
Digital Forensic Readiness

Architecture for Cloud Computing

Systems

by

Dirk J. Ras

Submitted in fulfilment of the requirements for the degree

Magister Scientiae (Computer Science)

in the Faculty Engineering, Built Environment and Information

Technology, University of Pretoria

Information and Computer Security Architecture Research Group

Department of Computer Science

University of Pretoria

South Africa

August, 2018

Every contact leaves a trace
Locard’s exchange principle

Digital Forensic Readiness Architecture for Cloud

Computing Systems

by

Dirk J. Ras

Submitted for the degree of Magister Scientiae (Computer Science)

August, 2018

Abstract

Cloud computing underpins many of the current emergent and established

technologies. As a result, cloud computing has an impact on many components

of our daily lives, be it from online shopping and banking to usage of mobile apps.

Because of this ubiquity, crime related to cloud systems is an ongoing concern. There

are, however, many factors that, while enabling cloud systems to function, also make

digital forensic investigations on such systems very challenging. While processes and

standards are defined for digital forensics, these processes often do not work when

applied to cloud systems. Forensic investigations are, by their nature, very disruptive

to the operation of a system. This is often unacceptable in a cloud environment.

One way to mitigate the risk of a forensic investigation is to proactively prepare for

such an event by achieving forensic readiness. This leads to the research conducted

for this dissertation.

The central question is whether it possible to achieve forensic readiness in a cloud

environment, so that a digital forensic investigation can be conducted with minimal

or no disruption to the operation of said cloud environment.

This dissertation examines the background information of cloud computing,

digital forensics and software architecture in order to get a clear understanding

of the various research domains. Five possible models for the acquisition of data in

a cloud environment are proposed, using the NIST cloud reference architecture as

a baseline. A full, technology neutral, architecture for a cloud forensics system is

i

then generated. This architecture allows for the acquisition of forensic data within

a cloud environment. The architecture ensures that the data is kept forensically

stable and enables the proactive analysis of the captured data.

Using one of the acquisition models, a proof of concept implementation is done

of the architecture. Experiments are run to determine whether the system meets

the set functional requirements and quality attributes to enable forensic readiness

in a cloud system. The architecture and implementation are evaluated against the

experimental results and possible improvements are suggested. The research is then

concluded and possible future avenues of research in the field of cloud forensics are

suggested.

Keywords: Cloud computing, digital forensics, cloud forensics

Supervisor : Prof. H.S. Venter

Department : Department of Computer Science

Degree : Magister Scientiae

ii

Plagiarism Declaration

Name Dirk Jacobus Ras

Student number 23148978

Topic of Work Digital Forensic Readiness Architecture for Cloud Computing

Systems

1. I understand what plagiarism is and am aware of the University’s policy in

this regard.

2. I declare that this dissertation is my own original work. Where other people’s

work has been used (either from a printed source, Internet or any other source),

this has been properly acknowledged and referenced in accordance with the

requirements as stated in the University’s plagiarism prevention policy.

3. I have not used another student’s past written work to hand in as my own.

4. I have not allowed, and will not allow, anyone to copy my work with the

intention of passing it off as his or her own work.

Signature

Copyright c© 2018 Dirk Jacobus Ras.

The copyright of this dissertation rests with the author. No quotations from it

should be published without the author’s prior written consent and information

derived from it should be acknowledged.

iii

Acknowledgements

I would like to thank the following people and organisations that helped in making

this study possible.

• Professor H.S. Venter for his support, guidance and wisdom in navigating the

world of academics.

• My long suffering parents, who always supported me.

• My mother-in-law, Ina, who came to my rescue at a critical time.

• My friends Andrich van Wyk, Waldo Delport and Leandi Steyn-Delport for

always reminding me that they were already done with their degrees and that

I should get a move-on or face further mocking.

• My colleagues at my places of work at SAP Africa, University of Pretoria and

Dariel Solutions.

• Finally, my wife Aret, who actually married, and stayed married to me, while I

spent the long nights working on this. Also, for supplying me copious amounts

of tea, coffee, and necessary amounts whiskey.

Thank you to the National Research Foundation for funding part of this study.

iv

Contents

Abstract i

Declaration iii

Acknowledgements iv

1 Introduction 1

1.1 Introduction . 1

1.2 Problem statement . 3

1.3 Objectives . 5

1.4 Methodology . 6

1.4.1 Literature review . 6

1.4.2 Theoretical architectural models 6

1.4.3 Full architecture . 7

1.4.4 Implementation and experiments 7

1.4.5 Critical evaluation . 7

1.5 Scope and limitations . 7

1.6 Layout . 9

1.6.1 Part 1: Introduction . 9

1.6.2 Part 2: Background . 9

1.6.3 Part 3: Research contribution 11

1.6.4 Part 4: Conclusion . 12

1.7 Conclusion . 12

2 Cloud computing 13

2.1 Introduction . 13

v

2.2 Characteristics of cloud computing 13

2.3 Service models . 15

2.3.1 Software-as-a-service . 15

2.3.2 Platform-as-a-service . 15

2.3.3 Infrastructure-as-a-service . 16

2.4 Deployment models . 16

2.4.1 Public cloud . 16

2.4.2 Community cloud . 17

2.4.3 Private cloud . 17

2.4.4 Hybrid cloud . 17

2.5 Cloud reference architecture . 18

2.5.1 Cloud components and stakeholders 19

2.5.1.1 Cloud consumer . 19

2.5.1.2 Cloud provider . 20

2.5.1.3 Cloud auditor . 22

2.5.1.4 Cloud broker . 22

2.5.1.5 Cloud carrier . 23

2.5.2 Core technological concepts 24

2.5.2.1 Clustering . 24

2.5.2.2 Virtualization . 24

2.5.2.3 Hypervisor . 24

2.6 Conclusion . 25

3 Digital forensics and security 26

3.1 Introduction . 26

3.2 History of digital forensics . 27

3.3 Definition of digital forensics . 29

3.4 Digital evidence . 29

3.5 Postmortem and live digital forensics 31

3.5.1 Postmortem forensics . 31

3.5.2 Live forensics . 31

vi

3.6 Reactive and proactive digital forensics, and

digital forensic readiness . 32

3.6.1 Reactive digital forensics . 32

3.6.2 Proactive digital forensics . 32

3.6.3 Forensic readiness . 33

3.7 Branches of digital forensics . 35

3.7.1 Computer forensics . 36

3.7.2 Database forensics . 36

3.7.3 Network forensics . 37

3.7.4 Mobile device forensics . 37

3.7.5 Cloud forensics . 38

3.8 Digital forensic process . 41

3.8.1 Readiness processes class . 41

3.8.2 Initialisation processes class 42

3.8.3 Acquisitive processes class . 43

3.8.4 Investigative processes class 43

3.9 Related forensic readiness work . 44

3.10 Computer security . 46

3.11 Conclusion . 48

4 Software architecture 50

4.1 Introduction . 50

4.2 Definition of software architecture . 51

4.3 Overview of software architecture . 51

4.3.1 Structural patterns . 53

4.3.1.1 Layering . 53

4.3.1.2 Microkernel . 54

4.3.2 Quality attributes . 56

4.3.3 Architecture tactics . 57

4.3.3.1 Auditability tactics 58

4.3.3.2 Security tactics . 58

4.3.3.3 Integrability tactics 59

vii

4.3.3.4 Affordability tactics 59

4.3.4 Reference architecture . 60

4.3.5 Integration architecture . 62

4.3.5.1 Integration concepts 62

4.3.5.1.1 Service publication 62

4.3.5.1.2 Communication protocols 63

4.3.5.1.3 Integration mechanisms 63

4.3.5.1.4 Integration approaches 64

4.3.5.2 Integration patterns 64

4.3.6 Architecture representation 66

4.3.7 Architecture design techniques 67

4.4 Conclusion . 68

5 Models for the forensic monitoring of cloud virtual machines 69

5.1 Introduction . 69

5.2 Motivation . 69

5.2.1 Cloud reference architecture 70

5.2.2 Forensic monitoring . 71

5.3 Forensic models . 72

5.3.1 Operating system embedded forensic monitor model 72

5.3.2 Hypervisor embedded forensic monitor model 73

5.3.3 Communication layer forensic monitor model 74

5.3.4 Single tenant forensic virtual machine model 75

5.3.5 Multi-tenant forensic virtual machine model 77

5.4 Summary . 79

5.5 Conclusion . 81

6 Analysis and design of the FRC architecture 82

6.1 Introduction . 82

6.2 Analysis phase . 83

6.2.1 Goals, constraints and quality attributes 83

6.2.1.1 Architecture goals 83

viii

6.2.1.2 Constraints . 84

6.2.1.3 Quality attributes 86

6.2.2 Functional requirements . 87

6.2.3 Model selection . 88

6.3 Design phase . 89

6.3.1 Architectural views . 89

6.3.1.1 Logical view . 89

6.3.1.1.1 Cloud hosting system 91

6.3.1.1.2 Forensic controller 91

6.3.1.1.3 Cloud forensic system 92

6.3.1.1.4 Cloud security system 92

6.3.1.1.5 Transmission channel 93

6.3.1.2 Process view . 93

6.3.1.2.1 Process flow 93

6.3.1.2.2 Hashing sequence 94

6.3.1.3 Use case view . 98

6.3.1.3.1 Cloud hosting system 98

6.3.1.3.2 Cloud forensics system 98

6.3.1.4 Deployment view . 99

6.3.2 Architectural structural pattern and tactics 100

6.3.2.1 Structural pattern 100

6.3.2.2 Integration architecture 101

6.3.2.2.1 Service contracts 102

6.3.2.2.2 Integration mechanisms 102

6.3.2.2.3 Integration approach 102

6.3.2.2.4 Integration pattern 102

6.3.2.3 Architectural tactics 104

6.3.2.3.1 Auditablility tactics 105

6.3.2.3.2 Security tactics 105

6.3.2.3.3 Integrability tactics 106

6.3.2.3.4 Affordability tactics 106

ix

6.4 Architectural evaluation . 107

6.4.1 Functional requirement validation 107

6.4.1.1 Data capture . 107

6.4.1.2 Data storage . 107

6.4.1.3 Data attribution . 108

6.4.1.4 Data examination 108

6.4.2 Grouping of functional requirements 108

6.4.3 Representation of service providers 108

6.4.4 Structure of exchanged objects 109

6.5 Conclusion . 109

7 Implementation of the FRC system 110

7.1 Introduction . 110

7.2 Hardware setup . 111

7.3 Software setup . 112

7.3.1 Operating system . 113

7.3.2 Cloud operating system . 113

7.3.3 Hypervisor . 114

7.3.4 Virtual machines . 114

7.3.5 Database . 115

7.3.6 Implementation language . 115

7.3.7 Benchmarking tool . 116

7.3.8 Forensic tools . 116

7.4 FRC components implementation . 117

7.4.1 Physical deployment . 117

7.4.2 Forensic virtual machine . 118

7.4.3 Forensic controller . 119

7.4.4 Cloud forensics system . 119

7.4.4.1 Forensic hash and payload store 120

7.4.4.2 Analysis engine . 120

7.4.5 Transmission channel . 122

7.4.6 Cloud security system . 122

x

7.5 Experiments . 123

7.5.1 Acquisition of data . 123

7.5.1.1 Hypothesis . 123

7.5.1.2 Setup . 124

7.5.1.3 Results . 124

7.5.2 Full VM capture . 126

7.5.2.1 Hypothesis . 126

7.5.2.2 Setup . 126

7.5.2.3 Results . 128

7.5.3 CPU performance . 130

7.5.3.1 Hypothesis . 130

7.5.3.2 Setup . 131

7.5.3.3 Results . 132

7.5.4 Encryption performance . 132

7.5.4.1 Hypothesis . 133

7.5.4.2 Setup . 134

7.5.4.3 Results . 134

7.6 Conclusion . 136

8 Critical evaluation 137

8.1 Introduction . 137

8.2 Implementation of functional requirements 138

8.3 Implementation of quality attributes 139

8.4 Experimental results . 141

8.5 Possible improvements . 144

8.6 Comparison with related work . 145

8.7 Conclusion . 147

9 Conclusion 148

9.1 Introduction . 148

9.2 Dissertation summary . 148

9.3 Research contribution . 149

xi

9.4 Derived publications . 150

9.5 Future work . 150

9.6 Final conclusion . 152

Bibliography 153

Appendix 167

A Abbreviations 167

xii

List of Figures

1.1 Dissertation layout . 10

2.1 NIST Cloud reference architecture [1] 18

4.1 Components of a software architecture 52

4.2 Layering structural pattern . 54

4.3 Microkernel structural pattern . 55

4.4 Simplified SOA reference architecture 61

5.1 NIST Cloud reference architecture [1] 70

5.2 Simplified cloud reference architecture 71

5.3 Operating system embedded forensic monitor model 72

5.4 Hypervisor embedded forensic monitor model 73

5.5 Communication layer forensic monitor model 74

5.6 Single tenant forensic virtual machine model 76

5.7 Multi-tenant forensic virtual machine model 77

6.1 Logical view of the FRC system . 90

6.2 Process flow of the FRC system . 95

6.3 Hashing and data verification sequence diagram 97

6.4 Use case view of the FRC system . 99

6.5 Physical deployment view . 100

6.6 FRC data message . 105

7.1 Apache CloudStack dashboard [2] . 114

7.2 Physical deployment of the FRC system 118

7.3 Forensic hash and payload store ERD 121

7.4 Forensic VM console view . 125

xiii

7.5 Cloud forensic system console view 125

7.6 Test image 1: Lena . 127

7.7 Test image 2: Nuke . 128

7.8 Screen capture from Autopsy interface 129

7.9 Performance while hashing . 133

7.10 Encryption and decryption times . 135

xiv

List of Tables

2.1 Actors in Cloud Computing . 19

4.1 Architecture components . 51

5.1 Summary of proposed models . 79

6.1 Mapping SOA to FRC . 101

6.2 Service contracts . 103

6.3 Message patterns . 104

7.1 Hardware used for implementation 112

7.2 Software used for implementation . 112

7.3 VM specifications . 115

xv

Chapter 1

Introduction

1.1 Introduction

In the early 1980s, computers with internal memory were still large cumbersome

behemoths [3], with minimal storage capacity and tightly controlled access. During

this time, the age of the personal computer dawned and computers found their way

from the basements of large corporations and universities into the homes and offices

of ordinary people.

When the Internet became available to the general public during the mid 1990s,

the personal computer became a networked device with access to a large volume

of information. From the time when personal computers found their way into the

home and office, to them being connected to the Internet, the power of computer

hardware increased dramatically. From the humble IBM PC, launched in 1981 [4], to

the Pentium 4, launched in 2001 [5], the CPU speed went from 4.77MHz to 1.4GHz.

Similarly, hard drive capacity rocketed from about 10MB to 20GB at the same time.

As of 2017, CPUs with multiple cores and high capacity solid state hard disk drives

have become commonplace.

With this powerful hardware, it became possible to run computers within

computers. The concept of virtualization became a reality. However, single powerful

computers running a few virtual machines could not be scaled up. The answer to

this dilemma was the concept of cluster computing. By clustering a large number

of computers together, it becomes possible to run numerous virtual machines. Add

1

to this a model for dynamic resource allocation and self scaling, and the concept of

cloud computing becomes a reality.

With the proliferation of computers came the rapid growth in computer crime.

These crimes include anything from computer viruses to denial of service attacks,

and many others. Some way of investigating these crimes was therefore needed.

Computer forensics is a means of investigation and could provide a solution to the

problem of computer crime.

However, at the best of times, computer forensics is an arduous process when

investigating a single device. When an investigation must be performed on a massive

computer system, such as a cloud computing system, it becomes a truly daunting

task, both in terms of the time taken to conduct an investigation, and the logistics

involved to capture large volumes of data [6–9]. For cloud computing systems,

traditional computer forensics methods will not be sufficient to conduct a timely

and accurate investigation [10].

Cloud computing systems have several traits that allow them to operate

successfully. These traits, however, are also the cause of challenges with digital

forensics in cloud systems. These general problems are [6, 8, 11]:

• Scale of cloud systems: Cloud computing systems can range in size from small

minimal node systems, to vast commercial and corporate cloud systems. These

corporate systems can easily span hundreds of physical nodes, the physical

scale of which makes the systems hard to manage in a forensic investigation.

• Volume of data: Combined with the physical size of the systems, comes the

problem of volume of data. Since the advent of high capacity hard disk drives,

data centres with petabytes of storage have become commonplace. Having to

capture and analyse all this data makes cloud forensics a practically daunting

task. It is therefore required that the relevant data be isolated somewhere in

the cloud system.

• Isolation of relevant data: As mentioned above, with the vast volumes of data,

it is difficult to isolate the relevant data. This is due to the fact that data can

migrate through the cloud system depending on its architecture. The data

2

relevant to the cloud forensic investigation must therefore be isolated in some

way.

• Integrity of captured data: The isolation and capturing of the forensic data

create a problem in itself, as the integrity of the data must be maintained.

Failure to maintain the integrity of the data could render the data inadmissible

in a court of law or damage the data, rendering it useless. With this in mind,

some method of maintaining the data integrity must be implemented.

• Availability of cloud system: Standard forensic investigation protocol is to

disconnect the investigated system from the power supply and then do the

investigation off-line. Assuming that the investigation is not related to some

critical scenario, for example government security, it will not be possible to

shut down an entire cloud data centre for an investigation.

These general problems shed some light on the enormity of the challenge of cloud

forensics. From these challenges, a specific problem can be identified that will be

addressed in this dissertation. This problem is discussed in the next section.

1.2 Problem statement

The problem with cloud forensics is that, due to the volatility, volume and

distributed nature of data in cloud computing systems, standard digital forensic

processes, such as the ISO 27043 standard, cannot be applied. The reason for this

is that the standard digital forensic processes, such as described in the ISO 27043

standard, are severely disruptive to the live systems under investigation [12].

When considering a cloud system, data volatility is the first major challenge

that has to be overcome in order to perform a forensic investigation. Cloud systems

have a pool of computing resources that can be used to create virtual machines to

perform some function [13, 14]. When a virtual machine is no longer needed, it is

either saved and powered down, or destroyed. In the above cases the computing

resources are returned, in part or in their entirety, to the resource pool for reuse.

3

This has the effect that valuable data might be lost, making it unavailable as digital

evidence in a digital forensic investigation.

In addition, the volume of data in a cloud environment can be vast. Cloud

environments can range from small home clouds of a few nodes, to huge enterprise

clouds with petabytes of storage [8,14]. When dealing with these massive clouds for

a digital forensic investigation, there is no efficient method of locating data within

them without obtaining substantial additional information of where the required

data is located [6].

Finally, the data in cloud systems can be fragmented and distributed throughout

the cloud environment. Cloud systems are based on clustering technology that, by

its nature, causes data to be fragmented [8]. In large enterprise clouds running large

virtual machines, data can be fragmented over multiple physical disks operating

on multiple different servers. Should a digital forensic investigation be required,

multiple servers, where the affected data is located, would have to be taken off-line.

These machines would each have to be investigated and the relevant evidence

gathered in fragmented form and rebuilt into a coherent form, while maintaining

the forensic integrity of the information. This would also result in undesirable

downtime and might affect virtual machines that are not part of the digital forensic

investigation. Virtual machines can also migrate within the cloud environment,

depending on their resource needs and the operational parameters of the cloud

system.

These technical problems also create a procedural problem in that commercial

cloud systems cannot be taken off-line for long periods of time to conduct a forensic

investigation. When using standard digital forensic procedures, it is common

practice to remove the power from the system that needs to be investigated [15]. This

would be impossible in a commercial cloud system, as it could lead to considerable

losses in revenue and possible legal action by customers.

Taking into consideration the above-mentioned problems, it is also extremely

challenging to ensure forensic readiness in a cloud computing system. Forensic

readiness has two objectives, namely: Maximising an environment’s ability to collect

credible digital evidence, and minimising the cost of forensics in an incident response

4

[16]. Given the problems mentioned, it is clear that cloud systems fail both these

objectives.

Taking into account these problems, a research question can be formulated to

address the challenges facing digital forensics of cloud systems.

The research question that this dissertation addresses is the following:

Is it possible to achieve forensic readiness, in a cloud environment, so that a

digital forensic investigation can be conducted with minimal or no disruption to

the operation of said cloud environment?

This study aims to show that this is possible through the application of proactive

digital forensics. Proactive forensics is defined as “the ability to proactively collect,

trigger an event, and preserve and analyse evidence to identify an incident as it

occurs. In addition, an automated preliminary report is generated for a later

investigation ...” [17]. This system will be referred to as the Forensic Ready Cloud

(FRC).

This study is limited to the basic cloud reference architecture [6] and specialised

cloud systems will not be considered.

In the next section, the objectives of this study are stated.

1.3 Objectives

In order to realise the concept of forensics in a cloud computing system, certain

criteria must be met. This dissertation defines and discusses said criteria and thus

the goals of this dissertation are:

• To generate theoretical architectural models for conducting forensics in a cloud

computing environment. The models will form a baseline from which the full

system can be extrapolated and designed.

• To conduct experiments in order to determine if it is feasible to implement the

theoretical architectural models. There is little use designing an architecture

5

that cannot be implemented, as it will not address the problem of cloud

forensics.

• To implement one of the theoretical architectural models. The implemented

architectural model serves as a test bed to determine if it is possible that such

a model can be applied to a base cloud architecture.

• To conduct an experiment in order to determine if the implemented model is

a feasible solution with regard to the problem of cloud forensics.

• To conduct a critical evaluation that addresses the feasibility and impact of

the architectural models and to determine what can be done to improve them.

In order to meet these objectives, certain methodologies are used.

1.4 Methodology

This dissertation contains the following methodologies of research: A literature

review, the generation of theoretical architectural models, implementation of one

of the generated models and experimentation, and finally a conclusion as to the

feasibility of the forensic readiness of a cloud computing system.

1.4.1 Literature review

A literature review is conducted to establish the current state of research with regard

to the topic of computer forensics of cloud computing systems. This literature review

serves as a baseline for the author to identify where a contribution can be made to

the field. The literature review also gives the necessary background information of

the topics presented in this dissertation.

1.4.2 Theoretical architectural models

Theoretical architectural models are developed to address the problem of forensic

readiness of cloud computing systems. These model architectures are based on the

standard cloud hardware virtualization architecture [18].

6

1.4.3 Full architecture

Using the Use-Case Responsibility Driven Analysis and Design (URDAD)

methodology [19], a full architecture for the FRC system is developed. This

is done by analysing the functional and non-functional requirements, generating

the different architectural views and, finally, applying the relevant architectural

structural patterns and tactics. By applying these techniques, a fully-fledged

architecture is generated.

1.4.4 Implementation and experiments

The generated architecture is implemented using applicable technologies. A set of

experiments is designed to measure the relevant metrics such as, among others,

CPU and memory performance. These experiments are also used to either confirm

or disprove the hypotheses.

1.4.5 Critical evaluation

The results are discussed and a conclusion is drawn from the available experimental

results. Simultaneously, possible future avenues of research are also explored.

There are, however, certain elements that are outside the scope of this research.

The scope and limitations are discussed in the next section.

1.5 Scope and limitations

This dissertation focuses on the acquisition and forensic soundness of data in a

cloud computing environment. The acquisition of data concerns data captured from

a virtual machine deployed in a cloud environment. The forensic soundness ensures

that the captured data can be kept in a state where it would be admissible in a

court of law as digital evidence. The data must be kept in this forensically sound

state even while it is moved in the cloud environment.

With an industrial implementation of the proposed forensic system, one would

be concerned with the both the core system for data acquisition and the ancillary

7

components making the system more efficient. These ancillary components are

outside the scope of this research. These components are networking components,

data storage, implementation scaling, forensic analysis of data and analysis tools.

When regarding networking components, cloud computing systems are built with

high performance and expensive networking hardware. The author does not have

access to this level of infrastructure and thus uses a standard networking setup as

an analogue. The network only functions to transfer data within the system and

has no effect on the outcome regarding the success of the proposed system, as it is

assumed that the network is set up and working normally.

As stated in section 1.1, the volume of data is a challenge in the field of cloud

forensics. While the proposed system has mechanisms that attempt to mitigate the

challenge of large volumes of data, data and storage management is not the focus

of this research. Data that is captured must be stored somewhere in a cost-effective

manner; however, the implementation of the storage system is outside the scope of

this research.

The proposed system architecture is designed as a “bolt-on” system for existing

cloud environments. Thus, some tactics can be applied to ensure that the proposed

system can scale to the required size. While the proposed system should effectively

scale in a cloud environment, this research does not analyse the feasibility of scaling

the proposed system to full cloud environment.

Finally, the analysis of data and the analysis tools that can be used in a forensic

investigation is not in the scope of this research. While a analysis tool is used in the

implementation of the proposed system, it is merely to illustrate the working and

feasibility of the data acquisition component of the proposed system. The proposed

architecture is not dependent on the selection of analysis tool. The tool selection is

only dependent on the requirements of a specific implementation.

In order to communicate the background effectively, research contribution and

conclusion of this research, the dissertation layout is given in the next section.

8

1.6 Layout

This dissertation is divided into four parts. Part 1 serves as an introduction to

the rest of the dissertation. Part 2 contains the literature review of this study.

Part 3 contains the author’s contribution made to the field of study. Finally,

Part 4 contains the conclusion and possible future work. Figure 1.1 gives a visual

representation of the flow of this dissertation.

The motivation driving this structure is that the background chapters give

an overview of the fields of cloud computing and computer forensics. From this

background, cloud forensic models can be generated that serve as the basis of

the FRC architecture. With these models in place, a full requirements analysis

can be done, taking into account all the relevant functional and non-functional

requirements. An architecture, the Forensic Ready Cloud architecture (FRC), can

then be generated that fulfils the identified requirements. Physical implementation

and experimentation is done to verify that the FRC architecture is viable in real

hardware. The results are analysed and critically evaluated to determine if the FRC

architecture indeed addresses the problems as stated and what can or need to be

improved.

The following is a breakdown of the chapters and short descriptions of the

individual chapters of this dissertation.

1.6.1 Part 1: Introduction

Chapter 1 Introduction: (current chapter), serves as an introduction. It

includes the research question, methodologies, objectives and layout of the

dissertation.

1.6.2 Part 2: Background

Chapter 2 Cloud computing: contains the literature review which is done to

determine the state of the art for the field of cloud computing. A study is

done on the history of cloud computing from its origins as grid computing

9

Figure 1.1: Dissertation layout

10

and clustering, to where it exists today, with the use of virtualization

as self-provisioning of services. This chapter also introduces the National

Institute of Standards and Technology (NIST) reference model for cloud

computing on which this dissertation is based.

Chapter 3 Digital forensics and security: contains the literature review

which is done to determine the state of the art for the field of computer

forensics. A study is done of the history of computer forensics. This includes

the current state of computer forensics, the standards associated with

computer forensics, the current processes used in computer forensics and,

finally, the state of cloud forensics.

Chapter 4 System architecture: contains the literature review which is done to

determine the state of the art for the field of system architecture. A study is

done on software architecture and how it influences the design, interaction

and execution of software systems. This includes a software architecture

description and the mechanisms through which such a description is achieved.

These mechanisms include architectural viewpoint, architecture description

languages, patterns and tactics.

1.6.3 Part 3: Research contribution

Chapter 5 Models for the forensic monitoring of cloud virtual machines:

is the chapter that discusses the theoretical architectural models for forensics

in cloud computing systems. It expands on the NIST reference model

and introduces the concept of forensic monitoring and proactive forensics.

From these concepts, the models for proactive computer forensics in cloud

computing systems are derived and described. The developed models are

compared and contrasted to determine which model will best meet the

requirements of the FRC system.

Chapter 6 Analysis and design of the FRC architecture: is done in this

chapter to define the functional and non-functional requirements in order to

realise a proactive forensic cloud system. It is then possible to design an

11

architecture that will fulfil these requirements and allow the system to be

implemented.

Chapter 7 Implementation of the FRC system: contains the physical

implementation process for the selected model and the experiments run on

this model. These experiments include the effect of the forensic monitoring on

the cloud system in terms of performance and whether the forensic monitoring

is an adequate measure to extract forensic data. This is the main contribution

to the field of digital forensics, in that the working implementation of the

FRC system serves as proof of the concept of proactive forensics in cloud

systems that, by extension, achieve forensic readiness in cloud computing

systems.

1.6.4 Part 4: Conclusion

Chapter 8 Critical evaluation: contains the discussion of the results described

in the previous chapter. This includes an analysis of how the architecture

and implementation address the problems identified in section 1.2 Problem

Statement, and possible improvements that can be made to address these

problems better.

Chapter 9 Conclusion: contains the conclusion of the dissertation and possible

future work. This final chapter summarises the results that were obtained and

relate these results to the stated problems. Finally, possible future work in

the field of cloud forensics is explored.

1.7 Conclusion

This chapter served as an introduction to the dissertation. The next chapter will

contain the background and literature study of this dissertation. The following

chapters will constitute the rest of the dissertation, including the architectural

models, experiments, discussion and final conclusion.

12

Chapter 2

Cloud computing

2.1 Introduction

Cloud computing is one of the pre-eminent technologies in the current era of

computer technology. It is the amalgamation and evolution of many different

technologies and concepts spanning almost 4 decades. Ultimately the goal of cloud

computing is for users to benefit from these technologies, without the need for a

deep understanding of said technologies.

In this chapter, the different characteristics that define cloud computing will be

examined. Next, the service and deployment models are discussed. Finally, the

cloud reference architecture and core technology concepts are examined and the

chapter is concluded.

2.2 Characteristics of cloud computing

As cloud computing has become clearly defined, certain characteristics have emerged

that differentiate cloud computing as a distinct technology. These characteristics

are as defined by the National Institute of Standards and Technology (NIST) [7]:

on-demand self service, broad network access, resource pooling, rapid elasticity and

measured service. Each of these characteristics are described briefly below.

13

On-demand self service. A consumer of the cloud service must be able to

provision computing resources, such as server time and network storage, in

an automated manner, without the need for human intervention.

Broad network access. The capabilities of the cloud system must be available

over the network and accessed in some standard manner that can be used by

multiple client platforms, such as workstations, laptops, tablets and mobile

phones.

Resource pooling. A multi-tenant model is used to provide computing resources

to multiple consumers from a pool of computing resources held by the cloud

provider. These resources can be dynamically assigned and re-assigned,

depending on the need of the consumers. The customer is generally unaware

of the exact location of the computing resources and may only be able to, at

best, assign a high-level physical location, e.g. data centre, city or country.

The computing resources that can be utilised include processing power, data

storage, memory and network bandwidth. The cloud provider is fully examined

in section 2.5.1.2.

Rapid elasticity. Depending on the demand of the customer, computing resources

can be scaled dynamically outward or inward. From the perspective of the

customer, the computing resources appear to be unlimited and said resources

can be used at any time.

Measured service. Computing resources in a cloud system are automatically

controlled and optimised by leveraging a metering capability. The metering

takes place at some level of abstraction, depending on the type of service

that is used, whether active user accounts, storage, bandwidth or processing.

Metering allows resource usage to be tracked, thus allowing the resources to

be controlled and to report on usage. This provides transparency for both the

cloud provider and consumer of the services.

In addition to these characteristics, a cloud infrastructure is a collection of

hardware and software that functions to enable the core cloud characteristics. A

14

cloud infrastructure consists of both a physical layer and an abstraction layer, which

work in concert to provide the cloud services. The physical layer, consisting of

servers, network components and storage, provides the hardware resources for the

cloud system. The abstraction layer manifests the cloud services, and thereby the

essential cloud characteristics, via the software that is deployed on it.

In order for cloud systems to provide as much flexibility as possible, different

service models were developed. These models are discussed in the next section.

2.3 Service models

The service paradigms for cloud computing services have their basis in

that of server-orientated architecture, which advocates the concept of

everything-as-a-service [20]. Cloud computing, however, separates the services into

distinct models, with the three distinct models being Software-as-a-service (SaaS),

Platform-as-a-service (PaaS) and Infrastructure-as-a-service (IaaS) [7, 21]. Each of

the models offers a different level of abstraction, thereby giving the service consumer

flexibility.

2.3.1 Software-as-a-service

Software-as-a-service (SaaS) delivers a complete software application to a customer,

using a subscription model. The customer needs only to configure certain aspects

of the software, while not needing to interact directly with the underlying cloud

platform or infrastructure. The customer can access said software using either a

program interface or a thin client interface, e.g. a web browser [7, 22].

2.3.2 Platform-as-a-service

Platform-as-a-service (PaaS) allows a customer to deploy applications that are either

self-created or purchased, onto cloud infrastructure, without needing to manage the

underlying cloud infrastructure. The cloud system therefore removes the need for

a customer to manage the low-level infrastructure, including servers, networking,

storage, operating systems (OS) and so forth. Since the underlying infrastructure

15

is managed, software developers have little to no control of the low level of the

deployment environment [21,22].

2.3.3 Infrastructure-as-a-service

Infrastructure-as-a-service (IaaS) allows the consumer to obtain fundamental

computing resources, such as processing, storage, networking and so forth. However,

the consumer has no control of the underlying cloud infrastructure, only over the

choice of operating systems, storage and which software is deployed. Depending on

the configuration of the cloud system, the consumer might also have limited control

of networking components [21, 23].

In addition to the service models, cloud systems have different deployment

models where software, platforms or infrastructure can be deployed as required.

The following section deals with these models.

2.4 Deployment models

Cloud deployment models are defined to categorise who may use a certain cloud

system. The deployment models are defined by the NIST as: public cloud,

community cloud, public cloud and hybrid cloud [7]. Each of these deployment

models is discussed below.

2.4.1 Public cloud

The infrastructure of a public cloud can be used by anyone in the general public.

These services offered by the public cloud may be free of charge or based on

some form of payment model. The cloud may be operated, managed and owned

by institutions such as governments, academic institutions or businesses. These

institutions, in turn, offer the cloud services to the general public. The physical

cloud infrastructure resides on the premises of the cloud provider [7, 24].

16

2.4.2 Community cloud

In the case of a community cloud, the infrastructure is provided for some specific

community of users with some common requirement. This requirement may

range from some policy, mission, security requirement or compliance concern. An

example of a community cloud is a cloud for tertiary education institutions. These

institutions have similar educational, administrative and informational services that

are typically spread over a wide geographical area. Using a community cloud would

cut IT operating expenses, as the individual institutions would not be required to

run large individual IT departments [25].

The cloud may be operated, managed and owned by one or more members

of the community it services. It might also be owned by some third party, or a

combination of community members and third parties. These third parties can range

from dedicated cloud providers to telecommunication companies, to anyone who has

the capability to host a cloud system. Because of these diverse ownership roles, the

infrastructure might reside on or off the premises of any of the owners [7, 24].

2.4.3 Private cloud

Private cloud infrastructure is provisioned for the sole use by one organisation. The

internal departments of the organisation are the consumers of the cloud services.

The physical infrastructure might be owned by the organisation itself, a third party

or a combination of both [7, 24]. As many organisations are moving to the model

of outsourcing IT infrastructure, it stands to reason that the same can be done

for cloud systems. An organisation might choose to have a minimal footprint IT

infrastructure on-site and have the rest of the infrastructure hosted in a private

cloud off-site [26].

2.4.4 Hybrid cloud

A hybrid cloud model may consist of two or more of the deployment models. Each

component remains unique, but they are bound by some technology that allows

both data and application portability [7, 24]. A scenario of an implementation of

17

Figure 2.1: NIST Cloud reference architecture [1]

a hybrid cloud would be one of an organisation that already has IT infrastructure

running as a private cloud for normal operational purposes. Should the organisation

need temporary additional computing resources for computationally heavy tasks,

for example bulk report running, such tasks can be completed using the additional

computing power of a public cloud. After the need for such resources ends, the

organisation can revert to using only its private cloud.

With the characteristics, service and deployment models defined, a reference

architecture and core technological concepts can complete the picture of a cloud

computing system. The NIST reference architecture is discussed in the next section.

2.5 Cloud reference architecture

The NIST provides a reference architecture in which all the major components,

activities and functions of cloud systems are defined [1]. Figure 2.1 depicts the full

reference architecture and Table 2.1 all the different role players of the architecture.

The different stakeholders (actors), components and core technological concepts are

discussed below.

18

Table 2.1: Actors in Cloud Computing

Actor Definition

Cloud consumer A person or organisation that maintains a business

relationship with, and uses service from, Cloud

Providers

Cloud provider A person, organisation, or entity responsible for making

a service available to interested parties

Cloud auditor A party that can conduct independent assessment

of cloud services, information system operations,

performance and security of the cloud implementation

Cloud broker An entity that manages the use, performance and

delivery of cloud services, and negotiates relationships

between Cloud Providers and Cloud Consumers

Cloud carrier An intermediary that provides connectivity and

transport of cloud services from Cloud Providers to

Cloud Consumers

2.5.1 Cloud components and stakeholders

Figure 2.1 depicts the full reference architecture for cloud systems and Table 2.1 the

stakeholders (actors) for the cloud components as described by the NIST [1]. These

stakeholders are the cloud consumer, provider, auditor, broker and carrier. Each is

discussed in the sections below.

2.5.1.1 Cloud consumer

The cloud consumer (Figure 2.1 block 1) is the main stakeholder of the cloud

computing service. The cloud consumer can be an organisation or person who uses

a service supplied by a cloud service provider. This service is selected from s service

catalogue and a contract is set up between the cloud service provider and the cloud

consumer. The cloud consumer is billed according to the service that is utilised.

19

A service level agreement (SLA) between the cloud service provider and the

cloud consumer is needed to specify, among other parameters, performance, security,

quality of service and remedies for service outages. The SLA must also explicitly

state the limitations and obligations of the service contract. Included in this must

also be the pricing policy of the cloud service provider [27].

The usage scenarios are dependent on the services selected by the cloud

consumer. For example, SaaS cloud consumers can have access to software

applications as end users. These consumers can be billed per number of users,

time of use, network bandwidth consumed, volume of data stored or duration of

storing the data.

PaaS consumers have tool and execution resources provided to them by the

cloud service provider, in order to deploy and manage applications within the cloud

environment. These consumers can range from application developers who design

and implement software applications, to application administrators who monitor

and configure applications on the cloud platform. Billing for these consumers can

be according to processing resources consumed, network resources utilised, database

storage or platform usage.

IaaS consumers are given access to virtual computers, network infrastructure and

storage, as well as any other fundamental computing resources they could require.

These consumers are able to run any software that they choose. These consumers can

be anyone from system developers to IT managers looking for computing resources

for IT operations. Billing usually occurs according to the computing resources

consumed, including CPU time, data volume, network bandwidth consumed or IP

addresses used.

All these services are supplied by the cloud provider.

2.5.1.2 Cloud provider

The cloud provider (Figure 2.1 block 2) is the organisation or person who makes

the services available to the cloud consumer. It is the responsibility of the cloud

provider to acquire, manage and maintain the IT infrastructure in order to provide

20

services via network access to the cloud system. These services differ per service

model.

For SaaS, it is the responsibility of the cloud provider to deploy, maintain and

update the software applications on the cloud system so that the services can be

offered to the cloud consumers. This results in limited control of the applications

by the cloud consumer and the responsibilities for the management and control of

the infrastructure resting with the cloud provider.

In the case of PaaS, the cloud provider is tasked with running the platform

and its underlying software, including the software execution stack, databases

and middleware components. The PaaS cloud provider can also maintain and

support the tools used by the cloud consumer to develop, deploy and manage

software applications. These tools can include integrated development environments

(IDEs), development version of cloud software, software development kits (SDKs),

deployment and management tools. The cloud provider retains exclusive access

to the underlying infrastructure such as networks, servers, operating systems and

storage. The cloud consumer, in turn, has control over applications and in some

cases hosting environment settings.

Finally, for IaaS, it is the responsibility of the cloud provider to acquire the

physical computing resources. These resources can include servers, networks,

storage and other hosting infrastructure. These resources are abstracted into virtual

machines and virtual network interfaces. This is achieved via the cloud software

that makes the abstracted resources available to the cloud consumer. The cloud

consumers can use these resources to fulfil their computing needs. This can be done

on a fundamental level, as opposed to the SaaS and PaaS deployment model. In

the case of IaaS, the cloud consumer has control over components such as the OS

and network. The cloud provider ensures that the provisioning infrastructure is

maintained by maintaining the physical hardware and cloud software.

The provided services and how they are utilised might require independent

examination from time to time. This is done by the cloud auditor.

21

2.5.1.3 Cloud auditor

The cloud auditor (Figure 2.1 block 3) is an independent organisation or person

who examines and expresses an opinion on cloud service controls. Audits on clouds

are conducted in order to verify that said cloud conforms to set standards. These

audits can be regarding security controls, privacy impact, performance and so forth.

Auditing is important for cloud providers, as it should be possible for third parties

to assess the security controls [28]. The confidentiality, integrity and availability

(CIA) of the cloud system and its information are protected by security controls,

including management, operational and technical safeguards [29]. The CIA concept

is examined in section 3.10. The auditor makes an assessment of the security controls

and whether these controls are implemented correctly, operational and fulfilling their

requirements within the cloud system. Included in this audit should also be an

assessment of whether the system is in compliance with the security policy and

regulations. These policies can include data retention, access control, that fixed

content cannot be modified, and so forth. All this must be done to comply with

legal and business requirements.

Closely linked to the security audit, is a privacy audit that must ensure that

personal information is kept in compliance with local laws and regulations and that

such information is kept in adherence of the CIA principle. This must be enforced

at every stage of development and operation of the cloud system.

The multitude of services offered by cloud providers requires some intermediary

to manage their integration. This is the role of the cloud broker.

2.5.1.4 Cloud broker

With the rapid evolution of cloud systems, it can easily become too complex for

cloud consumers to manage the integration of cloud services. A cloud broker (Figure

2.1 block 4) may act as an intermediary between the cloud consumer and cloud

provider. Thus, the cloud broker manages the use, performance and delivery of

cloud services, as well as negotiating the relationship between the cloud consumers

and cloud providers.

22

In general, the cloud broker provides services in three categories [1, 30]:

Service intermediation. Specific services are enhanced by improving some

capability, thus adding value to services for the cloud consumer.

These improvements can range from access control management, identity

management, performance reporting, security enhancements, and so forth.

Service aggregation. Multiple services can be combined and integrated into one

or more new services. Data integration is provided by the broker, as well as

ensuring secure data movement between the multiple cloud providers and the

cloud consumer.

Service arbitrage. As with service aggregation, services are combined. However,

in the case of service arbitration, the services are not fixed. In other words,

the broker has the option to choose the services from multiple cloud providers.

In order for the services to reach the cloud consumer, some intermediary is needed

to provide connectivity. This is done by the cloud carrier.

2.5.1.5 Cloud carrier

Cloud providers (Figure 2.1 block 5) need some method of connecting cloud

consumers to the offered services. This requirement is fulfilled by the cloud

carrier, in that it connects the cloud consumer to the cloud provider via a network,

telecommunication network or some other access device. Devices such as computers,

laptops, mobile phones, etc. can be used by the cloud consumer to access cloud

services [7]. Access and distribution to these services are usually provided by some

network or telecommunication carriers. The cloud carrier is distinct from the cloud

broker, in that the cloud carrier is only concerned with the data communication

between the cloud provider and cloud consumer. The services offered by cloud

providers and how they are integrated, are the responsibility of the cloud broker.

The different stakeholders of cloud systems show each of their different views

regarding their role in cloud systems. However, certain technologies underpin cloud

systems to enable their operation. These technologies are discussed in the next

section.

23

2.5.2 Core technological concepts

Cloud computing has its underpinnings in a number of different technologies. These

technologies are: clustering, virtualization and hypervisors. Each of these technology

concepts is discussed below.

2.5.2.1 Clustering

The clustering (Figure 2.1 block A) of computers occurs when two or more

computing systems work together to perform some function [31]. The aim of this

is to have a scalable solution that gives flexibility in terms of computing power,

redundancy or availability. As cloud computing relies on large pools of resources to

operate, the practice of clustering many nodes becomes a very attractive proposition.

This is because it allows many redundant nodes to form the resource pool.

2.5.2.2 Virtualization

Virtualization (Figure 2.1 block B) is one of the core technologies used in cloud

computing infrastructure [32–34]. This enables users to have access to scalable,

on-demand computing systems [23]. Virtualization works by abstracting computing

resources from their physical counterparts [35] into a resource pool from which the

resources can be drawn by users. A virtual machine can thus be provisioned by a

user, as long as the resources required for the virtual machine do not exceed that of

the physical host machine. This allows multiple virtual machines to run on a single

host [36, 37].

2.5.2.3 Hypervisor

A hypervisor or virtual machine manager (Figure 2.1 block B) is a piece of software

that allows the simultaneous running of one or more operating systems known

as virtual machines (VM) [38, 39]. The virtual machines running on the system

are called the guest operating systems. Each guest is allocated resources by the

hypervisor from the host resource pool. Hypervisors are divided into Type 1 and

Type 2 hypervisors.

24

• Type 1: This type is known as a bare metal or native hypervisor, which runs

directly on the hardware without a host OS.

• Type 2: This type is known as a hosted hypervisor, which runs on a host OS.

The host OS is installed on the host system and the hypervisor is installed on

the host OS.

From the points above, it can be seen that the main difference between Type 1

and Type 2 hypervisors is that Type 1 hypervisors run directly on hardware and

Type 2 hypervisors run on additional software, e.g. the host operating system. Type

1 hypervisors tend to more efficient, as the hypervisor is built into the firmware

of the computer on which it runs. It also provides better security, availability

and performance, according to IBM [40]. Since Type 2 hypervisors run on a host

operating system, it can be installed on existing servers, with no need to reformat

such devices.

With the concept of cloud computing defined and examined, digital forensics and

information security must also be investigated.

2.6 Conclusion

This chapter shed some light on the concepts underpinning cloud computing. These

concepts include the characteristics of cloud computing, service models, deployment

models, the NIST reference architecture for clouds and cloud forensics. This

background on cloud computing allows the cloud component of the FRC system

to be designed. As the Forensic Ready Cloud (FRC) system is designed to enable

proactive forensics in cloud systems, some background regarding digital forensics and

computer security is required. In the next chapter, digital forensics and computer

security will be examined.

25

Chapter 3

Digital forensics and security

3.1 Introduction

Forensic science has its origin in 1879 France, where a Parisian police clerk with

the name Alphonse Bertillon introduced the notion of documenting crime scenes

by photographing corpses and other items left behind at crime scenes [41]. With

his novel approach, he laid the foundation of forensic science, in that he provided

a photographic record of a crime scene, along with accurate measurements and

cataloguing of corpses. Bertillon’s radical notion of investigating crimes via science

and logic had a profound effect on one of his students, Edmond Locard.

Locard, in turn, codified the exchange principle. This principle states that “a

criminal action of an individual cannot occur without leaving a mark” [41]. In other

words, any criminal act will leave behind some form of trace evidence due to the

force required to perpetrate such an act [42]. The work of Locard thus gave rise to

the core concepts that aid investigators to this day. These concepts are: crime scene

documentation, suspect identification and the discipline of trace analysis. These

concepts are just as relevant to digital forensic science as they are to traditional

forensic sciences such as toxicology, ballistics, fingerprinting and DNA analysis.

This chapter contains background information regarding the field of digital

forensics, specifically computer and cloud forensics. Firstly, the history of digital

forensics is reviewed, leading to a definition of digital forensics. Next, the concept

of digital evidence is discussed. With the concept of digital evidence, methods of

26

how such evidence is obtained are discussed, including live and dead or postmortem

forensics, as well as proactive and reactive forensics. Following this, the different

branches of digital forensics are discussed, with emphasis on cloud forensics. In

addition, the digital forensic process is discussed, including the Cohen model and ISO

27043 standard. Some concepts of computer security are also discussed. Computer

security is related to computer forensics in that a forensic investigation might be

required because of a failure in computer security. Finally, the chapter is concluded.

3.2 History of digital forensics

The earliest crimes perpetrated against computing systems were mostly physical

damage that was committed, in general, by dishonest or disgruntled employees.

This was the prevalent threat until the 1980s, until programmers began creating

malicious software [43]. With the Internet becoming more widely available during

the 1990s, so too did crime against poorly protected systems. These systems were

targeted for vandalism, political action and financial gain. In the latter part of the

1990s, the attack patterns changed as operating systems were made more resilient

against attack [43, 44]. Computer crime is, and will continue to be, present in

society. Currently it seems as though computer crime has moved to a more organised

level, including large-scale fraud and other undertakings, such as international drug

trafficking, arms trading and human trafficking, requiring high-tech communications.

Nation states are also having to deal with information warfare and cyber-terrorism

[44].

The first organisation dedicated to digital forensics, called the International

Association of Computer Investigative Specialists (IACIS), was founded in 1989 as a

collaboration between law enforcement individuals in the United States [45]. While

the organisation received little support in the beginning, the work of the individuals

who formed the IACIS, formed the basis of modern digital forensics [46]. The FBI

held the First International Conference on Computer Evidence in 1993, which was

attended by representatives of 26 countries. A second conference was held in 1995

and the International Organisation of Computer Evidence (IOCE) was founded [47].

27

While the early cases focused mostly on data recovery from stand-alone computers,

much of the computer crime related to hacking of telephone networks in order to

gain free access to telephony services [48].

During the period of 1995 to 2005, three main drivers gave rise to the growth in

the field of digital forensics, especially in the United States. These drives were [46]:

• The explosion of computer technology. From the mid 1990s to the mid 2000s,

computer technology became a ubiquitous and indispensable part of life. As

computers, mobile devices and the Internet became omnipresent, so too did

criminal activities related to these technologies.

• The explosion of child pornography cases. While investigating the case of

George Stanley Burdynski Jr. in 1993, investigators found that computers were

used to traffic illegal images of minors. This led to the FBI establishing the

Innocent Images operation in 1995 to investigate cases of child pornography

[49]. This led to the seizure of ever-increasing volumes of digital evidence,

resulting in the growth of digital forensics.

• The rise of global terrorism, including the attacks on September 11, 2001, also

known as the 9/11 attacks. While the 9/11 attacks did not involve computer

crime directly, a wealth of digital evidence was found on computers around the

world. This prompted law enforcement, military and intelligence communities

to improve their digital forensic capabilities.

During this time period, the emphasis also changed from the concept of the

“resident expert”, to a more formal digital forensic investigator. This was due

to the fact that the drive behind digital forensics was taken over by professional

organisations and government agencies, as opposed to individuals. Between 1999

and 2000, the G-8 High Tech Crime Subcommittee and Scientific Working Group

on Digital Evidence (SWGDE) and IOCE published principles for digital forensics

[50–53]. Along with this, in 2004, the American Society of Crime Laboratory

Directors Laboratory Accreditation Board (ASCLD-LAB), with the SWGDE,

formalised digital evidence as a laboratory discipline [54].

28

The field of digital forensics remains a rapidly growing field, with information

security professionals viewing digital forensics as core to their skill set. Digital

forensic practitioners are now formally trained and many academic programmes have

emerged across the globe [46]. In addition to this, digital forensics is an active field

of academic research, with conferences like The Digital Forensic Research Workshop

(DFRWS), the International Federation for Information Processing (IFIP) Working

Group 11.9 on Digital Forensics and the International Conference on Systematic

Approaches to Digital Forensic Engineering (SADFE) [55–57].

With this brief historical overview of digital forensics, it is possible to define

digital forensics.

3.3 Definition of digital forensics

Digital forensics can be defined as “the use of scientifically derived and proven

methods toward the preservation, collection, validation, identification, analysis,

interpretation, documentation and presentation of digital evidence derived from

digital sources for the purpose of facilitating or furthering the reconstruction of

events found to be criminal, or helping to anticipate unauthorised actions shown to

be disruptive to planned operations” [58–60].

From this definition it becomes apparent that the core concept of digital forensics

is that of digital evidence. The next section examines digital evidence in more detail.

3.4 Digital evidence

Digital evidence is defined by Casey as “probative information stored or transmitted

in digital form that a party to a court case may use at trial” [61,62], or by Boddington

as “information in digital form found on a wide range of computer devices; in fact,

it is anything that has a microchip or has been processed by one and then stored

on other media” [41]. For the purposes of this research, digital evidence is defined

as “information that is stored or transmitted in a digital or analogue format, via a

29

computer or other transmission or storage system, that has relevance to a forensic

investigation”.

Digital evidence can take many forms including, but not limited to, e-mails,

digital pictures, videos, audio recordings, instant messages, electronic documents,

spreadsheets, databases, system logs and so forth. This type of evidence can be

referred to as real evidence, similar to physical documents or photographs, but also

IT evidence, depending on the relevant jurisdiction [41]. Regardless, most digital

evidence is presented in the form of verbal testimony, in a court, by the forensic

practitioner.

Digital evidence is used in a similar manner as documentary evidence, in that

it is used to support or refute claims made in legal cases. It may be used to

support of refute some key part of circumstantial evidence, in a similar manner

as documentary evidence. Because of this, it is of the utmost importance that the

evidence is reliable. Digital evidence can play a part in both criminal and civil cases

and, in some instances, it might be the only evidence that is presented.

When referring to reliable evidence, the concept of digital forensic soundness

must be explored. The term “reliable evidence” is often used interchangeably with

the term “digital forensics soundness of evidence”. McKemmish defines the term

forensically sound as “the application of a transparent digital forensic process that

preserves the original meaning of the data for production in a court of law” [63].

When analysing this definition, certain terms must be taken into account. Firstly,

“transparent” in this context means that the forensic process that is followed must

be reliable and accurate. It must also be possible to be tested and verified. Next,

the phrase “preserves the original meaning” means that the captured data must be

captured by means of a forensic process, so that the interpretation of the captured

data maintains the meaning of the original data. Finally, the term “digital forensic

process” refers to both the employed methodology and the used technology.

For digital evidence to be presented, it must first be acquired by some means.

In the next section, live and postmortem forensics will be viewed as mechanisms for

the acquisition of digital evidence.

30

3.5 Postmortem and live digital forensics

Postmortem and live forensics are the two methods of acquiring and analysing data

in a digital forensic investigation. Both these methods are discussed below.

3.5.1 Postmortem forensics

Postmortem or dead forensics is the “traditional” method of gathering forensic

evidence [41, 58, 64]. With this method, common practice is to remove the power

source from the computer that is under investigation. This results in the computer

being shut off instantly without the risk of changing any of the data on the hard

drive. The resulting investigation is thus done on a “dead system”, with a data

autopsy being performed [61,62,65]. The primary focus is that of data recovery and

analysis of the information that is stored on the hard drive or other data storage

device, depending on the type of system under investigation.

The major disadvantage of postmortem forensics is that all volatile data is lost

when the computer system is shut down. To mitigate this problem, the concept of

live forensics is used.

3.5.2 Live forensics

Live forensics is the capture and analysis of digital evidence from a computer system

that has not been shut down prior to the forensic investigation taking place [65,66].

The main advantage of live digital forensics is the ability to preserve volatile data,

such as data stored in the RAM of a computer. In some cases, this might also result

in the ability of the investigator to observe what is happening on the system during

an incident [64].

In an inversion to the problem with postmortem forensics of destroying volatile

data, live forensics runs the risk of changing the data being investigated. Because

the system is still active, the actions of the investigator can have an effect of the

data under investigation [41,58].

31

Linked closely to the concepts of postmortem and live digital forensics, are the

concepts of proactive and reactive digital forensics. These concepts are discussed in

the next section.

3.6 Reactive and proactive digital forensics, and

digital forensic readiness

The collection of digital evidence via live and postmortem forensics, can be closely

linked to the process of analysing the captured digital evidence. Reactive digital

forensics is a manual process of acquiring and analysing digital evidence after an

incident has occurred. Proactive digital forensics, in turn, is where the forensic

acquisition process is done in a live manner and the initial analysis is done by an

automated system [17]. Finally, forensic readiness is policies and procedures put in

place to enable a successful digital forensic investigation. Each of these concepts is

discussed in the sections below.

3.6.1 Reactive digital forensics

Reactive digital forensics is the traditional forensic process of postmortem forensics.

In this case, the forensic investigation is conducted after an incident occurs [60].

In the case of a reactive digital forensic investigation, two types of evidence are

collected. These evidence types are active and reactive evidence. Active evidence

refers to evidence that is still in a live or active state, for example processes still in

memory. Reactive evidence, on the other hand, refers to static or dead evidence,

like the image of a hard drive [17]. The detailed process of reactive digital forensics

is discussed in section 3.8.

The contrast to reactive digital forensics is proactive digital forensics.

3.6.2 Proactive digital forensics

Proactive digital forensics can be described as the capability to collect, preserve

and analyse digital evidence proactively, initiated by some triggering event. In

32

addition to this, a preliminary report is automatically generated to aid in the later

investigation [17]. The evidence that is gathered in this proactive manner relates to

a specific incident or event while it is occurring [67].

Proactive digital forensics has phases linked to the steps of the forensic process,

namely proactive collection, event triggering function, proactive preservation,

proactive analysis, and preliminary report [17].

• Proactive collection is the live collection of predefined digital evidence

according to a requirement set by an organisation. The evidence is collected

in order of volatility and priority.

• Event triggering function is a function that is triggered by some suspicious

event that starts some process to aid the forensic process.

• Proactive preservation is the forensic preservation of the captured digital

evidence, done via a process of hashing.

• Proactive analysis is the live analysis of digital evidence via some automated

system using forensic techniques. This analysis can be used to create an initial

hypothesis of the incident.

• Preliminary report is generated from the actions of the proactive system.

It should be noted that the proactive collection of digital evidence is not the same

as a traditional intrusion detection system (IDS). The evidence collection process

ensures that the digital evidence is captured in a manner that is forensically sound.

The analysis of the captured digital evidence must be done in a manner that ensures

that it is admissible in a court of law [17].

In order to enable proactive digital forensics, controls in the form of policies and

procedures must be set in place. These controls lead to forensic readiness.

3.6.3 Forensic readiness

Pangalos, Ilioudis and Pagkalos define forensic readiness as “the state of an

organisation where certain controls are in place in order to facilitate the digital

33

forensic processes and to assist in the anticipation of unauthorised actions shown

to be disruptive to planned operations” [68]. Forensic readiness is one of the main

factors that will allow an organisation to use digital evidence that was gained from a

digital forensic investigation successfully, while minimising the cost associated with

such an investigation [68,69].

Tan defines two concepts that forensic readiness would cover [16]:

• Maximising an environment’s ability to collect credible digital evidence; and

• Minimising the cost of forensics during an incident response.

From these two points, five factors can be extrapolated that can affect digital

evidence, in terms of evidence preservation and investigation time. These factors

are [70]:

• How is logging done;

• What is logged;

• What is done in terms of intrusion detection and intrusion detection systems;

• Forensic acquisition; and

• Evidence handling.

Forensic readiness should be a corporate goal, as it will maximise the use of digital

evidence in case it is needed. This can range from supporting a legal process to

system disaster recovery [71,72]. The corporate actions necessary to enable forensic

readiness are both technical and non-technical.

Rowlingson defines ten key activities for implementing forensic readiness. These

steps are [70]:

1. Define the business scenarios that require digital evidence.

2. Identify available sources and different types of potential evidence.

3. Determine the evidence collection requirement.

34

4. Establish a capability for securely gathering legally admissible evidence to

meet the requirement.

5. Establish a policy for secure storage and handling of potential evidence.

6. Ensure monitoring is targeted to detect and deter major incidents.

7. Specify circumstances when escalation to a full formal investigation (which

may use the digital evidence) should be launched.

8. Train staff in incident awareness, so that all those involved understand their

role in the digital evidence process and the legal sensitivities of evidence.

9. Document an evidence-based case describing the incident and its impact.

10. Ensure legal review to facilitate action in response to the incident.

With the application of these steps, forensic readiness can be achieved in an

organisation [68].

Proactive and reactive digital forensics allow digital forensic investigations to be

conducted and forensic readiness puts in place the control to make the investigation

successful. There are, however, many different branches of digital forensics, each

with its unique challenges. In the next section, these different branches of digital

forensics are investigated.

3.7 Branches of digital forensics

Just as digital forensics is a branch of forensic science, digital forensics have a number

of sub-branches that focus on more specific areas of the field. These sub-branches

are computer forensics, database forensics, network forensics, mobile device forensics

and cloud forensics [73]. There are, of course, many more branches of digital

forensics, such as embedded systems forensics, but they are not relevant to this

research.

35

3.7.1 Computer forensics

Noblett et al. define computer forensic science as “the science of acquiring,

preserving, retrieving, and presenting data that has been processed electronically

and stored on computer media” [74]. From this definition, it can be seen that

computer forensics is the process of acquiring and analysing digital evidence from

computers and computing systems when these systems were used in some form of

computer crime [75]. The investigation should be conducted by an investigator who

is skilled in computer forensics.

Digital evidence acquired from the computer during the application of a computer

forensic process can take the form of files, applications, hidden information or the

operating system. The hidden information can be information that is intentionally

hidden or information hidden due to it being in unallocated hard drive space or files

that have been deleted.

Computer forensics can be done using live or postmortem techniques. Using

live forensic techniques, data stored in RAM can be captured and analysed as

potential digital evidence [62]. The more common method of computer forensics

is postmortem forensics. In this case, the power is removed from the computer and

the data is captured from the hard drive, using a write blocker to ensure evidence

integrity [62].

3.7.2 Database forensics

Database forensics, as the name suggests, deals with the forensic analysis of

databases and meta data related to databases [76]. As with computer forensics,

a forensic process is followed, but it is limited to the content of the database and

related meta data. Database forensics is primarily a reactive form of digital forensics,

however, cached information might still remain in RAM, thus requiring live analysis.

The primary mechanism for database forensics is that of log analysis.

Time-stamped transaction logs can be used to recreate the incident resulting in

changes or damage to the database [77].

36

One of the main challenges regarding database forensics is that of the variety

of different database management systems available. When looking at relational

databases, the logical structures are similar, but the specific implementations can

vary significantly. As such, a great deal of knowledge is needed by the investigator

[78].

3.7.3 Network forensics

Network forensics is the investigation of an incident regarding activities on a digital

network. This can involve monitoring the network and capturing network traffic

related to digital forensic investigations, in a manner that the captured evidence

is admissible in a court of law [79]. Network forensics is distinct from computer

forensics in that network forensics deals with volatile data and data is acquired

using live forensics. Also, network forensics must be done in some proactive manner.

Network traffic must be captured actively, lest it be permanently lost after the

transmission is completed [70].

Another component of network forensics is log analysis. Logs stored on

computers and network devices, such as switches and routers, can be invaluable

to a digital forensic investigation. Logs are time-stamped and thus can be put

in sequential order. Using such logs, an event timeline can be reconstructed to a

certain extent [79]. Logging is, however, not standardised and is vendor-specific.

This results in increased complexity for the investigator, as logs must be correlated

to build an accurate sequence of events.

3.7.4 Mobile device forensics

Mobile device forensics relate to forensics done on a mobile computerised device.

These devices can range from mobile phones, portable music players, pagers and so

forth. Mobile devices have the characteristics of having smaller storage capacity and

less computational power than their non-mobile counterparts. It is also quite likely

that more modern devices will have some form of network connection, usually via

37

a form of wireless technology such as WiFi, Bluetooth or Near-field communication

(NFC).

Evidence from mobile devices can be obtained from three primary sources. The

sources are internal memory, external memory and service provider logs. In the case

of internal memory, evidence is stored within the device, mostly in flash or solid state

memory [80]. This memory is integrated into the device and cannot be removed

easily. External memory, in the form of Secure Digital (SD) cards, subscriber

identification module (SIM) cards, CompactFlash (CF) cards and Memory sticks,

can be removed from the mobile device easily [81,82]. Finally, service provider logs

are external to the mobile device and kept by the mobile service provider, in the

case of mobile phones. Evidence contained within internal and external memory is

treated as primary evidence, as it is directly linked to the mobile device. On the

other hand, service provider logs serve as supplementary evidence. This evidence can

include call logs, text messages, cell tower connections and, in some cases, location

of the mobile device [81, 82].

3.7.5 Cloud forensics

Cloud forensics refers to a digital forensic investigation that is conducted on a

cloud computing system [9]. Cloud computing forensic science is defined by the

US National Institute of Standards and Technology (NIST) as “the application

of scientific principles, technological practices and derived and proven methods

to reconstruct past cloud computing events through identification, collection,

preservation, examination, interpretation and reporting of digital evidence” [6, 7].

Due to the complex nature of cloud computing, a digital forensic investigation

has proven over time to be a complicated endeavour [9, 83, 84]. Because of the

dynamic environment of cloud systems, investigations can be highly complex for an

investigator.

As cloud computing systems have unique characteristics that enable them to

perform unique functions, so too are there unique needs in terms of cloud forensics.

The NIST defines 9 areas of major concern regarding cloud forensics. These areas

38

are: architecture, data collection, analysis, anti-forensics, incident first responders,

role management, legal issues, standards and training [6].

Architecture. Just as the offerings of cloud systems are diverse, so too are the

architectures on which they are built. These architectures can vary between

cloud providers. This results in problems regarding data compartmentalisation

and isolation, system proliferation, data storage locations, provenance of data

and infrastructure seizure without disruption to other cloud tenants. Of

particular concern is the provenance of data, as the provenance is required

to maintain the chain of custody, but can be made difficult due to issues with

multi-tenancy and data segregation.

Data collection. In order for a digital forensic investigation to be conducted,

data must be collected from the system under investigation. However, with

cloud systems, such data can be located in large, distributed and dynamic

cloud environments. The collection of volatile data must therefore occur in

a multi-tenant environment, from virtual machines, where the data could be

shared between multiple users, across multiple locations and may be accessible

by multiple parties. This can create an issue where the confidentiality of

other tenants in the cloud may be compromised in the collection of forensic

artefacts [8].

Analysis. Data captured from cloud systems can be challenging to analyse, in that

the forensic artefacts might need correlating across multiple cloud providers.

In addition to this, the reconstruction of events from virtual machines and

virtual storage can be very difficult. Finally, challenges exist in verifying the

integrity of meta data and the analysis of log data timelines.

Anti-forensics. To achieve anti-forensics, a set of techniques is used in order to

mislead or prevent forensic analysis [85]. The challenges faced can range from

data hiding and data obfuscation to the use of malware. The ultimate goal

remains to compromise the integrity of the evidence.

39

Incident first responders. Issues with first responders generally revolve around

competence and trustworthiness from the cloud provider toward the first

responder, in his or her ability to perform tasks such as data collection,

performing initial triage and processing large volumes of forensic artefacts.

Role management. In cloud systems, correctly and uniquely identifying the owner

of an account can be a challenge. This is due to the decoupling that occurs

between the users and the credentials they use, and the physical person

associated with said credentials. As it is easy to create a fake identity online,

determining the exact owner of data can be problematic.

Legal. As with most investigations, legal issues must be taken into account. In the

context of cloud computing, these issues can include in which jurisdiction

data is located, problems with international communication channels of

investigations, cooperation and communication of cloud providers in the case

where forensic data is spread across said multiple cloud providers, missing

contracts and SLAs, issuing of subpoenas without adequate knowledge of the

physical location of data relevant to the investigation and that the business

continuity of other cloud tenants could be interrupted with the confiscation

and seizure of cloud resources.

Standards. Standards remain lacking in the field of cloud forensics. Even limited

standard operating procedures can be lacking, much less to say interoperability

between cloud providers and standardisation of tools.

Training. Training for forensic investigators can be an issue, as investigators often

try to apply digital forensic techniques that are not suited or applicable to

cloud systems. This stems from a lack of training and expertise in cloud

forensics for both investigators and instructors.

While each of the different branches of digital forensics has its unique challenges,

the commonalities between them allow for a standardised process for digital forensic

investigations to be defined. This process is discussed in the next section.

40

3.8 Digital forensic process

The ISO 27043 standard describes the idealised structure for an investigation

process across various investigation scenarios [12]. The process classes are the

readiness, initialisation, acquisitive, investigative and concurrent process classes.

These processes are analogous to the seizure, acquisition, analysis and reporting

steps in other process models such as proposed by Casey [61] and Cohen [15], among

many more. As ISO 27043 is the standard that is now applied to the digital forensic

process, only it will be considered for the purposes of this research.

3.8.1 Readiness processes class

The readiness class includes the processes that enable an organisation to be organised

in such a way that should the need for the collection of digital evidence arises,

the potential of successful collection is maximised, while the cost and time of the

investigation is minimised. This class of processes is optional and dependent on the

individual organisations to implement readiness measures.

Four goals are associated with the readiness class: to have the digital evidence

used to its maximum potential, to minimise the cost implications of the investigation,

both in terms of financial cost and cost of impact to the affected system, to have

minimal impact on the business processes of the affected organisation, and to have

the level of information security of the organisation’s systems improved or preserved.

Enabling of these goals is divided into process groups. These process groups are:

planning, implementation, and assessment. With each of these process groups,

certain processes are accosted. For the planning group, the processes are:

• Process definitions of scenarios;

• Process for identifying potential evidence;

• Process for pre-incident gathering;

• Process for the handling and storage of data that may be digital evidence;

41

• Process that defines the pre-incident analysis of data that may be digital

evidence;

• Process planning for incident detection; and

• Process defining the system architecture.

For the implementation processes group, the processes are:

• Implementation of the system architecture process;

• Implementation of the pre-incident gathering, handling and storage of

potential digital evidence processes;

• Implementation of the pre-analysis of data representing potential digital

evidence processes; and

• Implementation of the incident detection process.

Finally, for the assessment processes group, the processes are:

• Assessment of the implementation process; and

• Implementation of the results of the assessment.

All the processes are iterative and can be redone and refined to further bolster

the readiness of the system. Should the need arise, these processes can aid in the

initialisation processes.

3.8.2 Initialisation processes class

The initialisation processes class consists of the processes which should be in place

should a digital forensic investigation need to be initialised. These processes are:

• Process for incident detection;

• Process for first response;

• Planning process; and

42

• Preparation process.

Once the initialisation processes have been completed, it is possible to start the

acquisition of digital evidence.

3.8.3 Acquisitive processes class

The acquisitive processes class deals with the capturing of potential digital evidence

for the digital forensic investigation. The processes in the acquisitive processes class

are:

• Process to identify potential digital evidence;

• Process to collect potential digital evidence;

• Process to acquire potential digital evidence, as an optional process;

• Process to transport potential digital evidence; and

• Process to store potential digital evidence.

When the potential digital evidence has been acquired, the investigative

processes can begin.

3.8.4 Investigative processes class

The investigative processes class deals with the actual investigation of an incident. In

this class, the digital evidence is analysed, results from the analysis are interpreted,

the results are reported and the investigation is closed. Thus the processes in the

investigative processes class are:

• Process to acquire potential digital evidence, as an optional process;

• Process to examine and analyse the potential digital evidence;

• Process to interpret the digital evidence;

• Process on reporting the results of the investigation;

43

• Process to present the findings of the investigation; and

• Process to close the investigation.

With these processes completed, the forensic investigation can come to an end.

In order to compare the Forensic Ready Cloud (FRC) system to other

architectures, these related architectures and strategies must be examined. In the

next section a survey is done regarding these related architectures.

3.9 Related forensic readiness work

When examining the problem of forensic readiness in cloud systems, multiple

approaches can be followed. In this section the work of De Marco et al. [86], Alenezi

et al. [87] and, Kebande and Venter [88] is examined. This is done to determine

what possible solutions these authors propose, with regard to the problem of cloud

forensics. The work of other authors relating to forensic readiness is also examined.

De Marco et al. also recognise similar challenges related to cloud forensics as

stated in section 3.7.5. As such a reference architecture is proposed to enable cloud

forensic readiness. A cloud reference architecture is also used and is defined as the

Cloud Forensic Readiness System (CFRS). The CFRS focuses on monitoring and

collecting sensitive data which results in savings in time and money relating to a

forensic investigation. The design is stated not to be constrained by any specific

cloud architecture and does not alter the existing cloud architecture.

Alenzi et al. propose a framework regarding the factors that influence the

readiness of an organisation to perform a digital forensic investigation on a cloud

computing system. The framework is divided into three categories. These categories

are technical, legal and organisational. Each of the categories is described below.

The technical factors relate to the technical aspects relating to readiness in cloud

computing systems. The technical factors include:

• Cloud infrastructure;

• Cloud architecture;

44

• Forensic technologies; and

• Cloud security.

The legal factors relate to the agreements between regulatory authorities,

multi-jurisdictions and between providers and consumers. The legal factors include:

• Service Level Agreement (SLA);

• Regulatory; and

• Jurisdiction.

Finally, the organisational factors relate to the organisational characteristics and

how its employees can enable forensic readiness. The organisational factors include:

• Management support;

• Readiness strategy;

• Governance;

• Culture;

• Training; and

• Procedures.

Kebande and Venter propose an Agent Based Solution (ABS) model in order

to achieve forensic readiness in a cloud computing system. The proposed model

is named the Cloud Forensic Readiness (CFR) model. The CFR model utilises a

modified botnet to collect evidence in the cloud system. The agent is deployed

within the cloud system by installing the agent on the VMs deployed in the cloud

system. The CFR model is based to the SaaS service model in order to facilitate

deployment of the forensic agent to the VMs.

Grobler et al. [89] identify six dimensions of digital forensics and also identify

certain goals for proactive digital forensics. With these goals and dimensions

identified, the authors propose a theoretical framework as a guide to implement

proactive forensics in an organisation. Complementing this work, Elyas et al. [90] [91]

45

identify factors that can contribute to achieving digital forensic readiness in an

organisation and develop a conceptual framework as an aid to said organisations.

Valjarvic and Venter [92] propose the Digital Forensic Investigation Readiness

(DFIRP) model as implementation guidelines. This model consists of three

processes, namely planning, implementation and assessment. This model was added

to the ISO 27043 standard [12]. The model aims to implement forensic readiness

in organisations to enable efficient and effective forensic investigations that would

result in digital evidence admissible in a court of law.

Trenwith and Venter [93] propose a model for digital forensic readiness in a cloud

environment. In this model, data collection is accelerated with the use of remote

and central logging of data. Other forms of data that might be relevant to a digital

forensic investigation, are also addressed by this model.

Sibiya et al. [94] propose a model that can be used by cloud service providers

to enable forensic readiness. This model enables the cloud service provider to

administer the data that might be used in a digital forensic investigation. This

model is, however, limited to examining the readiness of data for forensic analysis

in a cloud environment.

With the concepts of digital forensics examined, it is also necessary to examine

computer security as a measure to avoid the need for a forensic investigation. A

digital forensic investigation might be required due to the failure in the security of

a computer system [43].

3.10 Computer security

Computer security and digital forensics are closely related; security as a preventative

measure and digital forensics as a reactionary measure to an incident. Security can

come in many forms and has multiple avenues of specialisation, but for this section

only the core concepts will be discussed.

The first concept is the CIA triad. The CIA triad is the concepts of

confidentiality, integrity and availability [95]. These three pillars can be considered

the core principles of information security [96]. Confidentiality relates to the security

46

of information which is enforced by applying appropriate access levels to information.

This is achieved by organising information into collections and categorised according

to who should have access to it. An example of confidentiality management is the

Unix file permissions and access control systems.

Integrity relates to data integrity. The key to maintaining data integrity is to

secure data against unauthorised modification or deletion. In addition to this, should

data be modified or deleted by accident, the data should be recoverable. Examples

of maintaining data integrity is that of a version control system such as Git or

SVN, where data can be modified by authorised users and easily recovered in case

of accidental modification or deletion.

The last component in the CIA triad is availability. This refers specifically to

the availability of data to users. For this to be realised, the access channels and

authentication mechanisms must be of such a nature that the data is accessible to

individuals authorised to access it. On the other hand, individuals who are not

authorised to access the data must be blocked from doing so. Systems designed

with high availability in mind, are designed to compensate for events such as power

outages and hardware failures. These systems use tactics such as high availability

clusters, failover systems and rapid disaster recovery [97].

Closely related to the confidentiality component of the CIA triad, is the concept

of least privileges. This concept states that users must only be granted enough

access to information in order for them to do their jobs [96].

In terms of network security, two paradigms are commonly used. These are

perimeter security and layered security. With the perimeter approach, only the

borders of the network are secured against intrusion. Focus is placed on firewall,

proxy servers and polices that make network intrusions less likely to occur [96, 97].

However, little or no effort is put into securing systems within the boundary of the

network. The major flaw in the perimeter approach is that, should the network be

compromised, there are no further safeguards against attacks.

A better approach would be that of layered security. When the layered security

approach is used, individual systems within the network are also secured. This can

47

be done via network segmentation to mitigate possible damage if the outer perimeter

of the network is compromised [96].

Finally, security of systems must be measured in terms of reactive or proactive

security. This is done by measuring if a system, both in terms of policies and

procedures, and technological measures, is more geared to responding to a threat or

more towards preventative solutions. Along with this, it must be measured if the

system relies on passive security, which makes little or no effort to prevent an attack,

or proactive security, where steps are taken to prevent an attack from occurring. An

example of the above-mentioned is that of an intrusion detection system (IDS).

The IDS can warn a system administrator if an attempted breach is in progress,

regardless of the success of the breach. It can also give vital information regarding

possible attack vectors to the system, which can then be compensated for, thus

preventing possible attacks before they are launched [96,97].

With the concept of digital forensics and information security defined and

examined, software and system architecture must also be investigated, specifically

how architecture can be used to enable proactive forensics.

3.11 Conclusion

In this chapter, the field of digital forensics was examined. This included a

brief history of digital forensics that allowed a definition of digital forensics to

be synthesised. Next, digital evidence was examined, as well as the methods of

acquiring such evidence via postmortem and live digital forensics.

Related to the acquisition methods are the analysis methods of reactive and

proactive digital forensics. Enabling these analysis methods, is the concept of digital

forensic readiness. Next, the different branches of digital forensics, such as computer,

database, network, mobile and cloud forensics, were examined. The digital forensics

process, as defined by the ISO 27043 standard, was also examined.

In addition to background on digital forensics, a short section regarding computer

security was also included.

48

With this background information on digital forensics, the forensic component of

the Forensic Ready Cloud (FRC) system can be defined. In order to define the FRC

system accurately, an architectural process must be followed. In the next chapter,

the concepts of computer software and system architecture are examined.

49

Chapter 4

Software architecture

4.1 Introduction

As with all complex human endeavours, some form of structure is needed to describe

how such an endeavour should be approached. Such structures can include the

blueprint for a building, a circuit board layout and component list for a piece of

electronics, or in the case of software engineering, a software architecture. Software

architecture brings some form of order to the potential chaos of designing, building

and maintaining software systems. For this reason, a software architecture concerns

the high level abstraction, fundamental concepts and constraints of a software

system.

In this chapter, the core concepts of software architecture are examined. These

concepts are the definition of software architecture, the common structural patterns

of software architectures, quality attributes, architecture tactics to achieve the

relevant quality attributes and reference architectures. This chapter also contains

an overview of the Use-Case, Responsibility Driven Analysis and Design (URDAD)

methodology [98], which is used to design the FRC system. Finally, the chapter is

concluded.

50

4.2 Definition of software architecture

There seems to be no single agreed upon definition of software architecture. The ISO

defines software architecture as “the fundamental concepts or properties of a system

in its environment embodied in its elements, relationships, and the principles of

its design and evolution” [99]. The Institute of Electrical and Electronics Engineers

(IEEE) defines software architecture as “the structure or structures of a system which

comprise software elements, their externally visible properties and the relationships

amongst them” [100].

From these definitions it can be seen that software architecture is concerned with

the components of a system, their visible properties and how these components

interact with each other. With a working definition of software architecture

established, the next section gives an overview of the concepts that make up software

architecture.

4.3 Overview of software architecture

Figure 4.1 depicts an overview of the components commonly associated with a

software architecture. Table 4.1 lists the components, the block number of the

component in Figure 4.1 and the section in which the description is located for each

component.

Table 4.1: Architecture components

Component Block in Figure 4.1 Section number

Structural patterns 1 4.3.1

Quality attributes 2 4.3.2

Architecture tactics 3 4.3.3

Reference architecture 4 4.3.4

Integration architecture 5 4.3.5

Architecture representation 6 4.3.6

Architectural design techniques 7 4.3.7

51

Figure 4.1: Components of a software architecture

52

Each of these components is examined in more detail in the following sections,

starting with architectural structural patterns.

4.3.1 Structural patterns

Structural patterns (Figure 4.1 block 1) can be defined as “a template solution

for a structure which has been shown to be able to address specific architectural

concerns” [101,102]. The choice of structural patterns for the architecture of a given

system will likely have wide-ranging consequences on the said system [101]. The

reason for this is that the structural pattern is aligned with certain quality attributes.

This results in certain quality attributes being enhanced, to the detriment of other

quality attributes.

Structural patterns improve the understanding of the software architecture, as

certain patterns are known to focus on certain quality attributes. This also eases

the process of assessing software architectures and comparing alternate software

architectures.

Examples of structural patterns are: layering, hierarchical, master-slave,

blackboard, pipes and filters, model-view-controller and microkernel [101,102]. The

patterns relevant to the FRC system are the layering and the microkernel patterns.

These patterns are discussed in the sections below.

4.3.1.1 Layering

The layering pattern has the system components organised in layers, with each layer

having some responsibility in the system. The exact responsibilities of each layer are

dependent on the requirements of the system. The primary constraint when using

the layered pattern is that a layer can only access components on the same layer or

one layer down.

Figure 4.2 depicts a basic 2-tier implementation of the layering pattern. In this

case, the client-server model is used. The client layer contains the client application

which facilitates the human-computer interaction with the system. The client later,

in turn, connects to the server layer via, for example, a web server. Within the

server layer, the web server connects to a database server for data persistence.

53

Figure 4.2: Layering structural pattern

Some of the benefits of the layering pattern include [101]: having pluggable

layers, improved cohesion in that each layer has a defined responsibility, resulting

in a reduction of complexity, reusable high-level components and improved

maintainability. Conversely, there are also a number of constraints associated with

the layering pattern. These constraints are inflexibility due to the structure of the

layers and communication constraints, communication overheads due to the possible

need for re-coding data for communication between layers, and high maintenance

cost due to the impact changes that lower layers have on higher layers.

4.3.1.2 Microkernel

The microkernel pattern consists of a service bus that connects internal and external

services, via adaptors, that facilitates client or user interfacing [102]. Figure 4.3

depicts a simple version of the microkernel pattern. The service bus forms the

backbone of the system. The servers from which this backbone is constructed are

assumed to be stable, reliable and slow to be changed. Similarly, the internal services

form the core of the system functionality. The external services generally provide

54

Figure 4.3: Microkernel structural pattern

higher level services and must thus be more flexible as they are more likely to be

client facing. A single access point is provided to a user via an adaptor into the

system.

The most popular implementation of the microkernel pattern is the Service

Oriented Architecture (SOA). In the case of SOA, the Enterprise Service Bus (ESB)

is the implementation of the microkernel. SOA is discussed in more detail in section

4.3.4, as it serves as reference architecture.

The microkernel provides certain distinct benefits as it provides for flexible

client facing services [102]. The first benefit is that of simplified integration. The

different services need not integrate with each other, only with the service bus.

Next, flexibility is improved due to the pluggable nature of the service bus that can

be connected to via adaptors. Also, since adaptors are used, the technology that

is used to implement the connecting systems becomes unimportant. Finally, the

system is more maintainable because the low- and high-level services are separate.

This separation makes changing or upgrading low-level components much simpler.

Certain trade-offs must, however, be made that present certain challenges to the

microkernel pattern. Firstly, due the overhead created by the communication and

data routing, performance can be degraded. Next, the service bus can be a single

point failure that might degrade the system reliability. Finally, the microkernel

55

pattern does not provide for process management, making said process management

more complex.

There are many more structural patterns which offer unique attributes. These

patterns are, however, not relevant to the FRC system and are therefore not

included. Structural patterns offer a baseline for a software architecture, but all

systems have their own unique requirements. The non-functional requirements of

such a system are described as the quality attributes. These quality attributes are

discussed in the next section.

4.3.2 Quality attributes

Quality attributes (Figure 4.1 block 2) are requirements that must be met for a

software system to fulfil its purpose [103]. Quality attributes form part of the

non-functional requirements of a software system, thus describing how said system

should function. It should be noted that quality attributes should be specific as to

how the requirement must be addressed.

When dealing with software architectures, certain quality attributes are

emphasised, depending on the requirements. The full set of quality attributes

are: maintainability, reuseability, integrability, performance, reliability, scalability,

security, testability, auditability, flexibility and affordability [101]. From this list of

quality attributes, auditability, security, integrability, and affordability are relevant

to the FRC system and are briefly examined below.

Auditability. Auditability is measure of how simple it is to acquire accurate

information from a software system to perform an effective audit. Such an

audit can be of the system itself or the information contained within the

system.

Security. Security or securability is a characteristic of being able to secure a system.

This includes the ease with which security measures can be introduced into a

system, while maintaining the usability, having multiple levels of security and

the effectiveness of security measures.

56

Integrability. Integrability is a characteristic of being able to aggregate

sub-systems into a functional full system that fulfils some set of requirements.

The scale can be from the integration code level components to the integration

enterprise level software packages into the infrastructure of an organisation.

Affordability. Affordability refers to the cost of some computing component, be it

a piece of hardware or software. It is a measure of the cost, in terms of initial

acquisition cost, cost of operation and cost of maintenance.

In order to achieve the defined quality attributes of a software architecture,

certain concrete implementation methods are defined. These methods, or more

appropriately architectural tactics, are discussed in the next section.

4.3.3 Architecture tactics

The concept of architecture tactics (Figure 4.1 block 3) was introduced by Bass,

Clements and Kazman, and they define architecture tactics as a “design decision that

influences the control of a quality attribute response” [104]. Thus, an architectural

tactic represents a design decision that addresses a certain quality attribute with

the use of some concrete pattern. For example, the tactic of clustering can be used

to improve the scalability and reliability quality attributes of a system.

Architectural tactics can therefore assist with the following [101]:

• Finding methods to address quality attributes;

• Explicitly making trade-off decisions;

• Gaining a better understanding of implemented architectures, frameworks, or

vendor products;

• When using reference architectures and frameworks, deciding which features

are applicable; and

• Communicating architectural decisions.

Architectural tactics can be applied to all quality requirements and will enable

and enhance said quality attributes in some way. When applied to the FRC system,

57

the quality attributes of auditability, security, integrability and affordability are

defined as the primary quality attributes. Thus, architectural tactics are required

to enhance said quality attributes. The tactics for each of these identified quality

attributes are examined in the sections below.

4.3.3.1 Auditability tactics

In order for a system to be auditable, it must be possible to extract information

from said system easily, accurately and in a timely fashion. The information must

also be simple to interpret for an effective audit to be performed.

In order for information to be extracted easily from a system, the auditor must

have adequate access to the system in question. This is handled on the policy and

procedure level of the organisation that is being audited. From a system perspective,

adequate access must be given in terms of access rights. This can be achieved by

granting the necessary log-in credentials to the auditor. Easy information extraction

will also aid in the timely completion of an audit.

Accurate information is vital to an information audit. It must be verified that

the information obtained from a system is a true representation of the information

contained in the system. This can be achieved by using hashing algorithms. Since

each piece of information can be hashed to a unique value, a copy of the information

can be verified by using the same hashing algorithm. Should the hash value be the

same, it can be assumed that the information is identical to that on the audited

system.

4.3.3.2 Security tactics

In terms of security tactics, three main goal categories are commonly used. These

categories are detecting attacks, resisting attacks and recovery from attacks. For

each goal, certain strategies can be implemented to achieve them.

Detecting attacks allows for action in a proactive manner to limit damage. The

strategies associated with attack detection are event logging and analysis, auditing

and monitoring of sensitive events, verification of message integrity, maintaining a

database of attack signatures and scanning for them.

58

Should an attack occur, there must also be tactics to resist said attacks. To

achieve the goal of resisting attacks, two main strategy categories are the limiting

of access and limiting of exposure. The strategies for limiting access are to use

authentication and authorisation mechanisms, minimise access channels and access

domain, and enforce confidentiality. Similarly, the strategies to limit exposure are to

add additional layers of security for valuable systems and data, ring-fence resources,

minimise the use of external resources and assume such resources cannot be trusted,

enforce secure default settings and, in the case of a failure, fail in a secure manner.

In the case of a successful attack, strategies are needed to recover from such an

attack. These strategies can include dropping requests and connections, updating

access rules and restoring to a previous secure state.

4.3.3.3 Integrability tactics

The integrability quality attribute has three common goals associated with it. These

goals are publishing of provider existence, publishing of offered services and provision

of access.

To achieve the first goal of publishing the provider existence, the strategies

of marketing the provider can be employed. Alternatively, the provider can be

published in a naming service.

Next, the services offered by a provider must also be published. This can be

done by publishing the service contracts or by publishing the services to a service

broker.

Finally, access must be provided for service access. Strategies for such access can

be implemented by providing proxies, supporting service agents or brokers, support

of standard communication channels and protocols, and support of a communication

bus.

4.3.3.4 Affordability tactics

Affordability is always a concern regarding commercial computer systems.

Affordability can be achieved by keeping the total cost of ownership to a minimum.

59

This total cost of ownership refers to the initial acquisition cost, cost of operation

and cost of maintenance.

Acquisition cost cannot be addressed by architecture tactics, because it falls

outside the architecture and is a business matter. Therefore tactics must be used to

minimise the cost of operation and the cost of maintenance.

Cost of operation can be minimised by ensuring that licence fees for proprietary

software and licences are kept to a minimum. Using open-source software, if at all

possible, would be the most viable option. Efficient code can also keep the cost

down, especially in scenarios where prices are charged per machine cycle.

Cost of maintenance can be minimised by introducing mechanisms to simplify

processes like patching and updating. Over-the-air patching is a popular example of

one of these mechanisms. It allows the patch to be run without human intervention

on remote systems. On a code level, tactics such as coding standards and best

practices can greatly simplify code maintenance, thus reducing cost in terms of

manpower.

Just as architecture tactics address the realisation of specific quality

attributes, certain well-defined reference architectures achieve this with full system

architectures. In the next section, the concept reference architectures are examined.

4.3.4 Reference architecture

A reference architecture (Figure 4.1 block 4) can be defined as “a domain-specific

architectural template which aims to address architectural concerns for a particular

class of problems” [105]. In other words, the purpose of a reference architecture is

to give a high-level standard model from which it is possible to design a specific

solution when applied to a specific domain [106].

There are many examples of reference architectures in various problem domains.

These domains can range from business software to engineering. Examples of

reference architectures in different domains are:

AUTOSAR, for the software architectures in the automotive domain.

60

Figure 4.4: Simplified SOA reference architecture

Java EE, template solution for enterprise applications using a layered architecture.

Examples of implementations are: JBoss, Glassfish and Apache Geronimo.

SOA reference architecture, for service orchestration of services that are

discoverable, stateless, and self-healing. Examples of implementations are:

Open ESB, Mule and Apache Axis.

These are a few of the existing reference architectures and there are many others.

However, for this research, the Service Orientated Architecture (SOA) is of particular

interest.

The SOA is a concrete application and reference architecture of the microkernel

pattern. Figure 4.4 depicts a simplified view of the SOA reference architecture.

Within SOA, the Enterprise Service Bus (ESB), along with the Business Process

Execution Engine (BPEE), is the microkernel. The internal and external systems

connect to the ESB where the respective services are registered in the service registry

and indexed in the service container.

The main aims of SOA are to decouple systems and technologies, increase

flexibility, provide infrastructure for service reuse, and to provide the infrastructure

service provider with management and governance capabilities. For these

reasons, the SOA reference architecture is also tailored to enhance certain

61

quality attributes. These quality attributes are scalability, reliability, flexibility,

performance, auditability, security and integrability.

While a reference architecture gives a blueprint to create an architecture, with

its constituent components, to meet a certain set of requirements, some form of

communication is also needed between the components. These communication

methods are defined by the integration architecture, which is discussed in the next

section.

4.3.5 Integration architecture

Integration architecture (Figure 4.1 block 5) is one of the primary components of

any software architecture, since the decisions made are likely to have a considerable

impact on the system [19]. It might have a particular impact on quality attributes

such as performance, scalibility, reliability and security. As modern systems are

typically running in an integrated environment, it is necessary to provide access via

a range of access channels. With this comes certain challenges, including accessibility

and quality requirement challenges, integration complexity and infrastructure

constraints. In order to compensate for these constraints, it is necessary to apply the

relevant integration concepts and integration patterns. These concepts and patterns

are discussed in the following sections.

4.3.5.1 Integration concepts

The challenges of accessibility and quality requirement challenges, integration

complexity and infrastructure constraints are compensated for by using concepts

such as service publication, protocols, integration mechanisms and integration

approaches [101]. Each of these concepts are briefly discussed below.

4.3.5.1.1 Service publication

To make services available for use, they are published with the information required

on how to be able to use them. The information published is generally the service

that is offered and its location, supported access channels and protocols, and the

message patterns that are required for information exchange.

62

4.3.5.1.2 Communication protocols

Communication protocols can be defined as “the specification of rules governing the

syntax, the semantics and the synchronisation of communication [107]. Protocols

may specify the following:

• The method of finding communication end point;

• The method of how a communication session is established;

• The method of negotiating communication characteristics, e.g. compression,

encryption, error detection and error correction;

• Which languages or message structures are used during communication;

• The format for a message start and end;

• The method of detecting whether or not a communication link is still active;

• Fault handling of improperly formatted or corrupted messages; and

• The method of terminating a communication session.

4.3.5.1.3 Integration mechanisms

Integration mechanisms are the global strategy that is followed in order to integrate

various components within an architecture [108]. These mechanisms are:

• User-interface integration;

• Database-based integration;

• Service-request-based integration;

• Space-based integration; and

• Messaging.

63

4.3.5.1.4 Integration approaches

In order to implement the above-mentioned mechanisms, certain approaches can be

followed. These approaches include:

• Sharing a common resource. In this case, a common resources is accessible

and modifiable by one or more role players. This form of integration requires

state protection of concurrent access, typically done via resource locking.

• Transferred resource. In this case, a resource is passed with either a message

or a resource with request parameters. The resource might be specific for the

particular service request and is commonly routed by a controller. The request

can either be routed directly or passed from process to process using pipes and

filters.

• Request-based integration. In the case of request-based integration, a request

is sent to a service provider which then supplies the relevant service. In this

case the request must be sent using a predefined format that is defined by a

service contract.

• Document-based integration. In the case of document integration, the

recipient is responsible for deciding how the supplied information must be

processed. This method is advantageous, as it is more flexible in that

multiple operations can be performed on the information as opposed to a

single requested operation.

From multiple implementations of integration concepts, certain patterns

emerged. These patterns are discussed in the next section.

4.3.5.2 Integration patterns

Integration patterns can be defined as “patterns that are proven, reusable, generic

solution components, i.e. they represent specific best practice solutions to integration

problems” [108]. These patterns are commonly used in combination with each other

to achieve the desired integration. Key to these patterns is messaging.

64

Messaging has a number of distinct benefits over direct integration. These

benefits are:

Load balancing. Message consumers can be added to the queue as needed.

Processing resource optimisation. In conjunction with load balancing, the

number of processing elements can be utilised fully across each step in the

messaging pipeline.

Reliability. Messages can be stored; they can be buffered until it is possible to

deliver them.

Auditability. Due to the fact that each point in the message pipeline can be

monitored, it is possible to log the inputs and outputs for each processing

stage.

Decoupling. Since the message producer and consumer are unknown to one

another, either may be changed should the need arise. It is also possible

to have multiple producers and consumers.

Using messaging, it is possible to implement a range of integration patterns.

Different classes of patterns are listed below. Each of these classes has multiple

specific patterns associated with it. Hohpe and Woolf define an entire dictionary

of integration patterns [108]. However, an exhaustive list of the specific patters is

omitted for the sake of brevity. Some example patterns are given for each pattern

class.

• Message channels, e.g. publish-subscribe channel, point-to-point channel.

• Message construction, e.g. request-reply pattern, event message pattern.

• Routing, e.g. content-based routing, message filter.

• Transformation, e.g. content enricher, content filter.

• End-point patterns, e.g. polling consumer, selective consumer.

• System management, e.g. control bus, smart proxy.

65

As architectures can become very complex, it is necessary to have methods of

communicating said architecture accurately and efficiently. For this reason, various

architectural representation techniques exist. These techniques are discussed in the

next section.

4.3.6 Architecture representation

While the components of software architecture describe the system that is designed,

some method must also be employed to communicate the architecture to different

stakeholders. Some form of architectural representation is therefore required (Figure

4.1 block 6).

The most common technique for architecture representation is that of the

so-called architectural view [109]. Different views are used to communicate different

information of the architecture to the relevant stakeholder. A guide for describing

complex, software-intensive systems is given in the IEEE 1471 Standard [100].

Another commonly used representation is the model proposed by Kruchten, the

so-called 4+1 view model [110]. In this model, the architecture is split into views

for the end-users and UX designers (logical view), programmers (implementation

view), system engineers (deployment view), and system integrators (process view).

What connects these views, the “+1” view, is the use of case view for analysts and

testers.

The Unified Modelling Language (UML) is a general purpose modelling language

that provides a standard method of visualising a system design [111]. UML has

become an ISO standard for system design visualisation [112]. UML offers blueprints

for diagrams to visualise architectural elements such as activities, components,

component interaction, user interaction and so forth.

In the same way that UML is a formal language, there are other languages that

can be used to describe an architecture. These architecture description languages

(ADL) are usually domain specific and focus on the representation of components.

ADLs give more functionality regarding the system behaviour by using components

with properties defined and semantics of connections. The biggest drawback of

ADLs is that most are very specific in their application domains.

66

There are, of course, many other representation methods, but these are irrelevant

to this research.

With all the different components of a software architecture defined, it is

necessary to have methods of systematically designing an architecture. In the next

section, these architectural design techniques are examined.

4.3.7 Architecture design techniques

In order for an architecture to be designed, some method must be used that can

provide a usable architecture. These methods are generally placed in two classes.

The first is formal methods that will yield a design that can be proven as correct

and reliable [113]. The trade-off, however, is that applying such a methodology

is difficult and expensive. As such, formal methods are only applied to a class of

problems where reliability and safety are of the utmost importance, e.g. aviation

and medical science.

On the other hand, agile methods assume that the initial set of requirements are

volatile, incomplete and possibly incorrect [114,115]. For this reason, agile methods

attempt to provide a process which can operate in these conditions. While modelling

is done in agile methods, the primary output is that of working code.

Model-driven development (MDD) uses both aspects from formal methods

and agile methods [116]. With MDD, the agile component is used to address

business and system requirements, whereas the formal component is used for model

transformation and code generation.

As with MDD, the Use Case, Responsibility Driven Analysis and Design

(URDAD) methodology uses aspects of both formal and agile methodologies [98]. It

is a service-orientated analysis and design methodology that focuses on delivering a

technology-neutral design. It also aims to provide a repeatable engineering process

for generation model-driven artefacts.

The URDAD methodology requires that analyses are performed across multiple

levels of granularity. At each level the requirements are examined and a design is

done of high-level services that are composed of lower-level services. When the

design of one level is complete, the next lower level of granularity is examined

67

and the process is repeated. Services are thus recursively constructed until generic

services are reached. These generic services can include numerical addition or data

persistence.

Each level of granularity has an analysis and design phase associated with it.

The analysis phase first identifies the stakeholders that have requirements for a

specific use case. Next, the quality requirement, and pre- and post-conditions are

defined. After the definition, the aggregated service requirements are encapsulated

in a service contract which, in turn, is visualised using UML. URDAD does require

that each service request has a single request and response. This is done to enhance

maintainability in that, should a change request be received from a stakeholder, only

the affected service needs to be changed. This isolated change mitigates problems

that can arise by changing service contracts unintentionally.

When proceeding to the design phase, the pre- and post-conditions of the

required service are identified and grouped with similar services. Service contracts

are then assigned to the different groups and the processes to realise the services, at

a lower level of granularity, are put in place. This process is repeated until the lowest

level of granularity is reached. For this low level, the system can be implemented.

With the concepts of software architecture defined, it is now possible to continue

with the design of the FRC system.

4.4 Conclusion

This chapter gives a high-level overview of software architecture and its various

components. These components include structural patterns, quality attributes,

architecture tactics, reference architectures integration architectures, architecture

representations and architecture design techniques. With an understanding of these

components, it is possible to generate a software architecture to fulfil a purpose. In

the next chapter, models to facilitate the proactive acquisition of forensic data are

proposed and compared.

68

Chapter 5

Models for the forensic monitoring

of cloud virtual machines

5.1 Introduction

In the previous chapters, the background is discussed regarding cloud computing,

digital forensics and software architecture. In this chapter, five models are proposed

to address the problem as discussed in Chapter 1. The models are based on the

National Institute of Standards and Technology (NIST) of the United States [6]

reference architecture for cloud computing. Each of the models is defined and

examined regarding its strengths and weaknesses. Table 5.1 provides a summary

and comparison of all the models.

5.2 Motivation

In order to realise the goal of proactive computer forensics, one must first look at

the general implementation of cloud systems and how it can be adapted to enable

proactive forensics. The core tenets to enable proactive computer forensics are that

of the NIST [1] reference architecture for cloud systems and the concept of forensic

monitoring.

69

Figure 5.1: NIST Cloud reference architecture [1]

5.2.1 Cloud reference architecture

Figure 5.1 depicts the fully realised cloud reference architecture provided by the

NIST. The full NIST architecture is very extensive and contains many components

not relevant to this research. Thus, a simplified reference architecture is used to

show only the relevant components.

Figure 5.2 depicts the simplified reference architecture of cloud computing

systems. In this architecture, hardware nodes are clustered together to form one

large logical machine, and thus a resource pool. The resource pool is administered

by the cloud operating system. Finally, the hypervisor administers the virtual guest

operating systems that can be hosted on the cloud. All of the following models

use the base architecture and expand on it in order to facilitate proactive digital

forensics.

Naturally, various different implementations of cloud systems have different

variations on the specific structure of said systems. However, all well-known cloud

systems follow the basic structure similar to that of the NIST reference architecture

[1]. Thus, the NIST architecture can be used as a reference point on which to build

the proactive forensic system.

70

Figure 5.2: Simplified cloud reference architecture

5.2.2 Forensic monitoring

In order to enable proactive forensics, some forensic system or systems must be

active during normal operation of a cloud system. This is necessary to capture data

that might be relevant to a forensic investigation. A Forensic Monitor can therefore

be defined as follows:

A Forensic Monitor is a piece of hardware or software that can be configured to

perform some forensic function in a system while the system is running, in order to

aid in a computer forensic investigation. The main function of the Forensic Monitor

is to actively capture data from a system and transmit the captured data to a system

where it can be analysed forensically [18, 117].

The exact working of the Forensic Monitor depends on the type of

implementation of the cloud forensics system and is discussed for each of the

cloud forensic models. In each case, the Forensic Monitor captures data via some

mechanism, then either performs some basic forensic operation and finally transmits

the captured data to a central forensic analysis system. The Forensic Monitor must

be kept as lightweight as possible in terms of performance requirement, in order not

to have an adverse impact on the performance of the cloud.

In order for the Forensic Monitor to be implemented, a specific implementation

point within the cloud reference architecture must be identified. In the following

71

Figure 5.3: Operating system embedded forensic monitor model

section, the different options regarding implementation points are examined as

possible models for the FRC architecture.

5.3 Forensic models

The proposed models are classified in terms of their implementation type,

implementation complexity, level of data segregation, tamper resistance and as a

service model as described in the section 1.2 Problem Statement. The models are

the operating system embedded, hypervisor embedded, communication layer, single

tenant forensic virtual machine, and multi-tenant forensic virtual machine. Each of

these models is discussed in the sections below.

5.3.1 Operating system embedded forensic monitor model

Figure 5.3 shows the operating system embedded forensic monitor. The forensic

monitor forms part of the deployed guest OS. For this method to be feasible, the

guest OS must be supplied by the cloud provider. The reason for this is that the

72

Figure 5.4: Hypervisor embedded forensic monitor model

user must not be able to access the forensic monitor lest it be tampered with or

disabled. As the forensic monitor is integrated with the guest OS, it gains access

to the functions provided by the guest OS. It would thus be possible to capture the

relevant forensic data via the guest OS and store it for later use. In terms of data

segregation, this model is well suited, as the forensic monitor is deployed within each

deployed guest OS. Should the forensic data be required, it can be uniquely identified

by its originating OS. This model is most suited to the software-as-a-service (SaaS)

data delivery paradigm, as the user only consumes the software that is delivered

while having no access to the underlying OS. This will hold true only if the OS is

secured. The OS might still be vulnerable to attack via exploits such as worms,

viruses, etc.

5.3.2 Hypervisor embedded forensic monitor model

Figure 5.4 depicts the hypervisor embedded model. With this model, the forensic

monitor forms part of the hypervisor. As the guest OSs must communicate via

73

Figure 5.5: Communication layer forensic monitor model

the hypervisor with the physical hardware, all traffic can be intercepted. The

hypervisor could be engineered in such a manner that the data relevant to forensics

is captured and stored. As the monitor is tightly coupled to the hypervisor, the

monitor must be written as an integral part of the hypervisor. Data segregation

should be considered in the design of the forensic monitor. Since the hypervisor

is a multi-tenant system, the data from the various guest OSs running on said

hypervisor must be clearly segregated. Since the forensic monitor is integrated into

the hypervisor, the user is not limited by which guest OS to use. Unlike the OS

embedded monitor model, this model is agnostic to the deployed guest VM, making

it feasible for the platform-as-a-service data delivery paradigm.

5.3.3 Communication layer forensic monitor model

Figure 5.5 depicts the communication layer model for forensic monitoring. In this

model, the forensic monitor is layered between the cloud OS and the hypervisor.

With the hypervisor embedded model, the data has to pass from the guest OS to

74

the hardware via the hypervisor and the cloud OS. This model places the forensic

monitor as part of the cloud OS, thus forming the communication layer between the

cloud OS and the hypervisor. Since all data must pass through the cloud OS to

the underlying hardware, the data can be monitored forensically. With this model,

the forensic monitor should form part of the cloud OS to enable the capture of

communication between the cloud OS and the hypervisor. This would require that

the cloud OS either be designed with the forensic model as part of the system, or

that the forensic monitor runs as a separate application on the cloud OS. Data

segregation might become a problem with this model. The data should be clearly

differentiated by its originating guest OS so that it can be catalogued correctly.

Should the data be mixed, it could call into question its forensic usefulness. In the

case that the forensic monitor is tightly coupled with the cloud OS, this model would

be suited to the infrastructure-as-a-service data delivery paradigm. This is because

the forensic monitor forms part of the cloud OS and cannot be removed. However,

in the case of the forensic monitor being a separate application running on the cloud

OS, the platform-as-a-service data delivery paradigm would be used. This is due

to the fact that as a separate application, the forensic monitor can much easier be

tampered with or disabled.

5.3.4 Single tenant forensic virtual machine model

Figure 5.6 depicts the single tenant model. This model has the monitoring done by

a forensic VM running on the hypervisor. The forensic VM serves as the host to

the guest VM and the forensic monitor. This creates a nested set of VMs running

on the hypervisor. For this model, each guest VM is hosted by a separate forensic

VM. As the guest OS is contained within the forensic VM, it is completely isolated

from the underlying architecture, making tampering with the forensic monitor very

difficult. The forensic monitor gains access to the data of the guest VM, since the

data must pass through the forensic VM in order to reach the hardware layers. In

terms of implementation, since the hypervisor is agnostic to the guest OS it hosts,

the forensic VM can be run atop the hypervisor. Part of the forensic VM would

then contain a hypervisor to enable the hosting of the guest VM. The forensic VM

75

Figure 5.6: Single tenant forensic virtual machine model

OS must be written in such a way that it can fulfil its function of capturing the

forensic data. A possible problem with this model could be that since the VMs are

nested, the computational overhead required to run the forensic VM might cause

degradation in performance. As the forensic VM contains an OS running the forensic

monitor, it would allow all the functions associated with such an OS. Thus, captured

data can be catalogued and stored for easy access should the need for forensics arise.

With this, data can be transported to another system for safekeeping. As each guest

VM runs in a separate forensic VM, data segregation is not an issue. All data is

automatically kept separate between the forensic VMs, since each forensic VM runs

only a single instance guest VM. As any OS can be deployed in the forensic VM,

the user is not constrained in choosing a desired guest OS. Thus, this model would

be well suited to the platform-as-a-service data delivery paradigm, as the user can

freely select the appropriate guest OS.

76

Figure 5.7: Multi-tenant forensic virtual machine model

5.3.5 Multi-tenant forensic virtual machine model

Figure 5.7 depicts the multi-tenant model. As with the single tenant model, the

multi-tenant VM model has a nested set of VMs running on the hypervisor. In this

case, however, the forensic VM hosts multiple guest VMs. These hosted guest VMs

are isolated from the underlying architecture by the forensic VM. The forensic VM

captures the relevant forensic data from the hosted guest VMs and stores it for later

use. What is unique about this model is that the guest VMs can interact directly

with each other, creating a virtual ecosystem. This entire ecosystem can then, in

turn, be monitored by the forensic VM, as it would facilitate the communications

between the guest VMs. Data segregation with this model can be an issue; since

the forensic VM is a multi-tenant system, the data must pass through the forensic

VM to the underlying architecture. Some method must therefore be considered to

differentiate between the data from the different guest VMs. The user can decide on

the OS which is to be deployed in the forensic VM, as the forensic VM is agnostic to

77

what it hosts. Thus the multi-tenant model is well suited to the platform-as-a-service

data delivery paradigm.

Having defined all the models, Table 5.1 in the next section gives a side-by-side

comparison of the models.

78

5.4 Summary

Table 5.1: Summary of proposed models

Operating System

Embedded

Hypervisor

Embedded

Communication

layer

Single tenant VM Multi-tenant VM

Implementation Built into OS. Can

be ran as an OS

service, daemon or

program.

Built into Hypervisor Built into cloud

OS/Application on

cloud OS

Runs on Hypervisor

as a VM tenant.

Runs on Hypervisor

as a VM tenant.

Implementation

Complexity

Medium.

Dependent on the

security required.

High. Must

form part of

the Hypervisor

implementation.

High. Must be on

the protocol layer

requiring rewrites of

said protocols.

Low. Nested VMs Low. Nested VMs

Data

segregation

High. Per OS

instance, can easily

be differentiated.

High (best case).

Managed by

Hypervisor,

dependent on

implementation.

Low to Medium.

Dependent on

implementation. All

data must pass via

the cloud OS.

High. One guest

OS per instance of

forensic VM

Medium. Multiple

guest tenants in

forensic VM.

79

Operating System

Embedded

Hypervisor

Embedded

Communication

layer

Single tenant VM Multi-tenant VM

Tamper

resistance

Dependent on

implementation of

monitor in guest OS

High. Cloud user

does not have access

to Hypervisor

Dependent on

implementation.

High when

embedded. Low

when a separate

application.

High. Cannot be

accessed or detected

by cloud user.

High. Cannot be

accessed or detected

by cloud user

As a Service

model

Software-as-a-service Platform-as-a-service Infrastructure-/

Platform-as-a-service,

depending on

implementation

Platform-as-a-service Platform-as-a-service80

5.5 Conclusion

With the description of the different models, it is now possible to design a detailed

architecture that will enable proactive digital forensics. This architecture is an

expansion to a full system of which the base models form part. In the next chapter,

a detailed requirements analysis is performed to enable the architectural design of

the proactive forensic system. This system is referred to as the Forensic Ready

Cloud (FRC) system.

81

Chapter 6

Analysis and design of the FRC

architecture

6.1 Introduction

To implement a system for proactive cloud forensics, it is necessary to define an

architecture that describes the system and all its components accurately. While

the proposed forensic models aid in the acquisition of forensic information, the

FRC system as a whole must be modelled in order to create an implementable

and technology agnostic architecture.

Cloud computing systems are dynamic by design and can be outright chaotic

when viewed from the perspective of conducting a digital forensic investigation. In

contrast to the possible chaos of cloud systems, the digital forensic investigation

process must follow a very rigid set of guidelines. For this reason, an architecture is

needed to bridge the gap between the chaos of a cloud system and the rigidness of

a digital forensic investigation. To design such an architecture, some method must

be followed.

The Use-Case, Responsibility Driven Analysis and Design (URDAD) method is

used to define the architecture, as discussed in Chapter 4 [98]. The URDAD method

is systematic and consists of an analysis phase and a design phase. The phases are

iterative and can be repeated for each level of granularity. This makes it an ideal

method to adapt the dynamism of the cloud to the rigidness of forensics, as the

82

concepts at each level of granularity can be analysed and the relevant strategies can

be applied to generate a workable architecture.

As an analysis is done on different levels of granularity, it is possible to ensure that

each level conforms to the requirements of the digital forensic process, thus making

the implementation of the system certifiable as forensically sound. In addition to

this, should faults be found in the system, it is easier to drill down to the cause of

such faults.

This chapter is divided into the analysis phase, which includes the goals

and constraints, functional requirements, non-functional requirements and model

selection, and the design phase, which includes the architectural views and

integration architecture. It also contains the evaluation of the architecture, to ensure

that all architecture goals are met.

6.2 Analysis phase

The analysis phase aims to elicit, verify and document the stakeholder requirements

[101]. This section describes the goals, constraints, quality attributes, and functional

and non-functional requirements of the FRC system.

6.2.1 Goals, constraints and quality attributes

In order to create and evaluate an architecture for the FRC, a clear set of goals

and constraints must be defined. The architecture must be of such a nature that

the goals can be achieved within the given constraints. In addition to the goals and

constraints, the primary quality attributes must be defined and aligned with said

goals and constraints. These quality attributes are used to measure the performance

and alignment of the system to the defined architecture.

6.2.1.1 Architecture goals

In order for the FRC system to be successful, goals must be defined against which

the architecture can be designed and serve as a guide to determine if the FRC system

fulfils its intended purpose. In other words, the architectural goals can be tested,

83

via proof of concept implementation, to determine whether or not the system meets

these goals. The architectural goals of the FRC architecture are:

• To have a system that can capture data from a virtual machine deployed in a

cloud environment;

• To keep the captured data in a forensically sound state, in case it is needed

for a forensic investigation. Forensically sound data refers to data that is

captured using recognised forensic acquisition techniques and that can be used

as digital evidence by fulfilling the requirement that the data is authentic,

reliably obtained, and admissible. A more in-depth definition is provided in

Chapter 3 section 3.4;

• To automate the initial process, as defined in Chapter 3 section 3.8, of the

forensic investigation; and

• To have a forensically sound copy of the forensic data available. Data in

a cloud environment is volatile due to the shared resources used to create a

cloud system. Thus, when conducting a digital forensic investigation on a cloud

computing system, it is desirable to have access to data that was captured and

kept forensically sound should the original be destroyed, either by accident or

maliciously.

With the goals defined, it is also necessary to define the constraints under which

the system must operate.

6.2.1.2 Constraints

As with all systems, the FRC system has certain constraints in which it must operate.

These constraints must be catered for in the architectural design in order for the

final system to meet its requirements. These constraints are:

• The FRC system must be a “bolt-on” solution for cloud systems. While it

would be more effective to create a bespoke cloud system that enables easy

forensics in said cloud system, for this scenario such a system would not be

84

desirable. One of the core attributes of the FRC system is that it can be used

with an existing cloud hosting system. In the case where such an existing

system would be operational, changing over to a bespoke system would incur

cost of running the systems in parallel while a migration is in process, and the

risk of data loss during the switch-over process. The other concern would be

that of the cost of developing and implementing a bespoke system. Should a

bespoke system be hardware-based, it could entail significant changes to the

deployment architecture of the cloud system.

• The concept of Confidentiality, Integrity and Availability (CIA) must be

adhered to. CIA is one of the core tenets of computer security and is examined

fully in Chapter 3 section 3.10. In the FRC system, captured data must be

kept confidential, the integrity of the data must be ensured for a forensic

investigation and the FRC system must be available to be used. Data that is

captured might be of a sensitive nature to the owner of the data and must thus

be kept confidential lest it causes damage to the owner. The data could include

medical records, financial records or other potentially sensitive information.

For the data to be usable as digital evidence, the data must be only that of

the target system. In addition to this, the captured data must be kept secure.

• The FRC system must not unduly affect the performance of the cloud hosting

system. One of the most popular pricing models used by cloud service

providers, is pricing by use of processing resources [118]. For the FRC to

operate, it requires a certain amount of resources from the cloud resource

pool. Thus the cost of the used resources must be carried by either the cloud

service provider or the user of the cloud system. For this reason, the resources

used by the FRC must be kept to a minimum. Should the FRC system require

large amounts of system resources, it could affect the performance of the cloud

system, especially if the cloud system hosts a number of virtual machines.

With the above goals and constraints defined, the relevant quality attributes can

be selected to achieve the said goals and compensate for the given constraints.

85

6.2.1.3 Quality attributes

In order for the FRC system to be realised, the core quality attributes must be

identified. The quality attributes associated with the FRC system architecture are

auditablility, security, integrability and affordability. These quality attributes are

discussed below.

Auditability is the single most important attribute of the FRC system. In order

to have a system that can capture forensic data and transport it to another

system for analysis, an audit trail is of the utmost importance for evidentiary

purposes. Should any of the chain of sub-systems in the FRC system be found

to have distorted data, it could call into question the forensic integrity of all

captured forensic data.

For instance, a photographic or other digital image is captured from a virtual

machine and must be copied, over a network, for digital forensic analysis to

be performed on it. However, because of the large size of the image, it is

compressed using a lossy compression algorithm, resulting in a difference in

the file that was captured and the file that was transmitted. This would break

the forensic integrity of the image, as some of the information contained in

the image is lost. Should the image have contained information embedded

using steganography, this information would be lost. It is thus of the utmost

importance that all processes that the FRC system performs must be auditable

to ensure the integrity for the forensic chain of evidence.

Security is a necessary addition to ensure the auditability of the FRC system.

Making the system more secure, ensures that it is resilient to attack and thus

ensures the integrity of the data. This is in line with the core concepts of

computer security, namely Confidentiality, Integrity and Availability (CIA).

All these concepts are relevant to the FRC system, as mentioned in section

6.2.1.2.

Integrability ensures that the system is easily deployed into the relevant cloud

environment. The architecture aims to be technology agnostic and thus special

86

care should be taken to ensure that it is possible to integrate it with various

cloud platforms.

Affordability is always a factor when designing and implementing a software

system. In the case of the FRC system, the objective is that the entire system

must be software based, i.e. no specialised hardware should be required for

implementation of the system. This is in line with the constraint of having a

”bolt-on” solution.

How these quality attributes are achieved by using certain architectural tactics,

is discussed in section 6.3.2.3. With the architectural concerns addressed, it is

necessary to define the functional requirements that describe the function of the

FRC system.

6.2.2 Functional requirements

The functional requirements define what the system is supposed to do. These

requirements will be the driving factor behind the inputs, outputs and behaviours of

the FRC system. The acquisition of viable forensic data is the primary requirement

of the FRC system. Viable forensic data is forensically sound and will stand up to

scrutiny in a court of law. Forensically sound data is examined in Chapter 3 section

3.4.

The following list defines the functional requirements of the FRC system.

• Data must be captured from a virtual machine in a cloud environment for

the purposes of digital forensics. Due to the problems discussed in Chapter

1 section 1.2, the FRC system must be able to capture data from virtual

machines deployed in a cloud environment.

• The captured data must be kept in a state that is forensically sound, should

the need for a forensic investigation arise. In order for a digital forensic

investigation to be performed, the captured data must be stored in a manner

that maintains its integrity. Further, the integrity must be verifiable to show

that the data has not been inadvertently changed or tampered with due to

87

malicious intent. Should either case be true, then the evidentiary validity, and

thus the utility, of the captured data can be called into question.

• The captured data must be attributed with meta data relevant to the forensic

investigation. Attribution is one of the core steps of the digital forensic

investigation process [12, 58], and must be done regardless of whether the

system is cloud-based or not. In the case of the cloud system, because of the

possible large number of VMs in the system, data must be attributed, at the

very least, in terms of its VM origin, time captured, number of files captured,

names, sizes and hashes of captured files. This would be the minimum amount

of meta data required to conduct a worthwhile digital forensic investigation.

• The captured data must be transferred to an isolated location where an

automated preliminary forensic investigation can be conducted. Since data in

cloud systems is by its very nature volatile, it cannot be analysed at the point

of capture. This could alter the data in some way or leave it susceptible to

attack from a malicious source. The data must be transported to a dedicated

secure system where an initial, automated, forensic processes can be applied.

With this done, some form of basic reporting can be done to alleviate the

workload of a forensic investigator.

A core function of the FRC system is the acquisition of forensic data. In order

to enable the acquisition, a model for forensic monitoring, as defined in Chapter 5,

must be selected.

6.2.3 Model selection

Table 5.1 summarises the different monitoring models described in Chapter 5. From

this it is possible to choose the most applicable model for implementation of the

FRC system. As the implementation is a proof of concept, the model that can

show the most features defined by the FRC architecture should be selected. For this

reason, the single tenant VM model is selected for implementation.

The reasons for this choice are: the model would enable auditability, as all

captured data can be attributed directly to both the guest and the forensic VM of

88

origin. The characteristic of direct attribution is the reason why the single tenant

model is chosen over the multi-tenant model. Since the multi-tenant model hosts

multiple guest VMs within a single forensic VM, the attribution of data is more

challenging, because the origin of the data must be correctly attributed.

The single tenant model has a high level of tamper resistance, increasing

security. It is a pure software implementation, meeting the quality requirement

of affordability. Finally, the single tenant model has a low complexity regarding

implementation, making it ideal for a proof of concept.

With the goals, constraints, quality attributes and functional requirements

defined, it is now possible to enter the design phase and define the relevant

architectural views.

6.3 Design phase

In the design phase, the service contracts are assigned to the different identified

responsibilities from the analysis phase, as well as the business processes that

are required to execute said contracts. To show the different components clearly,

different views are used to illustrate different facets of the FRC architecture. With

the defined views, architectural patterns and tactics used to realise the FRC system

are selected.

6.3.1 Architectural views

The architectural views show the various perspectives of the FRC system in terms

of logical layout, process flow, user interaction and physical deployment.

6.3.1.1 Logical view

The logical view describes how the different components of the system are distributed

in relation to each other. Figure 6.1 depicts the full logical layout of the FRC system.

Each block numbered 1 to 5 is a sub-system or connecting system.

89

Figure 6.1: Logical view of the FRC system

90

6.3.1.1.1 Cloud hosting system

The single tenant forensic monitor model uses nested VMs to enable forensic

monitoring and is shown in Figure 6.1 block 1 . The reasoning for selecting this

model is discussed in section 6.2.3. With this model, a single guest OS is contained

within a single forensic VM. Thus, the forensic VM acts as a wrapper for the guest

OS, isolating it from the underlying cloud structure. In this case, the forensic VM

runs on top of the hypervisor. This is done so that the implementation of any

existing cloud system need not be changed. This model therefore requires that all

data passes from the guest OS to the rest of the cloud stack via the forensic VM.

Data is intercepted and captured by the forensic VM where some automated forensic

analysis can be performed. Hashing, for instance, can then take place. The function

of the forensic VM is to capture data and transmit it to the cloud forensic system.

This is done to minimise the required computational overhead in the cloud hosting

system. The operation of the forensic VM is transparent to the user. From the

user’s point of view, the provisioned guest operating system runs directly on the

cloud hosting system.

6.3.1.1.2 Forensic controller

The forensic controller (Figure 6.1 block 2) governs the forensic VMs in the cloud

system. The forensic controller is connected to the security system of the cloud

infrastructure. The controller has the function of assigning the level of forensic

data acquisition to the different forensic VMs. In order to save both space and

computational overhead, the forensic controller can be configured to different levels

of data acquisition. At the lowest level, the VM only captures minimal data, for

example log files, whereas on the highest level, the entire guest VM can be captured

for forensic analysis.

This level of data acquisition is determined by the configuration set by the cloud

service provider. The forensic controller receives input from the cloud security

system. Should a specific VM be targeted by some external threat, the cloud security

system detects the threat and signals the forensic controller. The forensic controller

can escalate the level of data acquisition by the forensic VM for the targeted guest

91

VM. This can be done either for a single VM or for a group of VMs, depending on

the detected threat. The captured forensic data is transported via a secure channel

to the cloud forensics system, where automated analysis can be performed.

6.3.1.1.3 Cloud forensic system

The cloud forensic system (Figure 6.1 block 3) is the destination for data captured

by the forensic VMs. It is a separate system that stands apart from the cloud hosting

system. The cloud forensic system consists of a forensic hash store, a forensic payload

store and an analysis engine. The forensic hash store contains the hash signatures

that are generated by the forensic VMs. These hashes are catalogued and stored

in such a way that it is easy to differentiate their origins. The hashes serve the

purpose that, in the case of an investigation, the forensic hashes can be compared

to the hashes generated by the investigator in order to determine where changes

to data took place. It can also be used as a short-cut by eliminating the need to

generate the hashes from scratch.

The forensic payload store contains the forensic data collected from the different

forensic VMs. When the forensic VM receives a signal to increase the level of

data acquisition, the acquired data is transmitted to the forensic payload store via

a secure channel. The acquired data is catalogued and sorted in order to easily

determine its origin from within the cloud hosting system. The data is segregated

and secured should it be needed in an investigation. The analysis engine performs

a predetermined analysis on the forensic data. This can be configured to such tasks

as cataloguing and analysis of images, analysis of communications and anomaly

detection. The proactive analysis data can save time for the investigator and speed

up the investigation.

In order for the data capture process to be initiated, a signal must be received

from the cloud security system.

6.3.1.1.4 Cloud security system

The cloud security system (Figure 6.1 block 4) is the standard security systems

that are present in a cloud environment, for example firewalls and anti-virus systems.

As these standard systems are already optimised to their purposes, it stands to

92

reason that they should not be replaced. The only addition to this existing security

system would therefore be the interface to the forensic controller.

In order for the data to be transferred from the cloud hosting system to the cloud

forensic system, some form of transmission channel is required.

6.3.1.1.5 Transmission channel

The transmission channel (Figure 6.1 block 5) is merely the carrier that allows the

captured data to be sent from the cloud hosting system to the cloud forensics system.

The channel must be encrypted to ensure that possible data interception would be

useless. This channel has both a physical and logical level of operation. On the

physical level, the hardware infrastructure of the cloud data centre can be used to

facilitate the data communication between the cloud hosting system and the cloud

forensics system. This can take the form of a local area network, fibre network or

some other communications medium. On the logical level, some direct connection

must be made via the encrypted channel between the cloud hosting system and

the cloud forensic system. This can be done via direct connection, virtual private

network or some other mechanism.

6.3.1.2 Process view

The process view describes the dynamic attributes of a system. In this case, the

process view of the FRC system is a flow diagram (Figure 6.2) describing different

processes and the sequence of their execution. Figure 6.3 illustrates the detailed

sequence of the hashing process, message transmission and message verification.

6.3.1.2.1 Process flow

Figure 6.2 depicts the process flow of the system. Starting with the initial state,

input from the cloud security system, the forensic controller 1 receives a signal that

an intrusion was detected and the system must capture data. The forensic controller

then signals the forensic VM 2 of the relevant guest VM. The system proceeds to

capture the relevant data 3 that is to be used in the forensic investigation. While

the data is captured, hashes are generated 4 for the verification of the captured

data. The hashes are stored in the local hash store 5 , and are transmitted 6 to

93

the cloud forensic hash store 7 . The hashes stored in the local hash store are then

also transmitted to the forensic hash store, where they are compared 8 to verify

9 that the hashes are identical. Should the hashes not be identical, the process

is repeated from 4 and the hashes are recalculated and resent. If the hashes are

identical, the hashes are written to the forensic hash database 10 .

After the hash for a particular file has been sent, the actual captured data

(payload) is also transmitted 11 to the cloud forensic payload store 12 and written

to the database containing the captured data 13 . The hash for the transmitted file

is calculated 14 and compared to the hash value in the forensic hash store 15 .

If the calculated hash matches the hash in the forensic hash store 10 , the file is

loaded to the analysis engine 16 from the stored captured data 13 , using the

load captured data process 17 . The data is then analysed 18 and the results are

written to the forensic report database 19 . The process is then at an end.

6.3.1.2.2 Hashing sequence

Figure 6.3 depicts the hashing sequence and data verification process of the FRC

system. This process is of particular importance to the system, as it addresses the

primary functional requirements.

The process begins in the forensic VM that generates a hash value via a hash

generator 1 . The hash value is encrypted 2 and a message is built 3 to be sent

to the cloud forensics system. The message is also encrypted 4 . The message is

transmitted 5 to the cloud forensics system.

When the message is received by the cloud forensics system, a receipt message is

sent back the forensic VM to acknowledge receipt of the encrypted data 5 . In the

cloud forensics system, the message and hash are decrypted 6 . The hash is stored

in the forensic hash store 8 . At the same time in the forensic VM, the payload of

data is encrypted for transmission 7 .

The payload data is transmitted 9 to the cloud forensic system and, as with

5 , a receipt is sent. The payload is decrypted 10 . Once the payload has been

decrypted, a hash value is generated for the payload 11 . This generated hash value

is compared 13 to the hash value that was transmitted earlier and stored in the

94

Figure 6.2: Process flow of the FRC system

95

hash store 12 . Should the hashes match, the payload is stored for analysis 14 .

In the event that they do not match, the process is repeated.

96

Figure 6.3: Hashing and data verification sequence diagram

97

6.3.1.3 Use case view

The Use Case view, in Figure 6.4, gives an overview of the major functions of the

system. In Figure 6.4 block 1 , the forensic controller is modelled as an external

actor, as it serves as a trigger of both the use cases of the cloud hosting system and

the cloud forensics system. The forensics analyst (Figure 6.4 block 4) is similarly

depicted as an actor. The forensic analyst is the consumer of the output of the final

use case. A brief description is given for each of the use cases.

6.3.1.3.1 Cloud hosting system

The cloud hosting system is depicted in Figure 6.4 block 2 .

Capture data. Data is captured by the forensic virtual machine. This is initiated

by the forensic controller.

Generate hash. Using a hash function, the hash values are generated for the

captured data.

Send hash. The generated hash values are sent to the cloud forensics system.

Transmit forensic payload. The captured data is sent to the cloud forensics

system.

6.3.1.3.2 Cloud forensics system

The cloud forensic system is depicted in Figure 6.4 block 3 .

Request data. Data that is captured by the cloud hosting system is requested by

the cloud forensics system.

Receive forensic payload. The requested data is received and stored by the cloud

forensic system.

Compare hash. The hashes of the forensic payloads are compared to verify that

the files were transmitted correctly.

Request hash. The hash values for the captured data is sent to the cloud forensics

system.

98

Figure 6.4: Use case view of the FRC system

Generate hash. Using a hash function, the hash values are generated for the

transmitted data.

Analyse data. The data is forensically analysed for a given set of requirements.

Generate forensic report. The analysed data is compiled into a report for use

by a forensic investigator.

6.3.1.4 Deployment view

The deployment view shows the physical locations of the various component of the

FRC system, as depicted in Figure 6.5. The cloud hosting infrastructure contains

the various cloud physical stacks. These are the physical machines on which the

cloud system is built.

Each of the cloud physical stacks contains an instance of the cloud hosting system

where various virtual machines can be provisioned. The virtual machines include

the used provisioned guest VMs and the forensic VMs, as shown in Figure 6.1,

block 1. There can be multiple physical cloud stacks within the cloud hosting

99

Figure 6.5: Physical deployment view

infrastructure. With all the components defined, the most applicable architectural

structural pattern can be selected.

6.3.2 Architectural structural pattern and tactics

The structural architectural pattern provides a template to address challenges within

a specific domain. Along with an architectural structural pattern, the relevant

integration architecture and architectural tactics are also selected in order to achieve

the functional requirements and quality attributes.

6.3.2.1 Structural pattern

Cloud systems follow the layered pattern, as per the NIST reference architecture

[6]. However, the FRC architecture as a whole does not follow this approach.

The components are distributed within the cloud environment, both logically and

physically. The four main components, namely the cloud forensic system, analysis

100

engine, forensic controller and transmission channel, would be more accurately

modelled as a microkernel pattern.

The FRC is a specialised case for the service orientated architecture (SOA).

The components of the FRC architecture map to SOA in Table 6.1. In the case

of the FRC, the cloud forensic system and analysis engine can both be considered

internal systems. The transmission channel can be considered the enterprise service

bus (ESB) and the forensic controller is equivalent to the business process execution

engine (BPEE). Since the FRC architecture is a specialised case of SOA, components

such as the Service Registry and Service Container are omitted due to the fact that

the services are fixed and do not require discovery, naming or service contracts.

Table 6.1: Mapping SOA to FRC

SOA FRC

Internal system Cloud forensic system

Internal system Analysis engine

ESB Transmission channel

BPEE Forensic controller

The FRC system must be able to communicate with its components that are

distributed within the cloud environment. For this to happen, mechanisms must be

defined as an integration architecture to facilitate this communication.

6.3.2.2 Integration architecture

The main points of communication within the FRC system are between the following

components:

• Cloud security system and forensic controller;

• Forensic controller and forensic VM;

• Forensic controller and cloud forensic system;

• Forensic VM and cloud forensic system; and

101

• Cloud forensic system to forensic data store.

For these components, the following services contracts are put in place.

6.3.2.2.1 Service contracts

The service contract formally defines the service and ensures that it is independent

of the underlying platform or programming language. This results in the ability

of SOA-based systems to function independently by handling the implementation

of the service behind an interface. Table 6.2 shows the communication contracts

between the FRC system components. It also shows the pre- and post-conditions,

as well as the message content.

6.3.2.2.2 Integration mechanisms

As the FRC system is modelled after a simplified version of SOA, the integration

mechanism is that of messaging integration. In each case of communication, the

one component of the system sends the next component a message regarding the

operation that must occur. Messaging is used throughout the system, as it allows

for reliable communication, increased effective utilisation of system resources and

possible scaling of the system.

6.3.2.2.3 Integration approach

To implement the messaging mechanism, the request-based integration approach

is used. As service contracts are defined, requests can be sent to the different

components to perform the services for which they are designed. In the case where

payload data is transferred, the transferred resource approach is used, since the data

can be of a large volume.

6.3.2.2.4 Integration pattern

In order for the messaging system to work effectively, certain message patterns must

be implemented. The pattern classes and the pattern applications are shown in

Table 6.3. In addition to these patterns, the basic construction of the messages

passed between the forensic VM and cloud forensic system is depicted in Figure 6.6.

102

Table 6.2: Service contracts

Communicating

components

Pre-condition Message Post-condition

Cloud security system

& forensic controller

Forensic

controller up

and accepting

messages

Begin logging for

VM#

Forensic logging

started for VM

Forensic controller &

forensic VM

Forensic VM

subscribed

to forensic

controller

Begin logging for

VM#

Forensic logging

started for VM.

Acknowledgement

sent to controller

Forensic controller &

cloud forensic system

Cloud forensic

system

subscribed

to forensic

controller

Prepare to

receive data

form forensic

VM#

Expecting

data from

forensic VM.

Acknowledgement

sent to controller

Forensic VM & cloud

forensic system

Forensic VM is

enrolled with

cloud forensic

system

Data sent as per

process defined

in 6.3

Data received.

Acknowledgement

sent to forensic

VM

Cloud forensic system

& forensic data store

Data store

active setup and

available

Store forensic

data

Acknowledgement

sent to cloud

forensic system

103

Table 6.3: Message patterns

Message pattern

class

Pattern used Components affected

Message channels

Point-to-point Forensic VM and cloud forensic

system

Publish-subscribe Forensic controller and cloud

forensic system

Message bus All components

Message

construction

Event message Forensic controller and cloud

forensic system and forensic VM

Routing Recipient list Forensic controller and cloud

forensic system

Transformation Content enricher Forensic VM

End-point patterns Event driven

consumer

Cloud forensic system

System

management

Control bus Forensic controller

The forensic message depicted in Figure 6.6 is the basic message that is sent, as

defined by the process in section 6.3.1.2. The message contains the data hash value,

VM number from which it was captured, the size of the captured data, as well as

the date and time of capture.

Having defined the relevant integration architecture, the tactic of achieving the

quality attributes must also be addressed.

6.3.2.3 Architectural tactics

In order for the quality attributes to be met, the relevant architectural tactics

must be applied. The quality attributes that are defined for the FRC system are

auditablility, security, integrability and affordability, as stated in section 6.2.1.3.

104

Figure 6.6: FRC data message

6.3.2.3.1 Auditablility tactics

In order for forensic evidence to be presented in a court of law, the provenance of

the evidence must be clear. For a digital forensic system, this naturally also applies.

With regard to the FRC system, the following tactics are to be employed to ensure

the auditability of the system.

Logging of operations is key to prove that the information followed the digital

forensic acquisition process as set forth in ISO 27043 [12]. With the logging of

each operation performed on a piece of data, the entire chain of evidence can be

established.

Logging of traffic between sub-systems is similarly required to verify that the

evidence was transferred correctly and not intercepted or tampered with.

6.3.2.3.2 Security tactics

Forensic investigations can often deal with sensitive information. For this reason,

the information in the FRC system must be kept secure from accidental or malicious

damage. In order to achieve this security, the following tactics must be applied.

Traffic between sub-systems must be encrypted in the event that it is intercepted.

Should it be intercepted, the information would prove useless to the intercepting

party.

The cloud forensic system must be secure from all other systems in the cloud

environment. This means that the cloud forensic system only accepts broadcast

messages from the forensic controller and point-to-point connections from the

forensic VMs.

105

6.3.2.3.3 Integrability tactics

One of the main requirements of the FRC system is that it should be a “bolt-on”

system, i.e. a system that can be deployed in a cloud that already exists and is

operating. Integrability is therefore important. This can be achieved by applying

the following tactics.

The FRC system is software-based and will therefore not require any custom

hardware. All that is required is to run the system within the cloud environment.

In conjunction with this, the correct monitoring and acquisition model (see chapter

5) must be used to integrate it with the cloud system.

6.3.2.3.4 Affordability tactics

Because the FRC system is intended to be used in existing systems, the FRC system

must affordable. The tactics to apply to make the FRC system affordable are the use

of open-source software and libraries to implement the system, as well as avoiding

the use of proprietary software that requires expensive licence fees.

Next is to make the system as simple as possible for it to achieve its requirements.

Complex systems are difficult to implement and maintain. By making the FRC

system as simple as possible, the cost in terms of manpower can be kept to a

minimum.

In addition, to eliminate the need for custom hardware, cloud systems are usually

hosted in vast data centres. To deploy new bespoke hardware in such an environment

would be prohibitively costly. For this reason, the FRC system must be purely

software-based.

Finally, the system must be efficient in terms of computational overhead. The

FRC system uses some of the cloud resources that could have been sold as part of

the cloud system, i.e. more VMs could have been run, if the FRC system was not

there. Thus, the FRC system must attempt to be as efficient as possible and not

waste computational power.

Having defined the full architecture, said architecture must be validated to ensure

that the requirements are met.

106

6.4 Architectural evaluation

In order to evaluate the architecture of the FRC system, the architecture must be

assessed against the following points, as given in the URDAD methodology [98].

The assessment criteria are:

• Each functional requirement must be addressed by the business process;

• Functional requirements must be grouped into responsibility domains that do

not overlap;

• Service providers must be represented by service contracts and independent of

technology; and

• The structure of the exchanged objects must be defined.

An architectural evaluation is done in order to ensure that all functional

requirements are adequately addressed by the architectural design. With the criteria

established, the FRC system architecture can be evaluated in terms of these criteria.

6.4.1 Functional requirement validation

The functional requirements of the FRC system, as defined in section 6.2.2, are

addressed by the following:

6.4.1.1 Data capture

Data is captured and a hash value for the captured data is immediately generated.

The message to the cloud forensic system is created with the hash value, VM from

which the data was captured, as well as the time and date of capture. All this meta

data is put into a message for the cloud forensics system and sent. This is all done

as per the process discussed in section 6.3.1.2.

6.4.1.2 Data storage

Data payloads are stored in the forensic VM until the hash value can be validated

by the cloud forensic system. When the hash value validation is complete, the data

107

is encrypted and transferred to the cloud forensic system. Here it is validated using

the generated hash values and stored in the forensic payload store for later use. This

process is discussed in section 6.3.1.2.

6.4.1.3 Data attribution

Captured data is attributed with the following meta data: the hash value of the

data, the VM from which the data was captured, as well as the time and date of

capture. These attributes ensure that the data can be verified as forensically sound

should the need for an investigation arise. Figure 6.6 depicts the message that is

sent to the cloud forensic system with the data attributes.

6.4.1.4 Data examination

The payload data is transferred from the forensic VM to the cloud forensic system,

which contains the payload data store. Should a forensic analyst require the data

for analysis, the data can be retrieved from the forensic payload store.

The FRC system caters for all the above-mentioned requirements. Thus, in terms

of functional requirements, the FRC system can be deemed fit for purpose.

6.4.2 Grouping of functional requirements

In section 6.3.1.3 and Figure 6.4, the use cases for the FRC system are defined.

Each of these use cases have only one responsibility and none of the responsibilities

are duplicated. For this reason, the FRC system meets the criteria for grouping of

functional requirements with no overlapping responsibilities.

6.4.3 Representation of service providers

As defined in section 6.3.2.2, the integration architecture represents each service

provider with a technology independent service contract. The summary of these

contracts can be found in Table 6.2.

108

6.4.4 Structure of exchanged objects

Figure 6.6 depicts the construction of the messages sent between the forensic VM and

the cloud forensic system. This structure is clearly defined and can be implemented

in the FRC system.

As all the criteria are met, the FRC architecture can be seen as valid in terms

of addressing the relevant requirements. This architecture can be implemented.

6.5 Conclusion

From the defined architecture in this chapter, it is possible to construct a physical

implementation of the FRC system. This implementation can then be tested against

the functional and non-functional requirements to determine if the FRC system

meets its goals within the given constraints. In the next chapter, the FRC system

is implemented and experiments are run to determine whether it does indeed meet

the functional and non-functional requirements.

109

Chapter 7

Implementation of the FRC

system

7.1 Introduction

In order to demonstrate the concept that the Forensic Ready Cloud (FRC)

architecture does facilitate forensic readiness in a cloud computing system, it is

necessary to implement a proof of concept (PoC) prototype. Such a PoC touches on

all the major components. It should be noted that a PoC is not meant to be a fully

featured system. It is the goal of the FRC system PoC to indicate that the idea of

proactive forensics is feasible in a cloud environment. This is done by implementing

the system with applicable technologies.

A key part of the implementation is linking the architectural designs to the

different technological components. These components must satisfy both the

functional and non-functional requirements, as described by the architecture. In

addition, the concrete implementation of architecture tactics must satisfy the defined

quality attributes.

With a completed implementation of the FRC system, experiments are run

to ascertain whether the FRC system meets the functional requirements. The

experiments are designed to test various aspects of the FRC system, including

performance, computational overhead and utility of captured data.

110

In this chapter the implementation of the FRC system is examined. Firstly,

the hardware configuration is given of how the FRC is deployed. Following this,

the implementation of both the base cloud operating system and the various FRC

software components are discussed in the software configuration section. Next,

experiments are run on the FRC system to determine its suitability to proactive

forensics. The results are given for each experiment and discussed in Chapter 8.

Finally, the chapter is concluded.

7.2 Hardware setup

The hardware used to implement the FRC is selected to minimise variables in

hardware configuration. For this reason, all the hardware used is homogeneous in

terms of specifications. The hardware used is five PCs with identical configurations.

Table 7.1 lists the hardware components used to implement the FRC system.

The hardware is networked using a standard Ethernet switch that connects each

PC to the network switch via network cabling. The network is then configured

via a DHCP server to assign IP addresses in the defined range. The range used

is 192.168.0.3 through 192.168.0.253. This IP range accommodates the physical

network between the hardware hosts and the virtual machines running on the cloud.

The hardware configuration was kept as simple as possible in order not to

introduce unnecessary complexity into the system. Such complexity might distort

experimental results. All peripherals, such as monitors, mice and keyboards, are of

a generic variety that should have no impact on the system.

The hardware used for the implementation of the FRC system can be considered

as standard hardware that would be found in a budget-level personal computer.

Since access to actual cloud hardware, e.g. large servers with multiple CPUs and

HDDs, arranged in large server stacks, is not available to the author, the selected

hardware serves as a baseline analogue.

With the hardware configuration defined, it is necessary to define the software,

both off the shelf and custom developed, to implement the FRC system. In the next

section this software configuration is discussed.

111

Table 7.1: Hardware used for implementation

Hardware component Specification

CPU Intel i5 3.2 GHz quad core

RAM 8GB DDR3

HDD 500GB SATA

Network interface 1000BASE-T/100BASE-TX Ethernet

Network switch D-link 100BASE-TX unmanaged

Network cabling CAT5 UTP Ethernet

Table 7.2: Software used for implementation

Software component Specification Version

Base operating system Centos 6.9

Cloud operating system Apache CloudStack 4.9

Hypervisor KVM 17

FRC components Java EE 8

FRC database MySQL 5.7.20

Benchmarking tools Sysbench 0.5

Forensic tools TSK Autopsy 4.5.0

7.3 Software setup

The basic software used in the implementation of the FRC system, the cloud hosting

system and forensic tools used, are listed in Table 7.2. These software packages

form the underpinnings of the implementation in order to run the FRC system. The

components are the base operating system, cloud operating system, hypervisor,

virtual machines, implementation language (FRC components), database (FRC

database), benchmarking tools and forensic tools. The base operating system is

the operating system running on each node on which the cloud operating system

can be installed. Each software component is discussed in terms of its usage and

implementation.

112

7.3.1 Operating system

The base operating system for all the nodes in the cloud hosting system is the Centos

Linux distribution. Centos is used as the operating system as it is a prerequisite

for the Apache CloudStack cloud operating system [119]. A standard minimalist

installation is required for the cloud to be set up. Centos is also a free Linux

distribution that aids in fulfilling of the affordability quality attribute.

7.3.2 Cloud operating system

Apache CloudStack is free, open-source software designed to provide public and

private Infrastructure-as-a-service (IaaS) clouds [119]. The cloud hosting system is

installed as per the basic installation and configuration guidelines supplied by the

CloudStack user manual [120].

In broad terms, the cloud installation requires a management server, a secondary

storage server and computational nodes. The management server is the core of

the cloud system, as it orchestrates all the operations of the cloud. It is also the

location of the management admin user interface. Figure 7.1 depicts the CloudStack

dashboard after all the different components are installed and configured. From this

point, the cloud is ready for operation.

The secondary storage (Figure 7.1 1) is the location where VM templates are

stored. These templates can be used to rapidly provision VMs in the cloud.

Finally, the cloud consists of computational nodes (Figure 7.1 2). These nodes

contain the VMs which use the computing resources from the node to execute their

functions. Each node is seen as a computational unit with its own primary storage.

The primary storage is where the VMs assigned to the node are stored.

The cloud is divided logically into zones 3 , pods 4 , clusters 5 and nodes 2 .

Zones encompass the entire cloud. As the cloud can be distributed over multiple

data centres, zones can be very large. Pods are usually associated with a single

data centre or part of a data centre. Within a pod are clusters. Clusters are a

collection of nodes that operate together. Under default configuration, VMs cannot

113

Figure 7.1: Apache CloudStack dashboard [2]

scale beyond their assigned cluster. Finally, nodes are the base building block for

the cloud system.

As with the base operating system, the affordability quality requirement is

fulfilled by using free, open-source software.

7.3.3 Hypervisor

Kernel Virtual Machine (KVM) is the hypervisor used within the FRC system [121].

KVM is a type 2 hypervisor that manages and optimises the interaction of the VMs

with the underlying physical hardware. It manages calls for the CPU, memory, hard

disk and network.

7.3.4 Virtual machines

The hypervisor provides the base for running the forensic virtual machine. The

hypervisor contained in the forensic virtual machine in turn provides the base for

114

Table 7.3: VM specifications

Component Specification

Forensic VM Guest VM

CPU 3.2GHz 2 cores 3.2GHz 1 core

HDD 30GB 15GB

RAM 4GB 2GB

Networking 100MB/s Bridged VLAN 100MB/s Bridged VLAN

running the guest virtual machine. Table 7.3 shows the specifications for both

the forensic and guest VMs. Since the guest VM is hosted by the forensic VM,

the specifications of the guest VM must be less than that of the forensic VM. In

addition, the forensic VM must have sufficient resources available to run the forensic

components of the FRC system which is dedicated to each forensic VM.

7.3.5 Database

The database used for the FRC system is MySQL [122]. MySQL is a relational

database which is used to store the meta data of the captured files by the forensic

VM. On the cloud forensic system side, the database is used to store both the meta

data and received payload data.

7.3.6 Implementation language

The implementation language used for the FRC system is Java Enterprise Edition

8 (Java EE8) [123]. Java is a general purpose object-orientated language with

extensive libraries and support. All operations of the FRC system are coded in

Java, as it is the most widely used business implementation language, making it

easy to support. It is also possible to run Java on practically any hardware due to

the use of the Java Runtime Environment (JRE) and Java Virtual Machine (JVM).

Of particular interest is the Java Messaging Service (JMS). The JMS allows for

loosely coupled distributed communication. Software components can communicate

115

by sending messages. JMS offers both publish-subscribe and point-to-point

communication. Both these patterns are used in the FRC system.

The publish-subscribe pattern allows the sender of messages, or publisher, to

send messages to receivers of messages, or subscribers, without the need to know

who the publisher or subscriber is. The published messages are categorised into

message classes and any subscriber can receive messages that are of interest to him

or her. In the FRC system, the forensic VM automatically subscribes to the message

class defined by the forensic controller. The point-to-point model, in contrast, sends

messages directly from one sender to one receiver. For this to happen, both the

sender and receiver must be known to each other.

7.3.7 Benchmarking tool

The benchmarking tool used is Sysbench. Sysbench is a common Linux-based

benchmarking tool that is common to all Linux distributions. This allows

benchmarks to be run on many different configurations and is able to compare the

results directly. Sysbench supports benchmark tests for CPU, file input and output,

and MySQL. All these factors are important in the FRC system, making Sysbench

an ideal tool.

7.3.8 Forensic tools

The Sleuth Kit (TSK) is a free, open-source digital forensic investigation tool [124].

TSK is run as a command line tool used to analyse disk images. Autopsy is the

graphical user interface for TSK. Because TSK is a set of command line tools,

predefined analysis scripts can be written. These scripts can then be executed when

new data must be analysed. TSK also supports plug-ins, which include plug-ins for

analysing individual files and virtual machines.

Having selected all the different tools for the implementation of the FRC system,

it is possible to describe the actual implementation.

116

7.4 FRC components implementation

The various architectural components of the FRC system are described in Chapter 4

section 6.3.1. These components are the forensic virtual machine, forensic controller,

cloud forensics system, forensic hash store and the transmission channel. The cloud

security system is included in this list for the sake of completeness, although it is

not a component of the FRC system. It is also important to show the physical

deployment of the various components, as it gives the context of where the different

components are located and how they interact.

7.4.1 Physical deployment

Figure 7.2 depicts the physical deployment of the cloud environment and the

deployment of the FRC system. The cloud environment 1 contains the

management server 3 , secondary storage 4 and cloud nodes 5 . Each cloud

node contains forensic VMs that, in turn, contain the guest VMs 6 . Each node

also contains primary storage 7 , where the VMs and their data are stored.

The FRC system 2 is separate from the cloud environment. The FRC system

contains the forensic controller 8 and the cloud forensics system 9 . The cloud

forensics system contains the analysis engine 10 , the forensic payload store 11

and the forensic hash store 12 .

While the FRC system is separate from the cloud environment, there is a point

of overlap at the point of the forensic VM. Because data must be captured from the

cloud environment, this overlap is necessary to enable to FRC system to capture said

data. The dashed line in figure 7.2 6 depicts this overlap of the cloud environment

and the FRC system.

Given the deployment of the various components, each can be described in more

detail.

117

Figure 7.2: Physical deployment of the FRC system

7.4.2 Forensic virtual machine

The forensic virtual machine (Figure 7.2, block 6) is implemented as a VM

template on the CloudStack system. The forensic VM template is stored in the

secondary storage of the CloudStack system, ready to be provisioned should it be

required. The template is set up that a guest virtual machine is already set up

whenever the template is provisioned. This has the result that whenever the user

provisions a guest VM, it is actually the forensic VM that is provisioned with the

guest VM running inside it.

For the implementation of the FRC system, the forensic VM template and guest

VM are configured with Linux Centos 6.9. Each different operating system would

have a template that would create a forensic VM and nested guest VM. It should be

noted that the guest forensic VM and guest VM need not have the same operating

system.

118

The connection of the forensic VM and the guest VM is achieved by

pre-configuring a network file system (NFS) share. For the implementation of the

FRC system, this NFS share is fixed; however, for a full commercial system, it would

be advisable to make this customisable for the user to select which data is to be

forensically logged.

In order for the forensic VM to be able to connect with the cloud forensic system,

it must receive the enrolment information from the forensic controller. Using a

publish-subscribe model, the forensic VM is pre-configured to be the subscriber to

the messages that the forensic controller publishes. When the forensic VM starts

up for the first time, it receives the published message from the forensic controller

and replies with its name, size and network information. The forensic controller

notifies the cloud forensic system and sends the connection information of the cloud

forensic system to the forensic VM. The forensic VM then connects and enrols with

the cloud forensic system and sets up a point-to-point connection. This is all done

with the JMS libraries.

7.4.3 Forensic controller

Because the cloud security system is not in the scope of this research, the forensic

controller (Figure 7.2, block 8) has limited functionality. In this implementation,

the forensic controller is triggered manually to set active logging in motion. It is

also responsible for the enrolment of forensic VMs, as described in section 7.4.2.

The forensic controller is implemented in Java, using JMS libraries. The

publisher-subscriber model is used, where the forensic controller acts as the publisher

and the forensic VM as the subscriber. In the implementation of the FRC, the

forensic controller acts as the publisher and the forensic VM as the subscriber.

7.4.4 Cloud forensics system

The cloud forensics system (Figure 7.2, block 9) is implemented as programs

written in the Java programming language for the communication and hashing

119

functions, a MySQL database for the hash and payload store, and TSK as the

analysis engine. Each of these components is discussed in the sections below.

7.4.4.1 Forensic hash and payload store

For this implementation, the forensic hash and payload store (Figure 7.2, block 11

and 12) is a MySQL database. The hash value and meta data are received and

stored as per the process described in Chapter 4 section 6.3.1.2. MySQL is selected

due to the fact that it is a free relational database that is easy to implement and

commonly used.

Figure 7.3 depicts the database schema used in the FRC system. The VM table

forms the core of the schema. This table contains the names and IP addresses of

both the forensic and guests VMs. For each VM record, there can be one or more

payloads associated with it. The different payloads are stored in the Payload table.

For each payload, there can only payload hash and meta data record stored in the

Payload Hash table. Additional meta data records that are stored are the file name

and size, time of capture and time the file was received by the cloud forensic system,

and finally, the hash values of the specific payload. The hash values are generated

with the MD5 and SHA256 algorithms.

As per the process defined in section 6.3.1.2, the hash generated by the forensic

VM must and sent to the cloud forensic system must also be stored. The received

hash values and meta data are stored as Received Hash table. As with the meta

data generated from the payload, the fields stored in the record are file name and

size, time of capture and the hash values generated by the forensic VM.

In all the tables, the primary key is auto-generated in order to ensure uniqueness.

Using the information in the database, data captured by the forensic VM can be

attributed accurately for use in an investigation.

7.4.4.2 Analysis engine

The analysis engine (Figure 7.2, block 10) for the FRC system implementation

is The Sleuth Kit (TSK). TSK is installed as part of the cloud forensic system to

analyse captured disk images and files. In addition to the main TSK installation,

120

Figure 7.3: Forensic hash and payload store ERD

the plug-ins for analysing individual files and the Autopsy user interface are also

installed.

When data is received from the forensic VM, and the payload is processed,

the payload is piped to the TSK system using the TSK command line interface.

The commands used for the command line interface are embedded in the cloud

forensic system so that the system can act as a controller for TSK. In addition to

the command line interface, the Autopsy user interface is also installed. This is done

to allow a forensic investigator to get a more user-friendly interface when operating

the cloud forensic system.

121

7.4.5 Transmission channel

The transmission channel is used to transfer information from the forensic VM to the

cloud forensic system. In this scenario, the transmission channel is a standard Local

Area Network (LAN) connection 100BASE-TX Ethernet. In a full implementation,

this networking infrastructure would be much more performance-driven, as large

volumes of data would have to be transferred between the various system

components.

An ideal implementation of the transmission channel would be a fibre link from

the individual server stacks to the FRC system. Such a fibre link would greatly

improve the transmission bandwidth and speed. In addition to these performance

gains, security would also be improved. While it is possible to perform a wiretap on

fibre, this is a difficult proposition [125]. Any basic method that results in the fibre

being cut would result in instant detection.

More advanced methods would be less effective as they rely on tactics that tap

off light from the fibre. To achieve this would still require physical access to the

cloud infrastructure. Also, the tapped light signal must still be decoded. As each

manufacturer uses different methods of encoding in terms of phase, amplitude and

polarisation, this remains a challenging option [125].

Regardless of the transmission channel implementation, all data that is

transferred from the forensic VM to the cloud forensic system is encrypted. The

encryption algorithm used in the PoC implementation is the AES-128 algorithm.

7.4.6 Cloud security system

The cloud security system can be the cloud firewall, DMZ area or intrusion detection

system. The main function of the cloud security system in relation to the FRC

system, is to provide input to the forensic controller. The DMZ or demilitarised

zone of a network is the part of a network that is exposed to external and untrusted

systems, e.g. the Internet. The DMZ forms a secure buffer against intrusion from

these networks and the internal network of an organisation.

122

Having defined the software and implementation of the various components of

the FRC system, it is now possible to run experiments on the FRC system.

7.5 Experiments

In order to ascertain whether the requirements set for the FRC system are met,

the FRC system must be tested. The method of testing the FRC system is to run

experiments against the system that indicate whether or not the goals set for the

FRC system are met. In each case, the experiments are designed to test a certain

facet of the system. Each experiment is divided into the experimental setup and the

obtained results. The experiments are the acquisition of specific data from a guest

VM, the full capture of a guest VM image, the performance of the system while data

hashing is in progress, and the time in which the system can encrypt and decrypt

files of various sizes.

For each experiment, some background is given regarding that specific

experiment. From this background, a hypothesis is formed and the experiment

is set up. The results of the experiment are given and discussed. The conclusions

drawn from the experiments are discussed in Chapter 8.

7.5.1 Acquisition of data

One of the primary tasks in a forensic investigation is to acquire data from a target

system. This test is designed to determine if the forensic VM system can acquire

data from the guest VM and transfer said data to the cloud forensic system, while

maintaining forensic stability.

7.5.1.1 Hypothesis

In order for the FRC system to meet its functional requirements regarding the

acquisition and transmission of specified data, the following statement must be true.

The FRC system captures data and ensures the validity via the process of

hashing. Both the meta data and actual data payloads are transmitted from the

forensic VM to the cloud forensic system where the integrity is verified via hash

123

checking. The hashed data that is generated, is meta data to the actual captured

data.

It is expected that the system will capture the relevant data files, apply the hash

algorithms and transfer the data from the forensic VM to the cloud forensic system.

The data will then be verified by comparing the generated hash values.

7.5.1.2 Setup

For this test a sample file is created with the following attributes: file name: test.txt,

file size: 128kB, contents: This file was filled with content by generating the MD5

and SHA256 hash of the string “Forensic test file”; the resulting hash values were:

MD5: 53e91c7a8a21a358f9831ba9d19e119a

SHA256: 046c9e7eeae441a81a523cdf17605eda

4bc36d0bf8e22227bd5ac041935247b3

The sample file is placed in the monitored directory of the guest VM. The console

output of the forensic VM and cloud forensic system is monitored to see the results.

7.5.1.3 Results

Figure 7.4 depicts the console output from the forensic VM and Figure 7.5 depicts

the console output view from the cloud forensic system. These figures show how the

file was captured by the forensic VM, after which it was attributed with the relevant

meta data including the hash values, file size and time stamp. Following this, the

meta data was transmitted to the cloud forensic service and stored in the forensic

hash store. After this process was completed, the payload data was transferred to

the cloud forensic system.

The cloud forensic system then validates the payload data by generating the

hash values for the payload. These generated values are then compared. In this

case the values match and the payload is written to the forensic payload store for

later analysis.

From these results it can be seen that the file was captured successfully,

attributed, hashed, transmitted, the transmission validated and the file stored for

later examination.

124

Figure 7.4: Forensic VM console view

Figure 7.5: Cloud forensic system console view

125

7.5.2 Full VM capture

In some scenarios it might be required to capture an entire virtual machine from a

cloud system. This could be the case when a suspicious VM can be identified and

isolated.

7.5.2.1 Hypothesis

In order for the FRC system to meet its functional requirements regarding the

acquisition and transmission of a full guest VM, the following statement must be

true.

The FRC system captures a full guest VM and transmits the captured guest

VM from the forensic VM to the cloud forensic system. The captured VM is then

analysed by the analysis engine of the cloud forensics system to find possible digital

evidence.

The expected result of the acquisition of a full guest VM, is that the VM is

captured successfully and the drive image transferred to the analysis engine of the

cloud forensics system.

7.5.2.2 Setup

In this scenario, the entire guest VM is to be captured, transferred and analysed.

For this test, a guest VM is created and installed with a base operating system.

The guest VM is started and two digital photographic images are copied to the VM.

These images are to act as the test medium to determine if the data was captured

correctly. The images used are Figure 7.6 (Lena) and Figure 7.7 (Nuke).

The MD5 hash values for these images are:

• Lena: a56f716b3c97dbc45e32375a56a00a12

• Nuke: cdf39cb9eb9b1c49121af3fd4d3223a7

Four copies of each image are used as a test medium. The first is the unaltered

image with an unaltered file name. The location for these files are:

126

Figure 7.6: Test image 1: Lena

$ /home/TestDir/test1.jpg

$ /home/TestDir/test2.jpg

Next, the file names are changed to IMG 3920.jpg and IMG 3921.jpg for test1

and test2 respectively. The location for these files is:

$ /home/tmp/IMG_3920.jpg

$ /home/tmp/IMG_3921.jpg

After that, the file extension is changed from “.jpg” to “.pdf” for both files. The

location for these files is:

$ /home/media/test1.pdf

$ /home/media/test2.pdf

Finally, both the file names and the file headers are changed. The headers of the

files are changed to that of a PDF file. The samples below show the change of the

file headers of the test1 file from JPEG to PDF.

=FF=D8=FF=E0 =10JFIF =01=01 --> %PDF-1.3

127

Figure 7.7: Test image 2: Nuke

The location for these files is:

$ /home/mnt/secondary/test1.jpg

$ /home/mnt/secondary/test2.jpg

In this case it would not be necessary for the forensic VM to capture data from

the guest VM. The entire forensic VM can be captured by setting the monitored

directory of the forensic VM to the CloudStack primary storage directory. In this

case:

$ /usr/cloudstack/storage/primary/

From here the entire VM image could be acquired in one step.

7.5.2.3 Results

The VM was copied from the forensic VM to the cloud forensic system using the

dd tool [126]. dd is a command line tool that copies files at the bit level and is

128

Figure 7.8: Screen capture from Autopsy interface

commonly used in digital forensic investigations. It generates raw image files of

disks that can be read by other programs. In this case, the image file generated by

the dd tool is imported into TSK. TSK runs a standard analysis on the captured

image and generates a summary of what was found.

Figure 7.8 depicts the output for an image search of the captured image. It can

be seen that the test photographs were indeed found on the image.

For the case where the photographs are copied to the drive unaltered, the

photographs were recovered and the MD5 hash values generated. The resulting

hash values were:

• test1.jpg (Lena): a56f716b3c97dbc45e32375a56a00a12

• test2.jpg (Nuke): cdf39cb9eb9b1c49121af3fd4d3223a7

These hash values are identical to that of the sample files.

For the next case, only the file names were altered. The names were changed

from test1.jpg to IMG 3920.jpg and test2.jpg to IMG 3921.jpg. These images were

again found and, as in the aforementioned case, the hash values matched for both

files.

129

In this case, the file extension was altered. The extension was changed from .jpg

to .pdf for both files. Again, both files were successfully found and their hash values

matched successfully.

In the final case, the file header was changed from that of a JPEG file to a PDF

file, as described in the experiment setup. In this case the files were again found.

However, the files could not be rendered in the image viewer. The hash values for

both files also did not match that of the original files. This was to be expected, as

the content of both files were changed. This would invariably change the MD5 hash

value for the files.

7.5.3 CPU performance

It is a given fact that the operation of the FRC system will have some impact on

the performance of the cloud hosting system. The FRC system, just like any other

piece of software, requires machine cycles to operate. However, it is necessary to

determine how large an impact the operation of the FRC system has on the cloud

hosting system. The pricing for using public cloud systems is often determined on

the amount of resources used by the VM if hosted in the cloud. Should the FRC

be too resource-intensive, it would not be a viable option due to costs. Thus, the

following experiment is set up to determine the impact of the FRC system on the

cloud hosting system.

7.5.3.1 Hypothesis

In order for the FRC system to meet its functional requirements regarding stability

of captured digital evidence, the following statement must be true.

Captured digital evidence must be verified as a true copy of the data by applying

a hashing algorithm to the data. The hashing process must not put undue load on

the cloud system in terms of performance.

Hashing is an iterative process and will likely have an adverse effect on

performance when applied to large files. As the data within the target file is used

and reduced to a single string of unique characters, it stands to reason that large

130

files would require more iterations to complete this process. As a result, larger files

should be more resource-intensive than smaller files.

7.5.3.2 Setup

For this experiment, the Sysbench benchmarking utility is used to test the

performance of a single node while the cloud hosting system and FRC system are

running. The tests are run to determine the performance of the CPU. To get a base

line, the node is benchmarked when the installation of the base operating system is

completed. No other software is installed on the host, apart from the base operating

system and the Sysbench tool. The CPU is also confined to single core operation,

as per the setup of the VM template.

The next benchmark is run when the cloud hosting system has been installed

and the host is running as a node forming part of the cloud hosting system. For this

scenario, a forensic VM is allocated to the node by the CloudStack management

console. A guest VM is also running within the guest VM to simulate the normal

configuration of the FRC system. While the VMs are running, no other code or

software is executed other than the standard operating system processes.

Finally, the system is benchmarked while the FRC system is running. This is

done while the FRC system is running the hashing operations in the forensic VM.

In order to test the hashing of the FRC system, sample files of 1kB, 100kB, 1MB,

100MB, 1GB and 10GB are created. This file must be hashed and transmitted to

the cloud forensic system during the benchmark test. The MD5 hashing algorithm

is used for the test. The Sysbench test is run with the following command:

\$ sysbench --test=cpu --cpu-max-prime=20000 run

The combination of these tests should give a good indication of how much

resources the FRC system requires to execute. Each test was repeated ten times

and the average of all the runs was taken.

131

7.5.3.3 Results

Figure 7.9 depicts the number of operations per second of a single node. From this

figure it can be seen that for the benchmark test, the running VM and the small

files of 1kB and 10kB, there is very little variation in performance. These is a slight

drop for a 1MB file, but this could be that some other process was also active. A

noticeable drop in performance could be seen with large files of 100MB, 1GB and

10GB. The effect of the 10GB file was severe and seemed to consume all available

system resources.

Since hashing algorithms depend on repeating the same operation a number of

times, it is consistent with the test results that the larger a file, the more intensive

the resource use would be. Another factor is that the Sysbench test usually runs for

about 10 seconds until completion. In the case of the large files, hashing operations

are started before the test is run. This gives priority to the hashing operation and

might further degrade performance.

This test is only done on a single node, so it is likely that should there be more

CPU resources, these results would improve. This can be accomplished by running

multiple CPU cores, or spanning the VM over multiple nodes.

7.5.4 Encryption performance

This experiment isolates the encryption portion of the process, as described in

Chapter 4 section 6.3.1.2. Encryption is usually a performance-intensive process

[127]. As stated, all performance overhead in a cloud system comes at a cost, either

to the cloud provider or the cloud consumer. For this reason, the encryption and

decryption components are likely to be the most resource-intensive components of

the FRC system. This experiment aims to benchmark the speed at which the forensic

VM and cloud forensic system can encrypt and decrypt files.

132

Figure 7.9: Performance while hashing

7.5.4.1 Hypothesis

In order for the FRC system to meet its functional requirements regarding the

maintaining of stability of forensic data during transmission, the following statement

must be true.

Data that is transmitted from the forensic VM to the cloud forensic system

is encrypted in order to ensure that it is not intercepted or changed during

transmission. The encryption process must not put undue load on the cloud system.

Since the encryption process is iterative, it stands to reason that the larger the

encrypted file, the longer it should take to encrypt and thus would require more

resources. It is expected that small files would encrypt quickly and, as the file size

increases, so too will the time required to perform the encryption operation.

133

7.5.4.2 Setup

In order to implement this experiment, the Rijndael Advanced Encryption Standard

(AES) algorithm was used as implemented in the Java cryptography libraries [128,

129]. In this implementation, a 128bit cipher and key are used, as it is the least

complex version of AES and should thus yield the best performance.

In order to determine the time taken for the algorithm to execute, the system

time was taken exactly before execution of the algorithm began and the end time

exactly after the execution of the algorithm ended. The times are then subtracted

and the execution time is determined. The time is measured in milliseconds (ms).

The code snippet below gives the exact instructions, including the console output.

double startTime = System.currentTimeMillis();

crypto.run();

double endTime = System.currentTimeMillis();

double duration = endTime - startTime;

System.out.println("Execution time: " + duration + "ms");

As with the acquisition of data test described in section 7.5.1, files are created on

which the encryption could be tested. These files range from 1kB to 10GB in size.

The contents are again the MD5 and SHA256 hash values for the string “Forensic

test file”. The contents are replicated until the desired file size is achieved. The file

sizes used are 1kB, 100kB, 1MB, 100MB, 1GB and 10GB.

The times for encryption and decryption are tested separately in order to get

the best case for each test run. For each file size, the encryption and decryption

algorithm is run 10 times and the average time is taken.

7.5.4.3 Results

Figure 7.10 depicts the results of the encryption decryption test. The time axis for

this in Figure 7.10 is logarithmic in order to make the results clearly visible.

From Fgure 7.10, it can be seen that for file sizes of 1kB to 1MB, the encryption

and decryption times are more or less constant. The average time for both encrypting

and decrypting files was 450ms. At 100MB, the average encryption time was

134

Figure 7.10: Encryption and decryption times

3493.4ms. However, at 1GB file size, the encryption and decryption times increased

drastically.

For the 1GB file, the average encryption time was 39.12 seconds (s) and

the decryption time was 41.86s. It should also be noted that, with the initial

implementation of the encryption component, the heap space for the Java virtual

machine ran out when attempting to encrypt or decrypt files. The component had

to be rewritten to allow for sequential blocks to be encrypted and decrypted as

a stream. This likely added to the time needed to execute the encryption and

decryption functions.

For the 10GB file, the average time again rose substantially. The average time for

encryption was 7.83 minutes or 7 minutes and 50 seconds. The average decryption

time was 8.37 minutes or 8 minutes and 22 seconds.

The implementation of the FRC system allowed experiments to be performed to

determine whether the system meets the relevant requirements. These results must

be evaluated to determine their validity.

135

7.6 Conclusion

This chapter details the proof of concept implementation of the FRC system.

In this chapter, the hardware and software configuration used to implement the

FRC system is given. The implementation of each of the different components

of the FRC system is then examined. Finally, experiments are performed using

the implemented components. This is done to obtain information regarding the

implemented components with regard to functionality and performance of the

system.

Having performed the above-mentioned experiments, it is now possible to

critically evaluate the FRC system. This is done in the next chapter.

136

Chapter 8

Critical evaluation

8.1 Introduction

When looking at the implementation of the FRC system, as described in Chapter

7, it is necessary to evaluate said implementation to determine whether it meets

the goals set for the FRC system. The goals for the FRC system are set in

the software architecture and must be met for the system implementation to be

considered successful.

The goals set for the FRC system, as per section 6.2.1.1, are that data must

be captured from a cloud VM, for the purposes of digital forensics. The captured

data must be kept in a forensically sound state and must be attributed with the

relevant meta data. Finally, the data must be transferred to an isolated location

for automated analysis. From these goals, the relevant functional requirements and

quality attributes are derived and can be evaluated.

This evaluation consists of an evaluation of the implementation of the functional

requirements, the adherence to the set quality attributes, an analysis of the

experimental results, possible improvements that can be made to the FRC system

and a comparison to related work.

137

8.2 Implementation of functional requirements

The function requirements for the FRC system, as defined in Chapter 6 section 6.2.2,

are the following:

1. Data must be captured from a virtual machine in a cloud environment for the

purposes of digital forensics.

2. The captured data must be kept in a state that is forensically sound, should

the need for a forensic investigation arise.

3. The captured data must be attributed with meta data relevant to the forensic

investigation.

4. The captured data must be transferred to an isolated location where an

automated preliminary forensic investigation can be conducted.

Examining these requirements, it can be seen that they have been met, as shown

by the experiments conducted in sections 7.5.1 and 7.5.2. These experiments show

that data can be captured from a VM that is deployed in a cloud environment. In

the experiment conducted in section 7.5.1, data was successfully captured from a

cloud VM. In the experiment conducted in section 7.5.2, the entire virtual disk was

captured.

When examining requirement 2, it can be seen that this requirement has also

been met. This is shown firstly in section 7.5.1, where data that is captured is

hashed and the hash values stored in both the forensic VM and the cloud forensic

system. The payload data is stored in a database that can be retrieved as required.

This data integrity can be verified as forensically sound by comparing the hash that

was generated when the file was captured by the forensic VM, the hash that was

received from the forensic VM, and the hash that was generated when the payload

was received by the cloud forensic system. If all these hashes match, it can be

assumed that the data is forensically sound. In the case of capturing the entire VM,

as shown in section 7.5.2, the image is directly imported into the analysis engine,

which keeps the captured data forensically sound in its internal database.

138

For requirement 3, data is attributed as it is captured. The experiment in section

7.5.1 shows that every piece of captured data is attributed with meta data. This

meta data accompanies the captured data to the cloud forensic system, where it is

stored for later use. In the case of capturing the full VM, as shown in section 7.5.2,

the image is directly imported into the analysis engine, which analyses the data and

automatically attributes it.

Finally for requirement 4, the data is transferred to the cloud forensic system

where it is securely stored. The cloud forensic system is completely separate from

the cloud hosting system. In terms of the preliminary analysis, the analysis engine

can perform such analyses, as shown in the experiment described in section 7.5.2.

From this analysis, it can be concluded that the functional requirements defined

for the FRC system have indeed been met by the provided implementation.

In addition to the functional requirements, the quality attributes are also

important attributes of the FRC implementation.

8.3 Implementation of quality attributes

The quality attributes for the FRC system are defined in section 6.2.1.3. Meeting

these attributes are important, as their implementation can have far-reaching effects

on the FRC system. These effects can mean that, despite the system meeting its

functional requirements and because of a quality attribute not being implemented

correctly, the system might still fail to achieve the overall goal for which it was built.

An example of and effect like this can be, in the case of auditability, that the audit

trail could be broken. This results in the chain of evidence being broken, rendering

the captured digital evidence inadmissible in a court of law. Similar problems can

be expected with all the defined quality attributes.

The defined quality attributes for the FRC system, as shown in section 6.2.1.3,

are:

• Auditability;

• Security;

139

• Integrability; and

• Affordability.

In terms of auditability, the FRC system caters for this in multiple ways. When

using the forensic VM, each hash generated is written to the hash store contained

in the forensic VM. In addition to the hash being stored, the transaction log of the

hash being written is also stored as an audit trail. All records written to the forensic

VM hash store are time-stamped, as are the transaction logs.

From the perspective of the cloud forensic system, the records written in the

forensic hash store and payload store are also time-stamped. The time stamps relate

to both when the file was captured and when the payload was received. Again,

transaction logs are kept for all database actions. The analysis engine also has

internal mechanisms for auditability. These internal mechanisms include: enforcing

strict read-only access to all captured data, in order to maintain the integrity of the

data. Next, to time-stamp all the captured data to ensure the chain of evidence.

Finally, to build a tree structure to show from where the data was captured, in order

to ensure the provenance of the data.

The security quality attribute is achieved by maintaining the CIA triad. In

the case of confidentiality, the FRC implementation allows for each forensic VM

to contain a single guest VM. This has the result that no cross-contamination of

information can occur within the forensic VM. Data transferred from the forensic

VM to the cloud forensic system is encrypted. This ensures that, should data be

intercepted, it would be useless without the relevant decryption key.

In the case of integrity, data integrity is ensured by using hashing, as described

in section 6.3.1.2.

Finally, availability is ensured by the method of implementation of the FRC

system. The FRC system uses the concept of a “bolt-on” system. Installing the

FRC system does not require any interruption of the cloud hosting system. Guest

VMs that are already running in the cloud hosting system can be migrated to a

forensic VM at an opportune time. By maintaining the CIA triad, the security

quality attribute is achieved by the FRC implementation.

140

Security can be greatly influenced by external factors with regard to the physical

security of the cloud infrastructure. However, this is outside the scope of this

research.

Integrability is achieved by the “bolt-on” construction of the FRC system. The

FRC system can be deployed in an already operational cloud environment. Each of

its components can be installed as needed. For example, an already existing guest

VM can be migrated to a forensic VM via a simple clone operation. The switch-over

between the original guest VM and guest VM running in a forensic VM can then

be done at an opportune time. The cloud forensic system is not dependent on

any of the cloud hosting infrastructure. It must be installed separately in order to

maintain security. By removing the need for complex integration, the integrability

of the system is improved. Finally, the forensic controller needs only to interface

with the cloud security system.

Finally, for the quality attribute of affordability, the entire implementation of

the FRC system was done using only free open-source tools and software. The only

cost involved was time and effort to design and implement the FRC system. Related

to this is that the total cost of ownership can be kept low. This is due to the fact

that no third party software licences are required. In addition to this, all hardware

used is generic PCs. No custom hardware is needed to run the FRC system.

From this analysis, it can be concluded that the quality attributes defined for

the FRC system have been met by the provided implementation.

Although the quality attributes have been met by the FRC system, the

experimental results can shed some light on additional factors not covered by the

formal requirements. These experimental results are discussed in the next section.

8.4 Experimental results

The experiments conducted in Chapter 7 section 7.5, are designed to test the various

functional aspects of the FRC system. These functional experiments included

capturing and attributing data, and capturing and analysing a full VM. However, in

addition to the functional experiments, additional experiments were also conducted.

141

These experiments tested the performance of the FRC system in terms of CPU

performance and performance of encrypting and decrypting files.

The results of the experiments regarding the functional requirements of the

system are discussed in section 8.2 and will therefore not be repeated in this section.

The performance experiments can be found in section 7.5.3 and section 7.5.4

respectively. It should be noted that the network performance was not tested. The

reason for this is that the available hardware for the implementation was of the

ordinary commercial variety and not that which would be found in a cloud data

centre. No useful information would be gained from testing a basic network.

The two most computationally expensive operations of the forensic VM runs, are

hashing and encryption. Both hashing and encryption rely on operations that are

performed repeatedly on a piece of data. In the case of hashing, this is to reduce

the size of the data to a unique string associated with the data, whereas in the case

of encryption, it is to scramble the data using a key so that it is unintelligible to

anyone who does not have the decryption key. Regardless of the specific operation

of hashing and encryption, both are CPU intensive.

In the case of the hashing experiment, it can be seen that for small files (1kB

to 1MB), the hashing has little impact on performance. This is consistent with

the operation of the hashing operation, since less cycles are needed to reduce the

file to a unique string. From the 100MB mark, there is a noticeable decline in the

performance. The operations per second of the CPU drop from the benchmark of

around 8000 ops/sec to approximately 5400 ops/sec. The performance drops as

the files get larger, consistent with the number of operations needed to perform

the hash operation. For 10GB sized files, the operations per second went down to

approximately 300 ops/sec.

From this it can be concluded that the hashing process would in all likelihood

have the most impact on the performance of the forensic VM. The process is,

however, a vital component in the forensic process.

In addition to the performance overhead of the hashing operations, encryption

is another resource-intensive process. In the encryption and decryption experiment,

142

a number of files of different sizes were encrypted and decrypted. The time taken

to complete these operations was measured.

It was found that the time taken for small files, in the size range of 1kB to 1MB,

was approximately 450ms to encrypt and decrypt. However, for larger files, this

time increased drastically. For a file of size 100MB, the time went up to 3.5 seconds.

As the file sizes increased, so too did the time. Figure 7.10 shows that the time

growth is exponential for every order of magnitude that the file size increases.

Another issue was that the encryption module on the forensic VM ran out of

memory when encrypting files larger than 1GB. This necessitated a rewrite of the

encryption component to enable data blocks to be streamed in and out of memory.

The streaming added additional overhead to the already resource-intensive process.

It can thus be concluded that the size of the file that is captured, will have a

dramatic effect on the performance of the forensic VM. As it is required that the

captured file be transmitted while being encrypted, in order to maintain the CIA

triad, a more efficient method of encryption must be found. It should be noted that

it is not the encryption itself that is the issue, but rather computational overhead

created by running the encryption process.

While the premise of the FRC system is that of a “bolt-on” solution, it is of

interest how other solutions handle large volumes of data. The most common

method of handling large amounts of data is to reduce its size using data compression

[130]. Depending how a compression technique is implemented, be it lossy or lossless,

would determine if it could be used for a digital forensic investigation. Data to which

lossy compression is applied, would immediately be disqualified, as lossy compression

changes the data. Lossless compression might be a better option, if the data can

remain in a forensically stable state.

The use of big data tools or platforms could also be applicable. Examples of

such technologies are IBM Watson [131], SAP Data Hub [132], Teradata [133] and

Mongo DB [134]. While these applications are excellent at data analytics, they

are not geared toward digital forensics. Also, the cost of these technologies can be

extremely high.

143

Finally, a common solution for dealing with large amounts of data is to put

it in the cloud [135]. This, however, brings the problem back full circle, as this

dissertation attempts to solve the problem of cloud forensics.

Having analysed the experimental results, it is possible to suggest improvements

to the FRC system to address the identified issues.

8.5 Possible improvements

From the analysis of the FRC system, certain improvements can be identified

and possible solution proposed. The main issue that emerged regarding the

implementation of the FRC system is that of performance, specifically the hashing,

encryption and management of large files.

In the case of hashing large files, there are a number of tactics that can be

employed to make the process more efficient. The first, and most obvious tactic,

would be to simply increase the resources available to the forensic VM. This will

naturally have an effect on the affordability of the system as the running cost will

increase. Next would be to remove the hashing from the CPU and transfer it to a

GPU. GPU pipelines are much more efficient at repetitive mathematical operations,

due to the large thread blocks and large number of threads in each thread block.

In addition to this, the use of a parallel hashing algorithm can spread the load to

multiple threads. An example would be the SHA-3 algorithms.

Closely related to the performance issue encountered while hashing, is the

performance issue of encryption and decryption. It is again possible to increase

the available resources. As before, this tactic will have a negative effect on the

affordability of the system. Another possible option is to transmit the data from

the forensic VM to the cloud forensic system using a stream cipher instead of a

block cipher. In the implementation tested, the AES-128 algorithm is used, which is

a block cipher. This requires that the entire portion of captured data must first be

encrypted, only after which it can be sent. Using a stream cipher would eliminate

this problem. The data can be consciously encrypted and sent after the hash value

has been generated. The hash values can still be encrypted with a block cipher to

144

ensure that they cannot be modified while in transit from the forensic VM to the

cloud forensic system.

Another issue with large files is that of storage within the cloud forensic system.

The implementation has large files added to a relational database as BLOBs. This

is not ideal, as it is very inefficient to store large objects in a relational database. A

possible solution would be to use a NoSQL database [136], such as MongoDB [134],

to store large blocks of data. An index reference can be kept in the main SQL

payload database for quick queries.

Having evaluated the FRC system implementation, it is possible to compare the

FRC system to related solutions.

8.6 Comparison with related work

The architectures and models discussed in section 3.9 can be compared to the results

gained form the FRC implementation. The related work discussed is that of De

Marco et al. [86], Alenezi et al. [87] and, Kebande and Venter [88].

In the case of the reference architecture (CFRS) proposed by De Marco, there

are many similarities to the FRC architecture. The goals of both are essentially the

same in that both attempt to minimise the cost and time taken to perform a digital

forensic investigation. The key difference between the CFRS and FRC systems are

the proposed methods of data acquisition. The CFRS system attempts to inject

tools into the VMs running on cloud infrastructure to perform forensic functions.

The FRC system, in contrast, makes use of nested VMs as previously shown.

While the De Marco proposed that the CFRS system can be configured using

XML and the Open Virtualisation Format (OVF) [137], the forensic soundness of

each configuration could be questioned and would have to be proven. This could

result in the failure of the main requirement of the system, in that time and money

would have to be spent to prove each configuration forensically sound. The FRC

system has no such problem since raw data is captured, attributed and analysed

in a consistent manner. Also, it is stated that additional infrastructure might be

required for the implementation of the CFRS architecture in terms of networking

145

hardware. This is not a requirement for an implementation of the FRC architecture

as it uses the cloud communications hardware as is. Since a detailed implementation

of the CFRS system is not available, it is difficult to do a direct comparison in terms

of performance to the FRC system.

The framework proposed by Alenezi relates to the technical, legal and

organisational factors of forensic readiness. The FRC system relates mostly

to the technological factors in the framework. The technical factors are cloud

infrastructure, cloud architecture, forensic technologies and cloud security. In the

implementation of the FRC system, the existing cloud infrastructure is utilised

to achieve forensic readiness. This is done without impact to the existing cloud

architecture due to the “bolt-on” design of the FRC system. The forensic tools take

the form of the Cloud forensic system, as discussed in section 6.3.1. Finally, cloud

security is handled by the cloud security system also discussed in section 6.3.1.

The legal factor relevant to this dissertation is the factor of a regulatory nature.

The regulatory factors relate to aspects of admissibility of digital evidence and chain

of custody. The FRC system is specifically setup to maintain the forensic soundness

of the captured data and the ability to prove the origin of said data. In addition to

this the chain of custody is kept as short as possible to maintain the integrity of the

captured data. With these factors taken into account, it can be seen that the FRC

system satisfies all the technical factors and some of the legal factors of the proposed

framework. The organisational factors are outside the scope of this dissertation.

The model proposed by Kebande and Venter utilises a modified botnet to install

an agent on a cloud VM to facilitate the acquisition of digital evidence. The model,

named the cloud forensic readiness (CFR) model, has many similarities with the

Operating system embedded forensic monitor model proposed in section 5.3.1. The

CFR model is however superior in that the agent behaves like a node of a botnet

which is continuously installed and deleted. This mitigates the problem of OS

embedded model where the forensic monitor can be tampered with or disabled. A

major similarity between the CFR model and the FRC system, is that the CFR

model also does not require modification of the cloud infrastructure, as this can

be costly and is thus undesirable. In addition to this, both the CFR model and

146

the FRC architecture implement proactive data acquisition in order to make the

investigative process more streamlined.

A major limitation of the CFR system is that it is limited to the SaaS delivery

model. In contrast, the implemented FRC model can work with any of the cloud

service delivery models as described in section 2.3.

Having analysed the implementation of the FRC system and implementing the

goals set, as well as how it compares to other related models and architectures, it is

possible to summarise and conclude this dissertation.

8.7 Conclusion

From the analysis done in this chapter, it can be seen that the FRC system

meets the relevant goals. The FRC system meets the functional requirements as

it operates as defined. In terms of the set quality attributes, the FRC system meets

these attributes by applying the relevant tactics. Experiments identified possible

weaknesses in the FRC system and these weaknesses are addressed.

The next, and final chapter, summarises the research done and the publications

derived from it. Some avenues of possible future research are mentioned and the

dissertation is concluded.

147

Chapter 9

Conclusion

9.1 Introduction

Cloud forensics remains a very challenging problem in the field of digital forensics.

This research is aimed at enabling proactive forensics in a cloud computing

environment. Proactive forensics aims to aid a forensic analyst by cutting down

on the time and complexity of a forensic investigation. This dissertation proposed

models for forensic monitoring and an architecture in which these models could be

integrated. The architecture was validated, implemented and tested.

9.2 Dissertation summary

In this dissertation, the problems faced by cloud forensics were examined. From this

examination, the following research question was formulated: Is it possible to achieve

forensic readiness, in a cloud environment, so that a digital forensic investigation

can be conducted with minimal or no disruption to the operation of said cloud

environment?

A literature survey was undertaken regarding the fields of study related to

the problem. These fields are cloud computing, digital forensics and software

architecture. Models for forensic monitoring were created using the NIST cloud

reference architecture.

148

To implement these models, an architecture was created to enable proactive

forensics in a cloud system. This architecture was implemented and tests were

conducted to determine whether it did in fact enable proactive forensics. It was

found that the architecture did indeed enable proactive forensics.

The results of this research were critically analysed and areas for improvements

were identified. The dissertation was then concluded.

9.3 Research contribution

This research contributed to the field of cloud forensics by proposing multiple models

that would enable forensic monitoring in a cloud system. From there, an architecture

was created to enable the forensic monitoring models to be implemented in a cloud

environment. One of the models was selected and the architecture was implemented

as a proof of concept. After conducting a series of tests, the areas for improvement

were identified for further research.

In terms of creating models for data acquisition in a cloud system, the NIST

cloud reference architecture was used as a base. The core of the cloud hosting

component was then analysed to determine where forensic monitoring could occur.

A model was defined for each point in the core hosting component where monitoring

could be viable. These models were elaborated upon, compared and contrasted.

The monitoring models form the core component of the larger architecture, that

not only captures data from a cloud system, but does it in a manner that ensures

the forensic soundness of digital evidence. The architecture also addresses some

of the major issues associated with cloud forensics. The addressed issues are the

scale of cloud systems, isolation of relevant data, integrity of captured data and the

availability of the cloud system. In addition to these issues, the CIA triad is also

maintained to ensure the confidentiality of information that is captured within the

cloud environment.

The architecture was validated in terms of its functional and quality attributes

to ensure that it is relevant to the problem of digital forensics of cloud computing

systems. The architecture was implemented as a proof of concept. This was done to

149

show that it will indeed achieve the desired goals set the architectural specification.

The goals were met as stated thus indicating that the architecture is fit for purpose.

The architecture is also platform- and technology-independent. This results in

that the implementation shown in this dissertation could be one of many different

interpretations of the FRC architecture.

The next section contains the publications that were derived from this research.

9.4 Derived publications

The following publications were derived from the research done for this dissertation.

• D. J. Ras and H. S. Venter, “Models for the Forensic Monitoring of Cloud

Virtual Machines,” in 13th European Conference on Cyber Warfare and

Security ECCWS 2014, A. Liaropoulos and G. Tsihrintzis, Eds. Reading:

Academic Conferences and Publishing International Limited, 2014, pp.

290–299 [18]

• D. J. Ras and H. S. Venter, “Proactive digital forensics in the cloud

using virtual machines,” in 2015 International Conference on Computing,

Communication and Security (ICCCS). IEEE, Dec 2015, pp. 1–6 [138]

• ——, “Architecture for the proactive acquisition and analysis of forensic

information in cloud systems,” Suid-Afrikaanse Tydskrif vir Natuurwetenskap

en Tegnologie, vol. 35, no. 1, Feb 2016 [139]

Having shown the research contribution and publications derived from this

dissertation, more avenues of potential research were uncovered. This future work

is discussed in the next section.

9.5 Future work

Much work is still to be done in the field of cloud forensics. In order to improve the

FRC system, the performance issue must be addressed. It is currently unknown

how the system will perform in a larger cloud environment and this could be

150

tested. Another approach to the performance issue would be to introduce forensic

monitoring on the hardware level. This would increase the performance significantly,

as the computational overhead would be removed from the cloud system. The

trade-off would be that data segregation might become a significant issue. As it

is of critical importance to be certain of the provenance of all digital evidence, a

hardware level solution might be very difficult to implement. Data would have to

be attributed from its point of origin, through the hardware monitoring solution, to

the point where it is stored, in a forensically sound manner. It would also have to

be ensured that data is not in anyway altered by the hardware monitoring solution.

More research must also be done in the field of proactive forensics. It remains

one of the only methods to cut down on the time when conducting a digital forensic

investigation. With this, a scientific comparison should be made to prove that

proactive forensics is viable due to the time saving as opposed to the traditional

form of postmortem forensics.

Other avenues of research can be found by looking at the areas which this

dissertation did not address. As described in Chapter 1 section 1.5, the limitations

that are of note are the networking in the implementation of the FRC system, the

storage of captured data and the scaling of the FRC system.

When examining the networking setup, it would be of great interest to see how

the FRC system performs when using high performance networking hardware, that

is usually found in cloud systems. As the networking setup of commercial cloud

systems is geared towards large volumes of data, the efficiency of the FRC system

should be greatly increased. It would also be of interest to determine how much

additional network traffic is created by the FRC system.

Storage would be another area of research of interest. Storage can refer to both

to the storage of captured data and the storage of digital evidence. Depending on

the implementation and configuration, the storage requirements of the FRC system

could be significant. This would be especially significant when capturing entire guest

VMs in large numbers, as each captured guest VM would require the same amount

of space as the original guest VM. This could lead, in a worst case scenario, to the

storage requirements of the cloud having to be doubled.

151

Finally, the effective scaling of the FRC architecture can be determined. For the

FRC architecture to be usable in an industrial cloud deployment, it would have to

effectively scale in such an environment. The FRC architecture is designed with this

in mind. Tactics, such as decoupling of components and messaging as a means of

communication between components, should be adequate to allow the architecture

to scale. This assertion should, however, be tested further to determine its validity.

9.6 Final conclusion

Cloud forensics remains, and in all likelihood will remain, a challenging field of

research. As technology evolves, so too will crime related to such technology. As a

result, law enforcement must keep pace with this evolution. While many strategies

can be devised to safeguard systems and information, only time will prove their

success.

152

Bibliography

[1] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud computing

reference architecture,” in Proceedings - 2011 IEEE World Congress on

Services, SERVICES 2011, 2011, pp. 594–596.

[2] Citrix, “Cloudstack dashboard.” [Online]. Available: https://www.citrix.

com/blogs/wp-content/uploads/2013/04/cloudplatform-dashboard.png

[3] R. Rojas, Encyclopedia of computers and computer history. Chicago: Fitzroy

Dearborn, 2001.

[4] IBM, “The birth of the IBM PC.” [Online]. Available: https://www-03.ibm.

com/ibm/history/exhibits/pc25/pc25 birth.html

[5] Intel, “Intel Introduces The Pentium R© 4 Processor.” [Online]. Available:

https://www.intel.com/pressroom/archive/releases/2000/dp112000.htm

[6] NIST US Department of Commerce, “NIST Cloud Forensic Science

Challenges,” NIST, Tech. Rep., 2014.

[7] P. Mell and T. Grance, “The NIST Definition of Cloud Computing:

Recommendations of the National Institute of Standards and Technology

(2011),” NIST, Gaithersburg, Tech. Rep., 2012.

[8] Y. Jadeja and K. Modi, “Cloud computing - Concepts, architecture and

challenges,” in 2012 International Conference on Computing, Electronics and

Electrical Technologies, ICCEET 2012, 2012, pp. 877–880.

[9] K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie, “Cloud Forensics: An

overview,” in Advances in digital forensics VII. Springer, 2011, pp. 35–46.

153

[10] S. Ballou et al., “Electronic Crime Scene Investigation: A Guide for First

Responders,” U.S. Department of Justice, Washington, Tech. Rep., 2001.

[11] D. Birk, “Technical Challenges of Forensic Investigations in Cloud Computing

Environments,” in Workshop on cryptography and security in clouds, 2011,

pp. 1–6.

[12] ISO 27043, “Incident investigation principles and processes,” Information

technology - Security techniques, vol. 2015, pp. 1–27, 2015.

[13] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor,” in Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles - SOSP

’11. New York, New York, USA: ACM Press, 2011, p. 203.

[14] B. Hayes, “Cloud computing,” Communications of the ACM, vol. 51, no. 7,

p. 9, Jul 2008.

[15] F. Cohen, Digital Forensic Evidence Examination, 3rd ed. Fred Cohen &

Associates, 2009.

[16] J. Tan, “Forensic readiness,” Cambridge, MA:@ Stake, no. October, pp. 1–23,

2001.

[17] S. Alharbi, J. Weber-Jahnke, and I. Traore, “The Proactive and Reactive

Digital Forensics Investigation Process: A Systematic Literature Review,”

International Journal of Security and Its Applications, vol. 5, no. 4, pp. 87–100,

2011.

[18] D. J. Ras and H. S. Venter, “Models for the Forensic Monitoring of Cloud

Virtual Machines,” in 13th European Conference on Cyber Warfare and

Security ECCWS 2014, A. Liaropoulos and G. Tsihrintzis, Eds. Reading:

Academic Conferences and Publishing International Limited, 2014, pp.

290–299.

[19] F. Solms and L. Cleophas, “A Systematic Method for Software Architecture

Design,” ACM Transactions on Software Engineering and Methodology, no.

August, pp. 1–35, 2014.

154

[20] N. Antonopoulos, G. Exarchakos, M. Li, and A. Liotta, Eds., Handbook of

Research on P2P and Grid Systems for Service-Oriented Computing. IGI

Global, 2010.

[21] K. Jamsa, Cloud Computing. Jones & Bartlett Learning, 2012.

[22] M. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing

Service Models (SaaS, PaaS, and IaaS). John Wiley & Sons, 2014.

[23] B. Siddhisena, L. Warusawithana, and M. Mendis, “Next generation

multi-tenant virtualization cloud computing platform,” in Advanced

Communication Technology (ICACT), 2011 13th International Conference on,

vol. 54, no. 2. MIT Press, 2011, pp. 405–410.

[24] B. Sosinsky, Cloud Computing Bible. John Wiley & Sons, 2011.

[25] R. Sheldon, “The Community Cloud,” 2014.

[Online]. Available: https://www.red-gate.com/simple-talk/cloud/

platform-as-a-service/the-community-cloud/

[26] J. Adams, “Private Cloud Adoption Is Alive And Well,” 2016. [Online].

Available: https://go.forrester.com/blogs/16-10-18-private cloud adoption

is alive and well/

[27] M. L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud computing

synopsis and recommendations,” National Institute of Standards and

Technology, Gaithersburg, MD, Tech. Rep., 2012.

[28] V. Kundra, “Federal cloud computing strategy,” p. 43, 2011. [Online].

Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/

assets/egov{\ }docs/federal-cloud-computing-strategy.pdf

[29] US Department of Commerce NIST, “Security and Privacy Controls for

Federal Information Systems and Organizations,” National Institute of

Standards and Technology, Gaithersburg, MD, Tech. Rep., Apr 2013.

155

[30] C. Pettey and R. van der Meulen, “Gartner Says Cloud Consumers Need

Brokerages to Unlock the Potential of Cloud Services,” 2009. [Online].

Available: http://www.gartner.com/newsroom/id/1064712

[31] E. Manoel, C. Carlane, L. Ferreira, S. Hill, D. Leitko, and P. Zutenis, Linux

Clustering with CSM and GPFS. IBM Redbooks, 2002.

[32] M. Christodorescu, R. Sailer, and D. Schales, “Cloud security is not (just)

virtualization security: a short paper,” in Proceedings of the 2009 ACM

workshop on Cloud computing security, New York, 2009, pp. 97–102.

[33] T. Lillard, Digital Forensics for Network, Internet, and Cloud Computing: A

Forensic Evidence Guide for Moving Targets and Data, 1st ed. Syngress,

2010.

[34] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Elastic

management of cluster-based services in the cloud,” in Proceedings of the 1st

workshop on Automated control for datacenters and clouds - ACDC ’09. New

York, New York, USA: ACM Press, 2009, p. 19.

[35] K. Hess and A. Newman, Practical Virtualization Solutions: Virtualization

from the Trenches. Prentice Hall, 2009.

[36] D. Barrett, Virtualization and Forensics A Digital Forensic Investigator’s

Guide to Virtual Environments. Syngress, 2010.

[37] H. A. Lagar-Cavilla, J. a. Whitney, R. Bryant, P. Patchin, M. Brudno,

E. de Lara, S. M. Rumble, M. Satyanarayanan, and A. Scannell, “SnowFlock,”

ACM Transactions on Computer Systems, vol. 29, no. 1, pp. 1–45, Feb 2011.

[38] P. Dash, “Hypervisor,” in Getting Started with Oracle VM VirtualBox. Packt

Publishing, 2013, ch. 1.

[39] O. Karakok, A. Afrose, H. Fayed, D. Klebanov, and N. Shamsee, “Server

Virtualization,” in CCNA Data Center DCICT 640-916 Official Cert Guide.

Cisco Press, 2015, ch. 17.

156

[40] B. P. Tholeti, “Hypervisors, virtualization, and the cloud,” 2011.

[Online]. Available: https://www.ibm.com/developerworks/cloud/library/

cl-hypervisorcompare/

[41] R. Boddington, Practical Digital Forensics. Packt Publishing, 2016.

[42] K. Inman and N. Rudin, Principles and Practice of Criminalistics: The

Profession of Forensic Science. CRC Press, 2000.

[43] L. Thomson, “A handbook of computer security,” The British Accounting

Review, vol. 20, no. 1, pp. 90–91, Apr 2009.

[44] M. E. Kabay, “A Brief History of Computer Crime: An Introduction

for Students,” Security, pp. 1–51, 2008. [Online]. Available: http:

//www.mekabay.com/overviews/history.pdf

[45] IACIS, “IACIS History,” 2017. [Online]. Available: https://www.iacis.com/

about-2/history/

[46] M. Pollitt, “A history of digital forensics,” in Advances in Digital Forensics

VI: Sixth IFIP WG 11.9 International Conference on Digital Forensics, Hong

Kong, China, January 4-6, 2010, Revised Selected Papers, K.-P. Chow and

S. Shenoi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.

3–15.

[47] C. M. Whitcomb, “An historical perspective of digital evidence: A forensic

scientists view,” International Journal of Digital Evidence, vol. 1, no. 1, pp.

7–15, 2002.

[48] K. Hafner and J. Markoff, Cyberpunk: outlaws and hackers on the computer

frontier, revised. Simon and Schuster, 1995.

[49] FBI, “Innocent Images,” 2006. [Online]. Available: https://archives.fbi.gov/

archives/news/stories/2006/february/innocent images022406

[50] R. Downing, “G-8 initiatives in high tech crime,” in Asia-Pacific Conference

on Cybercrime and Information Security, 2002.

157

[51] International Organization on Computer Evidence, “G8 Proposed Principles

for the Procedures Relating to Digital Evidence,” in IOCE 2000, Ottawa,

2000.

[52] M. G. Noblett, “Report of the federal bureau of investigation on development

of forensic tools and examinations for data recovery from computer evidence,”

in Proceedings of the 11th INTERPOL Forensic Sciense Symposium, 1995.

[53] Scientific Working Group on Digital Evidence, “Digital evidence: Standards

and principles,” Forensic Science Communications, vol. 2, no. 2, 2000.

[54] American Society of Crime Laboratory Directors Laboratory Accreditation

Board, “ASCLD Policy Library,” Garner, 2017. [Online]. Available:

http://www.ascld.org/resource-library/ascld-policy-library/

[55] DFRWS, “The Digital Forensic Research Workshop,” 2017. [Online].

Available: https://www.dfrws.org/

[56] IFIP 11.9, “The International Federation for Information Processing (IFIP)

Working Group 11.9 on Digital Forensics,” 2017. [Online]. Available:

http://www.cis.utulsa.edu/ifip119/

[57] SADFE, “International Conference on Systematic Approaches to Digital

Forensics Engineering,” 2016. [Online]. Available: http://sadfe.org/

[58] B. Carrier, “Defining digital forensic examination and analysis tools using

abstraction layers,” International Journal of digital evidence, vol. 1, no. 4, pp.

1–12, 2003.

[59] M. Reith, C. Carr, and G. Gunsch, “An examination of digital forensic

models,” International Journal of Digital Evidence, vol. 1, no. 3, pp. 1–12,

2002.

[60] G. Palmer, “A road map for digital forensic research: Report from the first

digital forensic research workshop (dfrws),” Utica, New York, 2001.

158

[61] E. Casey, Digital Evidence and Computer Crime: Forensic Science, Computers

and the Internet, 2nd ed. Academic Press, 2004.

[62] E. Casey, Ed., Handbook of Digital Forensics and Investigations, 1st ed.

Academic Press, 2010.

[63] R. McKemmish, “When is digital evidence forensically sound?” IFIP

International Federation for Information Processing, vol. 285, pp. 3–15, 2008.

[64] J. Sammons, The Basics of Digital Forensics: The Primer for Getting Started

in Digital Forensics, 1st ed. Syngress Publishing, 2012.

[65] G. G. Richard and V. Roussev, “Next-generation digital forensics,”

Communications of the ACM, vol. 49, no. 2, p. 76, Feb 2006.

[66] F. Adelstein, “Diagnosing your system without killing it first,”

Communications of the ACM, vol. 49, no. 2, pp. 63–66, Feb 2006.

[67] A. Orebaugh, “Proactive Forensics,” Journal of Digital Forensic Practice,

vol. 1, no. 1, pp. 37–41, Mar 2006.

[68] G. Pangalos, C. Ilioudis, and I. Pagkalos, “The Importance of Corporate

Forensic Readiness in the Information Security Framework,” 2010 19th

IEEE International Workshops on Enabling Technologies: Infrastructures for

Collaborative Enterprises, pp. 12–16, 2010.

[69] C. Taylor, B. Endicott-Popovsky, and D. A. Frincke, “Specifying digital

forensics: A forensics policy approach,” Digital Investigation, vol. 4, no.

SUPPL., pp. 101–104, 2007.

[70] R. Rowlingson, “A ten step process for forensic readiness,” International

Journal of Digital Evidence, vol. 2, no. 3, pp. 1–28, 2004.

[71] A. Yasinsac and Y. Manzano, “Policies to Enhance Computer and Network

Forensics,” Proceedings of the 2001 IEEE, pp. 5–6, 2001.

[72] J. Wolfe-Wilson and H. Wolfe, “Management strategies for implementing

forensic security measures,” Information Security Technical Report, vol. 8,

159

no. 2, pp. 55–64, Jun 2003. [Online]. Available: http://linkinghub.elsevier.

com/retrieve/pii/S1363412703002073

[73] W. Jansen and R. P. Ayers, “Guidelines on PDA forensics,” National Institute

of Standards and Technology, Gaithersburg, MD, Tech. Rep., 2004.

[74] M. G. Noblett, F. Church, M. M. Pollitt, and L. A. Presley, “Recovering and

Examining Computer Forensic Evidence,” Forensic Science Communications,

vol. 2, no. 4, p. 8, 2000.

[75] M. A. Caloyannides, N. Memon, and W. Venema, “Digital Forensics,” IEEE

Security & Privacy Magazine, vol. 7, no. 2, pp. 16–17, Mar 2009.

[76] M. S. Olivier, “On metadata context in Database Forensics,” Digital

Investigation, vol. 5, no. 3-4, pp. 115–123, Mar 2009.

[77] W. Kruse and J. Heiser, Computer Forensics: Incident Response Essentials,

1st ed. Addison Wesley, 2002.

[78] M. a. M. Guimaraes, R. Austin, and H. Said, “Database forensics,” 2010

Information Security Curriculum Development Conference on - InfoSecCD

’10, p. 62, 2010.

[79] S. Datt, Learning Network Forensics. Packt Publishing, 2016.

[80] S. Fiorillo, “Theory and practice of flash memory mobile forensics,” 7 th

Australian Digital Forensics Conference, 2009.

[81] H. Mahalik, R. Tamma, and S. Bommisetty, Practical Mobile Forensics,

2nd ed. Packt Publishing, 2016.

[82] O. Afonin, Mobile Forensics Advanced Investigative Strategies. Packt

Publishing, 2016.

[83] M. Taylor, J. Haggerty, D. Gresty, and R. Hegarty, “Digital evidence in cloud

computing systems,” Computer Law & Security Review, vol. 26, no. 3, pp.

304–308, 2010.

160

[84] H. Jahankhani and A. Hosseinian-Far, “Challenges of cloud forensics,” in

Enterprise Security. Springer, 2017, pp. 1–18.

[85] K. Dahbur and B. Mohammad, “The anti-forensics challenge,” in Proceedings

of the 2011 International Conference on Intelligent Semantic Web-Services

and Applications - ISWSA ’11, 2011, pp. 1–7.

[86] L. De Marco, F. Ferrucci, and T. Kechadi, “Reference Architecture for a Cloud

Forensic Readiness System,” pp. 1–9, 2014.

[87] A. Alenezi, R. K. Hussein, R. J. Walters, and G. B. Wills, “A

Framework for Cloud Forensic Readiness in Organizations,” in 2017 5th

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud), no. April. IEEE, apr 2017, pp. 199–204.

[88] V. R. Kebande and H. Venter, “On digital forensic readiness in the cloud using

a distributed agent-based solution: issues and challenges,” Australian Journal

of Forensic Sciences, vol. 50, no. 2, pp. 209–238, mar 2018.

[89] C. Grobler, C. Louwrens, and S. von Solms, “A Framework to Guide the

Implementation of Proactive Digital Forensics in Organisations,” in 2010

International Conference on Availability, Reliability and Security. IEEE,

feb 2010, pp. 677–682.

[90] M. Elyas, S. B. Maynard, A. Ahmad, and A. Lonie, “Towards A Systemic

Framework for Digital Forensic Readiness,” Journal of Computer Information

Systems, vol. 54, no. 3, pp. 97–105, mar 2014.

[91] M. Elyas, A. Ahmad, S. B. Maynard, and A. Lonie, “Digital forensic readiness:

Expert perspectives on a theoretical framework,” Computers & Security,

vol. 52, pp. 70–89, jul 2015.

[92] A. Valjarevic and H. Venter, “Implementation guidelines for a harmonised

digital forensic investigation readiness process model,” in 2013 Information

Security for South Africa. IEEE, aug 2013, pp. 1–9.

161

[93] P. M. Trenwith and H. S. Venter, “Digital forensic readiness in the cloud,” in

Information Security for South Africa, 2013, pp. 1–5.

[94] G. Sibiya, T. Fogwill, H. S. Venter, and S. Ngobeni, “Digital forensic

readiness in a cloud environment,” in 2013 Africon. IEEE, sep 2013, pp.

1–5. [Online]. Available: http://ieeexplore.ieee.org/document/6757831/

[95] C. Perrin, “The CIA Triad,” 2008. [Online]. Available: http://www.

techrepublic.com/blog/it-security/the-cia-triad/

[96] C. Easttom, Computer Security Fundamentals, 3rd ed. Pearson Certification,

2016.

[97] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 4th ed. Boston:

Prentice Hall, 2009.

[98] F. Solms and D. Loubser, “URDAD as a semi-formal approach to analysis and

design,” Innovations in Systems and Software Engineering, vol. 6, no. 1, pp.

155–162, 2010.

[99] ISO/IEC/IEEE:42010, “Systems and software engineering – Architecture

description,” ISO:42010, vol. 2011, 2011.

[100] M. W. Maier, D. Emery, and R. Hilliard, “Software architecture: Introducing

IEEE standard 1471,” Computer, vol. 34, no. 4, pp. 107–109, 2001.

[101] F. Solms, “What is software architecture?” Proceedings of the South African

Institute for Computer Scientists and Information Technologists Conference

on - SAICSIT ’12, pp. 363–373, 2012.

[102] R. N. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:

Foundations, Theory, and Practice, 1st ed. Wiley, 2009.

[103] I. Gorton, “Essential software architecture,” Essential Software Architecture,

pp. 1–283, 2006.

[104] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

3rd ed. Addison-Wesley Professional, 2012.

162

[105] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson,

R. Nord, and J. Stafford, Documenting Software Architectures: Views and

Beyond, 2nd ed. Addison-Wesley Professional, 2010.

[106] G. Senthilvel, O. M. A. Khan, and H. A. Qureshi, Enterprise Application

Architecture with .NET Core. Packt Publishing, 2017.

[107] G. Bochmann and C. Sunshine, “Formal Methods in Communication Protocol

Design,” IEEE Transactions on Communications, vol. 28, no. 4, pp. 624–631,

Apr 1980.

[108] G. Hohpe and B. Woolf, Enterprise Integration Patterns. Boston: Pearson

Education, 2011.

[109] P. Kruchten, R. Capilla, and J. C. Dueñas, “The role of a decisions view in

software architecture practice,” IEEE Software, vol. 26, no. 2, pp. 36–42, 2009.

[110] P. Kruchten, “Architectural Blueprints The 4 + 1 View Model of Software

Architecture,” IEEE software, vol. 12, no. November, pp. 42–50, 1995.

[111] M. Fowler and K. Scott, UML Distilled Second Edition A Brief Guide to the

Standard Object Modeling Language, 2nd ed. Addison Wesley, 1999.

[112] ISO 19501:2005, “Unified Modeling Language (UML),” Information technology

- Open Distributed Processing, vol. 2005, p. 432, 2005.

[113] J.-F. Monin, Understanding Formal Methods. London: Springer London,

2003.

[114] K. Beck et al., “Manifesto for Agile Software Development,” 2001. [Online].

Available: http://agilemanifesto.org/

[115] R. C. Martin, Agile Software Development, Principles, Patterns, and

Practices, 1st ed. Pearson, 2002.

[116] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, “Model-Driven

Development Using UML 2.0: Promises and Pitfalls,” Computer, vol. 39, no. 2,

pp. 59–66, Feb 2006.

163

[117] W. Richter, C. Isci, B. Gilbert, J. Harkes, V. Bala, and M. Satyanarayanan,

“Agentless Cloud-Wide Streaming of Guest File System Updates,” 2014 IEEE

International Conference on Cloud Engineering, pp. 7–16, 2014.

[118] A. Mazrekaj and I. Shabani, “Pricing Schemes in Cloud Computing :

An Overview,” International Journal of Advanced Computer Science and

Applications (IJACSA), vol. 7, no. 2, pp. 80–86, 2016.

[119] Apache Software Foundation, “Apache Cloudstack,” 2017. [Online]. Available:

https://cloudstack.apache.org

[120] ——, “CloudStack Installation Documentation,” 2017. [Online]. Available:

http://docs.cloudstack.apache.org/projects/cloudstack-installation/en/4.9/

[121] KVM, “Main page — kvm,,” 2016, [Online; accessed 1-November-2017].

[Online]. Available: https://www.linux-kvm.org/index.php?title=Main

Page&oldid=173792

[122] Oracle, “MySQL,” 2017. [Online]. Available: https://www.mysql.com/

[123] ——, “Java EE 8,” 2017. [Online]. Available: http://www.oracle.com/

technetwork/java/javaee/overview/index.html

[124] B. Carrier, “The Sleuth Kit,” 2017. [Online]. Available: http://www.

sleuthkit.org/sleuthkit/

[125] M. Zyczkowski, M. Szustakowski, W. Ciurapiński, P. Markowski, M. Karol,

and M. Kowalski, “Optical fiber sensors as the primary element in the

protection of critical infrastructure especially in optoelectronic transmission

lines,” WIT Transactions on the Built Environment, vol. 134, pp. 273–283,

2013.

[126] The Open Group, “dd,” 2008. [Online]. Available: http://pubs.opengroup.

org/onlinepubs/9699919799/utilities/dd.html

164

[127] A. Nadeem and M. Javed, “A Performance Comparison of Data

Encryption Algorithms,” 2005 International Conference on Information and

Communication Technologies, no. April 2015, pp. 84–89, 2005.

[128] S. Heron, “Advanced Encryption Standard (AES),” Network Security, vol.

2001, no. 12, pp. 8–12, Dec 2001.

[129] Oracle, “Java Cryptography Architecture (JCA) Reference Guide,”

2017. [Online]. Available: https://docs.oracle.com/javase/7/docs/technotes/

guides/security/crypto/CryptoSpec.html

[130] D. Salomon, A Concise Introduction to Data Compression. London: Springer

London, 2008.

[131] IBM, “IBM Watson,” 2018. [Online]. Available: https://www.ibm.com/

watson/

[132] SAP, “SAP Data Hub,” 2018. [Online]. Available: https://www.sap.com/

products/data-hub.html

[133] Teradata, “Teradata,” 2018. [Online]. Available: https://www.teradata.com/

Products/Software/Database

[134] D. Merriman, E. Horowitz, and K. Ryan, “MongoDB,” 2017. [Online].

Available: https://www.mongodb.com

[135] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau, “Moving big

data to the cloud,” in 2013 Proceedings IEEE INFOCOM. IEEE, apr 2013,

pp. 405–409.

[136] S. Edlich, “NoSQL,” 2017. [Online]. Available: http://nosql-database.org/

[137] OVF, “Open Virtualization Format.” [Online]. Available: https://www.dmtf.

org/standards/ovf

[138] D. J. Ras and H. S. Venter, “Proactive digital forensics in the cloud

using virtual machines,” in 2015 International Conference on Computing,

Communication and Security (ICCCS). IEEE, Dec 2015, pp. 1–6.

165

[139] ——, “Architecture for the proactive acquisition and analysis of forensic

information in cloud systems,” Suid-Afrikaanse Tydskrif vir Natuurwetenskap

en Tegnologie, vol. 35, no. 1, Feb 2016.

166

Appendix A

Abbreviations

ABS Agent Based Solution

ADD Attribute driven design

ADL Architectural description language

AES Advanced encryption standard

ASCLD-LAB The American Society of Crime Laboratory Directors –

Laboratory Accreditation Board

BLOB Binary large object

BPEE Business process execution engine

CF CompactFlash

CFR Cloud Forensic Readiness

CFRS Cloud Forensic Readiness System

CFS Cloud forensics system

CIA Confidentiality, Integrity, Availability

CPU Central processing unit

DBMS Database management system

DFRWS The Digital Forensic Research Workshop

DHCP Dynamic host configuration protocol

DMZ Demilitarised zone

ERD Entity relationship diagram

ESB Enterprise service bus

FBI Federal Bureau of Investigation

167

FRC Forensic ready cloud

GB Gigabyte

GHz Gigahertz

GPU Graphical processing unit

HDD Hard disk drive

IaaS Infrastructure-as-a-Service

IACIS International Association of Computer Investigative

Specialists

IDE Integrated development environment

IDS Intrusion detection system

IO Input and output

IOCE International Organization on Computer Evidence

JMS Java message service

JRE Java run-time environment

JVM Java virtual machine

kB Kilobyte

LAN Local area network

MB Megabyte

MDD Model driven design

MHz Megahertz

NFC Near-field communication

NFS Network file system

NIST National Institute of Standards and Technology

OS Operating system

PaaS Platform-as-a-Service

PC Personal computer

PoC Proof of Concept

RAM Random access memory

SaaS Software-as-a-Service

SADFE International Conference on Systematic Approaches to

Digital Forensics Engineering

168

SD card Secure Digital card

SDK Software development kit

SIM Subscriber

SLA Service level agreement

SOA Service orientated architecture

SQL Structured query language

SVN Apache subversion

SWGDE Subcommittee and Scientific Working Group on Digital

Evidence

TSK The Sleuth Kit

UML Unified modelling language

URDAD Use-Case, Responsibility Driven Analysis and Design

VM Virtual machine

169

