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Abstract

This work is a contribution to the classification of finite groups with an irreducible

character that vanishes on exactly one conjugacy class. Specifically, in this thesis we

study finite non-solvable groups G that satisfy the above property when the character

is primitive. We show that G has a homomorphic image that is either an almost

simple group or a Frobenius group. We then classify all finite non-solvable groups with

a faithful primitive irreducible character that vanishes on one conjugacy class. Our

results answer two questions of Dixon and Rahnamai Barghi, one partially and the

other completely.

A classical theorem of Burnside states that every irreducible character whose character

degree is divisible by a prime number vanishes on at least one conjugacy class. Our

results imply that if the degree of a primitive irreducible character of a finite group is

divisible by two distinct primes, then the character vanishes on at least two conjugacy

classes except when the group has a composition factor isomorphic to the Suzuki group

2B2(8). This is an extension of Burnside’s Theorem. Motivated by our result above we
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show that for M -groups, groups of odd order and groups of derived length at most 3, if

the character degree of an irreducible character of a group is divisible by two distinct

primes, then the irreducible character vanishes on at least two conjugacy classes.

For nilpotent groups, metabelian groups and groups whose distinct character degrees

are pairwise relatively prime, we show that if the character degree of an irreducible

character of a group is divisible by n distinct primes, then the irreducible character

vanishes on at least n conjugacy classes for any positive integer n. This also holds

when the group is solvable and the irreducible character is primitive.
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Nomenclature

Irr(G) The set of irreducible characters of a finite group G

υ(χ) The set of all vanishing elements of χ

nυ(χ) The number of classes on which χ vanishes

kerχ The kernel of the character χ

Z(G) The centre of G

Z(χ) The centre of the character χ

Aut(G) The automorphism group of G

Out(G) The outer automorphism group of G

Cx The conjugacy class containing x

χM The restriction of χ on M

H 6 G H is a subgroup of H

m ≤ n m is less than or equal to n

χ(1) The character degree of χ

NG(X) The normalizer of subset X in G

CG(x) The centralizer of x in G

|G| The order of G

〈X〉 The subgroup generated by the subset X
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gcd(a, b) The greatest common divisor of a and b

Sn The symmetric group of degree n

An The alternating group of degree n

Gα The point stabilizer of α

αG The orbit containing α

Dn The dihedral group of order n

G:n The semidirect product of G with a group of order n

GoH The semidirect product G with H

H / G H is a normal subgroup of G

G′ The derived subgroup of G

G̃ The Schur cover of G

M(G) The Schur multiplier of G

M An algebraic group M

M◦ The connected component of M

MF Finite group of Lie type

χG The induced character of G

|G : H| The index of H in G

G∞ Solvable residual of G

cd(G) The character degree set of G

dl(G) The derived length of G

C The complex number field

Fp The algebraic closure of a finite field of characteristic p
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Q The field of rational numbers

|g| The order of the element g

Φ(G) The Frattini subgroup of G

1G The identity element of G

tr(B) The trace of the matrix B

Φn(x) The nth cyclotomic polynomial
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Chapter 1

Overview

The study of zeros of irreducible characters has had some applications in representation

theory and has also played some role in our understanding of the structure of finite

simple groups. In [MSW94], Malle, Saxl and Weigel showed that finite simple classical

groups (with one exception) are generated by three involutions using an understanding

of zeros of characters of these finite simple groups. In [LM15, LMS16, LM16], the

authors classified simple endotrivial modules for quasisimple groups. They used the fact

that the corresponding character of the endotrivial module cannot have the value zero

for some elements in the quasisimple groups. Recently, using the so-called Steinberg

like characters, Malle and Zaleskii [MZ18] classified projective indecomposable modules

for finite non-abelian simple groups, again by studying the zeros of characters of finite

non-abelian simple groups.

One of the most interesting problems in character theory is determining the structure

of a finite group using information given in the character table of that finite group.

Many authors have studied the zero entries in a character table of a finite group and

their influence on the structure of that finite group and its subgroups (see[Dea90,

BCG00, MS04b, MS04a, QZ05, ZS08, ZSS10, ZSW13, TTV18]). We shall list some of

the results here. In [Dea90], Deaconescu gave a sufficient condition in terms of zero

entries in a row of a character table for the Frattini group of a finite group to be

non-trivial. Moretó and Sangroniz [MS04a] bounded the Fitting height of a solvable

using the largest number of of zero entries in a row of its character table. The same

authors [MS04b] bounded the derived length of a solvable using the largest number of
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of zero entries in a column of its character table. In [BCG00], Bianchi, Chillag and

Gillio classified finite groups in whose character has at most two zeros entries in every

row. In 2010, Zhang, Shi and Shen [ZSS10] classified finite groups in whose character

has at most three zeros entries in every row. We are particularly interested in a more

general problem than ones studied in [BCG00] and [ZSS10]. We study finite groups

whose character table has a single zero entry in one of its rows.

Let Irr(G) be the set of all irreducible characters of a finite group G and let χ ∈ Irr(G).

A well-known theorem of Burnside states:

Theorem 1.0.1. [Isa06, Theorem 3.15] Let G be a finite group and let χ ∈ Irr(G) be

non-linear. Then χ(g) = 0 for some g ∈ G.

Let χ ∈ Irr(G) and define

υ(χ) := {x ∈ G | χ(x) = 0}.

Hence υ(χ) 6= ∅ for non-linear χ ∈ Irr(G). Let

nυ(χ) = the number of conjugacy classes on which χ vanishes.

Since χ is invariant on conjugacy classes, χ vanishes on at least one conjugacy class,

that is, nυ(χ) ≥ 1 for non-linear χ ∈ Irr(G). Malle, Navarro and Olsson [MNO00]

generalised Burnside’s Theorem by showing that we can choose the element to be of

prime power order:

Theorem 1.0.2. [MNO00, Theorem B] Let G be a finite group and let χ ∈ Irr(G) be

non-linear. Then there exists g ∈ G of prime-power order such that χ(g) = 0.

Many authors have studied finite groups G with a non-linear irreducible character χ

with the extremal property that nυ(χ) = 1. Theorem 1.0.2 implies that this conjugacy

class contains elements of prime-power order. Zhmud’ [Zhm79] was the first to study

them. Chillag [Chi99, Corollary 2.4] showed that either χG′ is irreducible or G is a

Frobenius group with a Frobenius complement of order 2 and an abelian Frobenius

kernel of odd order. Dixon and Rahnamai Barghi [DRB07, Theorem 9] obtained some

partial results when G is solvable and Qian [Qia07] characterised finite solvable groups

with this extremal property. Recently, Burness and Tong-Viet [BTV15] studied these
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groups when χ is imprimitive, being induced from an irreducible character of a maximal

subgroup of G.

Dixon and Rahnamai Barghi [DRB07] posed some questions at the end of their paper.

Among them were the following:

Question 1. If G is a finite non-solvable group with an irreducible character χ such

that nυ(χ) = 1, can G have more than one non-abelian composition factor?

Question 2. Let G be a finite non-abelian simple group and let χ ∈ Irr(G). Is it true

that if nυ(χ) = 1, then one of the following holds:

(a) G ∼= PSL2(5), χ(1) = 3;

(b) G ∼= PSL2(7), χ(1) = 3;

(c) G ∼= PSL2(2
a), χ(1) = 2a, where a ≥ 2?

In this thesis we partially answer Question 1 and completely answer Question 2. In

order to do so we investigate finite non-solvable groups with a primitive irreducible

character that vanishes on a unique conjugacy class. (Refer to Section 2.3 for the

definitions of primitive and imprimitive characters.) In particular, we shall establish a

reduction theorem:

Theorem 1.0.3. Let G be a finite non-solvable group. Suppose that χ ∈ Irr(G) is

primitive, nυ(χ) = 1 and υ(χ) = C. Let K = kerχ, Z = Z(χ). Then there exists a

normal subgroup M of G such that Z < M , C ⊆M\Z and M/Z is the unique minimal

normal subgroup of the group G/Z. Moreover, one of the following holds:

(a) G/Z is almost simple and M/K is quasisimple.

(b) G/Z is a Frobenius group with an abelian Frobenius kernel M/Z of order p2n,

M/K is an extra-special p-group and Z/K is of order p with K non-solvable.

For case (a) in Theorem 1.0.3 assume that K = 1, that is, χ is faithful. Then G/Z is

almost simple with socle M/Z where M is quasisimple. Note that χM is irreducible and

if C is the unique conjugacy class of zeros of χ in G, then C is the union of M -conjugacy

classes C1, . . . , Cr with r ≤ |G : M | = |G/Z : M/Z| ≤ |Out(M/Z)|. Observe that all
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zeros of χM have the same order which is a power of p for some prime p. Also note

that Z(G) = Z(M).

We thus look at this general problem:

Problem 1. For each quasisimple group M , classify all faithful characters χ ∈ Irr(M)

such that:

(a) χ vanishes on elements of the same p-power order;

(b) the number of conjugacy classes that χ vanishes on is at most the size of the outer

automorphism group of M/Z(M);

(c) if Z(M) is non-trivial, then Z(M) is cyclic and of p-power order.

For convenience we shall say a faithful irreducible character χ of a finite group has

property (?) if it possesses properties (a)-(c) of Problem 1 (?)

.

We completely solve Problem 1.

Theorem 1.0.4. Let M be a quasisimple group. Suppose that M has a faithful irre-

ducible character χ such that (?) holds. Then M is one of the following:

(a) M ∼= PSL2(5), χ(1) = 3 or χ(1) = 4;

(b) M ∼= SL2(5), χ(1) = 2 or χ(1) = 4;

(c) M ∼= 3·A6, χ(1) = 9;

(d) M ∼= PSL2(7), χ(1) = 3;

(e) M ∼= PSL2(8), χ(1) = 7;

(f) M ∼= PSL2(11), χ(1) = 5 or χ(1) = 10;

(g) M ∼= PSL2(q), χ(1) = q, where q ≥ 5;

(h) M ∼= PSU3(4), χ(1) = 13;
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(i) M ∼= 2B2(8), χ(1) = 14.

Using Theorem 1.0.4, we classify finite non-solvable groups with a faithful primitive

irreducible character that vanishes on one conjugacy class.

Theorem 1.0.5. Let G be a finite non-solvable group. Then there exists χ ∈ Irr(G) is

faithful, primitive and nυ(χ) = 1 if and only if G is one of the following groups:

(a) G ∼= PSL2(5), χ(1) = 3 or χ(1) = 4;

(b) G ∼= SL2(5), χ(1) = 2 or χ(1) = 4;

(c) G ∈ {A6:22, A6:23, 3·A6:23}, χ(1) = 9 for all such χ ∈ Irr(G);

(d) G ∼= PSL2(7), χ(1) = 3;

(e) G ∼= PSL2(8):3, χ(1) = 7;

(f) G ∼= PGL2(q), χ(1) = q, where q ≥ 5;

(g) G ∼= 2B2(8):3, χ(1) = 14.

Using Theorem 1.0.5 and [BTV15, Theorem 1.5] we partially answer Question 1:

Corollary 1.0.6. If G is a finite group that has a faithful irreducible character χ such

that nυ(χ) = 1, then G has at most one non-abelian composition factor.

The result below follows easily from Theorem 1.0.5:

Corollary 1.0.7. Let G be a finite non-abelian simple group and let χ ∈ Irr(G). If

nυ(χ) = 1, then one of the following holds:

(a) G ∼= PSL2(5), χ(1) = 3;

(b) G ∼= PSL2(7), χ(1) = 3;

(c) G ∼= PSL2(2
a), χ(1) = 2a, where a ≥ 2.

Corollary 1.0.7 positively answers Question 2.

We now look at what our results imply as regards to the classical Burnside’s Theorem

of zeros of characters.

5



There have been several generalizations of Burnside’s Theorem. The first one, which

we shall restate here, is that of Malle, Navarro and Olsson [MNO00]:

Theorem 1.0.8. [MNO00, Theorem B] Let G be a finite group. Then every non-linear

irreducible character of G vanishes on an element of prime power order.

The generalization here is obvious since the result tells us that we can choose the

element to be of prime power order. Another generalization is due to Navarro [Nav01].

Theorem 1.0.9. [Nav01, Theorem A] Let G be a finite group. Let N / G and χ ∈
Irr(G). Then χN is not irreducible if and only if χ vanishes on some coset Nx in G.

Let N be abelian. Since every irreducible character of N is linear, Theorem 1.0.9

implies that χN is not irreducible, that is, non-linear if and only if χ vanishes on

some coset Nx of N in G. In particular, χ vanishes on some element x in G which is

Burnside’s Theorem.

[BZ99, Theorem 21.1] is the last generalization we will discuss. Recall that by Burn-

side’s Theorem, υ(χ) 6= ∅ for χ ∈ Irr(G) non-linear.

Theorem 1.0.10. [BZ99, Theorem 21.1] Let H 6 G and χ ∈ Irr(G). Then

[χH , χH ] ≤ 1 +
|υ(χ) \H|
|H|

.

If |υ(χ)\H| < |H|, then χH is irreducible. If H = {1}, then [χH , χH ] = 1, that is,

χ ∈ Irr(G) vanishes on some element of G.

We propose a new generalization of Burnside’s Theorem which gives a connection

between the number of prime divisors of character degrees and the number of zeros of

characters of a finite group. Burnside’s Theorem can be rewritten as follows:

Theorem 1.0.11. (Burnside’s Theorem) Let G be a finite group and let χ ∈
Irr(G). If χ(1) is divisible by a prime, then χ vanishes on at least one conjugacy class.

The above prompts us to ask a more general question:

Question 3. Let G be a finite group, χ ∈ Irr(G) and n a positive integer. Is it true

that if χ(1) is divisible by n distinct primes, then χ vanishes on at least n conjugacy

classes?
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The following is motivated by an implication of one of our main results (Theorem

1.0.5):

Theorem 1.0.12. Let G be a finite group which has no composition factor isomorphic

to 2B2(8). Let χ ∈ Irr(G) be primitive. If χ(1) is divisible by two distinct prime

numbers, then χ vanishes on at least two conjugacy classes.

We answer Question 3 in the affirmative for certain finite solvable groups when n = 2.

Theorem 1.0.13. Let G be a finite solvable group and let χ ∈ Irr(G) be non-linear.

Suppose that one of the following conditions holds:

(a) χ is monomial;

(b) G is of odd order;

(c) G has derived length at most 3;

(d) G has a normal Sylow 2-subgroup;

(e) G has a self-normalizing Sylow p-subgroup P and χ vanishes on p-elements for

some prime p;

(f) Every maximal subgroup of G is an M-group.

If χ(1) is divisible by two distinct prime numbers, then χ vanishes on at least two

conjugacy classes.

Our strategy is to use results on finite solvable groups with an irreducible character

that vanishes on a unique conjugacy class. It is sufficient to show that the character

degree of the corresponding character is necessarily of prime power order. Therefore

our approach only shows existence of the conjugacy classes and does not tell us if the

elements in the conjugacy classes have distinct orders or not. Hence we ask another

question with a stronger property:

Question 4. Let G be a finite solvable group, χ ∈ Irr(G) and n a positive integer. Is

it true that if χ(1) is divisible by n distinct prime numbers, then χ vanishes on at least

n elements of pairwise distinct orders?
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This leads to another result.

Theorem 1.0.14. Let G be a finite solvable group, χ ∈ Irr(G) and n a positive integer.

Suppose that one of the following conditions holds:

(a) χ is primitive;

(b) G is nilpotent;

(c) G is metabelian.

If χ(1) is divisible by n distinct prime numbers, then χ vanishes on at least n elements

of pairwise distinct orders.

However, the answer for Question 4 is negative for finite solvable groups. Our coun-

terexample is [DPSS09, Example 4.2]: Let G be the normalizer of a Sylow 2-subgroup

in the Suzuki group 2B2(8). Then G is a Frobenius group such that the Frobenius

complement is of order 7 and the Frobenius kernel is non-abelian. Furthermore, G has

an irreducible character of degree is 14, that vanishes only on elements of order 7. Since

cd(G) = {1, 7, 14}, note that |cd(G)| = 3 and gcd(7, 14) 6= 1 where cd(G) denotes the

character degree set of G. If the character degrees are pairwise relatively prime, then

the answer to Question 4 is positive.

Theorem 1.0.15. Let G be a finite solvable group, χ ∈ Irr(G) and n a positive integer.

Suppose that all distinct character degrees of G are pairwise relatively prime. If χ(1)

is divisible by n distinct prime numbers, then χ vanishes on at least n elements of

pairwise distinct orders.

It turns out that for non-solvable groups the answer is also negative for both questions.

A counterexample to Question 3 is 2B2(8):3 which has an irreducible character of degree

14 and this vanishes on exactly one conjugacy class of elements of order 7. This is why

we needed to exclude that case in Theorem 1.0.12. A counterexample to Question 4

for finite non-solvable groups is PSL2(11) which has an irreducible character of degree

10, that vanishes only on elements of order 5. However, sporadic simple groups and

alternating groups satisfy property to Question 3 for arbitrary n. In particular, we

prove the following:
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Theorem 1.0.16. Let G be a finite almost simple group such that S � G 6 Aut(S),

where S is either an alternating group or a sporadic simple group. Let χ ∈ Irr(G) and

n a positive integer. If χ(1) is divisible by n distinct prime numbers, then χ vanishes

on at least n elements of pairwise distinct orders.

Theorem 1.0.13(a) and (b) show that Question 3 holds for M -groups and groups of

odd order, respectively. At the time of writing, it is not known if Question 3 holds for

general finite solvable groups.

The thesis is organized as follows. In Chapter 2 we present some preliminary results

that will be needed to prove our main results. We also survey some known results on

finite groups with an irreducible character that vanishes on a unique conjugacy class

that other authors have proved.

In Chapter 3 we prove Theorems 1.0.3, 1.0.4 and 1.0.5. In Chapter 4 we finish off by

proving Theorems 1.0.13, 1.0.14, 1.0.15 and 1.0.16. We describe the properties of a

possible counterexample to Question 3 in Chapter 4. In Chapter 5 we conclude the

thesis by proposing some possible future work.

NB Part of the work has been published in Communications in Algebra and is found

in [Mad19b]. Some of the work has been submitted for consideration for publication

and is found in [Mad19c] and [Mad19a].
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Chapter 2

Preliminary results

In this chapter we shall present some preliminary results needed to prove our primary

results in Chapter 3 and Chapter 4. Most results will be presented without proofs but

with references.

2.1 Finite group theory

Let G be a finite group and let x ∈ G. We denote the order of G and x by |G| and

|x|, respectively. Denote the centralizer of x in G by CG(x) and we denote Cx = xG :=

{g−1xg | g ∈ G}, the conjugacy class containing x. The normalizer of a subset X in

G is denoted by NG(X). The following result shows the connection between Cx and

CG(x).

Lemma 2.1.1. [Isa08, Corollary 1.5] Let x ∈ G, where G is a finite group, and let Cx
be the conjugacy class containing x. Then |Cx| = |G : CG(x)|.

Let x, y ∈ G. The commutator of x and y is denoted by [x, y] = x−1y−1xy. If A and

B are subsets of G, then

[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉,

the subgroup generated by the commutators [a, b]. The commutator subgroup or the

derived subgroup of G, denoted G′, is defined as G′ = [G,G].
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2.1 Finite group theory

2.1.1 Permutation groups

In this section we shall state the O’Nan-Scott Theorem. We refer to [DM96] for basic

results on permutation groups.

Let Ω be an arbitrary non-empty set. The set of all permutations of Ω (bijections of Ω

onto itself) forms a group, under composition of mappings called the symmetric group

on Ω, denoted by Sn, where n = |Ω|. A permutation group is a subgroup of Sn and n

is called the degree of the permutation group.

Let G be a group and Ω a non-empty set. A group action is a map from Ω × G to Ω

such that α1 = α and (αg)h = αgh for all g, h ∈ G and α, where the image of (α, g) is

denoted by αg.

If we define a relation on Ω by

α v β if and if only there exists g ∈ G such that αg = β

then v is an equivalence relation and the corresponding equivalence classes are called

orbits . The orbit containing α is denoted by

αG := {αg | g ∈ G}.

The point stabilizer of α is the subgroup Gα of G, defined by Gα := {g ∈ G | αg = α}.

The relation between orbits and stabilizers in given below:

Lemma 2.1.2. (The Orbit-Stabilizer Property) |αG| = |G : Gα| for all α ∈ Ω. In

particular, if G is finite, then |αG||Gα| = |G|.

Lemma 2.1.1 is a special case of the Orbit-Stabilizer Property when G acts on itself

by conjugation with the conjugacy class containing an element x as an orbit and its

centralizer as the stabilizer.

Let a group A act on another group G via automorphisms. Groups A and G may be

viewed as subgroups of the semidirect product Γ = G o A. Hence the commutator

[G,A] can be calculated as a subgroup of Γ. We have the following result when G is

abelian with |A| and |G| relatively prime.

Theorem 2.1.3. [Isa08, Theorem 4.34] Let a group A act via automorphisms on an

abelian group G and assume that A and G are finite and that gcd(|G|, |A|) = 1. Then

G = CG(A)× [G,A].
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2.1 Finite group theory

A group G acting on a set Ω is said to be transitive if there is only one orbit, that is,

αG = Ω for all α ∈ Ω, or, for all α, β there exists g ∈ G such that αg = β. A transitive

group G acting on a set is regular if Gα = {1} for every α ∈ Ω. If G is transitive and

finite, then G is regular if and only if |G| = |Ω|.

A block is a non-empty subset Γ of Ω such that for every g ∈ G, either Γ = Γg or

Γ∩Γg = ∅. Ω and the singletons {α} are called trivial blocks. A transitive group G on

a set Ω is primitive if Ω contains no non-trivial blocks.

Theorem 2.1.4. [Isa08, Corollary 8.14] Let G be a group that acts transitively on a

set Ω with |Ω| ≥ 2, and let H = Gα, where α ∈ Ω. Then G is primitive on Ω if and

only if H is a maximal subgroup of G.

A transitive permutation group is called 2-transitive if Gα acts transitively on Ω\{α}
for every α ∈ Ω. A 2-transitive permutation group is primitive. G is called sharply

2-transitive if G is 2-transitive and G acts regularly on the set of pairs of distinct

elements of Ω.

The socle of a group G, denoted soc(G), is defined to be the subgroup generated by the

set of all minimal normal subgroups of G. Recall that H is a characteristic subgroup of

G if for all φ ∈ Aut(G), φ(H) = H. For example, soc(G) is a characteristic subgroup G.

Note that a minimal normal subgroup of a finite group is a direct product of isomorphic

simple groups. If G is a finite solvable group, then a minimal normal subgroup N of

G is an elementary abelian p-group for some prime p, that is, N is an abelian group

in which every non-trivial element has order p. A primitive permutation group has at

most two minimal normal subgroups.

Theorem 2.1.5. [DM96, Theorem 4.3B] If G is a finite primitive permutation group

and K is a minimal normal subgroup of G, then exactly one of the following holds:

(i) for some prime p and some integer d, K is a regular elementary abelian group of

order pd, and soc(G) = K = CG(K);

(ii) K is a regular non-abelian group, CG(K) is a minimal normal subgroup of G

which is permutation isomorphic to K and soc(G) = K ×CG(K);

(iii) K is non-abelian, CG(K) = 1 and soc(G) = K.
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2.1 Finite group theory

The O’Nan-Scott Theorem classifies all finite primitive permutation groups. We shall

not reproduce the full statement of the O’Nan-Scott Theorem since we shall only need

one of the cases of the statement in Chapter 3.

Theorem 2.1.6. [DM96, Theorem 4.1A] (O’Nan-Scott Theorem) Let G be a primitive

group of degree n and let H be the socle of G. Then one of the following holds:

(a) H is a regular elementary abelian p-group for some prime p, n = pm = |H|;

(b) H is a non-abelian simple group and H � G 6 Aut(H), that is, G is an almost

simple group;

(c) H is isomorphic to a direct product Tm of a non-abelian simple group T and

m ≥ 2.

2.1.1.1 Derangements in transitive permutation groups

Here we refer to a recent book of Burness and Giudici [BG16] for basic notions on

derangements. Let G be a transitive permutation group acting on a non-empty set

Ω and let H = Gα be the stabilizer of a point α. An element x ∈ G is called a

derangement if it fixes no point of Ω or equivalently, if xG ∩H is empty for all α ∈ Ω,

where xG is the conjugacy class of x in G. Denote the set of derangements in G by

∆(G). Then

∆(G) = G \
⋃
g∈GH

g.

It turns out the existence of derangements in transitive permutation groups is guaran-

teed by an old result of Jordan [Jor72]:

Theorem 2.1.7. (Jordan, 1872) Let G be a transitive permutation group on a finite

set Ω with |Ω| ≥ 2. Then G contains a derangement.

A generalization of Jordan’s result shows that a finite transitive permutation group

always contains a derangement of prime power order:

Theorem 2.1.8. [FKS81] Let G be a transitive permutation group on a finite set Ω

with |Ω| ≥ 2. Then G contains a derangement of prime power order.
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2.1 Finite group theory

In [BTV15], Burness and Tong-Viet considered finite primitive permutation groups

which contain one conjugacy class of derangements. By Theorem 2.1.8, the derange-

ments will be of prime power order.

Theorem 2.1.9. [BTV15, Theorem 1.1] Let G be a finite primitive permutation group

with point stabilizer H. Then G contains one conjugacy class of derangements if and

only if G is sharply 2-transitive, or (G,H) = (A5,D10) or (PSL2(8):3,D18:3).

Guralnick [Gur16] showed that primitivity in Theorem 2.1.9 is not necessary, transi-

tivity is sufficient.

Theorem 2.1.10. [Gur16, Theorem 1.1] Let G be a finite transitive permutation group

with point stabilizer H. Then G contains one conjugacy class of derangements if and

only if G is sharply 2-transitive, or (G,H) = (A5,D10) or (PSL2(8):3,D18:3). In par-

ticular, G is a finite primitive permutation group.

2.1.2 Frobenius groups

A Frobenius group is a transitive permutation group which is not regular but in which

only the identity has more than one fixed point. For any two distinct points α, β in Ω

we have Gα ∩Gβ = 1.

Let

N := {x ∈ G | x = 1 or x ∈ G \
⋃
g∈G

Hg} = {x ∈ G | x = 1 or x ∈ ∆(G)}.

Then N is a normal regular subgroup of G.

A finite 2-transitive Frobenius group has a regular normal abelian subgroup in which

each non-trivial element has the same order ([DM96, Theorem 3.4B]). Hence a 2-

transitive Frobenius group is a sharply 2-transitive group.

We give below an alternative definition of Frobenius group.

Definition 2.1.11. G is a Frobenius group if and only if G has a subgroup H with

1 < H < G such that H ∩Hg = 1 whenever g ∈ G\H. We call such an H a Frobenius

complement in G.
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2.1 Finite group theory

The N defined above is called a Frobenius kernel . A Frobenius group is a semidirect

product N :H. Thompson, in his PhD thesis, proved that the Frobenius kernel is

nilpotent.

Theorem 2.1.12. [Isa08, Theorem 6.24] Let N be a Frobenius kernel of a Frobenius

group G. Then N is nilpotent.

Theorem 2.1.13. Let G be a Frobenius group with complement H and kernel N . Then

the following holds:

(a) |H| | |N | − 1;

(b) If |H| is even, then N is abelian.

Proof. This follows from [Gro11, Proposition 9.1.8] and [Gro11, Proposition 9.1.10].

Below are listed some characterizations of Frobenius groups.

Theorem 2.1.14. [Isa08, Theorem 6.4] Let N be a normal subgroup of a finite group

G and suppose that H is a complement for N in G. The following are equivalent:

(a) the conjugation action of H on N is Frobenius;

(b) H ∩Hg = 1 for all elements g ∈ G\H;

(c) CG(h) 6 H for all non-identity elements h ∈ H;

(d) CG(n) 6 N for all non-identity elements n ∈ N .

Theorem 2.1.15. [Isa08, Theorem 6.7] Let N be normal subgroup of G, where G is a

finite group and suppose that CG(n) 6 N for every non-identity element n ∈ N . Then

N is complemented in G, and if 1 < N < G, then G is a Frobenius group with kernel

N .

Proposition 2.1.16. [Gro11, Proposition 9.2.3] Let G be a Frobenius group with Frobe-

nius kernel N and Frobenius complement H. Suppose that 1 < N1 6 N , 1 < H1 6 H

with H1 6 NG(N1). Then G1 = N1H1 is a Frobenius group with Frobenius kernel N1

and Frobenius complement H1.
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2.2 Simple and related groups

Proposition 2.1.17. [Gro11, Theorem 9.2.10] Let G be a Frobenius group with Frobe-

nius complement H. Suppose that p | |H| is prime and P is a Sylow p-subgroup of H.

If p is odd, then P is cyclic; if p = 2, then P is either cyclic or a generalized quaternion

group Q2k, k ≥ 3.

The result below exhibits a non-solvable Frobenius complement of a Frobenius group.

Theorem 2.1.18. [Mei02, Theorem A] Let G be a finite Frobenius group with a Frobe-

nius complement H. If H is perfect, H ∼= SL2(5).

We look at some groups related to Frobenius groups.

2.1.2.1 Camina groups

A Camina group is a group G such that |CG(g)| = |CG/G′(gG
′)| for all g ∈ G\G′.

An equivalent definition says that G is a Camina group if the conjugacy class of every

element g ∈ G\G′ is gG′.

Camina groups were first studied by Camina in [Cam78]. Dark and Scoppola [DS96]

classified Camina groups:

Theorem 2.1.19. [DS96, Corollary] Let G be a group. Then G is a Camina group if

and only if one of the following holds:

(a) G is a Camina p-group of nilpotence class 2 or 3;

(b) G is a Frobenius group with a cyclic Frobenius complement;

(c) G is a Frobenius group with a Frobenius complement isomorphic to Q8.

2.2 Simple and related groups

We begin this section by stating what is arguably one of the most significant results in

mathematics in the twentieth century:

Theorem 2.2.1. (Classification of Finite Simple Groups) Let G be a finite

simple group. Then G is one of the following:
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2.2 Simple and related groups

(a) G is a cyclic group of prime order;

(b) G is an alternating group of degree at least 5;

(c) G is one of the twenty six sporadic simple groups;

(d) G is a finite group of Lie type.

The largest family of finite simple groups comprises the finite groups of Lie type.

Let G be a finite group. A group G is called a quasisimple group if G = G′ and G/Z(G)

is simple. G is called an almost simple group if S �G 6 Aut(S) for some non-abelian

simple group S. Quasisimple and almost simple groups are essential to our arguments

in Chapter 3.

2.2.1 Sporadic simple groups

The 26 sporadic simple groups do not fall into any of the infinite families of finite

simple groups. The explicit character tables of these groups are found in the Atlas

[CCNPW85] and that is sufficient for the arguments in our results.

2.2.2 Symmetric groups, alternating groups and their covers

Recall that Sn denotes the symmetric group of degree n. Note that |Sn| = n!. We

call π ∈ Sn an r-cycle if π can be expressed in the form (i1, . . . , ir)(ir+1) . . . (in). A

2-cycle is called a transposition. The order of a cycle (i1, . . . , ir) is length r. The

inverse of (i1, . . . , ir) is (i1, . . . , ir)
−1 = (ir, ir−1, . . . , i1). Every π ∈ Sn, π 6= 1, can be

written uniquely as a product of disjoint cycles. The order of π is the lowest common

multiple of the lengths of the disjoint cyclic factors of π. Each cycle can be expressed

as a product of transpositions (i1, . . . , ir) = (i1, i2)(i2, i3) . . . (ir−1, ir). We call π ∈ Sn,

even (respectively odd) if π is expressible as the product of an even (respectively odd)

number of transpositions.

The subgroup An of Sn comprising all the even permutations is called the alternating

group of degree n. It is a normal subgroup of Sn and it is also a simple group for n ≥ 5

as mentioned in Theorem 2.2.1. An is the commutator subgroup of Sn and |An| = n!
2

.
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2.2 Simple and related groups

Also, Aut(An) = Sn for all n ≥ 5 except n = 6. The case when n = 6 will be dealt

with in the subsection of finite groups of Lie type.

A cycle type of a permutation is an unordered list of the sizes of the cycles in the cycle

decomposition of the permutation. Two permutations in Sn are conjugate if and only

if they have the same cycle type. A partition α on n, denoted by α ` n is a sequence

of non-negative integers α = (α1, α2, . . . , αh) which satisfies

(i) α1 ≥ α2 ≥ . . . αh,

(ii)
∑h

i=1 αi = n.

The αi are called the parts of α.

A conjugacy class of Sn is either contained in An or in Sn\An. Every conjugacy class

of Sn contained in An is either an An-class or splits into two An-classes of the same

order.

Let λ = (λ1, . . . , λh) ` n. Then the corresponding Young subgroup of Sn is

Sλ = S{1,...,λ1} × S{λ1+1,λ1+2,...,λ1+λ2} × S{n−λh+1,n−λh+2,...,n}.

A Young diagram [λ] for a partition λ = (λ1, . . . , λh) ` n is an array of n boxes (cells)

having h-left justified rows with the ith row the containing λi boxes for 1 ≤ i ≤ h. The

lengths λ′i of the columns of [λ] form another partition λ′ of n:

λ′ = (λ′1, λ
′
2, . . . ), when λ′i :=

∑
j 1, with λj ≥ 1.

This partition λ′ is called the partition associated with λ. [λ′] is called the Young

diagram associated with [λ]. [λ′] arises from [λ] by interchanging rows and columns. A

partition λ is called self-associated if λ = λ′.

If µ = (µ1, µ2, . . . , µm) and λ = (λ1, λ2, . . . , λn), then µ ⊆ λ as Young diagrams if

µi ≤ λi for i = 1, 2, . . . ,m. If µ ⊆ λ as Young diagrams , then the corresponding skew

diagram is the set of cells

λ\µ = {c : c ∈ λ and c /∈ µ}.

If v = (i, j) is a node in the diagram of λ, then it has hook
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2.2 Simple and related groups

Hv = Hi,j = {(i, j′) : j′ ≥ j} ∪ {(i′, j) : i′ ≥ i}

with corresponding hook length

hv = hi,j = |Hi,j|.

A skew hook or rim hook , ξ, is a skew diagram which is edgewise connected and contains

no 2× 2 subset of cells. The leg length of ξ

``(ξ) := (the number of rows of ξ)−1.

Note that α\α1 = (α2, . . . , αk). A composition of n is an ordered sequence of non-

negative integers

λ = (λ1, λ2, . . . , λl)

such that
∑l

i=1 λi = n. The integers λi are called parts of the composition.

Let M(G) denote the Schur multiplier of G (we refer to [Isa06, p. 181] or [HH92,

Chapter 1] for a definition). This means that there exist a Schur cover G̃ such that

Z(G̃) ∼= M(G) and G̃/Z(G̃) ∼= G. The Schur multiplier of Sn has order at most 2 and

is trivial if n ≤ 3 (see [HH92, Theorem 2.8]). If n > 4, then Sn has two non-isomorphic

Schur covers except when n = 6 ([HH92, Theorem 2.12]). Since the Schur covers have

the same character table (see for example [Mor62, Section 2.1]), we shall choose one

and say that Sn has a double cover , denoted by S̃n. The generators and relations of S̃n

are given in Section 2.3.1, p. 32.

Theorem 2.2.2. [HH92, Theorem 2.11] For any positive integer n

M(An) =


1 if n ≤ 3

C6 if n = 6 or 7

C2 for all other n,

(2.2.1)

where Ck denotes the cyclic of order k.

Theorem 2.2.3. [HH92, Theorem 3.8] The conjugacy classes of Sn which split in S̃n

are:
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2.2 Simple and related groups

(a) the classes of even permutations which can be written as a product of disjoint

cycles with no cycles of even length, and

(b) the classes of odd permutations which can be expressed as a product of disjoint

cycles with no two cycles of the same length (including length 1).

Expressed in cycle type notation, these conditions are:

(a) a2i = 0 for all i;

(b) ai ≤ 1 for all i, and the number of even parts is odd.

Theorem 2.2.4. [HH92, Theorem 3.9] The conjugacy classes of An which split in Ãn

are:

(a) the classes of permutations whose decompositions into disjoint cycles have no

cycles of even length, and

(b) the classes of permutations which can be expressed as a product of disjoint cycles

with at least one cycle of even length and with no two cycles of the same length

(including length 1).

Expressed in cycle type notation, these conditions are:

(a) a2i = 0 for all i;

(b) ai ≤ 1 for all i, and a2i = 1 for at least one value of i.

2.2.3 Groups of Lie type

In order to define groups of Lie type, we need some results in the theory of algebraic

groups. We refer to [Car85] for basic definitions and results. Let M be an algebraic

group. Then connected component of M containing 1M is denoted by M◦. A simple

algebraic group is an algebraic group which has no proper, closed, connected normal

subgroups. Let M be a simple algebraic groups over K, where K is an algebraically

closed field of characteristic p, Fp. The simple algebraic group over K have been

classified (see [Car85, p. 23–26]). In particular, we have groups of these types:
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2.2 Simple and related groups

An(K),Bn(K),Cn(K),Dn(K),E6(K),E7(K),E8(K),F4(K) and G2(K).

A surjective homomorphism ϕ :M→N of algebraic groups with finite kernel is called

an isogeny. Every simple algebraic group has two isogeny types, the simply connected

type Msc with a center whose size is as large as possible and of adjoint type Mad with

trivial center. The table below lists the types of algebraic groups and their isogeny

types.
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2.2 Simple and related groups

Table 2.1: Isogeny Types

M Msc Mad Neither Msc nor Mad

An(K), n ≥ 1 SLn+1(K) PGLn+1(K)

Bn(K), n ≥ 2 Spin2n+1(K) SO2n+1(K)

Cn(K), n ≥ 2 Sp2n(K) PCSp2n(K)

Dn(K), n ≥ 3 odd Spin2n(K) PCO◦2n(K) SO2n(K)

Dn(K), n ≥ 4 even Spin2n(K) PCO◦2n(K) SO2n(K), HSpin2n(K)

E6(K) E6(K)sc E6(K)ad

E7(K) E7(K)sc E7(K)ad

E8(K) E8(K) E8(K)

F4(K) F4(K) F4(K)

G2(K) G2(K) G2(K)

A p-element is an element whose order is a power of p and a p′-element if its order is

relatively prime to p, where p is prime. Let M be an algebraic group. A p′-element is

called a semisimple element and a p-element is called a unipotent element. The Jordan

decomposition states that every element g ∈M can be decomposed in this way:

g = su = us,

where s ∈ M is semisimple and u ∈ M is unipotent. This decomposition is uniquely

determined by g. A unipotent subgroup is a subgroup which consists of unipotent

elements.

A maximal closed connected solvable subgroup B of M is called a Borel subgroup.

Borel subgroups are conjugate in M. Every Borel subgroup is self-normalizing, that

is, NM(B) = B. A torus T is a subgroup of M that is isomorphic to a direct product

of copies of K∗, the multiplicative group of the field K. Every torus is contained in

a maximal torus. All maximal tori are also conjugate in M. Every maximal torus

is self-centralizing, that is, CM(T ) = T . Every semisimple element is contained in a

maximal torus and every unipotent element ofM lies in a closed connected unipotent

subgroup.

The radical R of an algebraic group M is the maximal closed, connected, solvable,

normal subgroup of M. M is called a semisimple algebraic group if M is connected
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2.2 Simple and related groups

and R = 1. The unipotent radical U of B is the maximal closed, connected, normal,

unipotent subgroup of B. Then B = U :T , the semi-direct product of U and T . The

Weyl group with respect to a torus T , W := NM(T )/CM(T ) is a finite group. M is

called a reductive algebraic group if U = 1.

Let M be a connected algebraic group, s ∈M be semisimple and T 6M a maximal

torus. Then s ∈ CM(s)◦ ([MT11, Proposition 14.1]). If M is also reductive, then

CM(s)◦ is reductive.

Let M be a linear algebraic group. Then M is a closed subgroup of GLn(K). The

map

Fq : GLn(K)→ GLn(K), (aij) 7→ (aqij)

induces a group homomorphism from GLn(K) into itself. Fq is called a standard Frobe-

nius map. A Frobenius map is a homomorphism F : GLn(K) → GLn(K) and some

power of F is a standard Frobenius map. Frobenius maps are also called Steinberg

endomorphisms and we shall use these terms interchangeably.

Definition 2.2.5. LetM be a connected reductive algebraic group and let F :M→M
be a Steinberg endomorphism. Define MF by

MF := {g ∈M : F (g) = g}.

We call MF a finite group of Lie type.

Hence GLFn (K) = GLn(q), SLFn (K) = SLn(q) and SpF2n(K) = Sp2n(q), where q = pn

with p a prime and n a positive integer. We shall list the properties that MF and

its dual (M∗)F
∗

share. Note that GLn(K)∗ = GLn(K), SLn(K)∗ = PGLn(K) and

Sp2n(K)∗ = SO2n(K). A subgroup H of M is F -stable if F (H) = H where F is a

Steinberg endomorphism.

Proposition 2.2.6. Let M be a connected reductive algebraic group and F :M→M
a Frobenius map such that M∗ is the dual of M with a corresponding Frobenius map

F ∗. Suppose that T is an F -stable maximal torus and T ∗ the corresponding F ∗-stable

maximal torus. Then the following statements hold:

(a) |MF | = |(M∗)F
∗|;

23



2.2 Simple and related groups

(b) |[M,M]F | = |[M∗,M∗]F
∗ |;

(c) |T F | = |(T ∗)F ∗|.

Proof. This follows from [Car85, Corollary 4.4.2, Propositions 4.4.4 and 4.4.5].

The table below gives sizes of centers of finite groups of Lie type of simply connected

type. This table is in [MT11, p. 211].

Table 2.2: Sizes of centers of finite groups of Lie type of simply connected type

MF |Z(MF )| MF |Z(MF )|
SLn(q), n ≥ 2 gcd(n, q − 1) 2B2(2

2f+1) 1

SUn(q), n ≥ 3 gcd(n, q + 1) 2G2(3
2f+1) 1

Spin2n+1(q), n ≥ 3 gcd(2, q − 1) G2(q) 1

Sp2n(q), n ≥ 2 odd gcd(2, q − 1) 3D4(q) 1

Spin+
2n(q), n ≥ 4 even gcd(2, q − 1)2 2F4(2

2f+1) 1

Spin+
2n(q), n ≥ 5 odd gcd(4, q − 1) F4(q) 1

Spin−2n(q), n ≥ 4 even gcd(2, q − 1) E6(q) gcd(3, q − 1)

Spin−2n(q) , n ≥ 5 odd gcd(4, q + 1) 2E6(q) gcd(3, q + 1)

E7(q) gcd(2, q − 1)

E8(q) 1

Tits [MT11, Theorem 24.17] proved that if M is a simply connected simple linear

algebraic group with Steinberg endomorphism F : M→M, then MF is perfect and

MF/Z(MF ) is simple with the following exceptions: SL2(2), SL2(3), SU3(2), Sp4(2),

G2(2), 2B2(2), 2G2(3) and 2F4(2).

In other words, in the case above, MF = M is quasisimple. We note that there are

some isomorphic groups that arise as both groups of Lie type and as alternating groups.

We shall list some of them here:

A5
∼= PSL2(4) ∼= PSL2(5), PSL3(2) ∼= PSL2(7)

A6
∼= PSL2(9) ∼= Sp4(2)′, PSU3(3) ∼= G2(2)′

A8
∼= PSL4(2), PSU4(2) ∼= Sp4(3).
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Every semisimple element s ∈MF is contained in an F -stable maximal torus of M.

Let M be a linear algebraic group and x ∈ M. We call x regular if dimCM(x) is

minimal amongst elements in M. Let M be a finite group of Lie type and let s ∈ M
be a semisimple element contained in a maximal torus T . Then s is a regular element

of M if CM(s) = T .

Theorem 2.2.7. Let M be a finite simple group of Lie type over a field of odd char-

acteristic p that is not isomorphic to PSL2(q). Then M has an element of order pr

where r 6= p is prime.

Proof. We consider the prime graph of M whose vertices are the primes dividing the

order of M and where two vertices r, s are joined by an edge if and only if M contains

an element of order rs. By [Wil81, Table Ib-e], we have that the size of the connected

component containing p is at least 2, as required.

Almost simple groups of finite groups of Lie type We shall need the sizes of

outer automorphism groups of simple groups of Lie type for some of our arguments.

Recorded below is a table of these sizes.

Table 2.3: Sizes of outer automorphism groups of finite groups of Lie type of simply
connected type

MF |Out(M)| MF |Out(M)|
SL2(q), q = pf gcd(2, q − 1) · f 3D4(q), q

3 = pf f

SLn(q), n ≥ 3, q = pf 2 · gcd(n, q − 1) · f G2(q), q = pf , p 6= 3 f

SUn(q), n ≥ 3, q = pf gcd(n, q + 1) · f G2(q), q = 3f 2 · f
Spin5(q), q = pf 2 · f 2G2(q), q = 3f , f odd f

Spinn(q),n ≥ 3, q = pf gcd(2, q − 1) · f F4(q), q = pf , p 6= 2 f

Sp2n(q), n ≥ 3, q = pf gcd(2, q − 1) · f F4(q), q = 2f 2 · f
Spin+

8 (q), q = pf 3! · gcd(2, q − 1)2 · f 2F4(q), q = 2f , f odd f

Spin+
2n(q), n ≥ 6 even, q = pf 2 · gcd(2, q − 1)2 · f E6(q), q = pf 2 · gcd(3, q − 1) · f

Spin+
2n(q) , n ≥ 5 odd, q = pf gcd(4, q + 1) · f 2E6(q), q

2 = pf gcd(3, q + 1) · f
Spin−2n(q) , n ≥ 4, q2 = pf gcd(4, q + 1) · f E7(q), q = pf gcd(2, q − 1) · f

2B2(q), q = 2f , f odd f E8(q), q = pf f
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2.3 Character theory of finite groups

Let G be a finite group, F a field and n a positive integer. A representation of G over

F of dimension n is a homomorphism from G to the general linear group GLn(F), the

multiplicative group of non-singular n× n matrices over F.

Given a group G and a representation

X : G −→ GLn(F),

we have that X is uniquely determined by its ordinary character

χ : G −→ C, χ(g) = tr(X(g)).

In the scenario above we say X affords χ.

Let X be a representation of G. Then X is reducible if for all g ∈ G, X(g) can written

in the form:

X(g) =

 Y(g) Z(g)

0 W(g)

 ,
where the two diagonal blocks are square. Otherwise X is an irreducible representation.

An irreducible character is a character that is afforded by an irreducible representation.

If χ is a character such that χ =
∑k

i=1 niχi and χ′is are irreducible characters, then

those χi with corresponding ni > 0 are called the irreducible constituents of χ.

The character degree of a character is the value χ(1). Linear characters are characters

such that χ(1) = 1. Let χ, ψ be characters of a group G. Then the inner product of χ

and ψ is defined as:

[χ, ψ] =
1

|G|
∑

g∈G χ(g)ψ(g−1).

We denote by Irr(G) the set of all irreducible characters of G. Let χ ∈ Irr(G). The

kernel of χ, kerχ := {g ∈ G | χ(g) = χ(1)}. Note that kerχ is normal in G for

χ ∈ Irr(G).
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Corollary 2.3.1. [Isa06, Corollary 2.17] Let χ and ψ be characters of G. Then

[χ, ψ] = [ψ, χ] is a non-negative integer. Also [χ, χ] = 1 if and only if χ is irreducible.

Corollary 2.3.2. Let G be a group with commutator subgroup G′. Then G′ 6 kerχ

for a linear character χ of G.

Proof. This follows from [Isa06, Corollary 2.23].

Let Z(χ) := {g ∈ G | |χ(g)| = χ(1)}. Hence for χ ∈ Irr(G), ker(χ) 6 Z(χ). If H is a

subgroup of G and χ is a character of G, then the restriction of χ on H, denoted χH ,

is a character on H such that χH(h) = χ(h) for all h ∈ H.

Lemma 2.3.3. [Isa06, Lemma 2.27] Let χ be a character of G and let Z = Z(χ) and

f = χ(1). Let X be a representation of G which affords χ. Then

(a) Z = {g ∈ G | X(g) = εI for some ε ∈ C}, is a normal subgroup of G;

(b) χZ = fλ for some linear character λ of Z;

(c) Z/ kerχ is cyclic;

(d) Z/ kerχ 6 Z(G/ kerχ).

Moreover, if χ ∈ Irr(G), then

(e) Z/ kerχ = Z(G/ kerχ).

Definition 2.3.4. Let H and K be groups and G = H×K and let ϕ and ϑ be characters

on H and K. Define χ = ϕ× ϑ by χ((h, k)) = ϕ(h)ϑ(k) for h ∈ H and k ∈ K.

Theorem 2.3.5. [Isa06, Theorem 4.21] Let H and K be groups and G = H × K.

Then those characters of the form ϕ× θ where ϕ ∈ Irr(H) and θ ∈ Irr(K) are precisely

the irreducible characters of G.

Lemma 2.3.6. [Isa06, Problem 4.4(a)] Suppose that G = HK with H ⊆ CG(K). Let

χ ∈ Irr(G). Then χH = θ(1)ϕ and χK = ϕ(1)θ for some θ ∈ Irr(H) and ϕ ∈ Irr(K).

Let H 6 G and let ϕ be a character of H. Then ϕG, the induced character on G, is

given by
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ϕG(g) =
1

|H|
∑

x∈G ϕ
◦(xgx−1),

where ϕ◦ is defined by ϕ◦(h) = ϕ(h) if h ∈ H and ϕ◦(y) = 0 if y /∈ H. We say that

χ ∈ Irr(G) is an induced character or an imprimitive character if χ = ϕG for some

ϕ ∈ Irr(H) where H < G. If χ ∈ Irr(G) is not induced from any character of any

proper subgroup of G, we say that χ is a primitive character .

Clifford theory tells us how characters decompose upon restriction to normal subgroups.

Theorem 2.3.7. [Isa06, Theorem 6.2] Let H be a normal subgroup of G and χ ∈
Irr(G). Let θ be an irreducible constituent of χH and suppose that θ1, θ2, . . . , θt are

distinct conjugates of θ in G. Then

χH = e
∑t

i=1 θi

where e = [χH , θ].

Primitive characters restrict to only one irreducible character constituent upon restric-

tion to a normal subgroup.

Lemma 2.3.8. [Isa06, Corollary 6.12] Let G be a finite group and χ ∈ Irr(G) be

primitive. Then for every normal subgroup N of G, χN is a multiple of an irreducible

character of N .

Corollary 2.3.9. [Isa06, Corollary 6.13] Suppose that G is a finite group that has

a faithful primitive character and let A be an abelian normal subgroup of G. Then

A 6 Z(G).

Theorem 2.3.10. [Isa06, Theorem 6.15] Let A be an abelian normal subgroup of G.

Then χ(1) divides |G:A| for all χ ∈ Irr(G).

Let K,L be normal subgroups of G. Then K/L is a chief factor of G if there is no

normal subgroup M of G such that L < M < K.

Theorem 2.3.11. [Isa06, Theorem 6.18] Let K/L be an abelian chief factor of G.

Suppose that θ ∈ Irr(K) is invariant in G. Then one of the following holds:

(a) θL ∈ Irr(L);

28
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(b) θL = eϕ for some ϕ ∈ Irr(L) and e2 = |K:L|;

(c) θL =
∑t

i=1 ϕi where ϕi ∈ Irr(L) are distinct and t = |K:L|.

Proposition 2.3.12. [Isa06, Problem 6.3] Let N be a normal subgroup of G and let

χ ∈ Irr(G) and θ ∈ Irr(N) with [χN , θ] 6= 0. Then the following are equivalent;

(a) χN = eθ with e2 = |G:N |;

(b) χ vanishes on G\N and θ is invariant in G;

(c) χ is the unique constituent of θG and θ is invariant in G.

We say χ and θ above are fully ramified with respect to G/N .

Let N be a normal subgroup of G. Recall that G is a relative M -group with respect to

N if for every χ ∈ Irr(G) there exists H with N 6 H 6 G and σ ∈ Irr(H) such that

σG = χ and σN ∈ Irr(N).

Theorem 2.3.13. [Isa06, Theorem 6.22] Suppose that N is a normal subgroup of G

and G/N is solvable. Suppose, furthermore, that every chief factor of every subgroup

of G/N has non-square order. Then G is a relative M-group with respect to N .

Theorem 2.3.14. [Isa08, Theorem 7.8] Let G be a group of order paqb, where p and

q are primes. Then G is solvable.

Induction of characters is a transitive relation as the result below shows.

Lemma 2.3.15. Let H,K be subgroups of a group G and suppose that ϕ is a character

of H.

(a) If H ⊆ K ⊆ G, then (ϕK)G = ϕG.

(b) If HK = G, then (ϕG)K = (ϕH∩K)K.

Proof. Statement (a) follows from [Hup98, Theorem 17.3] and (b) follows from [Isa06,

Problem 5.2].

The character theory of Frobenius groups is well known.
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Proposition 2.3.16. [Gro11, Proposition 9.1.15] Let G be a Frobenius group with

complement H and Frobenius kernel N .

(a) If 1N 6= ϕ ∈ Irr(N), then ϕG ∈ Irr(G);

(b) Irr(G) = Irr(H) ∪ {ϕG | 1N 6= ϕ ∈ Irr(N)}.

Recall that if p is prime, then a p-group G is an extra-special if its center Z is cyclic of

order p and the quotient group G/Z is a non-trivial elementary abelian p-group. Seitz

[Sei68] classified finite groups with the extremal property that the group has only one

non-linear irreducible character:

Theorem 2.3.17. [Sei68, Theorem] A group G has exactly one non-linear irreducible

character if and only if G is isomorphic to one of the following:

(a) G is an extra-special 2-group;

(b) G is a Frobenius group with an elementary abelian kernel N of order pn for some

prime p and positive integer n, and complement H of order pn − 1.

Theorem 2.3.18. [GGLMNT14, Corollary] Suppose that G is a finite group with

exactly one irreducible character of degree divisible by a prime p. Let P be a Sylow

p-subgroup of G. Either P is a normal subgroup of G or NG(P ) is a maximal subgroup

of G.

2.3.1 Symmetric groups, alternating groups and their covers

Let C be the complex number field. Consider two linear representations of Sλ, λ ` n,

over C. The first linear representation is the identity representation ISλ of Sλ, that is,

ISλ : Sλ → C∗ such that π 7→ 1C∗ .

Let the sgn π denote the sign of a permutation π ∈ Sn (refer to [JK81, p. 9] for

definition). The second linear representation of Sλ, λ ` n, over C is the alternating

representation ASλ of Sλ, that is,

ASλ : Sλ → C∗ such that π 7→ sgn π · 1C∗ .
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2.3 Character theory of finite groups

If µ is another partition of n, then ISλ, ISµ and ASµ induce representations

ISSn
λ , ISSn

µ and ASSn
µ

of Sn.

Theorem 2.3.19. [JK81, Theorem 2.1.3] If α and λ be partitions of n with Sα and Sα′

the Young subgroups corresponding with α and α′, then the induced representations ISSn
λ

and ASSn
α′ have exactly one ordinary irreducible constituent in common. Furthermore,

this irreducible constituent is contained with multiplicity 1 in both ISSn
α and ASSn

α′ .

The representations ISSn
α and ASSn

α′ depend only on the partition α of n, since two Young

subgroups of Sn corresponding to the same partition α′ ` n are conjugate subgroups.

Hence we denote by [α] this uniquely determined irreducible representation constituent

and its equivalence class of representations.

Theorem 2.3.20. [JK81, Theorem 2.1.11] {[α] | α ` n} is the complete set of equiv-

alence classes of ordinary irreducible representations of Sn.

We present the Murnaghan-Nakayama Rule which gives character values for any ele-

ment in Sn and any irreducible character of Sn.

Theorem 2.3.21. Murnaghan-Nakayama Rule [JK81, 2.4.7] If λ is a partition

of n and α = (α1, . . . , αk) is a composition of n, then we have

χλα =
∑

ξ(−1)``(ξ)χ
λ\ξ
α\α1

,

where the sum runs over all rim hooks ξ of λ having α1 cells.

Theorem 2.3.22. [JK81, Theorem 2.5.7] Suppose that α is a partition of n > 1.

(a) If α 6= α′, then [α]An = [α′]An is irreducible.

(b) If α = α′, then [α]An = [α′]An splits into two irreducible and conjugate characters

[α]± of An.

A complete system of equivalence classes of ordinary irreducible characters of An is

therefore
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{[α]An | α 6= α′} ∪ {[α]± | α = α′ ` n}.

We now want to look at the character theory of covers of alternating groups. We refer

to [HH92] for a detailed account.

An irreducible representation R of S̃n is negative if R(z) = −I, where z ∈ Z(Sn).

S̃n may be viewed as the group with generators z, t1, . . . , tn−1 and relations

z2 = 1; ztj = tjz, 1 ≤ j ≤ n− 1;

t2j = z, 1 ≤ j ≤ n− 1;

(tjtj+1)
3 = z, 1 ≤ j ≤ n− 2;

tjtk = ztktj, for |j − k| > 1 and 1 ≤ j, k ≤ n− 1.

(see [HH92, p. 19])

If n > 2, the basic representation Rn of S̃n is the complex representation determined

by writing n = 2m+ 1 or 2m+ 2 for m ≥ 1, and defining

Rn(tk) = (2k)−
1
2 [(k + 1)

1
2Mk − (k − 1)

1
2Mk−1]

for 1 ≤ k < n, where Mk is a matrix of degree 2m and tk is as defined above.

The basic representation Rn is an irreducible character of S̃n ([HH92, Theorem 6.2]).

The basic character χn is the character afforded by the representation Rn.

Let λ = (λ1, λ2, . . . , λl) be a partition of n. The weight , |λ|, of λ is λ1 + λ2 + · · ·+ λl.

The length of λ is l. The partition λ is odd if the number of even parts in λ is odd,

and is even otherwise. Define

P := {λ : λ is a partition of n };

P(n) := {λ ∈ P : |λ| = n};

P◦ := {λ ∈ P : each λi is odd}.

P◦(n) := P(n) ∩ P◦;

D := {λ ∈ P : λi 6= λj if i 6= j};

D(n) := P(n) ∩ D.

The partition λ is strict if its parts are distinct, that is, λ ∈ D. Let G be the class of

triples (G, z, σ), where G is a finite group, z is an element of order 2 in the centre of G
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and σ is a homomorphism from G to Z/2Z with σ(z) = 0. Let R be a representation

of (G, z, σ) ([HH92, Chapter 4]). Then the associate representation Ra is given by

Ra(g) = (−1)σ(g)R(g).

A representation R of (G, z, σ) is self-associate if R is equivalent to Ra. Using [HH92,

8.6], let <λ> denote the unique negative character of S̃n corresponding to λ and let

<λ>a be the associate character of <λ>. We shall present part of [HH92, Theorem 8.6]

in the following result:

Theorem 2.3.23. [HH92, Theorem 8.6] Let n ≥ 5 be an integer. The irreducible

negative representations of S̃n and Ãn are given as follows. (All partitions are strict.)

(a) For each λ in D(n), there is a negative character <λ> of S̃n which is irreducible

in S̃n;

(b) The <λ>, as λ varies over D(n), together with <λ>a when λ is odd, are a complete

non-redundant list of the irreducible negative characters of S̃n;

(c) When λ is odd (<λ> 6=<λ>a), the character <λ> restricts to an irreducible

character for Ãn (which is also the restriction of <λ>a). If λ is even, then

<λ>a=<λ> and the restriction of <λ> to Ãn is a sum of two distinct conjugate

irreducible characters;

(d) The restrictions in (c) give a non-redundant list of the irreducible negative rep-

resentations for Ãn.

We end this section by presenting prime power degree representations of alternating

and symmetric groups. Let fλ be the character degree of an irreducible character

identified by λ in Sn.

Theorem 2.3.24. [BBOO01, Theorem 2.4] Let λ be a partition of n. Then fλ = pr

for some prime p, r ≥ 1, if and only if one of the following occurs:

n = pr + 1, λ = (pr, 1) or (2, 1p
r−1), fλ = pr,
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or we are in one of the following exceptional cases:

n = 4 : λ = (22) fλ = 2

n = 5 : λ = (22, 1) or (3, 2) fλ = 5

n = 6 : λ = (4, 2) or (22, 12) fλ = 32

: λ = (32) or (23) fλ = 5

: λ = (3, 2, 1) fλ = 24

n = 8 : λ = (5, 2, 1) or (3, 2, 13) fλ = 26

n = 9 : λ = (7, 2) or (25, 15) fλ = 33.

Let fλ be the character degree of an irreducible character identified by λ in An.

Theorem 2.3.25. [BBOO01, Theorem 5.1] Let λ be a partition of n. Then fλ = pr

for some prime p, r ≥ 1, if and only if one of the occurs:

n = pr + 1 > 3, λ = (pr, 1) or (2, 1p
r−1), fλ = pr,

or we are in one of the following exceptional cases:

n = 5 : λ = (22, 1) or (3, 2) fλ = 5

: λ = (3, 12) fλ = 3

n = 6 : λ = (4, 2) or (22, 12) fλ = 32

: λ = (32) or (23) fλ = 5

: λ = (3, 2, 1) fλ = 23

n = 8 : λ = (5, 2, 1) or (3, 2, 13) fλ = 26

n = 9 : (7, 2) or (25, 15) fλ = 33.

2.3.2 Deligne-Lusztig Theory for finite groups of Lie type

We refer to [Car85] and [DM91] for basic results on the Deligne-Lusztig Theory for

irreducible characters of finite groups of Lie type. Let M = MF where M is a con-

nected reductive algebraic group over an algebraically closed field K of characteristic

p with Steinberg endomorphism F . Let the pair (M∗, F ∗) be the dual of (M, F ) with

M∗ = (M∗)F
∗
. We have that the set of all irreducible characters of M , Irr(M), can

be written as a disjoint union
⊔
E(M, (s∗)) of Lusztig series corresponding to M∗-

conjugacy classes of semisimple elements s∗ ∈ M∗. If CM∗(s
∗) is connected, then the
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Lusztig series E(M, (s∗)) contains a unique irreducible semisimple character , χs∗ , of

degree |M∗ : CM∗(s
∗)|p′ (If n = pam such that gcd(p,m) = 1. Then the np′ =

n

pa
= m

and np = pa). The characters in the Lusztig series corresponds to M∗-conjugacy classes

of semisimple elements, so χs∗ and χr∗ are equal if and only if s∗ and r∗ are conjugate

elements of M∗. The irreducible characters contained in the Lusztig series E(M, (1∗))

are called unipotent characters.

We may view the Deligne-Lusztig theory as an analogue to the Jordan decomposition

for irreducible characters into semisimple characters and unipotent characters.

Let M be a finite simple group of Lie type in characteristic p distinct from the Tits

group 2F4(2)′. Then M has an irreducible character of degree |M |p, called the Steinberg

character of M and denoted StG. The Steinberg character has the property that St(g) =

0 for all p-singular elements g of M by Theorem 2.4.1 which we state in the next section.

2.4 Zeros of characters

We begin this section with a result of Brauer which gives us a sufficient condition for

a character to vanish on p-singular elements.

Theorem 2.4.1. [Isa06, Theorem 8.17] Let G be a finite group and χ ∈ Irr(G). If

p - |G|/χ(1) for some prime p, then χ(g) = 0 for all p-singular elements g of G.

We say G is of p-defect zero if it has a irreducible character χ satisfying the hypothesis

of Theorem 2.4.1.

Theorem 2.4.2. [MNO00, Theorems 3.4 and Theorem 5.1] [BO04, Theorem 1.2] Let

G be a finite simple group or a symmetric group and let χ ∈ Irr(G) be non-linear. Then

there exists g ∈ G of prime order such that χ(g) = 0.

For finite simple groups of Lie type, it turns out that we can choose four conjugacy

classes with prime order elements as the result below states:

Theorem 2.4.3. [MNO00, Theorem 5.1] Let G be a finite simple group of Lie type.

Then there exist four conjugacy classes of elements of prime order in G such that every

non-linear χ ∈ Irr(G) vanishes on at least one of them.
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Lemma 2.4.4. [Qia07, Lemma 2.2] Let G be a finite group. For any non-linear χ ∈
Irr(G), if υ(χ) ⊆ N for some normal subgroup N of G, then gcd(χ(1), |G : N |) = 1

and Z(χ) 6 N .

Lemma 2.4.5. [Chi99, Proposition 2.7] Let G be a finite non-abelian group. Assume

that every χ ∈ Irr(G) vanishes on at most one conjugacy class. Then G is Frobenius

with a complement of order 2 and an abelian odd-order kernel.

2.4.1 Symmetric groups, alternating groups and their covers

We present a more precise result on zeros of characters of symmetric and alternating

groups.

Theorem 2.4.6. [BO04, Theorem 1.2] Let χ be any non-linear irreducible character

of the symmetric group Sn or the alternating group An. If χ(1) is not a power of 2,

then χ vanishes on some element of odd prime order.

Theorem 2.4.7. [HH92, Theorem 8.7] Let λ ∈ D(n) have length l, and let g ∈ S̃m.

(a) Let λ be odd. If g projects to cycle type λ which is neither in P◦(m) nor equal to

λ, then <λ> (g) = 0.

(b) Let λ be even. If g does not project to a cycle type in P◦(m), then <λ> (g) = 0.

2.4.2 The Special Linear Groups SL2(q), q ≥ 4

The explicit character tables of SL2(q) and PSL2(q) are found in [Dor71, Geh02, Ada02].

We use the notation in [Dor71, Chapter 38]. Let Fq be the finite field of q elements.

By theory, q = pn for some prime p and positive integer n. Let ν be a generator of the

cyclic group F∗q = Fq\{0} and let τ be a generator of F∗q2 , and γ = τ q−1. Put

1 =

 1 0

0 1

 , z =

 −1 0

0 −1

 , c =

 1 0

1 1


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d =

 1 0

ν 1

 , a =

 ν 0

0 ν−1

 , b =

 γ 0

0 γ−1

 .
If q is odd, then every element of SL2(q) is conjugate to one of 1, z, c, cz, d, dz, al for

1 ≤ l ≤ (q − 3)/2, or bm for 1 ≤ m ≤ (q − 1)/2. If q is even, then every element

of SL2(q) = PSL2(q) is conjugate to one of 1, c, al for 1 ≤ l ≤ [(q − 2)/2], or bm for

1 ≤ m ≤ [q/2], where [x] denotes the greatest integer less than or equal to x.

The outer automorphism group of PSL2(q), q = pf , is of order df , d = gcd(2, q− 1). It

is generated by a diagonal automorphism δ and a field automorphism ϕ. The diagonal

automorphism of PSL2(q) is an automorphism induced by conjugation on SL2(q) by

the matrix

M =

 ν 0

0 1


and these automorphisms act on elements of SLn(q) by

 a b

c d

δ =

 a ν−1b

νc d

 and

 a b

c d

ϕ =

 ap bp

cp dp

 .
Lemma 2.4.8. [Whi13, Lemma 3.1] Let q be odd. In SL2(q), the diagonal automor-

phism δ interchanges the conjugacy classes of c and d, interchanges the conjugacy

classes of cz and dz, and fixes all other conjugacy classes.

Lemma 2.4.9. [Whi13, Lemma 3.2] Assume notation as above and let 1 ≤ k < f . In

SL2(q), the automorphism ϕk sends:

(a) the conjugacy class of al to the conjugacy class of ar, where 1 ≤ r ≤ [(q − 2)/2]

and

r ≡ ± lpk (mod q − 1);

(b) the conjugacy class of bm to the conjugacy class of bs, where 1 ≤ s ≤ [q/2] and
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s ≡ ± mpk (mod q + 1);

and fixes all other conjugacy classes.

Theorem 2.4.10. [Dor71, Theorem 38.1] Let G = SL2(q), with q ≥ 5 an odd prime.

Put ε = (−1)(q−1)/2. Let ρ ∈ C be a primitive (q − 1)th root of unity and σ ∈ C a

primitive (q + 1)th root of unity. Then the complex character table of G is

1 z c d al bl

1G 1 1 1 1 1 1

φ q q 0 0 1 −1

χi q + 1 (−1)i(q + 1) 1 1 pil + p−il 0

θj q − 1 (−1)j(q − 1) −1 −1 0 −(σjm + σ−jm)

ξ1
1
2
(q + 1) 1

2
ε(q + 1) 1

2
(1 +

√
εq) 1

2
(1−√εq) (−1)l 0

ξ2
1
2
(q + 1) 1

2
ε(q + 1) 1

2
(1−√εq) 1

2
(1 +

√
εq) (−1)l 0

η1
1
2
(q − 1) −1

2
ε(q − 1) 1

2
(−1 +

√
εq) 1

2
(−1−√εq) 0 (−1)m+1

η2
1
2
(q − 1) −1

2
ε(q − 1) 1

2
(−1−√εq) 1

2
(−1 +

√
εq) 0 (−1)m+1

for 1 ≤ i ≤ (q − 3)/2, 1 ≤ j ≤ (q − 1)/2, 1 ≤ l ≤ (q − 3)/2, 1 ≤ m ≤ (q − 1)/2.

(The columns for the conjugacy classes (zc) and (zd) are missing in this table. These

values are obtained from the relations

χ(zc) =
χ(z)

χ(1)
χ(c), χ(zd) =

χ(z)

χ(1)
χ(d),

for all irreducible characters χ of G.)

Theorem 2.4.11. [Dor71, Theorem 38.2] Let G = SL2(q), with q = 2n. Let ρ ∈ C be

a primitive (q− 1)th root of unity and σ ∈ C a primitive (q+ 1)th root of unity. Then

the complex character table of G is

1 z al bm

1G 1 1 1 1

φ q 0 1 −1

χi q + 1 1 ρil + ρ−il 0

θj q − 1 −1 0 −(σjm + σ−jm)
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for 1 ≤ i ≤ (q − 2)/2, 1 ≤ j ≤ q/2, 1 ≤ l ≤ (q − 2)/2, 1 ≤ m ≤ q/2.

(The columns for the conjugacy classes (zc) and (zd) are missing in this table. These

values are obtained from the same pair of relations shown above.)

Since PSL2(q) = SLn(q)/Z(SL2(q)) = SL2(q)/〈z〉, we may obtain the explicit character

tables of PSL2(q) for odd q as follows:

Theorem 2.4.12. [Geh02, Theorem 4.7] Let G = PSL2(q), with q ≥ 5 an odd prime.

Let ρ ∈ C be a primitive (q − 1)th root of unity and σ ∈ C a primitive (q + 1)th root

of unity.

(a) If q ≡ 1 (mod 4), then the complex character table of G is:

〈z〉 〈z〉c 〈z〉d 〈z〉al 〈z〉a q−1
4 〈z〉bm

1G 1 1 1 1 1 1

φ q 0 0 1 1 −1

χi q + 1 1 1 ρil + ρ−il ρi
q−1
4 + ρ−i

q−1
4 0

θj q − 1 −1 −1 0 0 −(σjm + σ−jm)

ξ1
1
2
(q + 1) 1

2
(
√
q + 1) 1

2
(1−√q) (−1)l (−1)

q−1
4 0

ξ2
1
2
(q + 1) 1

2
(1−√q)) 1

2
(
√
q + 1) (−1)l (−1)

q−1
4 0

where i = 2, 4, 6, . . . , (q − 5)/2, j = 2, 4, 6, . . . , (q − 1)/2, 1 ≤ l ≤ (q − 5)/4,

1 ≤ m ≤ (q − 1)/4.

(b) If q ≡ −1 (mod 4), then the complex character table of G is:

〈z〉 〈z〉c 〈z〉d 〈z〉al 〈z〉bm 〈z〉b q+1
4

1G 1 1 1 1 1 1

φ q 0 0 1 −1 −1

χi q + 1 1 1 ρil + ρ−il 0 0

θj q − 1 −1 −1 0 −(σjm + σ−jm) −(σj
q+1
4 + ρ−j

q+1
4 )

η1
q−1
2

√
−q−1
2

−1
2
(1 +

√
−q) 0 (−1)m+1 (−1)

q+1
4

+1

η2
q−1
2

1−√q
2

1
2
(
√
q + 1) 0 (−1)m+1 (−1)

q+1
4

+1

where i = 2, 4, 6, . . . , (q − 3)/2, j = 2, 4, 6, . . . , (q − 3)/2, 1 ≤ l ≤ (q − 3)/4,

1 ≤ m ≤ (q − 3)/4.
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2.4 Zeros of characters

2.4.3 Special Linear Groups

A famous result of Zsigmondy is given below (see for example [Zsi92] or [HB82, Theorem

8.3]). A new proof of this result has been presented in [Roi97].

Theorem 2.4.13. (Zsigmondy’s Theorem) Let q, n be integers greater than 1.

Then except in the cases n = 2, q = 2a − 1 and n = 6, q = 2, there is a prime l

with the following properties:

(a) l divides qn − 1;

(b) l does not divide qi − 1 whenever 0 < i < n;

(c) l does not divide n.

Let q, n ≥ 2 be integers. Suppose that (q, n) 6= (2, 6) and if n = 2 assume that q + 1

is not a power of 2. Then by Zsigmondy’s Theorem 2.4.13, a Zsigmondy prime divisor

l(n) always exists. A Zsigmondy prime divisor is defined as a prime l(n) such that

l(n) | qn − 1 but l(n) -
∏n−1

i=1 (qi − 1).

The table below shows Zsigmondy primes li for the orders of corresponding tori Ti.

Note that elements of order li in the torus Ti are regular elements. It was shown in

[MNO00] that almost all characters of simple groups vanish on elements of order l1 or

l2 whenever l1 and l2 exist.

Table 2.4: Tori and Zsigmondy primes for classical groups of Lie type

M |T1| |T2| l1 l2

An (qn+1 − 1)/(q − 1) qn − 1 l(n+ 1) l(n)

2An (n ≥ 3 odd) (qn+1 − 1)/(q + 1) qn + 1 l(n+ 1) l(2n)

2An (n ≥ 2 even) (qn+1 + 1)/(q + 1) qn − 1 l(2n+ 2) l(n)

Bn,Cn (n ≥ 3 odd) qn + 1 qn − 1 l(2n) l(n)

Bn,Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) l(2n) l(2n− 2)

Dn (n ≥ 5 odd) qn − 1 qn−1 + 1)(q + 1) l(n) l(2n− 2)

Dn (n ≥ 4 even) (qn−1 − 1)(q − 1) (qn−1 + 1)(q + 1) l(n− 1) l(2n− 2)

2Dn (n ≥ 4) qn + 1 (qn−1 + 1)(q − 1) l(2n) l(2n− 2)
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2.4 Zeros of characters

Proposition 2.4.14. Let G = PSL3(q), q ≥ 2. Then every non-linear irreducible

character of G vanishes either on an element of Zsigmondy prime order l1 or l2, on an

involution, or on a regular unipotent element of prime order.

Proof. This follows from [MNO00, Lemmas 5.3 and 5.4].

Theorem 2.4.15. Let G = PSLn(q), with n ≥ 2, q ≥ 2 and (n, q) /∈ {(2, 2), (2, 3)}.
Let Ci, i = 1, 2 be conjugacy classes of regular elements of G in Ti with the following

properties:

(a) If n is even, then elements in C1 have order (qn/2 + 1)/ gcd(2, q− 1) and those in

C2 have order (qn−1 − 1)/ gcd(n, q − 1);

(b) If n is odd, then elements in C1 have order (qn − 1)/((q − 1) gcd(n, q − 1)) and

those in C2 have order q(n−1)/2 + 1.

Then every non-linear character χ ∈ Irr(G) that is not the Steinberg character vanishes

either on C1 or on C2.

Let χ ∈ Irr(G) be unipotent and not the Steinberg character. If Zsigmondy primes l1

and l2 exist, then χ is of l1-defect zero or l2-defect zero.

Proof. This follows from the proof of [MSW94, Theorem 2.1].

2.4.4 Special Unitary Groups

Proposition 2.4.16. Let G = PSU3(q), q ≥ 2. Then every non-linear χ ∈ Irr(G)

vanishes either on an element of Zsigmondy prime order l1 or l2, an involution, or on

a regular unipotent element.

Proof. This follows from [MNO00, Lemmas 5.3 and 5.4].

Theorem 2.4.17. Let G = PSUn(q), with n ≥ 2, q ≥ 2 and (n, q) /∈ {(2, 2), (2, 3)}.
Let Ci, i = 1, 2 be conjugacy classes of regular elements of G in Ti with the following

properties:

(a) If n is even, then elements in C1 have order (qn/2 + (−1)n/2)/ gcd(2, q − 1) and

those in C2 have order (qn−1 + 1)/ gcd(n, q + 1);

41



2.5 Imprimitive characters that vanish on one conjugacy class

(b) If n is odd, then elements in C1 have order (qn + 1)/((q + 1) gcd(n, q + 1)) and

those in C2 have order q(n−1)/2 + (−1)(n−1)/2.

Then every non-linear character χ ∈ Irr(G) that is not the Steinberg character vanishes

either on C1 or on C2.

Let χ ∈ Irr(G) be unipotent and not the Steinberg character. If Zsigmondy primes l1

and l2 exist, then χ is of l1-defect zero or l2-defect zero.

Proof. This follows from the proof of [MSW94, Theorem 2.2].

2.4.5 Symplectic Groups and Orthogonal Groups

Theorem 2.4.18. Let G ∈ {Sp2n(q) | n ≥ 2} ∪ {PSO2n+1(q) | n ≥ 3 and q odd} ∪
{PSO−2n(q) | n ≥ 4} ∪ {PSO+

2n(q) | n ≥ 5, n odd}. Suppose that Ci is a conjugacy

class of regular elements in Ti, i = 1, 2. Then every non-linear character χ ∈ Irr(G)

that is not the Steinberg character vanishes either on regular elements of C1 or regular

elements of C2.

Proof. This follows from [MSW94, Theorems 2.3-2.6]

2.5 Imprimitive characters that vanish on one con-

jugacy class

We now look at finite groups with an imprimitive character that vanish on one con-

jugacy class. Let G be a finite group and let χ ∈ Irr(G) be imprimitive such that

χ = ϕG for some ϕ ∈ Irr(H) where H is a proper subgroup of G. Let N := HG denote

the largest normal subgroup G contained in H. Then G/N is a transitive permutation

group on the set Ω of right cosets of H/N in G/N with point stabilizer H/N . If x ∈ G
is a derangement, then ϕG(x) = 0 by the definition of an imprimitive character. If χ is

an imprimitive character that vanishes on one conjugacy class, then G/N is a transitive

permutation group that has one conjugacy class of derangements. By Theorem 2.1.10,

G/N is a primitive permutation group with one conjugacy class of derangements. This
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2.5 Imprimitive characters that vanish on one conjugacy class

means that H is a maximal subgroup of G. The result below now follows by [BTV15,

Theorem 1.6]:

Theorem 2.5.1. [BTV15, Theorem 1.6] Let G be a finite group and let χ ∈ Irr(G).

Suppose that χ = ϕG for some ϕ ∈ Irr(H), where H is a subgroup of G with nυ(χ) = 1.

Then H is a maximal subgroup of G. Let N = HG. Then one of the following holds:

(a) G is a Frobenius group with an abelian odd-order kernel H = G′ of index 2;

(b) G/N is a 2-transitive Frobenius group with an elementary abelian kernel M/N of

order pn for some prime p and integer n > 1, and a complement H/N of order

pn − 1. Moreover, M ′ = N and one of the following holds:

(i) M is a Frobenius group with kernel M ′ and pn = p > 2;

(ii) M is a Frobenius group with kernel K / G such that G/K ∼= SL2(3) and

M/K ∼= Q8;

(iii) M is a Camina p-group;

(c) G/N ∼= PSL2(8):3, H/N ∼= D18:3 and N is a nilpotent 7′-group;

(d) G/N ∼= A5, H/N ∼= D10 and N is a 2-group.
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Chapter 3

Primitive characters that vanish on

one conjugacy class

In this chapter we shall present Theorems 1.0.3, 1.0.4 and 1.0.5 which are restated

bearing the numbering of Chapter 3.

Theorem 3.0.1. Let G be a finite non-solvable group. Suppose that χ ∈ Irr(G) is

primitive, nυ(χ) = 1 and υ(χ) = C. Let K = kerχ, Z = Z(χ). Then there exists a

normal subgroup M of G such that Z < M , C ⊆M \Z and M/Z is the unique minimal

normal subgroup of the group G/Z. Moreover, one of the following holds:

(a) G/Z is almost simple and M/K is quasisimple;

(b) G/Z is a Frobenius group with an abelian kernel M/Z of order p2n, M/K is an

extra-special p-group and Z/K is of order p.

Recall that a faithful irreducible character χ of a finite group M has property (?) if

(a) χ vanishes on elements of the same p-power order;

(b) the number of conjugacy classes that χ vanishes on is at most the size of the

outer automorphism group of M/Z(M);

(c) if Z(M) is non-trivial, then Z(M) is cyclic and of p-power order.

Theorem 3.0.2. Let M be a quasisimple group. Suppose that M has a faithful irre-

ducible character χ such that (?) holds. Then M is one of the following:
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3.1 Preliminaries

(a) M ∼= PSL2(5), χ(1) = 3 or χ(1) = 4;

(b) M ∼= SL2(5), χ(1) = 2 or χ(1) = 4;

(c) M ∼= 3·A6, χ(1) = 9;

(d) M ∼= PSL2(7), χ(1) = 3;

(e) M ∼= PSL2(8), χ(1) = 7;

(f) M ∼= PSL2(11), χ(1) = 5 or χ(1) = 10;

(g) M ∼= PSL2(q), χ(1) = q, where q ≥ 5;

(h) M ∼= PSU3(4), χ(1) = 13;

(i) M ∼= 2B2(8), χ(1) = 14.

Theorem 3.0.3. Let G be a finite non-solvable group. Then χ ∈ Irr(G) is faithful,

primitive and nυ(χ) = 1 if and only if G is one of the following groups:

(a) G ∼= PSL2(5), χ(1) = 3 or χ(1) = 4;

(b) G ∼= SL2(5), χ(1) = 2 or χ(1) = 4;

(c) G ∈ {A6:22, A6:23, 3·A6:23}, χ(1) = 9 for all such χ ∈ Irr(G);

(d) G ∼= PSL2(7), χ(1) = 3;

(e) G ∼= PSL2(8):3, χ(1) = 7;

(f) G ∼= PGL2(q), χ(1) = q, where q ≥ 5;

(g) G ∼= 2B2(8):3, χ(1) = 14.

3.1 Preliminaries

In this section we shall present some number theory results needed in subsequent

sections.

Lemma 3.1.1. If 2a − 1 = q, where q is a power of a prime, then q is a prime.
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Proof. This follows from [HB82, IX, Lemma 2.7].

Lemma 3.1.2. Let p be a prime and f a positive integer. Then the following statements

hold:

(a) If q = 22f+1 > 8, then f + 1 < (q − 2)/2.

(b) If q = pf > 32, then 2f + 1 < (q − 7)/4.

(c) If q = pf > 11, then 6f + 1 < (q2 + q − 2)/9.

(d) If q = pf > 13, then 6f + 1 < (q2 − q − 2)/9.

Proof. We shall prove these results by induction on f > 1. For (a) assume that the

statement is true for f = k, that is, if qk = 22k+1 > 8, then k + 1 < (qk − 2)/2. If

qk+1 = 22(k+1)+1 = 4qk > 8, then (k + 1) + 1 < (qk − 2)/2 + 1 = qk/2 < (4qk − 2)/2 =

(qk+1 − 2)/2.

For (b) since the largest f arises in the case when p = 2, it is sufficient to prove the

statement when p = 2. Assume that if qk = 2k > 32, then 2k + 1 < (qk − 7)/4. Then

qk+1 = 2k+1 = 2 · 2k = 2qk implies 2(k + 1) + 1 < (qk − 7)/4 + 2 = qk/4 − 1/4 <

qk/2− 7/4 = (2qk − 7)/4 = (qk+1 − 7)/4 as required.

For (c) let q = 2f . Assume that if qk = pk > 11, then 6k+ 1 < (q2k + q−k−2)/9. Then

qk+1 = 2k+1 = 2qk > 11, 6(k + 1) + 1 < (q2k + qk − 2)/9 + 6 = q2k/9 + qk/9 + 52/9 <

4q2k/9 + 2qk/9 + 52/9 = (q2k+1 + qk+1 − 2)/9 as required.

For (d) let p = 2 and assume that if qk = 2k > 13, then 6k + 1 < (q2k − qk − 2)/9.

Then 6(k + 1) + 1 < (q2k − qk − 2)/9 + 6 = (q2k − qk + 52)/9 < 2(q2k − qk − 1)/9 <

(4q2k − 2qk − 2)/9 < q2k+1 − qk+1 − 2)/9 and the result follows.

Lemma 3.1.3. [Wak08, Lemma 3.1.1] Let q = pf for some prime p and positive

integer f . Then the number q2 + q + 1 cannot be written in the form lm with l prime

and m > 1. The number q2 − q + 1 is of the form lm with l prime and m > 1, only for

q = 19.

Lemma 3.1.4. Let q = pf for some prime p and positive integer f . Suppose that a

and b are positive integers and c is a non-negative integer.

(a) If q − 1 = 2a3b and q + 1 = 2c, then q = 3 or 7;
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(b) If q − 1 = 2a and q + 1 = 2a3b, then q = 3, 5 or 17;

(c) If q − 1 = 2a and q + 1 = 2b5c, then q = 3 or 9;

(d) If q − 1 = 2a5b and q + 1 = 2c, then q = 3.

Proof. (a) If b = 0, then q − 1 = 2a and since q + 1 = 2c, we have that q = 3. If

2 = (q + 1) − (q − 1) = 2c − 2a3b = 2a(2c−a − 3b), then a = 1 and 2c−1 − 3b = 1, that

is, 3b + 1 = 2c−1. By Lemma 3.1.1, b = 1 and so q = 7.

(b) If b = 0, then q = 3. Otherwise 2 = 2a(3b − 2c−a) and so a = 1 and 3b − 1 = 2c−a.

By Zsigmondy’s Theorem 2.4.13, there is a Zsigmondy prime l | (3b − 1) except when

b ≤ 2. If b = 1, then q = 5 and if b = 2, then q = 17.

(c) If c = 0, then q = 3. If c ≥ 1, then a > b. Now 2 = 2b5c− 2a = 2b(5c− 2a−b). Since

b ≥ 1, we have that b = 1 and 5c − 2a−b = 1, that is, 5c − 1 = 2a−1. By Zsigmondy’s

Theorem 2.4.13, there exists a Zsigmondy prime l | (5c − 1) unless c = 1. Hence

q + 1 = 10 and so q = 9.

(d) If b = 0, then q = 3. If b ≥ 1, then 2 = 2c − 2a5b = 2a(2c−a − 5b). Hence a = 1 and

2c−1 − 5b = 1 which implies that 5b + 1 = 2c−1. By Lemma 3.1.1, b = 1 which yields

q = 11 as the only possibility. This is a contradiction since q + 1 = 12 is not a power

of 2.

Theorem 3.1.5. Let M be a simple group. Then M has an element of order 2r for

some odd prime r except when:

(a) M ∼= 2B2(q), q = 22f+1;

(b) M ∼= PSL2(q), q ≥ 4;

(c) M ∼= PSL3(4).

Proof. This follows from [Suz61, III, Theorem 5].

Lemma 3.1.6. [Bla94, Theorem 1] Assume that G is a quasisimple group and let

z ∈ Z(G). Then one of the following holds:

(a) |z| = 6 and G/Z(G) ∼= A6,A7,Fi22,PSU6(2) or 2E6(2);

(b) |z| = 6 or 12 and G/Z(G) ∼= PSL3(4),PSU4(3) or M22;
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(c) |z| = 2 or 4, G/Z(G) ∼= PSL3(4), and Z(G) is non-cyclic;

(d) z is a commutator.

Lemma 3.1.7. Suppose that a finite group G has a faithful irreducible character χ

such that nυ(χ) = 1 and υ(χ) = C, with C ⊆ K \ L, K/L abelian chief factor of G.

Then L = Z(G) has order p, K is an extra-special p-group and χ is primitive.

Proof. This follows from [DRB07, Propositions 1 and 4].

Lemma 3.1.8. Let G be a finite group with [x, y] ∈ Z(G) for some x, y ∈ G. If

χ ∈ Irr(G) is faithful with χ(x) 6= 0, then [x, y] = 1.

Proof. We use the argument in [MNO00, Lemma 2.1]. Suppose that z = [x, y] 6= 1.

Then xz = xy and χ(x) = χ(xy) = χ(xz) = χ(x)λ(z), where λ ∈ Irr(Z(G)) such that

χZ(G) = χ(1)λ. Dividing by χ(x), we have 1 = λ(z). On the other hand, z 6= 1 implies

that λ(z) 6= 1 since λ is faithful. The result follows from this contradiction.

Lemma 3.1.9. Let G be a finite non-solvable group. Let χ be a faithful primitive

irreducible character of G such that nυ(χ) = 1. Put υ(χ) = C and Z = Z(G). Then:

(a) there exists a normal subgroup M of G such that Z < M , C ⊆ M\Z and M/Z

is the unique minimal normal subgroup of the group G/Z.

Let N be a normal subgroup of G.

(b) If N ∩ C = ∅, then N 6 Z;

(c) If χN is reducible, then N 6 Z. If χN is irreducible, then C ⊆ N and M 6 N .

Proof. We first show (b) and the first part of (c). Note that since N is a normal

subgroup of G either N ∩C = ∅ or C ⊆ N . For (b), if N ∩C = ∅, then since χ vanishes

on one conjugacy class, namely C, we have that χ does not vanish on N . Since χ is

primitive, χN = eψ, for some ψ ∈ Irr(N) and positive integer e by Lemma 2.3.8. By

Burnside’s Theorem, the only characters which do not vanish on any conjugacy class

are the linear characters, so ψ(1) = 1. Using Corollary 2.3.2, N ′ 6 kerψ 6 kerχ = 1.

Hence N is an abelian normal subgroup and since χ is faithful and primitive, N 6 Z

by Corollary 2.3.9 and (b) follows.
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If χN is reducible, then [χN , χN ] ≥ 2 using Corollary 2.3.1. By Theorem 1.0.10, we

have 2 ≤ [χN , χN ] ≤ 1 + |C\N |
|N | which implies that C\N is not empty. Since N is normal

in G we deduce that C ∩N = ∅. This means that N 6 Z by (b). Hence the first part

of (c) holds.

We now prove (a). Choose M / G such that M/Z is a minimal normal subgroup of

G/Z. If C *M , then C ∩M = ∅ and M 6 Z by (b), a contradiction. Thus C ⊆M \Z.

Suppose that M/Z is not unique and let M1/Z be another minimal normal subgroup

of G/Z. Then C ⊆M1 by using a similar argument as above, and so C ⊆M ∩M1 = Z.

But this is a contradiction since C cannot be contained in Z. Hence M/Z is unique

and (a) follows.

To establish the last part of (c), suppose that χN is irreducible and N ∩ C = ∅. Then

N 6 Z by (b). Thus N is abelian and χ is linear contradicting the fact that χ

vanishes on C. It follows that C ⊆ N . We claim that cz ∈ C for all z ∈ Z, c ∈ C.
Suppose that X is a representation affording χ. Then X is a scalar representation

on Z and X(z) is a scalar of the form λI by Lemma 2.3.3(a). Evaluating, we get

χ(cz) = tr(X(cz)) = tr(λX(c)) = λχ(c) = 0, that is, cz ∈ C. We have that Z < N and

N/Z is a normal subgroup of G/Z. By (a), M/Z is the only minimal normal subgroup

of G/Z, implying that M/Z 6 N/Z, that is, M 6 N and the result follows.

Lemma 3.1.10. Let G be a finite group. Let χ be a faithful irreducible character of

G such that nυ(χ) = 1. Put υ(χ) = C and Z = Z(G). If Z is non-trivial, then every

non-trivial z ∈ Z is a commutator. Moreover, z = [x, y] for some x, y ∈ C and Z is

cyclic of prime power order.

Proof. Let Z be non-trivial. We show that every non-trivial element z of Z is a

commutator. Now cz ∈ C for c ∈ C by Lemma 3.1.9. This means there exists g ∈ G
such that cz = g−1cg and therefore z = c−1g−1cg as required. To prove the lemma’s

last assertion, suppose that z is non-trivial and z = [x, y] = x−1y−1xy, where x, y ∈ G
and x /∈ C. By Lemma 3.1.8, z = [x, y] = 1, a contradiction. Hence the result follows.

We know that Z is cyclic by Lemma 2.3.3(d). We may assume that c ∈ C is of order

pr for some positive integer r using Theorem 2.4.2. Then zp
r

= cp
r
zp

r
= (cz)p

r
=

(g−1cg)p
r

= g−1cp
r
g = 1 and so Z is of prime power order.
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3.2 A reduction theorem

In this section we reduce our main problem to almost simple and quasisimple cases. In

the following proposition we follow the method of proof employed in Lemma 2.3 and

Theorem 1.1 of [Qia07] with χ primitive.

Proposition 3.2.1. Under the hypothesis and notation of Lemma 3.1.9, suppose fur-

ther that M/Z is abelian. Then G/Z is a Frobenius group with an abelian kernel M/Z

of order p2n for some prime p and n ∈ N, M is an extra-special p-group and Z is of

order p.

Proof. There exists a normal subgroup M of G such that C ⊆M\Z by Lemma 3.1.9(a).

If χM is reducible, then M 6 Z by Lemma 3.1.9(b). This contradicts the choice of

M . Hence χM is irreducible. By Lemma 2.3.3(c), χZ is reducible since χ is non-linear.

Thus M is an extra-special p-group with Z of order p by Lemma 3.1.7.

Using Theorem 2.3.11 we deduce that χZ = fϕ, where f 2 = |M/Z| = p2n for some

positive integers f and n and linear character ϕ of Z. It follows that χ(1) = fϕ(1) =

f = pn and hence χ(1) is a prime power. It follows from Lemma 2.4.4 that p - |G:M |
and hence M is the unique Sylow p-subgroup of G.

Now we show that G/Z = G is a Frobenius group with kernel M/Z = M . Suppose

that |CM(x)| > 1 for some non-trivial p′-element x of G. Let Y = 〈x〉M , T =

[M, 〈x〉] with Y = 〈x〉M . Then Y
′

= [M〈x〉,M〈x〉] = [M,M〈x〉][〈x〉,M〈x〉] =

[M,M ][〈x〉,M ][〈x〉,M ][〈x〉, 〈x〉] = [M, 〈x〉] = T since [M,M ] = 1, [〈x〉, 〈x〉] = 1.

We claim that T = Y
′
< M . Since 〈x〉M is a semidirect product of 〈x〉 and M , 〈x〉 acts

via automorphisms on M . By Theorem 2.1.3 we have M = CM(〈x〉)× [M, 〈x〉] because

(|M |, |〈x〉|) = 1. Since CM(x) is non-trivial, it follows that Y
′
< M as required.

Let χM = ρ and ψ = χY so that ρ = χM = ψM , and let δ be an irreducible constituent

of χT . Observe that M/Z is an abelian chief factor of G and ρ = χM is irreducible, so

it is G-invariant. Moreover, ρZ = χZ = χ(1)µ for some G-invariant µ ∈ Irr(Z). Using

Theorem 2.3.11, we can see that ρ is fully ramified in M/Z and by Proposition 2.3.12,

ρ vanishes on M\Z. Note that Z 6 T . Thus ρ vanishes on M\T . It then follows

that ψ(1) = ρ(1) > δ(1). Note that Y/T is abelian, hence every chief factor of every

subgroup of Y/T has non-square order. Also T ≤M is solvable.
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By Theorem 2.3.13, Y is a relative M -group with respect to T . We have that ψ = λY ,

where λ ∈ Irr(B), T < B 6 Y , and λT = δ. We now show that B < Y . Suppose that

Y = B. Whence ρT is irreducible. Then ρT = χT = δ, which is a contradiction since

ρ(1) > δ(1) by the argument in the paragraph above. Hence B < Y .

Let C1 be the on which ψ vanishes on. It follows that Y \B ⊆ C1 ⊆ C ⊂ M . Thus

Y \B ⊆M , that is, M ∪B = Y , a contradiction since M and B are proper subgroups

of Y . Thus CM(x) is trivial for any non-trivial p′-element x of G. Thus CM(m) 6 M

for all non-trivial m ∈ M . By Theorem 2.1.15, G/Z is a Frobenius group with kernel

M/Z.

Finally, we show that M < G. If M = G, that is, if Z is a maximal normal subgroup

of G, then G/Z is simple and abelian. Hence G/Z is cyclic, whence G is abelian, a

contradiction since χ is non-linear. Hence the result follows.

Recall thatG∞ denotes the solvable residual of a groupG, the smallest normal subgroup

N of G such that G/N is solvable.

Proposition 3.2.2. Let G be a finite non-solvable group. Let χ be a faithful primitive

irreducible character of G such that nυ(χ) = 1. Put υ(χ) = C and Z = Z(G). Suppose

that M is a normal subgroup of G such that Z < M and M/Z is a non-abelian minimal

normal subgroup of G/Z. Then G/Z is almost simple and M is quasisimple.

Proof. By Lemma 3.1.10, we may assume that Z is a p-group and all elements in C are

p-elements. We claim that M is perfect. If χM ′ is reducible, then M ′ 6 Z by Lemma

3.1.9(c). This implies that M is solvable, contradicting the hypothesis that M/Z is non-

abelian. Hence χM ′ is irreducible and it follows that M 6 M ′ using Lemma 3.1.9(c).

Thus M is perfect as claimed. Since M/Z is a non-abelian chief factor of G, we may

write M/Z = T1/Z × T2/Z × · · · × Tk/Z, where the Ti/Z are isomorphic non-abelian

simple groups.

Suppose that k = 1. Note that M is quasisimple because M/Z = T1/Z is simple and

M is perfect. If M = G, then the result follows. Suppose that M < G. We first

claim that there exists a maximal subgroup H of G such that C * H. Otherwise C is

contained in every maximal subgroup of G, that is, C ⊆ Φ(G), the Frattini subgroup

of G. We infer from Lemma 3.1.9, that M ≤ Φ(G), contradicting the hypothesis that

M is non-abelian since Φ(G) is nilpotent. Hence our claim is true. We conclude that
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there exists a maximal subgroup H of G such that C * H. Since HG is a normal

subgroup of G, C ∩HG = ∅ or C ⊆ HG. Thus C ∩HG = ∅ because C * H. It follows

that H/HG is a maximal subgroup of G/HG, G/HG is a primitive permutation group

on the right cosets of H/HG in G/HG; and HG 6 Z by Lemma 3.1.9(b). Suppose that

HG 6= Z. Since Z/HG is an abelian normal subgroup of G/HG, we have that G/HG has

an abelian minimal normal subgroup, S/HG, which is central in G/HG. By Theorem

2.1.5, CG/HG(S/HG) = G/HG = S/HG and so G = Z, which implies that χ is linear

contradicting the fact that χ vanishes on C by Burnside’s Theorem. Hence HG = Z.

If H = Z, then G/Z is simple. Let xH ∈ G/H be a non-trivial element of G/H. Then

〈x〉H is a subgroup of G/H and since H < 〈x〉H, G = 〈x〉H, that is, G/H is cyclic.

Since H = Z, we have that G is abelian, a contradiction. Hence Z 6= H.

Since M/Z is the unique minimal normal subgroup of G/Z, it follows that G/Z is an

almost simple group with socle M/Z by Theorem 2.1.6.

Now we assume that k ≥ 2 and seek for a contradiction.

Assume that Z = {1G}. Then M = T1×T2×· · ·×Tk. Since χM is irreducible, we have

that χM = θ1× θ2×· · ·× θk where θi ∈ Irr(Ti). Clearly θ1 is non-linear. Let ai ∈ T1 be

such that θ1(a1) = 0, and let a2 ∈ T2 be a p′-element. We have χ(a1) = χ(a1a2) = 0.

This implies that a1, a1a2 ∈ C are p-elements, a contradiction.

Assume that |Z| > 1 and each T∞i is simple. Note that Ti/Z is simple, whence

Ti = T∞i Z = T∞i × Z.

Then M = (T∞1 T∞2 · · ·T∞k )× Z is not perfect, a contradiction.

Assume that |Z| > 1 and T∞i is not simple for some i. We may assume that T∞1 is not

simple. Now T∞1 is quasisimple since T∞1 is perfect and

T∞1 /Z(T∞1 ) ∼= T∞1 /(Z ∩ T∞1 ) ∼= T∞1 Z/Z = T1/Z

is simple. Now Z(T∞1 ) = T∞1 ∩ Z = 〈z1〉 > {1G}, for some p-element z1 ∈ Z, noting

that Z is a cyclic p-group. We claim that z1 is a commutator in T∞1 . If not, then

by Lemma 3.1.6, T∞1 must be one of the groups in cases (a), (b), (c). Since z1 is of

prime power order, this rules out cases (a) and (b). But Z(T∞1 ) is cyclic so case (c)

does not hold, a contradiction. Thus by Lemma 3.1.10, z1 = [x, y] for some x, y ∈ T∞1 .

Lemma 3.1.8 implies that x, y ∈ C ∩T∞1 . Now let s2 ∈ T \Z be a nontrivial p′-element.
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Applying Lemma 3.1.8 again, we see that [x, s2] = [y, s2] = 1G. In particular, ys2 is

not a p-element and so ys2 /∈ C. This also implies, by Lemma 3.1.8, that [x, ys2] = 1G.

However, since [x, s2] = [y, s2] = 1G, we have [x, ys2] = [x, y] = z1, and this leads to

the contradiction z1 = 1G. Now the proof is complete.

Theorem 3.2.3. Let G be a finite non-solvable group. Suppose that χ ∈ Irr(G) is

primitive, nυ(χ) = 1 and υ(χ) = C. Let K = kerχ, Z = Z(χ). Then there exists a

normal subgroup M of G such that Z < M , C ⊆M \Z and M/Z is the unique minimal

normal subgroup of the group G/Z. Moreover, one of the following holds:

(a) G/Z is almost simple and M/K is quasisimple;

(b) G/Z is a Frobenius group with an abelian kernel M/Z of order p2n, M/K is an

extra-special p-group and Z/K is of order p with K non-solvable.

Proof. Note that C is a conjugacy class of G/K, χ is faithful on G/K and Z/K =

Z(G/K) by Lemma 2.3.3(f). Moreover, χ ∈ Irr(G/K) is primitive, faithful and van-

ishes on one conjugacy class C. If G/K is solvable, that is, M/Z is abelian, then by

Proposition 3.2.1, (b) holds. Otherwise G/K is non-solvable. Therefore the result

follows from Proposition 3.2.2 in the case where M/Z is non-abelian.

3.3 Quasisimple groups with a character vanishing

on elements of the same order

In this section we prove Theorem 3.0.2.

Let m,n pe positive integers. Then by m||n, we mean that m|n but m2 - n. If l > 2

not dividing q, the multiplicative order of q modulo l is denoted by dl(q). Below is a

recent result of Lübeck and Malle [LM16]:

Theorem 3.3.1. [LM16, Theorem 1] Let l > 2 be a prime and M a finite quasisimple

group of l-rank at least 3. Then for any non-linear character χ ∈ Irr(M) there exists an

l-singular element g ∈M with χ(g) = 0, unless either M is of Lie type in characteristic

l, or l = 5 and one of the following hold:

(a) M ∼= PSL5(q), 5||(q − 1) and χ is unipotent;
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(b) M ∼= PSU5(q), 5||(q + 1) and χ is unipotent;

(c) M ∼= Ly and χ(1) ∈ {48174, 11834746};

(d) M ∼= E8(q) with q odd, dl(q) = 4 and χ is one of the characters in the Lusztig

series of type D8.

3.3.1 Sporadic Groups

Using the Atlas [CCNPW85] we have the following result:

Theorem 3.3.2. Let M be a quasisimple group such that M/Z(M) is a sporadic simple

group. Then every irreducible non-trivial character of M fails to satisfy (?).

3.3.2 Alternating groups

Firstly we consider our problem when the center Z(M) is trivial, i.e., when M is an

alternating group. Recall that λ is a partition of n and χλ is an irreducible character

of Sn or An corresponding to λ. We require the following results:

Proposition 3.3.3. Let M = An or Sn, n > 8, and let χ ∈ Irr(M). Then χ(g) = 0

for some g ∈ M of even order. Moreover, if the degree of χ is a power of 2, we can

choose g ∈M whose order is 4 such that χ(g) = 0.

Proof. The first assertion follows from the proof of [LMS16, Proposition 4.3]. Now

suppose that the degree of χ is a power of 2. By Theorems 2.3.24 and 2.3.25, χλ(1) = 2r,

where λ = (2r, 1) or λ = (2, 12r−1), and n = 2r + 1. Now using the Murnaghan-

Nakayama Rule 2.3.21 we shall give the appropriate choices for g.

Either n ≡ 1 (mod 4) or n ≡ 3 (mod 4). If n ≡ 3 (mod 4), then using the proof of

[DPSS09, Proposition 2.4] we have g = (4, 2(n−5)/2, 1). If n ≡ 1 (mod 4), then take

g = (42, 2(n−9)/2, 1).

Theorem 3.3.4. Let M = An, n ≥ 5. If (?) holds, then M ∼= A5 or A6.

Proof. Using the Atlas [CCNPW85] we infer that the only alternating groups with the

desired property are A5 and A6 when n ≤ 13. Suppose that n > 13.
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We consider first the case when χ vanishes on a 2-element. Suppose that χ(1) is not a

power of 2. Then by Theorem 2.4.6, χ vanishes on some element of odd prime order,

implying that χ vanishes on at least two conjugacy classes of elements of distinct orders,

a contradiction. Hence χ(1) is a power of 2. The result then follows by Proposition

3.3.3 and Theorem 2.4.2.

Now suppose that χ vanishes on a 2′-element. By Proposition 3.3.3 we have that χ

vanishes on an element of even order. Hence χ vanishes on at least two elements of

distinct orders and the result follows.

We now consider our problem when Z(M) is non-trivial.

Lemma 3.3.5. Let M = Ãn and suppose that n ≥ p + 4, where p is an odd prime.

Suppose that χ ∈ Irr(M) is faithful. Then χ vanishes on some p-singular element g of

M .

Proof. If λ ∈ D(n) is even, then the result follows using the proof of [LMS16, Theorem

4.5]. Now suppose that λ ∈ D(n) is odd. Then the characters χ±λ ∈ Irr(S̃n) are the

same and irreducible when restricted to Ãn. Let g ∈ Ãn be an element which projects to

a cycle type µ = (p, 22, 1n−p−4). Then λ 6= µ and so by Theorem 2.4.7, χ±λ (g) = 0.

Theorem 3.3.6. Let M be a quasisimple group such that M/Z(M) ∼= An, n ≥ 5 and

Z(M) 6= {1M}. If (?) holds, then M ∼= 2·A5 with p = 2 or M ∼= 3·A6 with p = 3.

Proof. Checking in the Atlas [CCNPW85] we see that the result is true when n ≤ 13.

Let n ≥ 14 and χ ∈ 2·A5 be faithful. Then χ vanishes on an element whose order is

not a power of p since χ vanishes on a 3-singular element and a 5-singular element by

Lemma 3.3.5. The result follows by Theorem 2.4.2.

3.3.3 Groups of Lie type

We recall some definitions. Let M be a simple, simply connected algebraic group

over Fp, the algebraic closure of a finite field of characteristic p and let F : M→M
be a Frobenius map such that M := MF , the finite group of fixed points. Let M∗

denote the dual group ofM with corresponding Frobenius map F ∗ :M∗ →M∗. Then
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M∗ := (M∗)F
∗

is the dual group of M . If T is an F -stable maximal torus of M, then

T = T F and T ∗ = (T ∗)F ∗ .

The following result will be essential:

Lemma 3.3.7. [GM12, Lemma 3.2] Suppose that M is a finite group of fixed points as

defined above. Let x ∈ M be semisimple and χ ∈ E(M, s∗) be an irreducible character

of M with χ(x) 6= 0. Then there is a maximal torus T 6 M with x ∈ T such that

T ∗ 6 CM∗(s
∗) for a torus T ∗ 6M∗ which is a dual group of T .

Lemma 3.3.8. [LM16, Remark 2.2] Let M be a connected reductive group with Stein-

berg morphism F and T an F -stable maximal torus of M. Let l be a prime dividing

|T F |. If T F contains a regular element, then T F also contains an l-singular regular

element.

Proof. If there exists a regular element whose order is divisible by l, the result follows.

Let t ∈ T F be a regular element whose order is prime to l and let u ∈ T F be an

element of order l. Then tu has order l|t| and some power of tu equals t, hence tu is

also regular.

3.3.4 Classical groups

3.3.4.1 Special Linear Groups SL2(q)

We consider SL2(q), q = pn, where p is prime and n a positive integer. The character

tables of SL2(q) and PSL2(q) are found in Section 2.4.2. Since SL2(4) ∼= PSL2(5) ∼= A5,

SL2(5) ∼= 2·A5 and A6
∼= PSL2(9), we will not consider these cases here. The sizes

of the outer automorphism groups of finite groups of Lie type are displayed in Table

2.3. In particular, |Out(PSL2(q))| = gcd(2, q − 1)·f where q = pf , p a prime and f a

positive integer.

Proposition 3.3.9. Let M be a quasisimple group such that M/Z(M) = PSL2(q),

q = pn, where p is prime, n is a positive integer, q ≥ 7 and q 6= 9. If (?) holds, then

M is one of the following:

(a) M ∼= PSL2(7), χ(1) = 3;
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(b) M ∼= PSL2(8), χ(1) = 7;

(c) M ∼= PSL2(11), χ(1) = 5 or χ(1) = 10;

(d) M ∼= PSL2(q), χ(1) = q.

Proof. If we consider PSL2(q) or SL2(q), 7 ≤ q ≤ 32, then inspection of the character

tables in the Atlas [CCNPW85] shows that M must coincide with one of the types

(a)-(d). We may thus consider q > 32. We first suppose that q is odd. With reference

to the character table of SL2(q) displayed in Theorem 2.4.10, the faithful characters

of M are the ones labelled by χi when i is odd, θj when j is odd, ξ1 and ξ2 when

q ≡ 3 (mod 4) (ε = −1), and η1 and η2 when q ≡ 1 (mod 4) (ε = 1). This is because

χi(z) = (−1)i(q + 1) = −(q + 1) and χi(1) = q + 1, θj(z) = (−1)j(q − 1) = −1(q − 1)

and θj(1) = q− 1, ξ1(z) = ξ2(z) = 1
2
ε(q+ 1) = −1

2
(q+ 1) and ξ1(1) = ξ2(1) = 1

2
(q+ 1),

η1(z) = η2(z) = −ε1
2
(q − 1) = −1

2
(q − 1) and η1(1) = η2(1) = 1

2
(q − 1).

Let χ ∈ {χi | i is odd}. Then χ vanishes on (q − 1)/2 conjugacy classes of elements

represented by bm, 1 ≤ m ≤ (q − 1)/2. Hence χ vanishes on more than 2f conjugacy

classes by Lemma 3.1.2. Since the size of the outer automorphism group of M/Z(M) =

PSL2(q) is 2f , χ does not satisfy hypothesis (b) Property (?).

Let χ ∈ {θj | j is odd}. Then χ vanishes on (q − 3)/2 conjugacy classes of elements

represented by al, 1 ≤ l ≤ (q − 3)/2. By the argument in the paragraph above, χ fails

to satisfy (?).

Now suppose that χ ∈ {ξi | i = 1, 2 and q ≡ 3 (mod 4)}. Then ε = −1 and χ vanishes

on (q − 1)/2 conjugacy classes and the result follows.

Lastly, let χ ∈ {ηi | i = 1, 2 and q ≡ 1 (mod 4)}. Then ε = 1 and χ vanishes on

(q − 3)/2 conjugacy classes. Again the result follows.

Now let M = PSL2(q) with q odd. The character tables of PSL2(q) are exhibited

in Theorem 2.4.12. The faithful characters of M are those labelled φ, θj when j is

even, χi when i is even, ξ1 and ξ2 when q ≡ 1 (mod 4) (ε = 1), and η1 and η2 when

q ≡ 3 (mod 4) (ε = −1). This is because φ(z) = φ(1) = p, θj(z) = θ(j)(1) = q − 1,

χi(z) = χi(1) = q + 1, ξ1(z) = ξ2(z) = ξ1(1) = ξ2(1) = 1
2
(q + 1) and η1(z) = η2(z) =

η1(1) = η2(1) = 1
2
(q − 1).

Let us consider φ, the Steinberg character of M . Note that φ vanishes on two conjugacy
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classes represented by c and d, both of order p. Now M must coincide with type (d)

of the statement of the proposition because the size of the outer automorphism group

of M is 2f .

Consider χ ∈ {χi | i is even}. Then χ vanishes on (q − 1)/4 conjugacy classes if q ≡ 1 (

mod 4) and χ vanishes on (q − 3)/4 conjugacy classes if q ≡ 3 (mod 4) by Theorem

2.4.12. Since the size of the outer automorphism group of M is 2f , χ does not satisfy

hypothesis (b) of Property (?) by Lemma 3.1.2.

Now consider χ ∈ {θj | j is even}. Then χ vanishes on (q−1)/4 conjugacy classes when

q ≡ 1 (mod 4) and χ vanishes on (q − 3)/4 conjugacy classes when q ≡ 3 (mod 4),

again by Theorem 2.4.12. In both cases χ vanishes on more than 2f conjugacy classes

and we are done.

Let χ ∈ {ξi | i = 1, 2 and q ≡ 1 (mod 4)}. Then ε = 1 and χ vanishes on (q − 1)/4

conjugacy classes so χ vanishes on more than 2f conjugacy classes by Lemma 3.1.2

and the result follows.

Now take χ ∈ {ηi | i = 1, 2 and q ≡ 3 (mod 4)}. Such a χ vanishes on (q − 3)/4 con-

jugacy classes represented by al and so it fails to satisfy Property (?) by the argument

in the paragraph above.

Finally, we consider SL2(q) where q is even. Its character table is exhibited in Theorem

2.4.11. Note that since gcd(2, q − 1) = 1, M = SL2(q) = PSL2(q). We may assume

that q ≥ 32. We consider first the Steinberg character φ of PSL2(q). Then φ vanishes

on one conjugacy class c. Hence M is a group of type (d) of our proposition. Consider

χi, 1 ≤ i ≤ (q − 2)/2. Then χi vanishes on elements of the form bm, 1 ≤ m ≤ q/2.

Hence χ vanishes on q/2 conjugacy classes. Also θj vanishes on at least (q − 2)/2

conjugacy classes. Clearly the number of conjugacy classes is more than the size of the

outer automorphism group of M in all these cases which contradicts hypothesis (b) of

Property (?). Hence the result follows.

3.3.4.2 Special Linear Groups distinct from SL2(q)

Theorem 3.3.10. Let M be a quasisimple group such that M/Z(M) is a finite simple

group of Lie type over a field of characteristic p, distinct from PSL2(q). If (?) holds,

then M is one of the following:
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(a) M ∼= PSU3(4), χ(1) = 13;

(b) M ∼= 2B2(8), χ(1) = 14.

We shall show that Theorem 3.3.10 holds by means of a series of propositions and also

the whole of Section 3.3.5.

We first show that the Steinberg character of a classical group of Lie type does not

satisfy (?):

Lemma 3.3.11. Let M be a finite classical simple group of Lie type over a field of

characteristic p, distinct from PSL2(q). Then the Steinberg character χ does not satisfy

(?).

Proof. Suppose that p = 2. Then χ is of 2-defect zero and so χ vanishes on every 2-

singular element of M . In particular, χ vanishes on an involution. By Theorem 3.1.5,

M has an element of order 2r for some odd prime r except when M ∼= PSL3(4). The

character table of PSL3(4) exhibited in the Atlas [CCNPW85] confirms our conclusion

for this special case. We may thus assume that M has an element g of order 2r with

r as above. Then χ vanishes on g and so vanishes on 2 elements of distinct orders.

Now suppose that p is odd. Then χ is of p-defect zero and so χ vanishes on every

p-singular element of M . In particular, χ vanishes on a unipotent element of order

p. Now M has an element g of order pr, r prime, since the size of the connected

component containing p is at least 2 by Theorem 2.2.7. Hence χ(g) = 0 and the result

follows.

Let M = GLn(Fp) and F be the standard Frobenius map. The conjugacy classes of

F -stable maximal tori of GLn(Fp) and SLn(Fp) are characterised by conjugacy classes

of Sn. Recall that conjugacy classes of Sn are parametrised by cycle types. Thus if

T 6 GLn((Fp) corresponds to λ = (λ1, λ2, ..., λm) ∈ Sn with λ1 ≥ λ2 ≥ ... ≥ λm,

then |T | = |T F | =
∏m

i (qλi − 1) and if T 6 SLn(Fp), then (q − 1)|T | = (q − 1)|T F | =∏m
i (qλi − 1).

Lemma 3.3.12. [LM15, Lemma 4.1] Let λ ` n be a partition, and T a corresponding

F -stable maximal torus of SLn(Fp). Assume that either all parts of λ are distinct, or

q ≥ 3 and at most two parts of λ are equal. Then T = T F contains regular elements.
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Lemma 3.3.13. [LM15, Lemma 3.2] Let H 6 PGLn(Fp) be a reductive subgroup

containing F -stable maximal tori corresponding to cycle types λ1, λ2, ..., λr. If no in-

transitive or imprimitive subgroup of Sn contains elements of all these cycle types then

H = PGLn(Fp).

To use this result we may assume that M is connected reductive with a Steinberg

endomorphism F : M → M and M := MF . If T ∗ 6 CM∗(s
∗), then since T ∗

is connected we have that T ∗ 6 C◦M∗(s
∗) is a reductive subgroup of M∗ ([MT11,

Theorem 14.2]).

Proposition 3.3.14. Let G = SLn(q), 4 ≤ n ≤ 6, q ≥ 2. Suppose that G is of l-

rank at least 2, where l is an odd prime. Then every non-linear irreducible unipotent

character vanishes on an l-singular element.

Proof. This follows from the proof [LM15, Proposition 3.8].

Since PSL3(2) ∼= PSL2(7) and PSL2(7) is considered in Theorem 1.0.4, we may assume

that n ≥ 3 and q ≥ 3 going forward.

Proposition 3.3.15. Let M be a quasisimple group such that M/Z(M) = PSL3(q),

and q ≥ 3. Then every non-trivial faithful irreducible character of M fails to satisfy

(?).

Proof. Using explicit character tables in the Atlas [CCNPW85], we may assume that

q ≥ 13. First consider Z(M) 6= {1M}. Now, |Z(M)| = 3, 3 | (q − 1) and by (?), χ

vanishes on a 3-element. Note that unipotent characters are not faithful when Z(M) 6=
{1M}. We may thus assume that χ is not unipotent. Then χ lies in the Lusztig series

E(M, s∗) of a semisimple element s∗ in the dual group M∗ = PGL3(q). Let T1 and T2

be tori of M corresponding to the partitions (3) and (2)(1), respectively. By Lemma

3.3.12, the tori T1 and T2 contain regular elements. We claim that χ vanishes on regular

elements in T1 or in T2. Otherwise, by Lemma 3.3.7, CM∗(s
∗) contains conjugates of

the duals T ∗1 and T ∗2 . This means that the corresponding reductive subgroup C◦M∗(s
∗)

contains T ∗1 and T ∗2 . Invoking Lemma 3.3.13, we have that C◦M∗(s
∗) = PGL3(Fp), that

is, CM∗(s
∗) = PGL3(q) and so χ is unipotent, contradicting our assumption that χ is

not unipotent. Hence χ vanishes on regular elements in T1 or in T2. Suppose that χ
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vanishes on regular elements in T1. Note that |T1| is divisible by a Zsigmondy prime l1

and T1 contains regular elements of order l1. Since gcd(l1, 3) = 1, χ vanishes on at least

two elements of distinct orders, contradicting Property (?). We may thus assume χ

vanishes on regular elements in T2. If q+ 1 is not a power of 2, then |T2| is divisible by

a Zsigmondy prime l2. By the same argument as above, we may infer that χ vanishes

on at least 2 elements of distinct orders. Suppose that q + 1 is a power of 2. This

means that |T2| is even and hence T2 contains elements of even order by Lemma 3.3.8.

Hence χ vanishes on an element of even order and the result follows.

Suppose that M = PSL3(q). Then χ is not the Steinberg character by Lemma 3.3.11.

By Theorem 2.4.15, χ vanishes on regular elements in T1 or in T2. Suppose that χ

vanishes on regular elements of T1. Note that |T1| is divisible by a Zsigmondy prime

l1. If |T1| is divisible by two distinct primes, then the result follows by Lemma 3.3.8.

Suppose that |T1| is a prime power. Then |T1| = (q2 + q + 1)/ gcd(3, q − 1) must

be prime by Lemma 3.1.3. Put |T1| = q3−1
(q−1) gcd(3,q−1) = q2+q+1

gcd(3,q−1) = l1. Then G has

l1−1
3

= q2+q−2
3 gcd(3,q−1) conjugacy classes whose elements are of order l1. Now |Out(M)| ≤

2 · gcd(3, q − 1) · f . By Lemma 3.1.2, 6f + 1 ≤ q2+q−2
9

and so (ii) of (?) fails to hold.

Suppose that χ vanishes on regular elements in T2. By Theorem 2.4.15, χ vanishes

on elements of order q + 1. If q is odd, then q + 1 is even. In particular, q + 1 is not

prime. By Theorem 2.4.3, χ vanishes on an element of prime order which means that

χ vanishes on two elements of distinct orders, contradicting Property (?). Hence we

may assume that q is even so that q+ 1 is odd. We may assume that q+ 1 is prime by

the above argument. Since |T2| = (q2− 1)/ gcd(3, q− 1) and (q− 1)/ gcd(3, q− 1) 6= 1,

we have that |T2| is divisible by at least two distinct primes. Hence there exists a

prime l such that l | (q− 1) which entails the existence of an l-singular regular element

in |T2| by Lemma 3.3.8. By Theorem 2.4.15, χ vanishes on this l-singular element.

Hence χ vanishes on two elements of distinct orders, a contradiction. Hence the result

follows.

We illustrate part of the proof above with an example.

Example 3.3.16. Let M = PSL3(8). Consider characters of degree 73. These vanish

on elements of order 73. Then |T1| = 73 is prime and M has 73−1
3

= 24 conjugacy

classes with elements of order 73. Note that |Out(M)| = 6 < 24 as expected.
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Proposition 3.3.17. Suppose that M is quasisimple such that M/Z(M) ∼= PSLn(q),

n ≥ 4 and q ≥ 2. Then every non-trivial faithful irreducible character of M fails to

satisfy (?).

Proof. Firstly, suppose that n ≥ 4 and q = 2. For M isomorphic to PSL4(2) or PSL5(2)

we have explicit character tables in the Atlas [CCNPW85] and for M/Z(M) isomorphic

to PSL6(2) or PSL7(2), we obtain explicit character tables in Magma [BCP97]. Hence

we may assume that n ≥ 8. Then 3 = q + 1. Now (q + 1)4 | |T | for a torus T

corresponding to the partition (n − 8)(2)(2)(2)(2). It follows that M is of 3-rank at

least 4. Hence by Theorem 3.3.1, χ vanishes on a 3-singular element. On the other

hand, by Theorem 2.4.15, if n is even, χ vanishes on an element of order qn/2 + 1 or

one of order qn−1 − 1, and if n is odd, then χ vanishes on an element of order qn − 1

or one of order q(n−1)/2 + 1. Note that in all of the aforementioned cases, the orders

of elements on which χ vanishes, exceeds 3. Each such order is thus either relatively

prime to 3 or the element is 3-singular. In the former case, χ vanishes on at least two

elements of distinct orders as required. In the latter, χ vanishes on an element that

is not of prime order. Using Theorem 2.4.2, χ also vanishes on an element of prime

order. Hence χ vanishes on at least two elements of distinct orders.

Suppose that M = SLn(q), n ≥ 4, q ≥ 3 with |Z(M)| 6= 1. By (?), |Z(M)| is a power

of a prime l that divides q − 1 and χ necessarily vanishes on an l-element. We claim

that χ also vanishes on an l1-element or an l2-element. Suppose the contrary. First

note that χ is not unipotent since χ is faithful in M . Hence χ lies in the Lusztig series

E(M, s∗) of a semisimple element s∗ in the dual group M∗ = PGLn(q). Let T1 and T2

denote maximal tori corresponding to the partitions (n) and (n− 1)(1). Note that T1

and T2 contain regular elements by Lemma 3.3.12. By Lemma 3.3.7, CM∗(s
∗) contains

conjugates of the dual tori T ∗1 and T ∗2 . The corresponding reductive subgroup C◦M∗(s
∗)

contains T ∗1 and T ∗2 . Using Lemma 3.3.13, we infer that C◦M∗(s
∗) = PGLn(Fp) and so

s∗ is central. Hence s∗ = 1 and χ is unipotent thus contradicting the assumption that

χ is not unipotent. Hence our claim is true and the result follows.

Suppose that M = PSLn(q), n ≥ 4, q ≥ 3. Assume that χ is not unipotent. Let T1,

T2 and T3 be tori of M corresponding to (n), (n − 1)(1) and (n − 2)(2), respectively.

These tori contain regular elements by Lemma 3.3.12. We claim that χ vanishes on

regular elements in at least two of these tori. Otherwise, CM∗(s
∗) contains conjugates
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of the dual tori T ∗i and T ∗j of Ti and Tj, respectively, i 6= j, 1 ≤ i, j ≤ 3, where χ

lies in the Lusztig series E(M, s∗). The corresponding reductive subgroup C◦M∗(s
∗)

contains T ∗i and T ∗j . It follows from Lemma 3.3.13 that C◦M∗(s
∗) = PGLn(Fp), that

is, χ is unipotent, a contradiction. The claim is thus true. Now for |T1| and |T2| note

that corresponding Zsigmondy primes l1 and l2 exist. Hence χ vanishes on at least two

elements of distinct orders l1, l2 or some positive integer that divides |T3|.

In light of the above, we may assume that χ is unipotent. Note that for |T1| and |T2|,
corresponding Zsigmondy primes l1 and l2 exist. By Theorem 2.4.15, χ is of l1-defect

zero or l2-defect zero. Suppose that n ≥ 9. Consider a torus T of M corresponding to

the partition (n− 9)(3)(3)(3). There exists a Zsigmondy prime l dividing q3 − 1 such

that M is of l-rank at least 3. By Theorem 3.3.1, χ vanishes on an l-singular element.

Since gcd(l1, l) = gcd(l2, l) = 1, the result follows. Hence we may assume that n ≤ 8.

For n ≥ 6, note that if there is a prime l such that l | (q − 1) or l | (q + 1), then M

is of l-rank at least 3. It is sufficient to find an odd prime l such that l | (q − 1) or

l | (q + 1) but l does not divide |Z(M)|.

Suppose that n = 8. If gcd(8, q − 1) = 1, then there exists an odd prime l such that

l | (q − 1) and the result follows. Assume that gcd(8, q − 1) 6= 1. If there exists an

odd prime l such that l | (q − 1), then we are done. We may assume that q − 1 = 2a,

a ≥ 1. Then q is odd. If there exists an odd prime l such that l | (q + 1), then we are

done. Otherwise, q + 1 = 2b, b ≥ 2. Then q = 3. For M = PSL8(3), |T1| = 38−1
3−1 and

|T2| = 38 − 1 are both divisible by two distinct primes. Since χ is of l1-defect zero or

of l2-defect zero, we have that χ vanishes on two elements of distinct orders.

Suppose that n = 7. We first consider q even. If gcd(7, q − 1) = 1, then there exists

an odd prime l such that l | (q − 1). If gcd(7, q − 1) 6= 1, then since q is even, there

exists an odd prime l 6= 7 such that l | (q + 1). Assume that q is odd. Suppose that

gcd(7, q − 1) = 1. Then there exists an odd prime l such that either l | (q − 1) or

l | (q + 1) unless q = 3. If q 6= 3, then we have an odd prime l and M is of l-rank

at least 3. If q = 3, then using Magma [BCP97] to calculate the character table of

PSL7(3), we conclude that χ does not satisfy (?). Suppose that gcd(7, q − 1) = 7. If

q + 1 is not a power of 2, then there exists an odd prime l such that l | (q + 1) and we

are done. We may thus assume that q+1 = 2a, a ≥ 3. Note that 3 divides one of q−1,

q or q + 1. We know that 3 - q + 1. Suppose that 3 | (q − 1). Then 3 is the desired
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odd prime. Thus 3 | q, that is, q = 3f , f ≥ 1. This implies that q = 2a − 1 = 3f . By

Lemma 3.1.1, f = 1, that is, q = 3, a contradiction since gcd(7, q − 1) = 7.

Suppose that n = 6. Let gcd(6, q − 1) = 2. Then q is odd. If q 6= 3, then there exists

an odd prime l such that l | (q− 1) or l | (q+ 1). In this case, M is of l-rank at least 3

and we are done. If q = 3, then we consider the orders of the tori T1 and T2. Now |T1|
and |T2| are divisible by two distinct primes. Since χ is of l1-defect zero or of l2-defect

zero, χ vanishes on at least two elements of distinct orders. Let gcd(6, q − 1) = 3.

Then q is even. For such q there exists an odd prime l 6= 3 such that l | (q + 1). The

result follows since the l-rank of M is 3. Let gcd(6, q− 1) = 6. Then q is odd. If there

exists an odd prime l 6= 3 such that l | (q − 1), then we are done. We may assume

that q − 1 = 2a3b. If there exists an odd prime l such that l | (q + 1), then again, we

are done. We may thus assume that q + 1 = 2c. Then by Lemma 3.1.4, q = 7 since

gcd(6, q− 1) = 6. Since χ is of l1-defect zero or of l2-defect zero and since |T1| and |T2|
are both divisible by two distinct primes, the result follows.

Suppose that n = 5. By Theorem 3.3.1, it is sufficient to show that χ vanishes on an

l-singular element with l 6= 5, an odd prime. Let q be even and note that q ≥ 3. If

gcd(5, q− 1) = 1, then there exists an odd prime l 6= 5 such that l | (q− 1) and M is of

l-rank at least 3. If gcd(5, q − 1) 6= 1, then there exists an odd prime l 6= 5 such that

l | (q + 1). Note that M is of l-rank 2. By the proof of Proposition 3.3.14, χ vanishes

on an l-singular element. Now assume that q is odd. Suppose that gcd(5, q − 1) = 1.

Then there exists an odd prime l 6= 5 such that either l | (q − 1) or l | (q + 1) with

the following exception: q − 1 = 2a, a > 1 and q + 1 = 2b5c, b > 1, c > 0. By Lemma

3.1.4, q = 3 or 9. If q = 3, then using Magma [BCP97] to calculate the character table

of PSL5(3), we conclude that χ does not satisfy (?). Let q = 9. In this case we look at

the orders of T1 and T2. Now |T1| = 95−1
9−1 = 112 · 61 and |T2| = 94− 1 = 25 · 5 · 41. Since

χ is either of l1-defect zero or of l2-defect zero, χ vanishes on at least two elements of

distinct orders. Assume that gcd(5, q− 1) = 5. If there exists an odd prime l 6= 5 such

that l | (q − 1) or l | (q + 1), then M is of l-rank at least 2 and we are done. Hence

the only exception we have is when q − 1 = 2a5b and q + 1 = 2c. Lemma 3.1.4 entails

q = 3 which contradicts the assumption gcd(5, q − 1) = 5.

Finally, suppose that n = 4. If gcd(4, q− 1) = 1, then there exists an odd prime l such

that l | (q − 1) and the result follows. Assume that gcd(4, q − 1) 6= 1. If there exists
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an odd prime l such that l | (q − 1), then M is of l-rank at least 2 and we are done.

Suppose that q−1 is a power of 2. If that q+1 is not a power of 2, then there exists an

odd prime l such that l | (q + 1) and the result follows. Assume that q + 1 is a power

of 2. Then q = 3. For M = PSL4(3), we have that |T1| and |T2| are both divisible by

two distinct primes. Since χ is of l1-defect zero or of l2-defect zero, χ vanishes on two

elements of distinct orders. This concludes our argument.

3.3.4.3 Special Unitary Groups

Let M = GLn(Fp) and F be the twisted Frobenius morphism. The conjugacy classes

of F -stable maximal tori of GLn(Fp) and SUn(Fp) are also characterised by conjugacy

classes of Sn. If T 6 GLn(Fp) corresponds to λ = (λ1, λ2, ..., λm) ∈ Sn with λ1 ≥
λ2 ≥ ... ≥ λm, then |T | = |T F | =

∏m
i (qλi − (−1)λi) whilst if T 6 SUn(Fp), then

(q + 1)|T | = (q + 1)|T F | =
∏m

i (qλi − (−1)λi).

Lemma 3.3.18. [LM15, Lemma 4.1] Let λ ` n be a partition, and T a corresponding

F -stable maximal torus of SUn(Fp). Assume that either all parts of λ are distinct, or

q ≥ 3 and at most two parts of λ are equal. Then T = T F contains regular elements.

Lemma 3.3.19. [LM15, Lemma 3.2] Let H 6 PGUn(Fp) be a reductive subgroup

containing F -stable maximal tori corresponding to cycle types λ1, λ2, ..., λr. If no in-

transitive or imprimitive subgroup of Sn contains elements of all these cycle types then

H = PGUn(Fp).

Proposition 3.3.20. Let G = SUn(q), n > 4. Suppose that G is of l-rank at least 2,

where l is an odd prime. Then every non-linear irreducible unipotent character vanishes

on an l-singular element.

Proof. Follows from the proof of [LM15, Proposition 4.2].

Proposition 3.3.21. Let M be a quasisimple group such that M/Z(M) = PSU3(q)

and q ≥ 3. If (?) holds, then M = PSU3(4) with χ(1) = 13.

Proof. We may conclude from the character tables displayed in Atlas [CCNPW85] that

M = PSU3(4) when 3 ≤ q ≤ 11. Assume that q ≥ 13. Note that χ is not the Steinberg

character. We first consider the case M = SU3(q) and |Z(M)| 6= 1. Since we are only
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considering faithful characters, χ is not unipotent. Then |Z(M)| = 3 and 3 | (q + 1).

By (iii) of (?), χ vanishes on a 3-element. We have that T1 and T2 correspond to the

cycle types (3) and (2)(1) and so T1 and T2 contain regular elements by Lemma 3.3.18.

Using the same argument as in Proposition 3.3.15 we have that χ vanishes on regular

elements in T1 or in T2. If χ vanishes on regular elements in T1, then χ vanishes on

an element of Zsigmondy prime order l1. Since gcd(l1, 3) = 1, the result follows. If χ

vanishes on regular elements in T2, then χ vanishes either on an element of Zsigmondy

prime order l2 if q − 1 is not a power of 2, or on an element of even order if q − 1 is

a power of 2. Since such orders are relatively prime to 3, χ vanishes on at least two

elements of distinct orders.

Let M = PSU3(q). By Proposition 2.4.16, χ vanishes on regular elements in T1 or in T2.

Assume the former. Note |T1| is divisible by a Zsigmondy prime l1. If |T1| is divisible

by two distinct primes, then by Lemma 3.3.8, χ vanishes on at least two elements of

distinct orders. Note that T1 is cyclic by [Gag73, Section 3.3]. If |T1| = la1 , a > 1, then

χ vanishes on two elements of distinct orders la1 and l1, which contradicts Property (?).

We may thus assume that |T1| = q3+1
(q+1) gcd(3,q+1)

= q2−q+1
gcd(3,q+1)

= l1. If q = 13, then M has

52 conjugacy classes of order 53, |Out(M)| = 2 and we are done. We thus assume that

q ≥ 16. Then M has l1−1
3

= q2−q−2
3·gcd(3,q+1)

conjugacy classes whose elements are of order

l1. Now |Out(M)| ≤ 2 · gcd(3, q + 1) · f . By Lemma 3.1.2, 6f + 1 ≤ q2−q−2
9

and (ii) of

(?) fails to hold.

We now consider the case where χ vanishes on regular elements in T2. By Theorem

2.4.17, χ vanishes on an element of order q − 1. On the other hand, χ vanishes on:

an element of Zsigmondy prime order l2, an involution, or a regular unipotent element

by the proof of Proposition 2.4.16. Therefore χ vanishes on at least two elements of

distinct orders.

Proposition 3.3.22. Let M be a quasisimple group such that M/Z(M) ∼= PSUn(q),

n ≥ 4 and q ≥ 2. Then every non-trivial faithful irreducible character of M fails to

satisfy (?).

Proof. We consider the case M/Z(M) ∼= PSUn(2) first. Consulting of the character

tables for PSU4(2), PSU5(2) and PSU6(2) displayed in Atlas [CCNPW85], and for

PSU7(2) and PSU8(2) derived from Magma [BCP97], disposes of the case n < 9, so

66



3.3 Quasisimple groups with a character vanishing on elements of the
same order

we may assume that n ≥ 9. Suppose that |Z(M)| 6= 1. This means that |Z(M)| = 3

and 3 | (q + 1). Note that χ is not unipotent. By (?), χ vanishes on a 3-element.

We claim that χ vanishes on regular elements in T1 or in T2. Assume that this claim

is not true. Then CM∗(s
∗) contains conjugates of the dual tori T ∗1 and T ∗2 of T1 and

T2, where χ lies in the Lusztig series E(M, s∗). The corresponding reductive subgroup

C◦M∗(s
∗) contains the tori T ∗1 and T ∗2 . By Lemma 3.3.19, C◦M∗(s

∗) = PGUn(F2) and

s∗ is central. Hence CM∗(s
∗) = PGUn(2), and so χ is unipotent, a contradiction. The

claim is true and χ vanishes either on an l1-element or on an l2-element. Hence χ

vanishes on at least two elements of distinct orders.

Assume that Z(M) = {1M}. Consider the first case where χ is non-unipotent. Then χ

lies in the Lusztig series E(M, s∗) of s∗ in the dual M∗ = PGUn(2). Let T1, T2 and T3

be tori of M corresponding to (n), (n−1)(1) and (n−2)(2), respectively. We shall use

the same argument as employed in the proof of Proposition 3.3.17 (third paragraph)

to show that χ vanishes on regular elements in at least two of these tori. Assume that

χ does not vanish on any of T1, T2 or T3. CM∗(s
∗) contains conjugates of the dual tori

T ∗i and T ∗j of Ti and Tj, respectively, i 6= j, 1 ≤ i, j ≤ 3, where χ lies in the Lusztig

series E(M, s∗). The corresponding reductive subgroup C◦M∗(s
∗) contains T ∗i and T ∗j .

It follows from Lemma 3.3.19 that C◦M∗(s
∗) = PGUn(F p). Hence C◦M∗(s

∗) = PGUn(q),

that is, s∗ is central and χ is unipotent, a contradiction. The claim is thus true. Note

that all these tori contain elements of order l1, l2 and a Zsigmondy prime dividing |T3|.
Hence the result follows.

Suppose that χ is unipotent. By Theorem 2.4.17, χ is of l1-defect zero or l2-defect

zero. Consider a torus T of M corresponding to the partition (n − 9)(3)(3)(3). Then

there exists a Zsigmondy prime l = l(6) such that l | (q3 + 1). Hence M is of l-rank at

least 3. Since n ≥ 9, χ vanishes on an l-singular element by Theorem 3.3.1. Hence the

result follows.

Suppose that M/Z(M) ∼= PSUn(q), n ≥ 4, q ≥ 3. Assume that |Z(M)| 6= 1. By (?),

|Z(M)| is a power of a prime l = q + 1 and χ vanishes on an l-element. The same

argument as employed in the proof of Proposition 3.3.17 (second paragraph), shows

that χ also vanishes on an l1-element or an l2-element.

If M ∼= PSUn(q) with χ non-unipotent, then the result follows using in the proof of

Proposition 3.3.17 (third paragraph).
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Assume that χ is unipotent. By the proof of Theorem 2.4.17, χ is of l1-defect zero

or l2-defect zero. Suppose that n ≥ 9 and consider a torus T of M corresponding to

partition (n−9)(3)(3)(3). Then there exists a Zsigmondy prime l = l(6) dividing q3+1

and M is of l-rank at least 3. By Theorem 3.3.1, χ vanishes on an l-singular element

and the result follows. Hence we may assume that n ≤ 8.

Suppose that n = 8. Recall that q ≥ 3. If gcd(8, q + 1) = 1, then there exist an odd

prime l | (q + 1) such that M is of l-rank at least 3. By Theorem 3.3.1, χ vanishes

on an l-singular element and the result follows since gcd(l1, l) = gcd(l2, l) = 1. If

gcd(8, q + 1) 6= 1, then q is odd and there exists an odd prime l such that l | (q − 1)

unless q = 3. If q 6= 3, then M is of l-rank at least 3 and hence χ vanishes on an

l-singular element for an odd prime l dividing q − 1. For q = 3, we have that |T1| and

|T2| are both divisible by two distinct primes since χ is of l1-defect zero or of l2-defect

zero. Hence the result follows.

Suppose that n = 7. We first consider the case q is even. If gcd(7, q + 1) = 1, then

there exists an odd prime l 6= 7 such that l | (q + 1). If gcd(7, q + 1) 6= 1, then since q

is even, there exists an odd prime l 6= 7 such that l | (q − 1). In both cases, M is of

l-rank and so χ vanishes on an l-singular element. Since gcd(l1, l) = gcd(l2, l) = 1, χ

vanishes on at least two elements of distinct orders. Assume that q is odd. Suppose that

gcd(7, q+1) = 1. Then there exists an odd prime l 6= 7 such that l | (q−1) or l | (q+1)

unless q = 3. If q 6= 3, we have that M is of l-rank at least 3 with l an odd prime, and

implies that χ vanishes on at least two elements of distinct orders. If q = 3, we calculate

the character table of PSL7(3) using Magma [BCP97]. Examining the character table,

we conclude that χ does not satisfy (?). Suppose that gcd(7, q+ 1) = 7. If q− 1 is not

a power of 2, then there exists an odd prime l 6= 7 such that l | (q − 1). Hence M is

of l-rank more than 3 and gcd(l1, l) = gcd(l2, l) = 1. Thus χ vanishes on two elements

of distinct orders, a contradiction to (?). We may thus assume that q − 1 = 2a, a > 1.

Since 3 - (q − 1) we must have that 3 | (q + 1). Then 3 is the desired odd prime

since M is of 3-rank at least 3. Thus 3 | q, whence, q = 3f , f ≥ 1. This implies

that q − 1 = 3f − 1 = 2a. By Zsigmondy’s Theorem, there is a Zsigmondy prime l

that divides 3f − 1 unless f ≤ 2. If f = 1, then q = 3, contradicting the hypothesis

that gcd(7, q + 1) = 7. If f = 2, then q = 9, again contradicting the hypothesis that

gcd(7, q + 1) = 7.
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Suppose that n = 6. Let gcd(6, q + 1) = 2. Then q is odd. If q 6= 3, then there exists

an odd prime l such that l | (q − 1) or l | (q + 1) and the result follows noting that M

must be of l-rank at least 3. Let gcd(6, q + 1) = 3. Then q is even. Noting that q ≥ 4,

there must exist an odd prime l that divides q − 1. Hence χ vanishes on an l-singular

element since the l-rank of M is 6. Let gcd(6, q+ 1) = 6. Then q is odd. If there exists

an odd prime l 6= 3 such that l | (q + 1), then the result follows. We may assume that

q + 1 = 2a3b. Then there exists an odd prime l 6= 3 that divides q − 1 and the result

follows unless q−1 = 2c. For such q it follows from Lemma 3.1.4 that q = 5 or 17 since

gcd(6, q+ 1) = 6. In both cases, the result follows since |T1| and |T2| are both divisible

by two distinct primes.

Suppose that n = 5. By Theorem 3.3.1, it is sufficient to show that χ vanishes on an

l-singular element with l 6= 5, an odd prime. Let q be even and note that q ≥ 3. If

gcd(5, q+ 1) = 1, then there exists an odd prime l 6= 5 such that l | (q+ 1) and M is of

l-rank at least 3. If gcd(5, q + 1) 6= 1, then there exists an odd prime l 6= 5 such that

l | (q − 1). Note that M is of l-rank 2. By the proof of Proposition 3.3.20, χ vanishes

on an l-singular element. Now assume that q is odd. Suppose that gcd(5, q + 1) = 1.

Then there exists an odd prime l 6= 5 such that either l | (q − 1) or l | (q + 1) with

the following exception: q − 1 = 2a, a > 1 and q + 1 = 2b5c, b > 1, c > 0. By Lemma

3.1.4, q = 3 or 9. If q = 3, then using Magma [BCP97] to calculate the character table

of PSU5(3), we conclude that χ does not satisfy (?). Let q = 9. In this case we look at

the orders of T1 and T2. Now |T1| = 95+1
9+1

= 5 ·11811 and |T2| = 94−1 = 25 ·5 ·41. Since

χ is either of l1-defect zero or of l2-defect zero, χ vanishes on at least two elements of

distinct orders. Assume that gcd(5, q+ 1) = 5. If there exists an odd prime l 6= 5 such

that l | (q−1) or l | (q+1), then M is of l-rank at least 2 and we are done by Proposition

3.3.20. Hence the only exception we have is when q− 1 = 2a5b and q+ 1 = 2c. Lemma

3.1.4 entails q = 3 which contradicts the assumption gcd(5, q + 1) = 5.

Suppose that n = 4. If gcd(4, q + 1) = 1, then there exists an odd prime l such that

l | (q + 1) and the result follows noting that M is of l-rank at least 3. Assume that

gcd(4, q + 1) 6= 1. Then there exists an odd prime l such that l | (q − 1) or l | (q + 1).

If q 6= 3, then M is of l-rank at least 2 and we are done. If q = 3, we have that |T1|
and |T2| are both divisible by two distinct primes and the result follows.

69



3.3 Quasisimple groups with a character vanishing on elements of the
same order

3.3.4.4 Symplectic Groups and Special Orthogonal Groups

Let M be a simple, simply connected algebraic group of type Bn, Cn or Dn over Fp
and F : M → M be a Frobenius morphism such that M := MF . Then the MF -

conjugacy classes of F -stable maximal tori of M are characterised by the conjugacy

classes of W , the Weyl group. Now W is isomorphic to the wreath product C2 o Sn.

If M is of type Bn or Cn, then the conjugacy classes of W are parametrised by pairs

of partitions (λ, µ) ` n. In particular, if a maximal torus T = T F corresponds to a

partition (λ, µ) = ((λ1, λ2, ..., λr), (µ1, µ2, ..., µs)) ` n, then

|T | =
∏r

i=1(q
λi − 1)

∏s
j=1(q

µj + 1)

and T F contains cyclic subgroups of orders qλi − 1 and qµj + 1 for all i and for all j.

IfM is of type Dn, then theMF -conjugacy classes of F -stable maximal tori ofM are

characterised by pairs of partitions (λ, µ) ` n such that µ has an even number of parts

ifMF is the split orthogonal group SO+
2n(q) and µ has an odd number of parts ifMF

is the non-split orthogonal group SO−2n(q). Now |T | is the same as in the case whenM
is of type Bn or Cn, that is,

|T | =
∏r

i=1(q
λi − 1)

∏s
j=1(q

µj + 1).

Lemma 3.3.23. [LM16, Lemma 2.1] Let M be a simple, simply connected classical

group of type Bn, Cn or Dn defined over Fp with corresponding Steinberg morphism F .

Let (λ, µ) = ((λ1, λ2, ..., λr), (µ1, µ2, ..., µs)) be a pair of partitions of n, and T a cor-

responding F -stable maximal torus of M. Then T = T F contains regular elements if

one of the following is fulfilled:

(a) q > 3, λ1 < λ2 < · · · < λr and µ1 < µ2 < · · · < µs;

(b) q ∈ {2, 3}, λ1 < λ2 < · · · < λr, µ1 < µ2 < · · · < µs, λi 6= 2 for 1 ≤ i ≤ r, and if

M is of type Bn or Cn, then also λi 6= 1 for 1 ≤ i ≤ r; or

(c) M is of type Dn, 2 < λ1 < λ2 < · · · < λr and 1 = µ1 = µ2 < µ3 < · · · < µs.

Lemma 3.3.24. [LM16, Lemma 2.3] Let M be a simple algebraic group of type Bn,

Cn (with n ≥ 2) or Dn (with n ≥ 4) with Frobenius endomorphism F such that MF is

a classical group. Let Λ be a set of pairs of partitions (λ, µ) of n. Assume the following:
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(a) there is no k satisfying 1 ≤ k ≤ n − 1 such that all (λ, µ) ∈ Λ are of the form

(λ1, µ1) t (λ2, µ2) with (λ1, µ1) ` k;

(b) the greatest common divisor of all parts of all (λ, µ) ∈ Λ is 1; and

(c) if G is of type Bn, then there exist pairs (λ, µ) ∈ Λ for which µ has an odd number

of parts, and for which µ has an even number of parts.

If s ∈ MF is semisimple such that CM(s) contains maximal tori of M corresponding

to each (λ, µ) ∈ Λ, then s is central.

Theorem 3.3.25. [LM16, Theorem 4.1] Let G be one of the groups Spin2n+1(q) for

odd q and n ≥ 3, Sp2n(q) for any q and n ≥ 2, or Spin±2n(q) for any q and n ≥ 4. Let

l be an odd prime that does not divide q such that the Sylow l-subgroups of G are non-

cyclic. Then any non-unipotent irreducible character of G vanishes on some l-singular

regular semisimple element, except for the two cases G = Sp4(2) and G = Sp8(2).

We first consider a quasisimple group M such that M/Z(M) ∼= PSp4(q). Since

Sp4(2)′ ∼= PSL2(9) and PSp4(3) ∼= PSU4(2), and the groups PSL2(9) and PSU4(2)

were dealt with in Propositions 3.3.9 and 3.3.22, respectively, we shall restrict our

attention to the case q ≥ 4 in the result below.

Proposition 3.3.26. Let M be a quasisimple group such that M/Z(M) ∼= PSp4(q),

q ≥ 4. Then every non-trivial faithful irreducible character of M fails to satisfy (?).

Proof. Since the character tables Sp4(4) and Sp4(5) are in Atlas [CCNPW85] we may

assume that q ≥ 7. Suppose that q is even. Then the result follows from the generic

character tables given in Chevie [GHLMP96] or in [Sri68]. We may thus assume that

q is odd. For this case we first suppose |Z(M)| 6= 1. Note that χ is not unipotent.

Then |Z(M)| = 2 and by (?), χ vanishes on a 2-element. For each prime l such that

l | (q − 1) or l | (q + 1), the Sylow l-subgroups of G are non-cyclic. Since q 6= 3, there

exists an odd prime l such that l | q − 1 or l | q + 1. By Theorem 3.3.25, χ vanishes

on an l-singular element. But gcd(2, l) = 1, so χ vanishes on at least two elements of

distinct orders, as required.

Suppose that M ∼= PSp4(q). We may assume that χ is not the Steinberg character.

The same methods used in the proof of Theorem 2.4.18 show that χ vanishes on regular
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elements in T1 or in T2. In particular, we may choose two conjugacy classes C1 and C2 in

T1 and T2, respectively, such that χ vanishes on C1 or C2. Now C2 may contain elements

which are not of Zsigmondy prime order. In that case, the result follows since we know

that χ vanishes on elements of prime order by Theorem 2.4.3. Hence we may assume

that C1 and C2 contain elements of Zsigmondy prime orders. Suppose that χ vanishes

on elements in T2. Note that |T2| = (q2 − 1)/2 is even. Hence T2 contains a regular

element of even order by Lemma 3.3.8 and χ vanishes on this element. This means that

χ vanishes on two elements of distinct orders, contradicting (?). Suppose now that χ

vanishes on elements of T1. Note that T1 is cyclic by [Gag73, Section 4.5]. If |T1| is

not prime, then there exist at least 2 elements of distinct orders on which χ vanishes.

We may assume that |T1| = q2+1
2

is prime. Then there are
(q2+1)

2
− 1

4
= q2−1

8
conjugacy

classes with elements of order q2+1
2

. On other the hand, |Out(M/Z(M))| ≤ 4f , where

q = pf with p a prime and f ≥ 1. By Lemma 3.1.2, 4f + 1 < q2−1
8

and the result

follows by (?)(ii).

Let S = {PSp2n(q) | n ≥ 3} ∪ {PSO2n+1(q) | n ≥ 3} ∪ {PSO±2n(q) | n ≥ 4}.

Lemma 3.3.27. (a) Let G ∼= PSO+
n (q) with n ≥ 6 even. Then every non-linear

character χ ∈ Irr(G) that is not the Steinberg character vanishes either on ele-

ments of Zsigmondy prime order l1 , l2 (defined in Table 2.4), or l3, where l3 is

the Zsigmondy prime l3 = l(2n− 4).

(b) Let G ∼= PSO+
8 (q) with q > 2. Then every non-linear character χ ∈ Irr(G) that is

not the Steinberg character vanishes either on elements of Zsigmondy prime order

l1 , l2 (defined in Table 2.4) or l3 where l3 is the Zsigmondy prime l3 = l(2n−4).

(c) Let G ∈ S\{PSO+
2n(q)}. Then every non-linear character χ ∈ Irr(G) that is not

the Steinberg character vanishes either on elements of Zsigmondy prime order l1

, l2 (defined in Table 2.4), or is of l3-defect zero, where l3 = l(n− 1).

(d) Let G ∼= PSO+
2n(q) with n ≥ 5 odd. Then every non-linear character χ ∈ Irr(G)

that is not the Steinberg character vanishes on elements of order l1 or l2.

Proof. This follows from the proof of [MNO00, Lemmas 5.3-5.6]
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Proposition 3.3.28. Let M be a quasisimple group such that M/Z(M) ∈ S. Then

every non-trivial faithful irreducible character of M fails to satisfy (?).

Proof. Note that χ is not the Steinberg character by Lemma 3.3.11. We first consider

the case where M ∈ S with q = 2. Consulting of the character tables for Sp2n(2) ∼=
SO2n+1(2), 3 ≤ n ≤ 4 and PSO±2n(2), 4 ≤ n ≤ 5 displayed in Atlas [CCNPW85] allows

us to dispose of the cases n < 5 (for Sp2n(2)) and n < 6 (for PSO±2n(2)), so we may

assume that n ≥ 5 and n ≥ 6, respectively. Since q + 1 = 3, M is of 3-rank at

least 5. By Theorem 3.3.1, χ vanishes on a 3-singular element. For M ∼= Sp2n(2),

either χ vanishes on elements of order l1 or elements of order l2 as can be seen in

Table 2.4, or χ is of l3-defect zero, where l3 = l(n − 1) (the last case only arising

when n is even) by Lemma 3.3.27. Note that Zsigmondy primes l1, l2, l3 exist and

gcd(l1, 3) = gcd(l2, 3) = gcd(l3, 3) = 1. Hence χ vanishes on at least two elements of

distinct orders. For M ∼= PSO±2n(2), n ≥ 6, χ vanishes on elements of order l1, or l2, or

χ is of l3-defect zero, where l3 = l(2n − 4) (the last case only arising when n is even)

by Lemma 3.3.27. Since the Zsigmondy primes l1, l2 and l3 exist, the result follows.

Henceforth we may assume that q ≥ 3 and n ≥ 3. Suppose that |Z(M)| 6= 1. Then

gcd(2, q − 1) = 2 and by (?), χ vanishes on a 2-element. We want to show that χ also

vanishes on an element of Zsigmondy prime order. Note that χ is not unipotent and so

χ lies in the Lusztig series E(M, s∗) of s∗ in the dual M∗. Let T1, T2 and T3 be tori of M

corresponding to ((n),−), (−, (n)) and (−, (n− 1, 1)), respectively. These tori contain

regular elements by Lemma 3.3.23. We claim that χ vanishes on regular elements in

at least one of these tori. Otherwise, by Lemma 3.3.7, CM∗(s
∗) contains conjugates of

the dual tori T ∗i , 1 ≤ i ≤ 3. The corresponding reductive subgroup CM∗(s
∗) contains

conjugates of the dual tori T ∗i , 1 ≤ i ≤ 3. It follows from Lemma 3.3.24 that CM∗(s
∗)

is central. Hence CM∗(s
∗) = M∗, that is, χ is unipotent, a contradiction. The claim is

thus true. Now for T1, T2 and T3 note that there exist Zsigmondy primes l1, l2 and l3

in respect of |T1|, |T2| and |T3|. Hence χ vanishes on at least two elements of distinct

orders and we are done.

Suppose that Z(M) = {1M}. Let us considerM ∼= PSp2n(q) (n ≥ 3) or PSO2n+1(q) (n ≥
3) or PSO−2n(q) (n ≥ 4) with q ≥ 3. By Lemma 3.3.27, χ vanishes on elements of or-

der l1, or l2, or χ is of l3-defect zero, where l3 = l(n − 1) (the last case only arising

when n is even). In all cases Zsigmondy primes exist. There exists an odd prime l
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such that l | (q − 1) or l | (q + 1) except when q = 3. Note that M is of l-rank at

least 3. If q 6= 3, then by Theorem 3.3.1, χ vanishes on an l-singular element. Since

gcd(l1, l) = gcd(l2, l) = gcd(l3, l) = 1, the result follows. We are left with case when

q = 3. If n ≥ 6, then M has a torus T corresponding to (−, (n − 6, 2, 2, 2)), i.e., M

is of l-rank at least 3, where l | (q2 + 1). The result follows again. Hence we may

assume that n ≤ 5, that is, M ∈ {PSp6(3), PSp8(3), PSp10(3), PSO7(3), PSO9(3),

PSO11(3), PSO−10(3)}. Explicit character tables for PSp6(3) and PSO7(3) are given in

Atlas [CCNPW85]. The rest may be constructed using Magma [BCP97]. The conclu-

sion of the proposition can be verified in respect of each of these cases.

Suppose that Z(M) = {1M} and M ∼= PSO+
2n(q) with n ≥ 4 and q ≥ 3. Assume that n

is odd. Then Zsigmondy primes l1 and l2 exist, and χ vanishes on regular elements in T1

or in T2 by Lemma 3.3.27. If q 6= 3, then there exists an odd prime l such that l | (q−1)

or l | (q + 1) and M is of l-rank at least 3. Hence χ vanishes on an l-singular element

by Theorem 3.3.1, thus χ vanishes on at least 2 elements of distinct orders. Let q = 3.

If n ≥ 7, then consider a torus corresponding to the cycle type (−, (n − 6, 2, 2, 2)).

It follows that M is of l-rank at least 3 with l | (q2 + 1) and by Theorem 3.3.1, χ

vanishes on an l-singular element. Hence we may assume n ≤ 5. Hence n = 5 and so

M ∼= PSO+
10(3). Consulting of this group’s character table constructed using Magma

[BCP97] shows that the proposition’s conclusion is met in this instance.

Suppose that n ≥ 4 is even. By Lemma 3.3.27, χ vanishes on regular elements of

order l1 or l2, or χ is of l3-defect where l3 = l(2n − 4). An argument, similar to

that used in the paragraph above, allows us to dispose of the case q 6= 3. Suppose

then q = 3. Now if n ≥ 6, then M is of l-rank at least 3 where l is an odd prime

dividing q2 + 1. This entails l = 5. By Theorem 3.3.1, χ vanishes on a 5-singular

element. Since gcd(l1, 5) = gcd(l2, 5) = gcd(l3, 5) = 1, the result follows. If n = 4,

then M ∼= PSO+
8 (3). Consulting of this group’s character table displayed in the Atlas

[CCNPW85] shows that the proposition’s conclusion is met in this instance.
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3.3.5 Exceptional groups

3.3.5.1 Exceptional groups of small Lie rank

Let L = {2B2(q) | q = 22f+1, f ≥ 1} ∪ {2G2(q
2) | q2 = 32f+1, f ≥ 1} ∪ {2F4(q

2) | q2 >
2} ∪ {G2(q) | q ≥ 3} ∪ {3D4(q), q ≥ 2}.

Proposition 3.3.29. Let M be a quasisimple group such that M/Z(M) ∈ L. If (?)

holds, then M ∼= 2B2(8) with χ(1) = 14.

Proof. The simple group M = 2B2(8) satisfies the conclusion of our proposition from

its character table in the Atlas [CCNPW85]. Let M = 2B2(q), q > 8. For the remaining

groups, inspection of the explicit character tables displayed in Atlas [CCNPW85] and

the generic ordinary character tables shown in Chevie [GHLMP96], reveals that every

non-trivial character of the given group, fails to satisfy either condition (i) or (ii) of

(?). Hence the result follows.

3.3.5.2 Exceptional finite groups of large Lie rank

The table below shows the Zsigmondy primes li for the corresponding tori Ti. It

was shown in [MNO00] that every non-trivial irreducible character which is not the

Steinberg character, vanishes on an element of order li for some i ∈ {1, 2, 3}. Recall

that the nth cyclotomic polynomial over Q, denoted Φn, is equal to

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− e 2πik
n )

Table 3.1: Tori and Zsigmondy primes for exceptional of groups of Lie type

M |T1| |T2| |T3| l1 l2 l3

F4(q) Φ12 Φ8 l(12) l(8)

E6(q) Φ12Φ3 Φ9 Φ8Φ2Φ1 l(12) l(9) l(8)

2E6(q) Φ18 Φ12Φ6 Φ8Φ2Φ1 l(18) l(12) l(8)

E7(q) Φ18Φ2 Φ14Φ2 Φ12Φ3Φ1 l(18) l(14) l(12)

E8(q) Φ30 Φ24 Φ20 l(30) l(24) l(20)

Lemma 3.3.30. [MNO00, Lemma 5.9] Let M ∈ {F4(q), E6(q), 2E6(q), E7(q), E8(q)}.
Then every non-trivial irreducible character of M which is not the Steinberg character,

vanishes on elements of order l1, l2 or l3 as can be seen in Table 3.1.
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Proposition 3.3.31. Let M be a quasisimple exceptional group of Lie type over a field

of characteristic p, and of rank at least 4. Then every non-trivial faithful irreducible

character of M fails to satisfy (?).

Proof. Note that the group M must be one of the types : F4, E6,
2E6, E7 or E8.

Let M = F4(q), q ≥ 2. Then M is simple. Inspection of the character table for F4(2)

displayed in the Atlas [CCNPW85], disposes of the case q = 2, so that we may assume

q ≥ 3. From Lemma 3.3.30 we have that χ vanishes either on regular elements of order

l1, l2 or l3 = l(3), or χ is of p-defect zero if it coincides with the Steinberg character. On

the other hand, there exist an odd prime l such that l | (q−1) or l | (q+1) and M is of

l-rank at least 3 unless q = 3. If q 6= 3, then by Theorem 3.3.1, we have that χ vanishes

on an l-singular element and since gcd(l1, l) = gcd(l2, l) = gcd(l3, l) = gcd(p, l) = 1,

the result follows. The construction of a character table for M = F4(3) using Magma

[BCP97], disposes of the case q = 3.

Now suppose that M = E6(q), q ≥ 2 with Z(M) = {1M}. From Lemma 3.3.30 we

have that χ vanishes on regular elements of order l1, l2 or l3, or χ is of p-defect zero

if it coincides with is the Steinberg character. On the other hand, M is of l-rank at

least 3 for an odd prime l such that l | (q3 − 1). By Theorem 3.3.1, χ vanishes on

an l-singular element. Since gcd(l1, 1) = gcd(l2, l) = gcd(l3, l) = 1, we are done. Now

suppose that |Z(M)| 6= 1, that is, |Z(M)| = 3. By (?), χ vanishes on a 3-element.

Using the above argument, χ vanishes on an l-singular element, where l is an odd prime

such that l | (q3 − 1). Since gcd(3, l) = 1, the result follows.

Suppose that M = 2E6(q), q ≥ 2 with Z(M) = {1M}. By Lemma 3.3.30 we have that

χ vanishes on regular elements of order l1, l2 or l3, or χ is of p-defect zero if it coincides

with the Steinberg character. On the other hand, M is of l-rank at least 3 for an odd

prime l such that l | (q6 − 1). By Theorem 3.3.1, χ vanishes on an l-singular element.

Since gcd(l1, 1) = gcd(l2, l) = gcd(l3, l) = 1, the result follows. Now suppose that

|Z(M)| 6= 1, so |Z(M)| = 3 and q = 3b− 1 for some positive integer b ≥ 2. Inspection

of the character table for 2E6(2) given in the Atlas [CCNPW85] disposes of the case

q = 2, so that we may assume q ≥ 5. It is sufficient to show that M is of l-rank at least

3 for some prime l 6= 3. Such a candidate for l is an odd prime l such that l | (q6 − 1).

By Lemma 3.3.30, we have that χ vanishes on regular elements of order l1, l2 or l3, or
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χ is of p-defect zero if it coincides with the Steinberg character. By Theorem 3.3.1, χ

vanishes on an l-singular element, where l is an odd prime such that l | (q6−1). Hence

the result follows. The same arguments used above, may be applied to M = E7(q) and

M = E8(q) in the case when M is simple.

Now suppose that M = E7(q) and |Z(M)| 6= 1. Using (?), we see that χ vanishes on a

2-element. By Theorem 3.3.1, χ vanishes on an l-singular element, where l is an odd

prime such that l | (q6 − 1). Hence the result follows.

3.4 Non-solvable groups with a character vanishing

on one class

We begin this section by showing the primitivity of the characters in Propositions 3.4.2,

3.4.3 and 3.4.4. Imprimitive characters for quasisimple groups were described by Hiss,

Husen and Magaard in [HHM15], and Hiss and Magaard [HM19]. This description

can be used to determine which characters are primitive, for at least the cases where

G = M in Theorem 3.2.3. However, here we shall adopt a different approach.

In light of Theorem 2.5.1 and Propositions 3.4.2 and 3.4.3, we need only check the

primitivity of characters in PSL2(8):3 and A5. For (G,H) = (A5,D10), |G : H| = 6 and

in Proposition 3.4.2(a) we do not have characters of degree greater than or equal to 6.

Also for (G,H) = (PSL2(8):3,D18:3), |(PSL2(8):3) : (D18:3)| = 14 but the character in

Proposition 3.4.3(b) has degree not greater than or equal to 14. We have thus proved:

Theorem 3.4.1. The irreducible characters of finite groups in Propositions 3.4.2(a)-

(d), 3.4.3(a)-(c) and 3.4.4 are primitive.

3.4.1 Symmetric and alternating groups

Proposition 3.4.2. Let G be a finite group with a composition factor isomorphic to

An, n ≥ 5. Then G has a faithful irreducible character χ such that nυ(χ) = 1 with

υ(χ) = C if and only if G is one of the following:

(a) G ∼= A5, χ2(1) = χ3(1) = 3 or χ4(1) = 4;
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(b) G ∼= 2·A5, χ6(1) = χ7(1) = 2 or χ8(1) = 4;

(c) G ∼= S5, χ6(1) = χ7(1) = 5;

(d) G ∈ {A6:22, A6:23, 3·A6:23}, χ(1) = 9 for all such χ ∈ Irr(G).

Proof. Suppose that G has a faithful irreducible character χ with υ(χ) = C. By Theo-

rem 3.2.3, we have that there exist normal subgroups M and Z such that G/Z is almost

simple and M is quasisimple with χM irreducible and χM vanishing on C1, C2, . . . , Cm
with m ≥ 1 such that C =

⋃m
i=1 Ci. By the argument preceding Problem 1 in Chapter

1, it is sufficient to only consider groups G such that M is of the type listed in the

statements of Theorems 3.3.4 and 3.3.6. This means that M is isomorphic to A5, A6,

2·A5 or 3·A6. Using GAP [GAP16] or Atlas [CCNPW85] the result follows. Lastly, by

Theorem 3.4.1, all the characters appearing in the statement of the proposition are

primitive.

3.4.2 Almost simple groups of Lie type

We note that PGL2(q) = PSL2(q)o〈δ〉 where δ is a diagonal automorphism and |〈δ〉| =
2. Also, Aut(PSL2(q)) = PGL2(q)o〈ϕ〉, where ϕ is a field automorphism and |〈ϕ〉| = f ,

where f is a positive integer.

Proposition 3.4.3. Let G be a finite group with a composition factor isomorphic to

PSL2(q), where q ≥ 4 is a prime power. Then G has a faithful irreducible character χ

such that nυ(χ) = 1 if and only if G is one of the following:

(a) G ∼= PSL2(7), χ(1) = 3;

(b) G ∼= PSL2(8):3, χ(1) = 7;

(c) G ∼= PGL2(q), χ(1) = q.

Proof. Suppose that G has a faithful irreducible character χ. By Theorem 3.2.3, we

have that there exist normal subgroups M and Z such that G/Z is almost simple and M

is quasisimple. By the argument used in the proof of Proposition 3.4.2, M is isomorphic

to one of the groups listed in Proposition 3.3.9. Suppose that M ∼= PSL2(7), PSL2(8)
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or PSL2(11). Consulting of the relevant character tables in the Atlas [CCNPW85],

shows that (a) or (b) hold.

We now consider the case of Proposition 3.3.9(d). When q is even, G = M = PSL2(q) =

PGL2(q) and (c) follows from Theorem 3.3.9(d). Now suppose that q is odd and let

M = PSL2(q) and G = PGL2(q). Note that for PGL2(q) the Steinberg character φ has

values ±1 for all elements outside PSL2(q) by [Ste51, Section 2]. Moreover, PGL2(q)

has one conjugacy class of order p (recall that q = pm with m a positive integer). That

the Steinberg character extends to PGL2(q) follows from [Fei93]. Hence G = PGL2(q)

satisfies the conclusion as required.

Now suppose that M = PSL2(q) < G 6 Aut(PSL2(q)) and G � PGL2(q). We want

to show that every χ of G vanishes on at least two conjugacy classes of G. In light of

Proposition 3.3.9(d), we need only consider the Steinberg character φ of PSL2(q). By

Lemma 2.4.4, we have gcd(|G : PSL2(q)|, q) = 1. Hence φ is of p-defect zero in G. We

show that PGL2(q) 6 H. By Lemma 2.4.8, the action of δ makes the conjugacy classes

represented by c and d of PSL2(q) into one conjugacy class. On the other hand, by

Lemma 2.4.9, for 1 ≤ k < f , ϕk fixes these conjugacy classes represented by c and d of

PSL2(q), so G has two conjugacy classes of elements of order p. Therefore G necessarily

contains δ and hence PGL2(q), and has only one conjugacy class of order p, C say. Thus

G = G ∩ PGL2(q)o 〈ϕ〉. Now |CPGL2(q)(c)| =
|PGL2(q)|
|C|

. This means that |CG(c)| =

|G|
|C|

=
|G : PGL2(q)||PGL2(q)|

|C|
. Since gcd(|G : PGL2(q)|, q) = gcd(|〈ϕ〉|, q) = 1, there

must exist x ∈ G\PGL2(q) of order r - q, for some prime r. Note that x ∈ CG(c). It

follows that cx has order pr. Since φ is of p-defect zero in G, φ vanishes on cx. Since

φ vanishes on c, we have that φ vanishes on two distinct classes of G as required.

By Theorem 3.4.1, all the characters appearing in the statement of the proposition are

primitive.

Proposition 3.4.4. Let G be a finite group with a composition factor isomorphic to a

finite simple group of Lie type distinct from PSL2(q). Then G has a faithful irreducible

character χ such that nυ(χ) = 1 if and only if G = 2B2(8):3 with χ(1) = 14.

Proof. Suppose that χ ∈ Irr(G) is faithful, primitive and vanishes on one conjugacy

class. By Theorem 3.2.3, there exist normal subgroups M and Z such that G/Z is
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almost simple and M is quasisimple. By the argument used in the proof of Proposition

3.4.2, M is isomorphic to 2B2(8) or PSU3(4). Consulting of the chacracter tables these

two groups in Atlas [CCNPW85] eliminates PSU3(4) and the result follows.

Conversely, if G = 2B2(8):3 with χ(1) = 14, then by Theorem 3.4.1, χ is primitive.

3.5 Questions of Dixon and Rahnamai Barghi

We restate and prove a renumbered version of Corollary 1.0.6.

Corollary 3.5.1. If G is a finite group that has a faithful irreducible character χ such

that nυ(χ) = 1, then G has at most one non-abelian composition factor.

Proof. Suppose that G is non-solvable. If χ is primitive, then G satisfies condition (a)

or (b) of Theorem 3.2.3. By the proof of Theorem 3.2.3, G is solvable when G satisfies

condition (b). If G satisfies (b), the result follows since Out(M/Z) is solvable.

Suppose that χ is imprimitive. By Theorem 2.5.1, the non-solvable cases correspond

with conditions 2.5.1(b)(iii), (c) and (d). For (b)(iii) it is well known that if H/N is

a non-solvable complement, then it has only one non-abelian composition factor. For

(c) and (d) it is clear that G has only one non-abelian composition factor. Hence the

result follows.

Note that for the imprimitive case, χ need not be faithful. We also restate and renumber

Corollary 1.0.7 which answers Question 2.

Corollary 3.5.2. Let G be a finite non-abelian simple group and let χ ∈ Irr(G). If

nυ(χ) = 1, then one of the following holds:

(a) G ∼= PSL2(5), χ(1) = 3;

(b) G ∼= PSL2(7), χ(1) = 3;

(c) G ∼= PSL2(2
a), χ(1) = 2a, where a > 2.

Combining Theorems 3.0.1, 3.0.3 and 2.5.1, we have the following:
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Theorem 3.5.3. Let G be a finite group that has a non-linear irreducible character χ

such that nυ(χ) = 1. Then there exists a maximal subgroup H and normal subgroups

M , N , K and Z of G (where appropriate), such that one of the following holds:

(a) G is a Frobenius group with an abelian odd-order kernel H = G′ of index 2;

(b) G/N is a 2-transitive Frobenius group with an elementary abelian kernel M/N of

order pn for some prime p and integer n ≥ 1, and a complement H/N of order

pn − 1. Moreover, M ′ = N and one of the following holds:

(i) M is a Frobenius group with kernel M ′ and pn = p > 2;

(ii) M is a Frobenius group with kernel K / G such that G/K ∼= SL2(3) and

M/K ∼= Q8;

(ii) M is a Camina p-group;

(c) G/N ∼= PSL2(8):3, H/N ∼= D18:3 and N is a nilpotent 7′-group;

(d) G/N ∼= A5, H/N ∼= D10 and N is a 2-group;

(e) G/K ∼= PSL2(5);

(f) G/K ∼= SL2(5);

(g) G/K ∈ {A6:22, A6:23, 3·A6:23};

(h) G/K ∼= PSL2(7);

(i) G/K ∼= PSL2(8):3;

(j) G/K ∼= PGL2(q);

(k) G/K ∼= 2B2(8):3;

(l) G/Z is a Frobenius group with an abelian kernel M/Z of order p2n, M/K is an

extra-special p-group and Z/K is of order p for some prime p.
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Chapter 4

Character degrees and zeros of

irreducible characters

4.1 Introduction

We begin the chapter by recalling some definitions. A character χ of a finite group G

is called monomial if χ = λG for some linear character λ of H, where H 6 G. A group

G is called an M-group if every irreducible character of G is monomial. Supersolvable

groups are M -groups and M -groups are solvable groups (see [Isa06, Theorem 6.22 and

Corollary 5.13]). Let dl(G) denote the derived length of G. A famous result of Taketa

[Isa06, Theorem 6.12] states that dl(G) ≤ cd(G) when G is an M -group.

Let G be a finite group G and g ∈ G. Then g is non-vanishing in G if for every

χ ∈ Irr(G), χ(g) 6= 0. A conjecture of Isaacs, Navarro and Wolf [INW99] claims that

every non-vanishing element of a solvable group is contained in the Fitting subgroup of

that group. They settled the conjecture for elements of odd order [Isa06, Theorem D].

A vanishing class C of G is a conjugacy class on which some irreducible character of G

vanishes and vanishing class size is the number of elements in a vanishing class. We

shall restate and renumber Theorems 1.0.13, 1.0.14, 1.0.15 and 1.0.16 in this chapter.

Theorem 4.1.1. Let G be a finite solvable group and let χ ∈ Irr(G) be non-linear.

Suppose that one of the following conditions holds:

(a) χ is monomial;
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(b) G is of odd order;

(c) G has derived length at most 3;

(d) G has a normal Sylow 2-subgroup;

(e) G has a self-normalizing Sylow p-subgroup P and χ vanishes on p-elements for

some prime p;

(f) Every maximal subgroup of G is an M-group.

If χ(1) is divisible by two distinct primes, then χ vanishes on at least two conjugacy

classes.

Theorem 4.1.2. Let G be a finite solvable group, χ ∈ Irr(G) and let n be a positive

integer. Suppose that one of the following conditions holds:

(a) χ is primitive;

(b) G is nilpotent;

(c) G is metabelian.

If χ(1) is divisible by n distinct prime numbers, then χ vanishes on at least n elements

of pairwise distinct orders.

Theorem 4.1.3. Let G be a finite solvable group, χ ∈ Irr(G) and let n be a positive

integer. Suppose that all distinct character degrees of G are relatively prime. If χ(1)

is divisible by n distinct prime numbers, then χ vanishes on at least n elements of

pairwise distinct orders.

Theorem 4.1.4. Let G be a finite almost simple group such that S � G 6 Aut(S),

where S is either an alternating group or a sporadic simple group. Let χ ∈ Irr(G) and

n be a positive integer. If χ(1) is divisible by n distinct prime numbers, then χ vanishes

on at least n elements of pairwise distinct orders.
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4.2 Preliminaries

Lemma 4.2.1. [BBERA10, Theorem 3.1.2] Let G = G1G2 · · ·Gn be a product of cyclic

groups G1, G2, . . . , Gn. Then G is supersolvable.

Theorem 4.2.2. Let G be a finite supersolvable group. If p is the largest prime dividing

the order of G, then the corresponding Sylow p-subgroup is a normal subgroup of G.

Proof. The result follows from [Bec71, Theorems 6.2.5 and 6.2.6].

Theorem 4.2.3. [INW99, Theorem A] Suppose that a group G has a normal Sylow

p-subgroup P . Then all elements of Z(P ) are non-vanishing in G.

Theorem 4.2.4. [Bro16, Theorem B] Let G be a finite group and suppose that every

vanishing class size of G is square free. Then G is supersolvable.

Lemma 4.2.5. Let G be a finite solvable group and let χ ∈ Irr(G) be non-linear.

Suppose that χ(1) is divisible by two distinct primes, but χ vanishes on one conjugacy

class. Then there exist normal subgroups M and N and a maximal subgroup H of G

such that G/N is a Frobenius group with a cyclic Frobenius kernel M/N of order p and

a Frobenius complement of order p− 1, and M is a Frobenius group with a Frobenius

complement of order p and a Frobenius kernel N with M ′ = N .

Proof. If χ is primitive, then the result follows by Theorem 1.0.14(c). Suppose that χ

is imprimitive. By Theorem 2.5.1, we need only consider the solvable cases, that is,

cases (a) and (b)(i)-(iii) of Theorem 2.5.1.

For case (a) we have that since H is abelian, ϕ is linear and χ = ϕG(1) = |G : H|ϕ(1) =

2, contradicting our hypothesis.

For case (b)(ii) we have that M is a Frobenius group with a Frobenius kernel K

such that G/K ∼= SL2(3) and M/K ∼= Q8. Note that |M/K| is even. Invoking

Proposition 2.1.13, we see that K is abelian. By Theorem 2.3.10, χ(1) divides |M/K|
since gcd(χ(1), |G : M |) = 1 by Lemma 2.4.4, and so χ(1) = 2s, s ≤ 3.

For case (b)(iii) since gcd(χ(1), |G : M |) = 1 by Lemma 2.4.4 and so χ divides |M | =
pm, m ≥ 1. Hence we are left with case (b)(i) and the result then follows.

Lemma 4.2.6. [Isa06, Problem 12.3] Let G be a finite solvable group. If all distinct

character degrees of G are relatively prime, then |cd(G)| ≤ 3.
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4.2 Preliminaries

Theorem 4.2.7. [Isa06, Theorem 12.5] Let G be a finite solvable group and let m be

a positive integer. If cd(G) = {1,m}, then at least one of the following holds:

(a) G has an abelian normal subgroup of index m.

(b) m = pe for some prime p and G is a direct product of a p-group and an abelian

group.

Theorem 4.2.8. [Isa06, Corollary 12.6] Let G be a finite group. If |cd(G)| = 2, then

G is metabelian.

Theorem 4.2.9. [Isa06, Theorem 12.15] Let G be a finite group. If |cd(G)| = 3, then

dl(G) ≤ 3.

Theorem 4.2.10. Let G be a finite solvable group. Let χ ∈ Irr(G) be primitive.

Suppose that χ(1) = pa11 p
a2
2 ...p

an
n , where the p′is are distinct prime numbers and a′is

positive integers for i ∈ {1, 2, ..., n}. Then χ = αp1αp2 ...αpn, where αpi ∈ Irr(G) is

primitive and is of pi-power degree for i ∈ {1, 2, ..., n}.

Proof. This follows from [Isa18, Theorem 2.17].

We recall the definition of an element of Sn, denoted by πnp.

If p is a prime number let

n = a0 + a1p+ · · ·+ akp
k, 0 ≤ ai ≤ p− 1, ak 6= 0,

be the p-adic expansion of n. Let πnp ∈ Sn be an element which is a product of a1

p-cycles, a2 p
2-cycles . . . and ak p

k-cycles, i.e., πnp = ((pk)ak , . . . , (p2)a2 , pa1).

Lemma 4.2.11. Let χλ ∈ Irr(Sn) and let ρ ∈ Irr(An). If p | χλ(1), then χλ(πnp) = 0.

Furthermore, if p | ρ(1) is odd, then πnp ∈ An and ρ(πnp) = 0.

Proof. The first assertion is [MNO00, Theorem 4.1]. The second assertion follows from

[MNO00, Theorem 4.2] and the first remark after [MNO00, Theorem 4.2].
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4.3 Proof of main results

Proof of Theorem 4.1.1. In order to establish the theorem’s conclusion in respect

of each of the conditions listed, it is sufficient to show that if χ vanishes on one conju-

gacy class, then χ(1) is a prime power.

For (a), we have χ = φG, for some linear character φ ∈ Irr(H), where H is a proper

subgroup of G. Then G/HG is a transitive permutation group on the set Ω of right

cosets of H/HG in G/HG, with point stabilizer H/HG. Note that G/HG has one class

of derangements. By Theorem 2.1.10, G/HG is a primitive permutation group. This

implies that H is a maximal subgroup of G. Since |G : H| = p, by Lemma 4.2.5, we

have χ(1) = p, as required.

For (b), suppose the contrary. Then G is the group in Lemma 4.2.5. The result follows

noting that |G| is even, contradicting our hypothesis.

For (c), first note that G/M is cyclic which implies that G′ 6 M . If G′ < M , then

M/G′ is abelian and so N 6 G′ since M ′ = N . Since M/N is cyclic of order p, we

have that G′ = N , a contradiction since G/N is not abelian. Hence G′ = M . Note

that M ′ = N . Since G has derived length at most 3, we must have that N is abelian.

Now gcd(χ(1), |G/M |) = 1 by Lemma 2.4.4, and by Theorem 2.3.10, χ(1) divides

|G/N |. Hence χ(1) divides |M/N | = p, which means that χ(1) = p, thus concluding

our argument.

For (d), suppose the contrary. By Theorem 1.0.2, χ vanishes on p-elements for some

prime p. Let P be a Sylow p-subgroup of G. From Lemma 4.2.5, note that M/N =

PN/N . If T is the normal Sylow 2-subgroup of G, then TPN/N is a direct product

of TN/N and PN/N = M/N . This is a contradiction since G/N is a Frobenius group

with a Frobenius kernel M/N = PN/N .

For (e), again suppose the contrary. Using Theorem [Isa08, Theorem 5.13], we infer

that G has a normal p-complement K, that is, |G/K| = p. Hence G/N is a direct

product of K/N and M/N , a contradiction.

For (f), suppose the contrary. We have that χ is imprimitive. Choose H 6 G minimal,

such that there exists φ ∈ Irr(H) with χ = φG. Using the transitivity of the induced

character in Lemma 2.3.15, we have that φ is primitive. Then G/HG is a transitive

permutation group on the set Ω of right cosets of H/HG in G/HG, with point stabilizer
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H/HG. Note that G/HG has one class of derangements. By Theorem 2.1.10, G/HG is

a primitive permutation group. This implies that H is a maximal subgroup of G. By

hypothesis, χ is monomial. This means that φ is both monomial and primitive and

hence φ is linear. Since |G : H| = pm for some positive integer m by Lemma 4.2.5, we

have χ(1) = p, as required.

Observe that the proof of (b) above shows that if G is a finite group of odd order, then

G has no imprimitive irreducible character that vanishes on one conjugacy class.

Proof of Theorem 4.1.2. Suppose that χ is primitive. Suppose that

χ(1) = pa11 p
a2
2 ...p

an
n , where p′is are distinct primes and each ai a positive integer for

i ∈ {1, 2, . . . , n}. Then by Theorem 4.2.10, χ = αp1αp2 . . . αpn , where each αpi ∈ Irr(G)

is primitive and of pi-power degree. Since αpi(1) 6= 1, there is a pi-element gi such that

αpi(gi) = 0 for each i ∈ {1, 2, . . . , n}. It follows that

χ(gi) = αp1(gi) . . . αpi−1
(gi)αpi(gi)αpi+1

(gi) . . . αpn(gi) = 0. Therefore g1, g2, ..., gn are

elements of distinct orders on which χ vanishes.

For (b), suppose that G is nilpotent and suppose that χ(1) = pk11 p
k2
2 ...p

kn
n , where the

pi’s are distinct primes and each ki a positive integer for i ∈ {1, 2, . . . , n}. Then

χ = ψP1 × ψP2 × · · · × ψPn for some ψPi ∈ Irr(Pi) and Sylow pi-subgroup Pi of G,

i ∈ {1, 2, ..., n}. We may consider gi ∈ Pi such that ψPi(gi) = 0. Then

χ(gi) = ψP1(gi)ψP2(gi) . . . ψPi−1
(gi)ψPi(gi)ψPi+1

(gi) . . . ψPn(gi) = 0.

Therefore g1, g2, ..., gn are pi-elements of distinct orders on which χ vanishes.

For (c), we consider the case where G is metabelian. Since G/G′ is abelian, we have

by Theorem 2.3.13, that G is a relative M -group with respect to G′. This entails

the existence of a subgroup K of H with G′ 6 K 6 G, and ψ ∈ Irr(K) such that

ψG = χ and χG′ ∈ Irr(G′). Note that K is normal in G, ψG vanishes on G\K and ψ is

linear. If χ(1) = pa11 p
a2
2 ...p

an
n , where the pi’s are distinct primes and each ai a positive

integer for i ∈ {1, 2, . . . , n}, then pa11 p
a2
2 ...p

an
n = |G : H|ψ(1) = |G : H|, whence G/H

has a pi-element gi and χ vanishes on gi for each i ∈ {1, 2, . . . , n}. Hence the result

follows.

Proof of Theorem 4.1.3. By Lemma 4.2.6, we have that |cd(G)| ≤ 3. If |cd(G)| =
2, then G is metabelian by Theorem 4.2.8 and the result follows by Theorem 4.1.2(c).
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Hence we may assume that cd(G) = {1,m, n}, with m,n ≥ 2 positive integers such

that gcd(m,n) = 1. Note that dl(G) ≤ 3 by Theorem 4.2.9. Again, we may assume

that dl(G) = 3 in light of Theorem 4.1.2(c). If |cd(G/G′′)| = 3, then the result

again follows from Theorem 4.1.2(c). Suppose then that |cd(G/G′′)| = 2, that is,

cd(G/G′′) = {1,m}. By Theorem 4.2.7, G has an normal subgroup A such that A/G′′

is abelian and either |G : A| = m with G/A abelian since G/A has no non-linear

irreducible characters, or |G : A| = pf , where m = pe and e, f are positive integers,

with G/A nilpotent. Note that since G′′ is abelian, n divides |G : G′′| by Theorem

2.3.10. On the other hand, gcd(m,n) = 1, so n divides |A : G′′|. Now G/A is nilpotent

and hence by Theorem 2.3.13, G is a relative M -group with respect to A. Hence for all

χ ∈ Irr(G) such that χ(1) = m, we have that χ = ϕB, where ϕ ∈ Irr(G), A 6 B 6 G

and ϕA ∈ Irr(A). If B < G, then χ(1) = |G : B|ϕ(1) and so gcd(m,n) 6= 1, a

contradiction. Hence B = G and χA is irreducible. Note that A/G′′ and G′′ are

abelian, and so A is metabelian. The result then follows by Theorem 4.1.2(c).

Inspection of the Atlas [CCNPW85] shows that the following holds for sporadic simple

groups:

Lemma 4.3.1. Let G be a finite almost simple group such that S E G 6 Aut(S),

where S is a sporadic simple group and let χ ∈ Irr(G). If χ(1) is divisible by n distinct

prime numbers, then χ vanishes on at least n elements of pairwise distinct orders.

Proof of Theorem 4.1.4. Consulting of the Atlas [CCNPW85] establishes the result

for G such that An �G 6 Aut(An), where 5 ≤ n ≤ 7. For Sn, n ≥ 8, the result is true

by Lemma 4.2.11. We thus consider the case G = An for n ≥ 8. If χ(1) is odd, the

result is true by Lemma 4.2.11. If χ(1) is even, the result is true by Lemmas 4.2.11

and 3.3.3.

4.4 Properties of a counterexample

We conclude the chapter by describing a counterexample to Question 3 when n = 2.

Theorem 4.4.1. Let G be a finite solvable group and χ ∈ Irr(G). Suppose that χ(1)

is divisible by two distinct primes, but χ vanishes on a unique conjugacy class. Then

the following hold:
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(a) G has normal subgroups M,N and a maximal subgroup H such that G/N is a

Frobenius group with a cyclic kernel M/N of order p for some prime p, and a

cyclic complement H/N of order p − 1. In particular, G/N is supersoluble and

M = PN is a Frobenius group with kernel N and Frobenius complement P ;

(b) G has derived length at least 4, N contains at least one non-abelian normal Sylow

r-subgroup R of G, r an odd prime. In particular, r - |H/N | and χ(1) is odd;

(c) There exists a primitive character φ ∈ Irr(H) such that φN ∈ Irr(N) and (φN)M =

χM . Moreover, M is an M-group, but H is not an M-group;

(d) P is not self-normalizing and x ∈ NG(P ) for all x ∈ G\N .

If |M | is even and T is the the Sylow 2-subgroup of M , then the following also hold:

(e) M is not supersolvable and |Z(T )| = 22s for some positive integer s;

(f) φ ∈ Irr(H) is not faithful.

Proof. The first part of (a) follows from Lemma 4.2.5. Note that G/N is supersolvable

by Lemma 4.2.1, since it is a product of cyclic groups.

The fact that G has derived length at least 4 is obvious in light of Theorem 4.1.1(c).

Hence N is non-abelian and so must have a non-abelian Sylow r-subgroup R of G

for some r dividing χ(1). By Lemma 2.4.4, r - |G : M | = |H/N | since C ⊆ M by

Proposition 3.1.7. Since r does not divide |H : N | and N is nilpotent, the Sylow r-

subgroup R is characteristic in N and so normal in G. Inasmuch as |H/N | we must

have that χ(1) is odd by Lemma 2.4.4. Hence (b) holds.

For (c), note that χ is not primitive by Theorem 1.0.12. Choose a subgroup H of

G minimal such that there exists φ ∈ Irr(H) with χ = φG. By the transitivity of

character induction, we have that φ is primitive. Using the same argument as in

Section 2.5, it follows that H is maximal in G. Since H/N is cyclic, by Theorem

2.3.13 there exist a subgroup K of H with N 6 K 6 H and ψ ∈ Irr(K) such that

ψH = φ and φN ∈ Irr(N). The the primitivity of φ implies that K = H, whence, φN

is irreducible. Note that (φN)M = χM by Lemma 2.3.15 since G = HM , H ∩M = N

and (φG)M = χM . To establish the second assertion in (c), observe that since M is a

Frobenius group, we have that every irreducible character of M is either an irreducible
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character of P with kernel N , or is induced from an irreducible character of N by

Proposition 2.3.16. Irreducible characters of P are all linear, however. Hence the non-

linear characters of M are induced from irreducible characters of N . But since N is

nilpotent, all its characters are monomial. By transitivity of characters, all characters

of M are monomial, as required. Now if H is an M -group, since φ is primitive, it

follows that φ is linear, a contradiction.

The first assertion made in (d) follows from Theorem 4.1.1(e), whilst the second holds

inasmuch as M is a normal subgroup and by the Frattini argument, G = NG(P )M .

To establish (e), note that if M is supersolvable, then PT is a supersolvable subgroup

of M . By Theorem 4.2.2, P / PT and PT = P × T which contradicts the fact that

CM(P ) = P . Hence M is not supersolvable.

Suppose that |Z(T )| 6= 22s, for any positive integer s. Note that Z(T )P is a Frobenius

group with kernel Z(T ) and Frobenius complement P by Proposition 2.1.16. Also

note that Z(T ) is a set of non-vanishing elements by Theorem 4.2.3, and non-trivial

elements of P are vanishing elements. Let x ∈ P . Then |G/CZ(T )P (x)| = |Z(T )|
is the size of the conjugacy class containing x. Since |Z(T )| is square free, Z(T )P is

supersolvable by Theorem 4.2.4. Now since p > 2, P /Z(T )P by Theorem 4.2.2. Hence

Z(T )P = Z(T )× P , a contradiction because CG(x) = P . Thus (e) follows.

For (f), if φ ∈ Irr(H) is faithful, then Z(T ) is cyclic and Z(T )P is supersolvable by

Lemma 4.2.1. By the argument in (e) above, Z(T )P = Z(T ) × P and the result

follows.
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Chapter 5

Future Work

5.1 Classification of groups with a character van-

ishing on one conjugacy class

In Chapter 3, we classified finite non-solvable groups with an irreducible that vanishes

on one conjugacy class. Even though our result is a major step towards the classification

of finite groups with an irreducible that vanishes on exactly one conjugacy class, the

problem is still open. We restate Theorem 3.5.3, what is currently known about this

classification problem:

Theorem 5.1.1. Let G be a finite group that has a non-linear irreducible character χ

such that nυ(χ) = 1. Then there exists a maximal subgroup H and normal subgroups

M , N , K and Z of G (where appropriate), such that one of the following holds:

(a) G is a Frobenius group with an abelian odd-order kernel H = G′ of index 2;

(b) G/N is a 2-transitive Frobenius group with an elementary abelian kernel M/N of

order pn for some prime p and integer n ≥ 1, and a complement H/N of order

pn − 1. Moreover, M ′ = N and one of the following holds:

(i) M is a Frobenius group with kernel M ′ and pn = p > 2;

(ii) M is a Frobenius group with kernel K / G such that G/K ∼= SL2(3) and

M/K ∼= Q8;
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5.2 Character degrees and zeros of characters

(ii) M is a Camina p-group;

(c) G/N ∼= PSL2(8):3, H/N ∼= D18:3 and N is a nilpotent 7′-group;

(d) G/N ∼= A5, H/N ∼= D10 and N is a 2-group;

(e) G/K ∼= PSL2(5);

(f) G/K ∼= SL2(5);

(g) G/K ∈ {A6:22, A6:23, 3·A6:23};

(h) G/K ∼= PSL2(7);

(i) G/K ∼= PSL2(8):3;

(j) G/K ∼= PGL2(q);

(k) G/K ∼= 2B2(8):3;

(l) G/Z is a Frobenius group with an abelian kernel M/Z of order p2n, M/K is an

extra-special p-group and Z/K is of order p for some prime p.

Further work could be done by investigating:

(a) The structure of the normal subgroup K in cases (e)-(l) of Theorem 3.5.3;

(b) The converse of cases (c) and (d) in Theorem 3.5.3.

5.2 Character degrees and zeros of characters

Question 3 which we proposed in Chapter 1 is still open. It is logical to first study this

question for finite solvable groups and then for finite non-solvable groups which have

no composition factors isomorphic to 2B2(8) (see Theorem 1.0.12).

A counterexample to Question 4 is provided in the paragraph following Theorem 1.0.14.

In that counterexample, note that the character degree of the irreducible character of

the given group G is even. This prompts the following refinement of Question 4:

92



5.3 One zero in a column of a character table

Question 5. Let G be a finite solvable group, χ ∈ Irr(G) and n a positive integer. Is

it true that if χ(1) is divisible by n distinct prime numbers, then χ vanishes on at least

n− 1 elements of pairwise distinct orders?

5.3 One zero in a column of a character table

Dual to the classification of finite groups with an irreducible character that vanishes on

exactly one conjugacy class is the classification of finite groups whose character table

has a column with exactly one zero entry, that is, finite groups with an element on

which exactly one irreducible character vanishes. Some work has been done on zeros

in columns of a character table of a finite group (see [MS04a] [ZSW13]). In [QZ05] and

[TTV18], the authors classified finite groups G with an element g such that χ(g) 6= ϕ(g)

for every χ 6= ϕ ∈ Irr(G). If χ(g) = 0 for some prime χ ∈ Irr(G), then it means that

the column of the character table of G labelled by the conjugacy class Cg has exactly

one zero entry. Hence some of the arguments in [QZ05] and [TTV18] will come in

handy in the classification of finite groups whose character table has a column with

exactly one zero entry.
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[MS04a] A. Moretó and J. Sangroniz. On the number of conjugacy classes of zeros of

characters. Israel Journal of Mathematics, 142(1):163–187, 2004.
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