Synthesis, stability, and (de)hydrogenation catalysis by normal and abnormal alkeneand picolyl-tethered NHC ruthenium complexes

Frederick P. Malan,[†] Eric Singleton,[†] Petrus H. van Rooyen,[†] Marilé Landman^{†*} and Martin Albrecht^{‡*}

[†] Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.

[‡] Department of Chemistry and Biochemistry, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland.

Supporting Information

1.	Synthesis, characterization, and NMR spectra of [HL1]Cl-[HL4]Cl	S1
2.	1 H, 13 C, 31 P NMR spectra of 1–10	S6
3.	Crystallographic details	S20
4.	Acidity measurements	S23
5.	Catalytic details	S26

1. Synthesis, characterization, and NMR spectra of [HL1]Cl-[HL4]Cl

General synthesis of imidazolium salts: To an acetonitrile (20 mL) solution of 1,2dimethylimidazole (42 mmol, **L1**, **L2**) /2,3,5-trimethylimidazole (42 mmol, **L3**)/1-(2methylpropenyl)-2-isopropylimidazole (50 mmol, **L4**) was added the respective alkyl halide (1-chloro-2-methylpropene (**L1**, **L3**, **L4**) or picolyl chloride (**L2**)) (1 equivalent), and the resulting mixture heated under reflux overnight. After cooling, the reaction mixture was concentrated *in vacuo*, and washed with a 1:1 v/v Et₂O/Et₂OAc mixture (3 × 15 mL). The resulting oil/solid was concentrated in vacuo to give the respective salts [H**L1**]Cl–[H**L4**]Cl.

[HL1]Cl: Yield: 93%. ¹H NMR (CDCl₃): $\delta_{\rm H} = 1.61$ (s, 3H, =CCH₃), 2.63 (s, 3H, C_{imi}-Me), 3.91 (s, 3H, NCH₃), 4.57 (s, 1H, =CH₂), 4.76 (s, 2H, NCH₂), 4.88 (s, 1H, =CH₂), 7.51 (d, ³*J*_{HH} = 2 Hz, 1H, C_{imi}H), 7.78 (d, ³*J*_{HH} = 2 Hz, 1H, C_{imi}H). ¹³C{¹H} NMR (CDCl₃): $\delta_{\rm C} = 10.2$ (s, =CCH₃), 19.7 (s, C_{imi}-CH₃), 35.7 (s, NCH₃), 54.0 (s, NCH₂), 114.7 (s, =CCH₂), 121.8 (s, C_{imi}H), 122.9 (s, C_{imi}H), 137.6 (s, =CCH₂), 144.0 (s, NCN).

Figure S1. ¹H NMR spectrum (400 MHz, 298 K, CDCl₃) of [HL1]Cl.

Figure S2. ¹³C NMR spectrum (100 MHz, 298 K, CDCl₃) of [HL1]Cl.

[HL2]Cl: Yield: 88%. ¹H NMR (CD₃CN): $\delta_{\rm H} = 2.60$ (s, 3H, C_{imi}-Me), 3.80 (s, 3H, NCH₃), 5.57 (s, 2H, NCH₂), 7.33 (dd, ³*J*_{HH} = 3 and 6 Hz, 1H, H_{py}), 7.46 (d, ³*J*_{HH} = 2 Hz, 1H, C_{imi}H), 7.52 (d, ³*J*_{HH} = 8 Hz, 1H, H_{py}), 7.64 (d, ³*J*_{HH} = 2 Hz, 1H, C_{imi}H), 7.84 (ddd, ³*J*_{HH} = 2 and 8 Hz, 1H, H_{py}), 8.52 (d, ³*J*_{HH} = 4 Hz, 1H, C_{imi}H). ¹³C{¹H} NMR (CD₃CN): $\delta_{\rm C} = 9.7$ (s, C_{imi}-CH₃), 35.0 (s, NCH₃), 52.0 (s, NCH₂), 121.9 (s, C_{imi}H), 122.4 (s, C_{imi}H), 122.6 (s, C_{py}), 123.6 (s, C_{py}), 137.4 (s, C_{py}), 145.5 (s, C_{py}), 149.7 (s, C_{py}), 153.4 (s, NCN).

Figure S3. ¹H NMR spectrum (400 MHz, 298 K, CD₃CN) of [HL2]Cl.

Figure S4. ¹³C NMR spectrum (100 MHz, 298 K, CD₃CN) of [HL2]Cl.

[HL3]Cl: Yield: 53%. ¹H NMR (CDCl₃): $\delta_{\rm H} = 1.53$ (s, 3H, =CCH₃), 2.12 (s, 3H, C_{imi}-Me), 2.55 (s, 3H, C_{imi}-Me), 3.64 (s, 3H, NCH₃), 4.51 (s, 1H, =CH₂), 4.60 (s, 2H, NCH₂), 4.79 (s, 1H, =CH₂), 7.14 (s, 1H, C_{imi}H). ¹³C{¹H} NMR (CDCl₃): $\delta_{\rm C} = 10.4$ (s, =CCH₃), 13.7 (s, C_{imi}-CH₃), 19.5 (s, C_{imi}-CH₃), 32.3 (s, NCH₃), 53.6 (s, NCH₂), 114.5 (s, =CCH₂), 118.7 (s, C_{imi}H), 129.7 (s, C_{imi}H), 137.4 (s, =CCH₂), 143.6 (s, NCN).

Figure S5. ¹H NMR spectrum (400 MHz, 298 K, CDCl₃) of [HL3]Cl.

Figure S6. ¹³C NMR spectrum (100 MHz, 298 K, CDCl₃) of [HL3]Cl.

[HL4]Cl: Yield: 90%. ¹H NMR (CD₃CN): $\delta_{\rm H} = 1.43$ (d, ³*J*_{HH} = 7 Hz, 6H, CH(C*H*₃)₂), 1.78 (s, 6H, CH(C*H*₃)₂), 3.52 (m, 1H, C*H*(CH₃)₂), 4.58 (s, 2H, =CH₂), 4.82 (s, 4H, NCH₂), 5.06 (s, 2H, =CH₂), 7.47 (s, 2H, C_{imi}H). ¹³C{¹H} NMR (CD₃CN): $\delta_{\rm C} = 19.2$ (s, C(CH₃)₂), 20.0 (s, C(CH₃)₂), 26.2 (s, =CCH₂), 54.6 (s, NCH₂), 114.0 (s, =CCH₂), 123.7 (s, C_{imi}H), 140.8 (s, C(CH₃)₂), 151.4 (s, NCN).

Figure S7. ¹H NMR spectrum (400 MHz, 298 K, CD₃CN) of [HL4]Cl.

Figure S8. ¹³C NMR spectrum (100 MHz, 298 K, CD₃CN) of [HL4]Cl.

2. ¹H, ¹³C, and ³¹P NMR spectra of complexes 1-10

Figure S9. ¹H NMR spectrum (300 MHz, 298 K, (CD₃)₂CO) of complex **1**.

Figure S10. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 1.

Figure S11. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 1.

Figure S12. HSQC NMR spectrum (400, 100 MHz, 298 K, (CD₃)₂CO) of complex 1.

Figure S13. ¹H NMR spectrum (300 MHz, 298 K, (CD₃)₂CO) of complex **2**.

Figure S14. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 2.

Figure S15. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 2.

Figure S16. ¹H NMR spectrum (300 MHz, 298 K, (CD₃)₂CO) of complex 3.

Figure S17. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 3.

Figure S18. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 3.

Figure S19. HSQC NMR spectrum (400, 100 MHz, 298 K, (CD₃)₂CO) of complex 3.

Figure S20. ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complexes 4/5.

Figure S21. ¹³C NMR spectrum (76 MHz, 298 K, (CD₃)₂CO) of complexes 4/5.

Figure S22. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complexes 4/5.

Figure S23. ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complex 6.

Figure S24. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 6.

Figure S25. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 6.

Figure S26. ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complexes 7/8.

Figure S27. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complexes 7/8.

Figure S28. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complexes 7/8.

Figure S29. ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complex 9.

Figure S30. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 9.

Figure S31. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 9.

Figure S32. ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complex 10.

Figure S33. ¹³C NMR spectrum (76 MHz, 298 K, CDCl₃) of complex 10.

Figure S34. ³¹P NMR spectrum (122 MHz, 298 K, CDCl₃) of complex 10.

Figure S35. HSQC NMR spectrum (400, 100 MHz, 298 K, CDCl₃) of complex 10.

3. Crystallographic details

	[HL1]Cl	[H L4]Cl	1	3
CCDC Identifier	1843098	1843100	1843096	1843103
Emp. formula	$C_9H_{15}N_2F_6P$	$C_{14}H_{23}ClN_2$	$C_{19}H_{28}ClF_6N_2PRu$	$C_{128}H_{136}F_{24}N_8P_8Ru_4\\$
Form. weight (g.mol ⁻¹)	296.20	254.79	565.92	2894.48
Crystal system	monoclinic	trigonal	monoclinic	monoclinic
Space group	$P2_{l}/c$	<i>P3</i> ₂ 21	$P2_{l}/c$	Cc
Crystal descr.	yellow block	colourless block	yellow prism	gold block
a (Å)	6.5921(4)	7.8674(1)	13.4504(2)	20.1114(1)
b (Å)	13.8855(7)	7.8674(2)	13.8832(3)	19.4730(1)
c (Å)	14.0294(8)	21.086(2)	11.9684(3)	31.887(2)
α (°)	90	90	90	90
β (°)	92.682(3)	90	100.215(2)	100.516(2)
γ (°)	90	120	90	90
Volume (Å ³)	1282.77(1)	1130.3(4)	2199.49(8)	12278.2(2)
Z	4	3	4	4
Abs. coeff. (m.mm ⁻¹)	0.272	0.237	0.966	0.677
F(000)	608.0	414.0	1144.0	5888.0
Independent refl.	2625	1592	4527	25310
Completeness (%)	99.8	99.6	91.9	99.8
Data/Restr/Para	2625/0/166	1592/0/122	4527/0/277	25310/2/1562
Goodness of fit on F ²	1.064	1.043	1.031	1.049
Final R ₁ indexes	0.0418	0.0418	0.0325	0.0333
wR ₂ indices (all data)	0.1065	0.1054	0.0744	0.0730
Largest diffr. peak and hole (e.Å ⁻³)	0.33/-0.28	0.20/-0.20	1.11/-0.63	0.59/-0.42

 Table S1. Crystal data and structure refinement for [HL1]Cl, [HL4]Cl, 1, 3.

Table S2. Crystal data and structure refinement for 5, 6, 7/8.CH2Cl2, 7/8.CHCl3.	

Table 52. Crystal data and structure remininent for 5, 6, 770.0112012, 770.011015.							
	5	6	7/8.CH2Cl2	7/8.CHCl ₃			
CCDC Identifier	1843097	1843099	1843101	1843102			
Emp. formula	$C_{32}H_{34}F_6N_2P_2Ru$	$C_{24}H_{30}N_3F_6PClRu$	$C_{33.5}H_{20}F_6N_3P_2Ru$	$C_{68}H_{65}Cl_3F_{12}N_6P_4Ru_2$			
Form. weight (g.mol ⁻¹)	723.62	642.00	741.44	1626.63			
Crystal system	monoclinic	monoclinic	monoclinic	triclinic			
Space group	$P2_{l}/n$	$P2_{l}/c$	$P2_{l}/n$	P-1			
Crystal descr.	yellow prism	yellow blade	yellow fragment	yellow block			
a (Å)	17.8511(6)	8.2722(1)	13.6883(9)	14.8003(7)			
b (Å)	9.6153(2)	11.3526(1)	14.8014(9)	15.2415(1)			
c (Å)	18.9847(6)	27.375(4)	15.5452(1)	16.7390(1)			
α (°)	90	90	90	85.024(2)			
β (°)	111.505(4)	91.752(4)	96.467(2)	80.728(2)			
γ (°)	90	90	90	77.631(2)			
Volume (Å ³)	3031.76(2)	2569.6(6)	3129.5(3)	3634.8(4)			
Z	4	4	4	2			
Abs. coeff. (m.mm ⁻¹)	0.686	0.839	0.668	0.688			
F(000)	1472.0	1300.0	1480.0	1644.0			
Independent refl.	6195	4699	6443	13308			
Completeness (%)	90.4	99.7	99.5	99.7			
Data/Restr/Para	6195/60/428	4699/3/347	6443/156/479	13308/71/841			
Goodness of fit on F ²	1.023	1.049	1.032	1.058			
Final R ₁ indexes	0.0460	0.0245	0.0495	0.0866			
wR ₂ indices (all data)	0.0995	0.0615	0.1153	0.1975			
Largest diffr. peak and hole (e.Å ⁻³)	0.63/-0.63	0.57/-0.55	1.07/-1.81	4.62/-4.10			

	10
CCDC Identifier	1843104
Emp. formula	$C_{37}H_{42}F_6N_2P_2Ru$
Form. weight (g.mol ⁻¹)	791.73
Crystal system	orthorhombic
Space group	Pbca
Crystal descr.	yellow prism
a (Å)	14.8783(9)
b (Å)	18.7535(2)
c (Å)	25.0075(2)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	6977.6(7)
Z	8
Abs. coeff. (m.mm ⁻¹)	0.603
F(000)	3248.0
Independent refl.	7200
Completeness (%)	99.9
Data/Restr/Para	7200/0/474
Goodness of fit on F ²	1.043
Final R_1 indexes	0.0311
wR ₂ indices (all data)	0.0661
Largest diffr. peak and hole (e.Å ⁻³)	0.35/-0.40

 Table S3. Crystal data and structure refinement for 10.

_

-

Table S4. Selected bond lengths and angles for [HL1]Cl, [HL4]Cl, 1, 3, 5, 6, 7/8.CH2Cl₂, 7/8.CHCl₃, 10.

Description	[H L1]Cl	[HL4]Cl	1	3	5	6	7	8	10
Ru1-C4	-	-	2.045(3)	2.0586(2)	2.032(4) ^c	2.045(2)	2.057(6)	2.099(4) ^c	2.046(2)
Ru1-Cg ^a	-	-	1.728(3)	1.866(3)	1.905(3)	1.691(2)	1.853(6)	1.856(6)	1.899(4)
Ru-Cl1	-	-	2.4114(7)	-	-	2.4075(6)	-	-	-
Ru-P1	-	-	-	2.2948(2)	2.307(1)	-	2.2863(2)	2.3102(1)	2.3175(6)
Ru1-C4-C5	-	-	138.5(2)	139.1(5)	135.2(3) ^c	135.04(2)	137.3(5)	130.5(4) ^c	109.31(1)
N1-C3-C2	113.6(2)	114.4(3)	105.4(2)	107.6(5)	108.2(3)	-	-	-	106.95(2)
N3-C6-C7	-	-	-	-	-	112.97(2)	128.4(7)	121.3(7)	-
C4-Ru1-Ca ^b	-	-	89.49(1)	90.45(2)	89.10(1) ^c	-	-	-	91.31(8)
C4-Ru1-N3	-	-	-	-	-	85.94(8)	86.6(2)	85.7(3) ^c	-
Cl1-Ru1-C4	-	-	83.69(8)	-	-	87.17(6)	-	-	-
P1-Ru1-C4	-	-	-	85.01(2)	86.71(1) ^c	-	89.72(2)	89.1(2) ^c	87.62(6)
C1-C2-C3-	10.2(2)	1 2(5)	-	-	-				-
N1	10.2(3)	4.3(3)	122.675(2)	112.194(4)	108.369(4)	-	-	-	116.977(2)
N3-C7-C6-						18 60(2)	-	-	
N1	-	-	-	-	-	-40.00(3)	55.077(6)	51.739(4)	-

^a Cg = centroid of arene/cyclopentadienyl moiety. ^b Ca = Average position between two carbon atoms belonging to the alkene moiety. ^c C2 replaces C4 for C(2)-bound (normal) NHC.

Figure S36: Perspective view of 7 and 8 when CH₂Cl₂ is used as crystallizing solvent.

Figure S37: Perspective view of 7 and 8 when CHCl₃ is used as crystallizing solvent.

Figure S38: ORTEP plots of compounds [HL1]Cl and [HL4]Cl. Thermal ellipsoids are drawn at 50% level. For clarity, non-coordinating anions and hydrogens are omitted.

4. Acidity measurements

Figure S39: ¹H NMR spectra (300 MHz, 298 K, (CD₃)₂CO, $\delta_{\rm H}$ 1.0–7.6) of complex **1** with stoichiometric addition of DCl. Signals **a-j** correspond to those of complex **1**. The signals **\Delta** and **\bullet** correspond to those of free *p*-cymene and [Ru-aNHC] complex bearing a free *N*-alkenyl substituent, respectively.

Figure S40: ¹H NMR spectra (300 MHz, 298 K, (CD₃)₂CO, $\delta_{\rm H}$ 0.5–9.4) of complex **3** with stoichiometric addition of DCl. Signals (a)-(g) correspond to the different moieties indicated of complex **3**. Solvent = acetone-d₆. The signal observed at $\delta_{\rm H}$ 8.01 does not correspond to the free imidazolium salt [HL1]Cl (see ¹H NMR spectrum on p. 2).

Figure S41: ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of complex **3** after addition of 12 eq. DCl over a period of two weeks.

5. Catalytic details

Fntry	Complex	т (00)	Base	Convers	rsion ^b (%)	
Lintry	Complex	Temp (°C)	Duse	2h	6h	
1	[(<i>p</i> -cym)RuCl ₂] ₂	110	KO ^t Bu	-	8 ^c	
2	[CpRuCl(PPh ₃) ₂]	110	KO ^t Bu	-	6 ^c	
3	-	110	КОН	1	2°	
4	-	110	KO ^t Bu	3	6 ^c	
5	1	110	-	5	28	
6	3	110	-	2	5	
7	1 (3 mol%)	110	КОН	72	95	
8	1	110	KO ^t Bu	69	94	
9	3	110	KO ^t Bu	32	69	
10	3	110	КОН	17	42	
11	1 (0.5 mol%)	110	КОН	9	37	
12	1	110	KOH (10 mol%)	64	92	
13	1	25	КОН	4	10	

Table S5: Transfer hydrogenation of benzophenone using complexes 1 or 3; optimization of conditions.^{*a*}

^{*a*} General conditions: Benzophenone (0.6 mmol), ⁱPrOH (5 mL), base (5 mol%), [Ru] (1 mol%), 110 °C. Base used depending on Ru catalyst: KOH (1); KO'Bu (3). ^a Mixture of complexes as isolated after purification. ^b Determined by GC, based on the average of at least two runs. Yields in parentheses are based on ¹H NMR spectroscopy. ^c After 18 hours' reaction time.

Figure S42: Time-resolved conversion profiles in the transfer hydrogenation reactions of **1-10**. General conditions: benzophenone (0.6 mmol), ⁱPrOH (5 mL), base (5 mol%), [Ru] (1 mol%), 110 °C. Base used depending on Ru catalyst: KOH (**1**, **2**, **6**, **9**); KO^tBu (**3-5**, **7**, **8**, **10**).

Complexes 4/5 and 7/8 were used as a ~50/50 mixture of complexes as isolated after purification. Conversions determined by GC, based on the average of at least two runs.

Figure S43: Time-resolved conversion profiles in the alcohol oxidation reactions of **1-10**. General conditions: ± 1 -phenylethanol (1 mmol), o-dichlorobenzene (5 mL), KO^tBu (5 mol%), [Ru] (5 mol%), hexamethylbenzene (0.1 mmol), 150 °C. Complexes **4/5** and **7/8** were used as a ~50/50 mixture of complexes as isolated after purification. Conversions determined by GC, based on the average of at least two runs.

Figure S44: ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) spectrum of transfer hydrogenation reaction mixture using complex **1**. General conditions: Benzophenone (0.6 mmol), ⁱPrOH (5

mL), KOH (5 mol%), [1] (1 mol%), 110 °C. Aliquot taken after 2 h reaction time. Internal standard: anisole.

Figure S45: ¹H NMR spectrum (300 MHz, 298 K, CDCl₃) of alcohol oxidation reaction mixture using complex **1**. General conditions: ±1-Phenylethanol (1 mmol), *o*-dichlorobenzene (5 mL), KO^tBu (5 mol%), [**1**] (5 mol%), hexamethylbenzene (1 mmol), 150 °C. Aliquot taken after 4 h reaction time.