraints, change with time. These problems are 
characterized with at least two objective functions in conflict with one another. Some-

times, human decision-makers seek to influence ways (by restricting the search to a 
specific region of the Pareto-optimal Front (POF)) in which algorithms that optimize 
these problems behave by incorporating personal preferences into the optimization pro-

cess. This dissertation proposes approaches that enable decision-makers to influence the 
optimization process with their preferences. The decision-makers’ imparted preferences 
force a reformulation of the optimization problems as constrained problems, where the 
constraints are defined in the objective space. Consequently, the constrained problems are 
then solved using variations of constraint handling techniques, such as penalization of 
infeasible solutions and the restriction of the search to the feasible region. The pro-posed 
algorithmic approaches’ performance are compared using standard performance measures 
for dynamic multi-objective optimization (DMOO) and newly proposed mea-sures. The 
proposed measures estimate how well an algorithm is able to find solutions in the objective 
space that best reflect the decision-maker’s preferences and the pareto-optimality goal of 
DMOO. This dissertation also proposes a new differential evolution algorithm, called 
dynamic differential evolution vector-evaluated non-dominated sorting (2DEVENS). 
2DEVENS combines elements of the dynamic non-dominated sort genetic
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algorithm version II (DNSGA-II) and the dynamic vector-evaluated particle swarm op-

timization (DVEPSO) algorithm to drive the search for solutions.

The proposed 2DEVENS algorithm compared favorably with other nature-inspired

algorithms that were used in the studies carried out for this dissertation. The pro-

posed approaches used in incorporating decision-makers’ preferences in the optimization

process also demonstrated good results.

Keywords: Constrained optimization, dynamic multi-objective optimization, decision-

maker preference incorporation, differential evolution, evolutionary and nature-inspired

computation, benchmark functions and performance measures
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“So do all who live to see such times. But that is not for them to decide.

All we have to decide is what to do with the time that is given us.”

J.R.R. Tolkien, The Fellowship of the Ring.

“A wise man makes his own decisions, an ignorant man follows the public

opinion.. . . ”

Chinese Proverb.
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Chapter 1

Introduction

Keep it simple. Eliminate the extraneous materials and focus on the critical

success factors. These are the defining characters of quality decision making.

Decision-making as a process results from the fact that decision-makers (decision-

makers) have to contend with many objectives. This problem is further compounded

by the fact that decision-making environments are ever changing, and dynamic environ-

ments present unique challenges to decision-making.

In this research, decision-making is studied in the context of nature-inspired and

evolutionary algorithms. The algorithms search for the optimal solutions to optimization

problems. The optimization problems are characteristically defined by one or more

objective functions, and zero or more constraints. In order to model the dynamic nature

of the environment, objective functions incorporate a temporal parameter.

The class of optimization problems described above is referred to as dynamic multi-

objective optimization problems (DMOOPs). There are many DMOOPs in the real-

world [9] [26] [35] [47] [61] [78] [137] [96] [116] [133] [139] [169] . Sometimes, solving real-

world optimization problems may be computationally expensive from an experimental

point of view. Also, researchers may be interested in comparing the performance of

dynamic multi-objective optimization algorithms (DMOAs) on problems that are easy

to understand, whose optimal solutions are known, etc. Therefore, researchers have

invented artificial problems, also called benchmark functions. Benchmark functions are

well researched in [61] [73] [84] [88] [97] [106].

1
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Chapter 1. Introduction 2

When solving dynamic multi-objective optimization (DMOO), formulating DMOOPs

is one step. Another required step is to design the search algorithms. Search algorithms

search for the optimal solutions of the formulated DMOOPs. There are a class of iterative

procedures employed in the search, which draw on the mechanisms of evolution, such

as biological evolution [200]. Examples of such biological evolutionary procedures are

genetic algorithm (GA) [19] [69] [70] [94] [154] [197], particle swarm optimization (PSO)

[112] and differential evolution (DE) algorithms [148] [180]. The evolutionary algorithms,

when applied to the search of solutions to DMOOPs, are collectively referred to as

DMOAs.

Solutions found by DMOAs are typically large in number and may overwhelm decision-

makers, who need to select a single solution. Therefore, decision-makers seek an interest-

ing subset of the optimal solutions which satisfy target criteria. A decision-maker may

perform the subsetting after the optimal solutions have been found by the DMOAs. He

may also specify the subsetting rules before the DMOAs start the search process, and

lastly he may interrupt the DMOAs while computing the solutions in order to specify the

interesting subset of the found optimal solutions. The three approaches discussed above

and employed by a decision-maker in specifying the interesting subset of the optimal so-

lutions are respectively called a priori, posteriori and interactive methods of preference

incorporation [32] [36] [37] [47] [62] [76] [101] [162] [181] [185].

1.1 Objectives

This dissertation seeks to achieve the following objectives:

• To provide a literature review of the trend in decision-maker preference incorpora-

tion approaches - and discuss any existing applications to DMOOPs.

• To propose a new preference incorporation approach in the context of solving

DMOOPs using DMOAs.

• To propose a new DE-based DMOA.

• To perform a comparative study of the performance of the proposed DE-based

DMOA with other nature-inspired algorithms, such as the dynamic vector-evaluated
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Chapter 1. Introduction 3

particle swarm optimization (DVEPSO) algorithm and the dynamic non-dominated

sort genetic algorithm version II (DNSGA-II).

• To propose new algorithms exemplifying different ways of incorporating the pro-

posed preference incorporation approach into the proposed DE-based DMOA.

• To perform a comparative study of the performance of the new algorithms that

incorporate the decision-maker’s preferences.

• To propose new performance measures for DMOAs. The proposed performance

measures will reflect the effectiveness of a DMOA in finding optimal solutions to

optimizations problems in which decision-makers’ preferences are incorporated.

1.2 Contributions

The contributions of this dissertation are summarised as follows:

• The conclusion that no work has been done before now on how to incorporate

decision-maker preferences into DMOAs.

• The successful design and implementation of a new DE-based DMOA called the dy-

namic differential evolution vector-evaluated non-dominated sorting (2DEVENS)

algorithm.

• The discovery that 2DEVENS outperforms DVEPSO and DNSGA-II for the two

important performance measures of accuracy and stability.

• An effective new approach to specify decision-maker preferences by means of a

bounding-box framework.

• Successfully designing and implementing three new DMOAs, namely:

– proportionate-penalty algorithm (ALG:1)

– death-penalty algorithm (ALG:2)

– restrict-search-to-feasible-region algorithm (ALG:3).

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 1. Introduction 4

• ALG:1, ALG:2 and ALG:3 incorporate the bounding-box approach for decision-

maker preferences. The algorithms are based on 2DEVENS.

• A full-fledged comparative analysis of the three new DMOAs. The analysis showed

the relative strengths of each algorithm with regards to standard performance

measures for DMOOPs and some of the new performance measures developed in

this work.

• A new set of performance measures for DMOOPs that incorporate decision-maker

preferences defined using the proposed bounding-box framework in this disserta-

tion. For the purpose of these new performance measures, the word decision is

equivalent to a solution. The new performance measures are as follows:

– Number of Non-Violating Decisions (nNVD): measures the number of solu-

tions that fall within the decision-maker’s preference set. The higher the value

of this measure, the better.

– Spread of Non-Violating Decisions (sNVD): measures the spread of solutions

within the preferred set. The higher the value of this measure, the better the

performance of the algorithm.

– Number of Violating Decisions (nVD): measures the number of violating so-

lutions in the archive, i.e. that do not lie within the preferred bounding

box. The lower the value of this measure, the better the performance of the

algorithm.

– Total Deviation of Violating Decisions (dVD): measures the total deviation

from the preferred bounding box for all violating solutions in the archive. The

lower the value of this measure, the better the algorithm’s performance.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 discusses mathematical optimization, and static and dynamic multi-

objective optimization. It also discusses the benchmark functions, performance
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Chapter 1. Introduction 5

measures and statistical analysis used in this research.

• Chapter 3 covers the three classes of nature-inspired and evolutionary algorithms

studied in this research.

• Chapter 4 discusses decision making, as well as normative and positive theories

of decision making. Also, it presents some formalizations of decision problems.

The chapter also discusses the notions of preferences and multi-criteria decision

evaluations and designs.

• Chapter 5 covers the first experimental study carried out in this research work. In

the chapter, the performance of 2DEVENS is compared with two nature-inspired

algorithms for selected optimization problems.

• Chapter 6 covers the second experimental study carried out in this research work.

It presents a comparative study, like that of Chapter 5. However, in addition to

the problems and experimental configurations studied in Chapter 5, a new set of

benchmark functions, such as HE1 and HE3, and new experimental configurations,

were studied in this chapter.

• Chapter 7 presents the third experimental study carried out in this research work.

It discusses the proposed approaches for incorporating decision-makers’ preferences

in DMOAs. It discusses a preference specification approach called a bounding box.

It presents algorithms that use the bounding box approach to solve optimization

problems that incorporate decision makers’ preferences. A new set of performance

measures are also presented in this chapter. Algorithms proposed in this chapter

are compared based on the new measures of performance.

• Chapter 8 presents a summary of the research, as well as possible directions for

future work.

The following appendices are included, containing a number of lists with relevant

information for quick referencing:

• Appendix A provides a list of the important acronyms used or newly defined in

the course of this work, as well as their associated definitions.
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Chapter 1. Introduction 6

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

• Appendix C lists the publications derived from this work.

• Appendix D presents the detailed results of the third experimental study.
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Chapter 2

Optimization

Decide not rashly. The decision made Can never be recalled. The gods im-

plore not, Plead not, solicit not; they only offer Choice and occasion, which

once being passed Return no more. Dost thou accept the gift?

Henry Wadsworth Longfellow.

Optimization problems are found in fields as diverse as science, engineering, eco-

nomics, business and many others. Driven by the need to formalize the process of

optimization, this dissertation focuses on mathematical optimization, which is the dom-

inant form of optimization defined by methods from mathematics, computer science and

operations research. Mathematical optimization is the selection of a best element, with

regards to some criteria, relative to some other alternative elements. Put differently,

mathematical optimization strives to find the elements, or characteristics, of a system

that offer the best values for target criteria. The target criteria of mathematical optimiza-

tion problems are typically represented by real-valued functions, whose domains are the

set of allowable values for the system elements or characteristics. The real-valued func-

tions that model the target criteria are called by various names such as: cost functions,

loss functions, payoff functions, objective functions, utility functions, and energy func-

tions. Henceforth, target criteria shall be referred to as objectives and the corresponding

real-valued functions as objective functions. In some optimization problems, there is a

single criterion. Such a single-criterion optimization problem is called a single-objective

7
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Chapter 2. Optimization 8

problem. Notable examples of single-objective problems are: knapsack problem, travel-

ling salesman problem, assignment problem and transportation problem [14] [71] [119]

[126] [211]. These problems are well-covered in operations research literature.

There are however, a class of problems with two or more objectives, where two or

more functions are required to model the objectives. This class of problems is called

multi-objective optimization problems (MOOPs). MOOPs provide interesting research

opportunities, and they are as widespread as their single-objective counterparts.

Optimization problems have been classified using various criteria. Some of the clas-

sifications include continuous versus discrete, constrained versus unconstrained, global

versus local and stochastic versus deterministic [135]. The class of problems studied in

this dissertation is continuous, unconstrained (in objective space), global and determin-

istic in nature.

The rest of the chapter is organized as follows: Section 2.1 discusses MOOPs, while

dynamic MOOPs, or DMOOPs, are discussed in Section 2.2. Artificial DMOOPs, also

called benchmark functions, are covered in Section 2.3. Performance measures are dis-

cussed in Section 2.4. A review of some of the statistical analyses approaches employed

in the dissertation is presented in Section 2.5. Section 2.6 presents a generic DMOA. A

summary of the chapter is presented in Section 2.7.

2.1 Multi-Objective Optimization

MOOPs, unlike single-objective problems, present an additional level of complexity as

a result of the greater number of objectives in the problems. However, these objectives

are usually in conflict with one another, thereby making the process of finding a single

optimal solution an impossible task [33]. Trade-off solutions are therefore the norm.

The Pareto-dominance relation [140] is a popular operator used to compare the trade-off

solutions.
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Chapter 2. Optimization 9

The general MOOP is defined as follows [56]:

Minimize: f(x) = (f1(x), ..., fnk
(x))

Subject to:

gm(x) ≤ 0 m = 1, ...ng

hm(x) = 0 m = ng + 1, ...ng + nh

x ∈ [xmin, xmax]
nx

(2.1)

Where nk is the number of objective functions, ng is the number of inequality con-

straints and nh is the number of equality constraints.

x = (x1, ..., xnx) ∈ S is referred to as a decision vector and S ⊆ Rnx is the nx

dimensional search space. F ⊆ S is the feasible search space. With no constraints, the

feasible search space is the same as the search space.

A single-objective function, fk, is defined as follows:

f : Rnx −→ R

From Equation 2.1 f(x) = (f1(x), ..., fnk
(x)) ∈ O ⊆ Rnk is an objective vector

containing nk objective function evaluations, and O is referred to as the objective space.

The search space S is also referred to as the decision space. x ∈ [xmin, xmax] are the

boundary constraints. Solutions of the multi-objective problem, x∗, are in the feasible

space, F .

Due to the conflicting nature of the objectives of a MOOP, trade-off solutions, x∗,

are usually sought [33]. Trade-off solutions are such that no objective can be improved

without degrading the solutions of at least one other objective. These solutions are

referred to as non-dominated solutions and the set of such solutions is called the Pareto-

optimal Set (POS). The set of corresponding objective vectors of these solutions is called

the Pareto-optimal Front (POF).

Following are concepts and definitions considered relevant to understanding the topic

of multi-objective optimization (MOO) and the related problems of DMOOPs [48] [56]

[57] [84]:
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Chapter 2. Optimization 10

Definition 2.1. Decision Vector Domination: A decision vector x1 dominates an-

other decision vector x2, denoted by x1 ≺ x2, if and only if

1. x1 is at least as good as x2 for all the objectives, i.e. fk(x1) ≤ fk(x2) ∀k.

2. x1 is strictly better than x2 for at least one objective, i.e. ∃k such that fk(x1) <

fk(x2).

Definition 2.2. Weak Vector Domination: A decision vector x1 weakly dominates

another decision vector x2, denoted by x1 � x2, if and only if

x1 is at least as good as x2 for all the objectives, i.e. fk(x1) ≤ fk(x2) ∀k.

Definition 2.3. Pareto Optimal: A decision vector x∗ is Pareto optimal if there does

not exist a decision vector x 6= x∗ that dominates x∗.

Definition 2.4. Pareto Optimal Set: The Pareto Optimal set P ∗ is a set of Pareto

optimal decision vectors. It is mathematically defined as follows:

P ∗ = {x∗ ∈ F|@x ∈ F : x ≺ x∗}

Definition 2.5. Local Pareto Optimal Set: Let N ⊂ F be a set of solutions in the

neighborhood of P ∗, the Pareto-optimal set. P ∗ is a local Pareto-optimal set if there

exists a solution x ∈ N such that f(x) ≺ f(x∗) for some x∗ ∈ P ∗.

Definition 2.6. Global Pareto Optimal Set: P ∗ is a global Pareto-optimal set if

there does not exist a solution x ∈ S in the search space such that f(x) ≺ f(x∗) ∀
x∗ ∈ P ∗.

Definition 2.7. Pareto Optimal Front: The Pareto Optimal Front PF ∗ is a set of

objective vectors that correspond to the Pareto optimal set P ∗. It is mathematically

defined as:

PF ∗ = {f = (f1(x
∗), ..., fnk

(x∗))},∀x∗ ∈ P ∗

2.2 Dynamic Multi-Objective Optimization

MOOPs that reflect temporal considerations are referred to as DMOOPs [9] [26] [35] [47]

[61] [78] [137] [96] [116] [133] [139] [169]. This section discusses DMOOPs. A review of
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Chapter 2. Optimization 11

important concepts and definitions is presented in Section 2.2.1. Section 2.2.2 presents

environment types which are used in characterizing DMOOPs.

2.2.1 A Brief Review and Definitions

Finding solutions to DMOOPs poses a unique set of challenges, since algorithms that

search for the solutions must be able to cope with the changing environments that char-

acterize DMOOPs. DMOOPs have objective functions and/or constraints that change

over time [10] [87] [105] [134]. Therefore, algorithms searching for solutions to these prob-

lems must be capable of tracking changes in the optimal solutions and their associated

objective vectors.

The general DMOOP is formally defined as follows [84]:

Minimize: f(x,t) = (f1(x, t), ..., fnk
(x, t))

Subject to:

gm(x, t) ≤ 0 m = 1, ...ng

hm(x, t) = 0 m = ng + 1, ...ng + nh

x ∈ [xmin, xmax]
nx

(2.2)

In Equation 2.2, t represents time. All other parameters in the equation are as defined

in Equation 2.1.

Definition 2.8. Changing Pareto Optimal Front: The goal of a DMOA is to track

the changing POF over time. The changing POF is defined as follows:

PF ∗(t) = {f(t) = (f1(x
∗, t), ..., fnk

(x∗, t))},∀x∗ ∈ P ∗(t)

2.2.2 Dynamic Environment Types

The changing environment of a DMOOP is an important classification criterion. Good

DMOAs are those which are very effective in tracking the changes. The general classifi-

cation of the changing environment is discussed in this section. Farina et al [61] classified

the environments of a DMOOP as presented in Table 2.1:

1. Type I environment: POS changes, but the POF remains unchanged.
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Chapter 2. Optimization 12

2. Type II environment: POS and POF change.

3. Type III environment: POS remains unchanged, but POF changes.

4. Type IV environment: Both POS and POF do not change.

Changes in the environment of a DMOOP may impact the POF in any of the following

ways [84]:

1. Existing solutions in the POF become dominated and therefore are excluded from

the POF.

2. The shape of the POF remains the same, but its location in the objective space

changes over time. In these cases the POF shifts over time. This kind of change

of the POF occurs with type I DMOOPs and are the easiest kind of DMOOPs to

solve.

3. The shape of the POF changes over time:

(a) Change shape from convex to concave, or vice versa.

(b) Change shape from continuous to disconnected front or vice versa.

4. The density of the solutions in the POF changes over time:

(a) The solutions in the POF may become more/less dense.

(b) The number of solutions in the POF may become more/less.

Table 2.1: Type of DMOOP Environments.

POS

POF NO CHANGE CHANGE

NO CHANGE TYPE IV TYPE I

CHANGE TYPE III TYPE II
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Chapter 2. Optimization 13

2.3 Benchmark Functions

This section discusses benchmark functions. Section 2.3.1 presents what they mean

and some of the ideas motivating their constructions. Section 2.3.2 presents the ZDT

benchmark function. DTLZ is discussed in Section 2.3.3. Dynamic benchmark functions

are presented in Section 2.3.4.

2.3.1 Construction of Benchmark Functions

Benchmark functions are the artificial counterparts of the real-world MOOPs. Real-

world MOOPs present various difficulties to algorithms, and algorithms’ effectiveness

are evaluated on their abilities to overcome those difficulties. Benchmark functions are

typically used for the purpose of comparing algorithms on their abilities to overcome the

difficulties presented by MOOPs [61] [73] [88] [84] [97] [106]. For instance, when there is

a change in the environment, the POF may change in shape, location, or in some other

ways. An effective algorithm should be able to track the changes and converge to the

new POF [84].

Benchmark functions are expected to possess some ideal characteristics, which usually

guide their construction. Such characteristics include the following [49]:

1. Ease of construction.

2. Scalability in terms of the number of decision variables and the number of objective

functions.

3. Present a POF with a known shape and location, which is easy to understand.

4. Present known difficulties, such as flat regions and local optima, to algorithms

trying to converge to the true POF.

5. Make the prospect of obtaining a well diversified set of optimal solutions difficult

to achieve by algorithms.

An algorithm may experience difficulties in converging to the true POF, i.e. the

theoretically correct optimal solutions to a problem, because of the following features

that may be present in the problem [34] [45]:
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Chapter 2. Optimization 14

1. Multi-modality, i.e. the presence of multiple global POFs.

2. Deception, i.e. attraction of algorithms to local POFs.

3. Isolated optimum, e.g. a flat region that may force an algorithm to get stuck in a

sub-optimal region of the search space.

4. Collateral noise, e.g. a situation where the low-order building blocks, in a solution

vector, that may lead to the true optimum are improperly evaluated due to the

interference of some other components of a solution vector.

While convergence to the true POF is one of the main goals of any algorithm employed

in the search for solutions of MOOPs, maintaining diversity of solutions in the found

POF is another major goal. However, algorithms may experience the following difficulties

in achieving the goal of diversity [45]:

1. Convexity or non-convexity in the POF.

2. Discontinuity in the POF, and

3. Non-uniform distribution of solutions in the POF.

2.3.2 ZDT Benchmark functions

Zitzler, Deb and Thiele [45] proposed an N -variable tunable two-objective problem as

follows:

Minimize: f = (f1(xI), f2(xII))

Subject to:

f2 = g(xII) . h(f1(xI), g(xII))

xI = (x1, ..., xm)

xII = (xm+1, ..., xN)

(2.3)

Where f1 , g > 0. By choosing appropriate values for f1, g and h, problems with

specific features can be created:
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Chapter 2. Optimization 15

1. An appropriate h function affects convexity or the discontinuity in the POF.

2. A difficult g function, e.g. multi-modal, deceptive and others, affects convergence

to the true POF.

3. An appropriate f1 (non-linear or multi-dimensional) function affects diversity of

the POF solutions.

Deb et al [45] consequently created six benchmark functions based on Equation 2.3 and

the construction guidelines in Section 2.3.1. Also, each of the ZDT functions addresses

one of the difficulties faced by algorithms searching for solutions of MOOPs. ZDT prob-

lems are, however, two objective problems [217]. For further details on the six benchmark

functions, including their mathematical definitions, and their POSs and POFs, refer to

[45] [84] [88].

2.3.3 DTLZ Benchmark functions

Deb, Thiele, Laumanns and Zitzler developed a set of benchmark functions, referred to

as DTLZ benchmarks [49]. This section discusses the two approaches and the benchmark

function generator used in developing the set of DTLZ functions.

Definition 2.9. Spherical Coordinates Approach:

Deb et al [49] created a test problem where the POF lies in the first quadrant of a

sphere of radius one and all objective functions take non-negative values. Using spherical

coordinates (θ, γ, r = 1), the POF can be defined as follows:

f1(θ, γ) = cos θ cos(γ +
π

4
)

f2(θ, γ) = cos θ sin(γ +
π

4
)

f3(θ, γ) = sin θ

where:

0 ≤ θ ≤ π

2
, −π

4
≤ γ ≤ π

4

(2.4)

If all the objective functions are minimized, any two points on the surface are non-

dominated to each other. If the rest of the objective search space is constructed above
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Chapter 2. Optimization 16

this surface, the unit sphere constitutes the POF. This can be achieved by creating the

rest of the search space parallel to the surface defined in Equation 2.4 as follows:

Minimize:

f1(θ, γ) = (1 + g(r)) cos θ cos(γ +
π

4
)

f2(θ, γ) = (1 + g(r)) cos θ sin(γ +
π

4
)

f3(θ, γ) = (1 + g(r)) sin θ

where:

0 ≤ θ ≤ π

2
, −π

4
≤ γ ≤ π

4

g(r) ≥ 0

(2.5)

The POS for the problem defined by Equation 2.5 is 0 ≤ θ∗ ≤ π
2
, −π

4
≤ γ∗ ≤

π/4, g(r∗) = 0.

Definition 2.10. Constrained Surface Approach: This is another approach em-

ployed by Deb et al to construct DTLZ benchmark functions [49]. A search space is

defined as follows:

Minimize:

f1(x)

.

.

.

fnk
(x)

Subject to:

0 ≤ fLi ≤ fi(x) ≤ fUi , i = 1, ..., nk

(2.6)

For the problem defined by Equation 2.6, fLi and fUi refer to the lower and the

upper bounds of the function fi respectively. The POS corresponding to Equation 2.6 is

(fL1 , ..., f
L
nk

)T .

The problem can be made more interesting by adding constraints (linear and non-

linear), such as the following: gj(f1, ..., fnk
) ≥ 0, j = 1, ..., ng, where fi is an objective

function defined in Equation 2.6.
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Definition 2.11. Benchmark Function Generator: Deb [48] suggested a generic

function generator based on the constraint surface approach. The generator was used

by Deb et al to develop the set of DTLZ benchmark functions [49]. The generator is

defined as follows:

Minimize:

f1(x1)

.

.

.

fnk−1(xnk−1)

fnk
(xnk

) = g(xnk
) . h(f1, ..., fnk

, g)

where:

x ≡ (x1, ..., xnk
), i.e. x is partitioned into disjoint, nk sets of decision variables, and

xi ∈ R|xi|, i = 1, ..., nk

(2.7)

2.3.4 Dynamic Multi-Objective Benchmark functions

Benchmark functions discussed in this section are dynamic, in addition to possessing

multiple objectives. They are constructed by extending the construction rules suggested

in [45] [49] [217]. Unlike the proposals in [192], the construction rules on which the

dynamic benchmark functions of this section are based, facilitate a systematic construc-

tion of problems that present different difficulties (refer to Section 2.3.1) to algorithms.

Dynamic problems are further characterized by the possibility of transforming from one

difficulty to another as the problem environment changes.

The following is a generic two-objective benchmark function based on ZDT [45]:

minimize: f = (f1(xI, t), f2(xII), t)

where:

f2 = g(xII, t) . h(xIII, f1(xI, t), g(xII), t)

(2.8)
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Chapter 2. Optimization 18

Farina et al [61] created the FDA suite of benchmark functions. The FDA functions

are based on the generic test problem defined by Equation 2.8. The functions exhibit

the desirable properties of test problems: ease of construction, scalability in terms of

decision variables and objective functions, and a known POF, among others. Further

details of the FDA functions can be found in [61] [88]. However, the FDA functions used

in this research are briefly presented next.

FDA1 =



minimize f = (f1(xI), f2(xII), t)

f1(xI) = xI

f2 = g(xII, t) . h(f1(xI, t), g(xII), t)

g(xII, t) = 1 +
∑

xi∈xII
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where:

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0, 1], xII = x \ xI, xII ∈ [−1, 1]nx−1

(2.9)

FDA1 is a type I DMOOP. Its POS changes with time, while the POF remains un-

changed. The true POF is 1−
√
f1 and is convex shaped. The POS is xi = G(t), ∀xi ∈ xII.
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Chapter 2. Optimization 19

FDA2 =



minimize f = (f1(xI), f2(xII), t)

f1(xI) = xI

f2 = g(xII, t) . h(xIII, f1(xI, t), g(xII), t)

g(xII) = 1 +
∑

xi∈xII
x2i

h(f1, g, t) = 1−
(
f1
g

)H2(t)

where:

H(t) = 0.75 (1 + sin(0.5πt)) , t = 1
nt

⌊
τ
τt

⌋
H2(t) = (H(t) +

∑
xi∈xIII

xi −H(t)2)−1

xi ∈ [0, 1], xII, xII ⊆ x \ xI ∈ [−1, 1]nx−1

(2.10)

The POS and POF of FDA2 change over time. The benchmark function is a type

II DMOOP. Therefore, FDA2’s POF changes from convex to concave. The POS is

xi = 0, ∀xi ∈ xII and xi = H(t), ∀xi ∈ xIII. The POF is 1− fH(t)−1

1 .

FDA3 =



minimize f = (f1(xI), f2(xII), t)

f1(xI) =
∑
xi∈xI

x
F (t)
i

f2 = g(xII, t) . h(f1(xI, t), g(xII), t)

g(xII, t) = 1 +G(t) +
∑

xi∈xII
(xi −G(t))2

h(f1, g, t) = 1−
(
f1
g

)0.5
where:

G(t) = |sin(0.5πt)|

F (t) = 102sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xIj ,xIIj ∈ [0, 1]

(2.11)
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Chapter 2. Optimization 20

FDA3 is a type II DMOOP, where both the POF and the POS change over time.

The POF is convex and is defined as (1 +G(t))
(

1−
√

f1
(1+G(t))

)
. The POS is xi =

G(t), ∀xi ∈ xII.

FDA5 =



minimize f = (f1(x, g(xII, t), ..., fk(x, g(xII, t)))

f1 = (1 + g(xII, t))
(∏M−1

i=1 cos(yi
π
2
)
)

fk = (1 + g(xII, t))
(∏M−1

i=1 cos(yi
π
2
)
)

sin(yM−k+1
π
2
), ∀k = 2, ...,M − 1

...

fM = (1 + g(xII, t))sin(y1
π
2
)

where:

g(xII, t) = G(t) +
∑

xi∈xII
(xi −G(t))2

G(t) = |sin(0.5πt)|

yi = x
F (t)
i , ∀i = 1, ...,M − 1

F (t) = 1 + 100sin4(0.5πt)

xII = (xM , ..., xnx)

xi ∈ [0, 1], ∀i = 1, ..., nx

(2.12)

FDA5 is a type II problem, with POS and POF changing over time. The density

of solutions also change over time. The non-convex POF of a three-objective FDA5 is
3∑
i=1

f 2
i = (1 +G(t))2. The POS is xi = G(t), ∀xi ∈ xII.

Goh and Tan [73] proposed dMOP2, a type I dynamic multi-objective benchmark

function whose POF changes from convex to concave over time. The function is defined

as follows:
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dMOP2 =



minimize f = (f1(xI), f2(xII), t)

f1(xI) = xI

f2 = g(xII, t) . h(f1(xI, t), g(xII), t)

g(xII, t) = 1 + 9
∑

xi∈xII
(xi −G(t))2

h(f1, g, t) = 1−
(
f1
g

)H(t)

where:

H(t) = 0.75sin(0.5πt) + 1.25

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0, 1]

(2.13)

The POF of dMOP2 is 1− fH(t)
1 , while its POS is xi = G(t), ∀xi ∈ xII.

2.4 Performance Measures

When algorithms find solutions of optimization problems, the solutions are usually ap-

proximations. Therefore, a means is required to evaluate the quality of the approximated

solutions. A set of solutions is preferred, or of good quality, if the approximated solutions

are very close to the true solutions of the problem being solved. Also, a quality solution

set will be well diversified. Veldhuizen et al [193] provided one of the earliest quantita-

tive approaches for comparing the quality of solutions in MOOPs, providing a radical

departure from the earlier approaches using graphical plots. Meanwhile, the literature

now contain many different proposals on how the quality can be measured.

Algorithms are evaluated on their ability to obtain quality approximations of the true

solutions. Performance measures are quantitative metrics that measure how effective an

algorithm is in terms of the ability to find a good set of solutions. The measures are

based on defined criteria of effectiveness, such as the number of non-dominated solutions

found, the closeness of the found Pareto-optimal solutions to the true Pareto-optimal

solutions and the diversity of solutions in the found set of Pareto-optimal solutions.
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Performance measures are mathematical operators, or functions [216] [219]. As operators,

they can take one argument, and are then referred to as unary operators [44] [193]. The

arguments of the operators, in this instance, are POFs. Binary operators have also been

proposed and studied [81] [215]. However, Fonseca et al [77] proposed an entirely different

approach, based on the attainment function, evaluating the quality of the solution set.

While this dissertation focuses on DMOOPs, interested readers may refer to [6] [132]

[165] for measures dealing with dynamic single-objective problems and [16] [27] [115] for

measures dealing with static MOOPs.

Definition 2.12. Performance Measure: Zitzler [216] defined a performance measure

as follows:

P : Ωm −→ R (2.14)

According to Definition 2.14, a performance measure maps m approximated POFs to a

real number P (POF ∗1 , POF ∗2 , ..., POF ∗m ).

In order to evaluate the quality of performance measures, Hansel and Jaszkiewicz [81]

proposed an outperformance relation. Outperformance relations are related to another

important concept, namely utility functions. A utility function quantifies the numerical

strength associated with a Pareto-optimal vector by a decision-maker. Utility functions

are quantitative estimates of a decision-maker’s preferences. Mathematically, a utility

function is defined as:

u : Rj −→ R (2.15)

In Definition 2.15, u is the utility function. Its domain is the set of Pareto-optimal

vectors. Each element in the domain of the function is of dimension j. The codomain

of the function is a real number. For minimization problems, which are the focus of this

dissertation, a utility function is compatible with the dominance relation [220] iff given

two Pareto-optimal vectors a and b, a dominating b implies u(a) > u(b).

The set of all utility functions that are compatible with the dominance relation is

denoted as Uc. Let u∗ = max
z∈A
{u(z)} be defined as the maximum value of a utility function

on a POF, A. u∗ represents a decision-maker’s best compromise among other solutions

in the set A.
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Let A and B be two distinct POFs representing approximations of a true POF. Then,

U(A > B) = {u ∈ U : u∗(A) > u∗(B)} ⊆ Uc

is defined as the set of utility functions for which A is better than B. Consequently, the

following relations and associated concepts are defined:

Definition 2.13. Outperformance Relation: Let A and B be two approximations

of a true POF. Then, A outperforms B, denoted as AOU B, if U(A > B) is non-empty

and U(B > A) is empty.

Decision-makers’ preferences, which are typically modelled with utility functions,

are generally assumed, though in a weak sense, to be compatible with the dominance

relation. Therefore, decision-makers are assumed to prefer non-dominated solutions [51],

i.e. given two approximated sets A and B, a decision-maker will prefer ND(A ∪ B).

This dominance-based assumption about a decision-maker’s preferences was used by

Hansel and Jaszkiewicz [81] to formulate the following three relations about POFs that

approximate the true POF.

Definition 2.14. Weak Outperformance Relation: Let A and B be two approx-

imations of a true POF. A weakly outperforms B, denoted as AOW B, if A 6= B,

ND(A ∪ B) = A. A weakly outperforms B if a non-dominated element in B is also in

A, and there is an element in A that is not in B.

Definition 2.15. Strong Outperformance Relation: Let A and B be two approx-

imations of a true POF. A strongly outperforms B, denoted as AOS B, if A 6= B,

ND(A∪B) = A, B \ND(A∪B) 6= φ. A strongly outperforms B if every non-dominated

element in B is also found in A and there is at least one element in B that is not found

in A. In addition, every element in A is not dominated by elements in B.

Definition 2.16. Complete Outperformance Relation: Let A and B be two ap-

proximations of a true POF. A completely outperforms B, denoted as AOC B, if A 6= B,

ND(A ∪ B) = A, B ∩ND(A ∪ B) 6= φ. In complete outperformance, every element in

B is dominated by at least one element in A.
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According to Knowles [114], reliable performance measures that will be consistent

with the Pareto dominance relations must be compatible with the preceding outperfor-

mance relations.

The following definitions present the notions of compatibilities proposed in [81]:

Definition 2.17. Weak Compatibility: A performance measure is weakly compatible

with an outperformance relation if for a pair of POFs, A and B, whenever A outperforms

B the performance measure will evaluate A as not being worse than B.

Definition 2.18. Compatibility: A performance measure is compatible with an out-

performance relation if for a pair of POFs, A and B, whenever A outperforms B the

performance measure will evaluate A as being better than B.

In order to evaluate the efficiency of performance measures, Knowles [114] proposed

the concepts of monotony and relativity.

Definition 2.19. Monotony: Given an approximated POF A, and let B be a new

approximated POF, a monotonic performance measure will evaluate A∪B as not being

worse than A.

Definition 2.20. Relativity: Given an approximated POF A, and let B be a true

POF, then a performance measure will evaluate B as being better than A.

This dissertation focuses on DMOOPs. Performance measures used for evaluating

DMOAs are now reviewed. These measures are broadly divided into measures that

evaluate the accuracy of the found POFs, measures that evaluate the diversity of solu-

tions in the found POFs and measures that combine both accuracy and diversity. For a

comprehensive review of measures in the three categories, refer to [87] [90].

The following measures are relevant for this dissertation:

Definition 2.21. Hypervolume: The hypervolume, which is also referred to as the

size covered, refers to the region of the objective space that is dominated by a non-

dominated set [215] [218]. When the hypervolume of non-dominated sets are computed,

the higher the value of the measure, the better the non-dominated sets, provided all

non-dominated sets used the same reference vector when computing the hypervolume.

For a formal definition of a domination region and the hypervolume, refer to [90].
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Algorithm 1 Calculation of Wins and Losses

1: while existUnprocessed(DMOOP) do

2: while existUnprocessed(nt − τt combination) do

3: Perform Kruskal-Wallis tests on pm

4: if statistical significant difference then

5: while existUnprocessed(DMOA-pair) do

6: Perform Mann-Whitney U tests on pm

7: if statistical significant difference then

8: Assign wins and losses

9: end if

10: end while

11: end if

12: calculate Diff for the nt − τt combination

13: end while

14: calculate Diff for the DMOOP

15: end while

Definition 2.22. Hypervolume Ratio: The hypervolume has a drawback, which is

bias towards the convex region of the search space. To solve the bias problem, van

Velduhizen [192] proposed hypervolume ratio, hvr, which is defined as follows:

hvr = HV (POF ∗)/HV (POF ).

hvr normalises the hypervolume of the approximated POF, POF ∗, and its value

ranges between 0 and 1. The maximum value of hvr is obtained with the true POF. The

higher the value of this measure, the better the performance of the associated algorithm.

2.5 Statistical Analysis

In order to analyse the performance of multi-objective optimization algorithms (MOAs)

in a changing environment, statistical approaches are employed. Two of the notable

approaches which have been used for static MOOPs are as follows:
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Algorithm 2 Generic Dynamic Multi-Objective Optimization Algorithm

1: Set population size, N

2: Set max archive size, SizeArchive

3: Initialize the iteration counter, iteration← 0

4: Initialize time, t← 0

5: Initialize(Pt, freq, severity, dMOOP, t)

{Initialize population of solutions, Pt}
6: AssignNonDominatedToArchive(Pt, dMOOP, t)

7: bMORE ← TRUE

8: while bMORE do

9: if iteration ≤ maxiteration then

10: t← 1/severity ∗ floor(iteration/freq)
{severity and frequency of change are inputs to the algorithm}

11: Optimizer(Pt, dMOOP, t)

{main optimization routine}
{Implementation of Optimizer varies from one natured-inspired algorithm to another}
{Subsequent chapters will elaborate on various implementations of Optimizer}

12: Pick sentry solutions

{sentry solutions are used to determine if a change in the environment has occurred}
13: if ENV changes(Pt, dMOOP, t) then

14: ProcessChange(Pt, freq, severity, dMOOP, t)

{if there is change in the optimization environment, algo processes the change}
15: end if

16: iteration← iteration+ 1

17: else

18: bMORE ← FALSE

19: end if

20: end while

1. A performance measure is computed for an algorithm for each time step. The

average and standard deviation of the measure for all the time steps are then used

to analysis the algorithm’s performance [18] [22] [23] [72] [115] [120] [206].

2. The average performance measure of each algorithm is used to compute wins and
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losses. For a given problem, the performance measures of two algorithms are

computed in each time step and compared using a Kruskal Wallis test. If there

is a statistical significant difference between the algorithms’ performance measure

values, then the algorithm with a better average measure value is awarded a win,

while the other algorithm is awarded a loss [82] [85] [86].

The shortcoming of the two approaches described above is that they do not account

for the changing POFs. Therefore, those approaches are unable to evaluate how well an

algorithm is able to track the changing POFs.

However, one popular approach that has been widely used to analyse the tracking

behaviours of algorithms is to plot the performance measure value over time [5] [7] [38]

[52] [83] [99] [121]. The problem with this approach is that the graph becomes too

cluttered when the number of algorithms increases.

Helbig [87] proposed an approach that accounts for the ability of algorithms to track

the changes in the dynamic environment of the optimization problems that are being

solved. Algorithm 1 presents the procedure used in calculating wins and losses as pro-

posed in [87]. When testing for a statistical significant difference, the average perfor-

mance measures in each time step just before a change in the environment was used. In

the algorithm, pm refers to performance measure, while Diff is the difference between the

number of wins and losses. In assigning wins and losses as per Algorithm 1, Helbig and

Engelbrecht [85] [86] [89] first proposed the following approach: if the Mann-Whitney

test shows a statistical significant difference between the performance measure values of

the pair of DMOAs, the average value of the measure is used to assign wins and losses.

The algorithm with the best measured average over all time steps is the winner. This

approach, named wins− lossesA [87] is unable to measure how an algorithm is capable

of tracking the changing POFs. Therefore, another approach, called wins− lossesB was

proposed in [87]. In wins− lossesB, average performance values of a pair of algorithms

are compared, provided there is a statistical significant difference in performance mea-

sure values. The algorithm with the better average in each time step just before a change

in environment occurred is assigned a win. By this method, the tracking ability of an

algorithm is accounted for in the process of computing wins and losses as per Algorithm

1. Helbig and Engelbrecht[87] also proposed a normalization procedure for the wins and
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losses computed - refer to [87] for more details about the normalised wins and losses.

2.6 Generic Dynamic Multi-objective Optimization

Algorithm

This section presents a high-level description of a generic DMOA. This algorithm provides

the framework for the experimental studies conducted in this research. The algorithm

uses an archive to store the non-dominated solutions, or elites, that are found across

different generations. The implementations of DNSGA-II, DVEPSO and 2DEVENS

algorithms, which are considered in the following chapters, all built on this generic

algorithm. The generic algorithm is presented in Algorithm 2.

2.7 Summary

This chapter discussed key concepts of mathematical optimization. Multi-objective opti-

mization in the context of static and dynamic environments were also discussed. Impor-

tant terms and concepts related to dynamic multi-objective optimization were defined

and discussed. Statistical measures of performance of dynamic multi-objective opti-

mization algorithms were motivated and a generic dynamic multi-objective optimization

algorithm was presented. The next chapter will discuss the nature-inspired algorithms

that were used in this research.
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Chapter 3

Nature-Inspired Algorithms

Nature doesn’t feel compelled to stick to a mathematically precise algorithm;

in fact, nature probably can’t stick to an algorithm.

Margaret Wertheim.

A lot can be learned from nature; nature efficiently solves certain problems. There-

fore, algorithms can be designed to imitate nature’s approaches to solving these types

of problems. Algorithms [207] have been designed to mimic natures’s problem-solving

methodologies in areas such as the design of aircraft wings [63] [189], wind turbines

[4] [166], bullet trains, bionic cars, etc. [174] Optimization problems, which require

the search for the most effective ways of doing things, have been solved by traditional

methods, such as those prevalent in operations research. Traditional approaches to

optimization problems are either purely analytical/mathematical or iterative [135]. Ac-

cording to Goldberg [74], traditional approaches fall into the following three categories:

calculus-based, enumerative and random. Calculus-based involves the use of deriva-

tive information, and it could be analytical or iterative. One major concern with the

calculus-based approach is discontinuity and non-differentiability at some points in the

search space. In the face of non-differentiability, an enumerative approach is preferred.

However, enumerating all the points of the search space can prove a huge computational

cost, in which case the random approach is preferred. In the long run, however, the

random approach will behave like the enumerative approach. In light of the foregoing, it

29
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Chapter 3. Nature-Inspired Algorithms 30

is evident that the traditional approaches are well-suited for continuous, differentiable,

unimodal and noiseless problems [56].

Evolutionary algorithms and swarm intelligence algorithms are two prevalent classes

of nature-inspired algorithms. Computational intelligence is a bigger umbrella term for

the subfields of evolutionary computation and swarm intelligence. Evolutionary algo-

rithms, or evolutionary computation techniques, are search and optimization procedures

that function by using a population of candidate solutions. Therefore, they are well-

suited for finding the global optimal of optimization problems. They are inspired by

biological evolution [123] as explained by Darwin’s theory [40] of reproduction in order

to produce offspring, mutation and the selection of the best offspring. Selection ensures

that on average better offspring are selected in order to improve the desirable qualities

in a population of biological entities. The selection process preserves the offspring who

are able to best adapt to the changes in the competitive environment [12, 65]. For more

information about evolutionary algorithms, refer to Section 3.1.

Flocking in birds, schooling in fish and a host of other herding behaviours found

in gregarious animals have inspired computational procedures generally referred to as

swarm intelligence algorithms. Swarming is a problem-solving technique that involves

the distribution of local intelligence among a group of cooperative agents in order to

solve a global problem. Local intelligence are shared in a distributed fashion and the

coordination among the agents is decentralized and adaptive. The collective intelligence

that exists in the swarm is never embodied in any of the agents in the swarm [92] [151].

The rest of the chapter is organized as follows: Section 3.1 presents the generic

evolutionary algorithm. One of the evolutionary algorithms studied in this dissertation,

the genetic algorithm, is discussed in Section 3.2. Particle swarm optimization algorithms

are examined in Section 3.3. Another instance of evolutionary algorithms, differential

evolution, that is studied in this dissertation, is discussed in Section 3.4, and Section 3.5

provides a summary of the chapter.
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Algorithm 3 Generic Evolutionary Algorithm

1: Let t = 0 be the generation counter

2: Create and initialize population, C(0)

3: while stopping conditions not true do

4: Evaluate the fitness, f(xi(t)), of each individual, xi(t)

5: Perform reproduction to create offspring

6: Select the new population, C(t+1)

7: Increase the generation counter: t = t + 1

8: end while

3.1 Generic Evolutionary Algorithm

This section presents the generic evolutionary algorithm as presented in Algorithm 3.

Search and optimization procedures that employ a generic evolutionary algorithm gen-

erally perform basic functions, such as:

1. Encoding of solutions as chromosomes.

2. Fitness evaluation in order to compute the survivability of an individual in the

problem environment.

3. Initialization of the initial population.

4. Selection of individuals.

5. Reproduction of better and improved offspring from parents.

This algorithm may be implemented in different ways. The various implementa-

tions of the algorithm have given rise to some of the following evolutionary computation

paradigms:

1. GA: this is based on genetic evolution [74, 145, 197, 207].

2. Genetic Programming (GP): it is based on GA, however individuals are programs

or executable chromosomes [203].
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3. Evolutionary Programming (EP): this is based on the evolution of behavioral traits,

as against genotypic traits [67], which are based on genetic makeups.

4. Evolutionary Strategies (ES): evolution of phenotypic traits, which are expressed

traits that are visible to the outside world, and are used in driving the genetic

evolution; it is based on evolution of evolution [153].

5. Differential Evolution (DE): analogous to GA, but different in the way the repro-

duction is performed [148] [180].

6. Cultural Evolution (CE): changes in the cultural character of a population is used

to drive the evolution of genetic and phenotypic traits of the population [157] [158]

[159].

7. Co-evolution (CoE): individuals in a population may develop reciprocal relation-

ships that facilitate co-evolution. For instance, an insect may develop specialized

capacities to feed on a plant, and the plant may in turn develop abilities to ensure

that its pollination is facilitated by the insect. These reciprocal relationships may

be cooperative or competitive [93].

Only evolutionary computation paradigms that are used in this research are discussed

in the rest of the chapter in more detail.

3.2 Genetic Algorithm

This section discusses the GA. A background to GAs is presented in Section 3.2.1. Chro-

mosome representation schemes are discussed in Section 3.2.2. The dominant operators

used in GAs are discussed in Sections 3.2.3, 3.2.4 and 3.2.5. Section 3.2.6 presents a

representative DMOA that employs GA techniques to solve DMOOPs.

3.2.1 Background

GAs are stochastic and computational models of biological and genetic evolution. They

were first proposed by Fraser [69, 70], Bremermann [19] and Reed et al [154]. However,
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it was the work of Holland [93] that popularized GAs. It is one of the earliest evolu-

tionary computation techniques to gain widespread adoption. Like other evolutionary

algorithms, it is widely used for search and optimization. Because it is a population-based

algorithm, searching for optimal solutions typically starts with a population of candi-

date solutions, which are randomly generated to ensure that the solutions are widely

drawn from the search space. Such randomly drawn candidate solutions help to ensure

the diversity of the final (best) solutions. Also, the widely drawn candidate solutions

ensure that the search can advance simultaneously from different parts of the search

space, which can help to avoid the possibility of the algorithm getting stuck in a local

optimum. Each solution in the population is the equivalent of a chromosome in a bio-

logical evolution. The functional value of a solution is the equivalent of the phenotype

in a biological evolution. The phenotypic value of a solution is also referred to as the

fitness value of the solution.

GAs, including the original version that was proposed by Holland [93], are generally

consistent in their procedures with the steps in Algorithm 3. The reproduction step in

Algorithm 3 roughly corresponds to crossover and mutation steps in a GA. In addition,

different implementations of a GA may treat the key elements/steps of Algorithm 3 in

different ways. The following subsections will therefore examine some of the implemen-

tation specific differences in how solutions in the search space may be represented and

how the various forms of operators used in a GA may be implemented.

3.2.2 Chromosome Representation

A chromosome is the fundamental building block in evolutionary algorithms (EAs). It

is the carrier of genetic characteristics of individuals and it is a string of genetic mate-

rials. The genes, which constitute the components of a chromosome, carry important

genetic information that determines the survival strengths of individuals in a competitive

environment.

For optimization and search problems, individual solution in the search space requires

a representation of the chromosomes that will facilitate navigating the search space. Such

representations should also help to preserve quality genetic material from generation to

generation. Encoding solutions is the act of finding such representations for solutions in
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the search space. According to Section 3.1, finding appropriate encodings is an important

first step in the workings of EAs. Different search and optimization problems may impose

constraints on the choice of encodings [117]. Various encodings have been used in GAs,

namely:

1. Binary encoding. where a chromosome is represented as a binary string [75]. Each

bit in the string carries genetic information about an individual. The original

implementation of a GA proposed by Holland [93] used this encoding.

2. Permutation encoding, where a chromosome is a sequence of numbers which are

each representing positions, such as the position/location of a city in a Travelling

Salesman Problem [15]. This type of encoding is used when the fitness of a chro-

mosome depends on the order of genetic material in the chromosome [118] [168]

[184] [198] [199].

3. Integer number encoding, where the constituents of a chromosome are integers

[168].

4. Floating-point number encoding, where each component of a chromosome is a

floating-point number [50] [60] [107] [204].

3.2.3 Selection Operator

In Algorithm 3, selection is one of the key operations. The motivation behind selection

is to improve the chance of better individuals to survive to the next generation [175].

At the same time, a good selection strategy should facilitate diversity in the population

by avoiding too high selection pressure, which tends to favor a few better individuals at

the expense of the weaker ones. In a population, a subset will be selected to undergo

reproduction in order to generate a new population of individuals for the next generation.

Also, when parent individuals have been selected and mated, some of the new offspring

may be selected for the next generation according to the selection method adopted by

the GA. In this section some of the popular selection strategies are discussed. However,

for a more comprehensive discussion of selection strategies, refer to [58] [173] [175].

The following are popular selection strategies:
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1. Random: In a population of N individuals, a purely randomized process is used

in making the selection. Each individual in the population has equal probability

of being selected, since fitness information are not taken into account. Because

the process of selection is purely random, no member of the population is favored.

Therefore, selective pressure is the least in this selection strategy [58].

2. Fitness Proportional: The probability of selection is proportional to the individ-

ual’s fitness. There are different implementations of this strategy that vary in how

they compute the probability of selection [175]. Roulette wheel is one popular

implementation [95] of the fitness proportional strategy, and it proceeds by first

computing the sum of the fitness for all individuals in the population and then

divides the fitness of each individual by the sum. The values obtained are the se-

lection probability of each individual. Then an iterative procedure is kick-started

by setting a sum of selection probabilities, S, to zero. The procedure also gen-

erates a random number, r, between 0 and 1. The procedure then runs through

the population, while r is greater than a sum of selection probabilities, S, for each

individual, the procedure adds the selection probability, S, to the selection prob-

ability of the current individual of the population. The iteration ends with the

first member found, where S is greater than r, and that member is returned as the

selected member.

3. Tournament: In this strategy, n individuals are randomly selected from the pop-

ulation. The best among the randomly chosen n individuals wins the tournament

selection [173].

4. Rank-based: Baker [13] proposed rank-based selection in order to eliminate a dis-

advantage with proportionate selection [173]. In this strategy of selection, the

population is first sorted in decreasing order of fitness. The first individual in

the sorted population is assigned a rank of N , corresponding to the population

size. The rank of the second individual is N − 1, the third is N − 2, etc. The

last individual, which is the one with the lowest fitness, is assigned a rank of 1.

The selection probability is then computed according to a mathematical relation

proposed in [173] for linear and exponential rankings. The selection probability is
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proportional to the ranks, unlike the fitness in the case of proportional selection.

5. Elitism: In this selection strategy, the best individuals in any generation are pre-

served, without mutation, and survive to the next generation. With this strategy

the best genetic materials are preserved from one generation to the next, ensuring

that operators, such as crossover and mutation, do not destroy the best materials.

Elitism may favor exploitation at the expense of exploration, thereby inhibiting

diversity of genetic materials in the population.

6. Hall of Fame: The best members of each generation are added to an archive,

and the members in the archive are used as parents in the subsequent generation

during crossover. This strategy, first proposed by Rosin et al [160] [161], ensures

that offspring are produced from the best individuals in the population.

3.2.4 Crossover Operator

Offspring are produced from parents through the process of reproduction, i.e. crossover

and/or mutation [58]. Unlike selection operators, reproduction operators are highly

affected by the choice of chromosome representation. In crossover, offspring may be

produced from a single parent. This is called asexual crossover. In sexual crossover, two

parents are used to produce offspring, while multi-recombination crossover employs more

than two parents. When the selected chromosomes are binary, binary crossover is used,

while real-coded crossovers are used where real-encoding of chromosomes is adopted.

In binary crossover, two parents are typically used. One-point binary sexual crossover

randomly selects a crossover point, and bitstrings after that point are swapped between

the two parents [95]. Two-point crossover selects two points in the parents. Every

bitstring between the two points are swapped in the two parents. However, the idea of

two-point crossover may be extended to more points [43] [59] [154]. Uniform crossover

[1] [183], however, employs a fixed mixing ratio between the two parents. It starts by

setting a probability measure. Assuming a measure of 0.5, bitstrings in the offspring

are likely to be composed of half of each parent’s bitstrings. Each bit position in the

chromosomes of the parents are swapped based on the probability measure.
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Floating-point representation of chromosomes requires specific crossover operators

that exploit the peculiarities in representation scheme. However, the preceding binary

crossover operators have been used for floating-point representation despite their limita-

tions in capturing the nuances of the floating-point search space. While binary crossover

operators specifically swap bitstrings in the parent chromosomes in order to generate off-

spring, floating-point, otherwise called real-coded, operators blend and transform compo-

nents of genetic material in parents in order to produce offspring. Wright [204] developed

one of the earlier floating-point operators called linear crossover. Three solutions are gen-

erated from two parents and the best two are selected as offspring [56]. The arithmetic

crossover operator was proposed by Michalewicz [131]. The operator takes a weighted

average of two or more parents in a kind of recombination strategy. One offspring is

generated in the process. Elsehelman and Schaffer [60] created an adaptation of the

weighted arithmetic operator, called blend crossover (BLX-α). To simulate the func-

tionality of single-point binary crossover, Deb and Agrawal [46] developed the simulated

binary crossover (SBX). SBX has the quality of ensuring that generated offspring are not

biased towards any of the parents. Further details about the mathematical formulations

of these floating-point operators can be found in [56].

The foregoing floating-point operators are mostly used in sexual, or two parent,

crossover operations. Sometimes, there is a compelling need for intensive exploratory

operations, a need that is served by multi-parent crossover. In multi-parent crossover

two or more parents are involved in the process of generating offspring. Bringing to-

gether two or more parents increase the dissemblance between parents and offspring,

therefore resulting in a more diversified population. Ono and Kobayashi [136] developed

a unimodal normal distribution crossover (UNDX). In UNDX three parents are utilized

to generate two or more offspring. An ellipsoidal probability distribution, where one of

the axes is formed along the line that connects two of the parents, is used to generate

the offspring. UNDX has however been generalized to work with two or more parents

using the center of mass of the parents [56]. Another center of mass crossover operator,

called simplex crossover (SPX), was proposed by Tsutsio and Goldberg [190], as well as

Renders and Bersini [155]. SPX uses a uniform probability distribution in a restricted

search space around the parents. Lastly, Deb et al [50] developed a generic parent-centric
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crossover operator, called Parent-Centric Recombination (PCX) that does not employ

center of mass in computing offspring from the parents. The procedural rules used by

PCX are presented in [50].

3.2.5 Mutation Operator

The goal of mutation is to introduce new genetic material into an existing individual

of a population. Mutation helps to facilitate diversity in a population. Together with

crossover, an evolutionary algorithm can increase its exploratory capability in the search

space. Like crossover, the chosen approach for mutation depends on the representation

scheme used for the chromosomes. Generally, binary and floating-point mutations are

the dominant types.

Binary mutation works on binary strings. Three main types of binary mutations are

generally identified:

1. Uniform mutation [94]: Bit positions are randomly selected, and the selected po-

sitions are negated.

2. Inorder mutation: Two bit positions are randomly selected and the bitstrings be-

tween the two positions undergo uniform mutation.

3. Gaussian mutation: Hinterding [91] proposed that the bitstrings to be mutated are

first converted to floating-point values. Gaussian noise is then added, thus mutat-

ing the underlying chromosome. The mutated floating-point is then converted to

equivalent bitstrings.

Hinterding [91] and Michalewicz [131] indicated that better performance is obtained

when floating-point mutation is employed in situations where decision variables take

floating-point values. Floating-point mutations directly work on real-encoded chromo-

somes, as against conversion from binary to real. The real values that represent genetic

material are generally mutated by adding a noise value, which is sampled from a statis-

tical distribution. Floating-point mutations have been classified based on the choice of

statistical distribution that is used to sample the noise value. Examples are Gaussian

mutation [64] [66], uniform mutation [128], Cauchy mutation [208] [209] [210], etc.
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3.2.6 Dynamic Non-Dominated Sort Genetic Algorithm II

DNSGA-II is one of three nature-inspired algorithms that are used in the experimental

studies conducted in this research. Therefore, the purpose of this section is to describe

some of the salient features of the algorithm.

DNSGA-II is an implementation of the GA that employs a non-dominated sorting

procedure [48] in solving optimization problems in dynamic environments. Dynamic

optimization problems are characterized in such a way that the objective function(s),

constraint functions, and/or other parameters of the problems are changing with time

[87] [134]. Because this dissertation focuses on MOOPs, optimization problems are

hereby assumed to possess two or more objectives.

In the real-world, dynamic optimization problems usually present themselves as op-

timal control problems or online problems [147]. The algorithms used in optimal control

problems usually involve evolution of control laws or rules, which are used to solve opti-

mization problems offline. For online optimization, the problem is considered stationary

for a time period, and a solution is computed during the stationary moment of the

problem. Then the problem is advanced to the next time step in order to compute a

solution for a new instance of the problem. The process of incremental change in time

is continued until the stopping criterion for the algorithm has been reached [47]. Ev-

ery time a new instance of the optimization problem is produced, an algorithm seeks

to find a solution that approximates the true solution to the problem. Because of the

incremental nature of the employed timing procedures, and the associated assumption

of stationarity of the problem while the time is fixed, the best an algorithm can obtain is

an approximated solution to the real problem. For MOOPs, a set of solutions are usually

found. The solutions are not inferior to any other solutions in the set when all the objec-

tives are considered. Therefore, they are also referred to as non-dominated solutions, or

Pareto-optimal solutions [177]. Because of the conflicting nature of the objectives used

in MOOPs, Pareto-optimal solutions represent the best tradeoff between objectives.

A non-dominated sorting genetic algorithm was first proposed by Srinivas and Deb

[177], and the proposed algorithm was called the non-dominated sort genetic algorithm

(NSGA). However, NSGA is characterized by the following pitfalls:

1. High computational complexity: time complexity of the algorithm is O(mN3),
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which is not good for algorithms with a large population size.

2. Lack of elitism: use of elitism can assist in speeding up the performance of a GA

[217], and to preserve quality solutions that have been found. NSGA, therefore

lacks the benefits of elitism.

3. Need for specifying a sharing parameter: to increase diversity, NSGA depends on

the use of a specified sharing parameter.

DNSGA-II can maintain diversity without using any special parameter. The im-

plementation of DNSGA-II employed in this dissertation uses elitism and the crowding

distance operation, a parameterless approach to maintaining diversity [68], while still

making use of the version of non-dominated sort that was used in NSGA [177]. Because

convergence and diversity, which are two important measures of performance used in

DMOO, are believed to be unaffected by run time complexity, O(mN3) complexity is

adequate for the purpose of this research. Future work on this research will however

be carried out with the fast non-dominated-sort that is specifically associated with the

non-dominated sort genetic algorithm version II (NSGA-II).

3.3 Particle Swarm Optimization

This sections discusses PSO. Section 3.3.1 presents a background to PSO. The basic PSO

algorithm is discussed in Section 3.3.2. A general PSO algorithm is presented in Section

3.3.3. Network topologies are discussed in Section 3.3.4. PSO control parameters are

presented in Section 3.3.5. Section 3.3.6 presents a multi-population PSO algorithm,

namely DVEPSO.

3.3.1 Background

PSO is a population-based optimization and search algorithm that is based on the social

behavior of birds in a flock [112]. It was originally developed by James Kennedy and

Russel Eberhart. In PSO individuals in a swarm are called particles. For optimization

problems, each particle represents a potential solution to the optimization problem being
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solved. Particles in a swarm exhibit cooperative behaviours, such as sharing position data

with the neighboring particles. Such a sharing mechanism helps to ensure that the best

known data about the target position, in a search or optimization sense, is propagated

to all the particles in the neighborhood. Put differently, particles in a swarm emulate

the success of their neighbors and their own successes. The implication of this self and

neighbor emulation is that the globally superior successful behaviors, such as the optimal

solutions in an optimization problem, is ultimately communicated to all particles in the

neighborhood.

3.3.2 Basic Particle Swarm Optimization Algorithm

A basic PSO algorithm comprises the following key steps:

1. Initialization stage: random generation of particles, i.e. for optimization problems,

the individuals in a search space.

2. The algorithm is run for a number of iterations, or until a level of approximation

to the target solution is obtained.

3. At each time step, t, a new position is computed for each particle in the swarm.

The step size and the direction of movement of a particle is determined by the

particle’s velocity, vi(t). Equation 3.1 presents how a particle’s new position, xi(t),

is calculated from its previous position, xi(t− 1), and its new velocity.

xi(t) = xi(t− 1) + vi(t) (3.1)

4. The velocity is estimated from the knowledge of the best position of the particle

at a time, and the best position of all the neighboring particles at the time.

vi(t) = ωvi(t− 1) + c1r1(x
pbest
i (t− 1)− xi(t− 1)) + c2r2(x

nbest
i (t− 1)− xi(t− 1))

(3.2)

where ω is the inertia weight that controls the impact of the previous velocity on the

new one [171]. r1 and r2 are randomly drawn from U(0,1). c1 and c2 are positive
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acceleration constants that are used to scale the contributions of the cognitive

(second term of Equation 3.2) and social (third term of Equation 3.2) components

respectively. xpbest(t) is the personal best of a particle at time t. xnbest(t) is the

neighborhood best of a particle at time t. If gbest PSO is employed, xnbest(t)

defaults to the global best position from all particles in the swarm, otherwise the

local best is used which is computed from the local neighborhood of each particle.

5. The velocity vector, vi(t), drives the algorithm towards the optimal solutions. It

reflects the experiential knowledge of a particle and the socially acquired knowledge

of the particle. The experiential knowledge is generally referred to as the cogni-

tive component and the socially acquired knowledge is referred to as the social

component. Particles’ velocities are updated according to Equation 3.2.

6. In order to prevent particles from moving too fast within the search space, a prob-

lem that may degrade the exploitative capability of a particle, velocity clamping

rules were proposed [172]. Such clamping rules limit particles’ velocities.

3.3.3 A General Particle Swarm Optimization Algorithm

Algorithm 4 presents the general PSO algorithm.

In Algorithm 4, the initialization of the swarm is the first step. During initialization

the following must be set for each particle:

1. Position - Each particle’s position, xi, is set as follows: xi = xmini + r(xmaxi −xmini ),

where r is a random number in U(0,1), xmaxi is the maximum value of xi in each

dimension and xmini is the minimum value of xi in each dimension.

2. Velocity - A very simple rule is to set the initial velocity of each particle to zero.

This is in agreement with the natural idea of a particle starting at rest.

3. Personal best - The personal best of each particle is initialized to the initial position

of the particle.

Algorithm 4 does not strictly enforce how particles are initialized. Implementations

of the algorithm can adopt other proposals in the literature [20] [21] [142].
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In the algorithm, the update of the swarm’s best can take two major forms. The

swarm’s best can be computed from the neighborhood of each particle. This update

mechanism gives rise to a Local Best PSO. The update of the swarm’s best can also be

obtained from the whole swarm, beyond the neighborhood of the particle. This update

mechanism gives rise to a Global Best PSO.

The stopping condition of the algorithm should prevent premature convergence and

over sampling of the search space. Over sampling of the search space will result in

a disproportionate increase in computational complexity. The normally used stopping

conditions include the following:

1. Terminate when an upper limit for number of iterations is exceeded.

2. Terminate when the quality of the found solution is satisfactory.

3. Terminate when no better solution is found after a specified number of iterations.

4. Terminate when the value of the normalized swarm radius is close to zero.

5. Terminate when the slope of the objective function is close to zero.

3.3.4 Network Topologies

As stated in the previous section, each particle uses its socially acquired knowledge

to improve on its position. The socially acquired knowledge is propagated in different

ways, depending on the type of neighborhood relations, or network topologies, that

exist between the particles. Distance measures used by the neighborhood relations are

topological, rather than spatial, i.e. distance between two particles in the search space is

not measured by the actual distance. Different topologies have been studied [111]. Four

of such popular topologies are hereby presented, and Figure 3.1 graphically presents the

four topologies discussed below.

1. Star Topology: First introduced by Kennedy and Eberhart [112]. In a star topol-

ogy every particle is directly connected to all other particles in the population.

Therefore, the neighborhood best of each particle corresponds to the global best

of the swarm.
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Algorithm 4 General PSO Algorithm

1: Set generation counter, t = 0

2: Initialize swarm of particles, C(t), where n is the size of the swarm

3: repeat

4: for each particle i = 1...n do

5: if f(x(i, t)) < f(xpbest(i, t)) then

6: Set xpbest(i, t) = x(i, t) {set the personal best of particle}
7: end if

8: if f(xpbest(i, t) < f(xnbest(i, t)) then

9: Set xnbest(i, t) = xpbest(i, t) {set the swarm best}
10: end if

11: for each particle i = 1...n do

12: update the velocity using Equation 3.2

13: update the position using Equation 3.1

14: end for

15: Set t = t + 1

16: end for

17: until stopping condition is true

2. Ring Topology: Each particle in a ring topology communicates with its m immedi-

ate neighbors in the population. The neighborhood best of a particle is computed

using the immediate neighborhoods that comprise of the particle itself and the

other m immediate particles.

3. Von Neumann: A particle in this topology is connected on its left, right, top and

bottom to other neighboring particles in a two dimensional lattice. It has been

demonstrated to be superior to other topologies for a number of problems [113].

4. Wheel: A central particle connects all other particles and socially acquired knowl-

edge is propagated through the central particle. Like the star topology, every

particle receives the global best information. However, the global best information

is passed through the central particle, slowing down propagation of information

among the particles.
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(a) Star (b) Ring

(c) Von Neumann

(d) Wheel

Figure 3.1: Network Topologies

3.3.5 Control Parameters

Some of the control parameters that can influence Algorithm 4 include: the dimension

of the problem, acceleration coefficients, inertia weight, clamping velocity, etc. Three of

the control parameters are discussed in this section. However, for a more comprehensive

discussion of the control parameters the reader is referred to [56].

1. Inertia weight: This is represented by the ω term in Equation 3.2. It was introduced

to assist with controlling the exploration and exploitation abilities of the swarm

[170]. The inertia weight avoids the need to clamp velocities [53]. The inertia

weight moderates the momentum of particles in the search space and determines

how much the past velocity influences the new velocity of a particle. A large value
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of ω promotes exploration with increased diversity, while a small value promotes

local exploitation. The smaller the inertia weight, the more the cognitive and social

components contribute to the position update of particles. An optimal value for

this parameter is problem-dependent [54]. However, an optimal choice for ω has

been related with another important control parameter, namely the acceleration

coefficients. Van den Bergh and Engelbrecht [191] proposed the relation expressed

in Equation 3.3.

ω >
1

2
(c1 + c2) and ω ≤ 1 (3.3)

where c1 and c2 are the acceleration coefficients associated with the cognitive and

social components in the velocity update equation respectively.

The above relation guarantees convergence. Divergent or cyclic behavior may re-

sult if the relation does not hold. Tresla [187] also derived a similar relation.

2. Acceleration Coefficients: The stochastic behavior of the cognitive and the so-

cial components in the velocity update equation is controlled by the acceleration

coefficients, (c1 and c2), and the associated random vectors, (r1 and r2). A par-

ticle’s trust in its own knowledge is embodied by c1, while c2 reflects how much

the particle trusts the knowledge of the surrounding particles. Other variations

of acceleration coefficient combinations can be used: c1 = 0 for a situation where

a particle only relies on the socially acquired knowledge; c2 = 0 where a particle

only relies on its own knowledge and every particle behaves like an independent

hill-climber. An independent hill-climber may wander unnecessarily for too long

before finding the global optimal, resulting from the fact that it is not exploiting

the socially available information about the optimal. When c1 = c2, a particle

places equal amount of trust on the cognitive and socially acquired knowledge.

An interesting combination, such as c1 = c2 = 0 results in particles that wander

the search space under the sole influence of their velocity. Such particles do not

exploit any knowledge learned from themselves and the neighboring particles. It

is a kind of brute-force search, however boundary constraint rules can ensure that

such brute-force proceeding particles do not wander out of the allowable limits.
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Kennedy [110] suggested through an empirical study that particles should employ

c1 + c2 ≤ 4, otherwise velocities and positions of particles may overshoot. Ac-

celeration coefficients are usually static, and optimal values for them have been

suggested by empirical studies [191]. However, there are proposals on the notion of

adaptive acceleration coefficients [29, 152, 182, 196, 205]. Convergence behaviors

of Algorithm 4 have been demonstrated to be correlated with the choice of values

for the inertia weight and the acceleration coefficients [28][187], as also indicated

in Equation 3.3.

3. Velocity Clamping: Algorithm 4 is expected to demonstrate a right mix of explo-

ration and exploitation. The velocity updates should proceed in such a way that

a reasonable number of candidate solutions in the search space are consulted. The

consultation should be deep, i.e. showing good exploitation capability, and wide,

i.e. showing good exploration capability. Particles in a swarm should not move too

fast, in order to perform not too bad on exploitation. Similarly, they should con-

sult as much of the search space as possible and without going out of the bounds.

Velocity clamping sets a limit, like an upper bound, for allowable velocities [55].

Clamping the velocity ensures that the right mix of exploration and exploitation

is demonstrated by the algorithm, thus ensuring that particles do not move too

fast in a swarm. Equation 3.4 presents a velocity clamping rule, where v
′
ij(t + 1)

is computed using Equation 3.2.

vij(t+ 1) =

{
v
′
ij(t+ 1) if v

′
ij(t+ 1) < Vmax,j

Vmax,j if v
′
ij(t+ 1) ≥ Vmax,j

(3.4)

where Vmax,j is the maximum velocity for the particle.

3.3.6 Dynamic Vector Evaluated Particle Swarm Optimization

DVEPSO [84] [86] uses PSO to solve DMOOPs by employing multiple swarms, or multi-

ple populations, where each swarm optimizes one objective. Dynamic problems are the

focus of this dissertation. Some of these problems are characterized by two or more ob-

jectives. PSO is a popular nature-inspired algorithm that has been used to solve some of
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these problems, particularly the static ones. However, when the problems’ characteristics

change with time, algorithms that can track the changing characteristics are required,

and DVEPSO serves this purpose. In this dissertation, and in some of the empirical

studies conducted in the dissertation, an implementation of DVEPSO is variously com-

pared against two other nature-inspired algorithms. The following chapters, where the

empirical studies are discussed, will present additional detail about DVEPSO, especially

its runtime performance relative to the two other algorithms for the set of problems to

which the algorithms were applied.

3.4 Differential Evolution

This section discusses DE. Section 3.4.1 provides a background to DE. DE operators are

discussed in Section 3.4.2. Strategies used by DE algorithms are presented in Section

3.4.3. A basic DE algorithm is discussed in Section 3.4.4. Control parameters are

presented in Section 3.4.5.

3.4.1 Background

DE was proposed by Storn and Price in 1995 [180]. It is a stochastic and population-based

search strategy originally designed to solve continuous valued problems. The search is

guided by distance and direction information from the current population. However, it

resembles other EAs in many ways. Individuals in a population are called parameter

vectors. The difference in the parameter vectors is used to explore the search space. DE

is simple and straightforward to implement when compared to other EAs. Studies have

shown that DE performs better than PSO on certain problems [41, 150, 194]. Like other

EAs that were covered in previous sections, crossover and mutation are employed to

ensure variation in the population from one generation to another. DE mutation always

precedes crossover. The major operators used by DE are discussed in the following

section.
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3.4.2 Operators

1. Mutation: An individual in a DE population is mutated by using a trial vector.

The trial vector is computed after the mutation of a target vector with a weighted

differential. The trial vector is used during crossover to produce an offspring. For

each parent, xi, a target vector, xi1 , is selected, such that i 6= i1. Then, two

individuals xi2 and xi3 , such that i 6= i1 6= i2 6= i3, are uniformly selected and used

to compute a difference vector. The trial vector, ui(t), is thus computed from the

target and the difference vector as shown in the equation below:

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (3.5)

where β ∈ (0,∞) is the scale factor which controls the amplification of the differ-

ence vector.

2. Crossover: The crossover operator in DE uses a discrete recombination of the trial

vector, ui(t), and the parent vector, xi(t), to produce offspring, x
′
i(t). The operator

is implemented as follows:

x
′

ij(t) =

{
uij(t) j ∈ J
xij(t) otherwise

(3.6)

where xij(t) refers to the j-th element of the vector xi(t) and J is the set of crossover

points. J can be determined using various approaches. Two of the most frequently

used approaches are binary crossover and exponential crossover [150, 179]. In

binary crossover, crossover points are randomly selected from S, which is defined

as S = 1, 2, ..., n where n is the dimension of the problem space. Algorithm 5

presents binary crossover. In Algorithm 5 pr is the probability of crossover, and

the larger its value the more points in trial vectors will be used in creating offspring.

In exponential crossover, from a randomly selected index, a set of crossover points

is constructed. The constructed set is a sequence that comprises indices starting

from the randomly selected index. The population indices are considered to be

organized in a circular form, in case the crossover procedure requires to move past

the last index of the population. Algorithm 6 presents exponential crossover.
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Algorithm 5 Differential Evolution: Binary Crossover

1: j∗ ∼ U(1, n), where n is the problem dimension

2: J ← J ∪ {j∗}
{pr is crossover probability}

3: for each j = 1...n do

4: if U(0, 1) < pr and j 6= j∗ then

5: Set J ← J ∪ {j}
6: end if

7: end for

3. Selection: This operator is used for two purposes. First, to select which individuals

in the population will be used to construct the trial vector. The target vector can

be randomly selected from the population. It can also be selected by some other

scheme, some of which are examined in following section. Different vectors are also

selected by various schemes from the population. Secondly, selection is used to

determine which of the parents and offspring survive to the next generation. One

simple strategy used by DE to determine candidates for the next generation is to

choose between a parent and its offspring based on their respective fitness values.

3.4.3 Strategies - DE/x/y/z

DE algorithms are generally characterized by a scheme that specifies how the trial vector

is chosen, the number of difference vectors employed, and the crossover method adopted.

The scheme generally employs the notation: DE/x/y/z [178] [180]. In the notation, x

denotes the method used in selecting the trial vector, y denotes the number of vectors

used, and z refers to the crossover method that is employed. Some of the popular

strategies are as follows:

1. DE/rand/1/bin: The target vector is randomly selected, one difference vector is

used and binary crossover is adopted [56].

2. DE/rand/1/exp: This is the same as DE/rand/1/bin, except for the crossover that

is exponential [56].
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Algorithm 6 Differential Evolution: Exponential Crossover

1: j∗ ∼ U(0, n− 1), where n is the problem dimension

2: J ← ∅
{pr is crossover probability}

3: repeat

4: J ← J ∪ {j + 1}
5: j = (j + 1) mod n

6: until U(0, 1) ≥ pr or |J | = n

3. DE/best/1/z: The target vector xbest(t) is the individual with the best position

in the population. One difference vector is used. The trial vector is calculated as

follows:

ui(t) = xbest(t) + β(xi2(t)− xi3(t)) (3.7)

Any of the crossover methods can be used.

4. DE/x/nv/z: More than one difference vector is used. The trial vector is calculated

as follows:

ui(t) = xi1(t) + β
nv∑
k=1

(xi2,k(t)− xi3,k(t)) (3.8)

Any suitable method can be used to select the target vector, xi1(t). nv is the

number of difference vectors, and xi2,k(t) − xi3,k(t) is the k-th difference vector.

Any suitable crossover method can be used.

5. DE/rand-to-best/nv/z: This strategy combines random selection and best schemes

in calculating the target vector. The trial vector is computed as follows:

ui(t) = γ∗xbest(t) + (1− γ∗xi1(t) + β

nv∑
k=1

(xi2,k(t)− xi3,k(t)) (3.9)

γ∗ ∈ [0, 1] is a control parameter that determines how much an algorithm balances

the forces of exploitation and exploration. A value closer to one means that an

algorithm will do more exploitation. One or more difference vectors can be used.

Any suitable crossover method can be employed.
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Algorithm 7 Differential Evolution: Basic Algorithm

1: Set the generation counter, t = 0

2: Initialize the control parameters: β, pr

{β: scaling factor}
{pr: crossover probability}

3: Create and initialize the population, P (t), of ns individuals

4: while stopping conditions not true do

5: for each individual, xi ∈ P (t) do

6: Evaluate fitness, f(xi(t))

7: Create the trial vector, ui(t), according to a mutation operator of choice

8: Create an offspring, x
′
i(t), according to a crossover operator of choice

9: if offspring, x
′
i(t), is fitter than the parent, xi(t) then

10: Add x
′
i(t) to P (t+ 1)

11: else

12: Add xi(t) to P (t+ 1)

13: end if

14: end for

15: Increment the generation counter: t = t + 1

16: end while

3.4.4 Basic Differential Evolution Algorithm

The basic DE algorithm starts by creating and initializing a random set of individuals

that represent candidate solutions to the problem being solved. Each individual, xi, is

generated in such a way that the boundary constraint requirements are not violated, i.e.

xij ∈ (xmin,j, xmax,j), where xmin,j and xmax,j respectively represent the minimum and

maximum values of xi in dimension j. Algorithm 7 presents the workings of a basic DE

algorithm.

3.4.5 Control Parameters

Three major parameters influence the behavior of a DE algorithm:

1. Population size, ns: The population size directly affects how well an algorithm
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explores the search space. The more the population, the more the points that are

accessible by an algorithm, all other facts being constant. A higher population

size implies more options in selecting difference vectors and target vectors. The

increased options improves the search capability of an algorithm. Computational

costs, however, grow with higher a population size.

2. Scaling factor, β: The scaling factor, β ∈ (0, 1), helps to amplify the effects of

the difference vector. A smaller value means smaller mutation step sizes. Smaller

mutation step sizes slows down convergence. However, smaller step sizes facilitate

better exploitation of the search space. For better exploration and faster conver-

gence, the scaling factor should approach its upper limit of 1. It has been shown

that large values of β result in premature convergence [103, 108]. A scaling factor

of 0.5 has been shown to provide good performance [3] [122] [180].

3. Crossover Probability, pr: This is also called the recombination probability and

determines the proportion of the parent’s components that can change. The higher

this value, the more diversity subsequent generations exhibit. Faster convergence

is associated with higher value of crossover probability [3] [122].

3.5 Summary

This chapter discussed nature-inspired algorithms that are used in this study. The

three key algorithms discussed are: genetic algorithms, particle swarm optimization and

differential evolution. For each of the algorithms, key terms, concepts and building blocks

were discussed. The next chapter deals with decision-making, important concepts and

processes of decision-making, and how human beings and their preferences can influence

the processes in the context of optimization problems.
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Chapter 4

Decision-Making Essentials

Making a decision is a cognitive activity that typically occurs in solving problems. It

is an age-long phenomenon among humans. Achieving one’s objectives in a world of

scarce resources requires judicious use of choices available to the decision-maker. When

Christopher Columbus, with his hypothesis about the distance between Canary Island

and the Far East, set out to sail westward in order to find a new trade route between

Europe and the Far East, he had to contend with the choice of sailing westward or

staying at home. Even though he eventually embarked on the sail, he also had to live

with the risks associated with the expedition. Some of the risks were: he may die while

sailing through the Atlantic, the westward sail may not yield a fruitful path to the Far

East, etc.

As an academic study, decision making, especially in the context of decision science,

was widely and systematically studied in the 20th century. Many theories have been

developed to guide rational decision making, the kind of decisions that are examined in

this chapter. When a rational decision-maker makes decisions, he does so bearing the

desired objectives in mind. The desired objectives, also called preferences, embody the

decision-maker’s beliefs about the states of the world in which decisions are made.

This chapter presents the essential elements of rational decision making. The chapter

starts by presenting the grand theories of decision making in Section 4.1. Section 4.2

presents a formalisation of decision problems and some of the essential elements of deci-

sion making, such as objectives, states of the world and acts/actions of a decision-maker.

54
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Section 4.3 presents contexts in which decisions can be made. Preferences in decision

making are discussed in Section 4.4. Decision making under multiple criteria, or two or

more objectives, is presented in Section 4.5. A summary of the chapter is provided in

Section 4.6.

4.1 Decision Theories

Contributions to decision theories have been inspired by different disciplines: philosophy,

psychology, computer science, statistics, mathematics, economics, etc. This section takes

a critical look at some of the key ideas underlying decision theories. Section 4.1.1 presents

the descriptive and normative perspectives to decision theories. The notions of rational

and right decisions are discussed in Section 4.1.2.

4.1.1 Descriptive and Normative

Theories of decisions have been divided into descriptive and normative theories. Descrip-

tive theory accounts for generalities in the choices that people make. It plays explanatory

and predictive roles in decision making [25]. It is an empirical discipline that emerged

out of experimental psychology [146]. The actual decision making activities of humans

have been observed to sometimes deviate from rationality models proposed by normative

theories [109]. In order to study and examine how humans actually make decisions, de-

scriptive theory lead to models and frameworks. Kahneman and Teversky [109] in their

seminal work proposed a prospect theory of decision making which descriptively accounts

for human decisions that may appear irrational under the expected utility theory. They

found that decision-maker prefer certain gains as opposed to just probable outcomes.

According to the finding [109], humans show aversion for certain losses regardless of the

expected utility, i.e. gains, of their actions. Besides the certainty effect, the introspection

effect was another major cause of the behaviors manifested in their findings. Prospect

theory and many other models, such as Subjective Expected Utility [24], have proved the

need for descriptive theory of decisions to explain human decision making that deviate

from the postulates of expected utility models.

Normative theory of decisions is, however, more developed and prevalent than the
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descriptive, perhaps because of its generalizability. The focus of normative theory is to

address the behaviour of a rational decision-maker. It addresses what a decision-maker

ought to do, given his preferences and beliefs about the world. Expected Utility is a

dominant model employed in normative theory. Normative theory prescribes that a ra-

tional decision-maker would choose between alternative acts that maximize its expected

utility. Interests in normative theory is justified, firstly, for its philosophical appeal, and

secondly, it is pragmatic to deal with normative issues, because people make rational

decisions most of the time.

4.1.2 Rational and Right Decisions

Rationality is a dominant idea in normative decision theory. A rational decision-maker

is expected to behave in ways that are consistent with his desired objectives and beliefs

about the state of the world. When decisions are made under risks, where the probabil-

ities of the desired objectives are known, rationality, in a normative sense, presupposes

maximization of expected value of the decisions [146]. The kind of rationality implied

here is also called instrumental rationality [146]. However, there are instances where

rational acts do not correspond to right decisions. A rational decision-maker, striving to

maximize expected value, may take actions whose outcomes are inferior to other possible

outcomes [146].

4.2 Decision Problems: Formalisation

A real-world decision problem can be represented in many ways. A decision matrix

and tree [17] are popular representations. Mathematical representations are also widely

employed, especially in undertakings that strive for a formalization of rational decision

making. The representations and the counterpart formalizations aim at abstracting the

problems. The process of abstraction typically reduces the elements of the problem into

sets of acts, states and outcomes [11]. Equation 4.1 presents a functional formalisation

of decision problems [17]:

D : A×B → O (4.1)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 4. Decision-Making Essentials 57

In Equation 4.1, A is the set of acts, B the set of states of the world and O is the

set of outcomes or objectives. For a decision-maker, whose agency is assumed, A is

totally within his control. B and O are elements of the world of the decision-maker. For

instance, the states of the world are given to him by factors outside his control and they

form his belief about the world. He must accept them. Similarly, the set of possible

outcomes are given. He may affect the values of the outcomes, but the set are externally

imposed on him.

In the decision problem faced by Christopher Columbus, in his expedition to discover

the Far East, the problem may be abstracted as follows:

A = {Sail westward (a1), Stay at home (a2)},
B = {Christopher′sHypothesis of theworld is true (s1),

There is no landwestward (s2), There are some landwestward (s3)},
O = {He got rewarded (o1), He got fame (o2), He died on the expedition (o3),

Statusquo (o4)}

A representation of the problem using a decision matrix is presented in Table 4.1.

The decision tree in Figure 4.1 presents another representation of the same decision

problem.

Christopher’s Hypothe-

sis is True (s1)

There is no land west-

ward (s2)

There is some land

westward (s3)

Sail Westward He got rewarded He died on the expedi-

tion

He got fame

Stay at home Status quo Status quo Status quo

Table 4.1: A Decision Matrix: Christopher Columbus Expedition

4.3 Decision-Making Contexts

Theories of individual decisions, games theories and social choice theories are the major

areas studied in decision theories. The decision problems that are examined in each of

these areas are formulated in ways that account for the degree of certainty that surrounds
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Figure 4.1: A Decision Tree: Christopher Columbus Expedition

the possible outcomes that are obtainable by decision-makers. This section examines

some of the ideas associated with decision making contexts: ignorance in Section 4.3.1,

risks in Section 4.3.2 and uncertainty in Section 4.3.3.

4.3.1 Ignorance

When Christopher Columbus set out to sail westward, he hoped that his hypothesis

would be true. In addition, he did not know about the lands he finally found. Even if

the lands were known to exist, because no person had ever completed such a journey

before him, he could not ascertain the exact likelihood of finding the lands during his

expedition. Faced with problems where the probability of the outcomes are not known,

a rational decision-maker would be making decisions under ignorance. The notion of

ignorance invoked here does not necessarily mean that the decision-maker is not aware

of the possible outcomes. Also, the possible outcomes may turn out to be right. The
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ignorance derives especially from the fact that the possible outcomes are not associated

with any known measure of probability. The dominance principle [146] is a major decision

rule used for decision problems associated with ignorance. Given two acts, a1 and a2, if

every outcome of a1 is at least as good as every corresponding outcome in a2, then act a1

is said to dominate a2. According to the dominance principle, a rational decision-maker

should select from non-dominated acts, where a non-dominated act is defined as one that

is not dominated by any other act. There are weak and strong dominance [146]. In some

decision problems, two or more acts may be non-dominated, therefore the dominance

principle would be inadequate in solving such problems, because a single solution would

not be available for such problems. Some other decision rules, such as Maximin and

Leximin, Maximax and the Optimism-Pessimism rule, Minimax Regrest, etc., are also

used [146].

4.3.2 Risks

Some decision problems have outcomes which are associated with probability measures.

Decisions made under such problems are associated with risk. Put differently, making

decisions under risk simply means that the consequences of actions associated with the

decisions can be determined statistically. Decision under risks typically use the maxi-

mization of expected value as a decision rule.

The principle of maximization of expected value, which is the dominant decision rule

used under risk, has been justified on two grounds. First is the justification that is

rooted in the theory of large numbers and second, it is rooted in axiomatic analysis.

Large number justification states that you would be better off in the long run if you

maximize expected value. Axiomatic justification strives to derive the expected value

principle from a set of fundamental axioms that are believed to approximate behaviors

of rational decision-makers. More information can be found in [146].

Decision problems that involve ignorance can be converted to decision problems under

risks by employing appropriate transformations that preserve the integrity of the under-

lying problems. For instance, a decision under ignorance may assume that all outcomes

are equally likely, and assign probabilities to the outcomes accordingly.
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4.3.3 Uncertainty

Uncertainty is a term that is widely used to mean ignorance or risk.

4.4 Preferences

Preference manifests when alternatives are ordered based on their values, or their utili-

ties. Optimal choice results from a preferred ordering of the alternatives. In the Func-

tional Formalization (Equation 4.1), a rational decision-maker facing a set of feasible

alternative actions, A, and a set of preferred objectives, O, would be making optimal

choices, given his beliefs about the world. The implication of the foregoing is that pref-

erence is at the core of rational decision making. Also implicit is the fact about the

ordering of actions, as some actions would be deemed to be more valuable than others.

The following sections present different notions of preferences. Section 4.4.1 presents

instrumental preference. Intrinsic preference is discussed in Section 4.4.2. Section 4.4.3

highlights revealed preference.

4.4.1 Instrumental Preference

Preferences embody values. However, things in the world are valued either as a means

to an end or as an end themselves. Instrumental value is attached to a thing because

of another thing. It is a form of extrinsic value, and it carries with it the notion of a

thing that works because of the ends it brings about. This is the notion of value that

carries a functional connotation. Instrumental preferences are synonymous with instru-

mental value. In the context of the functional formulation in Equation 4.1, instrumental

preferences are state dependent. They do not tell absolute truths about the world, and

they tend to change whenever the beliefs of a rational decision-maker change. The sense

of instrumentality assumed here is also a kind of preference over actions. John Dewey

[30] and John Fagg Foster [186] are some of the 20th century advocates of instrumental

value and preference.
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4.4.2 Intrinsic Preference

There is another sense of value that carries with it the idea of goodness for its sake. For

instance, the ten commandments are valued by Christians, not because they are means to

some other ends, but because the laws contained in the commandments are assumed to

have divine authority. The commandments are thus valued, because they are inherently

right in the eyes of the believers of the laws. Intrinsic preference are state independent

in the context of Equation 4.1. To a decision-maker, their values do not derive from

actions, nor from the beliefs of the decision-maker about the states of the world. The

sense of rightness they carry to a decision-maker is time and space independent. They

are close to the idea of eternal truths, which do not depend on the decision contexts of

a decision-maker.

4.4.3 Revealed Preference

Thomas Hobbes’ writings carried the assumption that when faced with two alternatives,

a and b, that choosing a over b is the same as liking a over b. Jeremy Bentham hy-

pothesized about a utility measuring machine. However, it fell on Paul Samuelson to

propose a more systematic way to measure preferences. Similar to some other 20th cen-

tury economists who worked in the area of decision theory, Samuelson tried to separate

decision making from psychology, or more in particular from cognitive psychology. Pref-

erences, according to the revealed preference theory, is reflected in the behaviors of the

decision-maker. With revealed preference, what goes in people’s brains is not considered.

There is also no need for the idea of a utility machine as proposed by Bentham. This

is a kind of empiricism at work. By looking at what people do and generating data

about choice behaviors, decision making can be explained and what people will do in

similar circumstances can be predicted. Revealed preference, however, rests on two as-

sumptions in order to be able to predict decision making. Firstly, that there is stability

in the decision making contexts. This presupposes that the beliefs, or the states of the

world, is unchanging and the preferences of the decision-maker is invariable. Where there

is stability, inference can be made from choice data that will consistently match what

a rational decision-maker would do in similar circumstances. Secondly, revealed prefer-
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ence’s predictive power breaks down when the decision-maker randomly makes decisions.

Therefore, consistency is a key assumption in revealed preference theory.

4.5 Multi-Criteria Decision Making

Decisions, or courses of actions, are sometimes made in the context of multiple criteria,

or objectives. Real-world decision problems are usually of this nature, where two or

more criteria are the norm. These criteria are usually conflicting. Multi-criteria decision

making (MCDM) [214] is used in business, finance, marketing, engineering, and a host of

other fields of human endeavors. In our daily lives, we implicity weigh multiple criteria

and then use intuition to arrive at the desired course of actions after due considerations

are accorded to the consequences of the actions. Where the stakes are high, such as

business and some mission critical systems in engineering, a systematic procedure is

preferred in choosing the desired course of actions. Such a procedure firstly seeks a

structuring of the decision problem, and then formalizes the solution steps. Working

principles of MCDM is presented in Section 4.5.1. Section 4.5.2 presents the typologies

of MCDM. Types of MCDM problems are discussed in Section 4.5.3. Approaches to

solving MCDM problems are discussed in Sections 4.5.4, 4.5.5 and 4.5.6.

4.5.1 Working Principles

Different approaches exist for solving MCDM problems. Approaches vary depending on

the type of decision problem. However, the approaches have a basic working principle,

which generally include:

• Selection of criteria - criteria should not exhibit dependency, and they should be

measurable in a definite scale and they should be related to the actions.

• Selection of courses of actions, or simply actions - actions should be comparable,

real and feasible.

• Selection of weighing methods to represent importance of the actions and criteria.

• Method of aggregation - to arrive at the overall importance of the actions.
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• Decision making using the aggregated results.

4.5.2 Typologies

MCDM problems may be classified using different criteria. When information about

the actions, or the alternatives, are used and the number of such alternatives are finite,

the class of decision problems is called evaluation problems [124]. The alternatives are

unambiguously known at the start of the solution process. Each alternative is associated

with a performance measure, i.e. a measure of importance or priority. The performance

measure reflects the degree of relevance of the alternative in the context of the criteria

used in the decision problem. Research has been extensively conducted on methods

that are well suited for solving evaluation problems. Full aggregation, outranking and

goal/aspiration setting approaches are major categories of solution methods widely used

in solving evaluation problems. Detailed information about these methods can be found

in [188].

However, there is another class of MCDM problems. In these problems, the number

of alternative actions are infinite, or many and countably finite. These are called design

problems. Design problems have alternatives that are not known at the beginning of the

solution procedure. Solving this class of problems usually requires the formulation of a

mathematical model. The objective functions of the model constitute the criteria associ-

ated with the decision problem. The domain of the model, or the mathematical functions,

is defined by the variables representing the alternatives, or the course of actions underly-

ing the decision problem. Design problems have typically been solved by methods preva-

lent in operations research, namely numerical analysis approaches. Nature-inspired and

iterative methods have also been widely used in solving design problems [125]. Methods

that solve design problems usually reformulate the problems as optimization problems,

after incorporating the decision-makers’ preferences into the mathematical model that

embodies the problem. Decision-makers’ preferences are incorporated into the mathe-

matical formulation of design problems at the beginning of the solution process, in the

course of the process or at the end, leading to the notions of a priori, interactive and

posteriori preference incorporations [125] respectively.

Subsequent sections in this chapter are largely devoted to evaluation problems. Pre-
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vious chapters in this dissertation have presented ideas, concepts and leading solution

approaches that are related to design problems. In particular they related to ideas about

nature-inspired approaches that have been widely used in solving multi-criteria decision

problems with infinite number of alternatives, or course of actions. It is important to

note that the alternatives in design problems are referred to as solutions by methods

that are used to solve these problems.

4.5.3 Problem Types

MCDM problems are formulated to serve different ends. A decision-maker may be in-

terested in making a choice between the alternative courses of actions. Choice problems

are geared at achieving this end. A choice may be about selecting an alternative that

best satisfies the criteria in line with defined preferences of the decision-maker. A choice

problem [100] [163] may also be used to select a set of alternatives where a number of

alternatives prove non-inferior to any other alternatives.

Sorting problems are not widely used as choice problems. With sorting problems,

alternatives are sorted into groups in accordance with defined criteria. Alternatives

in the same group are setup to facilitate better descriptions and improved predictions.

Sorting can be used, in addition to a choice problem, as a preliminary step to short-list

alternatives. For repetitive and automatized ends, sorting problems are a good choice

[100].

Where there is no complete order relation that can be used on the alternatives,

partial ordering schemes can be used. Ranking problems use partial ordering schemes,

where pairwise comparison is used for the alternatives. Partial comparisons can generate

measures of local importance, or priorities, between pairs of alternatives. Aggregation

techniques can then be used to synthesize global measures of importance, which factor

in all criteria considered in the decision problem.

Descriptive problems, another type of decision problems presented by Roy [163],

define the characteristics of decision problems, by describing actions and their conse-

quences. Such descriptions usually help to foster a deeper understanding of the problems,

and can perhaps be used as a preliminary step to employing other richer formulations of

the problems.
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The problem types presented in this section are not exhaustive, but they demonstrate

some of the leading types of problems that are widely studied in the MCDM community.

4.5.4 Solution Approaches: Full Aggregation

The weights, importance or priorities, associated with alternatives in a decision problem,

are combined for all criteria. Such a combination uses relations/functions that compute

the summation, product, or some other means of aggregating the weighted criteria.

Analytical Hierarchy Process (AHP), first developed by Saaty [2], is one of the methods

that uses the aggregation approach to solve multi-criteria decision problems.

A decision problem is first decomposed into an hierarchy (refer to Figure 4.2). At the

top of the hierarchy is the goal. Next on the hierarchy is the list of criteria upon which

the decision would be based. The courses of actions, or alternatives, occupy the third

layer in the hierarchy. Criteria are weighted, where the weights associated with criteria

are measures of importance attached to each criteria by a decision-maker.

The alternatives are then prioritized, for each criterion, in a process of pairwise

comparison. This process starts with a criterion. The alternative actions are selected in

a pairwise fashion. A measure of importance is assigned to the two alternatives in the

pair, based on their relative importance to the selected criterion. This process of pairing

and computation of per-criterion importance is done for all actions defining the decision

problem. The process is extended to all other criteria, resulting in a comparative matrix,

where a pair of actions are compared, per criterion. The number of criteria correspond

to the number of comparative matrices.

The obtained comparative matrices all contain local priorities, or importance, asso-

ciated with a pair of actions, or alternatives. The local priorities are then aggregated in

order to arrive at global priorities for each action. Equations 4.2, 4.3 and 4.4 present a

method of computing the priorities of the alternatives:

A∗ = (a∗ij) (4.2)

where A∗ is the comparative matrix for a criterion.

r∗i =
∑
j

a∗ij (4.3)
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Figure 4.2: AHP. Wiki Source - [201]

where r∗i is the summation of elements of row i in the comparative matrix A∗.

p∗i =
r∗i∑
j r
∗
j

(4.4)

where p∗i is the priority of alternative i for a given criterion.

The last phase of the AHP is the computation of priorities, for each alternative, for

all criteria. One method of performing this aggregation is as follows:

P ∗i =
∑
j

w∗j .p
∗
ij (4.5)

where P ∗i is the priority of alternative i, after aggregating all the per-criterion pri-

orities for the alternative, and w∗j is the weight, or priority, associated with criterion

j.

4.5.5 Solution Approaches: Outranking

The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)

is widely used to solve MCDM problems. It uses outranking of priorities and applies the

following steps:
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• computation of unicriterion preference degrees for each ordered pair of alternatives

• computation of multi-criteria preference degrees

• computation of multi-criteria flows.

First, the alternatives constituting the MCDM problem are assigned values for every

criterion - refer to Figure 4.3. In the figure, a = (a1, ..., an) is the set of n actions, while

f = (f1, ..., fq) is the set of q criteria.

Figure 4.3: PROMETHEE. Wiki Source: [202]

A preliminary step uses the data in Figure 4.3 as inputs. This step makes pairwise

comparisons between the alternatives. The comparison is applied on each criterion using

Equation 4.6:

dk(ai, aj) = fk(ai)− fk(aj) (4.6)

where k is the index number of the criterion in the set of criteria. Preference degrees

are then computed, using the differences computed in Equation 4.6 and a preference

function. Different preference functions are discussed in [100] [202]. A linear preference

function is presented in Equation 4.7. In the equation, p∗∗ and q∗∗ are the preference

and indifference threshold respectively, defined by the decision-maker.

Pk(ai, aj) =


0 if dk(ai, aj) ≤ q∗∗

dk(ai,aj)−q∗∗
p∗∗−q∗∗ if q∗∗ ≤ dk(ai, aj) ≤ p∗∗

1 if dk(ai, aj) ≥ p∗∗

(4.7)

The computed unicriterion preference degrees are then converted to multi-criteria

preference degrees using Equation 4.8, which culminates in the second major step of

PROMETHEE.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 4. Decision-Making Essentials 68

π∗(ai, aj) =

q∑
k=1

Pk(ai, aj).wk (4.8)

The third step of PROMETHEE computes the multi-criteria preference flows as

follows:

Positive preference flows, which is a measure of how much an alternative is preferred

over all other alternatives, is computed according to Equation 4.9, where n is the number

of alternatives.

φ+(ai) =

∑n
j=1 π

∗(ai, aj)

n− 1
(4.9)

Negative preference flows, which is a measure of how much other alternatives are

preferred to the subject alternative, is computed as follows:

φ−(ai) =

∑n
j=1 π(aj, ai)

n− 1
(4.10)

The net preference flow is then computed using Equation 4.11.

φ(ai) = φ+(ai)− φ−(ai) (4.11)

where φ(ai) ∈ [−1, 1] and
∑

i φ(ai) = 0

Alternatives are then ranked using the computed net preference flows.

4.5.6 Solution Approaches: Goal Setting

MCDM problems can be solved by methods that set aspiration levels or goals. Technique

for Order of Preference by Similarity to Ideal Solution (TOPSIS) [100] is one of such

methods. In TOPSIS, chosen actions or alternatives should have the shortest distance

to the ideal alternative and the longest distance to the anti-ideal alternative. Figure

4.4 shows how two alternatives, A1 and A2, are related to the ideal and anti-ideal

alternatives.

The idea underlying the TOPSIS method requires a decision-maker to supply the ideal

and the anti-ideal alternatives at the beginning of the solution process. Alternatives
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Figure 4.4: TOPSIS - Ideal and Anti-ideal Alternatives

constituting the decision problem are then compared on how much they satisfy the

distance requirement to the ideal and anti-ideal alternatives. The solution process in

TOPSIS is carried out as follows:

First Step: Create a performance matrix X = (xij), where xij is the performance of

alternative i in criterion j. The dimension of X is n x q.

Second Step: The performances in the matrix X, as per the First Step, are nor-

malised. Equation 4.12 presents one possible normalization technique:

rij =
xij√∑q
j=1 x

2
ij

(4.12)

Third Step: The normalized matrix from the Second Step is weighted. Equation 4.13

presents the computation of a weighted normalized matrix.

vij = wj.rij (4.13)

where wj is the weight associated with criterion j.

Fourth Step: The ideal and the anti-ideal alternatives are computed. One method of

computing these virtual alternatives is to select the best and the worst performance on
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each criterion in the matrix V = (vij) in the Third Step above. The ideal alternative is

calculated as follows:

Ideal alternative: A+ = (v+1 , ..., v
+
q ) (4.14)

where v+j is the ideal value of alternatives for the criterion j.

Equation 4.15 presents the computation of the anti-ideal alternative.

Anti-ideal alternative: A− = (v−1 , ..., v
−
q ) (4.15)

where v−j is the anti-ideal value of alternatives for the criterion j.

Fifth Step: The distance of each alternative to the ideal and anti-ideal alternatives

are computed. Equation 4.16 presents the distance computation for the ideal alternative.

d+a =

q∑
j

(v+j − vaj)2, a = 1, ..., n (4.16)

And Equation 4.17 presents the distance computation for the anti-ideal alternative.

d−a =

q∑
j

(v−j − vaj)2, a = 1, ..., n (4.17)

Figure 4.4 visualises the ideal and the anti-ideal alternatives and distances of two

alternatives, relative to the virtual alternatives.

Euclidean distance is used in Equations 4.16 and 4.17. However, other measures of

distance can also be used.

Sixth Step: The similarity of each alternative to the worst condition is then computed.

This is also referred to as the relative closeness coefficient. The computation of the

closeness coefficient is presented in Equation 4.18.

Ca =
d−a

d+a + d−a
a = 1, ..., n (4.18)

where Ca lies between 0 and 1. Preferred alternatives are closer to the ideal and

further from the anti-ideal. Therefore Ca tends to be closer to 1.
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4.6 Summary

This chapter presented key concepts underlying decision theory, including decision mak-

ing. Some theoretical perspectives to decision making were discussed. Formalisation of

decision problems and the contexts in which humans make decisions were highlighted.

The notion of preferences and their formalisations were also presented. The discipline of

MCDM was discussed, as well as the different approaches used in solving MCDM prob-

lems. A representative method of each approach, i.e. full aggregation, outranking and

goal setting, was presented. The next chapter presents the nature-inspired algorithm

proposed in this dissertation.
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Chapter 5

Differential Evolution Algorithm I

DMOO is a problem-solving procedure that maximizes/minimizes objectives, or goals,

usually under some imposed constraints. The procedure is, however, often mathemat-

ical and/or algorithmic. DMOOPs are characterized by two or more objectives, where

the objectives and/or the constraints change with time [87] [134]. At least two of the

objectives of DMOOPs are usually in conflict, therefore algorithms search for optimal

trade-off solutions [156].

There are real-world DMOOPs, however the experimental study which is presented in

this chapter focuses on artificial DMOOPs [61] [88]. Artificial problems typically embody

the essential features of real-world problems and at the same time offer researchers a way

to analyse the performance of algorithms on problems that are well understood. The

study presented in this chapter proposes a new DMOA, called 2DEVENS.

Nature-inspired algorithms, such as DMOAs, are popularly used in computing opti-

mal trade-off solutions to DMOOPs. DMOAs employ iterative search procedures, which

mimic evolutionary processes in nature. DMOAs’ search space is sub-divided into a

solution space or decision space, and an objective space [48].

DNSGA-II is a DMOA originally proposed in [47] and discussed in Section 3.2.6.

DNSGA-II is a nature-inspired algorithm that employs metaphors of, and simulates pro-

cesses in, natural evolution. Major processes of natural evolution, which were employed

in Darwin’s theory [164], are simulated by DNSGA-II using operators such as selection,

crossover and mutation. The success of DNSGA-II in solving DMOOPs has been widely

72
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reported in the literature. For instance, in [47] DNSGA-II successfully tracked the POFs

of hydro-power scheduling optimization problems.

Group behaviours - such as swarming, flocking and herding - among animals have

been a source of inspiration for DMOAs. PSO is an optimization procedure that simu-

lates group behaviour in a swarm of birds [58]. Individuals in a swarm are referred to as

particles. Each particle adapts its behavior by emulating his best success and the success

of the best particle in the swarm, which means PSO particles are capable of self- and

group-learning [31]. The DVEPSO [84] algorithm is a DMOA that uses a cooperative

PSO strategy and with proven records of solving DMOOPs [84] [86] and is discussed in

Section 3.3.6. Helbig and Engelbrecht [84] [85] demonstrated the ability of DVEPSO to

successfully find the POFs of a number of benchmark functions, such as FDA1, FDA2,

HE1, HE2, etc., which variously present different types of difficulties to DMOAs.

DE algorithms share many similarities with other nature-inspired algorithms, such

as genetic algorithms. However, distance and step sizes are the defining measures used

by DE to drive the search for optimal trade-off solutions [148] [180].

Unlike approaches employed in [104] [127] [195], the proposed algorithm combines

the non-dominated sort and vector evaluation schemes in driving the proposed DE op-

timization procedure. Also, the proposed algorithm uses an archive to keep track of the

changing Pareto-optimal solutions. Changes in the dynamic environment are detected by

computing sentry vectors [84], and the magnitude of the changes in the objective values

of the sentry vectors between two consecutive environments is used as an estimate of a

change in the simulated environment.

In the study presented in this chapter, 2DEVENS is compared with DNSGA-II and

DVEPSO for different measures of performance [90] and for different experimental con-

figurations, on different DMOOPs.

The rest of the chapter is organized as follows: Section 5.1 discusses key concepts,

mathematics and algorithms required to facilitate understanding of the rest of the chap-

ter. Section 5.2 discusses the experimental configurations, benchmark functions, perfor-

mance measures and statistical analyses employed in the experimental study. Results of

the experimental study are discussed in Section 5.3, and Section 5.4 draws conclusions

from the results. A summary of this chapter is presented in Section 5.5.
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5.1 Background

This section presents key concepts, mathematics and algorithms required to facilitate

understanding of the other sections of this study. Section 5.1.1 presents background

information on DMOO. Sections 5.1.2 and 5.1.3 discuss DMOAs and the DE algorithm

respectively. Vector evaluation and non-dominated sorting are discussed in Sections 5.1.4

and 5.1.5.

5.1.1 Dynamic Multi-Objective Optimization

DMOOPs have conflicting objectives, therefore no single optimal solution exists. Op-

timal trade-off solutions are computed using the Pareto dominance relation [140]. A

solution dominates another solution if and only if both solutions are at least equal in

quality with regards to all objectives and the dominating solution is better than the

other solution for at least one of the objectives. For any given DMOOP, the set of

Pareto dominating solutions is called the POS. The set that corresponds to the objec-

tive values of the POS is called the POF [48]. When DMOAs solve DMOOPs, they try

to find the POS and POF for the problems. However, because the objectives and/or

constraints of DMOOPs change with time, the POS and/or POF may also change with

time. Therefore, DMOAs should be capable of tracking the changing POS and/or POF.

Meanwhile, DMOAs are expected to yield very diversified solution sets, which are also

very good approximations of the true solutions of the DMOOPs, i.e. accurate solutions.

5.1.2 Dynamic Multi-Objective Optimization Algorithm

Algorithm 8 presents the dynamic multi-objective evolutionary algorithm, which serves

as the entry point to the process of optimizing DMOOPs that are studied in this chapter.

The core of this algorithm is a procedure called Optimizer, which is the main algorithm

proposed in this chapter.

A high-level description of Algorithm 8 is as follows:

• Data structures and counters, such as archive, iteration counter and time, are set.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 5. Differential Evolution Algorithm I 75

• A random population of individuals, which are potential solutions to the associated

problem, is created.

• The non-dominated individuals in the current population are obtained, and they

are assigned to the archive.

• The following set of algorithmic instructions are processed until the required exit

condition, i.e. maximum iteration count, is satisfied:

– The current time, in computational terms, is obtained using the severity and

frequency of change

– The Optimizer is invoked at this time, t

– Sentry particles are evaluated for a change in the simulation environment

– If there is a change in environment, required updates, e.g. updating the

archive, are performed

– Then, the iteration counter is incremented by one, and this block of instruc-

tions are re-processed until the exit condition, which is previously defined, is

satisfied.

5.1.3 Differential Evolution Algorithm

This section presents the proposed DE algorithm (refer to Algorithm 9). In Algorithm

9, getTrialVector(β, v, Pgen, F, t) is a procedure that computes the trial vector. This

procedure computes the target vector, given the input parameters passed to it. In the

proposed algorithm, the population of solutions or vectors, Pgen, is divided into groups,

sub-populations or hypercubes, with the number of groups being equal to the number of

objective functions to be optimized. The process of grouping occurs when the population

of solutions, or vectors, is initialized (refer to Algorithm 8). During the initialization, the

solution space is divided into sub-populations. Solutions are then drawn from the sub-

populations, which constitute the groupings of the solutions. Next generation vectors

are selected using the procedure getNextGenerationVectors.
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Algorithm 8 Dynamic Multi-Objective Optimization

Input: freq, severity, maxiteration, dMOOP

Output: {POSt}, {POFt}
1: Set population size, N

2: Set archive max size, SizeArchive

3: Initialize the iteration counter, iteration← 0

4: Initialize time, t← 0

5: Initialize(Pt, freq, severity, dMOOP, t)

{Initialize population of solutions, Pt}
6: AssignNonDominatedToArchive(Pt, dMOOP, t)

7: loop:

8: if iteration ≤ maxiteration then

9: t← 1/severity ∗ floor(iteration/freq)
{Frequency of environment change: freq}
{Severity of environment change: severity}

10: Optimizer(Pt, dMOOP, t)

11: Pick sentry solutions

12: if ENV changes(Pt, dMOOP, t) then

13: ProcessChange(Pt, freq, severity, dMOOP, t)

14: end if

15: iteration← iteration+ 1

16: goto loop

17: end if

5.1.4 Vector Evaluation Procedure

The vector evaluation strategy divides a population of solutions into groups or sub-

populations, and each sub-population is then optimized for a single objective. The

strategy is employed in the proposed algorithm as follows: The procedure getTrialVector

(refer to Algorithm 9) computes the target vector, which together with a difference vector

are used to compute the trial vector [144]. Given a parent vector, the best vector in the

adjacent group or sub-population of the parent is chosen as the target vector using the

vector evaluation scheme, which was proposed in [167] and applied in [141] [143] [144].
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Algorithm 9 Optimizer

Input: P, F, t

Output: POSt, POFt

{β: scaling factor set per algorithm}
{pr: recombination prob set per algorithm}
{maxgen(≥ 1): no of function evaluations set per algorithm}
{P: current population of vectors}
{F: multi-objective function to be optimized}
{t: current time}
{v: a vector drawn from a population of vectors}

1: Set the generation counter, gen = 1

2: Pgen ← P

3: V ← Ø

4: loop:

5: if gen ≤ maxgen then

6: nextVector:

7: if moreUnprocessed(v ∈ Pgen) then

8: v
′ ← getTrialVector(β,v,Pgen,F,t)

9: v
′′ ←getChildVector(pr,v

′
, v,F,t)

10: V ← V ∪ {v, v′′}
11: markAsProcessed(v ∈ Pgen)

12: goto nextVector

13: end if

14: Pgen ← getNextGenerationVectors(V )

15: gen← gen+ 1

16: V ← Ø

17: goto loop

18: end if

19: AssignNonDominatedToArchive(Pmaxgen, F, t)

The target vector and the difference vector are combined to produce the new trial vector,

which is combined in a crossover procedure with the parent vector to construct the child

vector [144]. The two vectors that constitute the difference vector are randomly selected
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from the parent vector’s group.

5.1.5 Non-Dominated Sorting

The procedure getChildVector in the proposed algorithm (refer to Algorithm 9) com-

bines the trial vector with the parent vector in a binomial crossover [58] [212] procedure

to produce the child vector. The child vectors produced from all the parent vectors are

pooled together with the parent vectors, and a set of next generation vectors is selected

from the pool using the non-dominated sorting scheme [74]. The procedure getNextGen-

erationVectors in Algorithm 9 implements the non-dominated sorting scheme.

5.2 Experiment

This section discusses the experimental setup used for this study. Section 5.2.1 discusses

the benchmark functions used in the study. Section 5.2.2 discusses the performance

measures used in a comparative analysis of the algorithms considered in the study. Al-

gorithmic setups used by the proposed algorithm are discussed in Section 5.2.3, while

the statistical analysis approach used in analysing the results of this study is discussed

in Section 5.2.4.

5.2.1 Benchmark Functions

Four DMOOPs, with various τt-nt combinations, were used in this study. The experi-

mental configurations used for these problems are:
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Table 5.1: First Experimental Study: Configuration
S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

1 FDA1 4 10 16 20 30

2 FDA1 5 10 20 20 30

3 FDA1 2 10 8 20 30

4 FDA1 4 1 16 20 30

5 FDA1 5 1 20 20 30

6 FDA1 2 1 8 20 30

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

7 FDA5 4 10 16 20 30

8 FDA5 5 10 20 20 30

9 FDA5 2 10 8 20 30

10 FDA5 4 1 16 20 30

11 FDA5 5 1 20 20 30

12 FDA5 2 1 8 20 30

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

13 dMOP2 4 10 16 20 30

14 dMOP2 5 10 20 20 30

15 dMOP2 2 10 8 20 30

16 dMOP2 4 1 16 20 30

17 dMOP2 5 1 20 20 30

18 dMOP2 2 1 8 20 30

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

19 dMOP3 4 10 16 20 30

20 dMOP3 5 10 20 20 30

21 dMOP3 2 10 8 20 30

22 dMOP3 4 1 16 20 30

23 dMOP3 5 1 20 20 30

24 dMOP3 2 1 8 20 30

The following symbols were used in Table 5.1:

τt: frequency of change.

nt: severity of change.

c(f(x)): number of function evaluations per iteration.

σ(runs): number of runs per configuration.

FDA1: type I DMOOP (POS is dynamic, POF is static), POF = 1−
√
f1 and is convex,

POS is xi = G(t) [61] [84].

FDA5: type II DMOOP (POS and POF are dynamic); for 3 objectives, POF = f 2
1 +

f 2
2 + f 2

3 = (1 +G(t))2 and is non-convex; POS is xi = G(t) [61] [84].

dMOP2: POF changes from convex to concave; type II DMOOP; POF = 1 − f
H(t)
1 ;

POS is xi = G(t) [73] [84].

DMOP3: type I DMOOP (POS is dynamic, POF is static), POF = 1 −
√
f1 and is
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convex, POS is xi = G(t) [61] [84].

5.2.2 Performance Measures

Five performance measures were used in this study. Each of the measures were computed

immediately before a change in the environment occurred. This was done for thirty runs.

An average of the values of the thirty runs was then computed for each measure in each

environment. The performance measures are as follows:

• Accuracy Measure (acc): measures how accurate a DMOA is able to approximate

the true POF of a DMOOP [84] [87] [89]. The lower the value of acc, the better

the performance of the algorithm.

• Stability Measure (stab): quantifies the effect of environment changes on the ac-

curacy measure [84] [87] [89]. The lower the value of this measure, the better.

• Hypervolume Ratio (hvr): measures the proportion of the objective space that is

covered by a non-dominated set without suffering from the bias of convex regions

seen with the HyperVolume measure [90]. hvr was proposed in [192]. The higher

the value of this measure, the better the algorithm performed.

• Reactivity Measure (react): measures how long it takes a DMOA to recover after

a change in the environment occurred. The length of time it takes to reach a

specified accuracy threshold is employed in computing this measure [84]. It was

originally proposed in [176]. The lower the value of this measure, the better.

• Number of Non-Dominated Solutions (NS): measures the number of non-dominated

solutions in the archive; it measures the size of the approximated POF [84].

5.2.3 Algorithmic Setup

1. The proposed algorithm is characterized as DE/best/1/bin.

2. Trial vector: to generate a trial vector from a parent vector during the muta-

tion phase of the algorithm, the best vector in the adjacent sub-population or
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hypercube as the parent vector is chosen as the target vector. The number of

hypercubes or sub-populations used by the algorithm is the same as the number

of objective functions in the underlying DMOOP. Each hypercube optimizes one

objective function.

3. One difference vector: two randomly chosen vectors from the parent vector’s hy-

percube are used to form a difference vector.

4. Crossover: Binomial crossover [58] is used because of its viability as a crossover

method in DE algorithms.

5. Scaling factor, β ∈ (0.4, 1).

6. Recombination probability, pr = 0.8.

7. DE convergence is insensitive to the control parameters [58]. Therefore the pro-

posed DE algorithm randomly chooses the scaling factor and fixes the recombina-

tion probability as defined above.

8. Neighbourhood topology: ring (the same for DVEPSO).

9. Population size: 50 (the same for DNSGA-II and DVEPSO).

10. Maximum archive size: 100 (the same for DNSGA-II and DVEPSO).

11. Control parameters for DVEPSO: Cognition learning factor is 0.5, the social learn-

ing factor is 0.5 and the inertia weight is 0.8. These sample parameter values

guarantee convergence, because they satisfy the convergence criterion in [58].

12. DVEPSO in this study uses the lbest PSO strategy in a ring topology in order to

compute the velocities of the particles in the optimization procedure [58].

13. DVEPSO uses a velocity clamping rule that randomly forces particles’ velocities

to fall between the range of (-1,1). The range is chosen to ensure a reasonable

balance between the exploration and exploitation capabilities of the algorithm.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 5. Differential Evolution Algorithm I 82

14. Control parameters for DNSGA-II: for crossover, the distribution index is 2 and

crossover probability is 0.9 (refer to [79], [80]). Polynomial mutation [79] is used by

the algorithm. Mutation parameters employ commonly used values: distribution

index of 20 and mutation probability of 1/6 [80], where 6 is the number of decision

variables.

5.2.4 Statistical Analysis

A statistical analysis of the algorithms’ performance was done in accordance with the

wins−lossesB algorithm proposed in [87], which is presented in Algorithm 1. The major

steps of the algorithm are:

• Kruskal-Wallis tests are performed on the performance measure values.

• If there is a statistical significant difference, then:

– For each DMOA-pair, the following is performed:

∗ Conduct Mann-Whitney U test on performance measure values

∗ If there is a statistical significant difference, wins and losses are assigned.

The average performance measure value of each time step just before a change in

the environment occurred are used to award wins and losses. This is done when the

Mann-Whitney U test indicates that there is a statistical significant difference. At each

time step just before a change in the simulated environment happened, the average

performance measure values of the DMOA-pair are compared. The DMOA with the

best performance measure value is awarded a win and the other is awarded a loss. Also,

to avoid skewness in the results that are obtained, the wins and losses are normalized as

proposed in [87].

The algorithm was implemented in R [149] and the Kruskal-Wallis and Mann Whitney

U statistical functions in R were used as stipulated in [87].
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5.3 Results and Discussions

This section presents the results of the study and how the proposed algorithm, 2DE-

VENS, performed in relation to DVEPSO and DNSGA-II. The winning algorithm in

each table presented in this section has a rank number indicated in bold. An experimen-

tal configuration in this section, and in any other sections of this chapter, is the same as

a pair of (severity of change, frequency of change) values used in the study.

Table 5.2 presents the overall wins-losses of the three algorithms considered in this

study. DVEPSO obtained more losses than wins, therefore it performed poorly compared

to DNSGA-II and 2DEVENS. DNSGA-II ranked first, followed closely by 2DEVENS,

and DVEPSO ranked last.

Table 5.3 presents the wins-losses of the algorithms in relation to the five performance

measures employed in the study. In Table 5.3, 2DEVENS ranked first for both the ac-

curacy and stability measures. DVEPSO ranked second for the two measures, while

DNSGA-II ranked last. DNSGA-II recorded the highest number of losses for the two

measures. DNSGA-II ranked first for the hvr and NS measures. 2DEVENS ranked sec-

ond for the two measures, while DVEPSO ranked last. DVEPSO, however, ranked first

for the reactivity measure and 2DEVENS ranked last. 2DEVENS and DVEPSO each

recorded their highest number of wins with the accuracy measure, and their individual

highest number of losses was recorded for the hvr measure. The highest number of wins

recorded by DNSGA-II was for hvr, and its highest number of losses was recorded for

the accuracy measure.

In Table 5.4, where the performance measure is acc, 2DEVENS won the first three

experimental configurations, while DVEPSO won the remaining three configurations.

DNSGA-II tied with 2DEVENS for the first experimental configuration in Table 5.4. In

all the configurations where 2DEVENS ranked first, DVEPSO ranked last. 2DEVENS

recorded its highest number of wins for the experimental configuration (nt = 10, τt =

5) and recorded its highest number of losses for the configuration (nt = 10, τt = 4).

DVEPSO recorded its highest number of wins for the experimental configuration (nt =

1, τt = 5) and the algorithm recorded its highest number of losses for the configuration

(nt = 10, τt = 5). DNSGA-II recorded its highest number of wins for the experimental

configuration (nt = 10, τt = 5) and its highest number of losses for the configuration
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(nt = 1, τt = 5). DVEPSO and DNSGA-II obtained more losses than wins for three

configurations. DVEPSO performed poorly when (nt = 10) and DNSGA-II when (nt =

1). 2DEVENS ranked first or second for all configurations, and it obtained more wins

than losses for five configurations. 2DEVENS obtained equal number of wins and losses

for (nt = 1, τt = 5).

In Table 5.5, where the performance measure is stab, 2DEVENS won the following

configurations: (nt = 10, τt = 2) (nt = 1, τt = 4) (nt = 1, τt = 2). 2DEVENS recorded its

highest number of wins for the configuration (nt = 10, τt = 2) and its highest number

of losses for the configuration (nt = 10, τt = 5). Its worst ranking was the second

position. DVEPSO ranked first for the following configurations: (nt = 10, τt = 4) (nt =

10, τt = 5) (nt = 10, τt = 2). It tied with 2DEVENS for the configuration (nt = 10, τt =

2). Its highest number of losses was recorded for (nt = 10, τt = 2) (nt = 1, τt = 2).

DNSGA-II ranked first for (nt = 1, τt = 5). DNSGA-II highest number of wins was for

(nt = 10, τt = 4) (nt = 10, τt = 5) (nt = 10, τt = 2). Its highest number of losses was also

recorded for the configurations where it recorded the highest number of wins. 2DEVENS

obtained more losses than wins for (nt = 10, τt = 5) and was ranked first or second for

all configurations. DVEPSO obtained more losses than wins for (nt = 1). DNSGA-II

only obtained more wins than losses for (nt = 1, τt = 5).

In Table 5.6, performances of the three algorithms are presented for the hvr. 2DE-

VENS ranked second for all the experimental configurations. The highest number of

wins recorded by 2DEVENS was for the configuration (nt = 1, τt = 5), while the highest

number of losses was recorded for the configuration (nt = 1, τt = 4). DVEPSO ranked

last for all the configurations. DVEPSO recorded zero number of wins for the configura-

tion (nt = 10, τt = 4), which was also its worst number of wins for all the configurations

presented. The highest number of wins recorded by DVEPSO was for the configuration

(nt = 1, τt = 2), and its highest number of losses was recorded for the configuration

(nt = 10, τt = 4). DNSGA-II ranked first for all the experimental configurations. Its

highest number of wins was recorded for (nt = 10, τt = 4) (nt = 10, τt = 2) and its

highest number of losses was recorded for (nt = 1, τt = 2). 2DEVENS ranked second for

all configurations, obtained only a few more wins than losses for three configurations,

equal number of wins and losses for two configurations and more losses than wins for one
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configuration. DVEPSO obtained the worst rank for all configurations and was awarded

more losses than wins for all configurations. DNSGA-II ranked first for all configurations

and obtained more wins than losses for all configurations.

In Table 5.7, the algorithms’ performances are presented for the reactivity measure

under different experimental configurations. 2DEVENS ranked second for the following

configurations: (nt = 10, τt = 4) (nt = 1, τt = 4), while it ranked third for the remaining

configurations. 2DEVENS’s highest number of wins was for (nt = 1, τt = 4), and its

highest number of losses was for (nt = 1, τt = 2). DVEPSO ranked first for all the

configurations. DVEPSO recorded its highest number of wins for the configuration

(nt = 1, τt = 4), and its highest number of losses was recorded for the configuration

(nt = 1, τt = 2). DNSGA-II ranked third for the configuration (nt = 1, τt = 4), and

it ranked second for the remaining configurations. It tied for the second position with

2DEVENS for (nt = 10, τt = 4).

In Table 5.8 the performances of the three algorithms are presented for NS. 2DE-

VENS ranked first for (nt = 1, τt = 4) (nt = 1, τt = 5), and it tied with DNSGA-II for

(nt = 1, τt = 5). In the remaining configurations, 2DEVENS ranked second, where it

was outranked by DNSGA-II. 2DEVENS recorded its highest number of wins for the

configurations (nt = 1, τt = 4) (nt = 1, τt = 5), and its highest number of losses was

recorded for (nt = 10, τt = 2). DVEPSO ranked third for all the configurations. Its

highest number of wins was recorded for the configuration (nt = 10, τt = 5), and its

highest number of losses was recorded for (nt = 1, τt = 2). DNSGA-II ranked first for

all the configurations. Its highest number of wins was recorded for the configurations

(nt = 10, τt = 5) (nt = 10, τt = 2), and its highest number of losses was recorded for

(nt = 1, τt = 4) (nt = 1, τt = 5). DVEPSO obtained a huge number of losses for all

configurations.

The POFs for the four DMOOPs employed in this study are presented in Figures 5.2,

5.4, 5.6 and 5.7. Each of the POFs applies to the proposed algorithm, and a randomly

selected experimental configuration.

The POFs presented in the figures apply to the first single run. A run contains four

environments, which is why each of the found POFs presented by the figures in this

section contains four plotted lines. Figure 5.2 presents the found POF for the FDA1
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DMOOP. The true POF of FDA1 is presented in Figure 5.1. Figures 5.4, 5.6 and 5.7

present the found POFs for FDA5, DMOP2 and DMOP3 respectively. The found POF

for FDA5 shows a tendency to approximate a non-convex shape. For DMOP2, the found

POF shows a subtle convexity towards the origin. Similarly, for DMOP3, the found POF

shows a bit of convexity towards the origin.

The true POF of FDA5 is presented in Figure 5.3, while that of DMOP2 is presented

in Figure 5.5. DMOP3 and FDA1 share the same true POF, which is presented in 5.1.

Table 5.2: First Experimental Study: Overall Wins and Loses
RESULTS 2DEVENS DVEPSO DNSGA-II

Wins 399 295 476

Losses 377 493 300

Diff 22 -198 176

Rank 2 3 1

Table 5.3: First Experimental Study: Wins and Losses per Measure
PM RESULTS 2DEVENS DVEPSO DNSGA-II

acc Wins 103 97 77

acc Losses 81 89 107

acc Diff 22 8 -30

acc Rank 1 2 3

stab Wins 67 64 46

stab Losses 50 56 71

stab Diff 17 8 -25

stab Rank 1 2 3

hvr Wins 99 22 167

hvr Losses 93 170 25

hvr Diff 6 -148 142

hvr Rank 2 3 1

react Wins 30 76 34

react Losses 61 22 57

react Diff -31 54 -23

react Rank 3 1 2

NS Wins 100 36 152

NS Losses 92 156 40

NS Diff 8 -120 112

NS Rank 2 3 1
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Table 5.4: First Experimental Study: Wins and Losses per Configuration for Accuracy Mea-

sure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

acc 10 4 Wins 17 14 17

acc 10 4 Losses 15 18 15

acc 10 4 Diff 2 -4 2

acc 10 4 Rank 1 3 1

acc 10 5 Wins 22 8 18

acc 10 5 Losses 10 24 14

acc 10 5 Diff 12 -16 4

acc 10 5 Rank 1 3 2

acc 10 2 Wins 18 14 16

acc 10 2 Losses 14 18 16

acc 10 2 Diff 4 -4 0

acc 10 2 Rank 1 3 2

acc 1 4 Wins 16 21 9

acc 1 4 Losses 14 11 21

acc 1 4 Diff 2 10 -12

acc 1 4 Rank 2 1 3

acc 1 5 Wins 14 22 6

acc 1 5 Losses 14 6 22

acc 1 5 Diff 0 16 -16

acc 1 5 Rank 2 1 3

acc 1 2 Wins 16 18 11

acc 1 2 Losses 14 12 19

acc 1 2 Diff 2 6 -8

acc 1 2 Rank 2 1 3 
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Table 5.5: First Experimental Study: Wins and Losses with various Frequency and Severity

of Change for Stability Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

stab 10 4 Wins 13 17 9

stab 10 4 Losses 13 9 17

stab 10 4 Diff 0 8 -8

stab 10 4 Rank 2 1 3

stab 10 5 Wins 11 19 9

stab 10 5 Losses 15 7 17

stab 10 5 Diff -4 12 -8

stab 10 5 Rank 2 1 3

stab 10 2 Wins 15 15 9

stab 10 2 Losses 11 11 17

stab 10 2 Diff 4 4 -8

stab 10 2 Rank 1 1 3

stab 1 4 Wins 10 4 7

stab 1 4 Losses 4 10 7

stab 1 4 Diff 6 -6 0

stab 1 4 Rank 1 3 2

stab 1 5 Wins 5 3 7

stab 1 5 Losses 3 8 4

stab 1 5 Diff 2 -5 3

stab 1 5 Rank 2 3 1

stab 1 2 Wins 13 6 5

stab 1 2 Losses 4 11 9

stab 1 2 Diff 9 -5 -4

stab 1 2 Rank 1 2 3 
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Table 5.6: First Experimental Study: Wins and Losses with various Frequency and Severity

of Change for hvr Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

hvr 10 4 Wins 17 0 31

hvr 10 4 Losses 15 32 1

hvr 10 4 Diff 2 -32 30

hvr 10 4 Rank 2 3 1

hvr 10 5 Wins 17 1 30

hvr 10 5 Losses 15 31 2

hvr 10 5 Diff 2 -30 28

hvr 10 5 Rank 2 3 1

hvr 10 2 Wins 16 1 31

hvr 10 2 Losses 16 31 1

hvr 10 2 Diff 0 -30 30

hvr 10 2 Rank 2 3 1

hvr 1 4 Wins 15 9 24

hvr 1 4 Losses 17 23 8

hvr 1 4 Diff -2 -14 16

hvr 1 4 Rank 2 3 1

hvr 1 5 Wins 18 4 26

hvr 1 5 Losses 14 28 6

hvr 1 5 Diff 4 -24 20

hvr 1 5 Rank 2 3 1

hvr 1 2 Wins 16 7 25

hvr 1 2 Losses 16 25 7

hvr 1 2 Diff 0 -18 18

hvr 1 2 Rank 2 3 1 
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Table 5.7: First Experimental Study: Wins and Losses with various Frequency and Severity

of Change for react Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

react 10 4 Wins 3 11 3

react 10 4 Losses 7 2 8

react 10 4 Diff -4 9 -5

react 10 4 Rank 2 1 2

react 10 5 Wins 3 9 4

react 10 5 Losses 7 3 6

react 10 5 Diff -4 6 -2

react 10 5 Rank 3 1 2

react 10 2 Wins 3 8 5

react 10 2 Losses 7 3 6

react 10 2 Diff -4 5 -1

react 10 2 Rank 3 1 2

react 1 4 Wins 10 19 4

react 1 4 Losses 12 4 17

react 1 4 Diff -2 15 -13

react 1 4 Rank 2 1 3

react 1 5 Wins 6 14 8

react 1 5 Losses 13 4 11

react 1 5 Diff -7 10 -3

react 1 5 Rank 3 1 2

react 1 2 Wins 5 15 10

react 1 2 Losses 15 6 9

react 1 2 Diff -10 9 1

react 1 2 Rank 3 1 2 
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Table 5.8: First Experimental Study: Wins and Losses with various Frequency and Severity

of Change for NS Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

NS 10 4 Wins 16 4 28

NS 10 4 Losses 16 28 4

NS 10 4 Diff 0 -24 24

NS 10 4 Rank 2 3 1

NS 10 5 Wins 10 9 29

NS 10 5 Losses 22 23 3

NS 10 5 Diff -12 -14 26

NS 10 5 Rank 2 3 1

NS 10 2 Wins 15 4 29

NS 10 2 Losses 17 28 3

NS 10 2 Diff -2 -24 26

NS 10 2 Rank 2 3 1

NS 1 4 Wins 20 8 20

NS 1 4 Losses 12 24 12

NS 1 4 Diff 8 -16 8

NS 1 4 Rank 1 3 1

NS 1 5 Wins 20 8 20

NS 1 5 Losses 12 24 12

NS 1 5 Diff 8 -16 8

NS 1 5 Rank 1 3 1

NS 1 2 Wins 19 3 26

NS 1 2 Losses 13 29 6

NS 1 2 Diff 6 -26 20

NS 1 2 Rank 2 3 1

Figure 5.1: True POF of FDA1
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Figure 5.2: DMOA = 2DEVENS, DMOOP = FDA1, nt = 1 τt = 4

Figure 5.3: True POF of FDA5

5.4 Conclusion

This study proposed a DE algorithm, which utilizes the vector evaluation and non-

dominated sorting schemes used in DVEPSO and DNSGA-II algorithms respectively, in

order to search for optimal trade-off solutions of DMOOPs. The proposed algorithm

shows good performance based on the results in Section 5.3. While the overall winner is

DNSGA-II, the proposed algorithm ranks second. The proposed algorithm is the overall

winner for the two important performance measures of accuracy and stability, therefore

making it a favourite in situations where accuracy and stability measures are critical
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Figure 5.4: DMOA = 2DEVENS, DMOOP = FDA5, nt = 1 τt = 4

Figure 5.5: True POF of DMOP2

when choosing an algorithm for solving DMOOP.

5.5 Summary

This chapter presented the first experimental study conducted in this research. A new

differential evolution algorithm, 2DEVENS, was presented. 2DEVENS was compared

with DVEPSO and DNSGA-II on a selected set of DMOOPs. The algorithms were

compared on a number of performance measures. Different experimental configurations

were employed to measure the performance characteristics of the algorithms. Results of

the study showed that the proposed algorithm, 2DEVENS, performed very well relative
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Figure 5.6: DMOA = 2DEVENS, DMOOP = DMOP2, nt = 1 τt = 4

Figure 5.7: DMOA = 2DEVENS, DMOOP = DMOP3, nt = 1 τt = 4

to the two standard algorithms, DVEPSO and DNSGA-II. The next chapter presents

another study where the performance of 2DEVENS, DVEPSO and DNSGA-II are com-

pared on another set of DMOOPs, under different experimental configurations.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 6

Differential Evolution Algorithm II

Chapter 5 presented an algorithm proposed to solve DMOOPs. A comparative study of

the performance of the proposed algorithm and two other well established algorithms,

namely DNSGA-II and DVEPSO, was conducted. All three algorithms were compared

on a number of benchmark functions, which are artificial optimization problems [61] [88].

This chapter presents another study, where the three algorithms are, again, com-

pared, using the same performance measures as the previous study that was presented

in Chapter 5. However, performance measures used in this study apply to a different

set of experimental configurations. Also, a new set of benchmark functions, such as the

H1 and HE3, is presented in this study, in addition to some of the benchmark functions

presented in Chapter 5. Section 5.1 discusses key concepts, mathematics and algorithms

required to facilitate understanding of the rest of this chapter.

The remainder of the chapter is organized as follows: Section 6.1 discusses the exper-

imental configurations, benchmark functions, performance measures and the statistical

analyses employed in the study. Results of the experiment are presented and discussed

in Section 6.2, and Section 6.3 draws conclusions from the results. Section 6.4 presents

a summary of the chapter.

95
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6.1 Experiment

This section presents the experimental setup employed in this study. The benchmark

functions used in the study are presented in Section 6.1.1. Performance measures em-

ployed in the study are highlighted in Section 6.1.2. Section 6.1.3 discusses the algorith-

mic setup used in the study. Lastly, Section 6.1.4 provides an overview of the statistical

analysis employed in the study.

6.1.1 Benchmark Functions

In this study, seven DMOOPs, with various τt-nt combinations, were employed. The

experimental configurations used for these problems are presented in Table 6.1.

In Table 6.1, the following symbols and definitions apply:

S/N: Table’s row number, τt: frequency of change, nt: severity of change,

c(f(x)): number of function evaluations per iteration and σ(runs): number of runs per

configuration.

FDA5: type II DMOOP (POS and POF are dynamic); For 3 objectives, POF =

f 2
1 + f 2

2 + f 2
3 = (1 +G(t))2 and is non-convex; POS is xi = G(t) [61] [84].

FDA5iso: The DMOOP is a FDA5 function (Refer to FDA5 above). In addition,

the DMOOP creates a flat region in the search space, which presents a difficulty to

algorithms in searching for the global optimum [84]. A transformation from FDA5 to

FDA5iso is presented in [84].

FDA5dec: The DMOOP is a FDA5 function (Refer to FDA5 above). In addition, this

DMOOP favors convergence to a local optimum [84]. A transformation from FDA5 to

FDA5dec is presented in [84].

dMOP2: The POF changes from convex to concave; type II DMOOP; POF =

1− fH(t)
1 ; POS is xi = G(t) [73] [84].
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Table 6.1: Second Experimental Study: Configuration
S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

1 FDA5 10 10 40 20 30

2 FDA5 5 10 20 20 30

3 FDA5 2 10 8 20 30

4 FDA5 10 1 40 20 30

5 FDA5 5 1 20 20 30

6 FDA5 2 1 8 20 30

7 FDA5iso 10 10 40 20 30

8 FDA5iso 5 10 20 20 30

9 FDA5iso 2 10 8 20 30

10 FDA5iso 10 1 40 20 30

11 FDA5iso 5 1 20 20 30

12 FDA5iso 2 1 8 20 30

13 FDA5dec 10 10 40 20 30

14 FDA5dec 5 10 20 20 30

15 FDA5dec 2 10 8 20 30

16 FDA5dec 10 1 40 20 30

17 FDA5dec 5 1 20 20 30

18 FDA5dec 2 1 8 20 30

19 dMOP2 10 10 40 20 30

20 dMOP2 5 10 20 20 30

21 dMOP2 2 10 8 20 30

22 dMOP2 10 1 40 20 30

23 dMOP2 5 1 20 20 30

24 dMOP2 2 1 8 20 30

25 dMOP3 10 10 40 20 30

26 dMOP3 5 10 20 20 30

27 dMOP3 2 10 8 20 30

28 dMOP3 10 1 40 20 30

29 dMOP3 5 1 20 20 30

30 dMOP3 2 1 8 20 30

31 He1 10 10 40 20 30

32 He1 5 10 20 20 30

33 He1 2 10 8 20 30

34 He1 10 1 40 20 30

35 He1 5 1 20 20 30

36 He1 2 1 8 20 30

37 He3 10 10 40 20 30

38 He3 5 10 20 20 30

39 He3 2 10 8 20 30

40 He3 10 1 40 20 30

41 He3 5 1 20 20 30

42 He3 2 1 8 20 30

dMOP3: type I DMOOP (POS is dynamic, POF is static), POF = 1 −
√
f1 and is

convex, POS is xi = G(t) [61] [84].
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HE1: type III DMOOP (POS is static, POF is dynamic), POF = 1 −
√
f1 −

f1sin(10πtf1), and the POF is characterized by dis-connected sub-regions [84].

HE3: type III DMOOP (POS is static, POF is dynamic), POS is defined by non-linear

functions. POF:
(
2−√x1

) [
1−

(
x1

2−√x1

)H(t)
]
.

6.1.2 Performance Measures

Performance measures presented and discussed in Section 5.2.2 also apply to this study.

6.1.3 Algorithmic Setup

This study used an algorithmic setup similar to the setup discussed in Section 5.2.3.

6.1.4 Statistical Measures

The statistical analysis in Section 5.2.4 was also used in this study.

6.2 Results and Discussions

The results of the study are presented in this section. The performance of 2DEVENS was

compared against two other nature-inspired algorithms, namely DVEPSO and DNSGA-

II. For each table presented in this section, the winning algorithm has a rank number

that is indicated in bold. Experimental configuration in this section, and in any other

sections of this study, is the same as a pair of (severity of change, frequency of change)

values used in the study.

In Table 6.2, the overall wins-losses is presented for each of the three algorithms.

DVEPSO recorded more losses than wins, therefore it performed poorly compared to

DNSGA-II and 2DEVENS. DNSGA-II ranked first, followed closely by 2DEVENS, and

DVEPSO ranked last.

Table 6.3 presents wins-losses statistics for each algorithm with regards to the per-

formance measures used in the study. 2DEVENS ranked first for the accuracy measure,

acc, and DVEPSO ranked last. DVEPSO recorded the highest number of losses for acc.
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For the stability measure, stab, DVEPSO ranked first, while 2DEVENS ranked second.

2DEVENS also ranked second for hvr and NS, while DNSGA-II ranked first for these two

measures. 2DEVENS ranked second for the reactivity measure, react, and DNSGA-II

ranked last for the measure. For all the measures, 2DEVENS never ranked last. 2DE-

VENS recorded its highest number of wins for NS and its highest number of losses for

hvr. For DVEPSO, its highest number of wins was recorded under react while its highest

number of losses was recorded under NS. DNSGA-II obtained its highest number of wins

for hvr and its highest number of losses for acc.

Table 6.4 presents performance of the algorithms for acc and different experimental

configurations. 2DEVENS ranked first for all the configurations, except (nt = 1, τt = 10).

For the configuration where 2DEVENS ranked second, it was only slightly inferior to

the winner. DVEPSO ranked last for all the configurations. DNSGA-II ranked second

for all the configurations, except for (nt = 1, τt = 10). 2DEVENS obtained its highest

number of wins for the configuration (nt = 10, τt = 10), and the number of wins was the

highest among all the wins recorded by all the algorithms for all the configurations. The

highest number of losses recorded by 2DEVENS was 18, and that number was recorded

for three configurations. 2DEVENS had a higher number of wins than losses for all the

configurations. DVEPSO recorded the highest number of losses for the configuration

(nt = 10, τt = 10). The highest number of wins recorded by DVEPSO was for (nt =

1, τt = 5). DVEPSO obtained higher number of losses than wins for all the configurations,

indicating a poor performance in comparison to the other two algorithms. DNSGA-II

recorded its highest number of wins for (nt = 1, τt = 5) and the highest number of losses

for (nt = 10, τt = 10).

In Table 6.5, the algorithms’ performances in relation to stab, for different experi-

mental configurations, are presented. 2DEVENS won for the experimental configurations

(nt = 1, τt = 5) and (nt = 1, τt = 10). The algorithm recorded its highest number of

wins for (nt = 10, τt = 5) and its highest number of losses for (nt = 10, τt = 10).

DVEPSO obtained the highest numbers of wins, four out of five, from all the configura-

tions. DVEPSO recorded its highest number of wins for (nt = 10, τt = 10) and its highest

number of losses for (nt = 1, τt = 10). DVEPSO ranked second for (nt = 1, τt = 5), third

for (nt = 1, τt = 10) and first for the other configurations. DNSGA-II never ranked

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 6. Differential Evolution Algorithm II 100

first. DNSGA-II ranked second for (nt = 10, τt = 10) and (nt = 1, τt = 10). Its highest

number of wins was recorded for (nt = 10, τt = 10) and its highest number of losses was

recorded for (nt = 10, τt = 5).

Performances of the algorithms are presented for hvr in Table 6.6. 2DEVENS ranked

second for all the experimental configurations. Its highest number of wins was recorded

for the configuration (nt = 10, τt = 10), and its highest number of losses was recorded

for (nt = 1, τt = 5). The number of wins obtained by 2DEVENS was at least equal

the number of losses, except for (nt = 1, τt = 5). DVEPSO ranked last for all the

configurations. Its highest number of wins was recorded for (nt = 1, τt = 5). Its highest

number of losses was awarded for (nt = 10, τt = 2). It recorded more losses than wins for

all the configurations. DNSGA-II was ranked first for all the configurations. Its highest

number of wins was for (nt = 10, τt = 2). Its highest number of losses was recorded for

(nt = 10, τt = 10). It obtained more wins than losses for all the configurations, indicating

a good performance.

In Table 6.7, the performances of the algorithms are presented for react. 2DEVENS

ranked second for (nt = 10, τt = 5), (nt = 1, τt = 2) , (nt = 1, τt = 5) and (nt =

1, τt = 10). It ranked last for the other configurations. Its highest number of wins

was recorded for (nt = 1, τt = 2) and (nt = 10, τt = 5). Its highest number of losses

was for (nt = 10, τt = 2). It obtained more losses than wins for all the configurations.

DVEPSO was ranked first for all configurations. Its highest number of wins was for

(nt = 10, τt = 10), (nt = 10, τt = 2) and (nt = 1, τt = 2). Its highest number of losses

was recorded for (nt = 1, τt = 5). It obtained more wins than losses for all configurations.

DNSGA-II had its highest number of wins for (nt = 1, τt = 5). Its highest number of

losses was recorded for (nt = 1, τt = 2). It obtained more losses than wins for all the

configurations.

Table 6.8 presents the performances of the algorithms for the NS measure. 2DEVENS

ranked second for all the experimental configurations. Its highest number of wins was

awarded for (nt = 10, τt = 10). Its highest number of losses was recorded for (nt = 1, τt =

5). It obtained more wins than losses for all the configurations. DVEPSO ranked last

for all the configurations. Its highest number of wins was recorded for (nt = 1, τt = 5).

Its highest number of losses was for (nt = 10, τt = 2). It obtained more losses than
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wins for all configurations, and it obtained zero number of wins for (nt = 10, τt = 2).

DNSGA-II was ranked first for all configurations. Its highest number of wins was for

(nt = 10, τt = 2). Its highest number of losses was for (nt = 1, τt = 10). It obtained

more wins than losses for all the configurations.

The found POFs for the five DMOOPs used in this study are presented in Figures

6.1, 6.2, 6.3, 6.5 and 6.7. Figures 6.1, 6.2 and 6.3 show non-convexity towards the origin,

which is consistent with the true POF of FDA5 presented in Figure 5.3. Figure 6.5

shows discontinuities, while Figure 6.7 displays concavity towards the origin. Each of

the found POFs applies to the proposed algorithm, and a randomly selected experimental

configuration. The found POFs presented in this section apply to the first single run.

A run contains four environments, which is why each of the POFs contains four plotted

lines. The true POFs of HE1 and HE3 are presented in Figures 6.4 and 6.6. Figure 6.8

presents the found POFs of HE3 zoomed into values of f1 between 0 and 1. The figure

shows that the POFs of the four environments for f1-values between 0 and 1, which were

also shown in Figure 6.7, were actually not converging to the same set of values, as one

may erroneously conclude from Figure 6.7. Also observed from Figure 6.8 is the fact that

the environments whose POFs obtained smaller f2-values for f1-values that are greater

than 1 are now showing bigger f2-values for f1-values between 0 and 1.

Table 6.2: Second Experimental Study: Overall Wins and Loses
RESULTS 2DEVENS DVEPSO DNSGA-II

Wins 727 415 769

Losses 536 879 496

Diff 191 -464 273

Rank 2 3 1

6.3 Conclusion

This study again demonstrated the ability of 2DEVENS in tracking the POFs of DMOOPs.

The results of the study show that 2DEVENS was superior on the accuracy measure,

which means it will be the choice algorithm when the need to accurately track the true

POFs is prioritized. On other measures, such as stability, reactivity, etc., it compared

very well with the other two algorithms, i.e. DVEPSO and DNSGA-II. For the stab
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Table 6.3: Second Experimental Study: Wins and Losses per Measure
PM RESULTS 2DEVENS DVEPSO DNSGA-II

acc Wins 199 92 154

acc Losses 95 204 146

acc Diff 104 -112 8

acc Rank 1 3 2

stab Wins 88 106 58

stab Losses 79 67 106

stab Diff 9 39 -48

stab Rank 2 1 3

hvr Wins 182 41 253

hvr Losses 134 275 67

hvr Diff 48 -234 186

hvr Rank 2 3 1

react Wins 57 142 54

react Losses 108 39 106

react Diff -51 103 -52

react Rank 2 1 3

NS Wins 201 34 250

NS Losses 120 294 71

NS Diff 81 -260 179

NS Rank 2 3 1

Figure 6.1: DMOA = 2DEVENS, DMOOP = FDA5, nt = 10 τt = 10

measure, under the experimental configurations (nt = 1, τt = 5) and (nt = 1, τt = 10), it

ranked first, which means that it may be preferred in some circumstances to the other

algorithms, when the stab measure and specific configurations where it ranked first are

prioritized.
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Table 6.4: Second Experimental Study: Wins and Losses per Configuration for Accuracy

Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

acc 10 10 Wins 45 13 26

acc 10 10 Losses 11 43 30

acc 10 10 Diff 34 -30 -4

acc 10 10 Rank 1 3 2

acc 10 5 Wins 38 14 32

acc 10 5 Losses 18 42 24

acc 10 5 Diff 20 -28 8

acc 10 5 Rank 1 3 2

acc 10 2 Wins 38 15 31

acc 10 2 Losses 18 41 25

acc 10 2 Diff 20 -26 6

acc 10 2 Rank 1 3 2

acc 1 2 Wins 32 15 20

acc 1 2 Losses 14 27 26

acc 1 2 Diff 18 -12 -6

acc 1 2 Rank 1 3 2

acc 1 5 Wins 24 20 22

acc 1 5 Losses 18 25 23

acc 1 5 Diff 6 -5 -1

acc 1 5 Rank 1 3 2

acc 1 10 Wins 22 15 23

acc 1 10 Losses 16 26 18

acc 1 10 Diff 6 -11 5

acc 1 10 Rank 2 3 1

Figure 6.2: DMOA = 2DEVENS, DMOOP = FDA5iso, nt = 10 τt = 10

6.4 Summary

This chapter presented the second experimental study conducted in this research. 2DE-

VENS’s performance was compared with DVEPSO and DNSGA-II with respect to a

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 6. Differential Evolution Algorithm II 104

Table 6.5: Second Experimental Study: Wins and Losses with various Frequency and Severity

of Change for Stability Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

stab 10 10 Wins 13 27 17

stab 10 10 Losses 25 11 21

stab 10 10 Diff -12 16 -4

stab 10 10 Rank 3 1 2

stab 10 5 Wins 22 24 5

stab 10 5 Losses 13 11 27

stab 10 5 Diff 9 13 -22

stab 10 5 Rank 2 1 3

stab 10 2 Wins 15 24 9

stab 10 2 Losses 18 9 21

stab 10 2 Diff -3 15 -12

stab 10 2 Rank 2 1 3

stab 1 2 Wins 10 13 7

stab 1 2 Losses 11 8 11

stab 1 2 Diff -1 5 -4

stab 1 2 Rank 2 1 3

stab 1 5 Wins 12 11 10

stab 1 5 Losses 8 12 13

stab 1 5 Diff 4 -1 -3

stab 1 5 Rank 1 2 3

stab 1 10 Wins 16 7 10

stab 1 10 Losses 4 16 13

stab 1 10 Diff 12 -9 -3

stab 1 10 Rank 1 3 2

Figure 6.3: DMOA = 2DEVENS, DMOOP = FDA5dec, nt = 10 τt = 10

selected set of DMOOPs. The algorithms were compared on a number of performance

measures. Different experimental configurations were used to measure the performance

characteristics of the algorithms. Results of the study shows that the proposed algo-
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Table 6.6: Second Experimental Study: Wins and Losses with various Frequency and Severity

of Change for hvr Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

hvr 10 10 Wins 38 4 42

hvr 10 10 Losses 18 52 14

hvr 10 10 Diff 20 -48 28

hvr 10 10 Rank 2 3 1

hvr 10 5 Wins 34 3 47

hvr 10 5 Losses 22 53 9

hvr 10 5 Diff 12 -50 38

hvr 10 5 Rank 2 3 1

hvr 10 2 Wins 34 2 48

hvr 10 2 Losses 22 54 8

hvr 10 2 Diff 12 -52 40

hvr 10 2 Rank 2 3 1

hvr 1 2 Wins 26 8 42

hvr 1 2 Losses 26 40 10

hvr 1 2 Diff 0 -32 32

hvr 1 2 Rank 2 3 1

hvr 1 5 Wins 26 15 43

hvr 1 5 Losses 30 41 13

hvr 1 5 Diff -4 -26 30

hvr 1 5 Rank 2 3 1

hvr 1 10 Wins 24 9 31

hvr 1 10 Losses 16 35 13

hvr 1 10 Diff 8 -26 18

hvr 1 10 Rank 2 3 1

Figure 6.4: True POF of HE1

rithm, 2DEVENS, performed very well relative to the other standard DMOOPs. The

next chapter presents another study, where 2DEVENS is used in solving problems that

employ decision-maker preferences in the process of finding optimal solutions to opti-
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Table 6.7: Second Experimental Study: Wins and Losses with various Frequency and Severity

of Change for react Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

react 10 10 Wins 4 26 9

react 10 10 Losses 21 4 14

react 10 10 Diff -17 22 -5

react 10 10 Rank 3 1 2

react 10 5 Wins 10 24 6

react 10 5 Losses 14 8 18

react 10 5 Diff -4 16 -12

react 10 5 Rank 2 1 3

react 10 2 Wins 4 26 11

react 10 2 Losses 22 6 13

react 10 2 Diff -18 20 -2

react 10 2 Rank 3 1 2

react 1 2 Wins 14 26 5

react 1 2 Losses 15 4 26

react 1 2 Diff -1 22 -21

react 1 2 Rank 2 1 3

react 1 5 Wins 14 20 13

react 1 5 Losses 19 10 18

react 1 5 Diff -5 10 -5

react 1 5 Rank 2 1 3

react 1 10 Wins 11 20 10

react 1 10 Losses 17 7 17

react 1 10 Diff -6 13 -7

react 1 10 Rank 2 1 3

Figure 6.5: DMOA = 2DEVENS, DMOOP = HE1, nt = 10 τt = 10

mization problems.
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Table 6.8: Second Experimental Study: Wins and Losses with various Frequency and Severity

of Change for NS Measure
PM nt τt RESULTS 2DEVENS DVEPSO DNSGA-II

NS 10 10 Wins 38 4 39

NS 10 10 Losses 15 52 14

NS 10 10 Diff 23 -48 25

NS 10 10 Rank 2 3 1

NS 10 5 Wins 34 5 43

NS 10 5 Losses 20 51 11

NS 10 5 Diff 14 -46 32

NS 10 5 Rank 2 3 1

NS 10 2 Wins 35 0 49

NS 10 2 Losses 21 56 7

NS 10 2 Diff 14 -56 42

NS 10 2 Rank 2 3 1

NS 1 2 Wins 33 5 46

NS 1 2 Losses 23 51 10

NS 1 2 Diff 10 -46 36

NS 1 2 Rank 2 3 1

NS 1 5 Wins 31 11 42

NS 1 5 Losses 25 45 14

NS 1 5 Diff 6 -34 28

NS 1 5 Rank 2 3 1

NS 1 10 Wins 30 9 31

NS 1 10 Losses 16 39 15

NS 1 10 Diff 14 -30 16

NS 1 10 Rank 2 3 1

Figure 6.6: True POF of HE3
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Figure 6.7: DMOA = 2DEVENS, DMOOP = HE3, nt = 10 τt = 10
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Figure 6.8: DMOA = 2DEVENS, DMOOP = HE3, nt = 10 τt = 10
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Chapter 7

Decision-maker’s Preference Driven

Optimization Problem

Many DMOOPs occur in the real-world [9] [26] [35] [47] [61] [78] [137] [96] [116] [133]

[139] [169], while their artificial counterparts are well researched in [61] [73] [84] [88] [97]

[106]. DMOOPs have many goals or objectives, and elements of the problems, such as

objectives and/or constraints, change over time [10] [87] [105] [134]. However, these goals

are usually in conflict in relation to one another, thereby making the process of finding

a single optimal solution a very difficult task [33]. Trade-off solutions are therefore

the norm. The Pareto-dominance relation is a popular operator used to compare the

trade-off solutions [140].

The set of optimal trade-off solutions of a DMOOP in the decision variable space, also

called solution space, is called the POS, while in the objective space it is called the POF

[48]. Sometimes, the set of trade-off solutions may be large in number and a subset may

be required by a decision-maker in the hope of finding a subset that better reflects the

preferences of the decision-maker [98]. Some research has been conducted on methods of

incorporating a decision-maker’s preferences when solving MOOPs in static environments

[32] [36] [37] [47] [62] [76] [101] [162] [181] [185]. Apriori, interactive and posteriori

are the dominant classification of the methods. It is noteworthy to state that none

of these preference incorporation methods have been applied to DMOOPs. Therefore,

this chapter presents an experimental study, which aims at a preference incorporation

110
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Chapter 7. Decision-maker’s Preference Driven Optimization Problem 111

method that is adapted for DMOOPs. The method is partly a priori and interactive.

A procedure, named bootstrap, simulates the a priori incorporation of decision-maker

preferences, while the interactive incorporation of preferences is employed whenever there

is a change in the dynamic environment in such a way that the decision-maker preference

set may be significantly affected.

Introducing decision-maker preferences, however leads to the reformulation of DMOOPs

as constrained problems, which are then solved by the proposed algorithms using a vari-

ation of penalty functions in [39] [102] [129] [130] [213]. The constraints imposed on

DMOOPs as a result of a decision-maker’s preferences are defined in the objective space,

and such constraints partition the objective space into feasible and infeasible regions.

In this study, a solution will henceforth be referred to as a decision.

This study proposes a bounding box approach (refer to Equation (7.2)) to incorpo-

rate a decision-maker’s preferences into a DMOO process. The proposed bounding box,

unlike the proposal in [8], is used in the context of DMOOPs, thus making it the first of

its kind. Secondly, the study proposes new approaches that can drive the DMOO search,

which are constrained by a decision-maker’s preferences. Thirdly, the study motivates a

comparative analysis of the performance of three proposed algorithms (ALG:1, ALG:2,

ALG:3) incorporating these approaches. The three proposed algorithms, however, dif-

fer by how they treat solutions that violate decision-maker’s preferences. ALG:1, also

referred to as the Proportionate-Penalty, penalizes solutions by the degree of their vi-

olations of decision-maker’s preferences. ALG:2, also referred to as the Death-Penalty,

logically kills solutions that violate decision-maker’s preferences. ALG:3, also referred

to as Restrict-Search-to-Feasible-Region, keeps the search for the optimal solutions in

the region where only non-violating solutions are found. Solutions used by ALG:3 in the

process of searching for the optimal solutions do not violate decision-maker’s preferences.

The algorithms are implemented using an hybrid form of differential evolution in [42],

which combines non-dominated sorting [44] with vector-evaluation schemes in selecting

target vectors and the vectors that survive to the next generation during the optimization

process. Performance of the proposed algorithms are measured using selected measures

in [84] [87] [89] and the new measures proposed in this study. The three proposed algo-

rithms are different from one another in terms of how they penalize solutions that violate
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a decision-maker’s preferences.

The rest of this chapter is organized as follows: Section 7.1 provides background

to the experimental study conducted in this chapter. The experiments that underlie

this chapter are described in Section 7.2. Results and their discussion are presented in

Section 7.3. Conclusions of the experiments are presented in Section 7.4. Section 7.5

summarizes the chapter.

7.1 Background

This section discusses the key mathematics and algorithmic setup, which underly some of

the proposals in this study. Section 7.1.1 discusses the mathematical formulation of the

DMOOPs that are used in this study. It also discusses the mathematics of the proposed

bounding box approach and the limiting behaviors of the penalty functions used in the

study. Section 7.1.2 discusses the mathematics used by one of the proposed measures

in computing the deviation of the violating decisions, while Section 7.1.3 presents an

algorithm that computes the spread of non-violating decisions that are found in the

bounding box. Section 7.1.4 discusses the core evolutionary algorithm on which the

proposed DMOAs are based.

7.1.1 The Bounding Box Mathematics

Let a composite function F be defined as follows:

F : Ωx × Ωt −→ O (7.1)

where

Ωx(decision space) = <n, n ≥ 2, Ωt ⊆ R is the time space, t ∈ Ωt is a real-valued time

instance and t =
1

nt

⌊ τ
τt

⌋
, nt is the severity of change, τ is the iteration counter, τt is the

frequency of change.

O(objective space) =

{
<2 (e.g. FDA1 and dMOP2)

<3 (e.g. FDA5)
And a decomposition of F hereby follows:
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F (x, t) =

{
(f1, f2) (e.g. FDA1 and dMOP2)

(f1, f2, f3) (e.g. FDA5)

Each fi is defined as:

fi :
{

Ωx × Ωt −→ R (e.g. FDA1, dMOP2, FDA5), ∀i = 1, 2, 3

Let a decision-maker’s preference set be defined as follows:

Box(z; p) = {z ∈ O|d(z, p) ≤ r, p ∈ O, r ∈ <} (7.2)
where

d is the Euclidean distance measure, p is the center of the box formed by the points in

this set, Box(z; p), r is the radius of the box, O is as defined in Equation (7.1), and p

and r are interactively chosen by the decision-maker.

And let a penalty function and its limiting behaviours be defined as follows:

penalty(zi ∈ O, λ) =

{
0 if d(zi, p) ≤ r

λ(d(zi, p)− r) if d(zi, p) > r
(7.3)

lim
λ→c

penalty(zi ∈ O, λ) =

{
0 if d(zi, p) ≤ r

c(d(zi, p)− r) if d(zi, p) > r
(7.4)

lim
λ→realmax

penalty(zi ∈ O, λ) =

{
0 if d(zi, p) ≤ r

realmax if d(zi, p) > r
(7.5)

lim
λ→realmax

zi + penalty(zi ∈ O, λ) =

{
zi if d(zi, p) ≤ r

I1 ∗ realmax if d(zi, p) > r
(7.6)

lim
λ→c

zi + penalty(zi ∈ O, λ) =

{
zi if d(zi, p) ≤ r

zi + I1 ∗ c(d(zi, p)− r) if d(zi, p) > r
(7.7)

where

λ(>= 0) is a penalty control parameter whose value is determined by each algorithm,
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and p, r and d are as defined in Equation (7.2).

Then a penalized outcome z∗i ∈ O is defined as:

z∗i = zi + I1 ∗ penalty(zi, λ)

where

zi is the un-penalized outcome in the objective space, zi = F (xi, t), xi ∈ Ωx,

F is as defined in Equation (7.1), and I1 is an all-ones vector in the objective space (i.e.

(1,1)∈ <2 ).

7.1.2 Deviation of Violating Decisions

Solution space vectors whose objective values are outside the preference set are called

violating decisions, because such solutions violate decision-maker preferences. Depending

on the control parameters used in the implementation of the penalty function of the

proposed algorithms, occasionally the violating decisions may find their way into the

archive, especially in situations where all the non-dominated solutions violate decision-

maker preferences and the non-violating decisions are not found. It is a rare scenario,

however, because the non-violating decisions, if they are found in the archive, are very

likely to dominate, in Pareto-dominance sense, the violating and penalized decisions.

However, when such violating decisions find their way into the archive, a measure of the

proximity of these violating decisions to the preferred bounding box is required. The

smaller the total proximity, the better the violating decisions are. This section presents

the mathematics underlying the computation of the total proximity/deviation of the

violating decisions.

Let p, r and the distance measure d(z, p) be as defined in Section 7.1.1.

Let a set of violating decisions, Z, be defined as follows:

Z = {zi ∈ O|d(z, p) > r} (7.8)

Let the cardinality, N , of Z be defined as follows:

N = |Z| (7.9)
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Let the deviation of zi ∈ Z be defined as follows:

di = d(zi, p)− r (di > 0) (7.10)

The total deviation of all elements in Z is therefore:

dV D =

√∑
(1 + di)2

N
(7.11)

7.1.3 Spread of Non-violating decisions

This is one of the four measures proposed in this study. This measure estimates how well

spread out the preferred decisions are within the bounding box located in the objective

space. The greater the value of this measure, the better the performance of the algorithm.

The computational procedure used in computing this measure is presented in Algorithm

10.

7.1.4 Core Evolutionary Algorithms

The core evolutionary algorithm underlying the proposals of this study is presented in

Algorithm 11.

7.2 Experiment

This section discusses the experimental setup used in the study. Section 7.2.1 discusses

the various algorithms incorporating the decision-maker’s preference approach. The

decision-maker preferences are discussed in Section 7.2.2. Section 7.2.3 discusses bench-

mark functions used in this study. Performance measures are presented in Section 7.2.4,

while Section 7.2.5 discusses the statistical analysis approach used in the study.

7.2.1 Algorithmic Setup

1. Apriori Preference Incorporation: A single run of the DMOA simulation is ex-

ecuted. A series of POFs at every environment change is presented to the decision-

maker. The decision-maker chooses one of these POFs, and then selects one of
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Algorithm 10 Spread Estimation

1: Procedure SpreadEstimator(outcomes)

2: Get count of outcomes, N ← count(outcomes)

3: if N ≤ 1 then

4: return 0

5: end if

6: if N == 2 then

7: return norm2(outcomes(2)− outcomes(1))

8: end if

9: dtot← 0

10: Get a node, firstNode← outcomes(1)

11: Set current node, currentNode← firstNode

12: loop:

13: if unProcessedNodes(outcomes) > 1 then

14: MarkNodeAsProcessed(currentNode)

15: nearestNode=getNearestNode(currentNode,outcomes)

16: dist = norm2(currentNode− nearestNode)
17: dtot← dtot+ dist

18: currentNode← nearestNode

19: goto loop

20: end if

21: dist = norm2(currentNode− firstNode)
22: dtot← dtot+ dist

23: return dtot

the points on the chosen POF, which will become his xp and p, the preferred de-

cision vector and the outcome respectively. This preference, together with the

radius of the bounding box to be specified by the decision-maker during the boot-

strap procedure, will be used to drive the various DMOA simulations that optimize

the DMOOP under the constraints of decision-maker preferences. Algorithm 12

presents the computational details of the bootstrap procedure.

2. Interactive Preference Incorporation: A significant change in the environment
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Algorithm 11 Dynamic Multi-Objective Optimization

1: Procedure DMOA (freq, severity,maxiteration, dMOOP )

2: Set population size, N

3: Set archive max size, SizeArchive

4: Initialize the iteration counter, iteration← 0

5: Initialize time, t← 0

6: Initialize(Pt, freq, severity, dMOOP, t)

{Initialize population of solutions, Pt}
7: AssignNonDominatedToArchive(Pt, dMOOP, t)

8: loop:

9: if iteration ≤ maxiteration then

10: t← 1/severity ∗ floor(iteration/freq)
11: Optimizer(Pt, dMOOP, t)

12: Pick sentry solutions

13: if ENV changes(Pt, dMOOP, t) then

14: ProcessChange(Pt, freq, severity, dMOOP, t)

15: end if

16: iteration← iteration+ 1

17: goto loop

18: end if

Algorithm 12 Apriori Preference Incorporation

1: Procedure BootStrap (freq, severity, iteration, F)

2: Call DMOA(freq, severity, iteration, F )

{DMOA returns {POSkt , k = 1, ..., n} }
{k : kth environment change }

3: i← DMChooseIn(1...n)

4: xp ← DMChooseIn(POSit)

5: p← F (xp, t)

6: Decision-maker chooses box radius, r ← random()

7: return (xp : p : r)
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Algorithm 13 Interactive Incorporation of Preferences

1: Procedure RepositionBoundingBox(F, xp, p, r, t)

{F: multi-objective function to be evaluated}
{xp: Decision-maker’s preferred decision vector}
{p: Decision-maker’s preferred outcome as defined in Eq (7.2), page 113}
{r: Decision-maker’s preferred box radius}
{ARCHIVE: POSt}

2: POFt ← F (POSt, t)

3: if p ∈ POFt then
4: return (xp : p : r)

5: end if

6: if F (xp, t) ∈ POFt then
7: Reposition center of box, p← F (xp, t)

8: return (xp : p : r)

9: end if

{Decision-maker picks a new position for xp and p}
10: xp ← DMChooseIn(POSt)

11: Reposition center of box, p← F (xp, t)

12: return (xp : p : r)

may occur, and the resulting POF may shift in such a way that the earlier decision-

maker preference, p, is no longer part of the new POF. In this scenario, the decision-

maker will be expected to interactively redefine the position of the bounding box, so

as to have its preference lie on the new POF. A few scenarios may result when this

shifting POF occurs. The initially preferred outcome, p, may no longer lie on the

new POF, but the functional value of the corresponding decision variable xp may

still lie on the new POF. The second possibility is that both p and the functional

value of xp do not lie on the new POF. In these cases, a new bounding box position

needs to be defined. To simulate the interactive redefinition of the bounding box

position, Algorithm 13 presents a proposed computational procedure.

3. Proportionate-Penalty: This approach, and the next two that follow immedi-

ately in this section, use a penalty function (refer to Equation (7.3)) to penal-
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Algorithm 14 Proportionate Penalty

1: Procedure FuncEvaluate (F , x, t)

{F: multi-objective function to be evaluated}
{x: decision vector}
{p: as defined in Eq (7.2), page 113}
{r: as defined in Eq (7.2), page 113}
{λ: as defined in Eq (7.2), page 113}
{λ: a random number between 100 and 1000}
{I1: as defined in Eq (7.2), page 113}

2: Compute objective value of x, z ← F (x, t)

3: Compute violation of z, d← norm2(z − p)− r
4: if d ≤ 0 then

5: return z {x:z is a non-violating decision}
6: end if

{x:z is a preference violating decision}
{proceed to penalize for violation}

7: compute penalty, penalty ← λ ∗ d
8: vectorize penalty, penalty ← I1 ∗ penalty
9: penalize objective value, z ← z + penalty

10: return z

ize violating decisions which do not satisfy the decision-maker’s preferences. The

penalty proposed is however, proportional to the violation. Violating decisions are

penalized during function evaluation. Algorithm 14 presents function evaluations

employed by this approach.

4. Death-Penalty: Maximum/death penalty is imposed on violating decisions dur-

ing the function evaluation. Some penalty, which is death, is administered on a

decision irrespective of the magnitude of violation of that decision. With maxi-

mum penalty, it becomes very unlikely that violating decisions will find their way

into the archive, because they will be dominated by non-violating decisions. This

is how violating decisions are computationally eliminated during the search pro-

cess, and the optimization process is driven towards a region of the search space
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Algorithm 15 Death Penalty

1: Procedure FuncEvaluate (F , x, t)

{F: multi-objective function to be evaluated}
{x: decision vector}
{p: as defined in Eq (7.2), page 113}
{r: as defined in Eq (7.2), page 113}
{I1: as defined in Eq (7.2), page 113}
{realmax: maximum real value on a machine}

2: Compute objective value of x, z ← F (x, t)

3: Compute violation of z, d← norm2(z − p)− r
4: if d ≤ 0 then

5: return z {x:z is a non-violating decision}
6: end if

{x:z is a preference violating decision}
{proceed to penalize for violation}

7: compute penalty, penalty ← realmax

8: vectorize penalty, penalty ← I1 ∗ penalty
9: impose death/max penalty, z ← penalty

10: return z

dominated by non-violating decisions. Algorithm 15 presents how this approach

performs function evaluation.

5. Restrict-Search-to-Feasible-Region Feasibility is preserved by starting the search

within the preferred bounding box, and using the death penalty to prevent pref-

erence violating decisions from entering the archive. This approach restricts the

search to the feasible region, unlike [138], and it improves the explorative capabil-

ity of this algorithm. Preferred decisions kick off the search during initialization of

the population of decisions. A pool of preferred decisions is aggregated with the

decision-maker preference and the current decisions in the archive. Then, a loop

is performed, where nearly-identical clones of the pool of preferred decisions are

created using polynomial mutation [79]. These new clones constitute a new pop-

ulation from where search will start. A selection of the non-dominated decisions
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Algorithm 16 Restrict Search to Feasible Region

1: Procedure Initialize (Pt, freq, severity, F , t)

{xp: Decision-maker’s preferred decision vector)}
{ARCHIVE: POS}
{F: multi-objective function to be evaluated}
{N: population size, fixed for this study}

2: Pooled preferences, pool← [xp;ARCHIV E]

3: Initialize counter, i← 1

4: loop:

5: if i ≤ N then

6: iNumberAttempts← 1

7: MoreAttempts:

8: if iNumberAttempts > 100 then

9: goto exitMoreAttempts

10: end if

11: solution← randomlyChooseIn(pool)

12: solution← polynomial mutate(solution)

13: if isPreferredDecision(solution, F, t) then

14: goto exitMoreAttempts

15: end if

16: iNumberAttempts← iNumberAttempts+ 1

17: goto MoreAttempts

18: exitMoreAttempts:

19: addSolutionToPopulation(Pt, solution)

20: i← i+ 1

21: goto loop

22: end if

23: AssignNonDominatedToArchive(Pt, F , t)

in the new population are added to archive. Algorithm 16 presents the procedural

details.

6. Differential Evolution Algorithm: Control Parameters
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(a) The Algorithm (refer to Algorithm 9) is characterized as DE/best/1/bin.

(b) Trial vector: To generate a trial vector from a parent vector during the mu-

tation phase of the algorithm, the best vector in the adjacent hypercube or

sub-population of the parent vector is chosen as the target vector. The num-

ber of hypercubes employed by the algorithm is the same as the number of

objective functions in the underlying DMOOP.

(c) One difference vector: two randomly chosen vectors from the parent vector’s

hypercube are used to form a difference vector.

(d) Crossover: Binary crossover [58] is used by the algorithm, because of its via-

bility as a crossover method in DE algorithms.

(e) Scaling factor, β ∈ (0.4, 1).

(f) Recombination probability, pr = 0.8.

(g) DE convergence is insensitive to the control parameters [57]. Therefore, the

algorithm randomly chooses the scaling factor and fixes the recombination

probability as defined above.

7.2.2 Decision Maker’s Preferences

The decision-maker preferences are correspondingly associated, serially, with each of the

eighteen experimental configurations presented in Section 7.2.3. For instance, the first

experimental preference in Table 7.1 is associated with the first experimental preference

in Table 7.2, while both are associated with the first experimental configuration in Table

7.3.

7.2.3 Benchmark Functions

Three DMOOPs, with various τt-nt combinations, were used in this study. The experi-

mental configurations used for these DMOOPs are as follows:

The following symbols were used in Table 7.3:

τt: frequency of change.
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Table 7.1: Third Experimental Study: Experimental Preferences - Decision Space

S/N x1 x2 x3 x4 x5 x6

1 0.476 5.3e-01 0.5877 0.59104 0.5324 0.4989

2 0.477 3.3e-01 0.1630 0.42817 0.3250 0.2654

3 0.476 1.9e-01 0.0912 0.17928 0.1616 0.2331

4 0.816 9.5e-01 0.8768 0.86623 0.4892 0.7924

5 0.761 -1.0e-01 0.1513 -0.17267 0.0387 0.1229

6 0.167 1.8e-01 0.0032 -0.00311 0.1462 -0.0284

7 0.964 3.5e-06 0.5378 0.51880 0.3188 0.5433

8 0.000 2.8e-05 0.3660 0.28965 0.4592 0.3918

9 1.000 3.0e-04 0.3992 0.39925 0.5292 0.4621

10 0.357 1.0e+00 0.5083 0.74667 0.8383 0.7472

11 0.000 9.1e-04 0.7330 0.49810 0.8207 0.6616

12 0.000 8.0e-02 0.6419 0.87802 0.8485 0.8020

13 0.146 3.1e-01 0.2970 0.30878 0.3052 0.3065

14 0.734 1.6e-01 0.1657 0.13508 0.1101 0.1729

15 0.317 3.1e-01 0.3230 0.32197 0.3290 0.2881

16 0.061 4.6e-03 0.0027 0.00225 0.0032 0.0079

17 1.000 4.4e-02 0.0391 0.10593 0.0204 0.0658

18 0.000 2.8e-03 0.0015 0.00042 0.0016 0.0045

nt: severity of change.

c(f(x)): count of function evaluations per iteration.

σ(runs): number of runs per configuration.

FDA1: type I DMOOP (POS is dynamic, POF is static), POF = 1−
√
f1 and convex,

POS is xi = G(t) [61] [84].

FDA5: type II DMOOP (POS and POF are dynamic); For 3 objectives, POF = f 2
1 +

f 2
2 + f 2

3 = (1 +G(t))2 and non-convex; POS is xi = G(t) [61] [84].

dMOP2: POF changes from convex to concave; type II DMOOP; POF = 1 − f
H(t)
1 ;

POS is xi = G(t) [73] [84].
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Table 7.2: Third Experimental Study: Experimental Preferences - Objective Space

S/N f1 f2 f3

1 4.8e-01 3.2e-01 N/A

2 4.8e-01 6.2e-01 N/A

3 4.8e-01 9.3e-01 N/A

4 8.2e-01 2.4e+00 N/A

5 7.6e-01 1.7e-01 N/A

6 1.7e-01 6.3e-01 N/A

7 9.3e-01 4.5e-71 1.3843

8 1.8e+00 2.9e-59 0

9 1.0e-16 4.5e-62 1.6781

10 2.8e-08 2.8e-08 1.6354

11 2.9e+00 4.1e-03 0

12 3.5e+00 4.4e-01 0

13 1.5e-01 4.6e+00 N/A

14 7.3e-01 9.5e+00 N/A

15 3.2e-01 4.3e+00 N/A

16 6.1e-02 9.7e-01 N/A

17 1.0e+00 2.1e-01 N/A

18 0.0e+00 1.0e+00 N/A

7.2.4 Performance Measures

Each of the measures were computed immediately before a change in environment oc-

curred. This was done for thirty runs. An average of the values of the thirty runs was

then computed for each measure in each environment. The performance measures are

as follows:

• Accuracy Measure (acc): measures how accurate a DMOA is able to approximate

the true POF of a DMOOP [84] [87] [89]. The lower the value of acc, the better

the algorithm’s performance.

• Stability Measure (stab): quantifies the effect of environment changes on the ac-

curacy measure [23] [84] [87] [89]. The lower the value of this measure, the better.
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Table 7.3: Third Experimental Study: Configuration

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

1 FDA1 4 10 16 20 30

2 FDA1 5 10 20 20 30

3 FDA1 2 10 8 20 30

4 FDA1 4 1 16 20 30

5 FDA1 5 1 20 20 30

6 FDA1 2 1 8 20 30

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

7 FDA5 4 10 16 20 30

8 FDA5 5 10 20 20 30

9 FDA5 2 10 8 20 30

10 FDA5 4 1 16 20 30

11 FDA5 5 1 20 20 30

12 FDA5 2 1 8 20 30

S/N DMOOP τt nt Iterations c(f(x)) σ(runs)

13 dMOP2 4 10 16 20 30

14 dMOP2 5 10 20 20 30

15 dMOP2 2 10 8 20 30

16 dMOP2 4 1 16 20 30

17 dMOP2 5 1 20 20 30

18 dMOP2 2 1 8 20 30

• Hypervolume Ratio (hvr): measures the proportion of the objective space that is

covered by a non-dominated set without suffering from the bias of convex a region

as seen in the HyperVolume measure [90]. hvr was proposed in [192]. The higher

the value of this measure, the better.

• Reactivity Measure (react): measures how long it takes a DMOA to recover after

a change in the environment occurred. The length of time it takes to reach a

specified accuracy threshold is employed in computing this measure [84]. It was

originally proposed in [176]. The lower the value of this measure, the better.
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The next group of measures are new measures proposed in this dissertation:

• Number of Non-Violating Decisions (nNVD): measures the number of decisions

that fall within the decision-maker’s preference set. The higher the value of this

measure, the better.

• Spread of Non-Violating Decisions (sNVD): measures the spread of decisions within

the preferred set. The higher the value of this measure, the better the performance

of the algorithm.

• Number of Violating Decisions (nVD): measures the number of violating decisions

in the archive. These are decisions that do not lie within the preferred set. The

lower the value of this measure, the better the performance of the algorithm.

• Total Deviation of Violating Decisions (dVD): measures the total deviation from

the preferred set for all violating decisions in the archive. The lower the value of

this measure, the better.

The four new performance measures proposed in this study specifically measure the

performance of a DMOA with regards to decision-maker preference constraints, and thus

facilitate comparative analysis of DMOAs in the context of a decision-maker’s prefer-

ences.

7.2.5 Statistical Analysis

A statistical analysis of the performance measures studied in the study was done in

accordance with the wins− lossesB algorithm proposed in [87] (refer to Section 5.2.4).

The algorithm was implemented in R [149] and the Kruskal-Wallis and Mann Whitney

U statistical functions in R were used as stipulated in [87].

7.3 Results and Discussion

This section presents a summary of the results of the proposed algorithms for various

performance measures and experimental configurations. Detailed results are however

presented in Appendix D.
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The summarized results are presented in Tables 7.4, 7.5 and 7.6.

For all the tables in this section, any column with a bold entry signifies the winning

algorithm for the particular measure of performance, or the experimental configuration,

in the corresponding row.

This section also presents, in Figures 7.1 and 7.2, the objective space for a selected

DMOOP, which is constrained by a bounding box representing a decision-maker’s pref-

erences for two selected experimental configurations. The bounding box in these specific

instances is a sphere.

The two figures present results for a randomly chosen run and environment among

many environments (changes) that are typical of a single run of a DMOO.

In this section, and any other sections in this chapter, ALG:1, ALG:2 and ALG:3 are

as defined in Section 7.2.1. These are the three proposed DMOAs in this study. Section

7.2.1 provides further details on these algorithms.

Table 7.4: Third Experimental Study: Overall Wins and Losses

RESULTS ALG:1 ALG:2 ALG:3

Wins 346 403 274

Losses 322 292 409

Diff 24 111 -135

Rank 2 1 3

In Table 7.6, where results for six experimental configurations are presented, ALG:2

won four times, while ALG:1 won the other two experimental configurations (nt =

10, τt = 2 and nt = 10, τt = 4). For the six experimental configurations, ALG:3 never

performed better than ALG:2. ALG:3 performed better than ALG:1 for two experimen-

tal configurations (nt = 1, τt = 4 and nt = 1, τt = 2), but in one (nt = 1, τt = 2) of those

two experimental configurations, where it performed better than ALG:1, it suffered more

losses than ALG:1.

Table 7.5 presents the performances of the proposed algorithms with respect to mea-

sures in Section 7.2.4. ALG:2 won in five of the eight measures. For two (react and

dVD) of the five, the number of wins were tied with ALG:3. Results for the first four

measures in Section 7.2.4 indicated that ALG:2 won for three (acc, hvr, react) out of
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Figure 7.1: DMOA = 2DEVENS, DMOOP = FDA5, nt = 10 τt = 5

the four measures. It won with the least number of losses for the accuracy measure, acc,

making it the most accurate of the proposed algorithms in this study. For those four

measures, ALG:3 won once (stab), but had the same number of losses as ALG:1 for the

win. ALG:3 also had the highest number of worst rankings for those four measures.

ALG:2 had the highest number of wins for the new measures proposed in this study

(refer to Section 7.2.4), namely two wins out of four measures, making ALG:2 the best of

the proposed algorithms in terms of all the performance measures presented in Section

7.2.4. ALG:1 recorded the highest number of wins for the nNVD measure, while ALG:2

ranked first for the sNVD measure. Thus, ALG:1 and ALG:2 performed better than

ALG:3 in finding non-violating decisions of a decision-maker within the search space.

Even though ALG:3 ranked best for nVD and dVD, the magnitude of wins recorded by

ALG:3 for those two measures were negligible. Despite ALG:3 ranking first for nVD

and dVD, ALG:1 never lost to any other algorithm for those measures. ALG:2 tied with
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Figure 7.2: DMOA = 2DEVENS, DMOOP = FDA5, nt = 10 τt = 2

ALG:3 for the dVD measure.

Table 7.4 presents the overall results. ALG:1 ranked first with 403 wins, ALG:2

recorded 346 wins, while ALG:3 ranked last. In addition, ALG:3 recorded the highest

number of overall losses, plus the most negative overall DIFF. ALG:2 recorded the least

number of overall losses, and the most positive overall DIFF. These overall results are

consistent with the earlier results, which showed that ALG:2 led on most of the measures

and experimental configurations, while ALG:3 consistently lagged behind the other two

proposed algorithms.

Figures 7.1 and 7.2 present the objective space where the preferred objective vectors,

or preferred outcomes in the space, are contained in a decision-maker’s preference set.

The preference set or the bounding box, in these instances is a sphere whose defining

properties are specified by a decision-maker in a bootstrap procedure that is described

in Algorithm 12. For the sphere specifications in Figures 7.1 and 7.2, the first three
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numbers represent the center of the sphere, while the last number represents the radius

of the sphere.

Figures 7.1 and 7.2 are simply snapshots, thus are incapable of showing the dynamics

of the preference set. They are, however, presented in this section to provide a one-time

view into the state of the objective space during the optimization process.

In all the snapshots presented in Figures 7.1 and 7.2, all the decisions in the archive

were preferred by the decision-maker, because all the objective vectors laid within the

spheres representing the decision-maker’s preferences. This is a testament to the fact

that the proposed algorithms are effective in finding optimal trade-off solutions/decisions

that reflect a decision-maker’s preferences within the search space.

ALG:2 in Figure 7.1 had the highest number of preferred vectors/outcomes within

its spheres, which is consistent with the earlier results in this section about its overall

superiority over the other algorithms proposed in this study. As a matter of fact, it was

ranked best for the experimental configuration represented by Figure 7.1. ALG:3 was

ranked worst for the experimental configuration represented by Figure 7.1.

In the configuration represented by Figure 7.2, ALG:1 ranked best, but only marginally

better than ALG:2 in that experiment. Both algorithms effectively found the decision-

maker’s preferred decisions, as none of the algorithms produced violating decisions.

7.4 Conclusion

The experimental study presented in this chapter proposed an approach for incorporating

a decision-maker’s preferences in a DMOA. The results showed that a decision-maker’s

preferences can effectively be specified using the approach proposed in this study, which

is partly apriori and interactive. The results indicated that the proposed bounding

box specification is an effective mathematical abstraction for a decision-maker’s pref-

erences. The study also proposed three algorithmic approaches for solving DMOOPs

in the context of a decision-maker’s preferences. The three proposed DMOAs showed

good results, with a varying degree of performance. Death-Penalty, ALG:2, proved to

be the overall winner, while Restrict-Search-To-Feasible-Region, ALG:3, lagged behind

the other proposed algorithms. Also proving to be effective proposals of this study are
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the four performance measures that specifically estimate the performances of DMOAs

in the context of a decision-maker’s preferences.

7.5 Summary

This chapter presented one of the experimental studies conducted in this research. The

study investigated decision-making in the context of DMOOs. The study proposed

a formalization of decision-makers’ preferences. The study also proposed algorithmic

approaches on how the preferences may be used to impart an optimization process. A

comparative study of the approaches were conducted and the results were presented.

The next chapter presents a summary of the various conclusions emanating from all the

experimental studies carried out in this research.
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Table 7.5: Third Experimental Study: Overall Wins and Losses for various Performance

Measures

PM RESULTS ALG:1 ALG:2 ALG:3

acc Wins 69 83 63

acc Losses 75 60 80

acc Diff -6 23 -17

acc Rank 2 1 3

stab Wins 23 23 32

stab Losses 22 34 22

stab Diff 1 -11 10

stab Rank 2 2 1

hvr Wins 82 94 40

hvr Losses 62 50 104

hvr Diff 20 44 -64

hvr Rank 2 1 3

react Wins 14 45 45

react Losses 57 25 22

react Diff -43 20 23

react Rank 3 1 1

nNVD Wins 91 65 39

nNVD Losses 38 67 90

nNVD Diff 53 -2 -51

nNVD Rank 1 2 3

sNVD Wins 67 87 47

sNVD Losses 68 48 85

sNVD Diff -1 39 -38

sNVD Rank 2 1 3

nVD Wins 0 2 4

nVD Losses 0 4 2

nVD Diff 0 -2 2

nVD Rank 3 2 1

dVD Wins 0 4 4

dVD Losses 0 4 4

dVD Diff 0 0 0

dVD Rank 3 1 1
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Table 7.6: Third Experimental Study: Overall Wins and Losses with various Frequency and

Severity

nt τt RESULTS ALG:1 ALG:2 ALG:3

10 4 Wins 64 59 53

10 4 Losses 54 58 64

10 4 Diff 10 1 -11

10 4 Rank 1 2 3

10 5 Wins 61 67 32

10 5 Losses 45 40 75

10 5 Diff 16 27 -43

10 5 Rank 2 1 3

10 2 Wins 73 60 35

10 2 Losses 40 54 74

10 2 Diff 33 6 -39

10 2 Rank 1 2 3

1 4 Wins 41 67 56

1 4 Losses 66 44 54

1 4 Diff -25 23 2

1 4 Rank 3 1 2

1 5 Wins 56 73 43

1 5 Losses 53 47 72

1 5 Diff 3 26 -29

1 5 Rank 2 1 3

1 2 Wins 51 77 55

1 2 Losses 64 49 70

1 2 Diff -13 28 -15

1 2 Rank 3 1 2
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Chapter 8

Conclusions

This chapter presents a summary of all the studies conducted in this dissertation. Section

8.1 presents summaries of various conclusions reached from the studies. Possible future

work derived from the studies are presented in Section 8.2.

8.1 Summary of Conclusions

The main objective of this dissertation is to propose new algorithmic procedures that

can facilitate the incorporation of decision-makers (decision-makers)’ preferences in the

dynamic multi-objective optimization solution process. The algorithmic procedures use

nature-inspired and evolutionary techniques. A differential evolution algorithm, dy-

namic differential evolution vector-evaluated non-dominated sorting (2DEVENS), was

developed. Three experimental studies were conducted. Two of the studies compared

2DEVENS with two benchmark algorithms. The last of the three studies examined the

incorporation of decision maker preferences into the 2DEVENS algorithm. Different

methods of preference incorporation were examined, resulting in different adaptations of

the 2DEVENS algorithm. The major findings and conclusions of the three studies are

as follows:

First Study: This was presented in Chapter 5. In that study, 2DEVENS was com-

pared with two other nature-inspired algorithms, namely the dynamic vector-evaluated

particle swarm optimization (DVEPSO) algorithm and the dynamic non-dominated sort
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genetic algorithm version II (DNSGA-II). The results showed that 2DEVENS was able

to track the Pareto-optimal Fronts (POFs) of the problems considered in the study. The

results also showed that 2DEVENS outperformed the other algorithms on some of the

performance measures and experimental configurations. It specifically ranked overall

best for the accuracy and stability measures. The conclusion reached by this study was

that 2DEVENS would be a choice algorithm for problems where accuracy and stability

are important.

Second Study: This was presented in Chapter 6. Again, 2DEVENS was able to

track the POFs of the problems considered in the study. Some of the experimental

configurations adopted in the study, such as (nt = 1, τt = 10) and (nt = 10, τt = 10),

were different from that of the First Study. Also, new benchmark functions, such as

HE1 and HE3, were added, which were not used in the First Study. New characteristics,

such as discontinuities in the objective space, were introduced by the new benchmark

functions. 2DEVENS, again, showed a very good performance. Overall, it was the second

best, following DNSGA-II. However, 2DEVENS remained the overall best performing

algorithm for the accuracy measure, still making it the best for the accuracy measure in

two successive experiments.

Third Study: This was presented in Chapter 7. In this study, 2DEVENS was adapted

by incorporating decision maker preferences. Three different approaches were used in

incorporating the preferences and the approaches were compared. The approaches are:

Proportionate-Penalty, which is otherwise known as proportionate-penalty algorithm

(ALG:1), Death-Penalty, which is otherwise known as death-penalty algorithm (ALG:2)

and Restrict-Search-To-Feasible-Region, which is otherwise known as restrict-search-to-

feasible-region algorithm (ALG:3). The workings of these approaches were presented in

Chapter 7. The three approaches showed abilities to track solutions of the optimization

problems that were considered in the study in light of the preferences specified by the

decision makers. The study demonstrated the ability of 2DEVENS to work with the

various adaptations in order to solve optimization problems that reflect decision maker

preferences. The study also demonstrated the applicability of the new performance mea-

sures to evaluate algorithms seeking solutions to optimization problems where preferences

are specified by decision makers. These new measures are: nNVD, which measures the
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number of non-violating decisions, sNVD, which measures the spread of non-violating

decisions, nVD, which measures the number of violating decisions and dVD, which mea-

sures the deviation of the violating decisions.

8.2 Future Work

First and Second Studies: In future, additional comparative studies will be conducted

between 2DEVENS and other nature-inspired algorithms. The additional studies will be

conducted for more benchmark functions, experimental configurations and algorithms’

control parameters. Also, future studies will explore improvements on 2DEVENS, so as

to experiment with the prospects of it outperforming the other algorithms in situations,

e.g. benchmark functions, performance measures and experimental configurations, where

it has been outperformed.

Third Study: Future work will consider the possibilities of experimenting with some

of the geometric properties of the bounding box, and measuring the performance im-

plications on the proposed algorithms. Also, the proposed algorithms will be applied

on additional problems in [84]. Lastly, an investigation will be conducted on how de-

cision making under risks may be incorporated into a decision-maker’s preferences and

how the proposed algorithms will perform in the presence of the risks. Ideas of decision

making prevalent in the multi-criteria decision making research community, such as full

aggregation of preferences, outranking, etc., would also be explored in future work.
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Appendix A

Acronyms

This appendix provides an alphabetical listing of all acronyms used in this dissertation.

Each acronym is typeset in bold and its meaning is provided alongside.

2DEVENS

dynamic differential evolution vector-evaluated non-dominated sorting vi, vii, 2–5,

28, 72, 73, 83–94, 98–109, 128, 129, 134–136

AHP

Analytical Hierarchy Process vi, 65, 66

ALG:1

proportionate-penalty algorithm 3, 4, 111, 127–130, 132, 133, 135, 174–197

ALG:2

death-penalty algorithm 3, 4, 111, 127–130, 132, 133, 135, 174–197
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ALG:3

restrict-search-to-feasible-region algorithm 3, 4, 111, 127–130, 132, 133, 135, 174–

197

DE

differential evolution 2, 3, 48–50, 52, 73–75, 81, 92

decision-maker

decision-maker 1–4, 22, 23, 54–65, 67, 68, 110–122, 126–131, 134, 136

DMOA

dynamic multi-objective optimization algorithm vi, vii, 1–5, 8, 11, 24, 26, 28, 32,

72–74, 80, 92–94, 102–104, 106, 108, 109, 112, 115, 116, 126–131

DMOO

dynamic multi-objective optimization 2, 40, 72, 74, 111, 127, 131

DMOOP

dynamic multi-objective optimization problem vi, vii, 1, 2, 4, 8–12, 18–20, 22, 24,

32, 47, 72–74, 78–81, 85, 86, 92–98, 101–106, 108–112, 116, 122, 123, 127–130

DNSGA-II

dynamic non-dominated sort genetic algorithm version II 2, 3, 28, 39, 40, 72, 73,

81–95, 98–107, 134, 135

DVEPSO

dynamic vector-evaluated particle swarm optimization 2, 3, 28, 40, 47, 48, 73, 81,

83–95, 98–107, 134

EA

evolutionary algorithm 33, 34, 48
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GA

genetic algorithm 2, 31–34, 39, 40

MCDM

multi-criteria decision making 62–68, 71

MOA

multi-objective optimization algorithm 25

MOO

multi-objective optimization 9

MOOP

multi-objective optimization problem 8–10, 13–15, 21, 22, 25, 39, 110

NSGA

non-dominated sort genetic algorithm 39, 40

NSGA-II

non-dominated sort genetic algorithm version II 40

PCX

Parent-Centric Recombination 38

POF

Pareto-optimal Front 2, 9, 11–16, 18–26, 73, 74, 79, 80, 85, 86, 96–98, 101, 110,

115, 116, 118, 123, 135, 166, 169, 171

POS

Pareto-optimal Set 9, 11, 12, 15, 16, 18–20, 74, 79, 80, 96, 97, 110, 123, 166, 169,

171
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PROMETHEE

Preference Ranking Organization Method for Enrichment Evaluation 66–68

PSO

particle swarm optimization 2, 40–43, 47, 48, 73

TOPSIS

Technique for Order of Preference by Similarity to Ideal Solution 68, 69
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Appendix B

List Of Symbols

This appendix lists the mathematical symbols used throughout this dissertation, and

their definitions. The symbols used within each chapter are listed under separate sections.

Each section lists only newly introduced symbols.

B.1 Chapter 2: Optimization

f Multi-objective function

fk k-th objective function in a multi-objective function f

x Vector of decision variables

x∗ Solutions of multi-objective problem

nk Number of objective functions

ng Number of inequality constraints

nh Number of equality constraints

nx Number of decision variables

xmin Minimum value of decision variable

xmax Maximum value of decision variable

gm Function defining inequality constraint

gh Function defining equality constraint

m Index of constraint-defining function
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S Search space

F Feasible search space

O Objective space

R One-dimensional real space

Rnx nx-dimensional real space

P ∗ Pareto-optimal Set (POS)

PF ∗ Approximated POF

t Variable representing time

xI Vector of decision variables

xII Vector of decision variables

r Point’s radial distance from a fixed origin

θ Polar angle of a point in a spherical coordinate system

γ Azimuth angle of a point in a spherical coordinate system

π Pi, which is approximately 3.14

fL Lower bound of function f

fU Upper bound of function f

τ Iteration number

τt Frequency of change

nt Severity of change

Ω Approximated POF

POF ∗ Approximated POF

P Performance measure

u Utility function

U Set of utility function

Ow Weak outperformance relation

Os Strong outperformance relation

Oc Complete outperformance relation

ND Non-domination relation
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HV Hypervolume

HV R Hypervolume ratio

B.2 Chapter 3: Nature-Inspired Algorithms

N Population size

O Big-O notation

t Variable representing Time

xbest(t) Best vector in a population at time t used by DE algorithm

xi(t) Particle’s position at time t

vi(t) Particle’s velocity at time t

vij(t) Particle’s velocity on jth dimension at time t

ω Inertia weight

c1 Acceleration coefficient for self-knowledge

r1 Random number

c2 Acceleration coefficient for socially acquired knowledge

r2 Random number

xpbesti (t) Personal best position of the particle at time t

xnbesti (t) Global best position of the particle at time t

xmini Particle’s minimum position

xmaxi Particle’s maximum position

U(0, 1) Uniform random number distribution

Vmax,j Maximum velocity for the j-th particle

ui Trial vector in DE algorithm

β Scaling factor used to amplify difference vectors in DE algorithm

γ∗r DE control parameter balances between exploration and exploitation

γ∗ DE control parameter balances between exploration and exploitation

J Set of crossover points

ns Population size

pr DE crossover probability
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B.3 Chapter 4: Decision-Making Essentials

D Map of acts and states to outcomes

A Set of acts

B Set of states

O Set of outcomes

A∗ Comparative matrix of a criterion

a∗ij Local priorities associated with a pair of acts or alternatives in Ȧ

r∗i Sum of elements of Ȧ on row i

p∗i Priority of alternative i for a given criterion

w∗j Priority or weight associated with criterion j

p∗ij Priority of alternative i for criterion j

P ∗i Priority of alternative i aggregated over all criteria

a Set of acts or alternatives

f Set of objective functions

ai i-th act in a set of acts

dk Difference between pairs of acts for k-th criterion

p∗∗ Preference threshold

q∗∗ Indifference threshold

Pk Unicriterion preference degree

π∗ Multi criteria preference degree

φ+ Positive preference flow

φ− Negative preference flow

φ Net preference flow

n Number of alternatives or acts

q Number of objectives or criteria

x∗ij Performance of alternative i for criterion j

r∗ij Normalized performance of alternative i for criterion j

v∗ij Weight normalized performance of alternative i for criterion j
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A+ Set of ideal alternatives

A− Set of anti-ideal alternatives

d+a Alternative’s distance from ideal alternatives over all criteria

d−a Alternative’s distance from anti-ideal alternatives over all criteria

Ca Alternative’s relative closeness coefficient

B.4 Chapter 5: Differential Evolution Algorithm I

β Scaling factor used to amplify difference vectors in DE algorithm

pr DE crossover probability

τt Frequency of change

nt Severity of change

Pgen Population in a generation

P Population of vectors

F Multi-objective function

V Set of vectors

t Variable representing Time

v Vector

v
′

Trial vector

v
′′

Child vector

Pt Population at time t

POFt POF at time t

POSt POS at time t

c(f(x)) Count of function evaluations per iteration

σ(runs) Number of runs per configuration

B.5 Chapter 6: Differential Evolution Algorithm II

τt Frequency of change
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nt Severity of change

t Variable representing Time

c(f(x)) Count of function evaluations per iteration

σ(runs) Number of runs per configuration

B.6 Chapter 7: Decision-maker’s Preference Driven

Optimization Problem

F Multi-objective function

Ωx Decision variable space

Ωt Time variable space

O Objective space

τ Iteration number

τt Frequency of change

nt Severity of change

t Variable representing Time

<n N-dimensional real space

< Real line

<2 2-dimensional real space

<3 3-dimensional real space

fi Single-objective function

z Objective vector

d Distance measure

p Center of a circle or sphere

r Radius of a circle or sphere

λ Penalty control parameter

N Set of natural numbers

Z Set of integers
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β Scaling factor used to amplify difference vectors in DE algorithm

POFt POF at time t

POSt POS at time t

c(f(x)) Count of function evaluations per iteration

σ(runs) Number of runs per configuration
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Table D.1: Third Experimental Study: Detailed Results - 1

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 acc 0.71 0.736 0.6633

fda1 10 4 acc 0.5959 0.6533 0.7089

fda1 10 4 acc 0.6236 0.6581 0.6701

fda1 10 4 acc 0.6355 0.5756 0.6087

fda1 10 5 acc 0.6645 0.6721 0.7355

fda1 10 5 acc 0.6443 0.6303 0.6217

fda1 10 5 acc 0.6204 0.663 0.6485

fda1 10 5 acc 0.5634 0.5295 0.5401

fda1 10 2 acc 0.6993 0.5643 0.6647

fda1 10 2 acc 0.5952 0.6773 0.6496

fda1 10 2 acc 0.6311 0.6796 0.6332

fda1 10 2 acc 0.5669 0.5971 0.5843

fda1 1 4 acc 0.9975 0.9936 0.9823

fda1 1 4 acc 0.7261 0.6684 0.7465

fda1 1 4 acc 0.9671 0.9961 0.9836

fda1 1 4 acc 0.6606 0.6645 0.7412

fda1 1 5 acc 0.9644 0.7128 0.7965

fda1 1 5 acc 0.7928 0.8884 0.825

fda1 1 5 acc 0.9139 0.6744 0.829

fda1 1 5 acc 0.77 0.8612 0.7521

fda1 1 2 acc 0.958 0.937 0.8967

fda1 1 2 acc 0.8832 0.9017 0.884

fda1 1 2 acc 0.9587 0.9519 0.8972

fda1 1 2 acc 0.8834 0.7915 0.8299
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Table D.2: Third Experimental Study: Detailed Results - 2

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 stab 0 0 0

fda1 10 4 stab 0.1913 0.2382 0.2055

fda1 10 4 stab 0.1583 0.1845 0.1725

fda1 10 4 stab 0.2044 0.1675 0.1932

fda1 10 5 stab 0 0 0

fda1 10 5 stab 0.1826 0.1801 0.1188

fda1 10 5 stab 0.2357 0.1388 0.132

fda1 10 5 stab 0.2073 0.2242 0.1906

fda1 10 2 stab 0 0 0

fda1 10 2 stab 0.1347 0.1697 0.15

fda1 10 2 stab 0.1091 0.1621 0.1531

fda1 10 2 stab 0.2105 0.1919 0.1923

fda1 1 4 stab 0 0 0

fda1 1 4 stab 0 2e-04 0

fda1 1 4 stab 0.0329 0.0039 0.0164

fda1 1 4 stab 4e-04 0 0

fda1 1 5 stab 0 0 0

fda1 1 5 stab 0 0 0

fda1 1 5 stab 0.0845 0.278 0.103

fda1 1 5 stab 0 0 0.0012

fda1 1 2 stab 0 0 0

fda1 1 2 stab 0 0 0

fda1 1 2 stab 0.041 0.0252 0.0882

fda1 1 2 stab 0 0 0
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Table D.3: Third Experimental Study: Detailed Results - 3

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 hvr 1.74 1.7865 1.8379

fda1 10 4 hvr 1.5609 1.7001 1.9762

fda1 10 4 hvr 1.7016 1.6661 1.5562

fda1 10 4 hvr 1.7977 2.0063 1.5598

fda1 10 5 hvr 1.6588 1.592 1.9064

fda1 10 5 hvr 1.7341 1.7048 1.5894

fda1 10 5 hvr 1.6116 1.7846 1.7651

fda1 10 5 hvr 1.4383 1.733 1.624

fda1 10 2 hvr 1.7493 1.5363 1.7156

fda1 10 2 hvr 1.6243 1.5522 1.5465

fda1 10 2 hvr 1.596 1.5437 1.4597

fda1 10 2 hvr 1.6373 1.5162 1.4294

fda1 1 4 hvr 1.4955 1.5851 1.7424

fda1 1 4 hvr 2.9606 2.7286 2.9838

fda1 1 4 hvr 1.4713 1.6797 1.7775

fda1 1 4 hvr 2.7961 2.7168 2.898

fda1 1 5 hvr 2.0055 1.4014 1.4275

fda1 1 5 hvr 3.704 4.3578 3.6041

fda1 1 5 hvr 1.8095 1.2873 1.2637

fda1 1 5 hvr 3.6045 4.2051 3.5012

fda1 1 2 hvr 2.0333 1.7847 2.0553

fda1 1 2 hvr 4.268 4.2409 4.0464

fda1 1 2 hvr 1.9415 1.7069 2.4759

fda1 1 2 hvr 3.9993 3.5754 3.7061
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Table D.4: Third Experimental Study: Detailed Results - 4

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 react 13 13 13

fda1 10 4 react 9 9 9

fda1 10 4 react 5 5 5

fda1 10 4 react 1 1 1

fda1 10 5 react 16 16 16

fda1 10 5 react 11 11 11

fda1 10 5 react 6 6 6

fda1 10 5 react 1 1 1

fda1 10 2 react 7 7 7

fda1 10 2 react 5 5 5

fda1 10 2 react 3 3 3

fda1 10 2 react 1 1 1

fda1 1 4 react 13 13 13

fda1 1 4 react 8.3 8.0667 8.4

fda1 1 4 react 5 5 5

fda1 1 4 react 1 1 1

fda1 1 5 react 12.5 7.5 9.5

fda1 1 5 react 10.4 10.6333 10.3667

fda1 1 5 react 4.8333 3 3.1667

fda1 1 5 react 1 1 1

fda1 1 2 react 4.2 3.5 2.8

fda1 1 2 react 4.6333 4.5667 4.5667

fda1 1 2 react 2.8 2.6 2.3333

fda1 1 2 react 1 1 1
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Table D.5: Third Experimental Study: Detailed Results - 5

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 nNVD 99.4333 98.1333 99.8

fda1 10 4 nNVD 99.5 96.1667 96.0667

fda1 10 4 nNVD 99.5 94.3667 95.6

fda1 10 4 nNVD 99.0333 96.3 96.8333

fda1 10 5 nNVD 100 100 100

fda1 10 5 nNVD 100 100 100

fda1 10 5 nNVD 100 99.9667 100

fda1 10 5 nNVD 100 100 100

fda1 10 2 nNVD 64.9667 64.9 67.1333

fda1 10 2 nNVD 67.4333 58.6667 57.6667

fda1 10 2 nNVD 67.5667 58.7 56

fda1 10 2 nNVD 67.7 57.4667 57.7333

fda1 1 4 nNVD 26.2667 27.6333 25.6333

fda1 1 4 nNVD 26.2333 26.5667 21.6333

fda1 1 4 nNVD 26.1667 23.1333 22.7

fda1 1 4 nNVD 25 25.3667 25.6

fda1 1 5 nNVD 100 100 100

fda1 1 5 nNVD 71.4333 99.0333 100

fda1 1 5 nNVD 100 98.9333 99.3

fda1 1 5 nNVD 76.2667 98.1667 95.7667

fda1 1 2 nNVD 66.0333 65.7 66.2

fda1 1 2 nNVD 31.7 30.2333 40.3

fda1 1 2 nNVD 62.6 43.2333 43.4333

fda1 1 2 nNVD 31.4667 31.3667 28.8667
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Table D.6: Third Experimental Study: Detailed Results - 6

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 sNVD 0.0297 0.0301 0.0296

fda1 10 4 sNVD 0.0298 0.0308 0.0308

fda1 10 4 sNVD 0.0298 0.0314 0.031

fda1 10 4 sNVD 0.0299 0.0308 0.0306

fda1 10 5 sNVD 0.0295 0.0295 0.0295

fda1 10 5 sNVD 0.0295 0.0295 0.0295

fda1 10 5 sNVD 0.0295 0.0295 0.0296

fda1 10 5 sNVD 0.0295 0.0295 0.0295

fda1 10 2 sNVD 0.0457 0.0458 0.0441

fda1 10 2 sNVD 0.0442 0.0506 0.0514

fda1 10 2 sNVD 0.044 0.0505 0.0532

fda1 10 2 sNVD 0.0438 0.0518 0.0512

fda1 1 4 sNVD 0.0671 0.0648 0.0686

fda1 1 4 sNVD 0.0719 0.0777 0.0853

fda1 1 4 sNVD 0.0675 0.0773 0.0784

fda1 1 4 sNVD 0.0735 0.0756 0.0769

fda1 1 5 sNVD 0.0296 0.0295 0.0295

fda1 1 5 sNVD 0.0422 0.0301 0.0296

fda1 1 5 sNVD 0.0296 0.0299 0.0298

fda1 1 5 sNVD 0.0394 0.0303 0.0291

fda1 1 2 sNVD 0.0448 0.0453 0.0449

fda1 1 2 sNVD 0.0973 0.1029 0.0726

fda1 1 2 sNVD 0.0478 0.069 0.067

fda1 1 2 sNVD 0.0981 0.1001 0.1089
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Table D.7: Third Experimental Study: Detailed Results - 7

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 nVD 0 0 0

fda1 10 4 nVD 0 0 0

fda1 10 4 nVD 0 0 0

fda1 10 4 nVD 0 0 0

fda1 10 5 nVD 0 0 0

fda1 10 5 nVD 0 0 0

fda1 10 5 nVD 0 0 0

fda1 10 5 nVD 0 0 0

fda1 10 2 nVD 0 0 0

fda1 10 2 nVD 0 0 0

fda1 10 2 nVD 0 0 0

fda1 10 2 nVD 0 0 0

fda1 1 4 nVD 0 0 0

fda1 1 4 nVD 0 0 0

fda1 1 4 nVD 0 0 0

fda1 1 4 nVD 0.0667 0 0

fda1 1 5 nVD 0 0 0

fda1 1 5 nVD 0 0 0

fda1 1 5 nVD 0 0 0

fda1 1 5 nVD 0 0 0

fda1 1 2 nVD 0 0 0

fda1 1 2 nVD 0 0 0

fda1 1 2 nVD 0 0 0

fda1 1 2 nVD 0 0 0
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Table D.8: Third Experimental Study: Detailed Results - 8

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda1 10 4 dVD 0 0 0

fda1 10 4 dVD 0 0 0

fda1 10 4 dVD 0 0 0

fda1 10 4 dVD 0 0 0

fda1 10 5 dVD 0 0 0

fda1 10 5 dVD 0 0 0

fda1 10 5 dVD 0 0 0

fda1 10 5 dVD 0 0 0

fda1 10 2 dVD 0 0 0

fda1 10 2 dVD 0 0 0

fda1 10 2 dVD 0 0 0

fda1 10 2 dVD 0 0 0

fda1 1 4 dVD 0 0 0

fda1 1 4 dVD 0 0 0

fda1 1 4 dVD 0 0 0

fda1 1 4 dVD 0.0667 0 0

fda1 1 5 dVD 0 0 0

fda1 1 5 dVD 0 0 0

fda1 1 5 dVD 0 0 0

fda1 1 5 dVD 0 0 0

fda1 1 2 dVD 0 0 0

fda1 1 2 dVD 0 0 0

fda1 1 2 dVD 0 0 0

fda1 1 2 dVD 0 0 0
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Table D.9: Third Experimental Study: Detailed Results - 9

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 acc 0.6404 0.5962 0.538

fda5 10 4 acc 0.6751 0.7731 0.7557

fda5 10 4 acc 0.4445 0.4619 0.6266

fda5 10 4 acc 0.2282 0.227 0.1946

fda5 10 5 acc 0.2683 0.408 0.8316

fda5 10 5 acc 0.4298 0.6803 0.857

fda5 10 5 acc 0.514 0.6998 0.8183

fda5 10 5 acc 0.5382 0.6913 0.7904

fda5 10 2 acc 0.6239 0.6727 0.9835

fda5 10 2 acc 0.8799 0.8925 0.9526

fda5 10 2 acc 0.6285 0.6549 0.9234

fda5 10 2 acc 0.4285 0.432 0.9186

fda5 1 4 acc 0.9984 1 1

fda5 1 4 acc 0.9986 0.9955 0.997

fda5 1 4 acc 1 0.9991 0.9991

fda5 1 4 acc 0.9996 0.9945 0.9956

fda5 1 5 acc 1 0.9993 0.9958

fda5 1 5 acc 0.9953 0.9915 0.9746

fda5 1 5 acc 1 0.9971 0.9976

fda5 1 5 acc 0.9963 0.9962 0.9793

fda5 1 2 acc 1 0.9993 0.9948

fda5 1 2 acc 0.9963 0.999 0.9781

fda5 1 2 acc 1 0.9993 0.998

fda5 1 2 acc 1 0.9987 0.9853

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix D. Experiment III: Detailed Results 183

Table D.10: Third Experimental Study: Detailed Results - 10

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 stab 0 0 0

fda5 10 4 stab 0.1793 0.1457 0.0884

fda5 10 4 stab 0.4251 0.4261 0.2747

fda5 10 4 stab 0.4743 0.53 0.4098

fda5 10 5 stab 0 0 0

fda5 10 5 stab 0.1992 0.1543 0.0168

fda5 10 5 stab 0.2266 0.11 0.0883

fda5 10 5 stab 0.2461 0.1599 0.1331

fda5 10 2 stab 0 0 0

fda5 10 2 stab 0.0985 0.086 0

fda5 10 2 stab 0.3367 0.2923 0.0277

fda5 10 2 stab 0.4402 0.4291 0.0455

fda5 1 4 stab 0 0 0

fda5 1 4 stab 0.0014 0.0045 0.003

fda5 1 4 stab 0 9e-04 9e-04

fda5 1 4 stab 4e-04 0.0055 0.0044

fda5 1 5 stab 0 0 0

fda5 1 5 stab 0.0047 0.0085 0.0254

fda5 1 5 stab 0 0.0029 0.0024

fda5 1 5 stab 0.0037 0.0038 0.0207

fda5 1 2 stab 0 0 0

fda5 1 2 stab 0.0037 0.001 0.0219

fda5 1 2 stab 0 7e-04 0.002

fda5 1 2 stab 0 0.0013 0.0147
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Table D.11: Third Experimental Study: Detailed Results - 11

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 hvr 1.6654 1.3814 1.2592

fda5 10 4 hvr 2.4693 1.711 1.5734

fda5 10 4 hvr 3.2302 1.8911 1.64

fda5 10 4 hvr 2.0206 2.0017 1.7762

fda5 10 5 hvr 2.1537 2.7315 2.4955

fda5 10 5 hvr 2.2018 2.6023 1.9044

fda5 10 5 hvr 2.267 2.3623 2.0773

fda5 10 5 hvr 2.1636 2.4252 1.8647

fda5 10 2 hvr 1.5414 1.6826 1.2248

fda5 10 2 hvr 3.3034 3.2674 1.4156

fda5 10 2 hvr 4.9233 5.1433 1.1358

fda5 10 2 hvr 3.5145 4.0314 1.27

fda5 1 4 hvr 4.4565 4.0032 3.8261

fda5 1 4 hvr 2.4313 2.5719 2.2178

fda5 1 4 hvr 4.7446 3.4347 3.5272

fda5 1 4 hvr 2.1979 2.7897 2.2656

fda5 1 5 hvr 2.9987 2.6455 1.9198

fda5 1 5 hvr 2.6475 2.1308 1.0979

fda5 1 5 hvr 3.088 2.8665 2.5523

fda5 1 5 hvr 2.5349 2.3717 1.346

fda5 1 2 hvr 3.0785 3.5184 1.8674

fda5 1 2 hvr 2.2679 3.1541 1.0209

fda5 1 2 hvr 2.9413 3.3106 3.2396

fda5 1 2 hvr 3.2166 3.2704 2.2137
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Table D.12: Third Experimental Study: Detailed Results - 12

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 react 12.9667 12.9667 12.5

fda5 10 4 react 8.9333 8.8333 8.8333

fda5 10 4 react 5 4.9667 5

fda5 10 4 react 1 1 1

fda5 10 5 react 16 16 15.9333

fda5 10 5 react 11 10.8 10.9333

fda5 10 5 react 6 6 6

fda5 10 5 react 1 1 1

fda5 10 2 react 6.9 7 7

fda5 10 2 react 5 4.9667 5

fda5 10 2 react 3 3 3

fda5 10 2 react 1 1 1

fda5 1 4 react 12.6 13 13

fda5 1 4 react 7.7667 7.3 7.5333

fda5 1 4 react 5 4.8667 4.8667

fda5 1 4 react 1 1 1

fda5 1 5 react 16 15 11.5

fda5 1 5 react 8.2 7.3 2.8

fda5 1 5 react 6 5.3333 5.5

fda5 1 5 react 1 1 1

fda5 1 2 react 4 3.9 3

fda5 1 2 react 3.3 3.7 1.2

fda5 1 2 react 3 2.9333 2.6667

fda5 1 2 react 1 1 1
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Table D.13: Third Experimental Study: Detailed Results - 13

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 nNVD 39.5 50.0333 45.3

fda5 10 4 nNVD 57.1667 67.3333 68.4333

fda5 10 4 nNVD 63.5 74.6333 63.1333

fda5 10 4 nNVD 71.9 72.9333 58.8667

fda5 10 5 nNVD 42 49.9667 27.4

fda5 10 5 nNVD 72.0667 70.2 35.0667

fda5 10 5 nNVD 74.4333 65.4667 36.4

fda5 10 5 nNVD 79.0667 60.1667 34.0333

fda5 10 2 nNVD 12.2667 11.8333 2.9333

fda5 10 2 nNVD 13.1667 9.1 1.5667

fda5 10 2 nNVD 19.3 9.8 2.6333

fda5 10 2 nNVD 41.5667 33.8 2.6

fda5 1 4 nNVD 12.9667 12.7 9.6333

fda5 1 4 nNVD 32.4667 18.6667 12.3667

fda5 1 4 nNVD 13.6667 12.9667 9.3667

fda5 1 4 nNVD 29.2333 28.9 16.5333

fda5 1 5 nNVD 19.4 23.2 21.7333

fda5 1 5 nNVD 35.8333 34.2 67.6333

fda5 1 5 nNVD 21.0333 23.4333 21.0333

fda5 1 5 nNVD 39.1 33.6333 62.8333

fda5 1 2 nNVD 22.1667 23.6333 26.4333

fda5 1 2 nNVD 20.8667 17.8667 6.6

fda5 1 2 nNVD 18.8 17.5 17.4333

fda5 1 2 nNVD 20.2667 18.0333 11.4667

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix D. Experiment III: Detailed Results 187

Table D.14: Third Experimental Study: Detailed Results - 14

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 sNVD 0.1175 0.0966 0.1008

fda5 10 4 sNVD 0.0906 0.0791 0.0726

fda5 10 4 sNVD 0.11 0.0915 0.0962

fda5 10 4 sNVD 0.1237 0.1122 0.1245

fda5 10 5 sNVD 0.1652 0.1327 0.101

fda5 10 5 sNVD 0.1105 0.1015 0.0915

fda5 10 5 sNVD 0.1089 0.1005 0.094

fda5 10 5 sNVD 0.1017 0.1079 0.1059

fda5 10 2 sNVD 0.2712 0.2546 0.004

fda5 10 2 sNVD 0.1928 0.291 0.0032

fda5 10 2 sNVD 0.22 0.3729 5e-04

fda5 10 2 sNVD 0.1413 0.1716 0.0062

fda5 1 4 sNVD 0.1967 0.2117 0.0279

fda5 1 4 sNVD 0.2258 0.1087 0.0253

fda5 1 4 sNVD 0.2683 0.2654 0.0122

fda5 1 4 sNVD 0.2238 0.0853 0.0124

fda5 1 5 sNVD 0.0897 0.0592 0.0568

fda5 1 5 sNVD 0.0946 0.0687 0.0368

fda5 1 5 sNVD 0.1374 0.1011 0.0651

fda5 1 5 sNVD 0.0757 0.0693 0.0407

fda5 1 2 sNVD 0.16 0.1365 0.0837

fda5 1 2 sNVD 0.0726 0.0964 0.0577

fda5 1 2 sNVD 0.2013 0.2357 0.1891

fda5 1 2 sNVD 0.0617 0.0747 0.0391
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Table D.15: Third Experimental Study: Detailed Results - 15

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 nVD 0.0333 0 0

fda5 10 4 nVD 0 0 0

fda5 10 4 nVD 0 0 0

fda5 10 4 nVD 0 0 0

fda5 10 5 nVD 0 0 0

fda5 10 5 nVD 0 0 0

fda5 10 5 nVD 0 0 0

fda5 10 5 nVD 0 0 0

fda5 10 2 nVD 0 0 0

fda5 10 2 nVD 0 0 0

fda5 10 2 nVD 0.0333 0 0

fda5 10 2 nVD 0.0333 0 0

fda5 1 4 nVD 0.0667 0 0

fda5 1 4 nVD 0 0 0

fda5 1 4 nVD 0 0 0

fda5 1 4 nVD 0 0 0

fda5 1 5 nVD 0 0 0

fda5 1 5 nVD 0 0 0

fda5 1 5 nVD 0 0 0

fda5 1 5 nVD 0 0 0

fda5 1 2 nVD 0.0333 0 0

fda5 1 2 nVD 0 0 0

fda5 1 2 nVD 0 0 0

fda5 1 2 nVD 0 0 0
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Table D.16: Third Experimental Study: Detailed Results - 16

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

fda5 10 4 dVD 0.0333 0 0

fda5 10 4 dVD 0 0 0

fda5 10 4 dVD 0 0 0

fda5 10 4 dVD 0 0 0

fda5 10 5 dVD 0 0 0

fda5 10 5 dVD 0 0 0

fda5 10 5 dVD 0 0 0

fda5 10 5 dVD 0 0 0

fda5 10 2 dVD 0 0 0

fda5 10 2 dVD 0 0 0

fda5 10 2 dVD 0.0333 0 0

fda5 10 2 dVD 0.0333 0 0

fda5 1 4 dVD 0.0667 0 0

fda5 1 4 dVD 0 0 0

fda5 1 4 dVD 0 0 0

fda5 1 4 dVD 0 0 0

fda5 1 5 dVD 0 0 0

fda5 1 5 dVD 0 0 0

fda5 1 5 dVD 0 0 0

fda5 1 5 dVD 0 0 0

fda5 1 2 dVD 0.0333 0 0

fda5 1 2 dVD 0 0 0

fda5 1 2 dVD 0 0 0

fda5 1 2 dVD 0 0 0
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Table D.17: Third Experimental Study: Detailed Results - 17

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 acc 0.87 0.7811 0.8707

dmop2 10 4 acc 0.8284 0.8287 0.8715

dmop2 10 4 acc 0.8124 0.8805 0.884

dmop2 10 4 acc 0.998 0.9717 0.9995

dmop2 10 5 acc 0.7858 0.768 0.9103

dmop2 10 5 acc 0.6857 0.7187 0.9217

dmop2 10 5 acc 0.8374 0.7731 0.908

dmop2 10 5 acc 0.9773 0.9755 0.9951

dmop2 10 2 acc 0.8127 0.849 0.8298

dmop2 10 2 acc 0.8232 0.8581 0.7979

dmop2 10 2 acc 0.9443 0.8277 0.8558

dmop2 10 2 acc 0.998 0.9975 0.9988

dmop2 1 4 acc 0.9266 0.3449 0.3097

dmop2 1 4 acc 0.9309 0.8833 0.5509

dmop2 1 4 acc 1 0.3802 0.6802

dmop2 1 4 acc 0.5236 0.4389 0.4764

dmop2 1 5 acc 0.9478 0.2882 0.9615

dmop2 1 5 acc 0.9393 0.9508 0.9574

dmop2 1 5 acc 0.9991 0.3737 0.9778

dmop2 1 5 acc 0.4861 0.3884 0.7584

dmop2 1 2 acc 0.9548 0.7587 0.9164

dmop2 1 2 acc 0.9833 0.8949 0.9059

dmop2 1 2 acc 0.9942 0.8278 0.9069

dmop2 1 2 acc 0.4735 0.5391 0.7011
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Table D.18: Third Experimental Study: Detailed Results - 18

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 stab 0 0 0

dmop2 10 4 stab 0 0.0164 0

dmop2 10 4 stab 0 0.011 2e-04

dmop2 10 4 stab 6e-04 0.0165 1e-04

dmop2 10 5 stab 0 0 0

dmop2 10 5 stab 0.0099 0.0261 0

dmop2 10 5 stab 0 0.0159 0

dmop2 10 5 stab 0.0209 0.0226 0.0036

dmop2 10 2 stab 0 0 0

dmop2 10 2 stab 0 0 0

dmop2 10 2 stab 0 0 0

dmop2 10 2 stab 9e-04 3e-04 2e-04

dmop2 1 4 stab 0 0 0

dmop2 1 4 stab 0.0224 0.1167 0.4491

dmop2 1 4 stab 0 0.6198 0.3198

dmop2 1 4 stab 0.0073 0.0045 0.0396

dmop2 1 5 stab 0 0 0

dmop2 1 5 stab 0.0177 0.0492 0.0426

dmop2 1 5 stab 9e-04 0.6263 0.0222

dmop2 1 5 stab 0.0103 0.071 0.2271

dmop2 1 2 stab 0 0 0

dmop2 1 2 stab 0.0059 0.1051 0.0941

dmop2 1 2 stab 0.0058 0.1722 0.0931

dmop2 1 2 stab 0.0169 0.0625 0.2519
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Table D.19: Third Experimental Study: Detailed Results - 19

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 hvr 1.2872 1.2594 1.2577

dmop2 10 4 hvr 1.1982 1.2284 1.3295

dmop2 10 4 hvr 1.595 1.5624 1.4643

dmop2 10 4 hvr 1.3038 1.4336 1.4014

dmop2 10 5 hvr 1.9143 1.8882 1.1107

dmop2 10 5 hvr 1.673 1.7919 1.1055

dmop2 10 5 hvr 1.7423 1.65 1.0242

dmop2 10 5 hvr 1.8847 2.0522 1.1175

dmop2 10 2 hvr 1.3575 1.5524 1.4858

dmop2 10 2 hvr 1.3303 1.4589 1.4937

dmop2 10 2 hvr 1.7886 1.3657 1.3977

dmop2 10 2 hvr 1.5989 1.593 1.4986

dmop2 1 4 hvr 1.5361 2.0163 1.6181

dmop2 1 4 hvr 2.4648 9.2045 4.37

dmop2 1 4 hvr 0.9826 6.7302 10.8249

dmop2 1 4 hvr 2.0165 5.4407 2.7435

dmop2 1 5 hvr 1.651 4.8469 0.9488

dmop2 1 5 hvr 2.1529 14.7819 0.9485

dmop2 1 5 hvr 0.9861 6.5701 0.9669

dmop2 1 5 hvr 1.7927 6.4797 0.7462

dmop2 1 2 hvr 1.9387 7.6131 1.4606

dmop2 1 2 hvr 2.3369 5.3866 1.5312

dmop2 1 2 hvr 0.9523 10.4355 2.5348

dmop2 1 2 hvr 1.7974 1.3771 0.7159
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Table D.20: Third Experimental Study: Detailed Results - 20

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 react 12.8667 12.9667 12.3667

dmop2 10 4 react 8.0333 8.6333 8.6

dmop2 10 4 react 4.9667 4.8333 4.8333

dmop2 10 4 react 1 1 1

dmop2 10 5 react 16 16 16

dmop2 10 5 react 11 11 11

dmop2 10 5 react 6 5.9333 5.9667

dmop2 10 5 react 1 1 1

dmop2 10 2 react 6.8 6.9 6.8

dmop2 10 2 react 4.8 4.9333 4.8333

dmop2 10 2 react 2.9333 2.8 2.9

dmop2 10 2 react 1 1 1

dmop2 1 4 react 8.6 2.6 1.4

dmop2 1 4 react 7.8 5.2667 2.3333

dmop2 1 4 react 5 2.4667 4.6

dmop2 1 4 react 1 1 1

dmop2 1 5 react 12 2.5 12.5

dmop2 1 5 react 9.6333 8.3333 8.6667

dmop2 1 5 react 6 2.8333 6

dmop2 1 5 react 1 1 1

dmop2 1 2 react 3.3 1.5 2.9

dmop2 1 2 react 4.7667 3.1333 2.8667

dmop2 1 2 react 3 2.9333 3

dmop2 1 2 react 1 1 1

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix D. Experiment III: Detailed Results 194

Table D.21: Third Experimental Study: Detailed Results - 21

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 nNVD 5.3667 5.8333 6.4333

dmop2 10 4 nNVD 4.0667 3.9333 3.6

dmop2 10 4 nNVD 3.1333 3 3.1

dmop2 10 4 nNVD 4.3 3.3333 3.0667

dmop2 10 5 nNVD 12.6 13.3333 3.8333

dmop2 10 5 nNVD 10.4 9.8667 3

dmop2 10 5 nNVD 11 9.3333 2.9667

dmop2 10 5 nNVD 9.6667 7.9333 2.5667

dmop2 10 2 nNVD 5.8333 5.8667 6.5667

dmop2 10 2 nNVD 3.9 3.1333 2.8667

dmop2 10 2 nNVD 3.7333 2.9333 2.8333

dmop2 10 2 nNVD 4.6333 3.2 3.0333

dmop2 1 4 nNVD 68.1667 91.5667 94.4667

dmop2 1 4 nNVD 49.3 24.8 60.7

dmop2 1 4 nNVD 50.8 63.1667 30.2333

dmop2 1 4 nNVD 0 0.0333 0

dmop2 1 5 nNVD 81.0667 75.4333 0.9333

dmop2 1 5 nNVD 59.5333 3.4333 1

dmop2 1 5 nNVD 60.6333 66.3333 0.9

dmop2 1 5 nNVD 0 0 0

dmop2 1 2 nNVD 31.4333 32.0333 5.8

dmop2 1 2 nNVD 13.4333 1.7 2.1

dmop2 1 2 nNVD 19.9333 12.5333 0.6333

dmop2 1 2 nNVD 0 0 0
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Table D.22: Third Experimental Study: Detailed Results - 22

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 sNVD 0.0597 0.0511 0.0466

dmop2 10 4 sNVD 0.0698 0.0835 0.0716

dmop2 10 4 sNVD 0.0775 0.1051 0.0987

dmop2 10 4 sNVD 0.0721 0.0806 0.0951

dmop2 10 5 sNVD 0.13 0.1264 0.0291

dmop2 10 5 sNVD 0.1548 0.1585 0.0395

dmop2 10 5 sNVD 0.1465 0.171 0.0382

dmop2 10 5 sNVD 0.174 0.2079 0.0364

dmop2 10 2 sNVD 0.115 0.118 0.1052

dmop2 10 2 sNVD 0.1543 0.1751 0.231

dmop2 10 2 sNVD 0.1752 0.1745 0.2025

dmop2 10 2 sNVD 0.1419 0.1825 0.2077

dmop2 1 4 sNVD 0.0441 0.0326 0.0319

dmop2 1 4 sNVD 0.0633 0.1534 0.1541

dmop2 1 4 sNVD 0.0585 0.066 0.1982

dmop2 1 4 sNVD 0 0 0

dmop2 1 5 sNVD 0.0366 0.0596 0

dmop2 1 5 sNVD 0.0519 0.0929 0

dmop2 1 5 sNVD 0.0492 0.0532 0

dmop2 1 5 sNVD 0 0 0

dmop2 1 2 sNVD 0.1038 0.1133 0.006

dmop2 1 2 sNVD 0.229 0.357 0.0454

dmop2 1 2 sNVD 0.1599 0.5381 0.0247

dmop2 1 2 sNVD 0 0 0
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Table D.23: Third Experimental Study: Detailed Results - 23

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 nVD 0.0667 0 0

dmop2 10 4 nVD 0.0333 0 0

dmop2 10 4 nVD 0 0 0

dmop2 10 4 nVD 0 0 0

dmop2 10 5 nVD 0.0333 0 0

dmop2 10 5 nVD 0 0 0

dmop2 10 5 nVD 0.1333 0 0

dmop2 10 5 nVD 0.0667 0 0

dmop2 10 2 nVD 0 0 0

dmop2 10 2 nVD 0 0 0

dmop2 10 2 nVD 0.0333 0 0

dmop2 10 2 nVD 0.0333 0 0

dmop2 1 4 nVD 0 0 0

dmop2 1 4 nVD 0 23.3333 0

dmop2 1 4 nVD 0 0 3.3333

dmop2 1 4 nVD 1 96.6667 100

dmop2 1 5 nVD 0 6.6667 6.6667

dmop2 1 5 nVD 0 66.6667 0

dmop2 1 5 nVD 0 13.3333 10

dmop2 1 5 nVD 1 100 100

dmop2 1 2 nVD 0 0 6.6667

dmop2 1 2 nVD 0 26.7333 1.7

dmop2 1 2 nVD 0 0 24.1667

dmop2 1 2 nVD 1 62.4667 57.6333
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Table D.24: Third Experimental Study: Detailed Results - 24

DMOOP nt τt PM ALG:1 ALG:2 ALG:3

dmop2 10 4 dVD 0.0667 0 0

dmop2 10 4 dVD 0.0333 0 0

dmop2 10 4 dVD 0 0 0

dmop2 10 4 dVD 0 0 0

dmop2 10 5 dVD 0.0333 0 0

dmop2 10 5 dVD 0 0 0

dmop2 10 5 dVD 0.1333 0 0

dmop2 10 5 dVD 0.0667 0 0

dmop2 10 2 dVD 0 0 0

dmop2 10 2 dVD 0 0 0

dmop2 10 2 dVD 0.0333 0 0

dmop2 10 2 dVD 0.0333 0 0

dmop2 1 4 dVD 0 0 0

dmop2 1 4 dVD 0 8.0838 0

dmop2 1 4 dVD 0 0 1.1525

dmop2 1 4 dVD 78.3002 64.215 85.5742

dmop2 1 5 dVD 0 1.0863 1.0156

dmop2 1 5 dVD 0 25.4565 0

dmop2 1 5 dVD 0 2.597 1.7496

dmop2 1 5 dVD 83.0633 65.1873 93.9007

dmop2 1 2 dVD 0 0 1.11

dmop2 1 2 dVD 0 9.0173 0.4143

dmop2 1 2 dVD 0 0 7.6244

dmop2 1 2 dVD 85.1725 90.4603 93.0091
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