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ABSTRACT 

Understanding variation in the foliar nutrient among indigenous species of the 

bushveld is crucial for rural livelihoods, in particular the integration of trees into 

agroecosystems. The study explored nutrient composition of common browse 

species with regard to nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) 

using leaf spectra (400–2500nm) and chemical data collected from nine bushveld 

species, along with partial least squares (PLS) analysis. The work further explored 

the relationship between canopy reflectance of Sentinel-2 image and foliar properties 

of the identified species. 

Spectroscopic analysis reveals useful information about nitrogen at leaf and canopy 

scales whereas modelling reflectance using satellite image did not yield satisfactory 

results. At the leaf level, nitrogen was highly correlated with leaf spectral reflectance 

(R2=0.72, p<0.05) for winter and (R2=0.88, p<0.05) for summer. The coefficient of 

determination for the relationships between leaf reflectance and concentrations of 

phosphorus, potassium and calcium were low. Modelling the relationship using 

Sentinel-2 data also showed higher correlations (R2=0.44, p<0.05) for nitrogen 

compared with the other nutrients investigated. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Trees are important natural assets, which play vital economic and environmental 

roles, especially with regard to crop and livestock productivity. They constitute fodder 

for livestock and game in the arid and semi-arid zones (Chepape et al., 2011). 

Fodder trees and shrubs contain appreciable amounts of nutrients that are deficient 

in other feed resources such as grasses especially during dry seasons (Lukhele & 

van Ryssen, 2000). The integration of trees in production landscapes is known as 

agroforestry; and it bestows a wide range of ecosystem benefits to improve the 

quality of life of rural households (Mbow et al., 2014). 

Agroforestry is recognised as a viable option for optimising land productivity and 

reducing pressure on the indigenous forests (Mukolwe, 1999). Due to the persistent 

threat of food shortages, projected climate change and rising prices of agricultural 

inputs, agroecology has experienced special interest from research and 

development communities (Akinnifesi et al., 2010; Chirwa et al., 2015). It is 

considered a cost-effective and ecologically sound approach to enhance food 

security particularly in the era of adverse environmental conditions (Mbow et al., 

2014). Considerable work has focussed on integration of indigenous trees into 

agroecosystems to enhance productivity, improve income opportunities and address 

conservation related issues (Kwesiga et al., 2003; Garrity et al., 2006; Kalaba et al., 

2010; Chirwa et al., 2015). 

Indigenous trees demonstrate the potential to supplement exotic species due to the 

minimal impact they have on the environment (Mukolwe, 1999; Lukhele & van 

Ryssen, 2000; Tegegne, 2008). Possible applications include establishment of 

indigenous multipurpose trees on agro-ecological systems and on sensitive sites 

such as riparian zones, water-stressed catchments and land cleared of alien plants 

to improve land management and protect biodiversity (Everson et al., 2011). While 

the potential benefits of agroforestry are well documented, particular aspects need to 

be adapted to suit the areas where the trees are introduced (Akinnifesi et al., 2010). 
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Scientific basis for actions is critical to enhance the conservation and sustainable 

use of organic resources and their contributions to human well-being. Nassoro et al. 

(2015) assert that the use of browse trees generally as supplements to ruminant 

feeding is limited by lack of information on the nutritive potential. This necessitates 

the need for efficient methods to investigate their composition for purposes of 

conservation and utilisation in agricultural production systems (Chirwa et al., 2015). 

Among the research imperatives is the need to domesticate new tree species to 

provide a wide range of products and services (Garrity et al., 2006). 

1.2 Science-based agroforestry 

Palm et al. (2001) assert that despite the critical services that organic inputs provide 

to agricultural productivity, the use of organic materials for fodder and soil fertility 

management has been based primarily on trial and error. The resource quality of a 

multipurpose plant varies with the plant species, plant parts and their maturity. 

Therefore, it is essential that these qualities are investigated. Plant materials are 

classified by taxonomic family, genus, and species and whether they are able to 

nodulate and fix nitrogen or not (Palm et al., 2001). 

Leaf nitrogen is one of the key factors limiting agricultural production and ecosystem 

functioning. It is a good indicator of photosynthetic capacity of plants and measure of 

rangeland quality (Ramoelo & Cho, 2018). Nitrogen is related to protein and biomass 

and it plays a crucial role in understanding the feeding patterns and distribution of 

browsers. The concept of cultivating and domesticating high value indigenous tree 

species features prominently in the research and development agenda of most 

developing countries. Efforts made by countries such as the Democratic Republic of 

Congo to test methods of agroforestry using native trees are helping to take pressure 

off the continent's national parks (World Agroforestry Centre, 2015). 

The nutrient composition of some browse species has been investigated using 

conventional wet techniques (e.g. Lukhele & Ryssen, 2000). Methods based on 

tissue analysis have been widely applied due to their reliability. However, they are 

costly because they require use of reagents, time-consuming and destructive 

(Muñoz-Huerta et al., 2013). A significant barrier to plant mineral analysis in general 

is the price versus the perceived value by farmers (Rossa et al., 2015). For instance, 

the delay in processing time with wet analysis can result in significant losses on 
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crops, should any corrective action be necessary (van Maarschalkerweerd & Husted, 

2015). 

To overcome these limitations, efforts have been directed to the study and 

development of spectroscopy in the visible to shortwave infrared (Vis-SWIR) which is 

fast, non-destructive and less costly (Huang et al., 2009). The composition of an 

organic matrix can be estimated by reflectance spectra due to organic functional 

groups or the association between minerals and the organic functional groups 

(García-Sánchez et al., 2017). Reflectance spectroscopy offers rapid plant mineral 

analysis with instant results (Nomngongo et al., 2017). Remote sensing techniques 

have also been proven to be valuable for in-field plant nutrient estimation and 

distribution patterns on landscapes (Shi et al., 2015). 

1.3 Hyperspectral reflectance of leaf material 

Absorption of electromagnetic radiation in the near infrared (NIR) and other parts of 

the electromagnetic spectrum reflects the molecular composition of a sample, and is 

routinely used for fast analysis in science and industry (Rossa et al., 2015). Spectral 

features within the shortwave and near-infrared region have been shown to correlate 

with the chemical composition of organic materials such as dried and ground plant 

leaves (Riley & Canaves, 2002). The technique is widely accepted as a tool for 

analysis in fields such as the food and agricultural industries (İlknur ŞEN, 2003).  

Near infrared (NIR) equipment can record spectra for solid and liquid samples with 

no pre-treatment, implement continuous methodologies, provide spectra quickly and 

predict physical and chemical parameters from the spectrum (Rossa et al., 2015). 

Spectrometers used are essentially identical with those employed in other regions of 

the electromagnetic spectrum. Equipment can incorporate a variety of devices, 

depending on the characteristics of the sample and the particular analytical 

conditions (Blanco & Villarroya, 2002). 

Quantification of macronutrients and micronutrients by NIR spectroscopy in soils has 

been demonstrated by various studies (e.g. İlknur ŞEN, 2003; Awiti et al., 2007). It is 

reported that measurement of soil N demonstrated good results whilst calibrations 

for P and K in soil were less successful (Ward et al., 2011). The potential of NIR 

technique for rapid analysis of N content in cotton leaves (Riley & Cánaves, 2002), 
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and macro- and micronutrients in sugarcane (Yarce & Rojas, 2012) and in yerba 

mate indicate that the technique is useful (Rossa et al., 2015). 

1.4 Monitoring leaf nutrients using satellite data 

Monitoring foliar nutrients using traditional methods of leaf harvesting and 

transportation to laboratories for analysis implies a number of difficulties. Species of 

interest are sometimes inaccessible, because of dense overgrowth or they could be 

located in swamps (van Deventer et al., 2015). Remote sensing techniques 

complement ground based monitoring systems. They essentially involve the ability to 

detect and characterise unique patterns of nutrient phenology across species, 

seasons and regions (Cho et al., 2012). 

In spite of the advances made in mapping foliar nutrients using remote sensing, the 

relationship between foliar nutrient concentration and spectral reflectance across 

species, season and ecosystems remains poorly understood (Ramoelo et al., 2015). 

The relationship between foliar nutrients and spectral information of multipurpose 

trees in relation to seasonal variation is of significance in resource characterisation 

(van Deventer et al., 2015). Due to their fine spatial resolution and reasonable 

number of spectral bands, new sensors such as RapidEye, WorldView-2 and 

Sentinel-2 are a trade-off in terms of the benefits offered by multispectral and 

hyperspectral remotely sensed data. Their spectral bands are configured within 

unique portions of the electromagnetic spectrum such as the red-edge (Dhau et al., 

2017). 

The recent availability of time series of Sentinel-2 imagery at fine spatial resolution 

(10m) and high temporal frequency (every 5 days with S-2A and S-2B) represents a 

significant step in the use of Earth Observation (EO) data for the monitoring of forest 

resources (Simonetti et al., 2017). Sentinel-2 imagery is freely available since 2015 

through the Copernicus programme of the European Commission. This study 

therefore tested this method; and the results henceforth could offer an opportunity for 

monitoring and mapping tree species that are alternative sources of nitrogen in 

agroecosystems. 
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1.4 Problem statement 

The potential of leaf spectroscopy as a robust technique for simultaneous prediction 

of leaf biochemical properties is well acknowledged. However, the challenge is to 

move the application of laboratory spectroscopy toward a diagnostic screening tool 

that can aid the development of reliable spectral case definition to characterize 

fodder quality of various plant species for agricultural and environmental 

management. The lack of suitable reference material of high quality to correlate the 

nutrient concentrations to fast spectral measurements is an eminent setback. 

Although canopy-level hyperspectral measurements have been linked to plant 

chemistry, the relationships are frequently lower in precision and accuracy compared 

to those of leaf-level studies. It remains unclear how well leaf properties can be 

retrieved from spectral reflectance data acquired from Sentinel-2. While laboratory 

soil and foliar nutrient analysis is common practice, similar studies have not been 

conducted to estimate foliar nutrients of trees in the subtropical or bushveld regions 

using Sentinel-2 data. The multilevel approach can enhance rapid characterization of 

organic resources at leaf, canopy and landscape scales.  

1.5 Objectives of the study 

Overall aim of the study was to investigate the utility of spectral data at the laboratory 

level and spaceborne platform in predicting the leaf nutrients: nitrogen (N), 

phosphorus (P), potassium (K) and calcium (Ca) of leguminous and non-legumes 

species of the Lowveld ecosystem of South Africa. 

The specific objectives of the study were to:  

1. compare leaf nitrogen levels amongst the broad-leaved leguminous, narrow-

leaved leguminous and non-leguminous plants of the savanna ecosystem; 

2. evaluate laboratory spectroscopy on dry samples in estimating the 

concentration of nitrogen, phosphorus, potassium and calcium in leaves of 

identified browse species between dry and wet seasons; 

3. investigate the relationship between foliar nutrients (N, P, K and Ca) and 

spectral reflectance at spaceborne level using Sentinel-2 data. 



6 
 

1.6 Research questions 

The questions to be investigated were: 

1. What are the patterns of leaf nitrogen variation among the broad-leaved 

leguminous, fine-leaved leguminous and non-leguminous plants of the 

Lowveld savanna between dry and wet seasons? 

2. Can the quantities of nitrogen, phosphorus, potassium and calcium of the 

trees be accurately predicted using hyperspectral reflectance of dry samples? 

3. Can Sentinel-2 satellite image be used to estimate foliar nitrogen, 

phosphorus, potassium and calcium in the selected browse species of the 

savanna in South Africa? 

The conceptual framework of the study is outlined in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Workflow outlining the processes followed in the study.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Productivity in agroecosystems 

Indigenous browse species are an important source of nutrients for livestock and 

game in southern Africa. They remain green for longer, into the dry season 

compared with grasses (Lukhele and van Ryssen, 2003). Some browse plants have 

high crude protein content - up to about 25% on a dry matter basis (Chepape et al., 

2011). Garrity et al. (2006) stress the need for a predictive understanding for the 

management of multipurpose trees in tropical agroecosystems.  

Numerous studies have since reported nutrient contents, resource quality, 

decomposition, and nutrient release patterns for a variety of plant species from 

tropical agroecosystems (Palm et al., 2001). The quality of organic resource 

depends on the plant species and the stage of maturity of the leaves. It is therefore 

essential that quality indicators are identified for the various plants (Akinnifesi et al., 

2010). Nair (1993) highlighted that nitrogen is generally considered a good indicator 

of feed quality as litter that is high in nitrogen is decomposed rapidly compared to 

woody residues and other lignified materials. Other than taxonomic classification, 

plants material varies qualitatively according to the plant parts (Palm et al., 2001). 

The comparison between nutrient compositions of plants of different families has 

been explored. Palm et al. (2001) revealed that plants in Leguminosae and 

Asteraceae families contained significantly higher amounts of leaf N compared with 

plants in other families, which contained less than 3% N (about 18.75% crude 

protein). This is consistent with the findings by Lukhele and van Ryssen (2003), who 

reported that many browse species found in the bushveld region contained less than 

17% crude protein. El hassan et al. (2000) analysed multipurpose leguminous trees 

and concluded that they could be good protein supplements, provided they are 

degraded in the digestive tract of the animal and are non-toxic. 

Palm et al. (2001) further highlighted that in general there is variability in nutrient 

content for plant species - within and between locations. The authors assert that if 

there is little variability in values for a particular species, it may not be necessary to 

analyse those materials repeatedly in the future. However, if there is considerable 
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variability then correlations might be established between resource quality 

parameters and climate, soil or genotypic provenances. According to Lukhele and 

van Ryssen (2003), a seasonal effect was observed in Combretum apiculatum, 

where the crude protein concentration in winter was significantly lower than that of 

other seasons, while variations in mineral content between seasons was not 

significant for other browse species investigated. 

Plant tissue analysis has been used as a reference technique to estimate plant 

nutrients in relation to recent fast analytical methods (Muñoz-Huerta et al., 2013). 

The combustion method for total nitrogen determination proposed by Dumas (1831) 

is one of the reference methods for the determination of the total nitrogen in an 

organic matrix. The sample is combusted at high temperature in an oxygen 

atmosphere. Via subsequent oxidation and reduction tubes, nitrogen is quantitatively 

converted to nitrogen gas (N2). Other volatile combustion products are either trapped 

or separated. A thermal conductivity detector measures nitrogen gas and the results 

are given as percentage or milligrams of nitrogen, which may be converted into 

crude protein by using conversion factors (Muñoz-Huerta et al., 2013). 

2.2 Spectral analysis 

2.2.1 Theory and application 

Hyperspectral reflectance of leaf material is a fast and non-destructive technique that 

is used to provide multi-constituent analysis (García-Sánchez et al., 2017). The 

technique covers wavelength range closer to the mid-infrared and broadens up to 

the visible region (Nomgongo et al., 2017). The basis for Vis-SWIR spectroscopy is 

molecular vibrations. When a sample is irradiated, electromagnetic radiation is 

absorbed selectively according to the specific vibration frequencies of the molecules 

present (Givens & Deaville, 1999). Incoming radiation with a frequency 

corresponding to that of the molecular vibrations is absorbed, and the remaining is 

either reflected or transmitted and this gives rise to a spectrum which yields 

information about the sample’s molecular composition (Stuart, 2004).  

Bonds commonly found in biological systems such as C-H, O-H and N-H bonds are 

infrared active (Yarce & Rojas, 2012), whereas molecules such as Cl2 or H2C=CH2 

are considered as infrared inactive (İlknur ŞEN, 2003; Ward et al., 2011). The 
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frequency of molecular vibrations depends on the strength of chemical bonds and 

the mass of each atom involved. The hydrogen atom is the lightest thus exhibits the 

largest vibrations and the greatest deviations from harmonic behaviour; therefore the 

main bands typically observed in the NIR region correspond to bonds containing 

hydrogen and other light atoms (Blanco & Villarroya, 2002; İlknur ŞEN, 2003).  

Overtones and combination bands of hydrogen-bearing functional groups (C-H, O-H, 

and N-H) dominate the NIR spectra of plant material due to the light mass of the 

hydrogen atom. These show broad and overlapping bands which are less suited for 

structural studies but offer some advantages for quantitative analysis (García-

Sánchez et al., 2017). The absorption features of certain biochemicals obtained 

through NIR spectroscopy of dried and ground leaf specimens were outlined by 

Curran (1989). 

Table 2.1: Overview of wavelength ranges and materials used in the papers 
    reviewed 

Wavelength 
range (nm)  

Material(s) evaluated Nutrients Reference 

830–2500 Soil  N, P, K İlknur ŞEN (2003) 

400–2500 Canopy (fresh leaves) 

N, P, Chlorophyll a 
and b, carotenoids, 
anthocyanins, leaf 
water and SLA 

Asner & Martin 
(2008) 

830–2500 Dry, ground grasses N, P, K Ward et al. (2011)  

400–2500 
Dry, ground wheat 
and rice straw 

K, Ca, Mg, Fe Huang et al. (2009) 

830–2500 
Dry, ground 
sugarcane leaves 

N, P, K, Ca, Mg, Cu, 
Zn, Mn, Fe 

Yarce & Rojas 
(2012) 

1000–2500  Fresh barley leaves Cu 
van 
Maarschalkerweerd 
et al. (2015)  

1000-2500 
Dry, ground yerba 
mate leaves 

N, C, P, K, Ca, Mg, 
Na, Fe, Mn, Cu, Zn Rossa et al. (2015) 

 

It was also determined at early stages in chronological research that NIRS can be 

used to analyse macro and micronutrients where a consistent correlation between a 

mineral and a spectroscopically active compound exists (Murray, 1986; van 

Maarschalkerweerd et al., 2015). The mineral may directly form part of the 

compound or be essential in its biosynthesis (de Aldana et al., 1995). It has been 
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reported, for instance, that magnesium is associated with chlorophyll; and potassium 

is associated with organic acids, especially malate (Givens & Deaville, 1999, Yarce 

& Rojas, 2012). The wavelength ranges and materials investigated in the papers 

reviewed are shown in Table 2.1. The technique can make multiple measurements 

within a few seconds and has high sensitivity relative to other infrared techniques 

(İlknur ŞEN, 2003). 

The indirect nature of spectroscopic methods for plant mineral analysis makes strict 

validation of the analytical concentration range and specificity crucial (van 

Maarschalkerweerd & Husted, 2015). At very low concentrations, a linear 

relationship between nutrient concentration and spectroscopic data may fade due to 

induction of side reactions and biotic or abiotic stresses can influence the spectra 

(Huang et al., 2009).  

The relationship between concentration of a specific component and absorbed 

energy is further complicated by overlapping of spectral bands from different 

constituents present in the sample (Stuart, 2004). Since there is no mathematical law 

to describe the interaction of radiation with a scattering medium containing a 

heterogeneous distribution of absorbing species, NIR spectroscopy is largely an 

empirical secondary technique requiring calibration using samples of known 

composition determined using standard methods (Givens & Deaville, 1999).  

The FieldSpec® 3 (Analytical Spectral Devices Inc., Boulder, Colorado, USA) shown 

in Figure 2.1, is a reflectance spectrophotometer operating in the diffuse reflectance 

mode (Awiti et al., 2007). The data obtained is typically broad, extensively 

overlapped bands of spectra in the range 350-2500nm. The device provides state-of-

the-art, real-time performance and creates powerful information that helps to 

improve, simplify and streamline research, and production processes for a multitude 

of material measurement solutions (Awiti et al., 2007). NIR spectroscopy requires 

chemometrics to extract as much relevant information as possible (Wold et al., 

2001).  

In most investigations, NIR spectra are measured on dried and ground plant material 

to ensure homogeneity and to avoid interference from water (Huang et al., 2009). 
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Kumar et al. (2006) highlighted that spectral analysis of fresh leaves is more 

problematic than that of dried leaves wherein the dominant effect of water absorption 

 

Figure 2.1: FieldSpec® 3 Spectroradiometer (ASD Inc., USA) 

(https://www.asdi.com/about-us/news/asd-introduces-fieldspec-3-spectroradiometer 

[accessed: 23 Feb 2017]). 

largely masks the signatures of the biochemical components over the 1850nm-2000 

nm region (Givens & Deaville, 1999). The cell structure of fresh plant material 

scatters radiation as it passes through multiple air and water surfaces, a 

phenomenon that may obscure the subtle biochemical absorption features (Kumar et 

al., 2006). Variations in particle size can account for up to 90% of the variance in NIR 

spectra and can substantially influence the predicted values (Huang et al., 2009). 

2.2 2 Multivariate analysis 

The indirect correlation between NIR spectra and nutrient concentrations means that 

great caution needs to be taken during method development (van 

Maarschalkerweerd & Husted, 2015). The process should minimise interference from 

the spectra of strongly overlapping constituents and from light scatter variations by 

combining, spectral data from many different wavelengths (Givens & Deaville, 1999). 

The next step is to derive a mathematical model relating the spectral data to the 

reference or chemical data, a process called chemometrics (İlknur ŞEN, 2003). The 

main steps to be followed in constructing a model are shown in Table 2.2. 

A number of multivariate analysis methods are available including multiple stepwise 

linear regression (MSLR), partial least squares regression (PLSR), modified partial 

least squares (MPLS) and principal component regression (PCR), as outlined in 

Figure 2.2 (Roussel et al., 2014).  
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Multivariate analysis methods have the basic form: 

Y = a + b1X1 + b2X2 + ... + bnXn     (Equation 1) 

where Y is the component to be calibrated; a the intercept; X1, X2, ..., Xn are 

independent spectral variables; and b1, b2, ..., bn  are regression coefficients. In 

calibration, a set of Xs and known Ys are used to derive the regression coefficients, 

whereas in validation and subsequent prediction, a set of Xs and the derived 

regression coefficients are used to predict an unknown Y (Wold et al., 2001; İlknur 

ŞEN, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Multivariate analysis - classification of chemometrics methods (adapted 
from Roussel et al., 2014). 
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Table 2.2: Steps in the multivariate model-construction 

Step Purpose 

1. Choosing the calibration 
samples 

To select a set of samples representative of the 
whole population 

2. Determining the target 
parameter using the 
reference method 

To determine the value of the measured property in 
an accurate, precise manner. The quality of the value 
dictates that of the calibration model 

3. Recording of NIR spectra 
To obtain physico–chemical information in a 
reproducible manner 

4. Pre-treatment of spectra 
To reduce unwanted contributions (such as shifts and 
scatter) to the spectra 

5. Constructing the model 
To establish the spectrum–property relationship using 
multivariate methods 

6. Validating the model 
To ensure that the model accurately predicts the 
property of interest in samples not subjected to the 
calibration process 

7. Predicting unknown samples 
To predict rapidly the property of interest in new, 
unknown samples 

(Blanco & Villarroya, 2002). 

2.2.3 Pre-treatment of spectra 

Before the analysis, the X- and Y-variables are often transformed to make their 

distributions fairly symmetrical to minimize the contributions of irrelevant information 

into spectra (Barnes et al., 1989; Wold et al., 2001). This enables development of 

simple but more robust models (Givens & Deaville, 1999). 

Pre-treatment methods for NIR spectra include: normalization; derivatives (usually 

first or second) (Rossa et al., 2015); the multiplicative scatter correction (MSC); the 

standard normal variate (SNV); de-trending (DT); or a combination thereof (Blanco & 

Villarroya, 2002). Baker et al. (1994) showed that in silage, the effects of different 

particle sizes could be overcome by the use of the standard normal variate-

detrending (SNV-D) transformation of Barnes et al. (1989).  

Absorptions in a spectrum have two components: continuum and individual features. 

The continuum is the "background absorption" onto which other absorption features 

are superimposed which may be due to the wing of a larger absorption feature 

(Clark, 1999). The continuum removal technique was introduced in an effort to 

reduce background effects and normalise the spectral reflectance of water 
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absorption features (Clark & Roush, 1984). It can be viewed as an albedo 

normalization technique which is based on the computation of the continuum of a 

given spectrum (Kokaly & Clark, 1999). 

The continuum is calculated by fitting a convex hull over the top of the spectrum, 

utilising straight line segments that connect local spectra maxima (Clark & Roush, 

1984; Kokaly & Clark, 1999). The continuum is then removed by dividing the 

reflectance value for each point in the absorption features by the reflectance level of 

the continuum line (convex hull) at the corresponding wavelength (Mutanga & Ismail, 

2010). According to Mevik & Wehrens (2007), the technique is an effective method 

to highlight absorption features of minerals. 

2.2.4 Partial least-squares regression 

Multivariate regression methods such as principal component regression (PCR) and 

partial least squares (PLS) enjoy large popularity in various fields in the natural 

sciences (Asner & Martin, 2008). PLS regression for mineral concentrations in plant 

tissue makes use of the correlation between the mineral and a biochemical such as 

pigment (de Aldana et al., 1995). The technique has been designed to confront the 

situations where there are many, predictor variables, and relatively few samples. 

PLS regression relates two data matrices (X, Y) though a linear multivariate model, 

and is widely used in reflectance spectroscopy data analysis and chemometrics 

(Mevik & Wehrens, 2007). 

Principal component regression (PCR) combines principal component analysis 

(PCA) and multiple linear regression (MLR) (Wold et al., 2001). The independent 

variables are first decomposed into orthogonal principal components using the 

nonlinear iterative partial least squares algorithm and full cross validation of the 

calibration set. The maximum number of principal components is then defined 

according to the minimum value of the root-mean-square error of the cross validation 

(Mevik & Wehrens, 2007). In the final step, the chosen principal components are 

used to calibrate the MLR models. The advantage of PCR over the normal MLR is 

that the principal components are uncorrelated and the noise is filtered out 

(Nomngongo et al., 2017). 
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PLS regression developed from multiple linear regression (MLR). The method 

decomposes both predictor and response variables into new components (Wold et 

al., 2001). It is used to construct predictive models when there are many predictor 

variables that are possibly correlated. It is ideal for analysing data with multiple, 

collinear, variables and simultaneously model several response variables (Mevik & 

Wehrens, 2007). The PLS approach is advantageous because it uses the continuous 

spectrum as a single measurement rather than a band-by-band analysis (Asner & 

Martin, 2008).  

With PLS regression, the calibration set is divided into several groups for the cross-

validation. Cross-validation is essential in order to select the optimal number of 

factors and to avoid over fitting. Each group is then validated using a calibration 

developed on the other samples. Validation errors generated are combined into a 

root mean square error of cross-validation RMSECV. It has been reported that the 

RMSECV is the best single estimate for the prediction capability of the equation and 

that this statistic is similar to the average root mean square error of prediction 

(RMSEP) from 10 randomly-chosen prediction sets (González-Martín et al., 2015).  

The coefficient of determination (R2) establishes a correlation between the analytical 

data obtained in the laboratory and those predicted by the calibration equations for 

each of the components analysed (Rossa et al., 2015). A high R2 value (e.g. 0.75 to 

1.0) indicates a strong correlation, while with some calibrations an R2 value less than 

0.75 may be useful for monitoring purposes (Garcia Sanchez et al., 2017). Following 

calibration the cross validation error called the root mean square error of cross 

validation (RMSECV) or root mean square error of prediction (RMSEP) is obtained, 

which should be taken into account most closely when evaluating the calibration. It is 

calculated based on the number of samples in the set and the differences between 

the estimated values and those obtained by standard methods of analysis. The 

following formula is used: 

 RMSEP = 	� 		

		 . ∑�� − ���2       (Equation 2) 

where (xi − yi) is the difference between the measured value by laboratory methods 

and the predicted value by PLS model, and N is the total number of samples in the 

test (Naes et al., 2002). 
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In “leave one out” cross validation (LOOCV), the response variable(s) are estimated 

from the fitted model based on the remaining samples. For example, if there are 20 

samples, the response variable of each sample will be predicted by fitted model from 

the 19 remaining samples iteratively to determine the performance of the model. The 

merit of the cross-validation is the capability to detect outliers and provide unbiased 

assessment of the prediction error (Mevik & Wehrens, 2007). 

2.3 Monitoring bio-resources using remote sensing 

Remote sensing has been a valuable source of information over the course of the 

past few decades in mapping and monitoring forests. It provides a cost-effective tool 

to help forest managers better understand forest characteristics, such as forest area, 

locations, and species, even down to the level of characterizing individual trees 

(Adam et al., 2012). The technology provides a synoptic view of the canopy and an 

opportunity to evaluate plant communities using light reflectance (Hatfield et al., 

2008). Understanding the spatial distribution of environmental parameters can allow 

for changes in management practices in human dominated ecosystems. 

New space-borne sensors such as RapidEye, WorldView-2 and Sentinel-2 designed 

with red-edge bands provide an opportunity for assessing leaf nutrients at regional 

scale (Ramoelo et al., 2015). The red-edge based vegetation indices of Sentinel-2 

provide an opportunity for better estimates of leaf biochemicals and biomass 

(Mutanga et al., 2012). The lack of red-edge bands in older satellite multispectral 

sensors hindered the production of landscape maps of leaf N and biomass. Sentinel- 

2, with spectral bands comparable to those of RapidEye and WorldView-2 was 

recently launched by the European Space Agency (Ramoelo et al., 2015). 

Earlier work by Adam et al. (2012) demonstrated that the new red-edge band in the 

RapidEye sensor has the potential for classifying tree species in semi-arid 

environments when integrated with other standard bands. The recent availability of 

time series of Sentinel-2 imagery at fine spatial resolution (10m) and high temporal 

frequency (every 5 days with S-2A and S-2B) represents a significant “scale-step” in 

the use of Earth Observation (EO) data for the monitoring of forest resources 

(Simonetti et al., 2017). 
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The Sentinel-2 MultiSpectral Instrument (MSI) is designed to measure the earth-

reflected radiance in 13 spectral bands, spanning from the Visible and Near Infrared 

(VNIR) to the Short Wave Infrared (SWIR). These include: four 4 bands at 10m 

special resolution namely: blue (490nm), green (560nm), red (665nm) and near 

infrared (842nm); six (6) bands at 20m special resolution which include four 4 narrow 

bands for vegetation characterisation (705nm, 740nm, 783nm and 865nm) and 2 

larger SWIR bands (1610nm and 2190nm) for applications such as snow / ice / cloud 

detection or vegetation moisture stress assessment (ESA, 2015). 

Sentinel-2A data has spectral bands that are much similar to Landsat 8 (except for 

the thermal bands of the Landsat 8 Thermal Infrared Sensor); and together they 

provide a core capacity on which a viable set of globally consistent services in the 

forestry domain could be based (Adan, 2017). This sets the stage for a number of 

innovative and challenging applications, and to the redesign of monitoring systems 

for more accurate monitoring of forest degradation (Simonetti et al., 2017). 

The extraction of leaf N and biomass using remote sensing has been limited to the 

use of statistical analysis, the most common techniques being simple linear and 

stepwise multiple regression (Ramoelo et al., 2012). The latter suffers from 

overfitting and multi-collinearity (Curran, 1989; Kokaly et al., 2009). Machine learning 

techniques such as random forest (RF) and artificial neural network (ANN) were 

found to be robust, and circumvents overfitting and multi-collinearity problem 

(Skidmore et al., 2010; Mutanga et al., 2012). RF and ANN were used more for 

classification than for regression analysis (Adam et al., 2012). In regression, RF was 

found to be more robust than other parametric regression techniques (Mutanga et 

al., 2012).  
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 General description of the study area 

The study was conducted at the Wits Rural Facility (24°33'S; 31°1'E), a research and 

development station (Figure 3.1) situated in the central Lowveld savanna in Limpopo 

Province, South Africa. The soil type is predominantly shallow sandy lithosols. The 

vegetation is typically lowland savannah woodlands, dominated by members of the 

Combretaceae (particularly Combretum collinum, Combretum hereroense, 

Combretum apiculatum and Terminalia sericea); and Mimosoideae (such as 

Vachellia gerrardii, V. nilotica, V. swazica and Dichrostachys cinerea). The mean 

annual rainfall is 665±123mm, received mostly during the summer months between 

October and April. The mean annual temperature is approximately 22oC and frost is 

rare (Shackleton, 2001). 

 

Figure 3.1: The study area  
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3.2 Data collection 

3.2.1 Plant species investigated in the study 

The dataset comprised of nine plant species mainly from the Fabaceae (or 

Leguminosae) family that are also common browse species for livestock and game 

in the Lowveld (Chepape et al., 2011). A preliminary visit to the study area was 

conducted to identify tree species of interest, which were validated by ecologists at 

the Wits Rural Facility and a botanist at the University of Pretoria. The species 

comprised of three (3) broad-leaved leguminous trees, three (3) fine-leaved 

leguminous trees and three (3) non-legume species, hereafter referred to as 

“groups” or “type” (Table 3.1). 

Table 3.1: Tree species investigated in the study 

Species Family Type Foliage 

Bauhinia galpinii Fabaceae 
 

Broad-leaved, 
leguminous 

Deciduous  

Philenoptera violacea Fabaceae Broad-leaved, 
leguminous 

Deciduous  

Schotia brachypetala Fabaceae Broad-leaved, 
leguminous 

Evergreen 

Peltophorum africanum Fabaceae Narrow-leaved, 
leguminous 

Evergreen 

Dichrostachys cinerea Fabaceae Narrow-leaved, 
leguminous 

Evergreen 

Vachellia gerrardii Fabaceae Narrow-leaved, 
leguminous 

Evergreen 

Combretum apiculatum Combretaceae Broad-leaved, 
non-leguminous 

Deciduous  

Terminalia sericea Combretaceae Broad-leaved, 
non-leguminous 

Deciduous  

Euclea natalensis Ebenaceae Broad-leaved, 
non-leguminous 

Evergreen 

(Van Wyk & Van Wyk, 2013; http://pza.sanbi.org/ [accessed: 22 September, 2016]). 

3.2.2 Leaf sampling and handling 

Leaf samples were collected on 22 August 2016 (dry season) and on 13 January 

2017 (wet season), hereafter referred to as “winter” and “summer” respectively. 

About 100g of leaf material was collected from each tree; wherein five trees were 
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targeted per species. Leaf samples were, as much as possible, collected from 

different positions of the crown (top, middle, bottom, south, east, etc.). Samples were 

put in paper bags and labelled. Sampling points (waypoints) were recorded using 

Garmin eTrex30, global positioning system (GPS) instrument. In the laboratory, the 

samples were oven-dried at 60oC for 48 hours, and then ground and sieved through 

a 1mm screen (Campbell & Plank, 1997). The samples were placed in polythene 

bottles and stored in a cabinet, pending chemical and spectral analyses (Lukhele & 

van Ryssen, 2003). 

3.3 Chemical analysis 

3.3.1 Wet chemistry 

Foliar nitrogen was determined following the Dumas dry oxidation combustion 

method (Dumas, 1831). The finely milled sample was used directly on a Carlo Erba 

NA 1500 Carbon/Nitrogen/Sulphur Analyzer, using approximately 10mg sample, 

weighed into a tin foil container for each determination. The instrument uses gas 

chromatography (GC) to separate the gases and yield nitrogen in the form of 

nitrogen gas (N2) (Jimenez & Ladha, 1993). 

The sample is ignited at high temperature (about 9800C) in oxygen on a chrome 

oxide catalyst to produce carbon dioxide, nitrogen gas and oxides of nitrogen. The 

gases produced pass through silvered cobalt oxide (to remove oxides of sulphur and 

halogens) and a column of copper (5400C), which reduces the oxides of nitrogen 

(NOx) to (N2) and also removes excess O2. After removal of water vapour by a trap 

of anhydrous magnesium perchlorate, N2 and CO2 gases are finally separated by 

gas chromatography (GC) using a helium carrier gas and detected by a thermal 

conductivity detector (Jimenez & Ladha, 1993). 

The instrument is calibrated against a certified standard of a pure organic compound 

of known composition. The compound chosen for our calibration standard is 

phenylalanine, an amino acid, which contains 8.48% N and 65.4% C. The software - 

PeakNet was used, which allows non-linear calibrations of peak height or peak area 

while smoothing out of high frequency noise and flexibility in peak integration 

(http://www.dionex-france.com/library/manuals/software/34941-10.pdf [accessed: 20 

April, 2017]). 
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Potassium, calcium and phosphorus were determined by optical emission 

spectroscopy using the Spectro Genesis inductively coupled plasma optical emission 

spectrometer (ICP-OES) (Figure 3.2). Approximately 0.3g of each sample was 

digested using the Kjeldahl wet oxidation process (Kovacs et al., 1996). This method 

uses nitric acid and hydrogen peroxide to digest plant samples; the elements are 

then determined by optical emission spectroscopy with inductively coupled plasma 

excitation. 

 

Figure 3.2: The Spectro Genesis ICP-OES: SPECTRO Analytical Instruments 
(https://www.spectro.com/products/icp-oes-aes-spectrometers/genesis-icp-analysis 

[accessed: 06 April 2017]). 

3.3.2 Statistical data analysis 

Descriptive statistics on foliar nutrient content were computed using ANalysis Of 

VAriance (ANOVA) programmed into the R statistical software. Boxplots were 

generated, followed by Q-Q plots and the Shapiro-Wilk test to test normality of data. 

Two-way ANOVA was used to test differences in nitrogen and the Tukey’s post hoc 

tests were performed to obtain all pairwise comparisons (Mangiafico, 2015). The 

non-parametric Kruskal-Wallis test was computed to check statistical differences for 

phosphorus, potassium and calcium, followed by pairwise comparisons using 

Wilcoxon rank sum test (http://www.sthda.com/english/wiki/kruskal-wallis-test-in-r 

[accessed: 27 July 2018]). 
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3.4 Spectral measurements 

3.4.1 Recording of spectra 

The spectral reflectance of dried and ground foliage was measured using FieldSpec® 

3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, Colorado, USA) with 

a fibre optic probe (Figure 3.3). The instrument has a sampling interval of 1 nm for 

the 350 nm to 2500 nm spectral region with a total number of 2151 data points per 

spectrum (Awiti et al., 2007).  

 

 

 

 

 

 

 

 

 

Figure 3.3: Using FieldSpec® 3 spectroradiometer to collect spectra of dried and 
            ground leaf samples. 

The radiance spectra were normalized against a 99% white reference to produce 

relative reflectance spectra for each measurement. Ground leaf samples were 

arranged to fill in the field of view of the contact probe. Samples were placed on a 

spectrally black surface to minimize the background spectral noise. Five spectral 

measurements were taken on different parts of the sample and were averaged to 

obtain representative spectra. Figure 3.4 shows the spectra collected from the dried 

and ground leaf samples.  
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Figure 3.4: Reflectance spectra of dried and ground leaf samples. 

3.4.2 Data pre-treatment 

Due to some noise in the spectra between 350-399 nm, this interval was excluded 

from the analyses (Awiti et al., 2007).The raw data were subjected to continuum 

removal using the prospectr package of the R software (Stevens & Ramirez-Lopez, 

2015). The treatment is necessary to allow minimization of the scattering effect. 

Curran et al. (2001) asserts that estimating foliar biochemical concentration was 

more accurate when continuum-removed and band-normalised spectra were used 

rather than other pre-treatment methods (e.g. the first derivative of spectra - FDS). 

Removing the continuum standardises isolated absorption features for comparison 

purposes (Clark & Roush, 1984; Clark, 1999).The continuum-removed spectra are 

shown in Appendix A04. The continuum-removed spectra were then used to develop 

a model through the method of chemometrics using R statistical programming 

language (Garcia & Filmoser, 2017). 

3.4.3 Constructing the models 

Partial least squares regression (PLSR) was used to model relationship between the 

chemical and spectral measurements of samples. Forty-five (45) samples were used 
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to build the models for winter and summer seasons respectively. For all samples, the 

chemical data determined by the reference methods were added to corresponding 

NIR spectra. The following packages programmed into the R software were used 

analyse spectral data: pls, chemometrics, ChemometricsWithR, prospectr and inspectr. 

Partial-least squares regression was used to develop models. 

Validation of the model was done using ‘leave one out’ cross validation (LOOCV) 

because of the small sample sizes (Mevik & Wehrens, 2007). The root mean square 

error (RMSE) and the coefficient of determination (R2) were considered as statistic 

measures of precision and accuracy (Garcia & Filmoser, 2017). A typical way of 

fitting a PLSR model was as follows: 

NleafChem <- plsr(Nitrogen ~ crALLSPECTRA, ncomp = 10, data = leafTrain, 

validation = "LOO"). 

This fits a model with 10 components, and includes leave-one-out (LOO) cross-

validated predictions. We then get an overview of the fit and validation results with 

the summary method as follows: summary(NleafChem). 

Different regions of the spectra were explored to assess performance of the model. 

The script for fitting the PLSR model(s) is shown in Appendix A03. The optimum 

number of components used each model was determined using the local minimum of 

RMSE of the model developed using 10 components (Mevik & Wehrens, 2007). 

Statistical accuracy and precision metrics such as the coefficient of determination 

(R2), root mean square error (RMSE) and p values were used (Ramoelo & Cho, 

2018). 

3.5 Satellite data 

3.5.1 Image acquisition and pre-processing 

Sentinel-2 images covering the study area were downloaded from 

http://glovis.usgs.gov/ [retrieved: 28 June, 2017], corresponding to the dates of leaf 

sampling (see Table 3.2). Atmospheric correction was performed using Image 

Correction Plugin for Snap Toolbox Software (iCOR), previously known as OPERA 

(Sterckx et al., 2015). The iCOR plugin for the Sentinel-2 Snap Toolbox is scene and 

sensor generic atmospheric correction algorithm that can handle land and water 
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targets and is adaptable with minimal efforts to other hyper- or multi-spectral sensors 

(VITO, 2018). 

All input data required for the atmospheric correction are derived from the image 

itself or delivered through pre-calculated look-up-tables (VITO, 2017). Through the 

use of a single atmospheric correction implementation, discontinuities in the 

reflectance between land and the highly dynamic water areas are reduced (Ramoelo 

& Cho, 2018). 

Table 3.2: List of Sentinel-2 images used in the study 

Product ID Date 

S2A_OPER_MSI_L1C_TL_MPS__20160812T112604_A005952_T36JUT_N02.04 2016-08-12 

S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT_20170119T075734 2017-01-19 

(https://glovis.usgs.gov/app [accessed: 28 June 2017]). 

3.5.2 Point extraction 

In order to extract multispectral data, the images were pre-processed in which digital 

numbers were converted to surface reflectance. Spectral reflectance of 

georeferenced ground points (GPS coordinates of the sampled trees) were extracted 

from the image. Trees with larger canopies were purposively sampled (Ramoelo et 

al., 2014); and their chemical, hyperspectral (laboratory spectroscopy), multispectral 

spectral (Sentinel-2) as well as indices were used in generating the model. Due to 

the fewer number of trees with large canopies, the dataset comprised of data 

recorded in both dry and wet seasons. 

3.5.3 Spectral bands and indices 

This study utilised eight Sentinel-2 MSI bands that are critical for characterisation of 

vegetation (Skidmore et al., 2010; Ramoelo et al., 2014; Ramoelo & Cho, 2018). The 

bands are centred at 490nm, 560nm, 665nm, 705nm, 740nm, 783nm, 842nm and 

865nm (Table 3.3). The workflow of iCOR atmospheric correction algorithm is 

outlined in Figure 3.5.  
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Figure 3.5: Workflow of iCOR atmospheric correction algorithm. (Adapted from: 
https://blog.vito.be/remotesensing/icor_available [accessed: 12 Jan 2018]). 

LUT = Look-up-Table, SZA = Solar Zenith Angle, VZA = View Zenith Angle, RAA = 

Relative Azimuth Angle, DEM = Digital Elevation Model, TOA = Top-of-Atmosphere, 

AOT = Aerosol Optical Thickness, SIMEC = Similarity Environment Correction, L2 = 

Level 2 Atmospherically Corrected. 

Conventional and red-edge based vegetation indices such as modified simple ratio 

mSR705 (B06 - B01) / (B05 - B01); normalized difference vegetation index - NDVI 

(B08 - B04) / (B08 + B04); red-edge normalized difference vegetation index - RE NDVI 

(B08 - B06) / (B08 + B06); NDVI-Green (B03 * (B08 - B04) / (B08 + B04), were 

computed (Ramoelo et al., 2014; http://www.sentinel-hub.com/eotaxonomy/indices 

[accessed: 26 October, 2017]). A total of eighteen bands and vegetation indices 

were used as an input into the model (Appendix A04). 
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Table 3.3: Description of Sentinel-2 bands used in the study 

Spectral Band 
Central 

wavelength 
(nm) 

Band width 
(nm) 

Resolution 

Band 2 – blue 490nm 65nm 10m 

Band 3 – green 560nm 35nm 10m 

Band 4 – red 665nm 30nm 10m 

Band 5 – vegetation 
red edge 

705nm 15nm 20m 

Band 6 – vegetation 
red edge 

740nm 15 nm 20m 

Band 7 – vegetation 
red edge 

783nm 20nm 20m 

Band 8 – NIR 842nm 115nm 10m 

Band 8b – vegetation 
red edge  

865nm 20nm 20m 

ESA (2015); retrieved from http://www.gdal.org/frmt_sentinel2.html [15 September, 

2017]). 

3.5.4 Model construction  

Partial least squares regression (PLSR) was used to model relationships between 

leaf chemical composition and multispectral data (indices and bands) from Sentinel-2 

(Ramoelo et al., 2015). Models were computed using the pls package in R 

programming language and were validated using ‘leave one out’ cross validation 

(LOOCV) because of the small sample sizes (Mevik & Wehrens, 2007). The root 

mean square error (RMSE) and the coefficient of determination (R2) were considered 

as statistic measures of precision and accuracy (Garcia & Filmoser, 2017). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Foliar nutrient variations 

The summary of the results of chemical analysis is presented in Table 4.1. Nitrogen 

concentration ranged from 0.7 to 3.5; phosphorus from 0.06 to 0.23; potassium from 

0.33 to 1.67; and calcium ranged from 0.30 to 3.27 g/100g.  

Table 4.1: Summary of the chemical data recorded 

 Nitrogen 
(g/100g) 

Phosphorus 
(g/100g) 

Potassium 
(g/100g) 

Calcium 
(g/100g) 

Highest value 3.540 0.2300 1.6700 3.270 

Mean 2.063 0.1168 0.7674 1.207 

Lowest value 0.710 0.0600 0.3300 0.300 

Figure 4.1 shows the boxplots for the variation in nutrient levels among the species 

in both dry and wet seasons. The highest concentration of nitrogen was recorded in 

in Philenoptera violacea specimen during summer; and the lowest was in Terminalia 

sericea plant during winter. Phosphorus concentration was highest in Dichrostachys 

cinerea during summer, while the lowest was recorded in Terminalia sericea during 

winter. Potassium was highest in Philenoptera violacea during summer, the lowest 

was in Combretum apiculatum during winter. The highest amount of calcium was 

recorded in Dichrostachys cinerea leaves during winter, while the lowest was 

recorded in Combretum apiculatum during summer. 

The Shapiro–Wilk test showed that leaf nitrogen was normally distributed, while 

phosphorus, potassium and calcium were not. Philenoptera violacea contained 

significantly higher (p<0.05) nitrogen than most species during the summer season, 

with the exception of Vachellia gerrardii and Dichrostachys cinerea (Table 4.2). In 

the same period, nitrogen concentration was significantly higher (p<0.05) in both 

Vachellia gerrardii and Dichrostachys cinerea compared with Terminalia sericea and 

Euclea natalensis. The results show that during winter there was less variability in 

nitrogen (CV=40.5%) concentration among the species compared to summer 

(CV=51.4%), corroborating the findings by Ramoelo et al. (2014).  
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Figure 4.1: Foliar nutrient variation by species in the dry (D) and wet (W) seasons 
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Table 4.2: Pairwise comparisons for nitrogen in the wet season 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Significance codes:       ‘*’    p < 0.05  
          ‘**’     p < 0.01 
 
Table 4.3: Pairwise comparisons for nitrogen in the dry season 
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Table 4.4: Pairwise comparisons for nitrogen in both wet and dry seasons 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Significance codes:   ‘*’    p < 0.05  
           ‘**’     p < 0.01 

The results of statistical tests for mean nitrogen in both dry and wet seasons are 

shown in Table 4.4. Philenoptera violacea contain significantly higher (p<0.05) levels 

of nitrogen compared with other species except with Dichrostachys cinerea. The 

findings corroborate the work by du Toit (2003) in the Lowveld savanna, which 

showed foliar nitrogen concentrations in excess of 3% for Philenoptera violacea, well 

in excess of foliar nitrogen in neighbouring non-leguminous plants. The non-

leguminous species Terminalia sericea contained significantly lower (p<0.05) 

amounts of nitrogen than other species except Peltophorum africanum and Euclea 

natalensis. 

The results of foliar nitrogen variation between groups are shown in Figure 4.2. The 

concentration was significantly lower (p<0.05) in non-leguminous plants than in 

leguminous plants during summer, while the difference in nitrogen between the two 

legume groups was not significant. During winter, nitrogen concentration was 

significantly lower (p<0.05) in non-legumes than in broad-leaved legumes while the 

difference in mean nitrogen between narrow-leaved legumes and non-legumes was 

not significant.  
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The nitrogen content was highest in two broad-leaved legumes Philenoptera 

violacea and Bauhinia galpinii. The results suggest that leguminous plants are better 

sources of nitrogen (crude protein) than non-leguminous plants, which is consistent 

with the findings by El hassan et al. (2000) and Lukhele & van Ryssen (2003). The 

studies reported that many non-leguminous species found in the bushveld region 

contained less than 17% crude protein, while most of the leguminous trees were 

found to be good protein sources. 

Leaf nitrogen is related to protein (Clifton et al., 1994). The high protein content in 

leguminous plants is due to the action of nitrogen-fixing bacteria that habitat root 

nodules and have symbiosis relationship with leguminous plants (Hungria & Franco. 

1993; Jacobs et al., 2007). Nonetheless the potential of each legume species needs 

to be explored as there is significant variability among them. For instance 

Peltophorum africanum, a narrow-leaved leguminous plant was found to be among 

the lowest in nitrogen concentration. 

In terms of phosphorus concentrations in the different groups, broad-leaved legumes 

contained significantly higher (p<0.05) phosphorus than narrow-leaved legumes and 

non-leguminous species while the difference in between narrow-leaved legumes and 

the non-legumes was not significant (Figure 4.2). Differences in potassium and 

calcium between the three groups were not significant. Seasonal effect was 

significant (p<0.05) for all the four nutrients. Concentrations of nitrogen, phosphorus 

and potassium were significantly higher (p<0.05) in summer than in winter whereas 

calcium was significantly higher (p<0.05) in winter than in summer (Figure 4.3). 

Green plants generally have higher nutrient concentrations due to active metabolic 

activities (e.g. photosynthesis) portraying vigour and health of vegetation. During dry 

periods the nutrients are generally translocated from the leaves to the roots (Majeke 

et al., 2008). The interaction effect between the “groups” and “seasons” was highly 

significant (p<0.05) for nitrogen, owing to changes soil conditions (temperature and 

humidity) on the activity of nitrogen-fixing bacteria (Jacobs et al., 2003). 
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Figure 4.2: Foliar nutrient variation by group across the two seasons. 

BLL.D = Broad leaved legume – dry season; NLL.D = Narrow leaved legume – dry 
season; NOL.D = Non-legume – dry season; BLL.W = Broad leaved legume – wet 
season; NLL.W = Narrow leaved legume – wet season; NOL.W = Non legume – wet 
season. 
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Figure 4.3: Foliar nutrient concentration between dry and wet seasons. 
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4.2. Nutrient concentration and spectral reflectance of dried leaf samples. 

Table 4.5 is a summary of the performance of the statistical models developed to 

relate foliar nutrients measured by reference methods to hyperspectral data obtained 

from laboratory spectroscopy. Figures 4.4 to 4.7 show the graphical output of the 

models. There was a significant relationship between foliar nitrogen concentration 

and hyperspectral reflectance of ground leaf samples both during summer (R2=0.88, 

p<0.05) and winter seasons (R2=0.76, p<0.05). The higher coefficient of 

determination in summer can be attributed to the higher variability in nitrogen content 

observed in chemicals analysis and as highlighted under section 4.1 above. During 

summer plants have more vigour and high levels of photosynthetic pigments such as 

chlorophyll (Ramoelo et al., 2014). This study corroborates what was achieved by 

Ramoelo et al. (2014). 

The relationship between foliar phosphorus, potassium and calcium concentrations 

and hyperspectral reflectance of ground leaf samples was generally low. The lowest 

correlations were observed with potassium (R2=0.08) during winter and calcium 

(R2=0.01) during summer as shown in Table 4.5.. 

Table 4.5: Performance of the models on the estimation of foliar nutrients 

       using spectrometer data 

Season n Nutrient RMSEP R
2
 p values 

 < 0.05 

Winter 45 

N 0.21 0.76 Yes 

P 0.02 0.49 Yes 

K 0.17 0.08 Yes 

Ca 0.45 0.43 Yes 

Summer 45 

N 0.18 0.88 Yes 

P 0.03 0.41 Yes 

K 0.26 0.20 Yes 

Ca 0.32 0.01 Yes 

 

The results demonstrate that spectral reflectance of dried and ground leave samples 

coupled with partial least squares regression can be applied as a fast analytical 

technique to evaluate nitrogen content of species of interest to be integrated in 

small-scale agricultural systems as organic inputs. Work by Galvez-Sola et al. (2015) 
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on citrus leaves of lemon, mandarin, orange, and grapefruit found high accuracy 

regarding the estimation of nitrogen (R2 = 0.96) and as well as acceptable estimates 

for potassium, iron and zinc. In yerba mate plants (Ilex paraguariensis), the 

prediction was good for phosphorus and copper but not for potassium and calcium 

(Rossa et al., 2015). These data show that the leaf spectral response depends on 

the species studied, so for each species it is necessary to make the appropriate 

calibrations.  

 

Figure 4.4: Cross-validated RMSEP curves for hyperspectral vs chemical:  winter 
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Figure 4.5: Cross-validated predictions for hyperspectral vs chemical: winter. 
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Figure 4.6: Cross-validated RMSEP curves for hyperspectral vs chemical: summer. 
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Figure 4.7: Cross-validated predictions for hyperspectral vs chemical: summer 
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4.3. Modelling nutrient concentrations using Sentinel-2 images 

Table 4.6 shows the results of the models relating chemical composition to spectral 
reflectance of Sentinel-2. Graphical outputs of the model are shown in Figures 4.8 & 
4.9. 

Table 4.6: Performance of models for Sentinel-2 data 

Season n Nutrient RMSE R
2
 p values 

< 0.05 

C
o

m
b

in
e
d

 

d
a
ta

s
e
t 

19 N 0.22 0.44 Yes 

19 P 0.04 0.04 Yes 

19 K 0.27 0.23 Yes 

19 Ca 0.41 0.25 Yes 

 

The prediction accuracy for nitrogen was higher compared to that of potassium, 

phosphorus and calcium. Phenology is a major factor of this outcome, given the fact 

that most of the vegetation indices particularly RE-based indices depend on the 

vegetation vigour and greenness. There was significant correlation (R2=0.44, 

p<0.05) between foliar nitrogen composition and the predictions made by the PLS 

model using Sentinel-2 data. As outlined by Garcia Sanchez et al. (2017), R2 values 

that are less than 0.75, although not acceptable, they may be useful for monitoring 

purposes. It is assumed that the models could perform better with improved 

sampling techniques and the use of larger datasets.  

Estimation of leaf nutrients using Sentinel-2 data yielded low performances, which 

could be attributed to low dimensionality of the data. PLS regression performs better 

when exploratory variables are in their tens to hundreds and even thousands, 

especially using spectroscopy or hyperspectral data (Wold et al., 2001). Ramoelo et 

al. (2015) demonstrated that machine learning techniques, such as random forest 

improved the estimation of leaf nitrogen by 49%, and are quite robust if well 

parameterized. Nonetheless various studies demonstrated that Sentinel-2 can be 

used to accurately estimate leaf N concentrations (Ramoelo & Cho, 2018). 
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Figure 4.8: Cross-validated RMSEP curves for Sentinel-2 data 
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Figure 4.9: Cross-validated predictions for Sentinel-2 data  
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CHAPTER 5 

CONCLUSION 

Spatial and taxonomic variation in leaf chemistry is recognized as important both for 

the functional role that trees play in various ecosystems as well as their response to 

environmental change. The study combined field campaigns, chemical analysis, 

laboratory spectroscopy on dry leaves as well as multispectral reflectance of 

vegetation to identify opportunities for scaling “leaf spectral to chemical” relationships 

to canopies. The analysis was done in the context of the foliar nutrients, as elements 

for evaluating organic resources for small scale agricultural production systems and 

nitrogen in particular as the key indicator for resource quality. 

Science based on imaging spectroscopy and techniques has been driven by the 

assumption that improved identification of particular spectral features leads to better 

estimation of foliar biochemicals. Season specific analysis showed that wet season 

models performed better than the dry season one. Various literature indicate that 

estimation models depend on elements being analysed and the type of plant 

species. Efforts for the selection of ideal combinations of trees, shrubs and crops 

that will benefit each other and the environment; and improve income of the small-

scale farmer need to be up-scaled. 

This study demonstrated a potential for hyperspectral data to estimate leaf nitrogen 

using multivariate techniques. Ultimately, it affirms the vast utility of laboratory 

spectroscopy in evaluating and understanding nutrient value of trees and shrubs for 

integration into livestock and crop production systems. Remote chemical detection 

on agroecosystems is crucial for understanding resource quality and sustainable 

utilisation thereof. Nonetheless foliar nutrient estimation using Sentinel-2 data did not 

show great potential for the estimation of leaf nitrogen, phosphorus, potassium and 

calcium. 

Since livestock production is already an important component of many smallholder 

farming systems, scientists need to develop innovative ways to capitalise on the use 

of fast analytical methods to enhance resource management and food security. 

Research needs to address ways to overcome the potentially negative impacts of 

loss of biodiversity. The global importance of the ecosystem services provided by 
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trees (e.g. water and nutrient cycling, fodder, energy production, erosion control, 

carbon sequestration, biological diversity) has not been fully recognised (Morris, 

2011). The study has contributed to understanding measurements between the 

different components of a multifunctional landscape. 
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Appendix A01: Mean nutrient composition (g/100g DM ± s.d.) for the nine tree species 
 

Species Season N Nitrogen Phosphorus Potassium Calcium 

Bauhinia 

galpinii 

Dry  5 1.836 ± 0.285 0.126 ± 0.073 0.426 ± 0.075 1.340 ± 0.306 

Wet 5 2.562 ± 0.180 0.164 ± 0.032 0.884 ± 0.085 0.812 ± 0.148 

All 10 2.199 ± 0.444 0.145 ± 0.034 0.655 ± 0.253 1.076 ± 0.359 

Philenoptera 

violacea 

Dry  5 2.280 ± 0.146 0.112 ± 0.013 0.806 ± 0.193 1.640 ± 0.395 

Wet 5 3.224 ± 0.242 0.162 ± 0.029 1.210 ± 0.294 0.860 ± 0.250 

All 10 2.752 ± 0.532 0.137 ± 0.034 1.008 ± 0.317 1.250 ± 0.516 

Schotia 

brachypetala 

Dry  5 1.998 ± 0.152 0.130 ± 0.053 0.794 ± 0.151 1.690 ± 0.342 

Wet 5 2.176 ±0.214 0.162 ± 0.045 1.022 ± 0.435 1.044 ± 0.567 

All 10 2.087 ± 0.198 0.146 ± 0.049 0.908 ± 0.330 1.367 ± 0.557 

Peltophorum 

africanum 

Dry  5 1.436 ± 0.355 0.088 ± 0.034 0.588 ± 0.228 1.216 ± 0.582 

Wet 5 2.056 ± 0.470 0.084 ± 0.013 0.692 ± 0.150 0.882 ± 0.356 

All 10 1.746 ± 0.511 0.086 ± 0.025 0.640 ± 0.190 1.049 ± 0.488 

Dichrostachys 

cinerea 

Dry  5 2.028 ± 0.170 0.098 ± 0.008 0.568 ± 0.048 2.268 ± 0.679 

Wet 5 2.646 ± 0.433 0.144 ± 0.062 0.960 ± 0.312 0.954 ± 0.199 

All 10 2.337 ± 0.450 0.121 ± 0.048 0.766 ± 0.295 1.611 ± 0.838 

Vachellia 

gerrardii 

Dry  5 1.668 ± 0.072 0.074 ± 0.013 0.700 ± 0.173 2.300 ± 0.663 

Wet 5 2.644 ± 0.215 0.134 ± 0.022 0.892 ± 0.158 0.812 ± 0.176 

All 10 
2.156 ± 0.536 
 

0.104 ± 0.036 0.796 ± 0.186 1.556 ± 0.908 
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Combretum 

apiculatum 

Dry  5 1.772 ± 0.314 0.092 ± 0.015 0.570 ± 0.154 1.150 ± 0.361 

Wet 5 2.404 ± 0.393 0.142 ± 0.054 0.878 ±0.476 1.066 ± 0.518 

All 10 2.088 ± 0.473 0.117 ± 0.045 0.724 ± 0.371 1.108 ± 0.423 

Terminalia 

sericea 

Dry  5 1.004 ± 0.209 0.078 ± 0.016 0.590 ± 0.110 1.086 ± 0.296 

Wet 5 1.956 ± 0.176 0.116 ± 0.013 0.754 ± 0.117 0.690 ± 0.170 

All 10 1.480 ± 0.534 0.097 ± 0.025 0.672 ± 0138 0.888 ± 0.309 

Euclea 

natalensis 

Dry  5 1.756 ± 0.118 0.086 ± 0.005 0.532 ± 0.105 1.372 ± 0.382 

Wet 5 1.684 ± 0.107 0.110 ± 0.029 0.948 ± 0.162 0.550 ± 0.120 

All 10 1.720 ± 0.113 0.098 ± 0.023 0.740 ± 0.254 0.961 ± 0.509 

DM = dry matter; s.d. = standard deviation 
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Appendix A02: Statistical analysis for chemical data 

Summary Statistics 
 
> tapply(Nitrogen,list(Species,Season),sd) 

                   summer     winter 

A. gerrardii    0.2154762 0.07190271 

B. galpinii     0.1797776 0.28465769 

C. apiculatum   0.3932302 0.31427695 

D. cinerea      0.4331628 0.17035258 

E. natalensis   0.1071448 0.11844830 

P. africanum    0.4698191 0.35514786 

P. violacea     0.2419297 0.14645819 

S. brachypetala 0.2138457 0.15155857 

T. sericea      0.1758693 0.20863844 

 
 
> tapply(Nitrogen,list(Season),sd) 
        D         W  
0.4049457 0.5142831  
 
 
 
Statistical differences between leaf samples  
 
aov1=aov(Nitrogen~Species*Season,data=leaf) 
> summary(aov1) 
               Df Sum Sq Mean Sq F value   Pr(>F)     
Species         8 10.893   1.362  18.361 1.76e-14 *** 
Season          1 12.947  12.947 174.577  < 2e-16 *** 
Species:Season  8  1.649   0.206   2.779  0.00995 **  
Residuals      70  5.191   0.074  
 
TukeyHSD(aov1) 
Tukey multiple comparisons of means 
                                                  p adj 
B. galpinii:summer-A. gerrardii:summer        1.0000000 
C. apiculatum:summer-A. gerrardii:summer      0.9914483 
D. cinerea:summer-A. gerrardii:summer         1.0000000 
E. natalensis:summer-A. gerrardii:summer      0.0000228 
P. africanum:summer-A. gerrardii:summer       0.0594210 
P. violacea:summer-A. gerrardii:summer        0.0677239 
S. brachypetala:summer-A. gerrardii:summer    0.3181456 
T. sericea:summer-A. gerrardii:summer         0.0096906 
C. apiculatum:summer-B. galpinii:summer       0.9999506 
D. cinerea:summer-B. galpinii:summer          1.0000000 
E. natalensis:summer-B. galpinii:summer       0.0001596 
P. africanum:summer-B. galpinii:summer        0.2008099 
P. violacea:summer-B. galpinii:summer         0.0159846 
S. brachypetala:summer-B. galpinii:summer     0.6566069 
T. sericea:summer-B. galpinii:summer          0.0438994 
D. cinerea:summer-C. apiculatum:summer        0.9906704 
E. natalensis:summer-C. apiculatum:summer     0.0051100 
P. africanum:summer-C. apiculatum:summer      0.8045875 
P. violacea:summer-C. apiculatum:summer       0.0005993 
S. brachypetala:summer-C. apiculatum:summer   0.9950827 
T. sericea:summer-C. apiculatum:summer        0.3932368 
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E. natalensis:summer-D. cinerea:summer        0.0000217 
P. africanum:summer-D. cinerea:summer         0.0574883 
P. violacea:summer-D. cinerea:summer          0.0699488 
S. brachypetala:summer-D. cinerea:summer      0.3111064 
T. sericea:summer-D. cinerea:summer           0.0093177 
P. africanum:summer-E. natalensis:summer      0.7145580 
P. violacea:summer-E. natalensis:summer       0.0000000 
S. brachypetala:summer-E. natalensis:summer   0.2399240 
T. sericea:summer-E. natalensis:summer        0.9705805 
P. violacea:summer-P. africanum:summer        0.0000001 
S. brachypetala:summer-P. africanum:summer    0.9999991 
T. sericea:summer-P. africanum:summer         0.9999999 
S. brachypetala:summer-P. violacea:summer     0.0000026 
T. sericea:summer-P. violacea:summer          0.0000000 
T. sericea:summer-S. brachypetala:summer      0.9967047 
B. galpinii:winter-A. gerrardii:winter        0.9998859 
C. apiculatum:winter-A. gerrardii:winter      0.9999999 
D. cinerea:winter-A. gerrardii:winter         0.7613438 
E. natalensis:winter-A. gerrardii:winter      1.0000000 
P. africanum:winter-A. gerrardii:winter       0.9940506 
P. violacea:winter-A. gerrardii:winter        0.0395859 
S. brachypetala:winter-A. gerrardii:winter    0.8613782 
T. sericea:winter-A. gerrardii:winter         0.0153911 
C. apiculatum:winter-B. galpinii:winter       1.0000000 
D. cinerea:winter-B. galpinii:winter          0.9993532 
E. natalensis:winter-B. galpinii:winter       1.0000000 
P. africanum:winter-B. galpinii:winter        0.5964289 
P. violacea:winter-B. galpinii:winter         0.4091811 
S. brachypetala:winter-B. galpinii:winter     0.9999303 
T. sericea:winter-B. galpinii:winter          0.0004577 
D. cinerea:winter-C. apiculatum:winter        0.9834835 
E. natalensis:winter-C. apiculatum:winter     1.0000000 
P. africanum:winter-C. apiculatum:winter      0.8436100 
P. violacea:winter-C. apiculatum:winter       0.1956176 
S. brachypetala:winter-C. apiculatum:winter   0.9955400 
T. sericea:winter-C. apiculatum:winter        0.0018723 
E. natalensis:winter-D. cinerea:winter        0.9705805 
P. africanum:winter-D. cinerea:winter         0.0556104 
P. violacea:winter-D. cinerea:winter          0.9858772 
S. brachypetala:winter-D. cinerea:winter      1.0000000 
T. sericea:winter-D. cinerea:winter           0.0000048 
P. africanum:winter-E. natalensis:winter      0.8882676 
P. violacea:winter-E. natalensis:winter       0.1575672 
S. brachypetala:winter-E. natalensis:winter   0.9906704 
T. sericea:winter-E. natalensis:winter        0.0026308 
P. violacea:winter-P. africanum:winter        0.0003488 
S. brachypetala:winter-P. africanum:winter    0.0900913 
T. sericea:winter-P. africanum:winter         0.4585160 
S. brachypetala:winter-P. violacea:winter     0.9593250 
T. sericea:winter-P. violacea:winter          0.0000000 
T. sericea:winter-S. brachypetala:winter      0.0000100 
 
> aov4=aov(Nitrogen~Type:Season,data=leaf) 
> summary(aov4) 
            Df Sum Sq Mean Sq F value   Pr(>F)     
Type:Season  5  13.95  2.7906   17.32 9.49e-12 *** 
Residuals   84  13.53  0.1611                      
--- 
TukeyHSD(aov4) 
 
$`Type:Season` 
                         diff        lwr          upr     p adj 
B:summer-A:summer -0.20533333 -0.6327480  0.222081286 0.7262355 
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C:summer-A:summer -0.63933333 -1.0667480 -0.211918714 0.0005067 
C:summer-B:summer -0.43400000 -0.8614146 -0.006585381 0.0444353 
B:winter-A:winter -0.32733333 -0.7547480  0.100081286 0.2336736 
C:winter-A:winter -0.52733333 -0.9547480 -0.099918714 0.0069275 
C:winter-B:winter -0.20000000 -0.6274146  0.227414619 0.7477100 
 
 
> kruskal.test(Phosphorus~Type,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Phosphorus by Type 
Kruskal-Wallis chi-squared = 23.438, df = 2, p-value = 8.137e-06 
 
kruskal.test(Potassium~Type,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Potassium by Type 
Kruskal-Wallis chi-squared = 4.1592, df = 2, p-value = 0.125 
 
> kruskal.test(Calcium~Type,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Calcium by Type 
Kruskal-Wallis chi-squared = 5.1574, df = 2, p-value = 0.07587 
 
> kruskal.test(Phosphorus~Season,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Phosphorus by Season 
Kruskal-Wallis chi-squared = 21.032, df = 1, p-value = 4.517e-06 
 
> kruskal.test(Potassium~Season,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Potassium by Season 
Kruskal-Wallis chi-squared = 26.648, df = 1, p-value = 2.441e-07 
 
> kruskal.test(Calcium~Season,data=leaf) 
 
 Kruskal-Wallis rank sum test 
 
data:  Calcium by Season 
Kruskal-Wallis chi-squared = 36.686, df = 1, p-value = 1.388e-09 
 
> pairwise.wilcox.test(leaf$Phosphorus, leaf$Type, 
+                      p.adjust.method = "BH") 
 
 Pairwise comparisons using Wilcoxon rank sum test  
 
data:  leaf$Phosphorus and leaf$Type  
 
    BLL     NLL  
NLL 6.7e-05 -    
NOL 6.4e-05 0.64 
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Appendix A03: Q-Q Plots for nitrogen, phosphorus, potassium and calcium 
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Appendix A04: The continuum-removed spectra and spectral analysis. 

 

CALL: 
 
Leafdata=read.csv("WinterLeaves.csv",header = TRUE, row.names = 1) 
head(Leafdata) 
 
ALLSPECTRA<-Leafdata[,51:2151] 
ALLSPECTRA<-as.matrix(ALLSPECTRA) 
 
str(ALLSPECTRA) 
 
Nitrogen<-Leafdata[,2152] 
Phosphorus<-Leafdata[,2153] 
Potassium<-Leafdata[,2154] 
Calcium<-Leafdata[,2155] 
 
Chemical<-Leafdata[,2152:2155] 
Chemical<-as.matrix(Chemical) 
 
Leafdata<-data.frame(I(ALLSPECTRA),I(Chemical)) 
 
names(Leafdata) 
 
wave_allspectra<-seq(51,2151, by=1) 
 
windows(7,7) 
matplot(wave_allspectra,t(Leafdata$ALLSPECTRA),lty=1,pch=".",xlab="nm",yla
b="reflectance") 
 
############################################################ 
 
crALLSPECTRA <- continuumRemoval(Leafdata$ALLSPECTRA,wave_allspectra,type=
'R') 
 
matlines(wave_allspectra,t(crALLSPECTRA[1:45,])) 
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########################################################################## 
 
leafTrain <- Leafdata[1:45,] 
 
leafChem2 <- plsr(Chemical ~ crALLSPECTRA, ncomp = 10, data = leafTrain, v
alidation = "LOO") 
 
summary(leafChem2) 
R2(leafChem) 
 
windows(7,7) 
plot(RMSEP(leafChem2), legendpos="topright", main = "RMSE for Summer Model
") 
 
windows(7,7) 
plot(R2(leafChem2), legendpos="topright") 
 
NleafChem <- plsr(Nitrogen ~ crALLSPECTRA, ncomp = 10, data = leafTrain, v
alidation = "LOO") 
PleafChem <- plsr(Phosphorus ~ crALLSPECTRA, ncomp = 10, data = leafTrain, 
validation = "LOO") 
KleafChem <- plsr(Potassium ~ crALLSPECTRA, ncomp = 10, data = leafTrain, 
validation = "LOO") 
CaleafChem <- plsr(Calcium ~ crALLSPECTRA, ncomp = 10, data = leafTrain, v
alidation = "LOO") 
 
summary(NleafChem) 
summary(PleafChem) 
summary(KleafChem) 
summary(CaleafChem) 
 
R2(NleafChem) 
R2(PleafChem) 
R2(KleafChem) 
R2(CaleafChem) 
 
windows(7,7) 
par(mfrow=c(2,2), pch=16) 
plot(RMSEP(NleafChem), legendpos="topleft") 
plot(RMSEP(PleafChem), legendpos="topleft") 
plot(RMSEP(KleafChem), legendpos="topleft") 
plot(RMSEP(CaleafChem), legendpos="topleft") 
 
par(mfrow=c(2,2), pch=1) 
plot(NleafChem, ncomp = 6, asp = 1, line = TRUE) 
plot(PleafChem, ncomp = 6, asp = 1, line = TRUE) 
plot(KleafChem, ncomp = 7, asp = 1, line = TRUE) 
plot(CaleafChem, ncomp = 5, asp = 1, line = TRUE) 
 
> leafChem <- plsr(Chemical ~ crALLSPECTRA, ncomp = 10, data = leafTrain, 
validation = "LOO") 
>summary(leafChem). 
 



64 
 

Appendix A05: Spectral band and indices used from Sentinel-2 image. 

 

Plots Band2 Band3 Band4 Band5 Band6 Band7 Band8 Band9 Band10 Band11 NDVI NDVI705 mNDVI705RE NDVI PSRI-NIR NDVI-GREENCRI2 CHL RE N P K Ca

K101 0.04404 0.064367 0.061992 0.10728 0.226904 0.27721 0.292548 0.293712 0.211255 0.135423 0.650295 0.357959 0.486071 0.126371 0.061366 0.041858 13.38536 0.366709 2.6 0.13 0.87 0.78

K102 0.03125 0.056883 0.048638 0.118451 0.308488 0.380663 0.368677 0.403325 0.240904 0.123395 0.766901 0.445114 0.521448 0.088883 0.047164 0.043623 23.55822 0.321288 2.32 0.14 0.83 0.67

K103 0.03125 0.056883 0.048638 0.118451 0.308488 0.380663 0.368677 0.403325 0.240904 0.123395 0.766901 0.445114 0.521448 0.088883 0.047164 0.043623 23.55822 0.321288 2.56 0.16 0.82 1.05

K104 0.032379 0.058003 0.043513 0.126521 0.28917 0.334011 0.343432 0.359125 0.23973 0.150028 0.775097 0.391274 0.463476 0.085776 0.032419 0.044958 22.98048 0.368402 2.51 0.18 0.87 0.72

K301 0.052212 0.085946 0.07675 0.144138 0.314689 0.371232 0.38985 0.392966 0.284238 0.191131 0.671024 0.37171 0.481232 0.106681 0.062944 0.057672 12.21509 0.369727 2.41 0.2 1.5 0.44

K302 0.059517 0.089885 0.074595 0.143794 0.249973 0.299061 0.325706 0.327745 0.301588 0.214747 0.627308 0.269651 0.386482 0.131554 0.046292 0.056385 9.847548 0.441483 2.19 0.22 1.45 0.79

K303 0.054999 0.094096 0.10361 0.13955 0.319692 0.381372 0.405677 0.403401 0.241623 0.146335 0.593116 0.39226 0.515806 0.11854 0.119828 0.05581 11.0163 0.343992 1.94 0.13 0.61 1.82

K304 0.080201 0.116732 0.130895 0.131827 0.305962 0.352673 0.378638 0.376242 0.258152 0.181114 0.486217 0.397759 0.627766 0.106159 0.133885 0.056757 4.883037 0.348162 2.36 0.14 0.94 0.73

K305 0.119678 0.183402 0.235529 0.229207 0.307269 0.358334 0.390948 0.368648 0.342335 0.260871 0.248085 0.145508 0.262727 0.119847 0.296333 0.045499 3.992922 0.586286 1.98 0.12 0.61 1.44

A101 0.061847 0.079748 0.116609 0.139459 0.167024 0.178972 0.194178 0.205644 0.287548 0.225591 0.249592 0.089939 0.150801 0.075178 0.282016 0.019904 8.998356 0.718202 1.88 0.16 0.34 1.31

A102 0.07014 0.103068 0.167552 0.150408 0.174027 0.204419 0.259278 0.220989 0.305911 0.229138 0.214902 0.072799 0.128254 0.196747 0.375703 0.022149 7.608633 0.580103 2.1 0.13 0.5 1.23

A103 0.07014 0.103068 0.167552 0.150408 0.174027 0.204419 0.259278 0.220989 0.305911 0.229138 0.214902 0.072799 0.128254 0.196747 0.375703 0.022149 7.608633 0.580103 1.91 0.12 0.35 1.87

A104 0.048387 0.066423 0.102336 0.151886 0.182367 0.209907 0.197263 0.227604 0.308855 0.224581 0.316847 0.091191 0.128353 0.039238 0.273486 0.021046 14.08269 0.769968 1.35 0.09 0.48 1.1

A105 0.063828 0.092616 0.104226 0.146947 0.183418 0.197528 0.248942 0.248272 0.339214 0.294379 0.409766 0.110394 0.179915 0.151551 0.162278 0.037951 8.861935 0.590286 1.94 0.13 0.46 1.19

A401 0.063861 0.084824 0.123907 0.175835 0.201318 0.231307 0.234854 0.256291 0.3555 0.263471 0.309251 0.067567 0.102165 0.076889 0.255674 0.026232 9.971896 0.748696 1.85 0.08 0.75 1.91

A402 0.046239 0.066229 0.092123 0.165517 0.199657 0.226545 0.203394 0.250779 0.349496 0.275511 0.37653 0.093489 0.125193 0.009272 0.225594 0.024937 15.58528 0.813776 2.04 0.11 0.6 2.06

A403 0.046239 0.066229 0.092123 0.165517 0.199657 0.226545 0.203394 0.250779 0.349496 0.275511 0.37653 0.093489 0.125193 0.009272 0.225594 0.024937 15.58528 0.813776 1.83 0.12 0.78 1.72

A404 0.056639 0.081162 0.118364 0.141569 0.181672 0.189955 0.21976 0.22738 0.300086 0.212591 0.29988 0.124064 0.190999 0.094881 0.280873 0.024339 10.59199 0.644199 2.1 0.12 0.82 1.59

A405 0.045392 0.062811 0.079305 0.107724 0.158674 0.181657 0.211187 0.209148 0.233914 0.157494 0.453995 0.191258 0.29013 0.14198 0.160583 0.028516 12.74729 0.510086 2.17 0.22 1.02 1.17


