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Abstract

An autonomous hierarchical distributed control (AHDC) strategy is proposed for a building multi-evaporator
air conditioning (ME A/C) system in this paper. The objectives are to minimize peak demand and energy
costs, and to reduce communication resources, computational complexity and conservativeness while main-
taining both thermal comfort and indoor air quality (IAQ) in acceptable ranges. The building consists of
multiple connected rooms and zones. The proposed control strategy consists of two layers. The upper layer
is an open loop optimizer, which only collects local measurement information and solves a distributed steady
state resource allocation problem to autonomously and adaptively generate reference points, for low layer
controllers. This is achieved by optimizing the demand and energy costs of a multi-zone building ME A/C
system under a time-of-use (TOU) rate structure, while meeting the requirements of each zone’s thermal
comfort and IAQ within comfortable ranges. The lower layer also uses local information to track the trajec-
tory references, which are calculated by the upper layer, via a distributed model predictive control (DMPC)
algorithm. The control strategy is distributed at both layers because they use only local information from
the working zone and its neighbors. Simulation results are provided to illustrate the advantages of the
designed control schemes.

Keywords:
Multi-evaporator air conditioning system, two-layer distributed controls, model predictive control,
time-of-use, energy/demand reducing.

Nomenclature
A1 heat transfer area in the dry-cooling region of the DX evaporator, m2

A2 heat transfer area in the wet-cooling region of the DX evaporator, m2

Awin represents the total window area, m2

Ca specific heat of air, kJ kg−1 ◦C−1

Cc CO2 concentration in the conditioning space, ppm
Cload pollutant load, m3/s
Cs CO2 concentration of air supply, ppm
d cross-sectional area of zone, m2

G amount of CO2 emission by a person, L/h
hfg latent heat of vaporization of water, kJ/kg
hr1 enthalpy of refrigerant at evaporator inlet, kJ/kg
hr2 enthalpy of refrigerant at evaporator outlet, kJ/kg
hs enthalpy leaving the DX evaporator, kJ/kg
kP , kI proportional and integral coefficients
mr mass flow rate of refrigerant, kg/s
Mload moisture load in the conditioned space, kg/s
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Occp number of occupants
Qload sensible heat load in the conditioned space, kW
Qrad solar radiative heat flux density, W/m2

R thermal resistance, ◦C/kW
Td air temperature leaving the dry-cooling region on air side of the DX evaporator, ◦C
Tmix mixing temperature between the outside air and return air, ◦C
Ts air temperature leaving the DX evaporator, ◦C
Tw temperature of the DX evaporator wall, ◦C
Tz air temperature in the conditioned space, ◦C
T0 temperature of the outdoor air, ◦C
V volume of the conditioned space, m3

va indoor air velocity, m/s
Vh1 air side volume in the dry-cooling region on air side of the DX evaporator, m3

Vh2 air side volume in the wet-cooling region on air side of the DX evaporator, m3

vf air volumetric flow rate, m3/s
Wmix mixing moisture content of outside air and return air, kg/kg
Ws moisture content of air leaving the DX evaporator, kg/kg
Wz moisture content of air-conditioned space, kg/kg
W0 moisture content of the outdoor air, kg/kg

Greek letters
αdc heat transfer coefficient between air and the DX evaporator wall in the

dry-cooling region, kW m−2 ◦C−1

αwc heat transfer coefficient between air and the DX evaporator wall in the

wet-cooling region, kW m−2 ◦C−1

εwin transmissivity of glass of window
ρ density of moist air, kg/m3

Subscripts
i room number

Abbreviations
AHDC autonomous hierarchical distributed control
DMPC distributed model predictive control
EEV electronic expansion valve
HVAC heating, ventilation and air conditioning
IAQ indoor air quality
ME A/C multi-evaporator air conditioning
MPC Model predictive control
NLP nonlinear programming
PMV predicted mean vote
PSA pressure swing absorption
TABS thermally activated building systems
TOU time-of-use

1. Introduction

It is well known that many environmental problems are linked to energy consumption. The energy
consumed by the building sector accounts for 40% of the total energy consumption in the world [1]. Among
all building energy consumers, air conditioning (A/C) systems are responsible for the largest share, which
represents close to 50% of the total electricity use in the building sector.
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In recent years, many researchers have focused on reducing energy consumption of building heating,
ventilation and air conditioning (HVAC) systems [2, 3]. Meanwhile, indoor comfort is also important for
buildings, since it directly affects the occupants’ working efficiency. The effective control of HVAC systems
has the potential of reducing energy consumption or cost and improving indoor thermal comfort and air
quality (IAQ). In [4], the authors proposed a method of real-time determination of an optimal indoor-air
condition for the HVAC system to consider indoor thermal comfort and IAQ for occupants simultaneously
with efficient energy consumption. However, this method is only tested around the desired points; we do
not know if this method can be used without the desired points.

Model predictive control (MPC) has been verified as one of the most successful advanced control s-
trategies, which is capable of improving energy efficiency and thermal comfort in buildings [5]-[10]. An
energy-optimized open loop optimization and the MPC schemes were proposed [11, 12] for a direct expan-
sion (DX) A/C system to improve energy efficiency while maintaining indoor thermal comfort and IAQ
within comfort levels. Other advantages of MPC for building HVAC systems include robustness, tunability
and flexibility [13]. Despite MPC having superior performance to other control strategies, the size of the
optimization problem increases rapidly when the dimension of the building A/C systems is large. Central-
ized MPC techniques were proposed [14]-[17] for multi-zone HVAC systems to improve energy efficiency and
thermal comfort. In the centralized control structure case, all the subsystems are controlled by one MPC
law. The model used for prediction includes the coupling elements. When a centralized MPC algorithm
is used for controlling HVAC systems in a large number of rooms, its algorithm is impractical since the
optimization problems may not be solved in a reasonable time and the control systems are not easy to main-
tain. To reduce computational time, one of the effective predictive control strategies is a decentralized MPC
approach [18]. Large-scale control problems are decomposed into several independent control problems,
which can take care of the local control parameters [19]. However, the results demonstrated that the control
performance loss was 28.58%. A distributed control approach is capable of balancing these issues. The
structure of the distributed control is similar to a decentralized law, but is essentially a different approach
[20]. The distributed control decomposes the centralized control to a group of local agents communicating
with its neighbors, which makes it possible to be used for large-scale dynamically coupled systems. A com-
munication network that allows collaboration among local control laws, which allows the improvement of
global system performance compared to a decentralized structure. Moreover, computational demand should
be significantly reduced compared to the centralized structure [21].

Owing to the advantages of distributed model predictive control (DMPC), this strategy was proposed
to reduce the computational demand and handle the coupling among subsystems [22]-[25]. A DMPC was
proposed in [23] to improve the energy efficiency of the HVAC system while keeping zone temperature
within the comfort range. In the study, the nonlinear optimal control problem is formulated and solved
through sequential quadratic programming. Then the subproblem is decomposed further by adopting a
subgradient approach. A local controller reaches the optimal solution by repeatedly negotiating with its
neighbours in every sampling period, which inevitably increases the demand for calculation. In [22], the
DMPC algorithm, only required the predicted output exchanged with its neighbours for every sampling
period. However, this algorithm can only obtain Nash equilibrium, which may not be the optimal solution.
In [24], the authors proposed a DMPC algorithm to control multi-source multi-zone temperatures. In order
to attenuate the online computational burden, the DMPC algorithm was implemented based on Benders’
decomposition. The results show that the computational and convergence times of this algorithm are
superior to the centralized MPC. However, the energy efficiency of the DMPC method is not particularly
good compared to the centralized MPC strategy. Furthermore, this type of distributed structure does not
converge to the optimal solution, as in [25] which was an agent-based suboptimal controller; the drawback
is transmitted to the decomposition algorithm.

In addition to improving energy efficiency while maintaining building multi-zones’ thermal comfort with-
in comfort range, DMPC strategies based on energy scheduling were proposed in [26]-[27]. In [26], the
authors proposed a method that combined the closed-loop centralized and distributed structures together
to design a hierarchical control scheme to balance the computational complexity and conservativeness. In
the study, the upper layer controller collects temperature and predictive information of all rooms and zones,
which implies that the centralized scheduling (CS) needs to communicate with all rooms. The upper layer
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optimization problem is nonlinear, and solving it for a large building using centralized approaches is com-
putationally cumbersome, leading to scalability issues. Furthermore, implementing centralized approaches
requires transmission of zone-levels models and sensor information to the CS, leading to engineering dif-
ficulties and increasing information exchange. In the lower layer, the distributed controller only uses one
room’s information and its neighbor off-line reference signals. This may cause loss of control accuracy in
receding horizon. Moreover, the trajectory references in the optimization objectives are given and fixed over
a 24-hour period, as in [22, 23, 25]. Centralized and distributed MPC controllers following fixed trajectory
references were also reported in other field [28]. In our previous work [12], the results demonstrated that the
MPC strategy following preprogrammed time-varying reference points can save more in energy consumption
and cost when compared with a fixed trajectory reference. More recently, in [27], the authors proposed
adaptive learning and distributed control together to improve the energy efficiency and thermal comfort
for multi-zone HVAC systems. The optimal references are preprogrammed and time-varying, while the p-
resented zone thermal dynamics of a multizone building did not consider the interaction between rooms.
Moreover, this distributed optimization algorithm is solved by using the subgradient method.

Advanced building structures are extremely complicated, with widely equipped multi-evaporator (ME)
A/C systems. An ME A/C, which is DX based, consists of an outdoor compressor and condensing, and
multiple indoor units including electronic expansion valves (EEVs) and evaporators [29]. Experimental
results have illustrated that the control performance of the novel capacity control algorithm is further
improved in comparison with its previous work. However, controlling indoor air temperature by using the
novel capacity control algorithm could still be subject to significant fluctuations under certain operating
conditions because of using a temperature dead-band, time-delay for compressor start-up. The interaction
with other indoor units may be an important impact factor but was rarely considered. To improve the energy
efficiency of a multi-zone building ME A/C system, thermal comfort and IAQ levels, a suitable optimization
method is required for making each room’s temperature, humidity and CO2 concentration consistent with
their desired references. To realize it, we consider a case that each DX unit can exchange information with
its neighbors.

To overcome the above issues, in this paper we present an autonomous hierarchical distributed control
(AHDC) method for a multi-zone building ME A/C system which not only considers how to maintain
multiple zones’ thermal comfort and IAQ within comfortable ranges but also considers reduction of com-
munication resources, computational complexity and conservativeness reduction, and energy consumption
and costs. Meanwhile, the peak-average-ratio (PAR) can also be considered in this paper. Moreover, the
proposed comfort control considers thermal comfort and IAQ and the coupling effects of them. This control
strategy consists of two layers. The upper layer is open loop scheduling that collects only a room’s mea-
surement information containing room cooling and pollutant loads, weather conditions, end-user services
including demand and energy rates, thermal comfort and IAQ levels and operation profiles. Then the upper
layer formulates and solves a steady-state optimization problem for minimizing the demand and energy costs
of the multi-zone building ME A/C system under a time-of-use (TOU) rate structure of electricity over a
24-hour period using nonlinear programming (NLP) algorithm. We make an assumption that the multi-
zones are similar in the occupancies, functions and purposes; in this situation, one can distributively design
an optimal scheduler. This scheduling generates time-varying trajectory references and communicates with
the whole connected network through neighbors. All rooms then transmit their references to the lower layer
controllers. The lower layer designed as DMPC controllers also uses local information to formulate and
solve local optimization problems to track the autonomously and adaptively time-varying trajectory refer-
ence signals calculated by the upper layer. For simplicity, we make an assumption that all state variables
are measured, thus full state feedbacks are considered. Our future work will consider designing observers
in case some variables are not measured. The upper layer distributed way is different from the upper layer
controllers in [26, 28], which need to collect all rooms’ measurement information. It is also different from the
distributed controllers in [21]-[25], which collect information from a zone and its neighbors. The proposed
control scheme can be realised with reduced, cheaper and short-range communication modules, and depend-
ing on the communication topology, a receiver only. While in the conventional control schemes [21]-[25],
[26, 28], it may require full-swing communication modules, i.e., with both a transmitter and receiver, which
require external service providers in long-range data communication modules. The lower layer designs a new
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distributed controller for a zone such that this subsystem depends entirely on the zone by introducing a new
input variable over a short-term horizon. This distributed control scheme is desirable in practice and can
be easily implemented by our previous control algorithm [12]. The results show that the proposed control
scheme is superior to the previous control strategy on energy efficiency.

Our principal contributions can be summarised as follows:
1) We first propose two-layer distributed control strategies that not only reduce more energy demand

and costs in comparison with previous works but also maintain both thermal comfort and IAQ of multi-zone
within comfortable ranges. These levels of performance are demonstrated in the case study.

2) The proposed steady state distributed control and closed-loop distributed control schemes have the
potential of reducing the complexity of computation and the hardware of communication modules in com-
parison with the centralised, non-distributed control schemes and hierarchical distributed control schemes.

3) A novel approach for the lower layer closed-loop distributed control is designed to obtain a new feedback
controller. This is achieved by introducing new input variables such that the closed-loop distributed control
subsystems can be converted to a subsystem that depends entirely on one zone and our previous MPC
algorithm developed for a single zone can be used.

4) This study considers the predicted mean vote (PMV) index as an indicator of both thermal comfort
and IAQ.

This paper is organized as follows: In Section 2, the nonlinear dynamical models and energy models for
the multi-zone building ME A/C system, the PMV index and the system constraints are presented. The
proposed AHDC method for the multi-zone building ME A/C system is proposed in Section 3. Simulation
results are provided in Section 4. Section 5 concludes this paper.

2. System model

2.1. An ME A/C system in buildings

The schematic of an ME A/C system is illustrated in Fig. 1. The ME A/C system includes dampers, DX
evaporators, an air-cooled tube-plate-finned condenser, a variable speed compressor, EEVs, variable speed
centrifugal supply fans with pressure swing absorption (PSA) boxes, and a damper for mixing return air
from the ME A/C system with outside air. The variable speed supply fan adjusts its own speed based on
the air flow rate/opening controlled by EEV to control cooled air to each room. Each indoor unit placed
in the room has an EEV and an evaporator. The PSA box regulates the conditioned air flow rate and
absorbs CO2 contaminant concentration for improving the fresh air ratio. Each indoor unit is connected to
the variable speed compressor and the outlet of the air-cooled condenser. The indoor air unit recirculates
return air from building spaces and mixes it with outside air. The proportion of return air to outside air is
controlled by damper positions in the ME A/C system. The mixed air is cooled by the cooling coils.

Because of the complex nature of air flow and the heat transfer process, ME A/C systems are usually
modelled as time-varying nonlinear partial differential equations [30], which are not suitable for control and
optimization. Therefore, the following assumptions are made to simplify the modelling.

1) The air in each room and outdoor environment is well mixed immediately so that the temperature,
humidity and CO2 concentration distributions are uniform.

2) The heat capacity of air is constant.

2.2. Dynamic model of the ME A/C system

According to the above configuration, we use an undirected connected graph structure to represent the
rooms and their dynamic couplings as described below. We associate the i-th room with the i-th node
of the system. The mathematical dynamic models for the multi-zone building ME A/C system via the
relationship between air enthalpy, temperature and the moisture content leaving the evaporator i of unit i
as hs,i = CaTs,i + hfgWs,i are described as follows. In this paper, we only consider the interaction between
rooms by sensible heat gain.

CaρVi
dTz,i

dt
=

m∑
j=1

Tz,j − Tz,i

Rij
+

T0 − Tz,i

Ri
+ Caρvf,i(Ts,i − Tz,i) +Qload,i, (1a)
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Figure 1: Schematic diagram of an ME A/C system.

ρVi
dWz,i

dt
= ρvf,i(

hs,i − CaTs,i

hfg
−Wz,i) +Mload,i, (1b)

CaρVh1,i
dTd,i

dt
= Caρvf,i(Tmix − Td,i) + αdc,iA1,i(Tw,i −

Tmix + Td,i

2
), (1c)

ρVh2,i
dhs,i

dt
=αwc,iA2,i(Tw,i −

Td,i + Ts,i

2
) + hfgρvf,i(Wmix − hs,i − CaTs,i

hfg
)

+ Caρvf,i(Td,i − Ts,i),

(1d)

Cw,iρw,iVw,i
dTw,i

dt
=αdc,iA1,i(

Tmix + Td,i

2
− Tw,i) + αwc,iA2,i(

Td,i + Ts,i

2
− Tw,i)−

(hr2,i − hr1,i)mr,i,
(1e)

Vi
dCc,i

dt
= (kP vf,i + kI

∫ TI

0

vf,ids)(Cs,i − Cc,i) +Gi ·Occpi, (1f)

where zone i ∈ {1, 2, . . . ,m}, Tz,i and Wz,i are the air temperature and moisture content of zone i, respec-
tively; Tz,j means the air temperature of neighboring zone i. Cc,i denotes the CO2 concentration of zone
i, Cs,i represents the CO2 concentration of supply air to zone i. Ts,i and Ws,i are the air temperature and
moisture content leaving the indoor unit i, respectively; T0 and W0 are the outside air temperature and
moisture content, respectively. Td,i is the air temperature leaving the dry-cooling region on the air side of
the DX evaporator of indoor unit i, Tw,i is the temperature of the DX evaporator wall in indoor unit i,
hs,i is the enthalpy leaving the DX evaporator of indoor unit i. vf,i is the air volumetric flow rate of the
supply fan i, mr,i is the mass flow rate of refrigerant to the indoor unit i. hr1,i and hr2,i are the enthalpies
of refrigerant at the DX evaporator inlet and outlet of indoor unit i, respectively. Vi is the volume of zone
i; Vh1,i and Vh2,i are the air side volumes in the dry-cooling region and wet-cooling region on the air side of
the DX evaporator of indoor unit i, respectively. Cw,i, ρw,i and Vw,i are the specific heat of air, density of
moist air and volume of the DX evaporator wall of indoor unit i, respectively. αdc,i and αwc,i are the heat
transfer coefficients between air and the evaporator wall in the dry-cooling region and wet-cooling region of
indoor unit i, respectively. A1,i and A2,i are the heat transfer areas in the dry-cooling region and wet-cooling
region on the DX evaporator of indoor unit i, respectively, which are time-varying uncertainty and bounded
parameters. Occpi is the number of occupants of zone i, Gi is amount of CO2 emission rate of people at
zone i. kP and kI are the parameter of the PI controller.

Rij = Rji is the thermal resistance of the wall between zone i and j, Ri is the thermal resistance of
the wall between zone i and the outside. If Rij and Ri are not known from design specifications, they can
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be obtained via model identification [31, 32]. Tmix and Wmix are the mixed air temperature and mixed
moisture content before each DX evaporator cooling coil, respectively. The mixed air temperature and
moisture content are calculated as follows:

Tmix = (1− δ)T0 + δ

∑m
i=1 vf,iTz,i∑m

i=1 vf,i
, Wmix = (1− δ)W0 + δ

∑m
i=1 vf,iWz,i∑m

i=1 vf,i
, (2)

where δ is the mixing ratio between the outside air and return air. It is assumed that the return air
temperature and moisture content are the weighted sums of the zone temperatures and moisture contents
with weights, being the air flow rate of supply air to the corresponding zones. The return air is not
recirculated when δ = 0, and no outside fresh air is used when δ = 1. δ can be employed to save energy
through recirculation but it has to be less than one to guarantee minimal outdoor fresh air delivered to
the rooms. Note that the first equation of (2) is taken from [33]. It is assumed that the the mixed
moisture content has a similar description in the second equation of (2). The airside convective heat transfer
coefficients for the louvre-finned evaporator under both dry-cooling and wet-cooling regions on the air side
of the evaporator i are calculated as follows [34]:

αdc,i = jdcρva,i
Ca

Pr
2
3

, αwc,i = jwcρva,i
Ca

Pr
2
3

, i = 1, 2, . . . ,m, (3)

where Pr is the Prandtl number, jdc and jwc are the Colburn factors in the cooling mode. The air velocity
va,i is described as follows:

va,i =
vf,i − εi

di
, i = 1, 2, . . . ,m,

where di (m2) is the cross-sectional area of zone i, εi is the non-desired air velocity through the door or
window to pass in and out of the air to zone i, va,i is the indoor air velocity of room i.

The above models (1a)-(1e) without considering outside air temperature and humidity entering into sys-
tem for a single room were first built in [35]. The above models (1a)-(1f), absorbing CO2 by an independent
PSA box for a single room, were built in [11]. The above models (1a)-(1f) for a single room, absorbing CO2

by using a PI controller based on a supply fan, were built in [12]. On the right-hand side of (1a), the first
term denotes the heat transfer between zone i and all neighbours of zone i; the second term means the heat
transfer between zone i and the outside wall. The PI controller in the equation (1f) is designed based on
the air volumetric flow rate of the supply fan. It can be used for controlling the indoor CO2 concentration.
In addition, the PI controller has the potential of reducing the complexity of computation and the cost of
hardware.

Remark 1: Higher-order resistance-capacitance (RC) models were developed in [14, 16]. For simplicity,
we only consider the first-order RC model in this paper. Though the higher-order RC models maybe more
accurate than the first-order model, it is more difficult to use the current methods to solve the distributed
control problem. Most existing works to solve the distributed control problem assume that interaction terms
are either disturbances or negligible. We will study the distributed control problem of the higher-order RC
models in the future.

Remark 2: The building DX A/C system’s cooling and pollutant loads can be expressed in [12] and
used as measurement information for an open loop controller in the upper optimization. The building loads
are affected by some parameters (such as T0, W0, Qrad,i, Occpi, internal heat gain Qint,i and moisture
ventilation load Mint,i). The prediction of these parameters can be obtained through a weather forecast
station, historical data and schedules. Though the multi-zone buildings’ cooling and pollutant loads cannot
be accurately predicted, the designed AHDC strategy in the next section includes the DMPC controllers
that are capable of handling the prediction errors.

To make the ME A/C system cooperatively control multi-zones’ thermal comfort and air quality, we
suppose that the ME A/C system is equipped with a communication network based on wireless communi-
cation. In this network, they can share information (e.g., Tz,i, Wz,i and Cc,i) with one another, which is
shown in Fig. 1. The information flow between them is modelled as a network graph G = (V, ϑ,A), where
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V = {1, 2, . . . ,m} is the index set of different rooms and zones of the ME A/C system, ϑ ⊂ V×V is the edge
set of ordered pairs of the ME A/C system, and A = [aij ] ∈ Rm×m is the adjacency matrix with entries
aij = 1 or aij = 0. If the ME A/C subsystem i can receive information from the ME A/C subsystem j, then
(j, i) ∈ ϑ, aij = 1 and the ME A/C subsystem j is called the network neighbor of the ME A/C subsystem
i, denoted by j ∈ Vi, where Vi = {j ∈ V|aij = 1}. If the ME A/C subsystem i cannot have access to
the information of the ME A/C subsystem j, then (j, i) /∈ ϑ, aij = 0 and j /∈ Vi. Self-connection is not
considered for G, i.e., aii = 0, ∀i ∈ V. A graph G is undirected if aij = aji for any i, j ∈ V. In this paper,
the network graph G = (V, ϑ,A) of the ME A/C system is assumed to be undirected and connected [36].

All the DX units of the ME A/C system adjust their comfort levels adaptively by acquiring the adjacent
information. The neighbors of each DX unit can be defined in many different ways. In this paper, the
following way is based on the effect of thermal resistance and is defined as follows:

Vi = {j : |Rij | < ε0, i ̸= j}, (4)

where the parameter ε0 is a predefined threshold, Vi is the set of neighbors of room i.
The system dynamic equations (1) can be written as equations of the following:

ẋi = fi(xi, x−i, ui, ωi), i = 1, 2, . . . ,m, (5)

where the vector denoted as xi , [hs,i, Tz,i, Td,i, Tw,i,Wz,i, Cc,i]
T is the state of the subsystem Si; ui =

[vf,i,mr,i]
T are the constrained control signals; ωi , [Qload,i,Mload,i, Cload,i]

T represent the load variables
of room i; and x−i concatenate the states of all subsystems Sj (j ∈ V) of the subsystem Si, i.e., x−i =
(x1, . . . , xi−1, xi+1, . . . , xm). The functions fi(xi, x−i, ui, ωi) (i = 1, 2, . . . ,m) are defined as follows:

fi(xi, x−i, ui, ωi) =



αwc,iA2,i(Tw,i−
Td,i+Ts,i

2 )+hfgρvf,i(Wmix−
hs,i−CaTs,i

hfg
)+Caρvf,i(Td,i−Ts,i)

ρVh2,i∑m
j=1

Tz,j−Tz,i
Rij

+
T0−Tz,i

Ri
+Caρvf,i(Ts,i−Tz,i)+Qload,i

CaρVi

Caρvf,i(Tmix−Td,i)+αdc,iA1,i(Tw,i−
Tmix+Td,i

2 )

CaρVh1,i

αdc,iA1,i(
Tmix+Td,i

2 −Tw,i)+αwc,iA2,i(
Td,i+Ts,i

2 −Tw,i)−(hr2,i−hr1,i)mr,i

Cw,iρw,iVw,i

ρvf,i(
hs,i−CaTs,i

hfg
−Wz,i)+Mload,i

ρVi

(kP vf,i+kI

∫ TI
0 vf,ids)(Cs,i−Cc,i)+Gi·Occpi

Vi


. (6)

2.3. Simplified energy models of the ME A/C system

The power consumers of the multi-zone building ME A/C system include the dampers, condenser fan,
compressor and DX cooling coils. The power to drive the dampers is assumed to be negligible. The
condenser fan power Pcon is approximated as a second-order polynomial function of the total mass flow rate
of refrigerant (mr =

∑m
i=1 mr,i) driven by the fan

Pcon = c0 + c1mr + c2m
2
r, (7)

where c0, c1 and c2 are the parameters to be identified by curve-fitting of experimental data in [37].
The power consumption of the evaporator fans Peva based on the energy conservation law is expressed

as follows:

Peva =
m∑
i=1

(a0 + a1vf,i,+a2v
2
f,i + a3Ts,i + a4T

2
s,i + a5Qc,i + a6Q

2
c,i + a7vf,iTs,i+

a8vf,iQc,i + a9Ts,iQc,i),

(8)

where the coefficients ai (i = 0, 1, . . . , 9) are constant and can be determined by curve-fitting of experimental
data in [37]. Qc,i is the summation of the sensible and latent heat loads in room i.
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The power consumption of the compressor Pcomp is determined by [5]:

Pcomp =
m∑
i=1

mr,i(hr2,i − hr1,i)

η
, (9)

where η is the combined total efficiency of the compressor (known parameters).
The total electric power consumption Ptot of the multi-zone building ME A/C system at time t then is

calculated as

Ptot = Pcon + Peva + Pcomp. (10)

2.4. PMV index

The PMV index was proposed by Fanger [38] and is used as a thermal comfort indicator. Fanger’s
index quantifies thermal sensation experienced by numerous people. The sensation is represented by a scale
ranging from -3 (cold) to +3 (hot). The PMV index can be determined by personal and environmental
factors. The personal factors consist of metabolic rate Mr (W/m2) and clothing insulating Icl (m

2◦C/W).
The environmental factors comprise air temperature Tz, air humidity (or moisture content) Wz, air velocity
va and mean radiant temperature Tr. The function of the conventional PMV index for a single zone is
depicted by

PMV = g(Tz,Wz, va,Mr, Icl, Tr), (11)

where the specific expression can be described in [38].
Conventionally, the PMV index is an indicator of indoor air temperature and humidity [6, 9, 39, 40]. The

CO2 concentration, air temperature and humidity have become three major indicators of thermal comfort
and IAQ. The separate control of the PMV index and CO2 concentration was studied in [4, 41]. However,
three coupling effects of indoor air temperature, humidity and CO2 concentration cannot be ignored in many
cases. In fact, indoor humidity was correlated with CO2 concentration according to measurement results
reported in [42]. Furthermore, the experimental investigation [43] suggested that the value of the PMV
index was affected by control of the indoor CO2 concentration. To our best knowledge, very little work
exists in the literature that proposes mathematical equations among the indoor air temperature, relative
humidity and CO2 concentration. We propose simplified mathematical equations such that the PMV index
includes indoor thermal comfort and CO2 concentration in this study.

Mr is the rate of metabolism, which denotes the amount of energy used by a person per unit of time.
From the study of [44], the metabolic rate is directly related to a person’s energy output, which can be
expressed by calorie output per hour and a body’s surface area

Mr = Kp/Sp, (12)

where Kp denoting a person’s heat output per hour is the calorie of 1L of oxygen consumed, Sp is the body
surface area and can be expressed as [44]

Sp = 0.007184H0.725W 0.425, (13)

where H and W are the height (cm) and weight (kg) of a person, respectively. For 1L oxygen consumed,
we have [44] 1L O2 consumed = a+ b+ c = 1,

1L CO2 produced = R = a+ 0.802b+ 0.718c,
Kp = 5.047a+ 4.463b+ 4.735c,

(14)

where a is the carbohydrate, b denotes the protein and c represents the fat which is obtained by 1L of oxygen
metabolizing. The third equation of (14) can be reduced to the following one

Kp = 3.9× L O2 used + 1.1× L CO2 produced = 3.9 ∗ Vo + 1.1 ∗G, (15)

9



where Vo is the amount of oxygen consumed per unit of hour (l/h). This equation was widely cited and can
be used for estimating the energy expenditure, oxygen consumed and CO2 produced [45, 46, 47].

Under normal conditions, when a body is at rest and in nutritional equilibrium, the global respiratory
ratio is mCO2

/mO2
= 0.83 as reported in [48]. Since this study investigates thermal comfort and IAQ of

offices, we assume G/Vo = 0.83. One can then obtain

Kp =
481.3

83
∗G, (16)

According to (12), one can obtain that the metabolic rate in human metabolism of room i denoted by Mri

has the following equation

Mri =
481.3

83Spi

∗Gi, i = 1, 2, . . . ,m. (17)

where Spi
is the body surface area of room i.

Based on the equations (17) and (1f), Mri under a steady state of the CO2 concentration in room i can
be expressed by

Mri =
481.3

83Spi ·Occpi
(kP vf,i + kI

∫ TI

0

vf,ids)(Cc,i − Cs,i), i = 1, 2, . . . ,m. (18)

This equation implies that the metabolic rate can reflect indoor CO2 concentration produced.
Then the PMVi index is the function of the following variables:

PMVi = gi(Tz,i,Wz,i, Cc,i, vf,i, Icl, Tr), i = 1, 2, . . . ,m. (19)

It can be noted from this equation that the PMV index can be used as an indicator of thermal comfort and
IAQ of room i.

The equation (18) represents a condition under which the steady states of the system are reached, i.e.,
there is a relationship between the metabolic rate, CO2 concentration and air volumetric flow rate at steady
states. In fact, for the same activity of a person, his respiratory change is determined by the indoor air
temperature or/and humidity. A person’s metabolic rate is directly reflected by a respiratory change. The
high or low temperature or/and humidity can cause the occupant to breathe out either more or less CO2,
thus the indoor air temperature or/and humidity can influence the metabolic rate. On the other hand,
the air volumetric flow rate determines the indoor air temperature and humidity and their eventual steady
states. Therefore, the air volumetric flow rate is indirectly related to the metabolic rate.

Remark 3: Most previous works used the PMV index as a thermal comfort indicator. From function
(19), it can be seen that the modified PMV index has been extended and used as an indicator of both
thermal comfort and IAQ in the normal office buildings.

2.5. Constraints

The multi-zone building ME A/C system is subject to thermal comfort and IAQ constraints, and cooling
operational constraints are defined as below.

(C1) PMVi ∈ [PMVi,PMVi], i = 1, 2, . . . ,m. Each room’s thermal comfort and IAQ are within the
comfort ranges.

(C2) δ ∈ [δ, δ). The upper and lower bounds limit the ratio of the outside air entering the system.
(C3) Tz,i ∈ [T z,i, T z,i], Wz,i ∈ [W z,i,W z,i], Cc,i ∈ [Cc,i, Cc,i], i = 1, 2, . . . ,m. Each room’s air temper-

ature, moisture content and CO2 concentration are within the required ranges for occupants in the cooling
mode.

(C4) Ts,i ∈ [T s,i, T s,i], Ws,i ∈ [W s,i,W s,i], i = 1, 2, . . . ,m. The bounds of the air temperature and
moisture leaving the DX evaporator are limited because of the physical characteristics of the coils and the
air cooling coils of the DX evaporators. Besides, the upper bounds T s,i and W s,i are less than Tz,i and Wz,i

10
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Figure 2: Simplified schematic of two-layer time index.

respectively since they are used for cooling and dehumidifying of each room. The bound of the air enthalpy
hs,i satisfies: hs,i ∈ [CzT s,i + hfgW s,i, CaT s,i + hfgW s,i].

(C5)
∑m

i=1 vf,iTs,i ≤
∑m

i=1 vf,iTmix,
∑m

i=1 vf,iWs,i ≤
∑m

i=1 vf,iWmix. The mixed air temperature and
moisture content after each DX evaporator can only decrease.

(C6) Td,i ≤ Tmix, Tw,i ≤ Td,i, Ws,i ≤ Wmix, i = 1, 2, . . . ,m. Air temperature and moisture content
after each DX dry-cooling and wet-cooling regions can only decrease, respectively.

(C7) vf,i ∈ [vf,i, vf,i], mr,i ∈ [mr,i,mr,i], i = 1, 2, . . . ,m. The upper bounds of the air volumetric flow
rate vf,i and the mass flow rate of refrigerant mr,i of each room are limited by the physical characteristics
of the multi-zone building ME A/C system. The lower bounds vf,i > 0 and mr,i > 0 are matched minimum
operation and ventilation demands.

The constraints in (C1)-(C7) are compactly written as

xi ∈ X, ui ∈ U, h1,i(xi, ui) ≤ 0, h2,i(xi) ≤ 0 and PMVi ∈ F, i = 1, 2, . . . ,m. (20)

where X, U, P and F are bounded sets, h1,i(xi, ui) and h2,i(xi) can be written as functions of the state and
input variables, where they correspond to constraints in (C5) and (C6).

3. Controller design

To facilitate the description of the proposed AHDC strategy for the nonlinear systems (5), the notation u

will be used for the upper layer control and l will be used for the lower layer DMPC. We will abbreviate the
upper layer open loop controller to UOPC while the lower layer DMPC as LDMPC for short. tuk denotes the
sampling time instant of the UOPC and tlk represents that of the lower level DMPC; assume c(k, q) , kM+q,
where M is a positive integer number corresponding to the number of sampling instants of the LDMPC
between two sampling instants of the UOPC; tuk , tlc(k,0); δ

u , tuk+1 − tuk and δl , tlk+1 − tlk denote the

sampling period of the UOPC and LDMPC, respectively; δu = Mδl. T l denotes the prediction horizon of
the LDMPC, which satisfies δu ≥ T l.

Throughout the rest of this paper, we denote the long-term scale horizon as [0,Ku], and Ku = nδu (n ∈
N+). Fig. 2 shows the time index of the two layers and that the upper layer sends information to the lower
layer.

3.1. Upper level: steady state optimization problem

In reality, each zone has desired air temperature, humidity and CO2 concentration, the reference points of
which are determined by users. The objective of the upper layer considered in this paper is to minimize the
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total electricity bills in the building, which reflect demand and energy costs under the TOU rate structure,
and to generate optimal reference points of air temperature, humidity and CO2 concentration for each
zone for the lower layer. More specifically, we consider the following centralized steady-state optimization
problem:

X∗(tuk) =arg minx(tuk ),u(tuk )

( m∑
i=1

[
w1

n∑
k=1

(
Ec(t

u
k)Ptot,i(t

u
k)δ

u
)

︸ ︷︷ ︸
energy cost

+w2(Dc(t
u
k)max1≤k≤n

{
Ptot,i(t

u
k)
}
)
]

︸ ︷︷ ︸
demand cost

)
,

(21a)

subject to the following constraints:

fi(xi(t
u
k), x−i(t

u
k), ui(t

u
k), ωi(t

u
k)) = 0, i = 1, 2, . . . ,m, (21b)

|PMVi(t
u
k)| ≤ α, i = 1, 2, . . . ,m, (21c)

xi(t
u
k) ∈ Xi, ui(t

u
k) ∈ Ui, h1,i(xi(t

u
k), ui(t

u
k)) ≤ 0, h2,i(xi(t

u
k)) ≤ 0, i = 1, 2, . . . ,m, (21d)

where tuk ∈ [0,Ku], x(tuk) = [x1(t
u
k), . . . , xm(tuk)]

T is the system state, u(tuk) = [u1(t
u
k), . . . , um(tuk)]

T is the
control input. The total energy consumption Ptot is expressed in (10) and the PMV function is described
in (19). Constant α is the comfort bounded of the value of the PMV index. Ec(t

u
k) is the TOU electricity

rate at time step tuk , and Dc(t
u
k) is the demand charge rate at time step tuk . wi (i = 1, 2) denote the positive

weighting factors and fi(xi(t
u
k), x−i(t

u
k), ui(t

u
k), ωi(t

u
k)) are defined in (6). X∗(tuk) is a global optimal solution

of the optimization problem (21).
Before investigating the distributed steady state optimization problem, we make an assumption on the

system model.
Assumption 1. The optimal problem (21) admits a solution, of which the steady state of temperature,

humidity and CO2 concentration for each zone are approximately the same.
This assumption is valid in many practical situations where the different zones serve the same functions

and purposes; for example in an office environment, the comfort requirements are subject to the same
standards, ambient conditions and energy regulatory and pricing structure and are therefore normally the
same.

This assumption may not hold in cases where buildings have different functional zones such as offices and
ancillary equipment spaces. The similar algorithms can be extended to the cases when different functional
zones can be grouped into homogeneous ones.

Secondly, under a steady state, the total heat gain from neighboring zones is sometimes less dominant
compared with that from the outside plus the indoor heat gain in every zone. As reported in [12], the TOU
rate structure is also the main factor to dominate the steady state optimization solutions. Therefore, in the
optimization problem (21), we can ignore the interacting terms Σm

j=1,j ̸=i
Tz,j−Tz,i

Rij
in (1a) or Σm

j=1,j ̸=i
Tz,j−Tz,i

Rij

in (21b). Thereby, a simplified optimization problem (22) is considered for one zone i only as follows:

Xr
i (t

u
k) =arg minxi(tuk ),ui(tuk )

(
w1

n∑
k=1

(
Ec(t

u
k)Ptot,i(t

u
k)δ

u
)

︸ ︷︷ ︸
energy cost

+w2(Dc(t
u
k)max1≤k≤n

{
Ptot,i(t

u
k)
}
)︸ ︷︷ ︸

demand cost

)
,

(22a)

subject to the following constraints:

f̃i(xi(t
u
k), ui(t

u
k), ωi(t

u
k)) = 0, (22b)

|PMVi(t
u
k)| ≤ α, (22c)

xi(t
u
k) ∈ Xi, ui(t

u
k) ∈ Ui, h1,i(xi(t

u
k), ui(t

u
k)) ≤ 0, h2,i(xi(t

u
k)) ≤ 0, (22d)
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where tuk ∈ [0,Ku], Xr
i (t

u
k) is a local optimal solution, and i means that the optimization problem (22) only

needs the measurement information of room i. Here, f̃i(xi, ui, ωi) is described by

f̃i(xi, ui, ωi) =



αwc,iA2,i(Tw,i−
Td,i+Ts,i

2 )+hfgρvf,i(Wmix−
hs,i−CaTs,i

hfg
)+Caρvf,i(Td,i−Ts,i)

ρVh2,i
T0−Tz,i

Ri
+Caρvf,i(Ts,i−Tz,i)+Qload,i

CaρVi

Caρvf,i(Tmix−Td,i)+αdc,iA1,i(Tw,i−
Tmix+Td,i

2 )

CaρVh1,i

αdc,iA1,i(
Tmix+Td,i

2 −Tw,i)+αwc,iA2,i(
Td,i+Ts,i

2 −Tw,i)−(hr2,i−hr1,i)mr,i

Cw,iρw,iVw,i

ρvf,i(
hs,i−CaTs,i

hfg
−Wz,i)+Mload,i

ρVi

(kP vf,i+kI

∫ TI
0 vf,ids)(Cs,i−Cc,i)+Gi·Occpi

Vi


. (23)

We have five important remarks for the optimization problem (22).

• In (22a), the term regarding the end-user services contains two parts, i.e., the energy cost of the multi-
zone building ME A/C system given by

∑n
k=1

[
Ec(t

u
k)Ptot,i(t

u
k)δ

u
]
(weighted by w1) aims to minimise

energy cost, the peak demand Dc(t
u
k)max1≤k≤n

{
Ptot,i(t

u
k)
}
(weighted by w2) aims to reduce demand

cost.

• The weighting factors w1 and w2, which are determined by users, are to balance the two objectives.
Specifically, if preferring more demand reduction, they can increase w2 and decrease w1 and vice versa.

• It can be seen in (22a) that the energy and demand rates Ec(t
u
k) and Dc(t

u
k) depend on the TOU.

The rate structures are determined by utilities for various types of customers. For some rate plans,
customers have the flexibility to choose peak periods so that they can save cost by optimizing energy
use during specific time periods.

• This steady state optimization problem is different from our previous work [11, 12]. In [11], an open
loop optimal control algorithm was proposed to minimize energy consumption by setting temperature,
humidity and CO2 concentration. In [12], an open loop steady state optimal control algorithm is au-
tonomously and adaptively setting optimal temperature, humidity and CO2 concentration references,
which could be time-varying to minimize energy cost and the PMV index. This study proposes an
open loop optimal controller that minimizes the energy and demand charge costs under the PMV index
within acceptable ranges. It reaches the same conclusions as [12] in scheduling the reference setpoints.
On the other hand, this study considers a DR action, which can further improve energy efficiency and
reduce energy cost, it is different from our previous work [11, 12] without consideration of that action.

• The optimal solution applies to one zone, and the resulting reference setpoints are then communicated
to the whole network through connecting neighbors. Therefore, the scheduling is implementable in a
distributed manner.

The ADSMS is a hierarchical distributed way that aims at achieving energy and cost savings in ME
A/C operations without compromising occupancy comfort levels. The information communication for the
simplified ADSMS is illustrated in Fig. 3. The idea here is to consider comfort as a service for occupants.
The zones (using zone modules (ZMs)) are customers seeking this service (called token), and a distribution
system operator (DSO) is the service provider (called provider). There are four steps in the ADSMS that
are explained in the following:

1) Master: The DSO collects one zone’s measurement information (cooling and pollutant loads, weather
and occupancy), then computes and transmits optimal reference signals to this zone by a communication
network.

2) Slave: The neighboring zones receive communication information using numerous ZMs from the driving
system. Then neighbouring zones then communicate to whole zones through connecting neighbors.
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Figure 3: Autonomous demand-side management scheduling architecture.

3) Token requests: The main aim of the ZM is to run an MPC using forecast information (weather condi-
tion, occupancy and cooling and pollutant loads) plus sensor readings (temperature and humidity, thermostat
and CO2 sensors) to compute the minimal energy consumption and cost required without breaching comfort
ranges.

4) Coordination: After each room receives communication information, each DX unit employs a DMPC
algorithm to optimise the transient process of reaching thermal comfort and satisfying IAQ demands while
minimize energy consumption and costs.

Remark 4: For ease of implementation, the min-max problem in (22a) is converted into the standard non-
linear programming described below so that it can be conveniently solved by the Matlab built-in functions.
A new variable zP is introduced to represent the peak demand of the day for zone i only as follows:

zP,i = max1≤k≤n

{
Ptot,i(t

u
k)}. (24)

By simplifying the objective to the form in (25), the optimization problem in (22a) can be rewritten as

min
(
w1

n∑
k=1

Ec(t
u
k)Ptot,i(t

u
k)δ

u + w2Dc(t
u
k)zP,i

)
. (25)

3.2. Lower level: DMPC

To conclude, the goal of the lower layer is to design the tracking rule u(tuk) in a distributed way so that
each subsystem of (5) can reach its steady states according to the changing environment during the day.

The UOPC transmits the reference signals, xr(s; tuk) = [xr
1(s; t

u
k), . . . , x

r
m(s; tuk)]

T , ur(s; tuk) = [ur
1(s; t

u
k),

. . . , ur
m(s; tuk)]

T , T r
s,i(s; t

u
k), δ(s; t

u
k), to the LDMPC for s ∈ [tuk , t

u
(k+1)), i = 1, 2, . . . ,m. Here, xr(tuk) ,

xr(tuk ; t
u
k). In the lower layer, the DMPC controllers are designed to steer for the multi-zone building

ME A/C system to track the trajectory references calculated by the upper layer. The linearized dynamic
subsystem Si for the nonlinear systems (5) around the trajectory references at sampling time instant tlc(k,q)
can be written as given below. In (26), the interacting terms in non-neighboring zone are ignored because
of our definition of neighbors in (4).{

δẋi(s) = Aii(t
l
c(k,q))δxi(s) +

∑
j∈Vi

Aij(t
l
c(k,q))δxj(s) +Bi(t

l
c(k,q))δui(s),

yi(s) = Ciiδxi(s) + yri (s), s ∈ [tlc(k,q), t
l
c(k,q) + T l), i = 1, 2, . . . ,m,

(26)
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where Aii(t
l
c(k,q)) =

∂fi
∂xi

(xr
i (t

l
c(k,q)), u

r
i (t

l
c(k,q))), Aij(t

l
c(k,q)) =

∂fi
∂xj

(xr
j(t

l
c(k,q)), u

r
j(t

l
c(k,q))), Bi(t

l
c(k,q)) =

∂fi
∂ui

(xr
i (t

l
c(k,q)), u

r
i (t

l
c(k,q))) for j ∈ Vi. δxi(s) and δui(s) are the deviations of state and input from their trajec-

tory references, respectively; yi = [Tz,i,Wz,i, Cc,i]
T are the original output variables; yri = [T r

z,i,W
r
z,i, C

r
c,i]

T

are the trajectory references in the lower layer, which are calculated in the upper layer.
The predicted subsystem Si can be written as follows:

δẋp
i (s; t

l
c(k,q)) = Aii(s; t

l
c(k,q))δx

p
i (s; t

l
c(k,q)) +

∑
j∈Vi

Aij(t
l
c(k,q))δx̂j(s; t

l
c(k,q))+

Bi(s; t
l
c(k,q))δu

p
i (s; t

l
c(k,q)),

ypi (s; t
l
c(k,q)) = Ciiδx

p
i (s; t

l
c(k,q)) + yri (s; t

l
c(k,q)), s ∈ [tlc(k,q), t

l
c(k,q) + T l), i = 1, 2, . . . ,m,

(27)

where δxp
i (s; t

l
c(k,q)), δu

p
i (s; t

l
c(k,q)) and ypi (s; t

l
c(k,q)) are the predicted state, input and output trajectories at

time step tlc(k,q), δx̂j(s; t
l
c(k,q)) is the assumed state sequence of Si at time step tlc(k,q).

The MPC algorithm is designed for the lower layer to minimize the optimization objective after reaching
trajectory references as well as to handle building external disturbances and to compensate for the model
mismatch. Let

δup
i (s; t

l
c(k,q)) = −

∑
j∈Vi

Kj(s; t
l
c(k,q))δx̂j(s; t

l
c(k,q)) + vpi (s; t

l
c(k,q)), s ∈ [tlc(k,q), t

l
c(k,q) + T l), (28)

where i = 1, 2, . . . ,m, Kj(s; t
l
c(k,q)) is the gain matrix from zone j, vi(s; t

l
c(k,q)) is a new input variable for

zone i, then (27) is converted to (29) as follows:{
δẋp

i (s; t
l
c(k,q)) = Aii(s; t

l
c(k,q))δx

p
i (s; t

l
c(k,q)) +Bi(t

l
c(k,q))v

p
i (s; t

l
c(k,q)),

ypi (s; t
l
c(k,q)) = Ciiδx

p
i (s; t

l
c(k,q)) + yri (s; t

l
c(k,q)), s ∈ [tlc(k,q), t

l
c(k,q) + T l), i = 1, 2, . . . ,m.

(29)

Many standard approaches exist in [23, 25] for the system (29), which depends entirely on one zone
i. In this paper, we are using the MPC strategy proposed by our previous work [12], then the proposed
optimization objective is given by

minvp
i (s;t

l
c(k,q)

) J
l

i =

∫ tlc(k,q)+T l

tl
c(k,q)

(
∥∥ypi (s; tlc(k,q))− yri (s; t

l
c(k,q))

∥∥2
Qi

+
∥∥vpi (s; tlc(k,q))∥∥2Ri

)
ds

+
∥∥ypi (tlc(k,q) + T l; tlc(k,q))− yri (t

l
c(k,q) + T l)

∥∥2
Pi
, i = 1, 2, . . . ,m,

(30a)

subject to:

δẋp
i (s; t

l
c(k,q)) =Aii(s; t

l
c(k,q))δx

p
i (s; t

l
c(k,q)) +Bi(s; t

l
c(k,q))v

p
i (s; t

l
c(k,q)), i = 1, 2, . . . ,m, (30b)

ypi (s; t
l
c(k,q)) = Ciiδx

p
i (s; t

l
c(k,q)) + yri (s; t

l
c(k,q)), i = 1, 2, . . . ,m, (30c)

xp
i (s; t

l
c(k,q)) ∈ X, vpi (s; t

l
c(k,q)) ∈ V, i = 1, 2, . . . ,m, (30d)

where s ∈ [tlc(k,q), t
l
c(k,q)+T l), J

l

i is the lower layer objective function i, the controllers δup
i (s; t

l
c(k,q)) obtained

are distributed. Qi, Ri, Pi are the weighting matrix, V is a bounded set of the new input variable vi. The
convergence for the above finite horizon periodic MPC optimization problem (30) can be proved by the
results in [49, 50].

The implementation strategy of the proposed AHDC algorithms for a multi-zone building ME A/C
system can be summarized as follows:

The algorithm 1 in our previous work [12] is adopted to solve the upper layer distributed steady state
optimization problem.

Algorithm: The lower layer DMPC algorithm can be given below.
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Figure 4: Schematic of six-rooms building with the thermal network for all zones and its surrounding walls.

1) At sampling time instant tuk , k = 0, 1, . . . , n, UOPC receives each local neighbor’s measurement
information.

2) UOPC computes the state trajectory xr(s; tuk) = [xr
1(s; t

u
k), . . . , x

r
m(s; tuk)]

T , s ∈ [tuk , t
u
k+1) and its corre-

sponding control input trajectory ur(s; tuk) = [s;ur
1(t

u
k), . . . , u

r
m(s; tuk)], s ∈ [tuk , t

u
k+1), which are transmitted

to LDMPC, to obtain linearized systems (29).
3) At sampling time instant tlc(k,q), LDMPCi receives the state measurement xi(s; t

l
c(k,q)) and x−i(s, t

l
c(k,q))

from its neighbors, gives an initial point xi(0) (k = q = 0) and computes the optimal control input
v∗i (s; t

l
c(k,q)) of the optimization problems (30) over the prediction horizon [tlc(k,q), t

l
c(k,q) + T l].

4) The first solution v∗i (s; t
l
c(k,q)) is used through (28) to update δup

i (s; t
l
c(k,q)) as the initial condition

over the next prediction horizon [tlc(k,q+1), t
l
c(k,q) + δl].

5) If 0 ≤ q < M, q = q + 1 and go to 3); else k = k + 1, q = 0 and go to 1).

4. Case study

In this section, a six-room model is considered to simulate the performance of the proposed AHDC strat-
egy in special climate conditions in Cape Town, South Africa. The simulations are conducted during normal
operation of an office building with normal occupancy. The six rooms are connected and the undirected
graph is G = {V,A} where V = {1, 2, 3, 4, 5, 6} and ε0 = 5. R12 = R21 = R23 = R32 = R34 = R43 = R45 =
R54 = R56 = R65 = R61 = R16 = 4 < ε0, R13 = R31 = R24 = R42 = R35 = R53 = R46 = R64 = R51 =
R15 = R62 = R26 = 8 > ε0, R14 = R41 = R25 = R52 = R36 = R63 = 12 > ε0, then the neighbors of zone i
are depicted in Table 1. As an illustrating example, Fig. 4 shows the schematic of a six-room building with
the thermal network. It can be verified that the network is connected.

Table 1: The neighborhood definition of zones

Room (i) Neighbors (Vi) Room (i) Neighbors (Vi)

1 2,6 2 1,3
3 2,4 4 3,5
5 4,6 6 5,1

4.1. Parameter selection

The volume of each room space is 77 m3. The model parameters of the multi-zone building ME A/C
system are given in Table 2. The coefficients of the power consumption models for the condenser (7) and
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evaporators (8) are calibrated through the regression analysis of the available measured data in [37], which
are shown in Table 3. It is assumed that the combined total efficiency of the compressor η is 0.85. Each
room has a window with the area of 4 m2. For the proposed AHDC strategy considered below, the system
variable constraints are given by bounds in Table 4, and we constrain the value of each room’s PMV index
in the range of [−0.5, 0.5] to ensure that the multi-zone building ME A/C system is able to control each
room’s thermal comfort and IAQ at the required levels for occupants. The weighting factors are defined as
w1 = 1, w2 = 1. In our previous work [12], the simulation results demonstrated that the open loop optimal
controller and the MPC scheme are not sensitive to the model parameters A1 and A2 of the single-zone DX
A/C system within any ranges of [aA0, bA0] where 0 ≤ a, b ≤ 1 and a ≤ b. This result can be extended to
the multi-zone building ME A/C system. Hence, A1,i = 0.15A0,i and A2,i = 0.85A0,i, i ∈ V are chosen in
this paper.

Table 2: Model parameters of the ME A/C system.

Notations Values Notations Values

ρ 1.2 kg/m3 hfg 2450 kJ/kg
Vi 77 m3 εwin 0.45
Vh1 0.04 m3 Vh2 0.16 m3

kspl 0.0251 kJ/m3 Ca 1.005 kJ kg−1 ◦C−1

A0,i 22.07 m3 Ri 15◦C/kW

Table 3: Coefficients of energy models.

Notations Values Notations Values

a0 = 900.5 a1 = −8.1 a2 = 6.18 a3 = −0.15
a4 = −4.61 a5 = 0.02 a6 = −0.2 a7 = 0.01
a8 = 0.12 a9 = 0.09 c0 = 138.1 c1 = 0.52
c2 = −2.3

Table 4: Values of system constraints.

Notations Values Notations Values

T s,i 22 ◦C T s,i 8 ◦C

T z,i 26 ◦C T z,i 22 ◦C

T d,i 22 ◦C T d,i 10 ◦C

Tw,i 22 ◦C Tw,i 10 ◦C

W z,i 12.3/1000 kg/kg W z,i 9.85/1000 kg/kg

Cc,i 800 ppm Cc,i 650 ppm

W s,i 9.85/1000 kg/kg W s,i 7.85/1000 kg/kg
vf,i 0.8 m3/s vf,i 0.05 m3/s
mr,i 0.11 kg/s mr,i 0.005 kg/s

hs,i 46.3 kJ/kg hs,i 27.3 kJ/kg
α 0.5

The simulation runs from 0:00 to 23:59. The environmental temperature and relative humidity infor-
mation are obtained from a meteorological station located in Cape Town, South Africa. The outside air
temperature and relative humidity profiles are plotted in Fig. 5(a). The predicted solar radiative heat flux
density profile is shown in Fig. 5(b). The external sensible heat load of each room is depicted in Fig. 5(c).
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The certainty internal sensible and latent heat loads and the CO2 emission load of each room over a 24-hour
period are predicted in Fig. 6. The certainty loads mean the sensible heat and moisture loads from lighting,
equipment and applications. The values of Figs. 5-6 at every hour are commensurately quantized for the
lower layer.
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Figure 5: (a) Outside temperature and relative humidity. (b) Radiative heat flux. (c) External sensible heat load.
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Figure 6: Certainty internal sensible, certainty moisture and CO2 emission loads.

It is assumed that the building operates under the TOU rate plan shown in Table 5. Since there is a big
difference in the demand charges between peak and off-peak hours, energy cost savings can be expected if
significant amounts of peak power consumption are shifted to non-peak hours.

Table 5: Time-of-use electricity rates.

Summer Period Energy charge ($/kWh) Demand charge ($/kWh)

Peak 12:00-18:00 0.20538 11.889
Standard 08:00-12:00, 18:00-21:00 0.05948 2.352
Off-Peak 21:00-08:00 0.03558 1.007

4.2. Comparison of optimal scheduling control strategies

To illustrate the performance of the proposed AHDC, comparisons with other control strategies are
considered for scheduling the operation of the multi-zone building ME A/C system. The first approach is
the DMPC algorithm based on given setpoints of air temperature, humidity and CO2 concentration, aiming
at minimizing energy consumption, referred as S1 [11]. The second approach is the DMPC algorithm based
on energy cost and the value of the PMV index minimization, referred as S2 [12]. The proposed approach
is the DMPC algorithm based on demand and energy cost minimization, referred as S3. To simplify the
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comparison, among the three strategies, the multi-zone building ME A/C system operation profiles are
generated by employing an NLP algorithm under the same outside and inside conditions. The control
parameters are listed below: The sampling time ∆ = 2 minutes is adopted to discretize the nonlinear
multi-zone building ME A/C system. The prediction horizon of the lower layer DMPC scheme is set as
N = 15; the sampling periods of UOPC and LDMPC are 1 hour and 2 minutes, respectively. The total
simulation time Ku is 24 hours. To illustrate the sampling period without affecting the control accuracy,
the steady state solutions under the sampling periods 1 hour and 0.5 hour are plotted in Fig. 7. It can be
seen from Fig. 7 that the control accuracy is rarely affected by the setting sampling period. Table 6 lists
the combinations of the optimization and control strategies in the three scenarios. The test results for the
three scenarios are shown in Section 4.3.
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Figure 7: The steady state errors in six-room building under the sampling periods 1 hour and 0.5 hour.

Table 6: Comparison of different control strategies.

Scenarios Upper layer optimization Low layer control Setpoint DR action

S1 Energy consumption DMPC Given
S2 Energy cost+PMV DMPC Autonomous
S3 Energy cost+demand cost DMPC Autonomous X

4.3. Simulation test results

The performances of the three scenarios are compared through MATLAB simulations with historical
weather data for a specific day. Fig. 8 shows the steady state profiles of air temperature, relative humidity
and CO2 concentration of each room, which are obtained by solving the distributed coordination optimization
problem (22) and the centralized optimization (21). It can be seen from Fig. 8 that the distributed steady
state is close to the centralized steady states of each room; the deviations are small and can be accepted by
occupants (Assumption 1 is valid). The scheduling is thus effective.

The tracking reference points of the air temperature of each room with the three control strategies are
depicted in Fig. 9 over a 24-hour period. The tracking reference points of relative humidity of each room
with the three control strategies are illustrated in Fig. 10 over a 24-hour period. The tracking reference
points of CO2 concentration of each room with the three control strategies are shown in Fig. 11. Figs. 9-11
also show that the optimized reference points are adaptively preprogrammed by employing scenarios S2 and
S3. We observe that each room’s air temperature, relative humidity and CO2 concentration, by using the
proposed control strategy, are tracking and maintaining their reference points. It can be seen from Figs. 9-11
that the reference points of air temperature, relative humidity and CO2 concentration of each room with
scenarios S2 and S3 are raised during standard hours. The reason is that the controllers of scenarios S2 and
S3 are automatically adjusting their reference points upward during standard hours according to the energy
price policy and DR action respectively, such that the energy cost and energy consumption are minimized
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Figure 8: The steady state in each room under the distributed and centralized optimal controller.

while both thermal comfort and IAQ are still maintained within comfort ranges. The pre-cooling and
pre-decreasing CO2 contaminant concentration automatically starts in the morning simultaneously. This is
because the energy costs for operating a multi-zone building ME A/C system during off-peak hours are lower
than other periods. In the morning, the air temperature, humidity and CO2 concentration reference points
of all rooms are kept at the lower bounds of the comfort regions to store cooling and lower CO2 contaminant
concentration until the peak hours. As soon as the peak hours start, the reference points increase to the
upper bounds, hence minimizing the demand in the afternoon by taking DR action. After more cooling
and pollutant loads occur simultaneously during peak hours, the reference points are automatically set
higher to turn off the cooling and increase the CO2 contaminant concentration. We also observe that the
time-varying reference points of air temperature, relative humidity and CO2 concentration of each room
are always maintained in the comfort regions over a 24-hour period with the proposed control strategy.
We further observe that after reaching their reference points, the proposed controllers are maintaining the
reference points with small variation ranges. Therefore, the proposed control strategy is capable of handling
the changing cooling and pollutant loads over a 24-hour period and maintaining thermal comfort and IAQ
at comfort levels. From Fig. 12, it can be observed that the values of the PMV index for the six rooms
lie within the expected range [-0.5,0.5], which indicates that the indoor air temperature, humidity and
CO2 concentration are controlled within their comfort ranges. It can be observed from Fig. 12, with the
control method in [40], the PMV index is controlled at the desired value, which indicates that the indoor
air temperature and humidity are at their desired references, but it may not demonstrate that the indoor
air CO2 concentration is within a comfort range.

Table 7: Comparison of different control strategies.

Strategy Energy consumption (kWh) Energy cost ($)

S1 124.56 10.67
S2 80.34 6.98
S3 79.78 5.66

To show the advantage of the proposed AHDC strategy over the other two control strategies in shifting
demands from peak periods to non-peak periods, the power consumption under the peak and non-peak pe-
riods for the three control strategies are shown in Fig. 13. Table 7 summarizes the total energy consumption
and cost for the multi-zone building ME A/C system under the three control strategies. From Table 7,
it can be seen that with control strategies S2 and S3, more energy consumption and costs are reduced in
comparison with control strategy S1. The reason is that each room’s air temperature, humidity and CO2

concentration reference points are adaptively and optimally preprogrammed under control strategies S2 and
S3. We observe from Fig. 7 that the energy consumptions with control strategies S2 and S3 are almost the
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Figure 9: Each zone’s temperature profile for a 24-hour period.

same, while the energy costs are different. It implies that the proposed control strategy S3 is capable of
reducing more energy costs but not of reducing energy consumption in comparison with control strategy S2.
It can be seen from Fig. 13 that under the proposed control strategy S3 with DR action, more energy costs
are reduced during peak hours in comparison with control strategies S1 and S2. The reason is that the pro-
posed control strategy S3 is automatically shifting peak demands to non-peak periods. Meanwhile, energy
consumption with the proposed control strategy S3 is more than that with control strategy S2 during stan-
dard periods because the energy cost in standard periods is lower than that in peak periods. Consequently,
minimizing total energy costs and shifting demand are achieved over a 24-hour period while maintaining
both thermal comfort and IAQ at the required levels. Therefore, according to the above comparisons, the
proposed control strategy S3 achieves a lower proportion of demand cost during peak hours and shows
successful demand shifting and energy cost reduction.

Furthermore, to show the performance of the proposed distributed control strategies over the previous
distributed control scheme [25], we will compare the two control methods in view of energy efficiency in this
section. The distributed control strategy in [25] is based on the given reference of indoor air temperature
and a linearization system of the HVAC system with a solar plant by fixing the fancoil air speed. The
distributed controller is then steered for the HVAC system to follow the given reference with minimizing
energy consumption. In order to compare the two control strategies, the control scheme [25] should be
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Figure 10: Each zone’s relative humidity profile for a 24-hour period.

employed to steer the ME A/C system to follow the given reference and fixing volume flow rate of supply
air. The comparison results are depicted in Table 8. It can be seen from the table that the proposed
control strategy can reduce more energy consumption and cost in comparison with the previous control
strategy [25]. The reason is that the proposed control scheme shifts the peak demand from the peak hours
to off-peak hours by adaptively programming each room’s setpoints of air temperature, humidity and CO2

concentration.

Table 8: Compared with the previous control strategy.

Strategy Energy consumption (kWh) Energy cost ($)

Previous control [25] 128.75 10.98
Proposed control 79.78 5.66
Saving 38% 48.5%

22



0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 1

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 2

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 3

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 4

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 5

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

0 5 10 15 20 24

Time (h)

600

650

700

750

800

850

900

C
O

2
 c

on
ce

nt
ra

tio
n 

(p
pm

)

Room 6

Optimized references
Scenario 1
Scenario 2
Scenario 3
Upper bound
Lower bound

Figure 11: Each zone’s CO2 concentration profile for a 24-hour period.
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Figure 12: Profile of the value of the PMV index for the six rooms over a 24-hour period.

5. Conclusion

This paper presents an AHDC strategy to the problem of minimizing demand and energy costs, as
well as reducing communication resources, computational complexity and conservativeness for a multi-zone
building ME A/C system while maintaining both thermal comfort and IAQ within comfort ranges. The
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Figure 13: Energy consumption in three time periods with the three control strategies.

developed control strategy is an improvement over the current control methods, in which the air temperature,
humidity and CO2 concentration references of each zone are adaptively preprogrammed optimal operation
profiles for the multi-zone ME A/C system to minimize the energy and demand costs. The lower layer
DMPC controllers steer the multi-zone building ME A/C system to follow and maintain the autonomously
preprogrammed references; meanwhile, the energy and demand costs are reduced and shifted from the peak
hours to non-peak hours. The simulation results show that the designed DMPC controller optimise the
transient processes reaching the steady state and over the previous distributed control method in view of
energy efficiency. They also demonstrated that the proposed AHDC strategy gives the controller the ability to
handle model parameters uncertainty and time-varying weather conditions. The proposed control strategy
is suitable for a cluster of similarly purposed buildings, thus requiring less and cheaper communication
resources to implement.
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[6] J. Cigler, S. Pŕıvara, Z. Váňa, E. Žáčeková, L. Ferkl, Optimization of predicted mean vote index within model predictive
control framework: Computationally tractable solution, Energy and Buildings, vol. 52, pp. 39-49, 2012.

[7] J. Mei, X. Xia, A reduced model for direct expansion air conditioning system and energy efficiency MPC control of indoor
climate, in: 13th International Conference on Control and Automation, Ohrid, Macedonia, pp. 624-629, 2017.

[8] J. Ma, S.J. Qin, T. Salsbury, Application of economic MPC to the energy and demand minimization of a commercial
building, Journal of Process Control, vol. 24, no. 8, pp. 1282-1291, 2014.
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