Time Series Forecasting using Neural Networks: Are
Recurrent Connections Necessary?
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Abstract Artificial neural networks (NNs) are widely used in modeling and
forecasting time series. Since most practical time series are non-stationary,
NN forecasters are often implemented using recurrent/delayed connections to
handle the temporal component of the time varying sequence. These recur-
rent/delayed connections increase the number of weights required to be opti-
mized during training of the NN. Particle swarm optimization (PSO) is now an
established method for training NNs, and was shown in several studies to out-
perform the classical backpropagation training algorithm. The original PSO
was, however, designed for static environments. In dealing with non-stationary
data, modified versions of PSOs for optimization in dynamic environments are
used. These dynamic PSOs have been successfully used to train NNs on clas-
sification problems under non-stationary environments. This paper formulates
training of a NN forecaster as dynamic optimization problem to investigate
if recurrent/delayed connections are necessary in a NN time series forecaster
when a dynamic PSO is used as the training algorithm. Experiments were
carried out on eight forecasting problems. For each problem, a feedforward
NN (FNN) is trained with a dynamic PSO algorithm and the performance is
compared to that obtained from four different types of recurrent NNs (RNN)
each trained using gradient descent, a standard PSO for static environments
and the dynamic PSO algorithm. The RNNs employed were an Elman NN, a
Jordan NN, a multirecurrent NN (MRNN) and a time delay NN (TDNN). The
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performance of these forecasting models were evaluated under three different
dynamic environmental scenarios. The results show that the FNNs trained
with the dynamic PSO significantly outperformed all the RNNs trained using
any of the other algorithms considered. These findings highlight that recur-
rent/delayed connections are not necessary in NNs used for time series fore-
casting (for the time series considered in this study) as long as a dynamic PSO
algorithm is used as the training method.

Keywords Time series forecasting - Neural networks - Recurrent neural
networks - Resilient propagation - Particle swarm optimization - Cooperative
quantum particle swarm optimization

1 Introduction

Time series forecasting is a very important research area because of its practi-
cal application in many fields. Interest in using neural networks (NNs) to model
and forecast time series has been growing. While feedforward NNs (FNNs) are
the type dominantly used, recent trends indicate that recurrent NNs (RNNs)
are now the widely used architecture because of their ability to model dynamic
systems implicitly. The recurent/delayed connections in RNNs, however, in-
crease the number of weights that are required to be optimized during training
of the NN.

To build a NN forecaster using RNNs, one has to choose among the different
special cases of RNNs (such as Elman NN, Jordan NN, Multirecurrent NN or
Time delay NN). It is, however, very difficult to single out a particular special
case of the RNNs that is better in modeling different types of time series [1].
Thus, selecting which RNN to use becomes a problem. Another issue that
needs to be resolved is how to decide on the number of context layers if an
Elman NN is used, or the number of state layers if a Jordan NN is used, or
how to decide on the number of previous values to remember if a time delay
NN is used.

Particle swarm optimization (PSO), which is a population based search al-
gorithm, has been used with success to training NNs for a number of problems
[9], [19], [21]. PSO has also been applied in training NNs for time series predic-
tion [30], [33], [34]. Even though several studies have applied PSO to the task
of training NN forecasters, producing favorable results, these studies have as-
sumed static environments, making them unsuitable for many real-world time
series which are generated by varying processes. For example, the performance
of PSO as a training algorithm for FNNs in forecasting non-stationary time
series was evaluated in [3], where the authors considered the problem as a
static optimization problem. The results showed that PSO performed better
than the backpropagation algorithm (BP), but concluded that the result of
PSO could significantly be improved by using a suitable NN structure (that
can handle dynamic data). Jar et al [23] compared the performance of PSO
and BP in training FNNs for time series forecasting. The results indicate su-



periority of the PSO over BP, but Jar et al concluded that the PSO trained
FNNs were unable to track non-stationary data.

A number of PSO variants have been developed to solve optimization prob-
lems in dynamic environments [13]. Some of these algorithms have been applied
to NN training on classification problems, in order to cope with concept drift
[36], [37]. The studies showed that dynamic PSO is indeed applicable to NN
training in dynamic environments, and has produced significantly better or
similar performance compared to the classic NN training algorithm.

This study tests a hypothesis that recurrent/delayed connections are not
necessary in a NN trained for non-stationary time series forecasting if a dy-
namic PSO is used as the training algorithm. If this hypothesis holds true,
then the problems of using a RNN to model non-stationary time series are
resolved. To test the hypothesis, a set of experiments using eight forecasting
problems were carried out. For each problem, a pairwise performance com-
parison between a FNN trained with a dynamic PSO algorithm is carried out
with four different RNNs each trained differently with a classical gradient de-
scent algorithm, a standard PSO algorithm and a dynamic PSO algorithm.
The RNNs employed were Elman NNs, Jordan NNs, MRNNs, and TDNNs.
All performances were evaluated under three different dynamic environmental
scenarios.

In the reminder of this paper, section 2 presents background on the al-
gorithms used in this study. Section 3 describes the experimental procedure
employed. Results are presented and discussed in section 4. Section 5 concludes
the paper.

2 Background

This section provides the background information necessary for this study.
Section 2.1 presents a short overview on NNs, and Section 2.2 discusses NN
training algorithms.

2.1 Neural Networks

A Dbrief overview on the five different NN structures used in this study is
provided in this section.

2.1.1 Feedforward Neural Network

A FNN has a network of artificial neurons usually organized in three layers
(input, hidden, and output) as shown in Figure 1a. In FNNs; information flows
in only one direction, from the input layer, through the hidden layer to the
output layer.
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For any given input pattern x, the output from a FNN is calculated as,

J+1 I+1
0k = for | > wkjfy, (Z Ujﬂi) (1)
j=1 i=1

where z;,i =1...1,and y;,j = 1,...J are the nodes in the input and hidden
layers respectively; the (I 4+ 1)** input and (J 4 1)** hidden units are bias
units for nodes in the next level; wy; is the weight between output unit oy and
hidden unit ¥;; v;; is the weight between hidden unit y; and input unit x;;
fo, and f,, are the activation functions of output unit o, and hidden unit y;
respectively.

2.1.2 Elman Neural Network

The Elman recurrent NN [16] structure is similar to a standard three layer
FNN structure with feedback connections from the hidden layer to a context
layer, as shown in Figure 1b. The context layer serves as an extension to the
input layer. Thus, the input vector becomes

X =Ty s TI4+1, L1425+ - s TT+14T (2)

input context

and the output of each node in the output layer is calculated as

J+1 I+1+J
ok = for | D wijfy, ( > Uﬂz‘) 3)

j=1 i=1

where (.’E1+2, N 7.’13[+1+J) = (yl(t — 1), N 7y‘](t — 1))

Since a single context layer is limited in representing past information to
only one step (i.e. one window), more context layers are required to deal with
a long history in the data. This introduced the issue of how to decide the
number of context layers to used.

2.1.8 Jordan Neural Network

The Jordan recurrent NN [24] structure is very similar to the Elman recurrent
NN structure, except that the state layer stores a copy of the output layer
instead of the hidden layer, as shown in Figure lc. The state layer of a Jordan
recurrent NN extends the input layer to

X = T1ye s TI41, TI42y - s TIL1HK 4)

input state

and the output of each output node is calculated as

J41 [+14K
ok = for | Y wijfy, ( > vji!Ei) (5)
j=1 i=1



where (z142,..., @14140) = (01(t = 1),..., 0k (t — 1)).
To capture long term dependency, as for the Elman recurrent NN, one has
to deal with the problem of deciding on the number of state layers to use.

2.1.4 Multirecurrent Neural Network

A Multirecurrent NN (MRNN) [12] is obtained by combining an Elman NN
and a Jordan NN. It has feedback connections from both the hidden and the
output layers connecting to the context layer and the state layer as shown in
Figure 1d. The output layer is extended to

X =Ty s TI41, T[42y s TTH14+T 5 L1425 -+« TIH14+K (6)

input context state

and the output from the network is calculated as

J+1 I+1+J+K
0k = fo, | D wijfy, ( > Ujixz) (7)
j=1

i=1

where (T1,. .., T141,T142, -, 14140 T1425 - Ti14K) = (Y1 (t=1), ..., y;(t—
D,01(t—1),...,05(t - 1)).

An MRNN has a larger number of weights compared to the Elman and
Jordan RNNs. Also, the context/state layer is only one time step (i.e. a time
window of 1). To remember more time steps, more context layers are needed.

2.1.5 Time Delay Neural Networks

TDNNs [46] are a special case of FNNs designed with extra time delay con-
nections (which is a form of memory mechanism) for effective handling of
temporal data. Input patterns to the network are delayed to arrive at hidden
units at different points in time. A special type of neurons with n; delayed
patterns, illustrated in Figure le are used in the input layer of a TDNN.

The output of a TDNN is calculated as

J+1 I ny
ok = for | D whijfy, (Z D vjawi(t) + $1+101+1> (8)
j=1

i=1 t=0

The TDNN is identical to a time window and can also be viewed as an
autoregressive model. The major disadvantage of the TDNN is that the time
period processed is strictly limited by the number and arrangement of the time
delays.

2.2 Training Algorithms

This section briefly discusses the resilient propagation algorithm (Rprop), the
original PSO and the cooperative quantum PSO (CQSO) used.
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Fig. 1: Neural Network Structures

2.2.1 Resilient propagation

Rprop is an efficient supervised batch learning scheme that performs a direct
adaption of weights based on local gradient information. During each iteration,
if the derivative 9% / ow,;; changes sign, weight update value, d;;(t), is decreased
by the factor, n~ (to reduce the effect of previous large update) while on the
contrary, if the derivative retains its sign, the update value is increased by n™
(to promote convergence) before weight adjustment. Riedmiller [40] suggested
that n* = 1.2 and = = 0.5. For most problems, Rprop does not require
optimizing parameters to obtain optimal or at least near optimal convergence
times, which is one of its key strengths [41].



2.2.2 Particle Swarm Optimizers

PSO is a meta-heuristic search algorithm inspired by the social behaviour of
birds in a flock [14]. A PSO algorithm manipulates a swarm of particles, where
each particle is a potential solution to an optimization problem. The swarm
traverses a search space searching for an optimum solution. As the particles
move around, each particle is attracted to both the best position it has found
so far, as well as the overall best position found within its neighborhood. Due
to these dynamics, a swarm that was uniformly distributed in the search space
converges on a small area around the optimum position [45], [10]. Refer to [14],
[17] for a detailed description of PSO.

To train a NN using PSO, each particle in the swarm represents a weight
vector of the NN. The dimension of each weight vector is set to be equal to
the total number of weights (and biases) of the NN [31]. The quality of each
particle is computed using the sum square error (SSE) over the training set.
The objective of the PSO is to minimize the SSE.

2.2.3 Particle Swarm Optimizers for Dynamic Environments

PSO was designed for solving optimization problems in a static environment.
When PSO is applied in a dynamic environment, the algorithm faces two main
challenges:

— Outdated memory: Once there is a change in the environment, the personal
and neighborhood best positions of the PSO are no longer representative
of the new environment [17]. Thus, the personal and neighborhood best
positions should not continue to be used as attractors.

— Loss of swarm diversity: As the swarm starts to converge, all particles are
concentrated around one point in the search space. Any environmental
change that causes the optimum to move outside of this region can not be
tracked due to lack in swarm diversity.

Several modifications of PSO have been developed to track optima in dy-
namic environments. These dynamic PSO algorithms include charged PSO [6],
quantum PSO (QSO) [7], cooperative charged PSO (CCPSO) [35], and coop-
erative quantum PSO (CQSO) [44]. Refer to [13], [39] for an in-depth review
of dynamic PSO algorithms. CQSO is used in this study because it was shown
to have superiority over a number of other dynamic PSO algorithms over a
wide range of different dynamic environment types [44].

2.2.4 Cooperative Quantum Particle Swarm Optimizers

The CQSO partitions the search space dimension-wise into k disjoint groups
where each group is assigned to an individual subswarm to optimize. The
algorithm maintains a complete solution (or context) vector that individual
subswarms uses to evaluate the quality of its particles. Quality is evaluated
for each particle in a subswarm by substituting values of the dimensions the
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subswarm is accountable for into the context vector, while keeping constant
the remaining values in the vector (which are the best values from other sub-
swarms). The particle that, when substituted into the context vector, had
the best quality is returned as the best solution in the subswarm. When all
subswarms evaluate their particles’ quality, the context vector contains the
optimal solution discovered so far.

The subswarms in CQSO uses the QSO algorithm. QSO is inspired by the
quantum model of an atom. In QSO, a portion of the particles implement the
standard PSO velocity and position updates. The rest of the particles, referred
to as quantum particles, have their positions sampled from a probability distri-
bution centered on the global best position. Positions of the quantum particles
are calculated as

X~ d(f’, rcloud) (9)

where d is the probability distribution and 7.y,q is the quantum radius. The
control parameter, 7¢ouq 1S problem and environment dependent [13], [8].
Recently, Harrison et al [20] proposed using a parent centric crossover
(PCX) operator [11] to generate the positions of quantum particles instead of
using the radius and probability distribution parameters used in the standard
QSO. In an empirical study using single-peak dynamic environment types, the
new variant (i.e. QSO-PCX) was shown to be superior to QSO on progres-
sive and chaotic environments, while no superior approach on quasi-static and
abrupt environments was found [20]. The performance of the QSO-PCX algo-
rithm was, however, not evaluated on real-world and multi-peak environments.

3 Experimental Procedure

This study investigates the necessity of recurrent/delayed connections in NN
forecasters when a dynamic PSO algorithm is used as the training method.
For this purpose, a set of experiments under three different dynamic environ-
mental scenarios, given in Table 4, were carried out on the eight forecasting
problems described in Section 3.1. Each experiment involves training a FNN
using a dynamic PSO algorithm and the results are compared to the results
obtained from four different types of RNNs (i.e. Elman NN, Jordan NN, Multi-
Recurrent NN and Time Delay NN) trained separately using Rprop, standard
PSO and a dynamic PSO algorithm. For sound performance evaluation, 30
independent runs for each experiment was carried out and the average over
these 30 runs was computed. All algorithms used were implemented in the
Computational Intelligence library (CIlib) version 0.9. Cllib is available at
https://github.com/cirg-up/cilib.

The remainder of this section discusses the control parameters of all the al-
gorithms, the problems used in the experiments carried out, and also describes
the performance metrics used in evaluating the models investigated.



3.1 Datasets

Eight time series with different complexities were used in the experiments.
Six are real world time series obtained on-line from the Time Series Data
Library [22]. The other two, Mackey glass and the Logistic map were artifi-
cially generated and can be obtained at https://tinyurl.com/yybxk3rj. Table 1
summarizes the statistics of the datasets used.

All datasets were scaled to the range [-1, 1] and standardized such that the
mean of each input variable over the training set is close to zero as suggested
in [27].

Each dataset was serially divided into two independent subsets. The first
80% of the dataset was used for training and the remaining 20% for testing.
For control parameter optimization purposes only, the training subset was split
further in 70:30 ratio for training and validation respectively.

3.2 Neural Networks Setup

For each problem, the architectures for all the NN models were selected as
follows: 10 and 12 input nodes were chosen for problems with annually col-
lected data (each representing a year in the decade) and monthly collected
data (each representing a month of the year) respectively. For problems with
data collected quarterly, four input nodes were used (each representing a quar-
ter of the year), while 30 and 24 input nodes were used for problems with data
collected daily (each representing a day of the month) and hourly (each rep-
resenting an hour in the day) respectively. This intuitive method was used by
a number of researchers such as [26], [18], [43] and has been effective in con-
structing optimal NN architectures. For the Mackey glass and Logistic map
(which are synthetic problems), the number of input nodes were as used in [2].

A single hidden layer was used for all the NN models, and the optimal
number of hidden nodes were selected iteratively for each training set from
the discrete range [2, 50]. For every value within the range, 30 independent
runs were conducted and the number of hidden units that yielded the minimum
average training and validation errors was chosen as optimal. The number of
time steps (or delayed patterns) in TDNNs were optimized in a similar way.

Table 1: Statistic of the Time Series Data under Study

Dataset Observations ~ Minimum Mean  Maximum  St. Deviation Variance  Skew
International Airline Passengers (AIP) 144 104.00 280.30 622.00 119.97 14391.92 0.58
Australian Wine Sales (AWS) 187 1954.00 3262.61 5725.00 728.36 530504.45 0.73
US Accidental Death (USD) 72 6892.00 8787.74 11317.00 958.34 918411.75 0.35
Sunspot Annual Measure (SAM) 289 0.00 48.90 190.20 39.58 1566.47 1.00
Hourly Internet Traffic (HIT) 1657 13321.26  46397.15  125058.79 22136.72  490034325.27 0.84
Daily Minimum Temperature (DMT) 3650 0.00 11.19 26.30 4.06 16.50 0.18
Mackey Glass (MG) 480 0.00 0.57 1.00 0.25 0.06  -0.40

Logistic Map (LM) 150 0.00 0.64 1.33 0.48 0.23 0.12
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Table 2: Neural network parameters for each dataset

Problem Input Delays for Hidden nodes Output
nodes TDNN FNN Elman NN Jordan NN MRNN TDNN nodes
MG 4 1 11 3 6 2 4 1
LM 3 4 6 13 6 10 4 1
HIT 12 2 3 3 8 3 2 1
AWS 12 2 13 4 6 3 2 1
USD 12 1 2 2 7 2 2 1
SAM 10 1 4 3 11 5 2 1
HIT 24 1 2 3 3 2 2 1
DMT 30 6 3 3 3 3 3 1

The same approach was used in optimizing all parameters for all algorithms
used in the study.

A single output node was used for all the NN models (one step ahead
forecasting was considered). For each problem, parameters selected for the
NNs are listed in Table 2.

Due to the saturation problem caused by bounded activation functions
when PSO is used to train FNNs [48], [38], linear activation functions were
used in the hidden units of the FNNs. However, modified hyperbolic tangent
functions [27] were used in the hidden layer nodes of the RNNs and in the
output nodes of all the NN models. The modified hyperbolic tangent function
is defined as,

f(net) = 1.7159tanh(§net) (10)

Bounded activation functions were used in the RNNs in order to avoid
passing blown-up activations (i.e. large outputs) from the unbounded functions
to the context/state layer, since large context/layer inputs may dominate the
real NN inputs (which their mean is close to zero).

All NN weights were initialized randomly in the range [—ﬁ, ﬁ],
where fanin is the number incoming connections to a node. This range was
shown to be good for weight initialization [47].

3.3 Resilient Propagation Algorithm

Default Rprop parameters were used in this study, since Rprop does not require
optimizing parameters to obtain optimal convergence times on most problems
[41].

3.4 PSO Setup

For all the experiments, a linearly decreasing inertia weight was used, with

an initial value of 0.9 and a final value of 0.5. Acceleration coefficients values
were fixed at ¢; = co = 1.49, based on [15], where it was shown that such



11

parameter settings give convergent behaviour. Velocity was not constrained
and the Von Neumann topology was used since it facilitates diversity [28],
[25], which is good for dynamic problems. For each experiment, the swarm
size was determined as equal to the total number of particles used in the
CQSO in order to facilitate fair comparison.

3.5 Cooperative Quantum Particle Swarm Optimzation
In addition to the PSO parameter setup given in Section 3.4, the radius of

the quantum cloud and the percentage of quantum particles per swarm were
iteratively selected from the ranges given in Table 3 as suggested in [7].

Table 3: PSO parameter ranges considered

Parameter Range
Quantum radius, r [0.2, 0.5, 0.8, 1, 2|
% of quantum particles [10, 20, 30, 40, 50]

Number of dimensions per group [4, 6, 8, 10,12]

For each dataset, the number of subswarms, k, in the CQSO was deter-
mined as the ratio [N, /d], where N,, is the total number of weights and biases
in the NN and d is the number of weights grouped together. The value of pa-
rameter d was iteratively optimized from the range of values given in Table 3.
The size of each subswarm was set to 10 particles based on [4], [5].

3.6 Simulating Dynamic Environment

For each dataset, performance was investigated under three different dynamic
environmental scenarios. The scenarios were simulated using a sliding time
window technique. This involves choosing a window of size w and a step value
s for sliding the window over the dataset. The window is used to train the NNs
for f number of iterations (i.e change frequency) before the window slides over
the dataset. The sliding process involves throwing away the s values at the
beginning of the window and adding the next s values in the data series to the
end of the window. The training and sliding process is repeated until all of the
datasets are used. An example to illustrate this process with w = 6 and s = 4
is given in Figure 2. When the window slides, four values, {1, 22, 3,24}, are
discarded and new values, {7, xs, x9, Z10}, are added, while x5 and x¢ remain
in the window.

The step size determines the spatial severity of the change. A small value
for s implies a slight change, while a large value implies a drastic change.
An algorithm runs on a window for f iterations before the window slides,
controlling the temporal severity. Table 4 presents the parameter setup used
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Fig. 2: Sliding Time Window

Table 4: Dynamic scenarios settings for each dataset

Dataset Scenario I Scenario II Scenario IIT
w s f w s f w s f

MG 84 30 50 84 60 100 84 84 200
LM 31 10 50 31 25 100 31 31 150
IAP 32 10 50 32 25 100 32 32 150
AWS 42 20 50 42 35 100 42 42 150
USD 20 8 50 20 16 100 20 20 150
SAM 60 20 50 60 40 100 60 60 150
HIT 584 250 50 584 500 100 584 584 150

DMT 510 200 10 510 400 50 510 510 100

to simulate the nine different dynamic scenarios for all the problems. As shown
in the table, the combination of s and f differs under different scenarios, and
therefore requires different numbers of iterations to traverse the entire dataset,

calculated as
N —w

S

T=fx +f (11)

3.7 Performance Measurement

The collective mean fitness (CMF) [32] was employed as the performance mea-
sure for all the experiments. The CMF is given as

T

Frnean(t) = M (12)

where F(t) is a measure of the quality of the NN and T is the total number

of iterations. CMF is commonly used when dynamic environments are consid-

ered, because it reflects algorithm performance across the entire range of the

landscape dynamics. The mean square error (MSE) calculated over the data
set during each iteration was adopted as the quality of the NN.

The generalization factor, p, was used to quantify the overfitting behavior

of the forecasting models. The generalization factor was proposed in [42] and



13

is defined as Gg/Tg, where Ty and G are the training and generalization
errors respectively. Overfitting is a phenomenon where a NN performs well on
training data but poorly on generalization data. A p < 1 is an indication of
good generalization performance while p > 1 is an indication of overfitting.
Since dynamic problems are considered, p was calculated using Equation (12),
but with F(t) replaced with p(¢). Thus, all reported values of p reflect the
generalization factor across the entire algorithm run.

A two tailed Mann Whitney U test [29] was used to check whether the
difference in performance of two models was statistically significant. The null
hypothesis, Hy : p11 = o, where p1 and po are the means of the two samples
being compared, was evaluated at a significance level of 0.95. The alterna-
tive hypothesis is defined as H;y : u1 # po. Thus, any p-value less than 0.05
corresponds to rejection of the null hypothesis that there is no statistically
significant difference between the sample means. For the sake of convenience,
all p-values were bounded below by 0.0001.

4 Experimental Results and Discussion

Tables 5 to 12 summarize the CMF Tg and G values with their corresponding
confidence intervals (in parenthesis) obtained from the experiments. Minimum
error values are printed in bold. Also reported in the tables is the generaliza-
tion factor, p. To visualize the results obtained, graphs which are considered
as representative or interesting are shown. For convenience, the naming con-
vention Y-X was employed, where Y refers to either Elman, Jordan, MRNN,
or TDNN, and X refers to either RPROP, PSO, or CQSO.

As shown in Tables 5 and 6, the results obtained for the MG and HIT
problems indicate that the FNN-CQSO model yielded the lowest CMF T and
G g values compared to the remaining models for all three dynamic scenarios.
For both the MG and HIT problems, all p-values for the pairwise comparison
between the FNN-CQSO and the other models were below the 0.05 threshold.
This indicates that the difference in performance between the FNN-CQSO and
each of the other RNN models were significant for all three scenarios. All the
NN models indicate no or slight overfitting.

Figure 3 illustrates the performance progression over time for the FNN-
CQSO and the three top performing models, one from each of the RPROP, the
PSO and the CQSO trained models for scenario I in predicting the MG time
series. Figure 3 shows that all the models had a stable performance progression
throughout the experiments, with a slight drop in training errors and a minor
increase in the peak of the generalization errors after environmental changes.
The figure also shows that the FNN-CQSO model outperformed the other
models right from the first epoch to the end.

Tables 7 to 10 show that the FNN-CQSO model produced the lowest train-
ing errors in predicting the DMT, SAM, LM and AWS time series for all three
dynamic scenarios. The FNN-CQSO also yielded the lowest generalization er-
rors in predicting these problems in at least two out of the three scenarios.
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Table 5: Results of predicting the MG time series

Model Scenario I Scenario IT Scenario IIT
Tg Ge P Tg Ge P Tg Gg P
FF-CQSO 5.69E-06 3.50E-06 0.62 5.29E-06 3.84E-06 0.73 4.34E-06 4.42E-06 1.05
(4.29E-07) (2.33E-07) (0.02) (5.17E-07) (8.51E-07) (0.02) (3.51E-07) (1.77E-07) (0.06)
Elman-Rprop 5.82E-04 6.86E-04 1.15 7.78E-04 8.62E-04 1.03 1.52E-04 1.48E-04 0.93
(4.42E-04)  (5.14E-04)  (0.10)  (4.55E-04)  (5.19E-04)  (0.04)  (7.57E-05)  (7.88E-05)  (0.04)
Elman-PSO 7.71E-05 4.66E-05 0.61 6.95E-05 4.33E-05 0.62 5.26E-05 2.66E-05 0.53
(6.92E-06)  (6.07E-06)  (0.10)  (6.95E-06)  (5.86E-06)  (0.04)  (9.79E-06)  (3.71E-06)  (0.04)
Elman-CQSO 3.69E-05 3.55E-05 0.97 4.05E-05 2.72E-05 0.84 1.96E-05 1.48E-05 0.76
(5.28E-06)  (6.37E-06)  (0.11)  (1.80E-05)  (3.34E-06)  (0.07)  (2.24E-06)  (1.59E-06)  (0.04)
Jordan-Rprop 1.99E-01 2.02E-01 1.06 9.91E-02 9.35E-02 1.04 2.71E-01 2.77E-01 1.03
(1.86E-01)  (L.89E-01)  0.06  (L32E-01)  (1.25E-01)  (0.04) (217E-01)  (2.20B-01)  (0.05)
Jordan-PSO 7.59E-05 4.21E-05 0.55 5.74E-05 3.11E-05 0.55 4.30E-05 2.03E-05 0.50
(5.75E-06)  (4.03E-06)  (0.03)  (4.36E-06)  (3.92E-06)  (0.06)  (7.24E-06)  (2.50E-06)  (0.05)
Jordan-CQSO 1.36E-05 1.31E-05 0.94 1.37E-05 1.19E-05 0.85 8.83E-06 6.85E-06 0.80
(1.41E-06) (2.22E-06) (0.11) (1.88E-06) (2.05E-06)  (0.06) (8.92E-07) (4.77E-07)  (0.03)
MRNN-Rprop 9.64E-03 9.90E-03 1.03 1.53E-02 1.61E-02 1.07 9.58E-03 1.01E-02 1.13
(2.84E-03)  (2.86E-03)  (0.02)  (6.85E-03)  (7.02E-03)  (0.04)  (5.22E-03)  (5.40E-03)  (0.21)
MRNN-PSO 7.60E-05 4.81E-05 0.63 6.60E-05 3.84E-05 0.62 4.41E-05 2.18E-05 0.51
(5.99E-06)  (5.11E-06)  (0.04)  (1.21E-05)  (4.51E-06)  (0.06)  (6.33E-06)  (3.05E-06)  (0.05)
MRNN-CQSO 9.15E-05 5.45E-05 0.61 6.89E-05 4.93E-05 0.73 4.91E-05 3.23E-05 0.69
(1.13E-05)  (6.06E-06)  (0.05)  (6.26E-06)  (5.22E-06)  (0.06)  (5.14E-06)  (2.62E-06)  (0.06)
TDNN-Rprop 1.33E-04 1.70E-04 1.29 1.22E-04 1.28E-04 1.05 9.37E-05 8.84E-05 0.93
(2.50E-05)  (3.12B-05)  (0.07)  (240E-05)  (2.54E-05)  (0.02)  (L.99E-05)  (2.00B-05)  (0.02)
TDNN-PSO 6.83E-05 4.46E-05 0.64 5.65E-05 3.05E-05 0.54 3.42E-05 1.79E-05 0.53
(6.71E-06)  (6.34E-06)  (0.05)  (4.20E-06)  (3.07E-06)  (0.03)  (2.76E-06)  (1.37B-06)  (0.02)
TDNN-CQSO 1.81E-05 1.61E-05 0.91 1.43E-05 1.21E-05 0.86 1.00E-05 8.42E-06 0.85

(2.97E-06)  (2.48E-06)  (0.04)  (1.26E-06)  (9.63E-07)  (0.04)  (7.41E-07)  (5.85E-07)  (0.04)

All the NNs models trained using CQSO obtained lower errors compared to
the NNs trained using either PSO and Rprop. For these four problems, all
p-values for the pairwise comparison between the FNN-CQSO and the other
models were below the threshold of 0.05 (which indicates that the difference
in performance was significant statistically) except for a few cases.

For the DMT problem, the exceptions are the FNN-CQSO vs Elman-CQSO
comparisons in terms of Gg for scenarios I and ITI, FNN-CQSO vs Jordan-
CQSO comparisons for scenarios I and II, and FNN-CQSO vs TDNN-CQSO
comparisons for scenario I. For the SAM problem, the exceptions are the FNN-
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Fig. 3: Training and generalization error results for MG time series, scenario I
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Table 6: Results of predicting the HIT time series

Model Scenario I Scenario IT Scenario IIT
Tk Ge P Tg Ge P Tk Gg P
FF-CQSO 5.55E-06 5.17E-06 0.93 6.14E-06 6.36E-06 1.04 6.18E-06 5.65E-06 0.92
(3.69E-07) (3.21E-07) (0.01) (3.87E-07) (3.83E-07) (0.01) (3.93E-07) (3.40E-07) (0.01)
Elman-Rprop 4.73E-04 4.7T7E-04 1.01 3.68E-04 3.66E-04 1.00 3.87E-04 3.88E-04 1.00
(1.09E-04)  (1.10E-04)  (0.01)  (9.45E-05)  (9.37E-05)  (0.01)  (1.04E-04)  (1.05E-04)  (0.01)
Elman-PSO 8.26E-05 8.37E-05 1.01 7.42E-05 6.25E-05 0.84 7.02E-05 6.55E-05 0.92
(1.04E-05)  (L.14E-05)  (0.01)  (LO2E-05)  (9.03E-06)  (0.01)  (1.02E-05)  (1.20E-05)  (0.01)
Elman-CQSO 1.21E-05 1.09E-05 0.91 1.19E-05 1.16E-05 0.98 1.25E-05 1.15E-05 0.92
(8.75E-07)  (7.35E-07)  (0.01)  (7.57E-07)  (6.27E-07)  (0.02)  (1.02E-06)  (8.95B-07)  (0.01)
Jordan-Rprop 9.57E-03 9.85E-03 0.99 5.62E-03 5.59E-03 1.00 1.07E-02 1.06E-02 0.99
(5.05E-03)  (5.59E-03)  (0.01)  (2.36E-03)  (2.35E-03)  (0.01)  (4.15E-03)  (4.06E-03)  (0.00)
Jordan-PSO 8.23E-05 8.07E-05 0.97 7.20E-05 6.41E-05 0.87 8.50E-05 8.02E-05 0.92
(1L57E-05)  (1.63E-05)  (0.03)  (1.O1E-05)  (1.09E-05)  (0.03)  (2.53E-05)  (2.66E-05)  (0.03)
Jordan-CQSO 8.28E-06 7.77E-06 0.94 8.27E-06 8.50E-06 1.03 8.21E-06 7.85E-06 0.96
(4.84E-07)  (4.26E-07)  (0.01)  (4.39E-07)  (4.41E-07)  (0.01)  (4.50E-07)  (4.09E-07)  (0.01)
MRNN-Rprop 1.09E-02 1.08E-02 0.99 8.72E-03 8.64E-03 1.00 5.17E-03 5.15E-03 1.00
(4.14E-03)  (4.07E-03)  (0.00)  (3.26E-03)  (3.22B-03)  (0.01)  (1.98E-03)  (1.97B-03)  (0.01)
MRNN-PSO 5.46E-05 5.09E-05 0.93 5.23E-05 4.66E-05 0.87 5.07E-05 4.46E-05 0.87
(7.59E-06) (7.06E-06) (0.02) (9.93E-06) (1.06E-05)  (0.03) (1.27E-05) (1.18E-05) (0.02)
MRNN-CQSO 1.01E-05 9.35E-06 0.93 5.23E-05 4.66E-05 0.87 1.12E-05 1.07E-05 0.96
(LO4E-06)  (8.81E-07)  (0.01)  (9.93E-06)  (1.06E-05)  (0.03)  (2.39E-06)  (2.10E-06)  (0.01)
TDNN-Rprop 5.57E-04 5.54E-04 1.00 6.56E-04 6.46E-04 0.99 4.50E-04 4.33E-04 0.98
(1.50E-04)  (148E-04)  (0.01)  (1.99E-04)  (1.95E-04)  (0.01)  (1.37E-04)  (1.32E-04)  (0.02)
TDNN-PSO 1.20E-04 1.16E-04 0.99 1.33E-04 1.16E-04 0.86 9.87E-05 9.65E-05 0.93
(3.23E-05)  (2.90E-05)  (0.04)  (4.93E-05)  (4.47E-05)  (0.03)  (2.53E-05)  (3.00B-05)  (0.04)
TDNN-CQSO 3.10E-05 2.99E-05 0.95 1.41E-05 1.37E-05 1.03 1.59E-05 1.49E-05 0.95

(3.76E-05)  (3.70E-05)  (0.02)  (5.62E-06)  (3.95E-06)  (0.02)  (7.42E-06)  (6.77E-06)  (0.01)

CQSO vs Jordan-CQSO comparisons for all three scenarios. For the LM prob-
lem, the exceptions are the FNN-CQSO vs Jordan-CQSO comparisons in terms
of Gg for the three scenarios, and for scenario IIT in terms of Tr. The other
exceptions are when FNN-CQSO is compared to Elman-CQSO, Elman-PSO,
Jordan-PSO, MRNN-PSO, TDNN-Rprop, and TDNN-CQSO in terms of Gg
for scenario I. For the AWS problem, the exceptions are when FNN-CQSO is
compared to Elman-Rprop, Elman-CQSO, Elman-PSO, Jordan-PSO, MRNN-
PSO, MRNN-CQSO, TDNN-PSO and TDNN-CQSO in terms of Gg for sce-
narios II and III. In terms of Ty comparisons, the exceptions are FNN-CQSO
vs Elman-Rprop, FNN-CQSO vs Elman-CQSO, and FNN-CQSO vs TDNN-
CQSO for scenario III.

The p values for the DMT problem show that all the NN models had slight
or no sign of overfitting. For the SAM problem, the NN models trained using
CQSO did not overfit for all scenarios, while the models trained using either
PSO or Rprop showed slight signs of overfitting. For the LM problem, all the
models overfitted for the slightly changing scenario I. The models, however,
showed only slight overfitting behaviour for scenario II. For scenario I1I, where
changes are abrupt, the models trained using CQSO and PSO showed no sign
of overfitting, while the models trained using Rprop slightly overfitted. For the
AWS problem, all the models overfitted.

Figure 4 shows the performance progression over time for the four models
that achieved the best results in predicting the AWS time series for scenario I11.
As visualized in the figure, while the Elman-RPROP model fluctuated a lot, the
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Table 7: Results of predicting the DMT time series

Model Scenario I Scenario IT Scenario IIT
Tk Ge P Tg Ge P Tk Gg P
FF-CQSO 1.19E-05 1.24E-05 1.04 1.09E-05 1.30E-05 1.20 1.08E-05 1.17E-05 1.09
(2.43E-07) (2.75E-07) (0.00) (1.30E-07) (1.59E-07) (0.00) (2.97E-07)  (2.90E-07)  (0.00)
Elman-Rprop 7.29E-04 7.29E-04 1.00 3.42E-04 3.44E-04 1.01 1.88E-04 1.88E-04 1.00
(2.35E-04)  (2.36E-04)  (0.01)  (1.04E-04)  (1.03E-04)  (0.01)  (4.75E-05)  (4.72E-05)  (0.01)
Elman-PSO 4.42E-05 4.58E-05 1.04 2.54E-05 2.81E-05 1.14 1.91E-05 1.97E-05 1.04
(1.31E-05)  (1.38E-05)  (0.01)  (6.05E-06)  (5.87E-06)  (0.01)  (2.78E-06)  (2.81E-06)  (0.01)
Elman-CQSO 1.35E-05 1.38E-05 1.02 1.13E-05 1.34E-05 1.19 1.09E-05 1.17E-05 1.07
(2.05E-06)  (1.94E-06)  (0.01)  (1.39E-07)  (1.74E-07)  (0.01)  (1.33E-07)  (1.81E-07) (0.01)
Jordan-Rprop 1.47E-02 1.48E-02 1.00 5.11E-03 4.96E-03 0.99 3.79E-03 3.78E-03 1.00
(5.10E-03)  (5.16E-03)  (0.00)  (1.91E-03)  (L.81E-03)  (0.02)  (9.82E-04)  (9.83E-04)  (0.01)
Jordan-PSO 2.91E-05 3.02E-05 1.05 2.10E-05 2.44E-05 1.18 1.73E-05 1.78E-05 1.03
(5.71E-06)  (5.80E-06)  (0.03)  (3.21E-06)  (3.44E-06)  (0.03)  (2.05E-06)  (2.03B-06)  (0.02)
Jordan-CQSO 1.23E-05 1.27E-05 1.03 1.10E-05 1.31E-05 1.18 1.10E-05 1.19E-05 1.08
(4.29E-07) (3.91E-07) (0.01) (1.56E-07) (1.87E-07)  (0.01) (3.71E-07) (4.09E-07) (0.01)
MRNN-Rprop 1.62E-02 1.63E-02 1.01 4.47E-03 4.44E-03 0.99 3.13E-03 3.13E-03 1.00
(4.71E-03)  (4.72E-03)  (0.00)  (1.14E-03)  (1.14E-03)  (0.01)  (1.20E-03)  (1.21E-03)  (0.01)
MRNN-PSO 3.18E-05 3.19E-05 1.02 2.27E-05 2.60E-05 1.17 1.54E-05 1.62E-05 1.05
(7.96E-06) (7.33E-06) (0.03) (5.45E-06) (5.10E-06)  (0.03) (8.06E-07) (8.61E-07) (0.02)
MRNN-CQSO 1.28E-05 1.31E-05 1.03 1.20E-05 1.40E-05 1.18 1.11E-05 1.19E-05 1.08
(5.76E-07)  (5.288-07)  (0.01)  (8.11E-07)  (7.08B-07)  (0.01)  (L.10E-07)  (1.658-07)  (0.01)
TDNN-Rprop 7.99E-04 7.81E-04 0.98 4.85E-04 4.48E-04 0.97 2.97E-04 2.90E-04 0.99
(240E-04)  (2.33E-04)  (0.04)  (2.14E-04)  (L.87E-04)  (0.02)  (9.35E-05)  (9.15E-05)  (0.01)
TDNN-PSO 4.90E-04 4.91E-04 1.04 4.32E-04 4.46E-04 1.06 3.41E-04 3.39E-04 0.98
(2.44E-04)  (242E-04)  (0.02)  (2.65E-04)  (2.77E-04)  (0.05)  (1.45E-04)  (1.45B-04)  (0.01)
TDNN-CQSO 1.19E-05 1.25E-05 1.05 1.30E-05 1.51E-05 1.18 1.17E-05 1.27E-05 1.09

(2.59E-07)  (2.71E-07)  (0.01)  (2.31E-06)  (2.31E-06)  (0.01)  (8.94E-07)  (8.28E-07)  (0.01)

other three models had a more stable error progression. Figure 4a shows that
the FNN-CQSO had the best T progression throughout the search. The G
progression of the models shown in Figure 4b indicates that the FNN-CQSO
had similar or better performance compared to the other models, adapting
well to the changes until the last environmental change, where the FNN-CQSO
produced slightly the worst error.
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Fig. 4: Training and generalization error results for AWS time series, scenario
111
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Table 8: Results of predicting the SAM time series

Model Scenario I Scenario IT Scenario IIT
Tk Ge P Tg Ge P Tk Gg P
FF-CQSO 1.45E-04 1.27E-04 0.88 1.49E-04 8.13E-05 0.55 1.24E-04 8.93E-05 0.72
(2.95E-06) (2.36E-06) (0.01) (2.99E-06) (1.03E-06) (0.01) (1.90E-06) (1.57E-06) (0.00)
Elman-Rprop 3.7TE-04 4.18E-04 1.14 3.14E-04 3.62E-04 1.17 5.02E-04 5.13E-04 1.04
(TATE-05)  (7.37E-05)  (0.04)  (4.94E-05)  (5.31E-05)  (0.06)  (2.02E-04)  (2.01E-04)  (0.02)
Elman-PSO 2.96E-04 3.81E-04 1.29 3.52E-04 1.88E-04 0.53 2.71E-04 2.16E-04 0.80
(1.30E-05)  (2.78E-05)  (0.04)  (L.83E-05)  (L.69E-05)  (0.06)  (2.31E-05)  (L.75E-05)  (0.02)
Elman-CQSO 2.41E-04 2.49E-04 1.02 2.63E-04 1.37E-04 0.53 2.13E-04 2.04E-04 0.96
(1.27E-05)  (3.17E-05)  (0.10)  (1.29E-05)  (1.14E-05)  (0.06)  (9.74E-06)  (9.73E-06)  (0.03)
Jordan-Rprop 1.89E-02 1.88E-02 1.12 4.32E-03 4.52E-03 1.09 2.89E-03 3.08E-03 1.09
(341E-02)  (3.36E-02)  (0.05)  (3.94E-03)  (3.99E-03)  (0.03)  (1.45E-03)  (1.55E-03)  (0.05)
Jordan-PSO 4.90E-04 6.40E-04 1.31 6.59E-04 4.78E-04 0.71 6.53E-04 6.75E-04 1.06
(3.79E-05)  (8.48E-05)  (0.11)  (8.20E-05)  (7.48B-05)  (0.05)  (1.47E-04)  (1.51E-04)  (0.05)
Jordan-CQSO 1.45E-04 1.31E-04 0.91 1.54E-04 7.91E-05 0.51 1.25E-04 9.01E-05 0.72
(5.40E-06) (5.19E-06) (0.04) (3.87E-06) (2.59E-06)  (0.01) (3.56E-06) (2.89E-06) (0.00)
MRNN-Rprop 5.36E-02 5.60E-02 1.11 7.45E-03 7.61E-03 1.02 4.65E-03 5.30E-03 1.17
(8.63E-02)  (8.94E-02)  (0.08)  (4.11E-03)  (4.42E-03)  (0.03)  (2.10E-03)  (2.42B-03)  (0.09)
MRNN-PSO 3.91E-04 4.97E-04 1.28 5.03E-04 3.15E-04 0.64 4.00E-04 3.61E-04 0.91
(2.32E-05) (4.12E-05) (0.09) (3.84E-05) (1.99E-05)  (0.04) (2.69E-05) (2.21E-05) (0.05)
MRNN-CQSO 2.20E-04 1.89E-04 0.86 2.38E-04 1.10E-04 0.46 1.85E-04 1.52E-04 0.83
(L.OOE-05)  (1.88E-05)  (0.06)  (1.28E-05)  (S.67E-06)  (0.02)  (1.06E-05)  (8.78E-06)  (0.04)
TDNN-Rprop 4.03E-04 4.36E-04 111 4.07E-04 4.67E-04 1.21 3.65E-04 3.72E-04 1.05
(7.96E-05)  (7.95B-05)  (0.03)  (9.01E-05)  (8.75E-05)  (0.05)  (8.38E-05)  (7.81E-05)  (0.03)
TDNN-PSO 3.16E-04 3.89E-04 1.24 3.38E-04 1.76E-04 0.52 2.55E-04 2.07E-04 0.81
(LBAE-05)  (247B-05)  (0.07)  (L.63E-05)  (1.62E-05)  (0.03)  (9.63E-06)  (1.0SE-05)  (0.03)
TDNN-CQSO 2.55E-04 2.31E-04 0.90 2.59E-04 1.25E-04 0.48 2.14E-04 1.70E-04 0.80

(1.19E-05)  (2.08E-05)  (0.05) (9.16E-06)  (7.63E-06)  (0.02)  (5.85E-06)  (9.03E-06)  (0.04)

Table 11 show that the FNN-CQSO model yielded the lowest CMF T and
G g values for scenarios IT and IIT in forecasting the IAP problem. For scenario
I, the Elman-Rprop model had the lowest T, while the Jordan-CQSO model
produced the lowest Gg. All the p-values for pairwise comparison between the
FNN-CQSO and the other models were below the 0.05 threshold, except for the
FNN-CQSO vs Jordan-CQSO comparisons, where the two models produced
statistically similar performance for all scenarios. All the NN models studied
showed some sign of overfitting.

For the USD problem, Table 12 shows that FNN-CQSO produced the low-
est Gg for all three scenarios and the lowest Tr for scenario II. The Jordan-
CQSO, however, obtained the lowest T for scenarios I and II. The p values
in Table 12 show that all the models exhibited overfitting behaviour. All the
p-values for the pairwise comparisons between the FNN-CQSO and the other
models were below the 0.05 threshold (which indicate that the difference in
performance was statistically significant ), except when compared to:

— Jordan-CQSO (in terms of Tx) and Elman-Rprop for scenario I

— Elman-CQSO (in terms of Tg) and Jordan-CQSO for scenario 1T

— Elman-Rprop, TDNN-Rprop and TDNN-CQSO in terms of Ty for scenario
I1I,
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Table 9: Results ofpredicting the LM time series
Model Scenario I Scenario 1T Scenario III

Tk Ge P Tg Ge P Tk Gg P

FF-CQSO 2.29E-03 3.67E-03 1.61 2.38E-03 2.55E-03 1.07 2.42E-03 2.26E-03 0.93
(7.76E-05)  (7.04E-05)  (0.06) (7.10E-07) (3.54E-06) (0.00) (7.85E-06) (1.67E-05) (0.01)

Elman-Rprop 5.10E-03 6.54E-03 1.47 5.32E-03 5.73E-03 1.12 8.76E-03 9.10E-03 1.01
(1.298-03)  (L.19E-03)  (0.15)  (1.36E-03)  (1.32E-03)  (0.05) (2.87E-03)  (3.25E-03)  (0.04)

Elman-PSO 3.27E-03 3.73E-03 1.17 3.78E-03 2.88E-03 0.78 3.51E-03 2.45E-03 0.72
(221E-04)  (257E-04)  (0.15)  (2.50E-04)  (L44E-04)  (0.05) (2.41E-04)  (L14E-04)  (0.04)

Elman-CQSO 2.48E-03 3.78E-03 1.55 2.67E-03 2.69E-03 1.01 2.86E-03 2.37E-03 0.84
(1.26E-04)  (8.31E-05)  (0.07)  (LOIE-04)  (7.21E-05)  (0.02) (1.31E-04)  (5.75E-05)  (0.03)

Jordan-Rprop 4.96E-03 6.38E-03 1.40 7.65E-02 8.15E-02 1.09 4.32E-03 4.39E-03 1.02
(1.62E-03)  (L62E-03) (0.08) (L.35E-01)  (L44E01) (0.02) (6.13E-04)  (5.91E-04)  (0.02)

Jordan-PSO 2.62E-03 3.63E-03 1.41 2.54E-03 2.59E-03 1.02 2.47E-03 2.30E-03 0.93
(1.28E-04)  (8.90E-05)  (0.07)  (6.58E-05)  (5.00E-05)  (0.02) (5.24E-05)  (3.56E-05)  (0.02)

Jordan-CQSO 2.54E-03 3.76E-03 1.51 2.44E-03 2.58E-03 1.06 2.42E-03 2.28E-03 0.94
(L51E-04)  (9.30E-05)  (0.08) (245E-05)  (3.52E-05)  (0.01)  (L8LE-05)  (3.50E-05)  (0.01)

MRNN-Rprop 6.52E-03 7.65E-03 1.22 5.99E-03 6.38E-03 1.07 4.94E-03 5.04E-03 1.02
(1.33E-03)  (1.29E-03)  (0.05)  (9.01E-04)  (9.13E-04)  (0.02) (7.75E-04)  (7.92E-04)  (0.02)

MRNN-PSO 3.55E-03 4.06E-03 1.20 3.67E-03 2.80E-03 0.78 3.99E-03 2.64E-03 0.70
(385E-04)  (417E-04)  (0.10) (2.80E-04)  (L49E-04)  (0.05) (4.39E-04)  (2.50B-04)  (0.07)

MRNN-CQSO 2.38E-03 3.7TE-03 1.59 2.64E-03 2.71E-03 1.03 2.67E-03 2.32E-03 0.87
(6.72E-05)  (6.46E-05)  (0.05)  (5.24E-05)  (4.89E-05)  (0.01)  (8.17E-05)  (5.60E-05)  (0.02)

TDNN-Rprop 2.41E-03 3.91E-03 1.63 2.68E-03 3.48E-03 1.30 3.16E-03 3.40E-03 1.06
(247E-04)  (3.61B-04)  (0.03) (241B-04)  (3.38B-04)  (0.04)  (5.18B-04)  (6.99E-04)  (0.04)

TDNN-PSO 2.57E-03 3.55E-03 1.40 2.95E-03 3.09E-03 1.06 2.74E-03 2.61E-03 0.95
(1.64E-04)  (1.98E-04) (0.07)  (2.63E-04)  (2.14E-04)  (0.04)  (1.53E-04)  (L.76E-04)  (0.03)

TDNN-CQSO 2.77TE-03 3.80E-03 1.38 2.60E-03 2.83E-03 1.09 2.69E-03 2.28E-03 0.85
(1.08E-04)  (9.71E-05)  (0.06)  (4.85E-05)  (4.90E-05) (0.03) (2.91E-05)  (2.63E-05)  (0.01)

Table 10: Results of predicting the AWS time series
Model Scenario I Scenario II Scenario IIT

Te Gg 14 Te Gg p Tr Gg p

FF-CQSO 3.92E-04 6.71E-04 1.70 3.59E-04 6.06E-04 1.68 4.11E-04 8.51E-04 2.07
(2.29E-05) (5.27E-05) (0.04) (1.45E-05)  (3.42E-05)  (0.04) (1.43E-05) 3.34E-05) (0.02)

Elman-Rprop 5.71E-04 7.27E-04 1.33 9.53E-04 1.32E-03 1.7 1.53E-03 1.80E-03 1.71
(1.10E-04)  (LO7E-04)  (0.07) (6.51E-04)  (6.27E-04)  (0.13)  (9.33E-04)  (7.71E-04)  (0.19)

Elman-PSO 5.98E-04 9.71E-04 1.63 5.97E-04 6.42E-04 1.08 5.54E-04 9.37E-04 1.68
(2.78E-05)  (5.66E-05)  (0.07)  (2.66E-05)  (2.92E-05)  (0.13)  (3.46E-05)  (8.28E-05)  (0.19)

Elman-CQSO 4.31E-04 7.38E-04 1.70 4.52E-04 6.28E-04 1.38 4.69E-04 9.29E-04 1.96
(2.37E-05)  (6.53E-05)  (0.08)  (2.76E-05)  (6.59E-05)  (0.09)  (3.77E-05)  (9.39E-05)  (0.05)

Jordan-Rprop 5.61E-03 6.08E-03 1.15 6.22E-02 5.72E-02 1.42 5.47E-02 5.74E-02 1.27
(2.20E-03)  (249E-03)  (0.05)  (1.16E-01)  (1.0SE-01)  (0.17)  (9.59E-02)  (L.OOE-01) (0.12)

Jordan-PSO 5.40E-04 9.03E-04 1.67 5.83E-04 6.23E-04 1.07 4.92E-04 8.65E-04 1.75
(L.78E-05)  (5.65E-05)  (0.07)  (2.82E-05)  (3.48E-05)  (0.04)  (2.06E-05)  (5.52E-05)  (0.06)

Jordan-CQSO 4.42E-04 7.71E-04 1.72 4.36E-04 6.49E-04 1.48 4.93E-04 9.96E-04 1.99
(274E-05)  (7.33E-05)  (0.07)  (2.29E-05)  (5.57E-05)  (0.07)  (3.64E-05)  (L.O1E-04) (0.06)

MRNN-Rprop 1.01E-02 1.04E-02 1.12 1.32E-02 1.40E-02 1.24 7.19E-03 8.38E-03 1.28
(6.75E-03)  (6.59E-03)  (0.05)  (5.08B-03)  (5.27E-03)  (0.13)  (3.48E-03)  (3.70E-03)  (0.16)

MRNN-PSO 5.70E-04 9.58E-04 1.69 5.81E-04 6.34E-04 1.09 5.04E-04 8.66E-04 1.71
(2.99E-05)  (5.09E-05)  (0.06) (2.81E-05)  (4.07E-05)  (0.05) (2.12E-05)  (4.99E-05)  (0.05)

MRNN-CQSO 4.87E-04 8.70E-04 1.78 4.64E-04 5.91E-04 1.27 5.10E-04 9.95E-04 1.92
(2.82E-05)  (T.97E-05)  (0.10)  (1.91E-05) (4.38E-05) (0.07) (4.12E-05)  (L17E-04)  (0.08)

TDNN-Rprop 4.11E-03 5.91E-03 1.43 4.83E-03 5.71E-03 1.16 2.12E-03 2.68E-03 1.48
(1.32E-03)  (1.78E-03)  (0.12)  (2.90E-03)  (3.22E-03)  (0.07)  (6.95E-04)  (7.22E-04) (0.10)

TDNN-PSO 5.15E-04 9.09E-04 1.75 5.82E-04 6.34E-04 1.09 4.81E-04 8.87E-04 1.83
(2.43E-05)  (6.87E-05)  (0.07)  (2.17E-05)  (3.52E-05)  (0.04)  (2.67E-05)  (7.45E-05)  (0.06)

TDNN-CQSO 4.96E-04 9.13E-04 1.80 5.28E-04 6.51E-04 1.19 4.56E-04 8.68E-04 1.85
(3.58E-05)  (1.09E-04)  (0.12)  (450E-05)  (1.05E-04)  (0.09) (423E-05)  (1.23E-04) (0.10)
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Table 11: Results of predicting the AIP time series

Model Scenario I Scenario IT Scenario IIT
Tk Ge P Tg Ge P Tk Gg P
FF-CQSO 3.10E-04 3.60E-04 1.21 1.30E-04 1.70E-04 1.54 1.00E-04 1.28E-04 1.33
(2.00E-04)  (2.40E-04)  (0.06) (4.91E-05) (5.01E-05) (0.13) (2.43E-05) (3.02E-05) (0.16)
Elman-Rprop 2.30E-04 3.10E-04 1.46 2.07E-04 3.18E-04 1.71 2.41E-04 4.04E-04 1.97
(4.00E-05)  (5.00E-05)  (0.11)  (4.75B-05)  (5.71E-05)  (0.15)  (6.30E-05)  (8.08E-05)  (0.29)
Elman-PSO 2.15E-03 2.32E-03 1.07 2.03E-03 2.97E-03 1.47 1.90E-03 2.98E-03 1.56
(2.30E-04)  (2.60E-04)  (0.11)  (2.34E-04)  (3.41E-04)  (0.15)  (L74E-04)  (2.95E-04)  (0.29)
Elman-CQSO 1.75E-03 2.15E-03 1.23 2.28E-03 1.94E-03 0.83 1.81E-03 2.90E-03 1.60
(2.30E-04)  (2.80E-04)  (0.03)  (3.37E-04)  (3.32B-04)  (0.04)  (1.88E-04)  (3.10E-04)  (0.01)
Jordan-Rprop 1.45E-01 1.47E-01 1.05 1.09E-02 1.09E-02 1.23 2.07E-02 1.98E-02 1.09
(1.24E-01)  (L25E-01)  (0.02)  (LOOE-02)  (L.OOE-02)  (0.09)  (2.72B-02)  (2.49E-02)  (0.06)
Jordan-PSO 2.60E-03 2.82E-03 1.08 2.72E-03 3.97E-03 1.51 1.89E-03 3.70E-03 2.03
(5.90E-04)  (6.40E-04)  (0.03)  (5.75E-04)  (7.77E-04)  (0.08)  (3.40E-04)  (5.87E-04)  (0.06)
Jordan-CQSO 2.40E-04 2.70E-04 1.10 1.65E-04 2.16E-04 1.60 1.51E-04 2.56E-04 1.57
(7.00E-05)  (8.00E-05) (0.05)  (6.76E-05) (6.55E-05)  (0.16)  (6.37TE-05) (1.32E-04)  (0.21)
MRNN-Rprop 1.47E-02 1.58E-02 1.13 1.17E-02 1.42E-02 1.26 1.56E-02 1.72E-02 1.36
(L11E-02)  (L.14E-02)  (0.06)  (5.62E-03)  (7.57E-03)  (0.13)  (1.63E-02)  (1.78E-02)  (0.19)
MRNN-PSO 2.09E-03 2.27E-03 1.08 1.83E-03 2.70E-03 1.49 1.55E-03 3.04E-03 1.99
(2.20E-04)  (2.50E-04)  (0.01)  (1.93E-04)  (2.72E-04)  (0.05)  (2.34E-04)  (4.23E-04)  (0.03)
MRNN-CQSO 1.36E-03 1.49E-03 1.09 8.74E-04 1.17E-03 1.38 6.99E-04 1.42E-03 2.11
(3.50E-04)  (3.90E-04)  (0.02)  (2.64E-04)  (3.58B-04)  (0.10)  (2.61E-04)  (4.83E-04)  (0.04)
TDNN-Rprop 4.30E-04 8.60E-04 1.93 6.53E-04 1.28E-03 1.88 4.50E-04 8.71E-04 2.00
(1.10E-04)  (3.10E-04)  (0.20)  (2.57E-04)  (6.92E-04)  (0.16)  (9.44E-05)  (2.42E-04)  (0.26)
TDNN-PSO 2.37E-03 2.58E-03 1.09 2.16E-03 3.09E-03 1.45 1.69E-03 3.27E-03 1.98
(3.80E-04)  (4.10E-04)  (0.01)  (2.20E-04)  (3.01E-04)  (0.04)  (2.87E-04)  (5.12B-04)  (0.04)
TDNN-CQSO 3.58E-03 4.01E-03 1.21 2.33E-03 2.84E-03 1.57 2.38E-03 4.21E-03 1.77
(1.65E-03)  (1.83E-03)  (0.07)  (1.30E-03)  (L.48E-03)  (0.19) (1.45E-03)  (2.50E-03)  (0.13)
Table 12: Results of predicting the USD time series
Model Scenario T Scenario TT Scenario ITT
Te GE 4 T Gr 4 Tk GE P
FF-CQSO 4.90E-04 1.01E-03 2.11 3.96 E-04 6.28E-04 1.59 4.53E-04 1.02E-03 2.28
(2.37E-05)  (5.77E-05) (0.16) (1.77E-05) (2.46E-05) (0.04) (2.22E-05) (2.39E-05) (0.08)
Elman-Rprop 1.02E-03 2.06E-03 2.91 1.11E-03 1.55E-03 1.69 1.65E-03 2.18E-03 2.28
(5.95E-04)  (6.74E-04)  (0.42)  (5.78E-04)  (6.40E-04)  (0.15)  (1.18E-03)  (1.16E-03)  (0.33)
Elman-PSO 6.74E-04 1.52E-03 2.29 5.95E-04 9.75E-04 1.65 5.91E-04 1.33E-03 2.27
(3.94E-05) (1.05E-04)  (0.42)  (3.06E-05) (5.28E-05)  (0.15)  (2.95E-05) (6.18E-05)  (0.33)
Elman-CQSO 5.44E-04 1.30E-03 2.39 4.10E-04 7.15E-04 1.75 4.91E-04 1.20E-03 2.46
(2.98E-05)  (1.25E-04)  (0.17)  (L.94E-05)  (3.28B-05)  (0.07)  (2.23E-05)  (4.97E-05)  (0.12)
Jordan-Rprop 2.75E-03 3.64E-03 2.03 1.74E-03 2.30E-03 1.81 3.59E-03 4.29E-03 1.45
(1.39E-03)  (1.59E-03)  (0.31)  (L.O3E-03)  (L12E-03)  (0.16)  (1.48E-03)  (1.62E-03)  (0.21)
Jordan-PSO 7.48E-04 1.73E-03 2.33 6.99E-04 1.16E-03 1.67 6.80E-04 1.31E-03 1.94
(3.78E-05)  (L.O7E-04)  (0.12)  (3.52E-05)  (6.90E-05)  (0.07)  (2.67E-05)  (5.98E-05)  (0.08)
Jordan-CQSO 4.45E-04 1.04E-03 2.34 4.38E-04 6.96E-04 1.61 3.76E-04 1.28E-03 3.41
(1.81E-05)  (9.22E-05)  (0.18)  (2.04E-05)  (229E-05)  (0.08) (1.02E-05)  (3.65E-05)  (0.10)
MRNN-Rprop 8.52E-03 9.43E-03 1.77 8.76E-03 9.49E-03 1.43 9.84E-03 1.03E-02 1.15
(3.17E-03)  (3.22B-03)  (0.39)  (3.92E-03)  (3.84E-03)  (0.18)  (4.17E-03)  (4.08B-03)  (0.11)
MRNN-PSO 6.97E-04 1.75E-03 2.54 6.11E-04 1.01E-03 1.67 5.94E-04 1.47TE-03 2.48
(4.93E-05)  (1.45E-04)  (0.17)  (4.36E-05)  (5.55B-05)  (0.07)  (2.33E-05)  (7.34E-05)  (0.12)
MRNN-CQSO 6.67E-04 1.72E-03 2.59 4.68E-04 7.95E-04 1.71 5.97E-04 1.25E-03 2.12
(4.54E-05)  (1.29E-04)  (0.13)  (1.62E-05)  (3.13E-05)  (0.07)  (3.00E-05)  (6.23E-05)  (0.11)
TDNN-Rprop 8.46E-04 2.54E-03 3.34 7.39E-04 1.22E-03 1.88 5.27E-04 1.47E-03 3.12
(1.42E-04)  (2.08E-04)  (0.33)  (1.47E-04)  (1.10E-04)  (0.19)  (8.36E-05)  (1.57E-04)  (0.38)
TDNN-PSO 7.46E-04 2.36E-03 3.20 6.20E-04 1.11E-03 1.80 5.86E-04 1.42E-03 2.46
(3.18E-05)  (L24E-04)  (0.20)  (3.04E-05)  (4.11E-05)  (0.07) (2.55B-05)  (6.24E-05)  (0.15)
TDNN-CQSO 6.76E-04 1.73E-03 2.54 4.91E-04 7.65E-04 1.58 4.22E-04 1.34E-03 3.18
(3.25E-05)  (1.53E-04)  (0.16)  (3.31E-05)  (3.18B-05)  (0.06)  (1.18E-05)  (4.54E-05)  (0.10)
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5 Conclusion

The aim of the study was to investigate if using recurrent connections or time
delays are unnecessary in neural networks (NNs) used in time series forecasting
when a particle swarm optimization (PSO) algorithm designed for dynamic en-
vironments is used as the training algorithm. A set of experiments using eight
forecasting problems were carried out to test this hypothesis. Feedforward NNs
(FNNs) were trained using cooperative quantum particle swarm optimization
(CQSO) to forecast each of the problems under three different dynamic sce-
narios, and the results were compared to those obtained from four different
recurrent NNs (RNNs) (i.e. Elman NN, Jordan NN, Multirecurrent NN and
Time delay NN), each trained differently with resilient propagation (Rprop),
PSO and dynamic PSO algorithms. Mann Whitney U tests were used to check
the statistical significance of the difference in performance between the results
obtained from the FNN trained with CQSO and each of the remaining NN
models.

Analysis of the results showed that the FNN trained with CQSO produced
significantly better results compared to each of the RNN models for the eight
problems. It was observed that, in general, training the RNNs with CQSO
improved performance over training with Rprop or PSO.

The results supported the hypothesis that FNNs trained with a dynamic
PSO algorithm is sufficient for time series forecasting in non-stationary en-
vironments and the model is able to handle temporal relationships without
necessarily introducing recurrent connections.

Further studies will include a detailed study of more variants of the dy-
namic PSO applied to different forms of RNNs, such as Hopfield and echo
state networks. Other properties of training algorithms not explored in this
paper, such as recovery speed after a change, time complexity and CPU time
will be looked into.
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