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On the Predictability of Stock Market Bubbles:
Evidence from LPPLS Confidence™ Multi-scale Indicators

Abstract

We examine the predictive power of market-based indicators over the positive and negative stock market
bubbles via an application of the LPPLS Confidence™ Multi-scale Indicators to the S&P500 index. We
find that the LPPLS framework is able to successfully capture, ex-ante, some of the prominent bubbles across
different time scales, such as the Black Monday, Dot-com, and Subprime Crisis periods. We then show that
measures of short selling activity have robust predictive power over negative bubbles across both short and
long time horizons, in line with the previous studies suggesting that short sellers have predictive ability over
stock price crash risks. Market liquidity, on the other hand, is found to have robust predictive power over
both the negative and positive bubbles, while its predictive power is largely limited to short horizons. Short
selling and liquidity are thus identified as two important factors contributing to the LPPLS-based bubble
indicators. The evidence overall points to the predictability of stock market bubbles using market-based
proxies of trading activity and can be used as a guideline to model and monitor the occurrence of bubble
conditions in financial markets.

JEL classification: C13, C58, G14
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1. Introduction

Bubble formation in financial markets has always been a topic of great interest, not only from an academic
perspective regarding the informational efficiency of markets, but also for practitioners and policy makers who
try to mitigate the negative effects of wild price fluctuations and subsequent crashes. Clearly, large sums are
at stake when one deals with stock market bubbles. The U.S. market capitalization of firms, as of June 2017,
is nearly $25.3 trillion USD (Bloomberg) or 133% of GDP, while the S&P 500 Total Market Capitalization
was $21.3 trillion USD on March 31, 2017. Correspondingly, at the end of 2016, $15.9 trillion in corporate
equities were held by households and non-profit organizations in the U.S. (Balance Sheet of Households and
Nonprofit Organizations (B.101) in Financial Accounts of the United States.). Given the level of penetration
of the stock market investment in the U.S., a future crash in the stock market is likely to have widespread
negative effects on the U.S. economy (Farmer, 2015; Narayan et al., 2016), as it did in the aftermath of the
dotcom bubble in 2000 or of the financial crisis of 2008. Therefore, it is not surprising that a large literature
has been devoted to detecting bubbles in the U.S. stock market, especially since the 2008 financial crisis (see
for example, Homm and Breitung, 2010; Yan et al., 2012; Brunnermeier and Oehmke 2013; Xiong, 2013; and
Balcilar et al., 2016 for detailed reviews in this regard). While significant effort has been spent on explaining
how and why bubbles emerge and sustain over long periods (e.g. Kaizoji and Sornette, 2010), a large number
of studies have instead focused on developing models to reliably detect bubbles. Consequently, the literature
provides various methodologies to detect bubbles that aim to build on the drawback of the existing (earlier)
ones (see for example, Brooks and Katsaris, 2005; Anderson et al., 2010; Phillips et al., 2011, 2015; Phillips
and Yu, 2011; Shi, 2013; Arora and Shi, 2016 for detailed discussions in this regard).

Against this backdrop and given that the S&P500 is one of the most frequently used stock market
indexes to gauge the U.S. stock market performance (Shiller, 2014), representing more than 80% of available
market capitalization, the objective of this paper is twofold. First, we present a methodology to detect
both positive and negative bubbles ? for the S&P500 index using the Log-Periodic Power Law Singularity
(LPPLS) model (Johansen et al. 1999; 2000, Sornette 2003), not otherwise possible based on the various
bubble detection models cited earlier. We then introduce the Multi-scale LPPLS confidence™ indicators
to characterise bubbles at different time scales. Second, having constructed indicators that describe positive
and negative bubbles, we examine the predictive power of short selling activity and market liquidity over the
bubble indicators and provide insight to the predictability of market booms and crashes using market-based
indicators. In our predictive tests, we specifically focus on measures of short selling activity and market
liquidity as recent studies suggest that short sellers are informed traders who are able to anticipate future
aggregate cash flows and that short interest is positively related to stock price crash risk (e.g. Callen and
Fang, 2015 and Rapach et al., 2016). We are also interested in the predictive ability of market liquidity over
boom and crash indicators as the literature establishes a link between liquidity spikes and market downturns
(e.g. Chordia et al., 2001; Pastor and Stambaugh, 2003). To the best of our knowledge, this is the first
attempt in examining the predictive ability of market-based indicators over the positive and negative bubbles
in the S&P500 index using the LPPLS model. An important finding of this paper is thus to identify some
of the factors contributing to the LPPLS-based bubble indicators, namely short selling and liquidity. The
LPPLS model, which makes it possible to identify positive and negative bubbles, presents a valuable opening,
allowing us to examine the predictability patterns of market booms and crashes separately.

Our findings show that the LPPLS framework, in the implementation presented here, is able to successfully
capture, ex-ante, some of the prominent bubbles across different time scales. We observe that some of the
great bubbles and subsequent crashes experienced during the Black Monday, Dot-com, and Subprime Crisis
periods are successfully captured by the bubble indicators, while the long-term negative bubble indicator
diagnoses correctly the transition from a sluggish market to a fast accelerating positive bubble during the
mid-90s when the demand for the “New Economy” stocks developed in full force. One can also observe
that the medium-term negative bubble indicator also shows a strong signal that the 2008 crisis was ending,
providing a precursor to the strong rebound that started in March 2009. Examining the predictability of the
negative and positive bubble indicators, our predictive tests reveal several interesting observations. First, we
observe that the predictability patterns differ significantly for booms and busts represented by the positive

2A positive (resp. negative) bubble is defined as an upward (resp. downward) accelerating price followed by a crash (resp.
rally).



and negative bubble indicators, respectively. We find that measures of short selling activity have robust
predictive power over negative bubbles, in line with the view that short sellers are able to detect bad news
hoarding by managers. The predictive power of short selling activity is robust to alternative measures of short
selling employed in our predictive tests and is positively related to the negative bubble indicator, predicting
the occurrence of negative bubbles one-month ahead. The predictive power of short selling proxies holds for
both the short- and the long-term horizons which is consistent with the recent finding by Callen and Fang
(2015) that short interest is positively related to one-year ahead stock price crash risk. On the other hand,
our tests show that market liquidity also has robust predictive power over both the negative and positive
bubbles in the short-term, suggesting that market liquidity measures can be used to predict the occurrence
of both booms and crashes for short horizons. In short, the evidence points to the predictability of both
positive and negative stock market bubbles via market-based proxies of trading activity.

The remainder of the paper is organized as follows. Section 2 presents the theory behind the LPPLS
model. Section 3 explains the methodology to construct the LPPLS Confidence™ indicator, its application
to the S&P500 Index and the Markov Switching (MS) model employed in our predictive tests. Section 4
presents the empirical findings and Section 5 concludes the paper.

2. Construction of the LPPLS Confidence™ Multi-scale Indicators

2.1. The Log-Periodic Power Law Singularity (LPPLS) Model

This section covers the theory behind the LPPLS framework and discusses the application of the method
to the S&P500 Index. Following Sornette et al. (1996), a growing body of studies (see for example, Geraskin
and Fantazzini, 2011, Sornette et al., 2013 and Zhang et al., 2016 for detailed reviews of this literature) has
used critical points with log-periodic corrections, borrowed from statistical physics, to identify bubbles. This
methodology (later started to be called Johansen-Ledoit-Sornette (JLS) model or LPPLS analysis) proposes
that a bubble can emerge intrinsically out of the natural functioning of the market. Building on the idea of
positive feedbacks by imitation, the JLS model proposed by Johansen et al. (1999; 2000) and its extensions
includes as a key ingredient the role played by herding behaviour in the formation of bubbles. Considering
bubbles as transient phenomena, the existence of positive feedbacks between value investors and noise traders
create a super-exponential growth of the price, decorated by deviations around the price growth in the form
of oscillations that are approximately periodic in the logarithm of the time to the burst of the bubble and
which capture a progressive time contraction of the long-term volatility structure. When imitation reaches
a certain threshold, the higher demand for the asset leads to the observable price to increase, bootstrapping
on itself, and the market is governed by sentiment rather than some real underlying value (Sornette and
Cauwels, 2015). This process is intrinsically unsustainable and the mispricing ends at a critical time, ¢,
either smoothly into another regime or abruptly (crash). In short, in this set-up, it is assumed that agents
are fully aware of the mispricing but the price continues to rise due to a lack of synchronisation of the
arbitragers either due to disagreements about the time of the beginning (Abreu and Brunnermeier, 2003) or
of the end (Demos and Sornette, 2017) of the bubble.

In a bubble regime, the observed price trajectory of a given asset decouples from its intrinsic fundamental
value (Kindleberger, 1978; Sornette, 2003). For a given fundamental value, the JLS model (Johansen et al.,
1999; 2000) assumes that the logarithm of the observable asset price p(t) follows

d(p) = p(t)dt + o(t)dW — kdj (1)
where pu(t) is the expected return, o(t) is the volatility, dW is the infinitesimal increment of a standard
Wiener process and dj represents a discontinuous jump such that j = n before and j = n + 1 after a crash
occurs (where n is an integer). In this specification, the parameter k quantifies the amplitude of a possible
crash.

The model considers two types of agents: The first group consists of traders with rational expectations
(Blanchard and Watson, 1983), while the second group is characterized by noise traders who tend to exhibit
herding behaviour. The model assumes that the collective behaviour of the latter class of traders can desta-
bilize asset prices via correlated trades. Johansen et al. (1999; 2000) propose that their behaviour can be



mimicked by writing the crash hazardrate under the following form
h(t) = a(te — )™ (1 + B cos(w In(t. — t) — ¢') (2)

where «, 8, w and t. are parameters. Eq. (2) suggests that the risk of a crash resulting from herding behaviour
is a sum of a power law singularity (a(t. —¢)™~ 1), which is decorated by large scale amplitude oscillations
that are periodic in the logarithm of the time to the singularity (or critical time) ¢.. In that sense, the power
law singularity embodies the positive feedback mechanism associated with the herding behaviour of noise
traders. The log-periodic oscillations represent the tension and competition between the two types of agents
who tend to create deviations around the faster-than-exponential price growth as the market approaches
a finite-time-singularity at ¢.. Seyrich and Sornette (2016) have recently presented a model providing a
micro-foundation for this singular behavior (2).

The no-arbitrage condition imposes that the excess return u(t) during a bubble phase is proportional
to the crash hazard rate given by Eq. (2). Indeed, setting E[dp] = 0, and assuming that no-crash has yet
occurred (dj = 0), we get u = kh(t) since E[dj] = h(t)dt by definition of h(t). By integration, we obtain
the expected trajectory of the price logarithm during a bubbly trajectory, conditional on the crash not yet
happening, as

Elnp(t)] = A+ Blte — t|™ + C|t. — t|™ cos(w In [t. — t| — @) (3)

where B = —ka/m and C' = —kaf/vm? + w?. Note that the formula extends the price dynamics beyond
t. by replacing t. — t by |t. — t|, which corresponds to assuming symmetric behavior of the average of the
log-price around the singularity at t.. This assumption is made for the sake of simplicity and provides a
convenient extension to minimize the biases that occur in calibration exercises when imposing t < t..

Bubble regimes are in general characterized by 0 < m < 1 and B < 0. The first condition m < 1 suggests
that a singularity exists (i.e. the momentum of the expected log-price diverges at t. for m < 1), while m > 0
ensures that the price remains finite at the critical time ¢.. The second condition B < 0 ensures that the
price is indeed growing super-exponentially towards ¢. (for 0 < m < 1),

2.2. Estimation and Calibration of the Model

Filimonov and Sornette (2013) rewrite Eq. (3) by expanding the term C cos|[.] to replace the two param-
eters C and ¢ by two linear parameters C; = C cos¢ and Cy = C sin¢. This representation reduces the
complexity of the calibration of the LPPLS model by reducing the number of nonlinear parameters from 4
(m,w,te, d) to 3 (m,w,t.), while augmenting the set of linear parameters to 4 (4, B, Cy, C5).

We use the formulation in terms of the four linear parameters A, B, C1, Co and three nonlinear parameter
m,w,t. (Filimonov and Sornette, 2013) so that the log-price given by Eq. (3) can be written as

fLPPL(¢,t) = A+ B(f) + Ci(g) + Ca(h) (4)

where ¢ = {A, B,Cy,Ca,m,w,t.} is a (1 x 7) vector of parameters we want to determine and

f= ({te=)" ()
g = (te—t)™cos(w In(t, —t)) (6)
h = (t.—t)"sin(w In(tc —t)). (7)

Fitting Eq. (4) to the log-price time-series amounts to search for the parameter set ¢* that yields the
smallest N-dimensional distance between realization and theory. Mathematically, using the L? norm, we
form the following sum of squares of residuals

N 2
F(te,m,w, A, B,Cy,Cs) = Z[IH[P(ti)] — A= B(fi) — Ci(gi) — CZ(hi):| (8)

i=1

fori =1,...,N. We proceed in two steps. First, slaving the linear parameters { A, B, C1, C5} to the remaining



nonlinear parameters ¢ = {t.,m,w} yields the cost function x?(¢) as

2(¢) := Fy(te = in_ F(t. A,B,Cy,Cy) = Ft, A,B,Cy,C 9
X ((b) 1( ,m,w) {A,B;IIICIV?,CQ} ( ,ym,w, A, 5,07, 2) ( ,m,w, A, 5,0y, 2) ()

where the hat symbol ~ indicates the estimated parameters. This is obtained by solving the optimization
problem

A,B,Cy,Cy) = in_ F(t, A,B,C,, C 10
{ ) s Ul 2} arg{A,ér,lcl'{l,Cz} ( ,m,w ) y Ul 2) ( )

which can be computed analytically by solving the following matrix equations

N OYh Ye Xk 1[4 > v
Sfi X fF X figi X fil B _ | Xl (11)
Sa Y figi g7 Y gihi 4 > Yigi

Shi Y fihi Ygihi 3R Cy > yihi

In the second step, we solve the nonlinear optimization problem involving the remaining nonlinear parameters
m,w,t. expressed as

{tAc,nA%,oAJ} =arg min Fj(t;,m,w). (12)
{tc,m,w}

The model is calibrated on the data using the Ordinary Least Squares method, providing estimations
of all parameters t., w, m, A, B, C1, Cs in a given time window of analysis. For each fixed data point ¢,
(corresponding to a fictitious “present” up to which the data is recorded), we fit the price time series in
shrinking windows (t1,2) of length dt := t5 — ¢; decreasing from 750 trading days to 30 trading days. We
shift the start date ¢; in steps of 5 trading days, thus giving us 142 windows to analyze for each t5. In
order to minimize calibration problems and address the sloppiness of the model in Eq. (3) with respect to
some of its parameters (in particular ¢.), we use a number of filters to condition the solutions as summarized
in Table 1.> These filters derive from the empirical evidence gathered in investigations of previous bubbles
(Zhou and Sornette, 2003a,b; Zhang et al., 2015; Jiang et al., 2010; Sornette et al., 2015). It must be noted
that only those calibrations that meet the conditions given in Table (1) are considered valid and the others
are discarded. However, previous calibrations of the JLS model have further shown the value of additional
constraints imposed on the nonlinear parameters in order to remove spurious calibrations, i.e. false positive
identification of bubbles (Sornette and Johansen, 2001; Geraskin and Fantazzini, 2011; Bree et al., 2013;
Sornette et al., 2013; Demos and Sornette, 2017).

3. Positive and Negative Bubbles and LPPLS Confidence™ indicators

3.1. Capturing Positive and Negative Bubbles

As mentioned earlier, the methodology presented in this paper not only permits one to decouple the
analysis of bubbles into different time-scales, but also allows one to focus on positive or negative bubbles
separately. In the case of positive bubbles, the asset price grows super-exponentially towards ¢. and ends with
a change of regime (in general a crash), whereas negative bubbles are the exact y — —y mirror of positive
bubbles with respect to the horizontal axis and exhibit an accelerating price drop ending with a change of
regime, in general a potential “negative” crash, i.e. a substantial price appreciation (i.e. price rebound).
This feature is captured by the LPPLS model through parameter B with the estimated parameter B<0
indicating a positive bubble and B>0 indicating a negative bubble. In both positive and negative bubbles,
the critical time . denotes the time at which the bubble ends.

3For further information about the sloppiness of the LPPLS model, we refer the reader to Demos and Sornette (2017) and
Filimonov et al. (2017).



3.2. Definition of LPPLS Confidence™ indicators

The LPPLS Confidence™ indicator was introduced by Sornette et al. (2015) and used in details by
Zhang et al. (2016b). It is also one of the key indicators powering the Financial Crisis Observatory* at ETH
Zurich. It is defined as the fraction of fitting windows whose calibrations meet the filtering condition depicted
in Table (1). Tt thus measures the sensitivity of the observed bubble pattern to the 142 time windows of
duration from 30 to 750 trading days. A large value indicates that the LPPLS pattern is found at most scales
and is thus more reliable. If the value is close to one, the pattern is practically insensitive to the choice of
the window size dt := ty — t1. A small value of the indicator signals a possible fragility since it is presented
in a few fitting windows.

3.8. Multi-scale Indicators

In order to incorporate bubbles of different scales into the analysis, we introduce the Multi-scale LPPLS
Confidence™ Indicator which is constructed as follows:

e Short-term bubble: The short-term bubble indicator at time ¢3 is a number € [0, 1] which denotes the
fraction of qualified fits for estimation windows of length dt := t5 — 1 € [30 : 90] business days for this
to. As an example, if a fit is qualified at a given window ¢ (i.e. the filtering conditions are met) then
we set its index to @; = 1. If that is not the case, @Q; = 0. For a total of 13 fits ((90 — 30)/5 + 1), the
short-term indicator is simply the average over these 13 windows of their index: Short;,q = % Z;il Q;.

e Medium-term bubble: The medium-term bubble indicator at time ¢5 is a number € [0, 1] which denotes
the fraction of qualified fits for estimation windows of length dt := to —t; € [90 : 300] business days for
this t2. For a total of 43 fits ((300 — 90)/5 + 1), using the same definition of the index @; for each of

these 43 time windows, the medium-term bubble indicator is simply Medium;,q = % E?il Q;.

e Long-term bubble: The long-term bubble indicator at time ¢5 is a number € [0, 1] which denotes the
fraction of qualified fits for estimation windows of length € [300 : 745] business days for this to. For a
total of 90 fits ((745 — 300)/5 + 1), using the same definition of the index @Q; for each of these 90 time

windows, the long-term bubble indicator is simply Long;,q = & Z?il Q;.

3.4. Smoothed LPPLS Confidence™ Multi-scale Indicators

The above defined short-term / medium term/ long-term bubble indicators exhibit significant statistical
fluctuations. For the purpose of facilitating the visual interpretation of these indicators, we perform an
exponential smoothing of these LPPLS confidence indicators via AR(1) moving averages as follows

CLPPLSShOTt(t) = Oshort CLPPLSShOTt(t — 1) + (1 — O[Shmﬂt)ShOTtind(t) s (13)
OLPPLSMedium(t) = amedium CLPPLS,cqium (t - 1) + (1 - O‘medium)Mediumind(t) , (14)
CLPPLSLong (t) =  Qlong CLPPLSlong (t — 1) + (1 — ozlong)Longmd(t) . (15)

where agpore = 0.980, medium = 0.995 and aong = 0.998 corresponding respectively to time scales of 50, 200
and 500 days that are in synchrony with the respective time scales of the short-term / medium term/ long-
term bubble indicators. In other words, given the fact that the short-term bubble indicator is constructed
by using time windows of size € [30 : 90] business days, we perform a smoothing exponential averaging over
the last 50 days for each t,. Similarly, given the fact that the medium-term bubble indicator is constructed
by using time windows of size € [90 : 300] business days, we perform a smoothing exponential averaging over
the last 200 days for each t5. Lastly, given the fact that the long-term bubble indicator is constructed by
using time windows of size € [300 : 745] business days, we perform a smoothing exponential averaging over
the last 500 days for each t5.

The time series of these three smoothed bubble indicators, both for positive and negative bubbles, are
shown in Fig. (1) for the period ¢t € [Jan.1973 : Dec.2014] and for the financial time series obtained by taking
the ratio of the S&P500 Index divided by the capital weighted dividends of the constituting firms.

4http://tasmania.ethz.ch/pubfco/fco.html



3.5. Predictive Tests

As mentioned earlier, a large value for a confidence indicator suggests that the LPPLS pattern is found
over several time windows and is thus more reliable whereas a small value for the indicator signals a possible
fragility since it is present in only a few fitting windows. Taking into account the specification of the bubble
indicator in which greater values indicate the presence of a bubble, we utilize a regime switching model that
incorporates market states representing bubble and non-bubble regimes. Therefore, having computed the
positive and negative bubble indicators for short and long time horizons, we examine the predictive ability of
short selling and liquidity-based indicators by estimating a Markov Switching predictive model specified as

Ind(t) = 0,5, + 71,8, Xt—1 + €&, (16)

where Ind(t) is either Short;,q(t), Medium;,q(t), or Long;na(t), St is a discrete regime variable taking values
in (0,1), following a two-state Markov process and ¢; is the error term. X; 1 is a vector of the predictors
measured at the end of month ¢ — 1. As explained in the next section, the predictive model is applied to
alternative proxies for short selling activity in order to check the robustness of the findings.

Here, we stress that we use the non-smoothed indicators Short;,(t), M edium;,q4(t) and Long;,q(t) as the
dependent variables in (16), and not the smoothed ones CLPPLS(t). Using the later would lead to spurious
regressions and inaccurate p-values due to their build-in correlation structure.

4. Data and Empirical Findings

4.1. Data

The dataset used to construct the LPPLS Confidence™ Indicators includes monthly price-to-dividend
(P/D) ratios for the S&P500 Index over the period January 1973 through December 2014. As mentioned
earlier, we focus on the predictive power of short selling and market liquidity measures over the confidence
indicators representing positive and negative bubbles in the index. For this purpose, we examine various
alternative proxies for each market-based predictor. Short selling activity is measured via two proxies. The
first is the short interest index (SII) of Rapach et al. (2016) as an aggregate measure of short interest,
constructed using firm-level short interest data. Rapach et al. (2016) argue that short sellers are informed
traders and show that short interest is arguably the strongest predictor of aggregate stock returns, both in-
and out-of-sample. The data is available on David Rapach’s website. The second proxy for short selling
activity is the short interest ratio (SIR) by Callen and Fang (2015), defined as the total number of shares
sold short divided by total shares outstanding from the last month of the fiscal year. Callen and Fang (2015)
show that this ratio is positively related to one-year ahead stock price crash risk. Following Callen and Fang
(2015), we calculate this ratio using short interest data from Compustat.

Evidence that associates high stock market volume with periods of high market volatility has already
been well-established in the literature (e.g. Karpoff, 1987; Gallant et al. 1992; Jones et al. 1994). Therefore,
we use liquidity as a control variable in our predictive tests in order to check the robustness of the predictive
ability of short selling measures. Following a number of studies including Amihud (2002) and Avramov et al.
(2006), we use the stock market turnover (TURNO) as a proxy for market liquidity. We compute monthly
turnover values as the number of shares traded divided by shares outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the monthly log turnover series
by subtracting a one-year backward moving average of log turnover, yielding a triangular moving average of
turnover growth rates.

4.2. Empirical Findings

Figure (1) presents the estimated positive and negative multi-scale LPPLS confidence™ bubble indicators
for the S& P500 index divided by dividends. The short, medium and long-term bubble indicators are depicted
in different colors and the log price-to-dividend ratio for the S& P500 index is represented as the black solid
line. Note that a large value for the indicator indicates that the LPPLS pattern is found for many windows in
the corresponding scale range (of short-term, medium-term and long-term) and is thus more reliable. Looking



at Figure (1), we observe remarkable “spikes” in the smoothed indicators at the eve of regime changes. For
example, the long-term indicator successfully captures, ex-ante, all the great bubbles and subsequent crashes
suffered by the S&P500 index (Black-Monday - 1987, Dot-com - 2000 and Subprime - 2008) when using a
threshold > 50%. Similarly, the negative long-term indicator remarkably shows the start of a positive bubble
at the beginning of 1995 where its value reaches ~ 1. The exponential damping structure after each peak is
due to the AR(1) smoothing explained in section 3.4.

It is also interesting to notice the number of small bubbles (green shaded region on the upper panel)
permeating the bubbly period that stretches from 1994 to the burst of the dot-com bubble in 2000. Note also
that throughout this period, the positive long-term indicator is ever increasing as well as the medium-term
indicator, thus suggesting the maturation of the bubble towards instability across several distinct time-scales.
Overall, these results support our claim that the LPPLS framework is a flexible tool for detecting bubbles
across different time-scales.

Having constructed the series of positive and negative bubble indicators, we next examine their pre-
dictability using the regime-switching specification in Eq.(16). Table 2 reports the estimates for the Markov
Switching model for the short-term bubble indicator, Short;,q.” Panels A and B report the findings when
short selling activity is measured by the short interest index of Rapach et al. (2016) and the short inter-
est ratio of Callen and Fang (2015), respectively. The two-state specification identifies two distinct regimes
corresponding to bubble and non-bubble market states for each indicator series. Examining the findings for
the negative bubble indicators, we see that short sellers indeed have significant predictive power over market
crashes, consistent across both measures of short selling activity in Panels A and B. The model yields positive
and highly significant estimates for both short selling measures, suggesting that higher level of short selling
activity predicts the occurrence of negative bubbles in the short term. As expected, none of the short selling
proxies have predictive significance in the case of the non-bubble regimes. Consistent with the positive coef-
ficients observed for the negative bubble indicators, we see that the short interest ratio, defined as the total
number of shares sold short divided by total shares outstanding, has predictive power over the positive bubble
indicator with a negative coefficient, suggesting that higher short selling activity predicts lower occurrence
for a positive bubble.

Similarly, examining the estimated coefficients for turnover, we see that market liquidity also commands
significant predictive ability over both the negative and positive bubble indicators. The significant predictive
power observed for turnover is consistent with the finding by Nneji (2015) that market liquidity has a
prevalent effect on stock bubbles and that liquidity shocks provide warning signals of impending bubble
collapses. Interestingly however, the highly significant and positive estimates observed for turnover indicate
that high market turnover can serve as a predictor of bubble occurrence in either direction, i.e. a booming
or collapsing market condition. Shin (2006) also highlights the connection between available liquidity and
rising asset prices. His argument stresses that strong balance sheets induce banks to increase their lending
which, In turn, raises asset prices, leading to stronger balance sheets and so forth.

The findings for the medium- and long-term bubble indicators reported in Tables 3 and 4 further confirm
the predictive power of short selling proxies over dropping markets (i.e. negative bubbles) across both the
short and long horizons. We observe highly significant and positive coefficient estimates for both short
selling proxies in the models for the negative bubble indicator, suggesting that short selling activity predicts
greater occurrences of negatively trending markets over both short and long time scales. This finding is not
inconsistent with Callen and Fang (2015) who document that short interest is positively related to one-year
ahead stock price crash risk. To that end, our results confirm short sellers’ predictive ability over developing
market loss risks which are successfully captured by our implementation of the LPPLS framework presented
in this study.

Interestingly, however, while market turnover retains its predictive ability in the medium term, we observe
that the sign of the estimated coefficients for turnover in Table 3 flips to negative, suggesting that high
turnover predicts lower occurrence of bubbles (in either direction) in the medium term. Similarly, in the case
of the long term bubble indicator reported in Table 4, turnover loses its significance for the negative bubble
indicator. These observations suggest that market liquidity has only a transient and relatively short-term

5The model is estimated using the non-smoothed bubble indicators explained in section 3.3 as the smoothed indicators may
lead to spurious regressions and inaccurate p-values, as already mentioned.



impact on prices, which is detected for the short-term indicator, but not for the longer time scales of the
bubble indicators, which are themselves more robust to detect the overall bubble sentiment at long-time
scales.

Overall, our findings suggest that market-based indicators can indeed be utilized to predict the occurrence
of market booms and collapsing market regimes, implied by the significant predictive ability observed for
short selling proxies for negative bubble regimes across both the short and long horizons. On the other hand,
market liquidity is found to predict the occurrence of both decreasing and booming market conditions while
its predictive power is limited to shorter time horizons. These findings are encouraging news for market
regulators as the results show that short selling proxies can be used to model and monitor negative bubble
market conditions, while market liquidity can be used to supplement forecasting models for both boom and
bust market conditions.

5. Conclusion

This paper has examined the predictability of stock market booms and crashes via an application of the
LPPLS Confidence™ Multi-scale Indicators to the S&P500 index. First, we presented a methodology to
detect positive and negative bubbles for the S&P500 index using the Log-Periodic Power Law Singularity
(LPPLS) model (Johansen et al. 1999; 2000, Sornette 2003), something not possible by other bubble detection
models. Next, we provided insight to the predictability of market booms and crashes using market-based
indicators by examining the predictive power of short selling activity and market liquidity over the constructed
bubble indicators. To the best of our knowledge, this is the first attempt in examining the predictive ability
of market-based indicators over the positive and negative bubbles in the S&P500 index using the LPPLS
model.

Our findings suggest that the LPPLS framework is able to successfully capture, ex-ante, some of the
prominent bubbles across different time scales. We show that some of the great bubbles and subsequent
crashes experienced during the Black Monday, Dot-com, and Subprime Crisis periods are successfully captured
by the constructed bubble indicators. Our predictive tests indicate that measures of short selling activity
have robust predictive power over negative bubbles, in line with the previous studies that short sellers have
predictive ability over stock price crash risks. The predictive ability of short selling activity is robust to
alternative measures of short selling as well as to short and long time horizons, consistent with the recent
finding by Callen and Fang (2015) that short interest is positively related to one-year ahead stock price
crash risk. On the other hand, our tests show that market liquidity has robust predictive power over both
the negative and positive bubbles, however in the short-term, suggesting that market liquidity measures can
be used to predict the occurrence of both booms and collapses for short horizons. We have thus identified
short selling and liquidity as two important factors contributing to the LPPLS-based bubble indicators. The
evidence overall points to the predictability of both positive and negative stock market bubbles via market-
based proxies of trading activity and can be used as a guideline to model and monitor bubble conditions in
stock markets.
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Figure 1: Positive (upper panel) and negative (lower panel) multi-scale LPPLS Confidence bubble indicator. The black continu-
ous line denotes the logarithm of the monthly Price over Dividend (P/D) time-series for the S&P500 Index from January 1973
to December 2014. The short, medium and long-term bubble indicators are depicted in green, magenta and red respectively.
We refer to Sec. (3) for the construction of the indexes.
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Table 1: Search space and filter conditions for the qualification of valid LPPLS fits. Within the JLS framework, the condition

that the crash hazard rate h(t) is non-negative by definition translates into a value of the Damping parameter

or equal to 1.

75“5“ larger than

Item Notation  Search space Filtering condition 1  Filtering condition 2
3 nonlinear parameters m [0, 2] [0.01, 1.2] [0.01, 0.99]
w 1, 50] 6, 13] 6, 13]
te [ty — 0.2dt, [t2 — 0.05dt, [t2 — 0.05dt,
to + O.th] to + 0.1dt] to + 0.1dt]
Number of oscillations % f;:g — [2.5, +00) (2.5, +00)
Damping ZICBL‘ [0.8, +00) [1, +00)
Relative error bt — [0, 0.05] [0, 0.2]
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Table 2: The predictive ability of short interest and turnover on the short—term bubble indicator, Short;,q(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant 0.2988*** (0.0122) 0.4502%** (0.0131)
Short interest index, SIT ~ 0.0870***  (0.0122) 0.0167 (0.0127)
Turnover 0.5402*  (0.2317) 2.1897%** (0.2292)
Regime 2 (non-bubble regime)

Constant  0.0082***  (0.0012) 0.0099%** (0.0026)
Short interest index, SIT 0.0007  (0.0012) -0.001 (0.0029)
Turnover 0.0167  (0.0167) 0.0838** (0.0365)

AIC -4.211 -2.593

log L 1067.960 661.050
Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant ~ 0.1235%**  (0.0241) 0.5046%** (0.0199)
Short interest ratio, SIR ~ 9.9473***  (1.7216) -2.0706%** (0.5316)
Turnover  0.5620%**  (0.2010) 2.0469%** (0.2273)
Regime 2 (non-bubble regime)

Constant  0.00650***  (0.0018) 0.0137#%* (0.0037)
Short interest ratio, SIR 0.071153  (0.0478) -0.129462 (0.0966)
Turnover  -0.016927  (0.0180) 0.0815%* (0.0356)

AlIC -4.136 -2.616

log L 1042.885 662.960

Note: This table reports the estimates for the Markov Switching model specified in Eq.(16). Market liquidity is measured by
stock market turnover, computed as the number of shares traded divided by shares outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting a one-year
backward moving average of log turnover. Panels A and B report the findings for when short selling activity is measured by the
short interest index of Rapach et al. (2016) and the short interest ratio of Callen and Fang (2015), respectively. The numbers
in parentheses are the standard errors. ***, ** and * represent significance at 1, 5, and 10 percent, respectively.
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Table 3: The predictive ability of short interest and turnover on the medium—term bubble indicator, Medium;yq(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant  0.1613%%* _ (0.0100) 0.5717FF (0.0164)
Short interest index, SIT ~ 0.0421***  (0.0065) -0.0303* (0.0171)
Turnover -0.5756%%%  (0.0806)  -2.6188*** (0.2745)
Regime 2 (non-bubble regime)

Constant  0.0046***  (0.0009) 0.0101%** (0.0018)
Short interest index, SIT 0.0008  (0.0009) -0.0021 (0.0018)
Turnover -0.0239*%  (0.0126) -0.0123 (0.0291)

AIC -4.840 -3.389

log L 1226.355 861.355
Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant 0.107***  (0.0099) 0.6521 %% (0.0184)
Short interest ratio, SIR ~ 1.9061***  (0.1914) -5.889 7KK (0.4582)
Turnover -0.7668%** (0.1086)  -2.3249%%* (0.1473)
Regime 2 (non-bubble regime)

Constant  0.0036***  (0.0012) 0.0108*** (0.0026)
Short interest ratio, SIR 0.0242  (0.0304) -0.0576 (0.0687)
Turnover -0.0202*  (0.0116) -0.0194 (0.0255)

AlIC -4.958 -3.473

log L 1248.589 877.131

Note: This table reports the estimates for the Markov Switching model specified in Eq.(16). Market liquidity is measured by
stock market turnover, computed as the number of shares traded divided by shares outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting a one-year
backward moving average of log turnover. Panels A and B report the findings for when short selling activity is measured by the
short interest index of Rapach et al. (2016) and the short interest ratio of Callen and Fang (2015), respectively. The numbers
in parentheses are the standard errors. ***, ** and * represent significance at 1, 5, and 10 percent, respectively.
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Table 4: The predictive ability of short interest and turnover on the long—term bubble indicator, Long;,q(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant  0.5143°%*  (0.0128) 05207 (0.0111)
Short interest index, SIT  0.0379***  (0.0128) 0.0152 (0.0085)
Turnover -0.3156  (0.2553) -1.46547%+* (0.1753)
Regime 2 (non-bubble regime)

Constant  0.0069***  (0.0020) 0.0092 (0.0020)
Short interest index, SIT 0.0014  (0.0019) -0.002 (0.0019)
Turnover -0.0217  (0.0275) 0.0074 (0.0228)

AIC -3.186 -3.217

log LL 810.157 818.126
Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble
Regime 1 (bubble regime)
Constant  0.4347***  (0.0203) 0.54477#%* (0.0158)
Short interest ratio, SIR ~ 2.516***  (0.4817) -0.3782 (0.3294)
Turnover 0.2515 (0.2661)  -1.3063%%* (0.1675)
Regime 2 (non-bubble regime)

Constant 0.0039  (0.0030) 0.0062** (0.0029)
Short interest ratio, SIR 0.0908 (0.0768) 0.1091 (0.0770)
Turnover -0.0139  (0.0269) 0.0063 (0.0282)

AlIC -3.202 -3.208

log L 809.589 811.064

Note: This table reports the estimates for the Markov Switching model specified in Eq.(16). Market liquidity is measured by
stock market turnover, computed as the number of shares traded divided by shares outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting a one-year
backward moving average of log turnover. Panels A and B report the findings for when short selling activity is measured by the
short interest index of Rapach et al. (2016) and the short interest ratio of Callen and Fang (2015), respectively. The numbers
in parentheses are the standard errors. ***, ** and * represent significance at 1, 5, and 10 percent, respectively.
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