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Summary

In this dissertation, Szemerédi’s Theorem is proven using ergodic theoretic techniques via the Fursten-
berg Multiple Recurrence Theorem. Brief historical remarks, along with a non-technical layout of the
ideas behind the proof of the Furstenberg Multiple Recurrence Theorem, are given in Chapter 1. After
introducing some notation, preliminary definitions and propositions in Chapter 2, the equivalence of the
Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem is laid out in detail in Chapter 3.
The rest of this work is devoted to providing a proof of the Furstenberg Multiple Recurrence Theorem.

Two important classes of invertible measure preserving systems, weak mixing and compact systems, are
introduced in Chapters 4 and 5 respectively, where it is shown that these classes of measure preserving
systems satisfy the Furstenberg Multiple Recurrence Theorem. (We shall say these systems have the
Furstenberg property). In Chapter 6, a dichotomy result is proven that characterizes all invertible
measure preserving systems in terms of weak mixing and compact systems.

After introducing more preliminary definitions and propositions in Chapter 7, a short proof of Roth’s
Theorem, the first non-trivial special case of Szemerédi’s Theorem, is given in Chapter 8. In Chapter 9,
a generalization of weak mixing systems, known as weak mixing extensions, is introduced. It is shown
that if a measure preserving Y has the Furstenberg property and X is a weak mixing extension of
Y, the Furstenberg property passes through the extension to the extended system X. The analogous
generalization of compact systems - compact extensions - is introduced in Chapter 10 and it is shown that
the Furstenberg property passes through compact extensions. Similar to what was done in Chapter 6, a
dichotomy result is proven in Chapter 11 that characterizes extensions of invertible measure preserving
systems in terms of weak mixing and compact extensions. All of the necessary tools developed in
previous chapters are put to use in Chapter 12 where the Furstenberg Multiple Recurrence Theorem is
proven - thus establishing Szemerédi’s Theorem.
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Part I: Furstenberg Multiple Recurrence and
Szemerédi’s Theorem



CHAPTER 1

Introduction

1. Ramsey Theory and Szemerédi’s Theorem

Ramsey Theory is a relatively new area of Mathematics, with the earliest results in the field only being
discovered in the early 20th century. The name was taken after F. Ramsey who proved one of the first
Ramsey Theoretic results in 1928 [10, p. 2].

RAMSEY’S THEOREM. For all n, m € N such that n,m > 2, there exists an M € N such that for every
R > M, any 2-colouring of the edges of the complete graph K, there exists a red complete subgraph
K,, or a blue complete subgraph K,, of Kz.!

An equally famous theorem is that of van der Waerden, proven in 1927 [32].

VAN DER WAERDEN’S THEOREM (FINITARY VERSION). Let k,r € N. There exists an integer M =
W (k,r) such that for every N > M and for every partition Cy,Cy,---,C, of the set {1,2,--- N},
there exists a C; that contains a length k& arithmetic progression.

For a fixed pair k,r € N, the number W (k, r) defined above is known as the van der Waerden number.

Both van der Waerden and Ramsey’s Theorems are good examples of the typical form of results in
Ramsey Theory: Both give sufficient conditions under which a finite partition of a certain structure
is guaranteed to give rise to some sort of regular substructure. Stated differently, results in Ramsey
Theory guarantee that, in some way, it is impossible to impose complete disorder on a sufficiently large
structure via the application of a finite partition.

The above finitary version of van der Waerden’s Theorem has an equivalent infinitary formulation.

VAN DER WAERDEN’S THEOREM (INFINITARY VERSION). Let k,r € N. If the natural numbers are
partitioned into r classes
,
N=|Jc
=1

then at least one of these classes C; must contain an arithmetic progression of length k.

Van der Waerden’s Theorem tells us that we can never impose a finite partition on the natural numbers
and avoid having one of the classes of the partition containing arbitrarily long arithmetic progressions.
This naturally leads to the question: For a given partition of the natural numbers Cy,Cy,--- |, C,, is
IThis is, in fact, the simplest case of Ramsey’s Theorem. The statement can be generalized to n-hypergraphs and n-dimensional colourings of

the edges of the n-hypergraph. This generalization claims the existence of a complete sub-n-hypergraph where all the edges share the same
n-dimensional colour.
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there a sufficient condition we can use to identify which of the C;’s contain arbitrarily long arithmetic
progressions? Van der Waerden’s Theorem does not reveal this. An appropriate sufficient condition
needed to be identified in order to establish this strengthening of van der Waerden’s Theorem.

In 1936, Paul Erdés and Paul Turdn studied conditions under which a set of integers {1,2,---, N}
contains a set A:= {ay,--- ,a,} such that no three elements of A form a length 3 arithmetic progression
[7]. This study was done in the hopes of establishing stronger bounds on the van der Waerden numbers
and make progress on the conjecture that the primes contain arbitrarily long arithmetic progressions,
which was only proven in 2004 by Ben Green and Terence Tao [30]. Erdés and Turdn would later
also make several conjectures of varying strength that they suspected would provide a sufficient condi-
tion to determine whether a given subset of the natural numbers contains arbitrarily long arithmetic
progressions [28]. One of those conditions (Definition 2.2) is central to our study:

DEFINITION. Let A C Z. The upper density of A in Z is defined as

N
- . 1 SN JAN{=N,—-N+1,--- \N—1,N}|
0(A):=1 — )
(4) lmS“pNanl 2N 11

N—oo

The motivation behind this definition is that the upper density of a set A quantifies the relative size of
the set A in comparison to the entire set of integers. It is clear from the defintion that d (Z) = 1, and
for any set B C Z with only a finite number of elements, that d (B) = 0. With this definition in mind,
Erdés and Turédn made the following (then) conjecture.

CONJECTURE. Let A C 7. If d(A) > 0, then set A contains arbitrarily long arithmetic progressions.

The first major stepping stone towards verifying this result came in 1952 from Roth [23].

RoTH’s THEOREM. Let A C Z. If d (A) > 0 then A contains an arithmetic progression of length three.

The Hungarian mathematician Endre Szemerédi was able to extend this result to the case of arithmetic
progressions of length four in 1969 [26], and in 1975 extended his argument to the full result [27].

SZEMEREDI’S THEOREM. Let k € N. If A C Z is such that d (A) > 0, then there exits a € Z and d € N
such that
{a,a+d,a+2d,--- ,a+ (k—1)d} C A.

Szemerédi’s proof has gained some notoriety for its intricacies, and we will not attempt to expound
upon it in this dissertation. Given the periods of time between the initial conjecture by Erdos and
Turan, the treatment of the first non-trivial case by Roth, and the eventual full proof by Szemerédi,
it is surprising that it took only another year for an entirely different proof of Szemerédi’s Theorem
to be published. Furstenberg proved the following statement, which he had shown to be equivalent to
Szemerédi’s Theorem [15].

FURSTENBERG’S MULTIPLE RECURRENCE THEOREM. Let (X, 3, i, T) be an invertible measure pre-
serving system and k € N. For any F € 3 such that p(E) > 0 there exists n € N such that

WENT"ENT EN---nT-*rEy >,
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A measure preserving system (X, %, u,T) is said to have the Furstenberg property if for every E € ¥
with p(E) > 0 there exists n € N such that

WENT"ENT EN---nT-*rEy >,
It is the proof of this result, along with its equivalence to Szemerédi’s Theorem that we will turn to
shortly.

Szemerédi’s Theorem has over the years been proven to be an interface between many different, often
seemingly disparate, fields of Mathematics with no less than five unique proofs of the theorem from:

(i) Combinatorics - (Szemerédi)
(ii) Ergodic Theory - (Furstenberg)
(iii) Fourier Analysis - (Gowers, [12])
(iv) Hypergraphs - (Nagle, Rodl, Schacht [20], R6dl, Schacht [21], Rédl, Skokan [22])
(v) Non-standard analysis - (Gordon, [11])

The approach to Szemerédi’s Theorem, via the Furstenberg Multiple Recurrence Theorem, we will lay
out follows in large part the works of Tao in [29, § 2.1-2.15], supplemented by the works of Furstenberg
[9], McCutcheon [17] and notes by Zhao [34].

2. A Non-Technical Overview of the Proof

Although some of the details of the proof - especially in the last few chapters - require some work, the
proof still has the advantage of having a clear structure, which we depict in Figure 1 on p. 5 and also
expound upon in a non-technical fashion.

The proof we will lay out starts off with the verification that the Furstenberg Multiple Recurrence
Theorem and Szemerédi’s Theorem are equivalent. For the forward implication, we are given a set
A C Z with positive upper density and k& € N. Having constructed a particular measure preserving
system (X, 3, u, T) and a particular set F € ¥ with u(E) > 0, we use the regularity of the set

E=FENT"ENT *ENn.-..nT-*"E
and the fact that u(E) > 0 in order to find a point z € E such that
o, T, Tz, T* g e E.
This will allow us to prove the existence of a length k arithmetic progression
{a,a+d,a+2d,--- ;a+ (k—1)d} C A.

For the converse implication, we are given a measure preserving system (X, ¥, 4, T') and some set E € ¥
with p(E) > 0. We use the fact that Szemerédi’s Theorem gives us arithmetic progressions of the form

a,a+d,a+2d,--- ,a+ (k—1)d
along with splitting the set X into a countable union of measurable sets in order to establish that

WENT"ENT EN---nT-*rEy >,
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(Equivalence of Szemerédi’s Theorem and FMR)

(Dichotomy of Systems)

(Roth’s Theorem)

(Weak Mixing Extensions) (Compact Extensions)

(Furstenberg Towers and the Structure Theorem)

(Szemerédi’s Theorem)

F1GURE 1. A flowchart depicting the overall structure of the proof of Szemerédi’s Theorem via the
Furstenberg Multiple Recurrence Theorem

The full details of this equivalence are given in Chapter 3.

The proof of the Furstenberg Multiple Recurrence Theorem can be viewed, loosely speaking, as an
inductive argument. For the ‘base case’ of the argument, we establish that the Furstenberg property
holds for two special classes of invertible measure preserving systems - weak mixing systems and compact
systems.

An invertible measure preserving system (X, %, u,T) is said to be weak mizing if for every A € ¥,
the events A € ¥ and T7"A € ¥ tend, in a certain sense, towards independence as the value n € N
increases. Specifically

N

1

NZ (ANT™A) — u(A)? — 0as N — oco.
n=1

There are many different characterizations of weak mixing systems, and we shall use a slightly different
version in Chapter 4 when we prove that all weak mixing systems have the Furstenberg property.
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An invertible measure preserving system (X, X, u,T) is said to be compact if for every B € X, the
sequence of events (T~"B) is almost periodic in the sense that, for every € > 0, the set

{n e N: u(EAT™F) < ¢}

is syndetic®.. This is also not the only way to characterize a compact system, and we will use two
equivalent formulations introduced in Chapter 5, where we show that all compact systems have the
Furstenberg property.

Knowing that weak mixing and compact systems have the Furstenberg property is already significant
progress, but this does not cover the case of an arbitrary measure preserving system. To this end, we
shall endeavour to characterize all measure preserving systems in terms of weak mixing and compact
systems. A dichotomy result between weak mixing and compact systems will be established, which,
loosely speaking, will state the following:

FEvery invertible measure preserving system is either weak mizring, or contains a compact measure pre-
serving system embedded inside it.

The embedded measure preserving system is known as a factor. The complete proof of this dichotomy
result is given in Chapter 6. Knowing this, it is easy to establish that for any invertible measure
preserving system, there exists at least a factor of the system which has the Furstenberg property.
Using this, and a few extra propositions, we will be able to provide a rather short proof of Roth’s
Theorem, given in Chapter 8.

Further tools will need to be developed in order for the special case of Roth’s Theorem to be generalized
to Szemerédi’s Theorem. One of the most central concepts we shall make use of moving forward is that
of an extension: Instead of considering single measure preserving systems, we shall consider a measure
preserving system along with a factor embedded inside it. The larger system with the factor embedded
inside it will be known as the extension. In this new picture, important properties of an extension
can be defined relative to a factor. All the tools we will need to talk about factors and extensions are
given in Chapters 6 and 7. This idea of extensions leads to a natural generalization of weak mixing and
compact systems: Weak mixing and compact extensions, where a system is respectively weak mixing or
compact relative to a factor.

These new concepts will allow us to move closer to proving that an arbitrary invertible measure pre-
serving system has the Furstenberg property. Given an invertible measure preserving system Y with
Furstenberg property, we shall show that if the system Y is a factor of X, and the extension is either a
weak mixing or compact extension, the Furstenberg property passes through the extension to the larger
system X. This is shown in Chapters 9 and 10, respectively.

However, knowing that the Furstenberg property passes through the weak mixing or compact extensions
alone is also not quite enough. A measure preserving system X may be the extension of a factor Y
which is either a weak mixing or compact system, yet the extension itself need not be a weak mixing nor
a compact extension! To this end, in a similar manner to the previous dichotomy result, we establish a
general characterization of extensions in terms of weak mixing and compact extensions:

2A set A C Z is said to be syndetic if it is countable and has bounded gaps between consecutive elements. The formal definition is given in
Definition 5.3.
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Given a measure preserving system X and a factor Y and the extension
o:Y =X,

Either ¢ is a weak mixing extension or there exists an intermediate factor Z between Y and X such that
the intermediate extension
Vv:Y =72

1S a compact extension.

Now, given any measure preserving system X := (X, ¥, 4, T) and starting with the extension from the
trivial system, Xq:= (X, {0, X}, u, T'), using Zorn’s Lemma and this new dichotomy of extensions result
will allows us to create an ordinal indexed tower of extensions of cardinality x

Xog—= Xy ==Xy > Xoy1 == X, = X

It’s easy to show that the trivial system X is both compact and weak mixing, hence has the Furstenberg
property. Proving that the Furstenberg property passes through this ordinal indexed tower of extensions
from the trivial factor all the way up to the system X will allow us to conclude that the measure
preserving system X has Furstenberg property, proving the Furstenberg Multiple Recurrence Theorem,
and thus giving us Szemerédi’s Theorem as a corollary.

A reader who is only interested in the proof of the Furstenberg Multiple Recurrence Theorem and is
familiar with the definitions introduced in Chapters 2, 6 and 7, a reading of Chapters 9 - 12 alone
would constitute a full proof of the Furstenberg Multiple Recurrence Theorem. However, the themes
and ideas developed in proving that weak mixing and compact systems have the Furstenberg property
in Chapters 4 and 5, as well as the simpler dichotomy of systems result in Chapter 6, repeat themselves
strongly in the later chapters, which may be easier to follow having understood the more simple ‘base
case’.



CHAPTER 2

Preliminaries and Notation

Before we begin with the treatment of Szemerédi’s Theorem via the Furstenberg Multiple Recurrence
Theorem, we introduce a few preliminary concepts and the general notation style that will be used in
this dissertation. First, we give the formal definitions of the terms used in the statement of Szemerédi’s
Theorem.

1. Preliminary Definitions

DEFINITION 2.1 (Arithmetic progressions). An arithmetic progression of length k in 7 is a set of integers
{a,a+d,a+2d,--- ;a+ (k—1)d}
where a € Z and d € N.
DEFINITION 2.2 (Upper and lower density in Z, [17, Definition 3.2.1, p.84]). Take A C Z. Define the
upper density of the set A in the integers to be
d(A) = li]r\;l_)solip |JAN{=N, sz\;il , N 1,N}|.
The lower density of the set A in the integers, denoted as d (A), is similarly defined by replacing the

limit superior with the limit inferior.

As we shall see, we will from time to time need to make use of a definition for upper and lower density
in the natural numbers instead of the integers.

DEFINITION 2.3. Take B C N. We define the upper density of the set B in the natural numbers to be

- Bn{l,--- ,N—-1,N
In (B) = limsup| SREIE ’ }|
N—oo N

The lower density of the set B, denoted as d (B), is defined similarly by replacing the limit superior
with the limit inferior.

Some basic properties regarding upper and lower density is given in Appendix A.

The concept that will be the most central in our discussion moving forward is that of a measure preserving
system. All of the measure preserving systems we shall discuss will be formed from an underlying
probability space. The conventions and terms we will make use of regarding probability spaces and
basic measure theoretic concepts are written concisely in [17, § 3.1].

DEFINITION 2.4 (Measure preserving systems, [9, Section 3.1, p. 59]). Let (X, X, u) be a probability
space. A mapping T : X — X is said to be measure preserving if the following conditions are satisfied

8
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(i) For every A € ¥, we have T™'A € X,
(ii) For every A € ¥, we have u(T'A) = u(A).
If T is measure preserving, then the quadruple (X, 3, i, T') is referred to as a measure preserving system.

DEFINITION 2.5 (Invertible measure preserving system, [25, p. 67]). A measure preserving system
(X, %, 1, T) is said to be invertible if the measure preserving map 7' : X — X is a bijection and both
the maps T and 7! are measure preserving.

2. Notation and Conventions

The LP and L function spaces will play a very important role in the analysis to follow. For the sake
of completeness, the construction of these function spaces, along with some important related facts we
use frequently, are given in Appendix D.

REMARK 2.6. For the sake of brevity, we will denote a measure preserving system (X, ¥x,u,T) as
X. If we are considering two measure preserving systems, we denote them as X:= (X, Xx, u,T) and
Y = (X, Xy, u, T), this will allow us to develop useful, and unambiguous, shorthand notation.

As seen in Appendix D, the L? and L function spaces are defined using an underlying probability space.
In chapters to come, we will refer to LP spaces constructed with respect to measure preserving systems
X:= (X,%, u, T) instead of a probability space (X, %, u). When this occurs, for the sake of brevity and
readability, it is understood that L?(X) is defined in terms of the underlying probability space (X, X, 1)
of the measure preserving system X.

We shall further abuse this shorthand notation by often denoting measure preserving systems and
probability spaces by the shorthand X. This is done for brevity and to improve readability. It will,
however, always be clear from the given context which object the symbol refers to.

For the sake of clarity, we point out that the elements of the L” spaces, as constructed Appendix D,
are in fact cosets of functions and not functions themselves. However, we will continue to refer to the
elements of LP spaces as functions in their own right, as the construction of these spaces allows us
to avoid technicalities like functions differing on sets of measure zero, and not much further clarity is
gained by emphasising the fact that the elements of the LP spaces are cosets.

DEFINITION 2.7 (Set of all simple functions generated by 3'.). Given a probability space X := (X, %, i)
and ¥ a sub-o-algebra of X. Denote the set of all simple functions on ¥’ as

S(Z,) = {Z ailAi . {Ai}iel Q Z',{ai}ig, |[| < OO} .
el

With these notational conventions in mind, the following operator on the space of L? functions will
make regular appearances.

DEFINITION 2.8. Given a measure preserving system X := (X, Y, u, T), define the Koopman operator
as a mapping
Kr: L*(X) = L*(X)
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where Krf:= foT.
One of the results we shall use most often is the fact that the Koopman operator preserves the integrals
of L? functions, the proof of which we lay out here.

DEFINITION 2.9 ([5, Chapter I, Proposition 5.2]). Given a real Hilbert space H, a linear operator
U: H — H is said to be an isometry if for every x € H

U@ g = llzllg -
PROPOSITION 2.10. Given a measure preserving system X := (X,%, u, T) then for every A € 3

[1a0 THL2(X) = HlAHL?(X) :

PROOF. Fix any A € X. Then

1Lallz2x) = / 14f* dp = / 14 dp = p(A).
X b's

Further

Lo Tl e = [ [ao TP du= [ sl du= [ 1ga du=p(T'4)

X X X
However, since T is a measure preserving map, we know that p(A) = u(T~A). Therefore
”1AOT||L2(X) = ||1A||L2(X)- u

Since the Koopman operator has been shown to act as a isometry on the indicator functions, we have
the following simple corollary.

COROLLARY 2.11. Given a measure preserving system X := (X, X, u,T). Then for every h € S(X)

/hdu:/honu.
X X

PROOF. Let n € N and consider a simple function h = """ | a;14,. Then

hdu:/ a;ly, dp = ai/l cdp = ai/l Z.on,u:/hon,u. 0J
/X X; . ; X A ; X A X

The following result will prove indispensable for approximation results moving forward.

PROPOSITION 2.12 (Simple functions are dense in L? [24, Theorem 3.13, p. 69]). Given a probability
space X := (X, X, u). Then for every p € N the set S(X) is dense in LP(X).

PROPOSITION 2.13. Let X:= (X,X, u) be a probability space and any f € LY(X). For every x € X,
define

f+(x) = max{f(z),0}  f-(z)=max{—f(z),0}.
Then f., f- € L°(X) are non-negative and f = f, — f_.

PROPOSITION 2.14. Given a measure preserving system X := (X, %, u, T). Then for every f € L'(X)

such that f >0,
/fdu:/fon,u.
X X
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PROOF. Take any f € L'(X). By the definition of the integral and Corollary 2.11

dp = du = s = 14, € 5(2),s <
/Xf,u Sup{/Xs,us ZalAle (E)s<f}

=1

zsup{/ SOTd[LZS:ZOzilAi GS(E),SS]C}
X

i=1

:sup{/ sonu:s:ZozilAi GS(E),sngfoT}
X i=1

X

COROLLARY 2.15. Given a measure preserving system X := (X, 3, u, T). Then for every f € L}(X),

/deu:/xfon,u.

PROOF. Take any f € L'(X). By Proposition 2.13, there exists non-negative functions f,, f_ €
LY(X) such that f = f, — f_. Then, by Proposition 2.14,

[ rau=[ fodn= [ fodu= [ pooTdn- [ foTdu= [ (fimpyoTdu= [ foTdn D

COROLLARY 2.16. Let X:= (X, %, u, T) be a measure preserving system. Then the Koopman operator
is an isometry on L*(X).

PROOF. Take any f € L*(X) and consider

£ 0Tl = [ 17 0TR du= [ 17PoT du
X X
Further, if f € L*(X) then |f]*> € L*(X). Therefore, by Proposition 2.15,

1 o Tl2ae, = /X P oT du= /X 12 dpr = 112

Since the choice of f € L*(X) was arbitrary, we conclude that the Koopman operator is an isometry on
L3(X). OJ

Next we introduce a few standard pieces of notation we will use throughout.

REMARK 2.17 (Trivial o-algebra). Take any non-empty set X. It is easy to verify that the collection
of sets ¥y := {0, X'} is a o-algebra. Throughout the dissertation, we shall refer to the collection Xy as
the trivial o-algebra.

Any measure preserving system X:= (X,X%, u,T) where ¥y C ¥ is said to be a non-trivial measure
preserving system.

REMARK 2.18 (Closed and open balls). Given a metric space (X, d) a point z € X and € > 0, we denote
closed and open balls in the following way;

B(zr,e) ={y € X : d(y,z) < €}
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and
B(z,e) ={y € X : d(y,z) < €}.

REMARK 2.19. Let (Y, 7Ty) be a topological space and X := (X, ¥, 4, T) a measure preserving system.
We note that the essential supremum of a essentially bounded function f € L*°(X) and the supremum

norm of a continuous function g € Cy(Y’) are both denoted by |+|| .. We will make use of this notational
abuse, while always clearly denoting whether the function lies in Cp,(Y') or L>°(X) to make it clear from

context which norm is being referred to.

With these definitions and conventions, along with some propositions from the appendices, we are
sufficiently armed to prove that the Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem
are equivalent, as well as proving the first special cases of the Furstenberg Multiple Recurrence Theorem.



CHAPTER 3

The Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem

In order to keep the proof of the equivalence of the following results focused and relatively concise,
while still providing a sufficient amount of detail, a significant number of smaller propositions used
in the proof have been placed in Appendix 3.A and 3.B and are referenced in the main body of the
proof. Readers who are familiar or convinced by the referenced statements can happily skip over these
ancillary sections. This proof structure will be used throughout the entire dissertation. Now, restating
the theorems of interest.

THEOREM 3.1 (Szemerédi’s Theorem, [9, Theorem 3.21]). Let k € N. If A C 7Z is such that d (A) > 0,
then A contains a length k arithmetic progression.

THEOREM 3.2 (Furstenberg Multiple Recurrence Theorem, [9, Theorem 7.15]). Let X:= (X, %, u, T)
be an invertible measure preserving system and k € N. For any E € ¥ such that u(E) > 0 there exists
n € N such that

WENT"ENT ENn---nT-*rEy >,

DEFINITION 3.3. A measure preserving system X := (X, X, u, T') is said to have the Furstenberg property
if for every E € ¥ such that u(E) > 0 and every k € N there exists n € N such that

WENT"ENTEN-..nT-*U"E) > 0.
1. The Furstenberg Multiple Recurrence Theorem implies Szemerédi’s Theorem

THEOREM 3.4 ([9, Theorem 3.21]). The Furstenberg Multiple Recurrence Theorem (Theorem 3.2) im-
plies Szemerédi’s Theorem (Theorem 3.1).

PROOF. Define Q:= {0, 1}% as the set of all Z-indexed binary strings. Equip € with the mapping
p:QxQ— R where

— L if n #
p(777 fy) = min{]j|+1:m(5)#v()} . (777 v E Q)
0 ifn=r

By Proposition 3.13, (€2, p) is a compact metric space. Let 7, denote the metric topology on (£2, p).
For every i € Z, define m; : Q — {0,1} as the coordinate projection mappings. Define the shift map
T :Q — Q where

T(a);=a;—1 (i €Z)
for every a = (a;)icz € 2. Define the inverse shift map 771 : Q — Q where

T(a);=a;41 (i €Z)

13
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for every a = (a;)icz € Q2. By Proposition 3.14, the shift mappings 7" and T~! are Lipschitz continuous
functions on €.

Assume the statement of the Furstenberg Multiple Recurrence Theorem (Theorem 3.2). Let k£ € N and
choose some A C Z such that d (A) > 0. Define the binary string a = (a;) € Q where

lifie A
o; = Hre (ZEZ)
0ifi g A

Now, define X := {T"a :n € Z} C Q and the set
E=Xnr'({1}).
Note that {T™«a : (T"«)(0) =1,m € Z} C E.

We will use the set X to construct a measure preserving system. Having done this, we will apply the
Furstenberg Multiple Recurrence Theorem to obtain a length k& arithmetic progression in the set A C Z.

Take ¥ to be the Borel g-algebra on € generated by 7,. Equip the set {0, 1} with the discrete topology.
Then the inverse image is 7, ' ({1}) clopen in 7,. Furthermore, the set X is also clopen in the induced
topology on the set X, which implies that £ € X is also clopen.

The shift map 7" will serve as our measure preserving map. It remains to construct a measure y € M (X)
with respect to which 7" is measure preserving and p(F) > 0 in order to apply the Furstenberg Multiple
Recurrence Theorem.

Since d (A) > 0, there exists a sequence of intervals (I},) contained in Z such that

. AN
lim =
k—o0 |Ik|

ul

(A) > 0.

Since X is compact, by Proposition 3.18, C'(X) is separable, so there exists a countable dense sequence
of linearly independent functions D:= (g,) C C(X). Further, since X is compact, the range in R of
every f € C(X) is a compact subset of R. Therefore, the sets

{gn(2) -z € X} CR

are compact for every g, € D. Next, define the following countable family of sequences in R

R E g Tl .
( k,n k:eN ( | [k’ n )
keN

i€y,

Since the ranges of every function g, € D is compact, we conclude that for every n € N, sequence
(Rk.n)ken is bounded. By Proposition 3.17, there exists a strictly increasing sequence (m;) C N such
that =, := lim;_,o Ry, exists for every g, € D. We can now define a functional ¢* : spanD — R.
Take any f =Y ;g € spanD and define

=¢° (Z aiQi) = Z =
i=1 i=1
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This functional is well-defined since the sequence (g,) consists of linearly independent functions. By
Proposition 3.22, the functional ¢* is linear and bounded. It follows by Proposition 3.21 that the unique
extension ¢ : C(X) — R of ¢* is a bounded linear functional.

By the Riesz Representation Theorem (Theorem 3.27), since C(X)* and M (X) are isometrically iso-
morphic, there exists some p € M (X) such that for every f € C'(X)

Fu(f) = /X £ du = o).

By Proposition 3.25 and 3.26, we have the following two results regarding the functional ¢ € C'(X)*:

(1) For every f € C(X), 6(f o T) = 6().
(II) For every f € C(X), ¢(f) = lim; o Il%j\ Zmelnj f(T™aq).

We claim that g € M (X) is a measure such that (X, X, u, T) is a measure preserving system. Consider
any B € 3. We show that for every € > 0

1T B) — u(B)| < e
Since the measure p is regular, there exists a sequence of open sets (B,,) C ¥ such that (u(B,,)) converges

to u(B). Further, by Proposition 3.14, since the mapping 7! : X — X is Lipschitz continuous, the
sequence (u(T~1B,)) converges to u(T'B). Therefore, for every n € N

(T~ B) — u(B)|
<|u(T™'B) - u(T"'B,)| + |u(T"'B,) - u(B)|
<|uw(T™'B) = (T By)| + (T By) = (Bn)| + [u(By) — p(B)] .

Since (u(By,)) converges to u(B) and (u(T~'B,)) converges to u(T'B) there exists Ny € N such that

_ 2e _
(T B) = u(B)| < 5+ |i(T"By) = p(By)]
Further, for every n € N, by Proposition 3.20, there exists a sequence of functions (f;" () ) C C(X) such
that ( Ix f /L) converges to p(B,). Therefore, consider

1T B) = u(Bn)|

g' T'B,) /f")du‘ ‘/f dp — p(By)
By Proposition 3.25,

(T By) — u(By)| < ’u(T‘an) - [ ger du‘ n ‘ [0 du—us).
X

Since T': X — X is a Lipschitz continuous mapping and ( Ix f (n) du) converges to u(B,), we have
that

/ f](”) oT du — (T 'B,) as j — oo.
X
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Therefore, there exists Ny € N such that if n > Ny then
(T B,) — u(B,)| < /3.
Taking M = { Ny, N»}, it follows that if n > M then
(T B) — u(B)| < e

Since the choice of € > 0 was arbitrary, we know that u(B) = p(T~'B) and since the choice of B € &
was arbitrary, we conclude that (X, %, u, T') is a measure preserving system. The same argument can
be used to show that for any B € ¥, u(TB) = u(B). Hence, (X, %, u,T) is an invertible measure
preserving system.

In order to apply the Furstenberg Multiple Recurrence Theorem, we verify that u(£) > 0. By Propo-
sition 3.30, since the set E' is clopen, 15 € C(X). By Proposition 3.26, we conclude that

u(E):/XlE dp = lim ! ZlE(Tia).

The values i € Z such that 15(7T"«) takes on a non-zero value are precisely the i € A. Therefore

' , . AN S
E)=1 15(T'a) = lim “—— 5 = (A) > 0.
u(E) = lim |[nj|i§. p(T'0) = Jim =7 (4)

Applying the Furstenberg Multiple Recurrence Theorem to the measure preserving system (X, %, pu, T),
there exists n € N such that

W(ENT"ENT"ENT-*"E) > 0.

As a result, there exists some r € X such that € F and T""x € E, for every j € {1,---  k — 1}.
By definition of the set E = X N, '({1}), the point x € E corresponds to a limit point of a sequence
contained in the set {T"«a : n € Z}. Let (T"a) be a sequence in {T"« : n € Z} that approximates the
limit point x € E. There exists some R € N such that for all » > R, we have that
: 1
p(T o, x) < T
Then, by Lemma 3.10, 1 = x(t) = TRa(t) for all t € {—(k—1)n, —(k—1)n+1,--- (k—1)n—1,(k—1)n}.
And therefore, by the definition of a € €1, the set A contains an arithmetic progression of length k. [

2. Szemerédi’s Theorem implies the Furstenberg Multiple Recurrence Theorem

DEFINITION 3.5. For every k € N, define AP, C ZF as the set of all points # € Z* for which there exists
some a € Z and d € N such that

i=(a,a+d,a+2d,---,a+ (k—1)d) e ZF.

THEOREM 3.6 ([34, p. 15]). Szemerédi’s Theorem (Theorem 3.1) implies the Furstenberg Multiple Re-
currence Theorem (Theorem 3.2).

PROOF. Assume the statement of Szemerédi’s Theorem (Theorem 3.1). Let (X,X, u,T) be some
invertible measure preserving system. Let £ € N and F € ¥ such that u(£) > 0.
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Define for each @ = (a;)¥_, € AP, the set
k
Ki={r€X:T"z € E foreach 1 <i<k,ic AP} =(|T “E€X.
i=1
Define K:= (Jze4p, Ka € X By Lemma 3.32, since u(E) > 0, there exists some F' € ¥ with u(F) > 0,
such that for every z € F, the set ', := {n € Z : T"x € E} has positive upper density.

Therefore, by Szemerédi’s Theorem, for each = € F', the set I', must contain a length k progression. So,
for every x € F', there is some ¢ € AP, such that {ci, ¢, -+ ,cx} CI'y. Therefore, z € Kz C K. As this
holds true for all x € F', we have F' C K. Therefore, u(K) > pu(F) > 0.

Since AP, C Z*, the set AP, is at most countable. Since K = Uae AP, K3, there exists some b e AP,
such that p(Kj) > 0, otherwise, this would contradict the fact that p(K) > 0. Denote the entries of
be AP, as {b,b+n,b+2n,--- b+ (k—1)n} C Z. For every z € Kz, Tz, T g, [ T0HE-Dng ¢ B,
Therefore
K; CTPENT "™EnT t2pn... - trk=bn g
which implies that
T’'K; CENT"ENT EN---nT-*E

Since T' is an invertible measure preserving transformation, we know that p(7°Kz) > 0. From this, we
conclude that y(ENT"ENT"EN---NT~*"Y"E) > 0 and the required result follows. O

3.A. Ancillary Results for the Proof of Theorem 3.4
DEFINITION 3.7 (Metric Space, [16, Definition 1.1-1]). Let X be a non-empty set. A mapping d :
X x X — R is said to be a metric on X if the following conditions hold.
(i) For all x,y € X, we have d(z,y) > 0.
(ii) For all z,y € X, the value d(z,y) = 0 if and only if x = y.
(iii) For all z,y € X, the value d(z,y) = d(y, ).
)

(iv) For all z,y,z € X
d(z,y) < d(z,z) +d(z,y).
The pair (X, d) is said to be a metric space.

DEFINITION 3.8. Consider the set Q:= {0,1}% and define the mapping p: Q2 x Q2 — R as

MU if n # 7,
p(n’ f)/) = mln{‘]‘+1n(j)7£7(])} ) (7’]’ ,-)/ e Q)
0 if n =1,

As a shorthand, for any ~,n € Q, define yAn:= min{|k| + 1 : v(k) # n(k)}.
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LEMMA 3.9. The pair, (2,p) as defined in Definition 3.8, satisfies the first three axioms of a metric
space in Definition 3.7.

PROOF. (i) Take any v,n7 € Q. Since 1 < yAn < oo, we have 0 < 1/yAn < 1. Therefore,
p:QxQ — R takes on a finite value for any (v,n) € Q x Q. Further, the mapping p(n,~) €
{1/n:n € N} CRT, hence p(n,v) > 0.

(ii) By the definition of p : Q x Q — R, if v = 5 then p(v,n) = 0. Conversely, if p(v,n) = 0 then it
follows that v = 7, since if v # n then

p(v,m) € {1/n:n € N}
and 1/n > 0 for any n € N.
(iii) Take any ~,n € €. Since YAn = nA~, by the definition above, we have
p(v,n) = 1/vAn = 1/nA\y = p(n,7). L

The following lemma is an immediate consequence of the definition of the mapping p : 2 x Q2 — R
defined in Definition 3.8.

LEMMA 3.10. Forn,~v € Q, p(n,v) < 1/n if and only if v(k) = n(k) fork € {—(n—1),—(n—2), -+ ,n—
2,n—1}.

LEMMA 3.11. The mapping p : Q x 2 — R defined in Definition 3.8 satisfies the triangle inequality.

PRroOOF. Using the shorthand notation from Defintion 3.8, we show for all v,7n,0 € €2, the values
vAn, yA6 and dAn satisfy the triangle inequality:

1/yAn < 1/yAd +1/5An,
Let 7,0,n € Q be arbitrary. Define A:= yAn, B:= YA and C:= jAn.
(i) f A=B=C:
Then 1/A =1/B =1/C, and clearly, 1/A <2/A=1/B+1/C.
(i) B<A<CorB<C<A:

Assume B < A < C. Then, we have that 1/B > 1/A > 1/C. If follows that, 1/B + 1/C >
1/A+1/C > 1/A, since 1/C > 0. This gives 1/B + 1/C > 1/A, as required. To prove the
result if B < C' < A, permute the occurrences of B and C. The cases where B < A = C' and
B = A < C can be treated in a very similar way.

(iii) fC<A<BorC<B<A:

Assume C' < A < B. Then, we have that 1/C > 1/A > 1/B. It follows that, 1/C +1/B >
1/A+1/B > 1/Asince 1/B > 0. This gives 1/C +1/B > 1/A, as required. To prove the result
if C < B < A, permute the occurrences of B and A.

(iv) Lastly, we show that the inequalities A < B < C' and A < C < B are not possible.



3.A. ANCILLARY RESULTS FOR THE PROOF OF THEOREM 3.4 19

Assume A < B < C'. Then, by definition of A, B and C"
v(k)=nk)Vke {-A+1,--- JA—1},
v(k)=46(k)Vke {-B+1,--- ,B—1},
5(k)=nk)Vke{-C+1,---,C -1},

while one from each of the following three possibilities holds true.

(1) Y(A) # n(A) or y(=A) # n(—=A),
(2) Y(B) # d(B) or v(=B) # 6(—B),
(3) 6(C) #n(C) or 6(=C) # n(=C).

But, since (k) = (k) for all k € {—B +1,---,B — 1} and d(k) = n(k) for all k € {-C +
1,---,C —1} and B < C, we conclude that (k) = n(k) for at least all k € {—B+1,--- ,B —
1}. But, since we assumed that A < B, this would contradict the fact that either v(A) #
n(A) or y(—A) # n(—A). Therefore, we discard the possibility that A < B < C.

The same argument can be used to exclude the case A < C' < B. U

From Lemma 3.9 and 3.11, we have the following corollary.

COROLLARY 3.12. The set Q:= {0,1}% equipped with the mapping p : 2 x Q — R defined in Defini-
tion 3.8 15 a metric space.

PROPOSITION 3.13. The metric space (2, p) is compact.

ProOOF. Take any sequence (z,) C €. Since {0, 1} is a finite set, there exists some ag € {0, 1} such
that [{n € N: 2,,(0) = ap}| = co. Define Ky:={n € N: z,(0) = ap} and n; := min K.

Next, define Ky := {n > n; : £,(0) = ap, z,(1) = a1, z,(—1) = a1} where a; € {0, 1} has been chosen
such that |K;| = oo. Define ny:= min K;.

Continuing in this way, for every j > 2, we define IC;:= {n > n;_1 : 2,(i) = o, x,(—1) = a; Vi
{0,1,---,5 — 1}, 2,(j) = a4,z,(—J) = «;} where all the o;’s have been previously defined for i
{0,1,---,5 — 1} and where «o; € {0,1} such that |IC;| = oco. Define n;i;:= mink; and z: =
(«++ o, 00,00, 00, Qg+ -+ ) € €L

m m

We claim that the subsequnce (z,;) converges to z € €. Fix any € > 0, there exists some N € N such
that 1/N < e. It is enough for us to show that p(z,,,z) < € for every k > N. However, by definition of
the subsequence (,,)

wmin{[j| +1: 20, (j) £ 2G)} = N +1> N,
Therefore, p(z,,,r) <1/(N +1) <1/N < € for every kK > N. Since the choise of € > 0 was arbitrary,
the subsequence (,,) converges to x. Since (z,,) was an arbitrary subsequence contained in €2, we
conlcude that (€, p) is a compact metric space. O
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PROPOSITION 3.14. Consider the set 2 := {0, 1} and the shift mapping T : Q — Q as defined on p. 13.
Then the mappings T and T~ are Lipschitz continuous with Lipschitz constant L = 2.

PROOF. Fix any v,n € Q. Define ng:= min{|j| + 1 : v(j) # n(j)}. We check all possible cases.
(i) If ng = 1, then we must have that v(0) # n(0). It follows that p(Tv,Tn) < 2 = 20 = 2p(7, 7).

n

(ii) Ig no > 1 and j > 0 for |j| + 1 = min{[j| + 1 : v(j) # n(j)}, it follows that p(T+,Tn) = noil <
o= 2p(7,m).
(iii) If ng > 1 and j < 0 for |j| + 1 = min{|j| + 1 : v(4) # n(j)}, it follows that p(Ty,Tn) < + <

ng —
2 =2p(y, 7).
As this covers all possible cases, we conclude that the shift mapping 7" is indeed Lipschitz continuous.
The same argument can be used to show that the inverse shift map 77! : Q — Q is also Lipschitz
continuous with Lipschitz constant L = 2. O

THEOREM 3.15 (Bolzano-Weierstra$, [16, Appendix A1.7]). Given a bounded sequence (a,) C R, there
exists a sequence (n;) C N such that limy_, @y, exists.

We shall need a generalization of the Bolzano-Weierstral Theorem from a single bounded sequence
to a countable collection of bounded sequences. To avoid messy notation with subsequences, we first
introduce the following notation.

DEFINITION 3.16. Let A be some infinite subset of N and (z,) a sequence in R. The sequence (x,,)
converges along A if for every ¢ > 0 there exists some N € N such that if n > N and n € A, then
|z, — x| < e. We write this as

limz,, = x.
neA

PROPOSITION 3.17. For every m € N, let (aq(lm)) C R be a bounded sequence. There exists a strictly

increasing sequence (n;) C N such that lim;_, ag?) exists for every m € N.

ProoF. Consider some countable collection of bounded sequences, {(a&m))}meN. By the Bolzano-

Weierstral Theorem (Theorem 3.15), for the sequence (ag)), there exists a infinite subset B; C N such

(1)

. 1 .
that lim,cp, an’ exists.

Consider the subsequence (ag))negl of (ag)). Since (ag)) is a bounded sequence, the subsequence

(ag))negl is bounded. By the Bolzano-Weierstral Theorem (Theorem 3.15), there exists an infinite
subset By, C Bj such that lim,cp, ag) exists.

Continuing in this way, for every k € N, we can find an infinite subset By C By_1 C --- C B; for which
(k)

lim,ep, an’ exists.
Define the sequence (n;) C N recursively where ny = by € By and n;:= min{n € B; : n > n;_1} for

n > 2. We wish to show that for any m € N, that lim,_, ag?) exists.
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Fix some m € N ande > 0. We have the infinite subset B,, C N such that (™ := lim,ep,, a%m) exists.
In other words, there exists some N € B,, such that for all » € B,,, for which r > N we have
al™ — o™ < e
Simply take ny, € (n;) such that ny, > N. Then for all n > ny where n € (n;) we have that |a£lm)—a(m)\ <

e. This ny, is guaranteed to exist by the definition of the sets B,, and the sequence (n;). Since the choice
of e > 0 and m € N was arbitrary, the required result follows. 0

PROPOSITION 3.18 ([8, Lemma 3.23]). Let (X, p) be a compact metric space, then C(X) is separable.

The following result is a stronger version of Urysohn’s Lemma [19, Theorem 33.1] stated in the context
of metric spaces.

THEOREM 3.19 ([19, § 33, Exercise 5]). Given a metric space (X,d) and disjoint closed sets A, B C X,
there ezists f € C(X) such that f(A) = {0}, f(B) = {1} and f(x) € (0,1) forz € X \ (AU B)

PROPOSITION 3.20. Let (X,d) be a metric space and define ¥ as the Borel o-algebra generated by the
induced topology Tg on X. If p € M(X) and A € Ty. Then, there exists a sequence (f,) € C(X) such
that

/fnd,u—,u(A)‘%O as n — oo.
X

PROOF. Since p is a regular measure, for every n € N there exists a compact set K,, C A such that
u(A\ K,,) < 1/n. Consider the disjoint closed sets K, and X \ A. By Theorem 3.19, for every n € N,
there exists f,, € C'(X) such that f(X \ A) = {0}, f(K,) = {1} and f(z) € (0,1) for x € A\ K,,. Fix
€ > 0 and consider

[ 5 du—u(A)'I [ a1 du‘

< /X\A (fu — 1) du‘ + / (fu — 1) du‘

A\K,, n

= / (fn_]-A) d:u‘ < / |fn_1A| d:u:/ 1a— fndu
A, A\, A\K,
Therefore, there exists N € N such that e > 1/N. Then, for all n > N

/X fu dpt — p(A)

PROPOSITION 3.21 ([16, Theorem 2.7-11]). Let X be a subspace of a normed space A, Y a Banach
space and B : X — Y be a bounded linear operator. Then B has a unique extension B : X — Y where

<u(A\K,) <1/n<e. O

B is a bounded linear operator.

Most of the results to follow are concerned with the functional ¢* : spanD — R defined in Theorem 3.4

¢*(JF) = ¢ (Z aigi) = Z eh=n (f € spanD).
i=1 i=1

on page 14 as
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PROPOSITION 3.22. The functional ¢* : spanD — R defined in Theorem 3.4 is linear and bounded.

PROOF. The linearity of ¢* follows easily. We claim that the functional ¢* : spanD — R is bounded.
Take any f =" (;fi € spanD. Then

n n n
=;mz=;@mﬁwzgg;&%¢
For any 7 € N
T Z fiT™a
i meln;
Hence

()] = lim Zﬁz S [T

mEIn

1 n
Jim |Inj| 2 Z
< lim (T
w P
<1
lim |] m; 11l
= lim [|f[|,
j—o0
= [[flloe < o0 U

By direct application of Proposition 3.21, we obtain the following corollary.

COROLLARY 3.23. The functional ¢* : spanD — R defined in Theorem 3.4 has a unique extension

¢ e C(X)".

The following corollary follows as a direct application of the Riesz Representation Theorem [5, Chap-
ter III, Theorem 5.7, p.75].

COROLLARY 3.24. Consider the functional ¢* : spanD — R defined in Theorem 3.4 and the unique
extension ¢ € C(X)*. There exists p € M(X) such that

o(f) = Fu(f) = /X f du.

PROPOSITION 3.25. Let X be the compact Hausdorff metric space defined in Theorem 5.4 on page 14.
Consider the functional ¢* : spanD — R defined in Theorem 3.4, the unique extension ¢ € C(X)* and
the shift mapping T : X — X. Then, for every f € C(X)

o(foT) = o(f).
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PrOOF. Fix any f € C(X). We claim that for every ¢ > 0
[6(f) —d(foT)| <e.

Since D is a dense subset of C'(X), there exists a sequence (f,,) C D such that, (f,,) converges in norm
to f. Fix any € > 0 and consider

0(f) = ¢(f o T)| < [o(f) = o(fn)l + |0(fn) — &(f o T)]
<[e(f) = o(fu)l +10(fn) = ¢(fr o T)| + |@(fn 0 T) — ¢(f o T)].

As (f,,) converges in norm to f, there exists some N € N such that if n > N

0(f) — ¢"(fu)| < €/3.

Further, since (f,,) converges in norm to f, and by Proposition 3.14, we know that T is a Lipschitz
continuous mapping, (f, o7T) converges in norm to fo7T. Therefore, there exists some M € N such that
if n > M, then

[@(fuoT) = o(f o T)| <¢/3.
Applying the definition of the functional ¢* : spanD — R

|6(fn) — O(froT)| = | lim

j—00 |In |

Z fo(T'a) = fu(T )|

16[

But every interval I,,; is of the form {—L, —(L —1),---,L—1, L} for some L € N. Therefore, for every
interval I,

(6(fn) = ¢(fnoT)| < lim — Z Fo(Tia) = fu(T )

gm0 | nﬂ zEI
< hm |fn(Tm1nIn ) fn(TmaXIn +1a/)|
j—00 ’In |
S lim —— |fn Tmmln ‘ + |fn TmaxIn +1 )‘
G0 |f |
< li 1 follo
Ifnjl

As a result, there exists some K € N such that if j > K
6(fn) = 0(faoT)| < 7 ‘[ 7 [fnlloe < €/3.

Take P:= max{N, M, K}. Then all the above approximations will hold and for every n > P

[6(f o T) = o(f) <e

Since the choice of € > 0 and f € C(X) were arbitrary, it follows that ¢(f o T) = ¢(f) for every
felC(X). O
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PROPOSITION 3.26. Consider the functional ¢* : spanD — R defined in Theorem 3.4 and its unique
extension ¢ € C(X)*. For every f € C(X)

Proor. Take f € C(X) and fix any € > 0. We claim that

Zme < e

mEI

o(f) — lim

j—oo ‘[n

Since D is dense in C'(X), there exists some sequence (f,) C D such that (f,,) converges in norm to f.
For any n € N

2 S

mEI

6(f) - lim

j—o0 |In

Y F(Tma)| < 10(f) = $(fa)l + |6 fa) — 11m|]n|

mEIn

Since the functional ¢ € C(X)* is continuous and (f,,) converges in norm to f, there exists some N; € N
such that if n > Ny then |o(f,) — o(f)] < €/2.

Further, for any n € N, since f, € D

o(f,) — lim — P Z F(Tma)| = hmi_' > fulTma) hm—| Z F(T™a)

j—00 ’]n

= Jim > (o = HT" )]
n; te

< lim |I Z I fa = flls
nj mEI

= 1o = fll«

As such, there exists some Ny € N such that if n > N,, then

Z f(TTa)| < /2.

mEI

O(fn) — hm |In

Define N = max{Ny, No}. Then, if n > N

o(f) — lim — Z f(T"a)| < e.

j—00 ‘]n] |
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As the choice of f € C(X) and € > 0 were arbitrary, we conclude that

MﬁzhmJjEZﬂT%) 0

THEOREM 3.27 (Riesz Representation Theorem, [5, Chapter III, Theorem 5.7, p.75]). If X is a locally
compact space and pn € M(X), define F,, : C(X) — R by

Fuf) = [ 1 dn

Then the mapping F,, € C(X)* and the mapping p — F,, is an isometric isomorphism of M(X) onto
C(X)*.
The following result follows directly from the Riesz Representation Theorem (Theorem 3.27).

COROLLARY 3.28. Let (X, d) be a compact metric space and consider any regular Borel measures ji,v €
M(X). If [ fdu = [y fdv for every f € C(X), then = v.

PROOF. Let p,v € M(X). By the Riesz Representation Theorem (Theorem 3.27), there exists
unique bounded linear functionals F,, G, € C(X)* such that

/fdm Gp)= [ fav (fecx))

By assumption, for every f € C(X
— [ sau= [ rar=cup)
X X

Hence, F), = G,. Since M(X) and C(X)* are isometrically isomorphic, we conclude that p = v. O

PROPOSITION 3.29. Let (X,d) a compact metric space with topology Ty and consider a probability space
(X, X, 1) where X is the Borel o-algebra generated by Ty. Let T : X — X be a measure preserving
homeomorphism. Define the measure v : 3 — [0, 1] where v(A) = u(T'A) for every A € %. For every

fed(X)
/deu:/dey.

PROOF. It is easy to verify that v : ¥ — [0, 1] is indeed a measure on . Take any f € C(X). Using
the definition of the integral

/ fdv =sup {z": a;iv(4;) s = iai]‘Ai € S(X),s < f}
X i=1 i=1
=sup {Zn: aip(T™A;) 1 s = Zn:ailAi € S(X),s< f}
i=1 i=1
=Ssup {Z%M(Az) PS5 = Zal(lAL OT) € 8(2)75 < f}

=1 =1
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n

=sup E a;p(A E ai(l4,) € S(X),s < foT™*
=1

:/ foT tdu.
X

By Proposition 3.24 and Proposition 3.25,
[ fav=oror = ottt o) =65 = [ fan O
X X

PROPOSITION 3.30. Given (X, Tx) a topological space, and let (X, %, 1) be a probability space where ¥
is the Borel o-algebra generated by the topology Tx. If E € ¥ then 15 € C(X) if and only if E is clopen
in the topology Tx.

3.B. Ancillary Results for the Proof of Theorem 3.6

PrOPOSITION 3.31 ([4, Proposition 1.2.5]). Given (X, 3, 1) a probability space and (A,) a decreasing
sequence of sets that belong to 3, then p (N —; An) = lim,, 00 1(A;,).

LEMMA 3.32 ([34, Lemma 3.5]). Let (X, %, u, T) be a measure preserving system. For each E € ¥ with
w(E) > 0, there exists F € X with pu(F) > 0 such that for each © € F, the setI'y:={n € Z :T"z € E'}
has positive upper density.

PROOF. Take an arbitrary £ € ¥ such that u(E) > 0. For each N € N, define the mapping
Dy : X — [0,1] where for each z € X
{ne€Z:—-N<n<N, T'z € E}|
2N +1 '
For each N € N, rewrite Dy as a summation of Koopman operators, where for each x € X

Dy(x):=

Do) = s 37 (KF(1e)()

n=—

We claim that for every N € N, we have that [, Dy du = p(E). Fix any N € N. Then

N N
1 1
Dy du = KX (1g) dp = lgoT™d
/XNP« 2N—|—1/XZ 7(1p) du 2N+1nz/)<Eo H
1 N
1p-np du =
2N+1Z/ TonE A 2N+1Z

But as T' is a measure preserving map, we have that (T "FE) = u(FE) for each n € N. As such, we have
that [, Dy du = p(E) for each N € N. Now, for every N € N, define the set

Ayi={z € X : Dy(x) > % (B)}.
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We claim that u(Ay) > $u(E). Fix any N € N. Using the previously proven claim
X An X\An
By the definition of Ay it follows that
1 1
[ Dwdus [ Su(E) du= Gu(ERX Ay).
Since p(X \ Ay) < 1, it follows that, u(E)u(X \ Anx) < u(E). As such

1
AN
From this, and the definition of Dy, we know that Dy(z) <1 for all x € Ay C X. Therefore
1

§M(E) < Dy dp < / 1x dp = p(An).
Ax Ay

Define the collection of sets, By:= |J,>y An. It is clear that (By) is a decreasing sequence of sets.
Then, for each N € N, Ay C By, and so 1u(E) < pu(Ayx) < p(By). Define F:=(3_, Bw.

Since p(By) > 1pu(E) for every N € N, it follows from Proposition 3.31 that p(F) = limy_ec pt(Bn) >
1

We claim that for any = € F, the set I', = {n € Z : T"x € E} has positive upper density.

Consider

, , {ne€Z:—-N<n<N,T'x € E}|
limsup Dy (z) = limsu > 0.
N—)oop N< ) N—)oop 2N +1
Let x € F. Then x € (\ys,U,>y An. There exists a strictly increasing sequence (N;)ien such that
x € Ay, for all © € N. Since xz € Ay, for every i € N

T € {x € X : Dy,(x) > %M(E) > O}

:{xeX:HnEZ' Nz_n_NZ,TxEE}|>

1
ON; + 1 —§“<E)>O}'

Since for every i € N
> —u(E) >0
2N, + 1 z 5HE) >0,
the value of limsupy_,., Dy(z) is strictly positive. Therefore the set I', has positive upper density for
every x € F', and the desired result follows. 0




Part II: Special Cases of the Furstenberg Multiple
Recurrence Theorem



CHAPTER 4

Weak Mixing Systems

Having proven the equivalence of the Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theo-
rem, the rest of our efforts will be spent on developing tools that will allow us to prove the Furstenberg
Multiple Recurrence Theorem. Much of this work will involve investigating limits and various types of
convergence - two of which we shall introduce next.

1. Modes of Convergence

DEFINITION 4.1 (Cesaro convergence, [29, Definition 2.12.1]). Let (x,) be a sequence in R. We say
that the sequence (x,,) converges in the sense of Cesaro to x € R if

1 N
W, 2 =

In this case, we write

C-lim z, = .
n—0o0

DEFINITION 4.2 ([9, Definition 4.2]). Let (X, 7Tx) be a topological space, (z,) a sequence in X and
x € X. The sequence is said to converge in density to x € X if for every neighbourhood V' of x the set
{neN:z, ¢V}

has upper density zero. In this case, we write

D—lim z, = z.
n—oo

This definition can be restricted to the specific case of density convergence in the real numbers, which
is the context in which we shall make use of density convergence the most.

DEFINITION 4.3. Let (x,) be a real valued sequence and = € R. The sequence is said to converge in
density to x € X if for every € > 0 the set

{neN:|z, —z| >¢€}

has upper density zero.

As we shall see in the coming chapters, most of the analysis that we will need to do involves verifying
that various sequences converge with respect to different notions of convergence as well as the relations
between these various modes of convergence. Important properties of Cesaro and density convergence
are laid out in Appendix B, which we shall reference throughout. One of the more important properties
shall use is the following.

29
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PROPOSITION 4.4. Consider a bounded real valued sequence (xy,). If (x,) converges in norm to z € R,
then (z,) converges in density to x € R, which in turn implies that (x,) converges in the sense of
Cesaro.

2. SZ Systems

Instead of proving directly that all measure preserving systems have the Furstenberg property, we will
endeavour to show that all measure preserving systems satisfy a stronger condition, known as being a
SZ system.

DEFINITION 4.5 (SZ Systems, [29, p. 279]). Given a measure preserving system X := (X, %, u, T'). The
measure preserving system X is said to be SZ of level k € N if for every f € L*(X) such that f > 0
and [, fdp >0, we have

hmmf—Z/f foT™ foT?...foT® g, > 0.

If the measure preserving system is SZ for every level k € N, then we simply say the system X is SZ.

With the definitions of weak mixing and compact systems we will introduce, and with a focus on the
analysis of the behaviour of L? and L* functions rather than the underlying o-algebra that define these
functions, it will be easier to prove a measure preserving system is SZ rather than showing it has the
Furstenberg property directly.

THEOREM 4.6. Given a measure preserving system X:= (X, X, u,T). If X is SZ, then X has the
Furstenberg property.

PrROOF. Let X:= (X, X, i, T) be a measure preserving system and assume that it is a SZ system.
Fix any £ € ¥ such that u(E) > 0 and any k& € N. Clearly we have that 1z € L>(X) and p(F) =
Jx 1& dp > 0. Therefore we have that

N—oo

hmlnf—Z/lE 1goT" - 1goT? ... 150 T I”du

= liminf — Z WENTT"ENT "EN...nT-*k-Unp)

N=o0
> 0.
This implies that there exists some n € N such that
WENT"ENT EN---nT-*rEy >, O
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3. Weak Mixing Systems are SZ Systems

DEFINITION 4.7 (Weak mixing system, [29, p. 296]). A measure preserving system X := (X, 3, u, T') is
said to be weak mizing if for all f,g € L*(X)

D—lim f goT"du—(/deu> (/ngu)

Definition 4.7 can be reconciled with the definition mentioned when the idea behind weak mixing systems
was motived in Chapter 1: For any A € %, consider the indicator function 14 € L*(X).

At this stage, there is no inherent advantage in using definitions formulated in terms of functions
in L?(X) as opposed to those formulated purely in terms of the underlying o-algebra of a measure
preserving system. However, the concepts and methods we will use in later chapters can only easily be
formulated in terms of functions, at least for the general method of proof we are pursuing.

PROPOSITION 4.8. Given an invertible measure preserving system X := (X, X, u, T') such that X is weak
mizing. Then for all f,g € L*(X)

D—li cgoT™™ du = d du ) .
nggOng v (/Xfu)(/xgu)

PROOF. Fix any f,g € L*(X). Since X is weak mixing and T is invertible, it follows that

D—lim/f goT ™™ du=D-— hm/ cgoT™™ oT”du

n—oo
=D—lim foT" gdu-(/fdu)(/gdu).
By Definition 4.7, the system (X, ¥, i, T71) is weak mixing. O

The following lemma will be central to the proof that all weak mixing systems are SZ. A full proof is
provided in [9].

LEMMA 4.9 (van der Corput’s Lemma, [9, Lemma 4.9]). Given a Hilbert space H, let (h,) be a bounded
sequence in H. Suppose that

D—lim (D—nm (- n)) — 0.

m—ro0 n—oo

Then with respect to the weak topology, D—lim,, . h, = 0.

THEOREM 4.10 (]9, Theorem 4.10]). Given an invertible measure preserving system X := (X, %, u, T')
such that X is weak mizing. Let k € N. Then for all fo, fo, - fo_1 € L(X) and R € {T, T '},

Dtin [ fo fio R fro B fk_loR@—””du:(/Xfodu> (/Xﬁ du)--(/ka_l du)-

ProOF. This is proven using induction.
Base case, k = 1.

Fix fo, fi € L*>(X). The result follows directly from Definition 4.7 and Proposition 4.8.
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Induction step, k > 1. Assume for all I < k that for any fy, f1,---, fi-1 € L=®(X)

Dtin [ fo fio R fro B -fl_loR”—”"du:(/Xfodu) (/Xfl du)---(/Xﬁ_l du).

Fix fo, f1,- - ,fkfl, fr € L>*(X). We wish to show that

D—lim f0 fioR" fyoR¥™. .. f_jo RE=Dn. £ 0 RF™ dyy

n—oo

(o) () () ([ ).

Define f:= fy — [ fr dp. It is clear that [ f dp = 0. In order to prove that the desired statement
holds true, we show that

(4) D—lim fO fioR" foo R¥™-. f_y o RE=Dn . fo RF gy = 0.

n—oo

If this is case, by the definition of f € L>(X)

0= D—lim fo fioR"- fyo R fy_yo RE"V". fi 0 R dp

n—o0

_(/ fkd“)'D_hm/fo'floRn'f2OR2""'fk—1oR(k1)"d,u.
X n—oo Jy

Therefore, by the induction hypothesis for [ = k — 1

OzD—li_)m/fo«floR"~fzoR2”~--fk1oR(k1)”'fkoRk”du
n oo X

(o) (fo ) (oo an) ([ )

Under the assumption of (4), this gives the desired result. Now, define the sequence (g,) of functions
in L>°(X) where

gn=froR"- fro R fyy o R*"U". fo R,
We wish to apply Lemma 4.9, to show that D —lim, .. g, = 0 in the weak topology on L?(X). Fix
values n,m € N and consider the inner product

(5)  {Gntms In) r2(x) = / (fl o R™™ . fy 0 REWFM) L f o RDHm) | Rk(’”m)) o
X

(fl O R foo R fr 1o RE-D. fo R’m) dy.
Define functions in L>°(X) where for every z € X
Fy" (@)= f(z) - [ o R™"(x),
™ (x) = fi(@) - f1o R™(2),

Al
Fy"™(z) = fo(x) - fo 0 R*™(x),
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F™)(2) = fir(x) - fros o RED™(2).
Then

<gn+m>gn>L2(X) :/ Fém) o RF™. Fl(m) oRM... F’gr_”l) o R(k*l)n du
X
X

= [ E o () o (R B (R dn

Since the mapping R is just a place holder for either T or 7!, both of which are weak mixing mappings,
we may replace R~! by R, without any loss in generality. Applying the induction hypothesis, we obtain

D—lim (D—nm <gn+m,gn>> = D—lim (/ Fém)du> (/ £ dﬂ) </ ) du>.
m— o0 n—00 m—00 b'e X X

Since the functions fi, fo, -, fr € L(X) are bounded, the sequences

A, :—/ Fém) du,
X

e ([r08) () (1)
X X X

are bounded. Since X is weak mixing, by Definition 4.7 we obtain

2
D—lim a, =D—lim | F™ du=D—lim [ f-foR¥" du= (/ f du> .
X X

m—00 m—00 m—00 X

However, since [ X f dp = 0, by Theorem B.4, we conclude that

D—lim (D—hm <gn+m,gn>> — D—lim ay, - by, = 0.
n—o0

m—0o0 m—r0o0

Therefore, by Lemma 4.9, the definition of the weak topology on L*(X) and since L*(X) is self-dual,
for the fixed fy € L>(X)

This implies that

0= D—lim (fy,gn) = D—lim / (fo) - <f1 oR" faoR*™... f_10oR* V. fo R’m) dp
n—o0 n—oo X

and the required result follows. [l

Recalling the definition of a SZ system (Definition 4.5), the properties of density limits and using
Theorem 4.10 we have just proven, it can be concluded that all weak mixing systems are SZ, and thus
have the desired Furstenberg property.

THEOREM 4.11 (Weak mixing systems are SZ systems, [9, Theorem 4.12]). If an invertible measure
preserving system X := (X, X, u, T) is weak mixing, then X is a SZ system.
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PRrOOF. Take f € L>(X) such that f >0 and [, f du > 0. Then it follows by Theorem 4.10 that

n—0o0

k
D-lim [ f-foT™ - foT ... foT k1n g, = </ fdu) > 0.
X X

It follows by Proposition B.19 that

k
C—lim [ f-foT™ foT ... for =bn gy — (/ fdu) > 0.
X X

n—o0

This further implies that

N k
hminfiZ/f.foT"-foTQ"-..foTU“—l)”du:(/fdu) > 0. O
n=1 X X

N—ooo N



CHAPTER 5

Compact Systems

1. Almost Periodic Functions

Having proven that weak mixing systems are SZ, we now turn to the second special case we need to
treat. The definitions central to the concept of compact systems, as was the case for weak mixing
systems, are cast in terms of the behaviour of the L? functions under applications of the measure
preserving mapping 7.

DEFINITION 5.1 (Precompactness). Given a complete metric space (X, d) and some K C X, the set K
is said to be precompact if K is compact in X.

DEFINITION 5.2 (Orbit of a function, [29, Definition 2.11.1]). Given an invertible measure preserving
system X:= (X, 4, T) and f € L*(X). The orbit of the function f € L*(X) is defined as

O(f)={foT":necZ} C L*X).

DEFINITION 5.3 (Syndetic sets). Let S C Z. The set S is said to be a syndetic set if there exists some
N € N such that for every n € Z, the set SN{n,n+1,--- ,n+ N} is non-empty.

The concept of an almost periodic function, which we define next, is central to our definition of compact
systems. We will employ two equivalent definitions to characterize almost periodic functions, the first
being the standard definition used in Ergodic Theory and the second a reformulation of the analogous
concept of a compact system in Topological Dynamics.

DEFINITION 5.4 (Almost periodic function, [29, Definition 2.11.1]). Given an invertible measure pre-
serving system X := (X, 3, 4, T) and f € L*(X). The function f € L?(X) is said to be almost periodic
if one of the following conditions are satisfied:

(i) The orbit O(f) is precompact in L*(X) equipped with the norm topology.
ii) For every € > 0, theset {n € Z : ||f — f o T"|| ;2%\ < €} C Z is syndetic.
L2(X)

We prove in Appendix C that the above two notions of almost periodicity are indeed equivalent.

DEFINITION 5.5 (Compact measure preserving system, [29, Definition 2.11.7]). Consider an invertible
measure preserving system X := (X, 3, u, T). If every f € L?(X) is almost periodic, then the measure
preserving system is said to be compact.

2. Compact Systems are SZ Systems

THEOREM 5.6 ([29, Proposition 2.11.5]). If an invertible measure preserving system X := (X, %, u, T')
1s compact, then X is a SZ system.
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PROOF. Fix any k € N and consider an arbitrary f € L>(X) such that f > 0 and [, f du > 0.
There exists some R > 0 such that

p{e € X |f(2)] > R}) = 0.

Assume, without loss of generality, that f < 1 by redefining the function f as f/||f||, . Fix any € > 0.
Since X is a compact measure preserving system, f € L°°(X) is an almost periodic function. Define
the constant C':= 2¥~1. By Definition 5.4, the set

" €
S, = {nGZI If = foT"|2x) <m}

is syndetic. Since the Koopman operator is an isometry on L*(X) (Corollary 2.16), for a fixed n € N
and for every ¢ € N

Hf - foTnHLQ(X) = HfOT”l - foTin+nHL2(X) .
Fix any n € S,. For every 1 < j < k, we have

|f o Tim — foTGt ‘

n
I < G
Therefore, for every 1 < j < k

< J € <=
) S C k28 C26

j—1
[f = foT™|| o) < Y | for - FoT™m|| L«
1=0

Now, for every 1 < j < k, define g; € L*(X) as g;:= f o T" — f. Therefore

- €
ng”LZ(X) - Hf —Jol? HL2(><) < C -2k

We also have that [|g;||. < ||fll + If o T™]|, <2, since f < 1. By Proposition 5.9,

/f-foT”-foTQ”---foT('“‘””duz/f(f+91)(f+92)---(f+gk—1)du>/f’“du—e-
X X X

Since the choice of € > 0 was arbitrary, take ¢ > 0 small enough such that there exists some ¢ > 0 for
which [ X f¥du—e>c>0. By Lemma A.5, the set S, has positive lower density. Therefore, we have
that

/f-foT”-foTQ"---foT(k_l)”du>c>0
X

for all n € S.. Consequently, by Proposition B.5, we have that

N
1
hmmf—§ j/ f-foT™ foT?™...foT%* g, > 0.

N—oo N
n=

Since the choice of k € N and f € L>°(X) was arbitrary, the system X is SZ. U

5.A. Ancillary Results for the Proof of Theorem 5.6

PROPOSITION 5.7. Given a probability space X := (X, %, u) and functions f € L*(X) and g € L=(X),
then

1f- 9||L2(X) = ||f||L2(X) N9l -
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PROOF. Take any f € L*(X) and g € L>®(X). Then

1/2 1/2
||f-g||L2<x>:( R du) < ( JRUIN; du)

_ 2 2 d 1/2_
={ llgll% X!f! i) =1l N9l

The following proposition can be verified by induction.

PROPOSITION 5.8. Given n € N, functions f € L*(X) and g; € L>*(X) for each 1 < i <n. Then

n

FTI0 +9) = ”“+Zf gt Y (g 95)

=1 1<i<j<n

SaREEE D SO SN (/A SERRY S B R RN LRy

1<i1 <9< <ip—1<n

PROPOSITION 5.9. Fiz € > 0, n € N and define the constant C,,:= 2"~1 . 2" Consider a measure
preserving system X := (X, 3, u, T), functions f € L>®(X) such that f <1 and g; € L>*(X) such that
19illr2x) < & and ||gill, <2 for every 1 <i <n. Then

/Xf(f+gl)(f+gz)~~(f+gn) du>/Xf”“ i

ProOOF. By Proposition 5.8, we have that

/Xf(f+91)(f+92)---(f+gn) dMZ/f”“ du+2/f" gzdu+2/f" Y (g g) du

1<)
+ /f2 (9ir * Gia " " Ginr) du+/f 91 G2+ n dp.
11<l2< <bp—1
Let a,b < nsuch that a+b=n+1and j; € {1,2,--- ,n} for every 1 < i <b. Consider a general term
of the form

/Xfa (95 9o+ 93) dpe-
Since f <1, it follows for every a € N that |f*|> <1 and, as a result, |[f*||;2x, < 1. Therefore
/Xfa (G i) A= (G5 9 i ey < e 1950+ Gz - Gl 2x)

< N9 - 9% giull oy
Since ||g;||,, < 2 for every j € {1,2,--- ,n}, applying Proposition 5.7 repeatedly yields,

A

195 - 93>+ Gl 20y < N9 lloo N9l = {9001 || o - 90| 220
on—l. ¢ B on—l. ¢ €

n—1
< 2 ’ Hgib”LQ(X) < C, - 9n—1.9n on’
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Further, since the expansion of the polynomial expression f(f + ¢g1)--(f + g,) contains 2" terms, it
follows that

/f~foT”~foT2”~--foTk”d,u>/fkdu—e. O
X X



CHAPTER 6

The Dichotomy Between Weak Mixing and Compact Systems

Having proved that all weak mixing and compact systems are SZ systems, our hope is to establish
a characterization of all invertible measure preserving systems in terms of weak mixing and compact
systems. This is indeed possible and this dichotomy result will be useful for the purposes of providing
a relatively short proof for Roth’s Theorem in Chapter 8.

Strictly speaking, as mentioned before in Chapter 1, the following chapter is not materially necessary
for the proof the Furstenberg Multiple Recurrence Theorem. However, the concepts and techniques
used here will be repeated in a more general context in Chapter 11. As such, the current chapter serves
as a intuitive stepping stone to the results in Chapter 11.

First, we shall need to give the formal defintions of factors and extensions mentioned in Chapter 1.
Although both of these complementary concepts are introduced here, we will only start making explicit
use of extensions later in Chapter 9.

1. Factors and Extensions

We begin by considering the general definition of factors and extensions often found in the literature.

DEFINITION 6.1 ([29, Definition 2.2.1]). Given measure preserving systems (X, X, 4, T') and (Y, ¥, v, S).
The system (Y, ¥/ v, .S) is said to be a factor of (X, %, u,T), and the system (X, %, p, T) is said to be
a extension of (Y, Y/ v, 9), if there exists a mapping ¢ : X — Y which satisfies the following properties

(i) (Intertwining maps) The mapping ¢ : X — Y has the property that
Sop=¢oT.

(ii) (Preserves preimages) For every A € ¥, we have that ¢~!(A) € X.

(iii) (Preserves measure) For every A € ¥/, we have that pu(¢~1(A)) = v(A).

The above definition is complicated by the fact that we are allowing the measure preserving systems to
be completely distinct. This definition reduces to a very simple criterion if we restrict our attention to
factors residing within a given system.

DEFINITION 6.2 (Factors and extensions). Given measure preserving systems X := (X, Xy, u,T) and
Y := (X,Xy,u,T). Then the system Y is said to be a factor of X if ¥y is a sub-c-algebra of Xy.
Conversely, the system X is said to be a extension of Y.

39
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For the sake of notational convenience, we denote an extension between a measure preserving system
X and a factor Y as
oY - X.

REMARK 6.3. Consider measure preserving systems X:= (X, Xx,u,T) and Y:= (X, Xy, u,T). In
this case the identity mapping ¢ : X — X will serve as a mapping that satisfies the conditions in
Definition 6.1. Note that in this simplified case, condition (i) is trivially satisfied. Condition (ii) reduces
to the requirement that ¥y needs to be a sub-o-algebra of ¥x. If condition (ii) is satisfied, condition
(iii) becomes trivial as well.

This simplified view on factors and extensions will be enough for our purposes since we will only ever
need to refer to factors from within a particular system. In this simplified case, both the measure
1 and the measure preserving map 7' remain fixed, making most of the conditions in Definition 6.1
unnecessary.

DEFINITION 6.4. Given a measure preserving systems X := (X, Yy, u,T) and Y := (X, Xy, u, T) and
®: Y — X an extension. If Xy C Y, the extension @ is said to be a non-trivial extension.

2. Compact Systems and the Kronecker Factor

DEFINITION 6.5 (Space of almost periodic functions). Given an invertible measure preserving system
X:= (X,3,u,T), let AP(X) C L*(X) denote the set of functions that are almost periodic as defined
in Definition 5.4.

With this notation, we restate the definition of compact systems (Definition 5.5) in more concise terms.

DEFINITION 6.6 (Compact system). An invertible measure preserving system X:= (X,% u,T) is a
compact system if L*(X) = AP(X).

The following alleged o-algebra will be very important for our analysis moving forward.

DEFINITION 6.7 (Kronecker o-algebra, [34, p. 33]). Given an invertible measure preserving system
X:= (X, %, 1, T). Define the collection of sets Lapx)={A € X :1, € AP(X)}.

The Kronecker o-algebra, which defines what we will call the Kronecker factor will turn out to be useful
for our characterization of invertible measure preserving systems in terms of weak mixing and compact-
ness. The concept of a Kronecker system actually arises in Topological Dynamics [29, Definition 2.6.5],
and is important in that context due to its role in the characterization of isometric topological dynamical
systems [29, § 2.6], as well as the characterization of compact systems in the context of Ergodic Theory
(29, § 2.11]. We shall not delve too deeply into this topic, and will only treat the Kronecker factor as a
necessary tool.



2. COMPACT SYSTEMS AND THE KRONECKER FACTOR 41

PROPOSITION 6.8. Given an invertible measure preserving system X := (X, %, u,T), then X apx) is a
sub-o-algebra of .

Proor. We first verify that ¥ 4px) is indeed a o-algebra.

(i) Since 1x o T' = 1x, we have that O(1x) = {1x oT" : n € Z} = {1x}, which is compact in
L*(X). Therefore, we have that X € X4px).
(ii) Fix any A € ¥ 4p(x). Then by Definition 6.7 we have 14, € AP(X). By Proposition 6.19, AP(X)

is a subspace of L*(X). As such, we have that 1x\4 = 1x — 14 € AP(X). By Definition 6.7, it
follows that X \ A € X px).

(iii) Take any sequence of sets (A4;) € Yapx). Define the sequence of sets (B,) by setting B, :=
Ui, 4; for n € N, and define the sequence of functions (f,) € AP(X) as f,,:= 1p, for n € N.

Define A:= |J;cy Ai- It is clear that (f,) converges pointwise to 14. By Proposition 6.20,
AP(X) is a closed subspace of L?(X). Fix any € > 0. We show that there exists N € N such
that if n > N then

[fn = Lall, <e
For every n € N, we have that

1o — LAl = 15, — 1] = / 15, — 1P du = / (15, — 14)du.
X X

Since (f,,) converges pointwise to 14 and f,, < 1x for every n € N, by the Dominated Conver-
gence Theorem (Theorem 6.17), it follows that

lim [ f,dp= lim / 1p,dp :/ lim 15, (x) du(z) :/ 14 dp.
X e x X X

n—0o0 n—0o0

Which implies that there exists some N € N such that for all n > N

1/2
1= 1all, = ( /X (15, — 1) du) e

Therefore, since (f,,) € AP(X) converges to 1,4 in L?(X) and AP(X) is a closed subspace of
L?*(X), it follows that 14 € AP(X). By Definition 6.7, it follows that A = |J,cy 4i € Yapx)-

From the definition of ¥ 4p(x), we know that X 4px) C X. Therefore, Y 4p(x) constitutes a sub-o-algebra

of X. OJ

Having established that, for a given measure preserving system X := (X, ¥, u, T'), the collection ¥4px)
is indeed a sub-c-algebra of 3, we have the following proposition.

PROPOSITION 6.9. Given an invertible measure preserving system X:= (X, 3, u,T). The quadruple
Xapx) = (X, Xapx), 1, T') is an invertible measure preserving system and a factor of X.

We call the factor X 4px) the Kronecker factor, which is said to be trivial if ¥ 4px) = 2o.

PROPOSITION 6.10. Given an invertible measure preserving system X:= (X, %, u,T), the Kronecker
factor X px) is compact.
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PROOF. By Proposition 6.28, we have that L*(Xspx)) = AP(X). We claim that AP(X) =

Let f € AP(Xapx)). Then O(f) is precompact in L*(X 4p(x)). Since Ypx) is a sub-o-algebra of X,

the space L*(Xap(x)) is a closed subspace of L*(X) and, therefore, O(f) is precompact in L*(X). By
Definition 5.4, we have that f € AP(X).

Now, let f € AP(X), then by Proposition 6.28, we have that f € L*(Xapx)). Further, since f €
AP(X), for every € > 0, the set

{neZ:||f—foT2x) <€}
is syndetic. Since L*(Xap(x)) is a subspace of L?(X), we conclude that f € L*(X4px)) is almost
periodic. Therefore, by Definition 5.4, we have that, f € AP(Xapx))-

Therefore, we have that
L*(Xapx) = AP(Xapx))- O

Having shown that the Kronecker factor X 4p(x) of an invertible measure preserving system X is always a
compact system in itself, the next result shows that one, in a sense, cannot do better than the Kronecker
factor in a search for compact factors of an invertible measure preserving system X.

PROPOSITION 6.11. Given an invertible measure preserving system X:= (X,%,u,T), the Kronecker
factor is the mazximal compact factor of X.

PRrOOF. By Proposition 6.10, the Kronecker factor X 4px) is compact. Now, consider any other
factor Y := (X, Xy, u, T') which is given to be compact. Consider any A € Xy. Since Y is compact, it
follows that 14 € AP(X). But, this implies, by the definition of the Kronecker factor, that A € ¥ 4p(x).
Since the choice of A € Xy was arbitrary, we conclude that Xy C X 4px). As the choice of compact
factor Y was arbitrary, it follows that the Kronecker factor is a maximal compact factor of X.

The above argument also applies to any other purported maximal compact factor of X. Hence, we
conclude that X 4p(x) is the unique maximal compact factor of X. O

3. The Dichotomy of Systems Result

THEOREM 6.12. If an invertible measure preserving system X := (X, 3, u, T) is weak mizing, then
AP(X)={A-1x: X e R}

PrROOF. Let f € AP(X). Since X is weak mixing, for every § > 0, there exists a set K5 C Z with
d(Z\ Ks) = 0 such that for all n € K;

/Xf-foT”du—</deu)2

< 4.
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Fix any € > 0. We claim that the function f € AP(X) is constant. By Proposition 6.22, it suffices to

show that )
2 dy — d
/X [ dp ( /X f u)

Applying the triangle inequality, for every n € N

< €.

2 2
/f2du—(/fdu> < /f2du—/f-foT"du‘+ /f-foT”du—(/fdu) .
X X X X X X
Since X is weak mixing, we have that for every n € K/
2
/f-foT"du—(/fd,u) < €/2.
X X

Applying the Cauchy-Schwarz inequality

[ fan= [ gerorau =| [ sir-so1m) du‘ <l I = £ o T2, -
X X X
Since f € AP(X), there exists a syndetic set S such that for all n € S, we have

1f=foT|2x) <

€
2l ey
Note that the set K., NS cannot be empty as K./, has upper density 1 while the syndetic set S has

positive upper density. If the intersection were empty, it would imply that the complement of K./, in
7 has positive upper density, which cannot hold. Therefore, for all n € Ko NS

o ([#)

The last inequality is, however, independent of the choice of n € K., N'S. By Proposition 6.22 and
since the choice of € > 0 was arbitrary, we conclude that f is a constant function. O

< €.

COROLLARY 6.13. If an invertible measure preserving system X := (X, X, u, T) is weak mixing then the
Kronecker factor is trivial.

We recall the definition of ergodicity, an important ergodic theoretical concept that we have not needed
to make use of until now.

DEFINITION 6.14 ([33, Definition 1.2]). A measure preserving system X:= (X, u,T) is said to be
ergodic if one of the following equivalent conditions holds:

(i) If every A € 3 such that T7'A = A then u(A) =1 or pu(A) =0,

(ii) Every function f € L°(X) such that foT = f, is constant.
This allows us to formulate an important result we shall use to prove the converse to Theorem 6.12.
The proof we lay out is also given in [15, Proposition 5.3].

THEOREM 6.15. Given an invertible measure preserving system X := (X, 3, u, T'). If the product system
X x X is not ergodic, then there exists a function f € AP(X) that is non-constant.
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PROOF. Let H € L*(X x X) be a T x T-invariant function that is non-constant. Without loss
of generality, assume that X is an ergodic system, since if X were not ergodic, this would imply the
existence of a function g € L?(X) that is T-invariant and non-constant. This would then serve as our
function g € AP(X) that is non-constant.

Define the function h € L*(X) as

- [ Had) dnte)

Since H € L*(X x X) is T x T-invariant, we have that

WTz) (/Hmzw)w ‘/HJ%Txdu /nyxdu) h(z').

Therefore, the function h € L*(X) is T-invariant. Since X is ergodic, this implies that h € L?(X) is a
constant function. Adding an appropriate constant, redefine H € L*(X x X) such that for all 2/ € X

— /XH(:L’,x’) du(z) = 0.

Since H € L*(X x X) is non-constant, there exists ¢ € L?(X) such that for a set A € ¥ with positive
measure, for every x € A

/ H(x,2")(z") du(x") # 0.
Define the function f € L?(X) such that

which is also non-constant. Then

| @) duta /(/wa (m<ﬂdmw

By Tonelli’s Theorem (Theorem D.11),

[ 1@ duta) = [ (ot [ HGe) dute)) dute
— [ o) ([ o) aute)) dute
/¢ 0 du(e!)

Using the T' x T-invariance of H € L*(X x X), for every n € Z and x € X

foT™)( /H ", 1) /H x, Tz )¢ /Hx:z: ") du(x').

Since the Koopman operator is an isometry on L?(X) (Corollary 2.16), for every n € Z and x € X

FoTm)( /wa Y dp(x (/HxxM@”ﬁ@()
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Consider the operator K : L*(X) — L*(X), where

By Proposition 6.24, K is a compact operator. Con51der

O(f) ={K(@oT")} ez
Since ¢ € L?(X), the closure of {¢ 0 T"},cz is a bounded subset in L?*(X) and since K is a compact
operator, the closure of O(f) = {K (¢ oT")}, ., is precompact in L?*(X). Therefore, by Definition 5.4,
the non-constant function f € L*(X) is almost periodic, and the required result follows. O

With all of that out of the way, we are finally in a position to precisely state the sought after dichotomy
result.

THEOREM 6.16 ([34, Theorem 6.20]). Given an invertible measure preserving system X = (X, 3, u, T'),
then exactly one of the following statements holds true.

(i) The system X is weak mizing.

(ii) The Kronecker factor of X is non-trivial.

PROOF. Take any invertible measure preserving system X:= (X, %, u,T). If the system is weak
mixing, condition (i) is satisfied and by Corollary 6.13 that the Kronecker factor is trivial.

Now, assume that X is not weak mixing. It follows by Theorem 6.21 that the product system X x X is
not ergodic. By Theorem 6.15 there exists a function f € AP(X) that is nonconstant. By Proposition
6.28 the nonconstant function f € AP(X) is measurable with respect to the Kronecker factor X p(x).
This means that the Kronecker factor X 4p(x) is non-trivial, since only constant functions are measurable
with respect to the trivial o-algebra 3 := {0}, X }. O

6.A. AP(X) is a Closed Subspace of L*(X)

THEOREM 6.17 (Dominated Convergence Theorem, [4, Theorem 2.4.5]). Let X := (X, %, 1) be a prob-
ability space. Let (f,) C LY(X) be a sequence of functions and g € L*(X). If f,, converges pointwise to
f and |f.] < g, then

lim fn dp = / f du.
X

n—oo

PROPOSITION 6.18 ([19, Theorem 45.1]). Given a complete metric space (X, p) and a subset A C X.

The set A is precompact if and only if for every € > 0, there exists a finite collection of closed balls
{B(xi,€)}Y, such that

N
AC U B(x;,¢€)
i=1

PROPOSITION 6.19. Given an invertible measure preserving system X := (X, %, u,T). Then AP(X) is
a subspace of L*(X).
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ProOOF. Take any functions f,g € AP(X) and scalars «, 8 € R. We show that af + g € AP(X).
To do this, we verify that the set O(af + fg) is precompact, which we prove using Proposition 6.18, by
showing that O(af + fg) is totally bounded. Fix any € > 0. Since f,g € AP(X), by Proposition 6.18,
we know that there exists finite collections of balls

{B(xw@}ig’ CER)

UB (). 00 sUB (mg).

i€l jeJ
It is easy to show that O(af) C U;c; B (az;, §) and O(Bg) C U;es B (By;, §), and it follows that

Olaf+89) C | B(Bax;+ By;.e)
el jed
where {B (Bax; + py;,€)}icrjes is a finite collection of balls. By Proposition 6.18, it follows that
O(af + Bg) is precompact in L*(X) and so af + 8g € AP(X). Therefore, AP(X) is a subspace of
L2(X). O

such that

PROPOSITION 6.20. Given an invertible measure preserving system X := (X, %, u,T). Then AP(X) is
closed in L*(X).

PRrROOF. Consider a sequence (h,) € AP(X) which converges to h € L*(X) in L?*(X). We verify
that h € AP(X). To do this, fix some € > 0. We show that there exists a syndetic set S. € Z such that
for all 7 € S,

[T —hl| . x) <€
Now, for all 7,n € Z, by the triangle inequality
|hoT" — <||hoT" = hyoT"

+ th o Tl - hn”Lz(X) + ”hn - hHLQ(X) )

h||L2(X) HL2(><)

Since the Koopman operator is an isometry on L*(X) (Corollary 2.16)
|hoT — hHL2(X) | 0 T* = hi, HL2 + 2|70 = hll 2 x)

There exists N € N such that ||k, — hl|2x) < €/3 for all n > N. Further, since (h,) C AP(X), for all

n € N there exists a syndetic set KE( /3) C Z such that for all 7 € Ke(;g

I o T = o < 5
Define the sydetic set S, := (/3) C Z. Then for all 7 € S,
i € 2e
[ T" = hl| oy < v 0 T = hix ||y + 2 ey = il oxy < st =¢
Therefore, h € AP(X), and we conclude that AP(X) is a closed subspace of L*(X). O
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6.B. Ancillary Results for the Proof of Proposition 6.16

PROPOSITION 6.21 ([25, Proposition 6.4.1]). Given a measure preserving system X = (X, 3, u, T), the
following two statements are equivalent.

(i) The system X is weak mizing.

(i) The product system X x X is ergodic.

PROPOSITION 6.22. Let X:= (X,3,u) be a probability space. If a function f € L*(X) satisfies the

condition )
()

if and only if f € L*(X) is a constant function.

PROOF. Fix any function f € L*(X) and assume that it satisfies the condition

)

Assume, without loss of generality, that f # 0. The above condition can be rewritten in terms of the
inner product on L?*(X) as

<f7f>L2(X) = ([, 1X>L2( X) (1x, f > = ||f||L2

By the Cauchy-Schwarz inequality, f € L*(X) and the constant functlon 1y are scalar multiples if and
only if

‘(f» 1X>L2(X)‘ = 1 fllr2x) Mx 20y = 11l 22
But we have that )
2 2
[ ) | = 0 1) Ea0 = 1120

foron- (o)

if and only if the function f € L*(X) is constant. O

This implies that

DEFINITION 6.23. Given Hilbert spaces H; and H,, a linear operator
L: Hl — H2

is said to be a compact operator if the image of the unit ball of H; under L is precompact in Hs.

PROPOSITION 6.24 ([5, Proposition 11.4.7]). Given a probability space X:= (X,3,u,T) and H €
L*(X x X), then the mapping K : L*(X) — R defined as

/HH Y dp(a)

18 a compact operator.
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PROPOSITION 6.25. Given an invertible measure preserving system X := (X, 3, u, T). Let ® : L*(X) x
L*(X) — L*(X) be a uniformly continuous map that commutes with T. That is, for all f,g € L*(X)

O(foT,goT)=o(f,g)oT.
Then AP(X) is closed under compositions with ®.

PROOF. Let @ : L*(X) x L*(X) — L*(X) be any uniformly continuous map that commutes with
T. Fix any f,g € AP(X). We show that ®(f, g) € AP(X) by verifying that O(®(f, g)) is precompact.
By Proposition 6.18, we need only show that O(®(f,g)) is totally bounded.

Fix € > 0. Since ® is uniformly continuous, there exists 6 > 0 such that if

)
IFo" ~ fll, <5
and

. )
lgoT —g||2<§

then ||®(f,g) o T™ — ¢(f, g)|| < e. Since f,g € AP(X), there exists finite collections of balls with radius
/2 such that

0(f) < Bl d/2
and -

N
U (yj,0/2).
=1

Take any n € Z and consider ®(f,g) oT" € O(P(f, g)). There exists functions f;, g; € L*(X) such that
J

IFoT" = fill, <5

and
lgoT" — gjll, <

Since @ is uniformly continuous, we have that

[(f,9) 0 T" = ¢(fi, gs)|l < e

Since the choice of n € Z was arbitrary, it follows that

C U B xu y]
and since the choice of € > 0 was arbitary, we have that ®(f,g) € AP(X). O

PROPOSITION 6.26. Given an invertible measure preserving system X:= (X, %, u, T). For any f,g €
L?*(X), the pointwise operations, m : R* — R and M : R? — R defined for every x € X as

m(f(z),g(x)) = min{f(x),g(x)},  M(f(x),9(x))=max{f(z),g(z)}

are uniformly continuous on L*(X) and commute with T



6.B. ANCILLARY RESULTS FOR THE PROOF OF PROPOSITION 6.16 49

PRrROOF. Fix any two f,g € L*(X). Note that the pointwise operations m and M can be rewritten
as

min{f(z), g(x)} = 5 (f(z) + g(z) + |f(z) — g(x)]),
max{f(x), g(z)} = 5 (f(2) + g(z) = |f (@) = g(@)]).

The pointwise addition and subtraction operators are uniformly continuous in L?(X) and the mapping
|+] : R = R is uniformly continuous in R. Since composition of uniformly continuous mappings remains
uniformly continuous, we conclude that the pointwise operations m and M are uniformly continuous. [J

| — DN

PROPOSITION 6.27. Given an invertible measure preserving system X := (X, %, u, T). Then S(Xap) C
AP(X).

PrOOF. Take any h € S(X4p), where
h = Z O-/i]-Ai-
el
By Proposition 6.9, 14, € AP(X) for every ¢ € I. By Proposition 6.19, since AP(X) is a subspace of
L?(X) we conclude that

h=>) ola € AP(X). O
i€l
PROPOSITION 6.28 ([34, Proposition 6.21]). Given an invertible measure preserving system X: =

(X,%, 1, T). Then for every f € L*(X) the following statements are equivalent.
(i) The function f is almost periodic, that is, f € AP(X).

(ii) The function f is measurable with respect to L ap, that is, f € L*(Xapx))-

PROOF. We first show that (ii) = (i). Let f € L*(Xapx)). By Propositions 6.19 and 6.20,
AP(X) is a closed subspace of L*(X). By Proposition 2.12 there exists (f,) € S(Xap) such that (f,)
converges to f € L*(X4px)) in L?(X). By Proposition 6.27, the approximating sequence satisfies
(fn) € AP(X). Hence, it follows that f € AP(X).

Next, we show that (i) = (ii). Let f € AP(X). Fix any o € R and consider the set
Ay ={re X : f(x) > a}.

Recall that X4p = {A € ¥ : 14 € AP(X)}. It will follow that f € L*(X4px)) if we can show that
14, € AP(X). Consider the pointwise defined sequence such that for every z € X and n € N

gn(2) == min{max{n(f(x) — a),0},1}.
Since AP(X) is a subspace of L?(X), we know that for every n € N, we have n(f — a) - 1x € AP(X).
By Proposition 6.26 and Proposition 6.25, it follows that (g,) € AP(X). Define the sequence where for
every x € X and n € N

hy(z) .= max{n(f(x) — «),0}.
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By the definition of the sequence (h,), for every n € N, h,, > 0 and further
{reX:h,>0={reX:f>a}
Consider the following pointwise defined map J : AP(X) — AP(X) where for every xz € X
Jf(x):=min{f(x),1}.
It is clear that g, = Jh, for every n € N. Fix any z € A,. Then there exists some N € N such that
if n > N then n(f(z) —a) > 1. So for every x € A,, there exists N € N such that h,(x) > 1. This

gives us that g,(z) converges to 14, (z) for all z € X. Furthermore, since g, < 1x for all n € N, by the
Dominated Convergence Theorem (Theorem 6.17), we have that

lim/gn:/lAa djt.

Since the function 1,4, and the sequence of functions (g,) are non-negative by definition, we have that

lim / g0 — Tau] dpp= 1 [|Lx - (90 — 1a)llprsg
X n—oo

n—oo
By Hélder’s Inequality (Proposition D.10), for every n € N, we have that [|1x - (g — 1a,)ll11x) <
19n — La, |l z2(x)- Therefore, we can conclude that
Tim g, — La, ) = 0

Since (g,) € AP(X) and AP(X) is a closed subspace of L?(X), this implies that 14, € AP(X) and by
definition of the Kronecker factor, A, € ¥ 4p. Since the choice of & € R was arbitrary, we conclude that
f € LQ(XAP(X)). ]



Part III: Extending the Special Cases Towards the
Final Result



CHAPTER 7

Further Preliminaries

We have now essentially dealt with the ‘base case’ of the Furstenberg Multiple Recurrence Theorem -
the simple cases of weak mixing and compact systems, as well as the dichotomy of systems result. After
formally defining the notion of a conditional expectation, along with a few other important concepts, we
will be ready to move on to what we may call the ‘induction step’ of the proof.

1. Conditional Expectations

DEFINITION 7.1 ([3, Definition 2.4, p. 27]). Let X:= (X, %, u) be a probability space and ¥ a sub-o-
algebra of X defining X’ := (X,%/, ). Then for every f € L'(X) a conditional expectation of [ against
¥ is a function denoted by E (f|X’), which satisfies the following properties.

(i) E(fIX) € LY(X').

(ii) For every A € X, we have that.

JEGX) di= [ 1

Let E (+|X’) : L}(X) — L*(X’) denote a mapping such that conditions (i) and (ii) are satisfied for every
f € LY(X). This mapping is said to be a conditional expectation of X onto X'.

For a a given probability space X:= (X, X, ) and a sub-c-algebra ¥’ of ¥ defining X' := (X, Y/, p), it
is necessary for us to verify the existence of a mapping E (+|X’) that satisfies conditions (i) and (ii) for
every f € L'(X). Further, note the phrase a conditional expectation in the above definition. It has not
been established that E (+|X’) : L}(X) — L'(X') is the unique mapping that satisfies conditions (i) and
(ii). To prove the former, we shall need the following theorem.

THEOREM 7.2 (Radon-Nikodym, [3, Theorem 2.1, p. 28]). Let X := (X, X, u) be a probability space and
Y a sub-o-algebra of ¥ defining X':= (X, %', u). Then for every f € LY(X) there erists a function
g € LY(X") such that for each A € ¥
/ [ dp= / g dp.
A A

The existence of a conditional expectation follows directly from the Radon-Nikodym Theorem.
COROLLARY 7.3. Let X:= (X, %, u) be a probability space and ¥’ a sub-c-algebra of ¥ defining X' :=
(X, w). Then for any f € LY(X), the conditional expectation E (f|X') € LY(X') exists.

Now that ezistence of E (f|X') € L'(X') for every f € L'(X) has been verified, we turn to uniqueness.

52
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PROPOSITION 7.4 (Uniqueness of the conditional expectation). Let X := (X, X, u) be a probability space
and Y a sub-o-algebra of ¥ defining X' := (X, Y, u). Then for every f € LY(X), there exists a unique
conditional expectation E (f|X') € L'(X).

PROOF. Let f € L'(X). Suppose for the sake of a contradiction there exists functions g, h € L'(X')
with the property that g # h and that both satisfy conditions (i) and (ii) of Definition 7.1. This implies

that for any A € ¥/
Jadu= [ sin= [ nan
A A A

By linearity of the integral, for every A € ¥’

(6) /(g—h) dp = 0.
A
Define the set
B:={x e X :g(x)—h(z) A0} € ¥".
Since we assumed that g # h, it follows that p(B) > 0. Otherwise, if u(B) = 0, this would imply that
g = h, contradicting our original assumption. Next, define
B, ={x € X :g(x) — h(z) > 0}, B_={r e X :g(z)— h(z) <0}
so that B = B, UB_. Since B € ¥/ has positive measure, at least one of the sets B, or B_ has positive

measure. Without loss of generality, assume B, has positive measure.

There exists some € > 0 such that the set C':= {x € X : g(z) — h(z) > €} € ¥’ has positive measure. If
no such € > 0 existed, applying Proposition 3.31, would imply that B, has measure zero.

Now, given that pu(C') > 0, from (6) we have

O:/C(g—h)du>e/c dpu =e-u(C) > 0.

This is clearly a contradiction. Therefore, we conclude that there cannot exist two distinct functions
g,h € L*(X') that both satisfy conditions (i) and (ii) of Definition 7.1. Therefore, the conditional
expectation E (f|X’) of a given function f € L!'(X) is indeed unique. Since the choice of f € L'(X)
was arbitrary, we conclude that the mapping E (+|X’) : L}(X) — L'(X’) is uniquely defined for a given
sub-o-algebra >’ of X. d

With that, we have verified that the conditional expectation exists and is indeed unique. We will come
to rely on conditional expectations and their properties a great deal in future chapters. Therefore, we
now state a few of the well-known properties of the conditional expectation.

COROLLARY 7.5 (Conditional Expectation onto the trivial o-algebra). Given a probability space X :=
(X, 3, 1), the trivial probability space Xo:= (X, 30, ) where 3o = {0, X} and some f € LY(X). Then

]E(f\Xo):/Xf dy - 1y.

That is, the function E (f|Xo) € L'(Xy) is the constant function that takes on the value of the integral
Jx 1 dp.
b
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The following properties of conditional expectations will be indispensable for many results moving
forward.

PROPOSITION 7.6 (Properties of the conditional expectation, [3, Proposition 2.4, p. 29]). Let X:=
(X, %, 1) be a probability space and X' a sub-c-algebra of ¥, and X" a further sub-o-algebra of ¥,
defining probability spaces X' := (X, ¥, u) and X" := (X,X", ). Then the following properties hold
true.

(i) If a, B € R and f,g € LY(X), then E (af + Bg|X') = aE (f|X') + BE (g|X).
(i) If f € LN(X) and h € LY (X'), then E(f - h|X') = h-E(f|X').
(i) If f < g, then E(fX") < E (g|X').
(iv) E(E (f[X) [X7) = E(fIX").
In proofs to come, our approach will often be of a functional analytic nature. Given that the concept

of the conditional expectation will be used often, we characterize the behaviour of the conditional
expectation from that point of view.

DEFINITION 7.7 ([5, Definition 2.8]). Let H be a Hilbert space and M a closed subspace. The orthogonal
projection of H onto M is defined to be the mapping P : H — M where for every x € H, Px € M is
the unique value such that (y, Px — x)2x) =0 for all y € M.

PROPOSITION 7.8. Let H be a Hilbert space. If for every x € H, (u,z)y =0, then u = 0.

PROOF. Observe that if u # 0, there exists x € H such that (u,z)y # 0, namely, v = x. The result
follows as the contrapositive of this statement. O

THEOREM 7.9. Let X:= (X,X, u) be a probability space and ¥' a sub-o-algebra of ¥ defining X':=
(X, u). Then L*(X') is a closed subspace of L*(X).

COROLLARY 7.10. Let X:= (X, 3, 1) be a probability space and ¥’ a sub-o-algebra of ¥ defining X' :=
(X,3 p). Let P: L*X) — L*(X') be the orthogonal projection onto L*(X'). Then for every f €
L*(X), we have that Pf = E (f|X).

PROOF. Fix any f € L*(X). By conditions (i) and (ii) of Proposition 7.6, it is enough for us to
verify that E (Pf — f|X') = 0.
Let g € L*(X') be arbitrary. Consider the inner product
@B (Pf = X0 = [ 9+ (B(PS = fXD)0) = [ 9 EPAX) du= [ g-E(7X) dp
be be b

By Definition 7.7 and condition (ii) of Proposition 7.6, we know that [, g -E(Pf|X') du = [, g-
Pf dp. Further, by Definition 7.7 and condition (ii) of Proposition 7.6, we have [, g-E(f|X') du =

JxE(g- fIX) du= [, g-f du. Hence

(9, E(Pf = fIX))2x) z/Xg-Pf du—/Xg-f dp =9, Pf — f)rex)-
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However, by Defintion 7.7, we know that for every g € L*(X’), we have (g, Pf — f)2x) = 0. It follows
by Proposition 7.8 that E (Pf — f|X’) = 0. By conditions (i) and (ii) of Proposition 7.6, we conclude
that Pf = E (f|X). O

2. Hilbert Modules

Looking at Proposition 7.6, we see that conditional expectations and the L? inner product exhibit some
important similarities. If the conditional expectation behaves similar to the L? inner product, this
would allow us to take a functional analytic approach to problems and establish useful results that are
analogous to known results for L? spaces.

Consider a probability space X := (X, 3, u) and X' a sub-g-algebra of . Loosely speaking, the condi-
tional expectation may be thought of as a ‘function-valued inner product’ where the elements of L*(X)
are acted upon by the conditional expectation, outputting elements in L?(X’), which in a sense, behave
like constants with respect to the conditional expectation as shown in (ii) of Proposition 7.6. To make
our notion of function valued inner products more precise, we introduce the concept of a Hilbert module.

DEFINITION 7.11 (Hilbert modules, [29, p. 196]). Let X:= (X, X, 1) be a probability space and ¥ a
sub-o-algebra of 3 defining X" := (X, >’ u). Define the Hilbert module as the set

LA(X|X') = {f e LX) B (|f2|X)" € LOO(X’)} .

The Hilbert module, which we will soon show is a vector subspace of L?(X), will prove to be the
appropriate setting in which we define a ‘function-valued inner product’.

Although the Hilbert module L*(X|X’) does indeed constitute a module over the commutative von
Neumann algebra L>(X’) [29, p. 196], we will never make use of this fact directly and we will be more
interested in the topological nature of Hilbert modules.

PROPOSITION 7.12 (H6lder inequality for conditional expectations, [2, Theorem 4.7.2, p. 88]). Let X :=
(X, 3, 1) be a probability space and ¥ a sub-c-algebra of ¥ defining X' := (X, %', u). Let p,q € (1, 00)
such that 1/p+1/q = 1. Then for all f,g € L'(X)

E(|fg||X) < E(|fFP| X)) E (g7 X")V.

PROPOSITION 7.13. Given a probability space X := (X, %, u) and a function f € L*(X) such that f >0,
and g € L*>(X). If we have that f < g, then f € L>®(X).

PROPOSITION 7.14 ([29, p. 196]). Let X := (X, X, u) be a probability space and ¥ a sub-c-algebra of ¥
defining X' := (X,%', u). Then the Hilbert module L*(X|X') is a vector subspace of L*(X).

PROOF. Fix any f,g € L*(X|X’) and any «, 8 € R. By the triangle inequality, for every x € X
|af(2) + By ()| < |ol[f(2)] + |8]lg(2)]

Since the real valued function ¢ : R — R where ¢(a) = a? is monotonically increasing on a € [0, o), we
have that for every z € X

laf(x) + Bg(2)* < (ol f ()] + |Bllg(2)])* = |af*|f (@) + allB] f(2)g(2)] + |B*|g(2) .
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By Proposition 7.6 (i) and (iii) we have that
E (Jaf + B9]*| X) < E (laP[fP*] X') + E (a8l 9]l X') + E (15*]9*] X')
= |al* E (|f*[X') + lol|B E(Ifgl] X) + | E (|g*] X') .
By Proposition 7.12,
1/2 1/2
E (jof + 8g"| X') < o E (|f?| X') + |al 5| E (|/7] X)"" - E (Il*| X) " + 15 E (Jg | X) .

Since f,g € L*(X|X’), by Proposition 7.13, we conclude that

E (Jaf + Bgl*| X') € L*(X),
and hence af + Bg € L?*(X|X’). Since the choice of f,g € L?*(X|X') was arbitrary, this shows that
L?*(X|X') is a subspace of L*(X). O

3. Conditional Inner Products

DEFINITION 7.15 (Conditional inner product, [29, p. 198]). Let X := (X, 3, i) be a probability space
and X' a sub-c-algebra of ¥ defining X":= (X, X', y1). Define the conditional inner product {+,+) p2xx :
L3(X) x L*(X) — LY(X’) where for every f,g € L*(X)

(f, 9>L2(x|xl) =E(f g|X) e L'(X').
The fact that for all f,g € L*(X) we have that E(f - g|X’) € L'(X') follows from Holder’s Inequality
(Proposition D.10).

REMARK 7.16. Note that if we set ¥/ = Xq = {0, X} in Definition 7.15, the definition of the conditional
inner product on L?(X) reverts to the definition of standard inner product on L?*(X) as

E(f-gIX')=E(f-g|Xo) = (/Xf-g du) AIx =(f,9)2x) " 1x

and therefore |[E (f - g|X')||12x) = Jx [gdu={f, 9)r2(x) -

DEFINITION 7.17 ([29, p. 198]). Let X:= (X, X, ) be a probability space and ¥’ a sub-o-algebra of X
defining X" := (X, >, u). Define the conditional norm

||f||L2(X|X’) =/ (f, f>L2(x|X/) = VE (| /[*X").
Therefore, we can write the Hilbert module L*(X|X’) as
LAX|X) = {f € LX) : [f | paxpery € LZ(X)}-

The conditional inner product has analogous properties to a standard inner product.

PROPOSITION 7.18. Let X:= (X,3,u) be a probability space and X' a sub-c-algebra of ¥ defining
X':=(X,¥,u). For every a € L*(X') and f,g,h € L*(X)

(i) (f, 9>L2(X|X/) = <g7f>L2(X|X’)’
(11) <f + 9, h>L2(X|X’) = <f7 h>L2(X|X’) + <g7 h>L2(X|X/);
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(iii) (af, g)LQ(X\X’) =a(f, 9>L2(X|X')~
PROPOSITION 7.19. Let X:= (X,%,u) be a probability space and ¥’ a sub-o-algebra of ¥ defining
X":= (X,¥, ). Then for every f € L*(X) we have that HfHLQ(Xp(,) =0 if and only if f = 0.

PROOF. Assume that f = 0, which gives that |f|?> = 0. By Proposition 7.6, since it holds true that
|f|> < 0and 0 < |f[?, we have that Hf“;(X\X/) =E(|f]*/X') = 0, and thus Hf”m(xp(/) =0.

Now, assume that || f]|;2xx) = E (|f?|X’) = 0. Assume for a contradiction that f # 0. This implies
that there exists A € ¥’ with p(A) > 0 such that

/ |f1? du > 0.
A

However, by the definition of the conditional expectation

JEQPX) au= [ 157 au>o.
A A
But this implies that
0= [ Wfllsgey dn= [ BQSFX) duz [ BAPX) du>0,
which is a contradiction. We conclude that f = 0. U

THEOREM 7.20 (Pointwise conditional Cauchy-Schwarz inequality, [29, p. 198]). Let X := (X, %, u) be
a probability space and X' a sub-c-algebra of X defining X' := (X, ¥/, ). Given f,g € L*(X|X') then

| {59 e xpxy 1(@) < N ey () 19 2y (2)

for almost every x € X.

PROOF. Fix any f,g € L*(X|X’) and consider
2

0 < loluscxser £ = 1 iscxen 9]y

= <||g||L2(X\X’) f - ||f||L2(X|X’) 9, ||gHL2(X\X’) f o ||f||L2(X|X') g>L2(X|X’)

2 2
= HgHm(xp{/) (f, f>L2(X|X’) + HfHL2(X|X/) <979>L2(X\X/) —2 HfHL2(X|X/) HgHLQ(X\X/) (f, 9>L2(X|X/)
2 2
=2 H9||L2(x\x') ||f||L2(X|X’) —2 ”f”L?(X\X’) ||g||L2(X|X’) (f, g>L2(X|X’)

This gives
(7) 0<2 ||g”L2(X|X’) ||fHL2(x|X/) <H9HL2(X|X/) HfHLZ(xpo) — ([, g>L2(X|X’)> :
There are three possible cases to consider. Firstly, if [|gl|2xx) [ fll2xxy = 0. we may assume

without loss of generality that || f|| rxxy = 0. By Proposition 7.19 it follows that f = 0 and the
desired inequality

| {f, g>L2(X|X’) |(z) < ”f”L?(X\X’) (x) ||g||L2(X|X’) (),
holds true for almost all z € X.
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Next, fix any « € X. If [|g[| 2xxy (@) [| /]| 2%y (%) > 0, then it follows from (7) that,
(f, 9>L2(x|x') (z) < ||f||L2(X\X') (x) Hg”LZ(X|X’) (2),
for almost all z € X.

Lastly, for any h € L*(X[X'), [|hl| j2xx) () = VE ([R[2X/)(y) > 0 for all y € X since [h[*(y) > 0 for
all y € X. Therefore, for the fixed z € X, the case where [|g|;2xx/) () || fll L2(xx) (#) < 0 cannot
occur.

We conclude therefore that
s 9| @) < 1 gz @) 19 2y (@)
for almost all z € X. O

THEOREM 7.21 (Pointwise conditional triangle inequality). Let X:= (X, Xy, u) be a probability space
and ¥’ a sub-o-algebra of ¥ defining X' := (X, %', n). Given f,g € L*(X|X') then

1f + 9l 2xix) (2) < NNl 2xixny () + 91l 2 xxr) (%)
for almost every x € X.
PROOF. Take any f,g € L*(X|X’). We wish to show that

1+ 9l xpxy (@) S Wl 2xpxey (@) + M9l L2 x oy ()
for almost all x € X. Rewriting this in terms of the definition of the conditional norm and squaring
both sides, we wish to show that

2
1 + 9l acxx (@) = E (1 +9P1X) @) < (1 pzxe @) + 19z ()
=E (|fPIX) (2) + E (IgI°|X') (2) + 2VE (If2IX') (2) VE (|g2X) ()

for almost all z € X. Fix any x € X and consider the left hand side of the above expression

E(|f+gPX) () =E((f +9)*IX) () = E (If*IX) (2) + E (|g]*|X)) (x) +2-E(fg|X)).
By Theorem 7.20, it follows that

E(191X) (2) = {0} gacxper (2) < [(F: 9 paeen | (2) < VE(TPIRD) () VE (9PIXD) (2)
= Hf”L?(xp(/) (x) HQHL2(X|X/) (x)

for almost all x € X. Therefore, we have that
E(If +9PIX)) () = E (/X)) () + E (|g]*[X")) (x) +2- E (fg]X'))
< E(IfP1X) (2) + E (|g*1X)) (2) + 2VE (| fPIX)) (2) VE (|92X)) (2)
for almost all x € X. Therefore
17+ 0 () < (12 () + ol ()

for almost all x € X. Taking the square root on both sides, we conclude that

1f + 9l e xxny (@) < 1l 2 (@) + 191 p2xxy (@)
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for almost all z € X. O

THEOREM 7.22 (Pointwise conditional reverse triangle inequality). Let X := (X, Xy, 1) be a probability
space and X' a sub-o-algebra of ¥ defining X' := (X, X', n). Given f,g € L*(X|X') then
||f||L2(X|X’) - ||g||L2(X|X’) () < |f - g||L2(X|X’) (x)

for almost every x € X.

PROOF. Take any f,g € L*(X). Then for almost all z € X
11l 2xpxn (@) = If = 9+ gll2xxr) (@)-

By the pointwise conditional triangle inequality (Theorem 7.21),

Hf”LZ’()qx') () =f—-9g+ 9HL2(x|x') (x) < |If - QHLQ(X\X/) () + HgHLQ(X\X/) (z)
for almost all z € X. Therefore
(8) HfHL2(X|X/) (z) — HgHL2(X|X’) (@) < |If - 9HL2(X\Xf) (2).
Similarly

||9HL2(X\X') (@) =llg—f+ f||L2(X|X’) (x) < llg - f||L2(x|X') () + HfHL2(X\X') (x)
for almost all x € X. This gives
©) = (1 e @ = N9l gy @) = 19l 2 (@) = 112y (@) < 1S = 9l 2y (@)

for almost all x € X. Combining inequalities (8) and (9), for almost all x € X we have

(x) < |If - 9||L2(X|X/) (). u

||f||L2(X|X’) - ||g||L2(X|X’)



CHAPTER 8

Roth’s Theorem

Having proven the Dichotomy of Systems result (Theorem 6.16) in Chapter 6 and introduced relevant
notation and definitions in Chapter 7, we are now in a position where we can provide a rather short
proof of Roth’s Theorem [23], the first non-trivial special case of Szemerédi’s Theorem.

THEOREM 8.1 (Roth’s Theorem). If A C Z such that d (A) > 0, then A contains a arithmetic progression
of length three.

By the definition of factors and extensions we employ (Definition 6.2), we can interpret a measure
preserving system X := (X, X, u, T') with ¥y C ¥ as a non-trivial factor of itself. With this in mind and
recalling the definition of a SZ system (Definition 4.5), the following result is a corollary of Theorem 6.16.

COROLLARY 8.2. Given any invertible measure preserving system X := (X, Xx, u, T), then there exists
a non-trivial factor Y = (X, Xy, u, T) for which Y is a SZ system.
Proor. If X is weak mixing, then by Theorem 4.11, the measure preserving system X, a non-trivial

factor of itself, has the SZ property.

Otherwise, if X is not weak mixing, then by Theorem 6.16 the Kronecker factor X 4p(x) is non-trivial. By
Proposition 6.10, the Kronecker factor X 4p(x) is a compact measure preserving system. By Theorem 5.6,
we know that X 4px) has the SZ property. O

Consider the following special case of the Furstenberg Multiple Recurrence Theorem.

THEOREM 8.3 (Triple Recurrence Theorem). Let X := (X, %, u, T) be an invertible measure preserving
system. For any E € ¥ such that p(E) > 0 there exists n € N such that

W(ENT"ENT*E) > 0.
The proofs of Theorem 3.4 and Theorem 3.6 can easily be repurposed to show that Roth’s Theorem
and the Triple Recurrence Theorem are equivalent by replacing all instances of the variable k£ € N with

k = 3. In order to prove the Triple Recurrence Theorem, and by equivalence, Roth’s Theorem, it is
only necessary for us to consider the following special cases.

First, we have the following corollary to Theorem 4.11.

COROLLARY 8.4. Given any invertible measure preserving system X := (X, Xx,u,T) such that X is
weak mizing. Then for any f € L>(X) such that f >0 and [, f du >0

N
1
liminf—Z/ ffoT™ foT? du>0.
n=1 X

N—oo N

60
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In order to keep this digression short, we use the following proposition from [9] without providing the
proof.

PROPOSITION 8.5 ([9, Theorem 4.22]). Given any invertible measure preserving system X := (X, Xx, 1, T)
such that X is not weak mizing. Then for any f € L>°(X) we have that

N
. . 1 n 2n
h]vnl,loréfﬁg /f-foT~foT dp

_hmlnf—Z/ f|XAP(X ( OT"|XAP(X)) ‘E(foT2"|XAP(X)) d/L

N—oo

Assuming this result, we have the following corollary.

COROLLARY 8.6. Given any invertible measure preserving system X := (X, %, u, T) which is not weak
mizing, then for any f € L>(X) such that f >0 and [, f dp >0

N—oo

hmmf—Z/f foT™ foT* du>0.
PROOF. Take any f € L>(X) with f > 0 and [, f du > 0. By Proposition 8.5

N
: : 1 m 2n
15VHL1£fNZ/f-foT cfoT?™ du

N—oc0

_hmlnf—Z/ f|XAP ( OT”|XAP(X)) 'E<foT2”|XAP(X)) d,u

By Definition 7.11, since f € L*>°(X), we have that E (f]XAp ) € L*(Xp(x)). By Proposition 6.10,
Xap(x) is a compact measure preserving system, so it follows by Theorem 5.6 that

N
: : 1 n 2n
thri)loréfNZ/f-foT foT™ du

=liminf — Z/ fIXapx)) - E (f o T”|XAP(X)) -E (f o T2n|XAP(X)) dp

N—oo
> 0.

Since the choice of f € L>°(X) was arbitrary, the required result follows. 0

From Corollary 8.4 and Corollary 8.6, we have the following result.

THEOREM 8.7 (All measure preserving systems are SZ systems of level 3). Let X:= (X, %, u,T) be an
invertible measure preserving system. For any f € L*(X) such that f > 0 and fX f du > 0 we have
that

hmmf—Z/ f-foT™ foT* du>0.

N—oo
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We conclude that the Triple Recurrence Theorem (Theorem 8.3) holds true for all invertible measure
preserving systems. Hence, via the equivalence laid out in Chapter 3, we have proven Roth’s Theorem.



CHAPTER 9

Weak Mixing Extensions

1. Relativising Weak Mixing Systems

Having introduced all the necessary terms and definitions, we are now able to formulate a relativized
version of weak mixing systems, where a system X is no longer weak mixing in itself, but weak mixing
relative to a factor Y.

In order to emphasize the similarities we will see between weak mixing systems and weak mixing
extensions, we consider the following characterization of standard weak mixing systems which we have
not used previously.

DEFINITION 9.1 (Weak mixing function, [29, Definition 2.12.3]). Given a measure preserving system
X:=(X,Xx,u,T), a function f € L*(X) is said to be a weak mizing function if

Dlim {0 T") 2z, = 0
PROPOSITION 9.2 (Equivalent forms of weak mixing systems, [29, Exercise 2.12.9]). Given a measure
preserving system X := (X, Xx, u, T), the following statements are equivalent.
(i) The system X is weak mizing.
(ii) Every f € L*(X) with [, f du =0 is a weak mizing function.

These notions of weak mixing functions and weak mixing systems can now be generalized in a natural
way to the notions of conditionally weak mixing functions and weak mizing extensions.

DEFINITION 9.3 (Conditionally weak mixing function, [29, p. 206]). Given invertible measure preserving
systems Y := (X, Xy, 1, T), X:= (X, 3x,u,T) and ® : Y — X an extension. A function f € L*(X]|Y)
is said to be conditionally weak mixing function if

Dl (70T P =
in L?(X).

DEFINITION 9.4 (Weak mixing extension, [29, Definition 2.14.3]). Given invertible measure preserving
systems Y := (X, Xy, 1, T), X:= (X, Xx, 1, T) and & : Y — X an extension. The extension ® is said
to be a weak mizing extension if every f € L*(X]|Y) such that E(f]Y) = 0 is a conditionally weak
mixing function.

63
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The definition of weak mixing extensions is a bona fide generalization of weak mixing systems if we
consider the specific extension of a measure preserving system X from its trivial factor Xj.

PROPOSITION 9.5. Given a measure preserving system X := (X, Xx, u, T) and the trivial factor Xg:=
(X, X0, 1, T), then
LA(X|X,) = L*(X).

PROOF. Since only constant functions are measurable with respect to 3y, the set of functions L>°(Xy)
is exactly the set of all constant functions. By Definition 7.11, we have that L?(X|X,) C L*(X). Now,

take any f € L*(X). By Definition D.7
1/2
([ 1) <o
X

/2 1/2
E(07) " = ([ 11Pa) 1 e o)

Which implies that f € L*(X|Xj). Therefore, it follows that L*(X|X,) € L?(X). Combining these
inclusions, we have that L*(X|X,) = L*(X). O

Therefore

PROPOSITION 9.6. Given an invertible measure preserving system X:= (X, Xx,u,T) and the trivial
factor Xg:= (X, %0, 1, T). Then X is weak mizing if and only if  : Xg — X is a weak mizing extension.

PROOF. Assume the measure preserving system X:= (X, Xy, u,T) is a weak mixing system. We
show that ® : Xy — X is a weak mixing extension. Consider the set of functions

LA(X|Xo) = { f € LA(X) : E (If %) " € L*(X0) }

By Definition 9.4 and Proposition 9.5, the extension ® : Xy — X is a weak mixing extension if and only
if every f € L*(X) = L*(X]|Xp) such that E (f|X,) = 0 is a conditionally weak mixing function. Fix
any f € L*(X) such that E (f|Xy) = 0, then f € L?(X) is conditionally weak mixing if

0= Dl (7o " ey = Dl B 710 = Dl [ 7o) 1x

n—oo

in L?(X). Therefore
D—lim (f oT", f)2xx,) =0

n—oo
in L?(X) if
D—li_}rn f-foT"du=0.
n—oo X

However, since X := (X, Xx, u,T) was assumed to be a weak mixing system, we know by Proposition
9.2 that every f € L*(X) such that [ f du = 0 satisfies

D—lim f-foT"du=0.
b

n—oo

Hence ¢ : Xy — X is a weak mixing extension.
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Conversely, assume that ® : Xy — X is a weak mixing extension. Therefore, for every f € L*(X|Xj) =
L?*(X) such that [, fdu =0, we have that

D—lim [ f-foT"du=0.
n—oo b'e

By Proposition 9.2, X is a weak mixing system. 0

The preceding result, along with those in the next section, technically render the treatment of weak
mixing systems in Chapter 4 unnecessary. However, the general ideas and techniques used earlier when
dealing with weak mixing systems will serve us well as a guide for our aim of showing that the SZ
property of a factor Y can pass through to an extension X via a weak mixing extension.

2. The SZ property is Carried Through Weak Mixing Extensions

Analogous to the method in Chapter 4, we shall need a new version of the van der Corput Lemma
(Theorem 4.9) along with a few more preliminary results, including the more high powered result of the
von Neumann Mean Ergodic Theorem (Theorem 9.8), in order for us to reach our stated aim for this
section.

PROPOSITION 9.7 ([17, Theorem 5.1.4]). Given invertible measure preserving systemsY = (X, Xy, u, T'),
X:=(X,Yx,1,T) and ® : Y — X a weak mizing extension. For all functions f,g € L*(X) such that
either E(f|Y)=00rE(g]Y)=0

Dlim [[E(f o T gIY) | 12, = 0

THEOREM 9.8 (Von Neumann mean ergodic theorem, [17, Theorem 5.1.5]). Consider a measure pre-
serving system X := (X, X, u, T) and the closed subspace of L*(X)

J={fel*X): foT=f}.
Denote by P : L*(X) — J the projection of L*(X) onto J. Then for every f € L*(X)

N
. 1 n
lim NZfoT — Pf =0.
n=1 L2(X)
LEMMA 9.9 (Uniform van der Corput Lemma, [17, Theorem 5.1.6]). Given a Hilbert space H and a

bounded sequence (x,) in H. If we have that
D—lim (C—hm <xn+m,xn>H> —0,

m—0o0 n—oo
then
XN
ton | 2] =
n=1 H

The proof of the following result is similar in strategy to the proof of Theorem 4.10 in Chapter 4.



2. THE SZ PROPERTY IS CARRIED THROUGH WEAK MIXING EXTENSIONS 66

THEOREM 9.10 ([17, Theorem 5.1.7]). Given invertible measure preserving systems Y = (X, Xy, p, T),
X:=(X,2x,1,T) and ® : Y — X a weak mizing extension. Then for all fi, fo, -, fr € L=(X)

lim —Z<Hf,on HE on|Y> = 0.
n—oo
L*(X)
PROOF. As for Theorem 4.10, the proof follows by induction.
Base case, k = 1. Take any f € L*>°(X). We show that
X
lim NZ(foT”—E(foT”]Y)) = 0.
n=1 L2(X)

Define the set of functions
J={f € L’(X): foT = f}
and the projection P : L?(X) — J, and fix any € > 0. Then, for any N € N

=]~
WE

(foT" —E(foT"Y))

1

3
Il

L2(X)

Pf——z (foT™Y))

<

(foT")—Pf

2] -
] =

n=1

L2(X) L2(X)
By the von Neumann Mean Ergodic Theorem (Theorem 9.8), there exists some M; such that if N > My,
then
€
< 5
L3(X)

N
> (foT™)—Pf

Now, for any N € N

=]~
WE

(E(foT"Y)) - Pf

n=1

L2(X)

< (E(foT"Y)) - P(E(fY)) HIPEGY) = PHI 2 x;

L3(X)

=] =
hE

1

n

Again, by the von Neumann Mean Ergodic Theorem (Theorem 9.8), there exists some My € N such
that if N > M, then

<€
rx

By Proposition 9.13 the set J is a closed subspace of L?(Y), which in turn is a closed subspace of
L*(X). Therefore, the projections E(+|Y) : L*(X) — L*(Y) and P : L*(X) — J commute and
P(E(f]Y)) = Pf. Hence

1 & .
NZ; foT"Y))—P(E(f]Y))

|Pf — P (B (F1Y)] o) = 0.
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Therefore, there exists M := max{M;, My} such that if N > M

N
1 " - €
NZ(foT —E(foT"Y)) <5tz

n=1 L2(X)
Since the choice of € > 0 was arbitrary, we conclude that
| N
lim NZ(foT"—E(foT"w)) = 0.
n=1 L*(X)

Induction step, k > 1. Fix any & > 1. Assume for every [ < k — 1 and for all fi, fo, -, f; € L=®(X)

that
lim —Z <H fioT™ — HE oT™Y ) = 0.
L2(X)
Fix any f1, fo, -, fx € LOO(X). We show that
1 N
lim —Z <H fioT™ — HE fio T’"\Y)) = 0.
n—00 — \i L2(X)

Define the function f:= fi — E (f¢|Y). Then for every N € N

N

and

NZ(HE oTﬂY)z%i((ﬁE on|Y) ]E(foT’M]E(fkoTkn\Y)‘ﬂ),

n=1

Combining these

=] =
Mz

Hfz HE me)
k—1
Hfion> X foTk

i
L

L*(X)

A
=
WE

n=1 \:i=1 L2(X)
1 N k—1 k ‘
+ NZ((Hmw) x E (fy o T [Y) — HE(fion|Y))
n=1 =1 i=1 L2(X)
1 N k—1 ~
+ % 2o (H]E fio Tm|Y)) ( o T’m|Y) — KV +KY + K.
n:l = L2(X)

We show that the terms K](\}), K](\?) and K](\?) converge to zero as N — oo in order to prove the result.
By the definition of the function f, we have that E ( f ]~Y) = 0. Therefore

E(foTk”|Y> :E(ﬂY) o TH — ()
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for every n € N so that K® =0 for every N € N.

Further
1 k—1 k ‘
K](\?) = Z ((H fio Tm) (fk o Tk"\Y) — H]E (fl o Tm|Y))
n:l = =1 L2(X)
1
— NZ fro T Y)) (H fioT™m — H]E ;o T™[Y) )
n=1 L2(X)

Since fr € L>*(X), we have that (E ( fro Tk"|Y)) is a bounded sequence of functions, so there exists
some R > 0 such that H]E (fk o Tk”|Y) Hoo < R for all n € N. Therefore

%i( E (fr o T*[Y)) x (lﬁfion—ﬁE(inTmW))
e ([ Teuerm)

By the induction hypothesis for [ = k — 1, we have that

K =

L2(X)

L2(X)

lim —Z<Hf,on HIE on|Y> = 0.
n—roo
n=1 \i=1 L2(X)
Therefore, limpy_, K](\?) = (. It remains to show that
1N ke
(1) . in v kn o
lim Ky = lim NZ(HJQOT >><foT = 0.
n=1 \i=1 L2(X)

Define the sequence of functions (g,) C L>*(X) as

k—1
— (Hf on> x foT.
=1

Aiming to apply the uniform van der Corput Lemma, (Lemma 9.9), we claim that

D—lim (C’—nll_}l{.lo (Gntm: gn)L?(X)) = 0.

m—0o0

Fix some m € N. For every N € N

N k—1 k—1
1 ‘ . 4 .
Z Gntms In) p2(x) = NZ/ ((H fioTz(n+m)> X fOTk(n+m)> : ((H f@-on> X foTkn> A
—1 i=1

i=1

= Z/ (ﬁ fioT™. fz)on>-(foTkm-f)oTk”d,u.



2. THE SZ PROPERTY IS CARRIED THROUGH WEAK MIXING EXTENSIONS
Define functions in L>°(X),

:flon'flv
FZ(m) = f20T2m'f27

= fro1 o THI™(2) - fr,

F,Em) = foTk - f.
Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), for every N € N

%Z (Gn-tms Gn) L2(X Z/ HF(m o T™ dp.
n=1
1 m in
:N;/XFI( )o (HF oT ) dp
e )

n=1 \i=2
By the induction hypothesis for | =k — 1

N k k

1 . )

N E (l | E(m) o T(z—l)n . | | E (E(m) o T(z—l)n|Y>>
n=1 \i=2 i=2

Since norm convergence implies weak convergence in L*(X), it follows that

lim

=0.

L2(X)

N
. : 1
C=lim (gnim; gn)r2(x) = lim NZ@mmv%)LZ(m

N—oo
n=1

N k
_ 1 (m) i (m) (i—Dn
= lim [ A NZ<HF oT ) dp

X

X

N k
1 |
— 1 (m) -~ (m) (i-1)n
= lm [ A" <||E<F |Y)oT ) dp.

N k
. m 1 m 1—1)n
C—n (grim:6) ) = | B ( o3 (HE () or )
n=1 i=2
1 N
- 23 [T (H) oreom

69
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By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20)
N

. 1
C—lin (g, gn) p2x) < lim NZ

N—o0
=1

k—1

H E <Fvi(m) |Y> o T—1n

1=

|E (F™ ) ot
LX)

L3(X)

Since the Koopman operator is an isometry on L?(X) (Corollary 2.16)
N

.1 1 (m) (m) )
— < — .
A5 3 G ) < Jim ] I L Gl ]
=1 = = L2(X)
()] ()
L2(X) L*(X)
By Proposition 9.14
| N k—1
lim — S < 12 H]E (F“”) Y)‘ .
NIE;ON;@ +m> g >L2(x) = g 1fill s P 12(X)
This gives
k—1
D—lim <C—lim (Grooms G} 12 ) <TTI4I% - D—lim HE(foT’fm.ﬂY)( .
m—00 n—soo ‘T INIL X)) = ) tloo m—00 L3(X)

By Proposition 9.7, since E (ﬂY) = 0, we have that

=0.

D—lim HE( o Th™. f|Y)(
£2(x)

m—o0

This implies that
D—lim (C—lim {gim, ga) 2x) ) = 0

m—0o0

Therefore, using the uniform van der Corput Lemma (Theorem 9.9)

1 N k—1 ' ~
NZ <HfioTzn > foTkn>

n=1 i=1

lim K(l) = lim

N—oo N—oo

= 0.
L2 (X)

We conclude that

N
. in in W, @, B
0< lim —Z(Hfon H]E fioT |Y)> < lim Ky + K7 + K = 0.
n=1 \i=1 L2(X)
Since our choice of k € N was arbitrary, the required result follows by induction. U

Still following a similar approach to that of Chapter 4, using properties of the limit inferior and condi-
tional expectations, we reach our desired conclusion.

THEOREM 9.11. Given invertible measure preserving systems Y := (X, Xy, u,T), X:= (X, Xx, u,T)
and ® : Y — X a weak mizing extension. If the system Y is SZ, then so is X.
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PROOF. Fix any k € N and let f € L>°(X) such that f >0 and [ f du > 0. Consider

N—o0

hmlnf—Z/f foT™ foT?...foT®=0m qy

_ k—1 k—1
= liNrrLioréf (%Z/Xf.nfon_f.H]E(fon\Y)+f.H]E(foTi”\Y) du>.
n=1 =1 =1 =1

By the superadditivity of the limit inferior

hmmf—Z/f foT™ f TQ"...foT(k—l)n du

N—o0
N
zl%vrgiogf<%;/)(f-nf o T — f. HE o T™[Y) )
1 N
+liNm_>iOIC1>f<N;/Xf~H]E o T™Y) )

By Theorem 9.10, since norm convergence implies weak convergence in L?(X), we have that

15V121£f—2/f Hf " — f- HE o T™Y) du = 0.

Therefore, by the definition of the conditional expectation (Deﬁmtlon 7.1)

N
1
hjvrgio%fﬁz/ f-foT”-foT2“---foT(k—1)” du

> hmmf— /f HE foT™Y)

N—oo

:11Nm_>101<13f—2/ (f HE on|Y' )d,u

— hmmf—Z/ (FIY)E(foTMY)E (foT*Y) - --E(foT*I"Y) du

N—oo

71

Since f > 0, we have that E(f|Y) > 0 and [, E(f[Y) du= [y f du > 0. Further, since Y is SZ, we

conclude that

N
s 1 n 2n (k—=1)n
lllvning;/Xf-foT-foT ceofoT " dp > 0.

O
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9.A. Ancillary Results for the Proof of Theorem 9.11

PRrROPOSITION 9.12 ([31, Proposition 4.3]). Given a Hilbert space H and continuous linear operators
P:H—Hand(Q: H— H. Then the set

{r € H:P(x)=0Q(z)}

1s closed in H.

PROPOSITION 9.13. Given invertible measure preserving systems Y = (X, Xy, u, T), X:= (X, Xx, 1, T)
and ® 1Y — X a weak mizing extension. Define the set

J={feLl*X): foT=f}.
Then J is a closed subspace of L*(Y).

PROOF. It is clear that J is closed under pointwise addition and scalar multiplication and is hence
a subspace of L*(X). Since the identity map I : L?(X) — L*(X) and the Koopman operator Kr :
L*(X) — L*(X) are continuous linear operators, by Proposition 9.12, J is a closed subspace of L*(X).

It remains to show that J C L*(Y). Take any f € J. It is clear that if f o T=f, then E(foT]Y) =
E (f[Y). Therefore, for every f € J, we also have E(f|Y) € J. Define f:= f —E(f]Y) € J. Tt
follows that E ( f \Y) — 0. Since ® is a weak mixing extension, it follows by Definition 9.4 that f is a
conditionally weak mixing function. That is

D—lim <foT“,f> —0,
L2(X[Y)

n—o0

in L2(X). But

Dt (7o77) - Dt (o [¥) 0
in L?(X). Since f € J
0= D-lim E(forT"f (Y) = p-lim E(f- f ly> ~ D—lim E (/" 2’

n—oo n—oo n—oo

v)-|
in L?(X), and hence Hfz‘ v 0. By Proposition 7.19, we have that f = 0 and therefore f =
L2(X[Y

E (fY), which means that f € L*(Y). Therefore, .J is a closed subspace of L*(Y). O

LA(X]Y)

PROPOSITION 9.14. Given measure preserving systems Y := (X, Xy, u, T), X:= (X, Xx,u,T) and
®:Y — X an extension. Fiz any s,r € N. Then for all fi, fo,- - fs € L=(X)

s
2
=1

<
L2(X)

f[IE(fioT““-fi}Y)

=1

[TE(fioT" £]Y)
=1

o0

ProOOF. Take any s,7 € N and fi, fo, -+ fs € L>(X). By Proposition 5.7

‘(f[E(fioT“vfi\Y)) 1y

=1

<
L*(X)

[TE(fioT™- £i]Y)
=1

[TE(fioT™- £]Y)
=1

L2(X) oo
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For every 1 <i < s, we have that f; < | fil|, and fi o T" < | fi||.. This implies that

E (Hfz oT" - f; Y) <E <H||fi||io Y) =T IAl%-
=1 =1 =1

Taking the infinity norm on both sides gives

<

HE(f,»oT"-fi]Y)

s

2
[THs15
=1

S
2
=TT IAl-
o i=1

o0
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CHAPTER 10

Compact Extensions

Next, we introduce the relativized version of compact systems - compact extensions. Similar to the
case with weak mixing extensions, we shall first introduce an alternative characterization of compact
systems that will emphasize the similarity between the formulation of compact systems and compact
extensions.

1. Relativising Compact Systems

In order to set up the definition of compact extensions, we shall need a few more preliminary concepts.

DEFINITION 10.1 (Zonotopes, [29, p. 199]). Let X := (X, X, i) is a probability space, d € N, and take
f1, f2,+, fa € L*(X). The set
Z = {le1+02f2+"'+cdfd 1C1,C, 0, Cy 6R,|Cl|,|62|,--- >|Cd| < 1}‘

is said to be a bounded finite dimensional zonotope.

PROPOSITION 10.2 ([29, p. 199]). Given a measure preserving system X = (X, Xx, u,T), the following
statements are equivalent.

i) A subset E C L*(X) is precompact.
(i) p p

(i) For every e > 0, there exists a collection { f;}1.; C L*(X) defining a finite dimensional zonotope,

Z = {clf1+c2f2+"'+cnfn . ‘61’7"' 7‘Cn‘ é 1},
such that
E C U B(z,e€).
z€Z
DEFINITION 10.3 (Finitely generated module zonotope, [29, p. 199]). Given measure preserving sys-

tems Y:= (X, %y, 5, T), X:= (X,Xx,u,T) and ® : Y — X an extension. Consider d € N and
f1, f2,-+, fa € L*(X]Y) and define a finitely generated module zonotope as

Z={afi+cfot+ - tcafaic, o ca € L), el el o llcalle < 1.3
DEFINITION 10.4 (Conditionally precompact, [29, Definition 2.13.7]). Given measure preserving systems
Y := (X, 3y, u,T), X:= (X,Xx,u,T) and ® : Y — X an extension. A subset £ of L?(X]|Y) is said

to be conditionally precompact if for every e > 0, there exists a finitely generated module zonotope Z
contained in L*(X]|Y) such that
E C U B(z,¢€).
zeZ
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DEFINITION 10.5 (Conditionally almost periodic, [29, Definition 2.13.7]). Given invertible measure
preserving systems Y := (X, Xy, u, T), X:= (X, Xx,,T) and & : Y — X an extension. A function
f € L*(X[Y) is said to be conditionally almost periodic if the orbit O(f) is conditionally precompact
in L2(X|Y).

Let AP(X]Y) denote the set of all functions contained in L?(X|Y) that are conditionally almost periodic.

DEFINITION 10.6 (Conditionally almost periodic in measure, [29, Definition 2.13.7]). Given invertible
measure preserving systems Y := (X, Xy, 4, T), X:= (X, Xx,u,T) and & : Y — X an extension. A
function f € L*(X]|Y) is said to be conditionally almost periodic in measure if for every € > 0 there
exists some E € ¥y such that pu(F) <eand f-1g. € AP(X]|Y).

Let AP,(X|Y) denote the set of all functions contained in L?(X|Y) that are conditionally almost periodic
m measure.

As we shall see, having both the notion of almost periodicity as well as almost periodicity in measure
will be useful. The following proposition follows directly by the formulation of Definition 10.6.

PROPOSITION 10.7. Given invertible measure preserving systems Y := (X, Xy, p, T), X = (X, EXx,pu, T)
and ® : Y — X an extension. Then AP(X|Y) C AP,(X]Y).

We use the weaker notion of almost periodicity in measure to define the notion of compact extensions.

DEFINITION 10.8 (Compact extension, [29, Definition 2.13.7]). Given invertible measure preserving
systems Y := (X, Xy, 1, T), X:= (X, Xx, 1, T) and ® : Y — X an extension. The extension ® is said
to be a compact extension if L*(X[Y) = AP, (X[Y).

As before with weak mixing extensions, the notion of a compact extension fully generalizes that of a
compact system.

PROPOSITION 10.9. Given an invertible measure preserving system X := (X, Xx,u,T) and the trivial
factor Xog:= (X, X0, u,T). Then X is compact if any only if & : Xg — X is a compact extension.

PROOF. Assume X:= (X, X, u,T) is a compact system and consider the extension @ : Xy — X.
We show that ® : Xy — X is a compact extension by proving that every f € L?(X|Xj) is conditionally
almost periodic in measure, that is, L*(X|X,) = AP,(X|X,). By Proposition 9.5, we know that
L3(X|X,) = L*(X).

By Definition 10.6, without loss of generality, we need only verify for 1 > § > 0 that there exists E € ¥
for which p(E) < 6 < 1 such that f-1gc is a conditionally almost periodic function. Fix any f € L*(X)
and any 1 > 0 > 0, the only element E € ¥y such that u(F) < 6 < 1is F = (). This implies that is it
enough for us to show that f = f -1y € AP(X|Xy).

Fix any € > 0. Since X is a compact system, the orbit O(f) of f € L*X) is precompact in L?(X).
By Proposition 10.2, there exists a collection of functions {f;}?, € L*(X) defining a finite dimensional
zonotope

Z = {lel+62f2+"'+cnfn : |Cl|a"' v|cn| < 1}7
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such that

O(f) € | B(z.e).
2€Z
Therefore, Z constitutes a finitely generated module zonotope contained in L?(X|Xg) and f € AP(X|X,).

We conclude that ® : Xy — X is a compact extension.

Conversely, assume that ® : X, — X is a compact extension. Fix any f € L?(X). We show that the
orbit O(f) is precompact in L?(X). By Proposition 9.5, we know that L*(X|Xy) = L*(X). Since ® is a
compact extension, the function f € L?*(X]|Xj) is conditionally almost periodic. By Proposition 10.2, the
orbit O(f) is precompact. Since f € L*(X|Xy) = L*(X) was arbitrary, it follows that X := (X, Xx, i, T)
is a compact system. 0

PROPOSITION 10.10. Given measure preserving systems Y := (X, Xy, u, T), X:= (X, Xx, 1, T) and
®:Y — X an extension. Then, L>°(X) C L*(X[Y) C L*(X).

2. The SZ property is Carried Through Compact Extensions

In order to prove that the SZ property passes through compact extensions, we will need to make use
of van der Waerden’s Theorem.

THEOREM 10.11 (van der Waerden’s Theorem, finitary version, [13, p. 30]). For every k,r € N there
exists some W (k,r) € N such that if the set

{Oa1a2737"' ,W(k’,?”)—].}

is partitioned into sets Cy,Cy, - -+, C,., then there exists at least one 1 < i < r such that for some a € Z
and d € N
{a,a+d,a+2d,--- ,a+ (k—1)d} C C;.

At this stage, we warn the reader that the following proof is rather involved. The important ideas of
the proof without the smaller details included is given in [29, Theorem 2.13.11].
We give a brief summary of the thinking that lies at the heart of the proof.

Consider a measure preserving system Y := (X, Xy, , T'), a finite set L and d € N. We shall construct
a sequence of simple functions {¢,, : X — L4},.cz. Using van der Waerden’s Theorem, we show that
there exists a set B € ¥y such that u(B) > 0 and an length k arithmetic progression

P={a,a+r,a+2r--- a+(k—1)r}

such that for all p, ¢ € P, the functions ¢,(x) = ¢,(z) for all z € B. This will allow us to identify ‘almost
periodic’ behaviour of a function along the arithmetic progression P.

THEOREM 10.12. Given invertible measure preserving systems Y := (X, 3y, u, T), X:= (X, Zx,pu,T)
and ® : Y — X a compact extension. If the system Y is SZ, then so is X.

PROOF. Fix f € L>(X) where f >0 and [, f du > 0, and some k € N. We show that

N—o0 N

N
1
liminf—Z/ fofoT™ foT? . foT®* gy > 0.
n=1 X
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Since f € L*(X) and ® is a compact extension, it follows by Proposition 10.10 that f € AP, (X]|Y).
Therefore, for any x > 0, there exists some A, € ¥y with u(A,) < & such that g, := f-14. € AP(X|Y),
and

1f = gullp2xy < 5
Without any loss of generality, we may assume that f € AP(X]|Y). This follows from the fact that for
every k > 0, the function g, < f satisfies

N
1
liminf—g /f'fOT"-foTZ”---foT(kU”du
/X

N—ooo N
n=

N
.. 1 n 2n (k—1)n
ZhNHi}o%fN E_I/Xg,{-g,ioT cgeo T g, 0T dpu.

Further, if necessary, rescale the function f € AP(X|Y) such that ||f|| . < 1. Fix € > 0 and define
0 > 0 such that the set

(10) E={ye X E(f[Y)(y) >} €y

has positive measure. Such a § > 0 must exist since we assumed that f > 0 and [ [ du>0.

Since f € AP(X]Y), the orbit of f is conditionally precompact. Therefore, there exists some d € N
and functions f1, fo, -, fg € L*(X|Y) which defines a finitely generated module zonotope

Z=A{afi+cfo+ - +cifiilally <1, el <17,

such that
O(f) € [ UB(z,e).
2€Z
By definition, for every m € Z, there exists ¢, , Cam € L®(Y) such that
lermlloe S Lv o lleamllo < 1,
and

||f o™ — (Cl,mfl + CQ,me + -+ Cd,mfd)”LQ(X‘Y) < €.
Therefore, for every m € Z the function e, € L*(X[Y) defined as

Cm = fOTm —Cmel +C2,mf2+ +Cd7mfd

satisties [enlf2xjy) < € At this point, we aim to replace the ¢;;, € L*(Y) with simple functions
Gim € L=(Y).

Now, for every m € Z and 1 < i < d, define the set B; = {z € X : [¢;m(2)| < |lcimll .} € By. For
every m € Z, 1 <1 < d and every x € B, ,,, define the quantity
Lg?n(:z:) = min{s €Z: Hs-g—cim (x) <e/d}.

For every m € Z and 1 < i < d, define a new function ¢ ,, € L>(Y) where for every x € B;,,

LA(X[Y)

M

~ € €
Cim(x) = Lg ) (z) - 7
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For every m € Z and 1 < ¢ < d, without loss of generality, assume that ¢;,, takes on the value zero
on the set of measure zero X \ B;,, € Xy. By their definition, it is clear that for every m € Z and
1 <i <d, we have ¢, € L*(Y) and [|G |l < 1.

Define, for every m € Z, the quantity
A = inf {7 ER:|foT™ = (Crmfi + Comfot -+ Camfa)ll 2 xy) (®) <7 € ae z e X} :

Any error introduced by this construction may be absorbed into the error term e, € L*(X]|Y), defining
a new error term é,, € L?(X[Y) such that [€ml L2xpy) < Vm - €

Let M € N, and define for every n € N; the set
Q=ENT"ENT™ENn--nT-M""Egeyx,.

Since the set E € Yy defined in (10) on p. 77 has positive measure and the system Y was assumed to
be SZ,

N N
| L. 1 n om (M—1)n
15V1riloréfﬁ g_IM(Q”):hanlo%fﬁ g_l/Xl}ylEoT lgoT*.--150T dp > 0.

By Proposition B.8, there exists ¢ > 0 such that the set S:= {n € N : u(,) > ¢ > 0} has positive
lower density. Let n € S be arbitrary.

Fixany 0<j< M —1landz € X. As f € AP(X]Y), for every 1 <i < d and for almost all z € X
Hf o 7 — (&4 jnfi + Cojnfo+ -+ 6d,jnfd)Hm(X\Y) () < Yjn - €.

Define the finite subset of Z .
L= {mEZ:m-C—l € [—1,1]}.
For every m € Z, define the mapping ¢, : X — L% as
Cn(@) = (L) (@), LS, (), -+, L§) () € LY, (z € X).

Since the choice of integer 0 < j < M — 1 was arbitrary, we interpret every ¢j,(z) € L? for the fixed
r € X as an L? colouring of the set {0,1,---, M — 1} of integers. By van der Waerden’s Theorem
(Theorem 10.11), there exist M € N (mentioned earlier) and a,,r, € Z such that

{ag, a0 + 14,0, +2ry, -+ ;a, + (k—Vr,} € {0,1,--- ;M — 1}
and Co, (%) = Copr, () = Cagror, () = -+ - = Capr(b—1yr, (7).
Note that for every m € Z
@) - == (Li(@) - S L5, @) S L) - 5 ) = Ermn(@): Eomn (@), Cagun ().
It follows that for the fixed x € X and all s,t € {0,1,---k — 1}
(@1 (artsrayn (@), s Ca(artsrain () = (C1anttran(T),+  Caapttra)n(T).

In other words, for the fixed z € X and for all s,¢ € {0,1,---k— 1}

(51,(a$+srx)nf1 + é2,(ax+srx)nf2 + -+ 6d,(ax+sr$)nfd> (ﬂf)
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= (1 (apttroynS1 + Co(apttroynf2 + - F Caapttronta) (2).
Since the choice of x € X was arbitrary, define functions

a:X —={0,1,--- M—1} r:X—>{0,1,--,M—1}
where a(z) := a, and r(z) = r,. By Proposition 10.15, we know that a,r € L°(Y).

Let I:= |a(X)| and J:= |[r(X)|. It is clear that I,J € N as a,r € L°(Y) have finite ranges. Next, we
finitely partition the probability space (X, ¥y, ) in two separate ways, namely,

x= U attin,  x= U rih.
ica(X) jer(X)
By Proposition 10.14, there exists a € a(X) and r € r(X) defining B,,:= Q,Na '({a})Nr~1({r}) C Q,
such that p(B,) > 0. By the definition of B,, € ¥y, we have that r(y) = r and a(y) = a for all y € B,,.

Notice that our above argument was independent of the choice of n € S made earlier, which implies
that there exists some ¢ > 0 such that p(B,) > o >0 for all n € S.

Continuing with the fixed n € S we chose earlier, and the fixed values of a € a(X) and r € r(X), for
all s,t €{0,1,---k—1} and y € B,
(61,(a+sr)nf1 + 52,(a+sr)nf2 + o+ Ed,(a—l—sr)nfd) (3/) = (61,(a+t7")nf1 + 62,(a+tr)nf2 + o+ 5d,(a+tr)nfd) (y)

This last step is the crucial detail we highlighted before the proof, and will allow us to identify ‘almost
periodic’ behaviour of O(f) along the arithmetic progression found earlier using van der Waerden’s
Theorem.

Therefore, for all s,¢ € {0,1,---k — 1} and every y € B,

(11) ||f o T(a—i—sr)n - (61,(a+tr)nf1 + 62,((1—&—2&7’)nf2 + -+ 6d,(a—l—tr)nfd) HLQ(X|Y) (?/) < Y(a+sr)n * €

Using the pointwise conditional triangle inequality (Theorem 7.21) and (11), for every 0 < s < k —1
there exists Ay > 0 such that for almost all y € B,

|foTH)" — fo Tan”m(xw) (y) < ||f o T — (G anfr + Coanfo + -+ + 5d,anfd)||L2(x\Y) ()
|| f o™ — (él,anfl + Coanfo + -+ 5d,anfd)”L2(XIY) (y)

< Y(a+sr)n * € + Yan - €
< A - €.

By Corollary 10.17, there exists n > 0 such that for almost all y € B,

(y) <n-e

Hf o Tanf o T(a—l—r)n . f o T(a+(k—1)r)n . (f o Tan)k‘
L2(X]|Y)

By the pointwise conditional reverse triangle inequality (Theorem 7.22), we have that for almost all
ye B,

|foT foT@ ... fo T(ﬁ(k_l)r)n”m(x\Y) (y) — H<f © Tan)k‘

XY (y)
<y>'

an (a+r)n . (a+(k=1)r)n - an\k
g’”foT foT foT 2wy ) H(foT ) )LQ(XlY)
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(y)

<||formpomesnn .. poqertminn _(fo et (XIY)
L2(X|Y

<n-e

Therefore, for almost all y € B,
an a+r)n a+(k—1)r)n an\k
|f o T f o TN . f o platk=1n ||L2(X‘Y)(y)>H(foT ) ’

Lx(Y) (y) —n-e

This implies, by the definition of the conditional norm (Definition 7.15), that for almost all y € B,

E <(f o Tanf o T(a+7")n . f o T(a—i—(k—l)r)n)Q

) ) > B (oY) ) —n-e

Squaring both sides gives
E ((f o Tanf o T(a—i—r)n . f o T(a+(k—1)r)n)2

Y>1/2 (y) —n- 6>

= E((for™|Y) ) ~20-c- E((Fo*|¥) ) 447

The monotonicity of the integral yields

Y) ()

> (E ((f o Tam)2

80

/ (f o T f o T@Hn. .. foletk-1rn)? du>/ (f o Ty du—277-e/ (foT™™)*" du+n?-é

n n n

Note that since f > 0 and || f||, < 1, for almost all y € B,
an a-rr)n a —1)r)n an a-rr)n a — rn2
(foT foTtetnm. .. folatt=lr) )(y)z(foT foTletnn. .. folatlk 1))) (y).

Therefore, since f >0

/ f ° Tanf o T(a-‘,—r)n . f o T(a—i—(k—l)r)n d,u
X

f o Tanf o T(a+r)n . f o T(a+ (k=1)r)n d,u
By,

> / (f o Tcmf o T(a-‘,—r)n . f o T(a+(k—1)7~)n>2 dﬂ
>/ (foT“")% du—277-e/ (foT‘m)zk dp+n* - €
Since the choice of € > 0 was arbitrary, there exists an € > 0 small enough and C > 0 such that
/ foT. forletrn.  .platk=bnn g, ~ ¢ > (.
X
Since the Koopman operator preserves integrals, (Corollary 2.15)

/ f R A f o T(a—i—r)n . T(a—l—(k—l)r)n d,u
X

:/ (f o Tam . f o Tan-‘rrn . f o Tan+27"n . Tan+(k—1)7»n) o T—an dlu
X
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:/ f'fOTTnfOTZTn"-T(k_l)Tn d,u>C>O
X

Recall the value M € N defined earlier. For every N > M, define Uy:= {z € {1,2,--- N} : z =
rn,n € N}. Then

N
1
NZ/Xf-foT”-fOTQ"---foT(’“‘””du
n=1

:%Z/);f'foTu‘fOTQU"'foT(k_l)udlu_'_%Z/Xf'foTn‘fOTQn---fOT(k_l)ndlu.

ueUpn ngUn
Since f >0

N

1

LS [ pegor forne gortng,
n=1

>3 3 [ fegeTr po e fo T

ueUpn

By the definition of the set Uy, we have that Uy =r-SN{1,2,--- , N}. By Proposition A.3, the set
r - S has positive lower density. Therefore, by Proposition B.5

N-—1
SN 1 n 2n (k—1)n
15Vrg1£fﬁz_;/)(f.foT cfoT®...foT dp

1 9

3 ] — . u- u--- (k: 1)u

>—hj{;nfooan§€:/f fol“ - foT foT du
uelUn

> 0.
Since the choice of f € L>*(X) with f > 0 was arbitrary, we conclude that X has the SZ property. O

10.A. Ancillary Results for the Proof of Theorem 10.12

PROPOSITION 10.13 (Jensen’s Inequality, [3, Theorem 2.2, p. 31]). Let (X, %, u) be a probability space
and X' a sub-o-algebra of . Given a convex function ¢ : R — R and f € L'(X) such that [, ¢(f)dp <
oo. Then

E(@(N)Y) = o(E(f]Y)).

PROPOSITION 10.14. Given a probability space (X, %, n), a set A € ¥ such that p(A) > 0 and finite
collections {B; }ier C€ 3, {C,}jes C X such that

iel jed

Then there exists io € I and jo € J such that u(AN B;, N Cj,) > 0.
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PROOF. Assume for a contradiction that for every i € I, we have that u(ANB;) = 0. It follows that

0<u(Ad)=pAnX)= (Aﬂ(UB))SZM(AﬂBi)ZO.

el el

But this contradicts the assumption that p(A) > 0, therefore there must exist at least one iy € I such
that u(AN B,,) > 0. The same argument applied to the set AN B;, where (AN B;,) > 0 implies that
there exists at least one jy € J such that

[L(A N Bio N Cjo) >0

as required. ]

ProprosITION 10.15. Consider the functions
a:X = {0,1,-- , M—-1} r:X—>{0,1,--,M—1}
defined in Theorem 10.12 on p. 79, then a,r € L°(Y).

PROOF. We show that a € L°(Y), the argument to show r € L°(Y) is very similar.

Recall the definition of a measurable function given in Definition D.1. Endow L¢ with the discrete
topology P(L%). Fix any m € Z, take any ¢:= (Iy,--- ,l4) € L? and consider

g (10}) = {rex @) =1}
:{xEX:Hfon—< f1+l2 - fa+ '—l-ldg'fd)‘ (:c)<fym~e}.

Since f € L*(X|Y) and f; € L*(X[|Y) for every 1 < i < d, by Definition 7.11, we have that
[form— (05 h+bs ft+las 1),

L2(X[Y)

€ L>=(Y),
L2(X]Y)

and hence, ¢, ({F}) € Yy, therefore, since the choice of m € Z and /'€ L were arbitrary, the mappings

) In

G : X — L% defined in Theorem 10.12 on p. 79 are measurable with respect to ¥y for every m € Z.

Now, fix any a € a(X). Consider
o) ={zeX:a@@)=a}={r€ X :1aq, =a}

={2€X:C =Coyp=0Coatop="""=Coar(e-1)s,V B €T(X)}.
Since it has been shown that ¢, : X — L? is measurable with respect to ¥y
a'({a}) ={2€X:G =Cup=Casop="""=Casb-1)p, VB ET(X)} € Zy.
Since the choice of a € a(X) was arbitrary, we conclude that a € L°(Y). The same argument can be
used to show that r € L(Y). O

PROPOSITION 10.16. Given invertible measure preserving systemsY = (X, Xy, u, T), X = (X, Xx, u, T)
and ® : Y — X a compact extension. Fix some € >0, a,r, k € N and let A € ¥y such that u(A) > 0.
Consider f € L>(Y) such that f >0, || f]l., <1 and for all0 < s < k —1 there exists Ay > 0 such that



10.A. ANCILLARY RESULTS FOR THE PROOF OF THEOREM 10.12 83

forally e A
£ 0 T — f o T | (9) sy < Ao e
Let K:={0,1,--- k —1}. Then, for every, | < k —1 and for all iy,is, -+ ,i; € K such that i; < iy <
- < iy, there exists m; > 0 such that for almost all y € A

[f oo foietinm. .. fo TNt —(f o T)!|| (y)2expyy < - e.

PrROOF. Base case: 1 = 2.
Take any 7,5 € K such that ¢ > j. For any y € A
||f o Tlatinn . f o platinn _ (£ Tan)2||L2(x\Y) (v)
= ||f o Tt f o pltin _ p o platinn . foqen o f o platinn, foqen _ (f o pany?
< ||f o T(+inn . f o Tlatinin _ ¢ o platinin ¢ o pan
I Hf o Tt . fopan _ (f o an)2
= Li(y) + L(y)-
Considering the first term, we have that for almost all y € A
L(y) = ”f o Tlatir)n fo Tlatirn _ fo latir)n foTm
_ ||f o Tlatir)n (f o Tlatinn _ ¢ Tan)

HLQ(X|Y) (v)
HLQ(X\Y) (y)
HL2(X|Y) (v)

||L2(X\Y) (y)
”LQ(X\Y) (¥)

. ) 2 1/2
—E ((f o T(a-‘,—zr)n i (f o T(a—i—]r)n . f o Tan)) ’ Y) y)

)1/2

L2(X|Y

—F ((f o T(a+z’r)n)2 . (f o T(a+]r n Tan)

T

1/2

_ ‘<(f o T(a+ir)n)2 ’ (f o T(atinm _ ¢4 T@”)2> (y)-

LA(X[Y)

By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), we have that for almost all
yeA

y) _ Hf o T(a+ir)n . f o T(a+j7")” — f o T(‘H_ir)n . TanHLQ (X|Y) (y)

< (f ° T(a+z‘r)n)2 1/2 ) (f ° T(a—f—jr)n N f o Tan) 1/2 ( )
= Xy ey
Since || f||, < 1, we have that
. 1/2 4 1/4
12 H T(a+zr)n 2 _ E( T(a+zr)n Y) < 1.
(12 (o] = E((Foresm) <

Therefore, for almost all y € A
1/2

(y)

a+jr)n an) 2
O s o
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Further, since || f||,, <1 and f > 0, for almost all z € X
foT@timm(z) e 0,1,  foT™(x) e [0,1].
Hence
fo T(GHT)”(x) — foT™(x) € [-1,1]
so that .
(f o T(a—l—r)n(x) . f o Tan(l,)) c [07 1]
for almost all z € X. For every t € [0, 1], we have that t* < 2. Therefore for almost all y € A

1/2
Hmw¢w

)" w)

A 2 1/4
<E((forew - for)’|Y)" (1)

froresn oy

=F ((f o Tlatimm _ fo T‘m)4

1/2

:HfOT(aﬂrn fo TanHL2(X|Y ()

< \/)\j'E.

Now, considering the second term, we proceed in a similar way. For almost all y € A
y) — Hf o T(a+ir)n . f o T _ (f o Tan)2HL2(X|Y) (y)
_ Hf o T . (f o Tlatir)n _ fo Tan) HL2 i) (y)

:E((fOTan'(fOT(aJrW)n— OTan ‘Y)

)
:<UOTMY,QOTWW” foTm) y

— ‘<(,f o Tam)Q 7 (f OT(a+ir)n . f OTan)

By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), we have that for almost all
ye A
I y) = Hf © T(aJrir)n : f o — (f © Tan)2||L2(X‘Y) (y)

1/2
L2(X]Y)

1/2

<[|(f o T WHUOTWWW—fonf

(y)

L2(X[Y)

.

a+ir)n an) 2
gHUoTvk)_foT )zﬂmw

By the same argument as in (13), we have that for almost all y € A

I y) - ||f OT(a—i—iT)n . f o T — (f OTan)Q

1/2
L2 le) (y)

||L2(X\Y) (v)
= ||f o Tlatir)n _ TanH
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<\//\i'6.

We conclude, since the choice of 7,5 € K with ¢ > 7 was arbitrary, that there exists 7, > 0 such that
for almost all y € A

Hf o Tlatir)n fo Tletinn _ (fo Tan)zHLQ(XIY) )

<\/)\i‘€+\/)\j’€:<\/>\_i+\/)\_j)'\/z

<TM2-€

for all 7,5 € K with ¢ > j.

General case: 2 <1<k —1. We proceed in a similar manner as laid out in the cases [ = 2. Assume
that the result has been proven up to the case [ —1. Consider iy, --- ,4; € K such that i1 < iy < --- <.
Then, for almost all y € A

a+tiir)n a+ur)n an\l
| f o Tethnn ... o pletinn _ (1o ey 2y )
< Hf o Tlatiirn . fo platir)n _ fo Tlatiimn fo T(a+u—1r)nf o TanHL2(X|Y) (y)
+ ||f o Tlatiir)n fo T(a+il—17’)"f o T — (f o Tan)l HLQ(X‘Y) (y>
=: L1(y) + La(y).

Consider the term L. Using the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), for
almost all y € A

L (y) _ Hf o Tlatiar)n fo Tlatir)n _ fo Tlatir)n fo T(a+il—17’)nf o Tan||L2(X|Y) (y)

=E ((f o Tlatirn fo T(a—l—iz—lr)n)? (f o Tlatir)n _ fo T,m)2‘ Y) 1/2 (y)

1/2
_ T(aJrilr)n . T(a+il,1'r‘)n 2 T(aJrz'lr)n . Tan 2>
‘<(fo fo )\ (fo 1)) | @)
A A 1/2 A 9111/2
< T(a+117")n . T(a+21_17”)n 2‘ H T(G‘HZT)” — Tan ‘ .
<||(re fo ) e 11670 FoT™) sy @)
Since || f||, < 1, we have that
H (f o T(a+i1r)n . f o T(a—i—il,lr‘)n)Z 1/2 S 1
L2(X[Y)
Therefore, using the same argument as in (12) and (13), for almost all y € A
o at+iir)n a+t+ir)n a+t+iir)n at+ij_1r)n an
Lay) = || f o TOFI™ o fo T — fo TFnT e fo TEHAIN fo To0| o) (1)
. 1/2
< T(a—l—zlr)n . Tan 2
< H (fo FoT™) || ryy @)
<|\f ot — foen|| ()
= L2(X[|Y)

<\ A €
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Further, for the second term, also using the pointwise conditional Cauchy-Schwarz inequality (Theo-
rem 7.20) and (13), for almost all y € A

Ly(y) = Hf o Tlatir)n fo T(a+il—17“)”f oT™ —(fo Tan)lHL2(X|Y) (y)

=K <(f o Tan)Q (f o T(a+i17“)n L. f o T(‘H‘il—l?”)n . (f ° Tt”b)l—l)z) Y) 1/2 (y)

1/2
_ Tan 2 T(a+i17')n . T(aJril,lr)n . Tan -1 2>
(o, (s o For ) o W)
any2|(1/2 (a+irr)n | (a+ij—1m)n __ an\l—1 2‘ 1/2
<[ o Tl hoxy @) (727 FoTtema = (£ o TN ) @
, , 1/2
< T(a-i—u?“)n L T(a—i—zl_lr)n . Tan -1 2‘
<|(se fo (FoT™) ) Ly @
a+iir)n a+i_17m)n an\l— 1/2
SH.]COT(-’_ ) '“fOT(Jrl ) —(fOT )l 1||L2(X|Y)(y)

<M1 €.

Therefore, for almost all y € A

||f o Tlatir)n . g o latiarin _ (£ T(m)lHLQ(X\Y) (y) < VN e+ e
As the choice of i1, -+ ,4; € K such that 7; < iy < --- < 4; was arbitrary, it follows that there exists
7, > 0 such that
0T T (o T sy <
for all 41, -+ ,4; € K such that iy < iy, < --- < 1.

This approach can be repeated for any given value of k € N to obtain the desired result. 0

COROLLARY 10.17. Given invertible measure preserving systems Y = (X, Xy, 1, T), X:= (X, Xx,pu, T)
and ® : Y — X a compact extension. Fix some € >0, a,r,k € N and let A € ¥y such that u(A) > 0.

Consider f € L>(Y) such that f >0, || f|l.. <1 and for all0 < s < k —1 there exists Ay > 0 such that
forally e A

1f o T@Hm £ o 79| (4) 2y < s - €.
Then, there exists n > 0 such that for almost all y € A

| foTe . foTltmn. .. fomlt=lnm (o T k|| (y)raxpy) <1 €.



CHAPTER 11

The Dichotomy Between Weak Mixing and Compact Extensions

In this chapter, we shall prove the result we need in order to complete what can be called the ‘induction
step’ of the proof of the Furstenberg Multiple Recurrence Theorem.

Earlier, we proved a dichotomy result that characterized all invertible measure preserving systems
in terms of weak mixing and compact systems. Here, making use of the weak mixing and compact
extensions developed in the previous two chapters, and following the same general method of proof
developed in Chapter 6, we formulate and prove a dichotomy result for extensions themselves.

1. The Relative Kronecker Factor

We will make use of a relativized version of the Kronecker factor, which will turn out to have properties
that are direct analogues of those of the standard Kronecker factor.

DEFINITION 11.1 (Relative Kronecker factor o-algebra, [34, p. 50]). Given invertible measure preserving
systems Y := (X, Xy, 1, T), X:= (X,Xx,1,T) and & : Y — X an extension. Define the g-algebra of
the relative Kronecker factor as collection of sets

EAPM(X\Y) = {A € EX : ].A € Apu(X|Y)} .

PROPOSITION 11.2 ([29, Exercise 2.13.6]). Given invertible measure preserving systems Y = (X, Xy, p, T),
X:=(X,E2x,u,T) and ® : Y — X an extension. Then the collection YAp,(x|Y) 18 a sub-o-algebra of
Yx and, further, Xy is a sub-o-algebra of ¥ ap,x|v)-

PROOF. We first verify that X 4p,x|y) is indeed a g-algebra.
(i) In order to show that X € X4p,x|v), we need to verify that 1x € AP,(X|Y). It is clear that
O(lx)={lxoT":neZ}={1x}.
Define the trivial module zonotope
Z={c-1x:ce L™(Y),|c]|, <1}.

Fix any € > 0. It follows that O(1x) C [J,.,B(z,¢€). Therefore, 1x € AP(X|Y). Further, for
every § > 0, we have ) € Xy, 0 = p(0) <0 and 1x - 1gpc = 1x € AP(X[Y). Hence, we conclude
that 1x € AP,(X|Y) and consequently X € X p,x|v)-

(ii) Take any A € X 4p,(xJy). This means that 14 € AP,(X]|Y). By Corollary 11.14, AP,(X]Y) is
a subspace of L*(X]Y). Consequently, we have that 1x\4 = 1x — 14 € AP,(X[Y), which in
turn implies that X \ A € X4p, (x]yv)-

87
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(iii) Take any sequence of sets (A4;) € Xap,(xJy). Define the sequence of sets (5,) where for every
n €N, B, :=J;_; 4;, and define the sequence of functions (f,) € AP,(X|Y) as
fn = 1Bn'

Define A:= ;o Ai- It is clear that (f,) converges pointwise to 14. Fix any € > 0. We show
that there exists N € N such that if n > N, then

| fn — 1A||L2(X) <€

For every n € N we have that

I fn = Lallf2x) = 1B, — 1all72x) = /X 15, — 14 du = /X (1p, — 1a)dp.
Since (14 — f,) converges pointwise to the zero function, and 14 — f,, < 1x for every n € N, it
follows by the Dominated Convergence Theorem (Theorem 6.17) that
lim 14— f, dp= lim 14—1p,du=0.

b's b's

n—o0 n—oo

This implies that there exists some N € N such that for all n > N

1/2
an - 1A||L2(X) = (/ (]-A — 1Bn)dﬂ) < €.
X

By Proposition 11.15, AP,(X]Y) is a closed subspace of L*(X[Y). Therefore, since (f,) con-
verges to 14 in L*(X) and since (f,) € AP,(X]Y), it follows that 1, € AP,(X|Y). By
Definition 11.1, it follows that A = {J,.y 4i € Xap,x]v)-

Therefore X 4p, x|y) is a sub-c-algebra of ¥ x. It remains to show that ¥y is a sub-o-algebra of ¥ 4p, (x|y)-
Take any A € Xy. We verify that 1, € AP,(X]Y). Consider the trivial module zonotope

Z={c-1x :ce L=(Y),| <1}
Fix any m € Z. Then 14 0T™ = 1p-my4 € O(14). Further, it is clear that 14 0 7™ € L*(Y) and that

|L40T™||, = l11all,, < 1. Therefore, 140T™ = 1p-m4 - 1x € Z. Therefore, for every e > 0, we have
that
O(14) € | B(z,¢).
2€Z
Therefore, 14 € AP,(X]|Y). Now, for every 6 > 0, we have that 0 = p(0) < 0 and 14 - 1pc = 14 €
AP,(X]Y) and so we conclude that 1, € AP,(X[|Y). Therefore A € ¥4pxjy). Since the choice of
A € Yy was arbitrary it follows that ¥y is a sub-c-algebra of ¥ 4px|v). O

DEFINITION 11.3 (Relative Kronecker factor, [34, p. 50]). Given invertible measure preserving systems
Y = (X, %y, 1, T), X:= (X, Xx,u,T) and & : Y — X an extension. We call the measure preserving
system Xg, = (X, Xap,(x|v), 4, T') the relative Kronecker factor of X.

COROLLARY 11.4 (Simple functions in ¥y are almost periodic in measure). Given invertible measure
preserving systems Y = (X, 3y, 1, T), X:= (X, 3x, 1, T) and ® : Y — X an extension. Then

S(Xy) € AP,(X]Y).
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PROOF. Take a finite collection of sets { A;}I¥., C 3y and a finite collection of real numbers {a;}¥, C
R defining the simple function h = Zf\il a;14, € S(Xy). By Proposition 11.2, ¥y is a sub-o-algebra
of ¥ ap,x|y). Further, by Proposition 11.14, AP,(X|Y) is a subspace of L*(X[|Y). This implies that
h e AP,(X]Y). 0

COROLLARY 11.5. Given invertible measure preserving systems Y := (X, Sy, u, T), X:= (X, Ex, 1, T)
and ® :' Y — X an extension. Then

L®(Y) C AP, (X]Y).

PROPOSITION 11.6. Given invertible measure preserving systems Y := (X, Xy, p, T), X = (X, Ex,pu, T)
and ® :' Y — X an extension. Then the extension Vi, : Y — Xk, is compact.

PROOF. We show that L*(Xy,|Y) = AP,(Xk.[Y) in order to verify that ¥k, is compact. By
Definition 10.6, AP, (X, [Y) C L?(Xx,[Y).

Now, take any f € L*(Xg,|Y) which implies that f € L*(X,¥ap,x/v), ). By Proposition 11.16
applied to the extension W, this implies that f € AP,(Xk,|Y). We conclude, therefore, that Vg, is
a compact extension. O

THEOREM 11.7 (|29, Exercise 2.13.6]). Given invertible measure preserving systems Y = (X, Xy, u, T,
X:= (X,E2x,u,T) and ® : Y — X an extension. Then the relative Kronecker factor X, is the
mazimum factor of X such that the extension Vi, : Y — Xk, is compact.

PRrOOF. By Proposition 11.6, the extension Vg, : Y — Xk, is compact. Now, consider any other
factor Z:= (X, Xz, u, T) of X such that &' : Y — Z is a compact extension. Consider any A € 3.
Since @' is a compact extension, by Definition 10.8, AP,(Z|Y) = L*(Z|Y). Hence, 1, € AP,(Z]Y).
However, since ¥, C Xy we have that 14 € AP,(Z]Y) C AP,(X]|Y). It follows by Definition 11.1 that
A € ¥ap,x|y)- Therefore Xz C Y p,xjv). As the choice of factor Z of X such that ' :' Y — Z is a
compact extension was arbitrary, we conclude that X g, is a maximal factor of X such that Vg, : Y —
Xk, is a compact extension.

The above argument also applies to any other purported maximal factor Z’ of X such that V' : Y — Z/
is a compact extension. Hence, we conclude that Xk, is the unique maximal factor of X such that
VUi, Y = Xk, is a compact extension. O

2. The Dichotomy of Extensions Result

Recalling the definition of a non-trivial extension given in Definition 6.4, we formulate the following
dichotomy result.

THEOREM 11.8 ([29, Proposition 2.14.9]). Given invertible measure preserving systemsY = (X, Sy, u, T,
X:=(X,Xx,1,T) and ® : Y — X an extension. Consider the extension Vi, : Y — Xg,. Then exactly
one of the following statements holds true.

(i) The extension ® is weak mizing.

(ii) The extension Vi, : Y — Xk, is non-trivial.
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PROOF. Assume that @ is a weak mixing extension. Suppose for a contradiction that the extension
Uy, 1 Y — Xk, is non-trivial. Therefore, there exists some f € AP,(X]Y) such that f ¢ L>(Y). Since
E(f|Y) € L*(Y) C AP,(X]|Y), by Proposition 11.14, it follows that f":= f —E(f|Y) € AP,(X|Y).
Further, we have that

E(f1Y)=E(f -E(fIY)Y)=E(f[Y)-E(f][Y) =0.

But, since ® : Y — X is a weak mixing extension and E (f’|Y) = 0, we have that f' = f — E(f|Y)
is a conditionally weak mixing function. Therefore, f’ is simultaneously a conditionally weak mixing
function and f € AP,(X]|Y). By Proposition 11.23, this would mean that

<f/7f/>L2(X\Y) =0.

By Corollary 11.19, the only function that is f’ is simultaneously a conditionally weak mixing function
and conditionally almost periodic in measure is the zero function. Therefore, we have that f’ = 0. This
in turn implies that f = E (f[Y). Since f € L*(X[Y) it follows that f € L>(Y), but this contradicts
our supposition that Vg, : Y — Xk, is non-trivial. We must therefore conclude that there does not
exist any f € AP,(X|Y) such that f ¢ L>(Y), hence the extension Vg, : Y — Xk, is indeed trivial
(ie. Yap,xjy) = Zy) if ®: Y — X is a weak mixing extension.

Next, assume that ® is not a weak mixing extension. By Definition 9.4, this implies that there exists
some f € L*(X[Y) which is not conditionally weak mixing such that E (f|Y) = 0. By Proposition 11.23,
there exists some g € AP, (X]|Y) such that

(f, 9>L2(X\Y) # 0.

Further, note that if ¢ € L>*(Y) C AP,(X]Y), by the definition of the conditional inner product
(Definition 7.15), we would have

(£, D expyy =E(f9lY)=g-E(f]Y)=g-0=0.
Therefore, g ¢ L*(Y). Since g € AP,(X|Y) and g ¢ L>(Y), this implies that Xy C Xap,(x|y) and

=

the extension Vg, : Y — X, is non-trivial. O

11.A. AP(X]|Y) is a Closed Subspace of L*(X]|Y)

PROPOSITION 11.9. Given invertible measure preserving systems Y = (X, Xy, u, T), X:= (X, Xx, 1, T)
and ® 1Y — X an extension. If f,g € AP(X|Y), then f+ g € AP(X]|Y).

PROOF. Take any f,g € AP(X|Y) and fix ¢ > 0. By Definition 10.5, there exist r,s € N, sets
I,J C N such that |I| =r, |J| = s, functions py,--- ,p, € L*(X|Y) and ¢, - ,qs € L*(X|Y) defining
finitely generated module zonotopes

Zy = {cl,fpl + Aoty € L(Y) |laigll, <10 € I} ,
Zy={c1gq1 4+ Cs g : ¢jg € L(Y), |lcjgll, <15 €T},

oncUB(=3). owec UB(=s).

ZEZf ZGZg

such that
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Define the finitely generated module zonotope
Z = {Cprl +---+ Cr.fPr + C1,991 +---+ Csgqr - Ci,fyCjg € LOO(Y)7 ||ci,f||oo s ||Cj,g||oo S LZ € Ia] € J} .

We show that
O(f+9)={(f+9)oT":necZ} C | JB(ze).

z2€Z
Fix any m € Z and consider the function (f + g)oT™ = foT™ + goT™ € O(f + g). There exists

21 € Z5 and 2y € Z, such that

N

IFoT™ =2l <50 llgoT™ = 2all gy <
This implies that
[(foT™+goT™) — (a1 + ZZ)HL?(X) <|foT™— 21”1;2()() +lgoT™ — Z2||L2(X)
€, €
< 5 + 5 = €.
Hence, (f + g) o T™ € B(z1 + 22, €). Since the choice of m € Z was arbitrary, it follows that

O(f+9) € | JB(z9),
z€Z
and since Z is a finitely generated module zonotope, we conclude that f + g € AP(X]Y). O

PROPOSITION 11.10. Given invertible measure preserving systemsY = (X, Xy, u, T), X = (X, Xx, u, T)
and ® : Y — X an extension. Take any o € R. If f € AP(X]Y), then af € AP(X]Y).

Proor. Take any f € AP(X|Y), @ € R and fix € > 0. The result is trivial if @ = 0 since the
zero function is clearly conditionally almost periodic. Without loss of generality, assume || > 0. By
Definition 10.5, there exists d € N, a set I C N such that |I| = d, and functions fy,--- , fs € L*(X]Y)
defining a finitely generated module zonotope

Zy={caifi+ - +cafi:ci € L), |cill, <1,i€ 1},

ofnc B(z,ﬁ).

ZEZf

such that

Define the finitely generated module zonotope
Z={acifi+ - +acifsg:cie L2Y),|all <1iel}.

We show that
Olaf) ={afoT":neZ} C | B(z).
2€Z
Fix any m € Z and consider the function af o 7™ € O(af). There exists z; € Zy such that

m €
[foT™ =z 12x) < Tl

This implies that

€
— — €.

|

laf o T™ — azi paxy < laf |f o T™ = 21 f2x) < e -
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Hence, af o T™ € B(azi,€), where az; € Z. Since the choice of m € Z was arbitrary, it follows that
O(af) C | JB(z.6),
z2€Z

and since Z is a finitely generated module zonotope, we conclude that af € AP(X]Y). O

Following directly from Proposition 11.9 and Proposition 11.10, we have the corollary.

COROLLARY 11.11. Given invertible measure preserving systems Y = (X, Xy, 1, T), X:= (X, Ex,pu, T)

and ® :' Y — X an extension. Fquipped with pointwise addition and scalar multiplication of functions,
the set of functions AP(X|Y) is a subspace of L*(X|Y).

PROPOSITION 11.12. Given invertible measure preserving systems Y = (X, Xy, 1, T), X := (X, Xx, u, T)
and ® : Y — X an extension. If f,g € AP,(X|Y), then f+g € AP, (X]Y).

ProoF. Take any f,g € AP,(X]Y) and fix some € > 0. Also fix some 1 > a3 >0 and 1 > ay >0
to be specified later. Since f,g € AP, (X]|Y), there exists £y, Ey € ¥y such that

Qo - €
(k) < ; p(Es) <
E) S ol . M=

Qa7 - €
(Al pey + 1)

and

Define E:= E;, U E, where u(E) < e. Since f,§ € AP(X[Y), by Definition 10.5, there exists r,s € N,

sets I, J C N such that |I| =r, |J| = s, and functions py,--- ,p, € L*(X|Y) and ¢y, -+ ,qs € L*(X]Y)
defining finitely generated module zonotopes,

Zi={cigp+-Fegpcig € L), fleigll, <1 i€ T},
Zy={c1g0 + -+ syl ¢y € LY, [lejgll, S 1.5 € T},

ofic UB(=5). o@c |JB(=53).

ZEZf ZEZg

such that

Define the finitely generated module zonotope
7 = {Cprl +o e F g+ Caglr i CipCig € LY, leigll s leigll, S i€ ] E J} )

We show that
O((f+9) 1g) C U B(z,€).

2€Z
By Corollary 11.11, the set of functions AP(X]|Y) is a subspace of L?(X|Y). In order to prove f + g €
AP,(X|Y), we only need to show that

f‘]_Ec’ g‘]_Ec 6AP(X|Y)
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Fix any m € Z. Since f € AP(X]Y) there exists z € Zf such that

fror-

2x) [f-1pgoT™ - ZHL2(X) <

DO ™

Now, consider
[f - 1pe o T™ — 2| 12 x,

<|[f-1peoT™ —f-1poT™ | g o T = 2| i,

HLz(X)
€

5.
Since the Koopman operator is an isometry on L?(X) (Corollary 2.16),

H]'Econ_lEi’OTm”iQ(X)
14
( ) :/ |1Ec_1Ef2
X

This gives us that

< fll2x) HlEC oT™ —1pgo TmHL2(X) +

== H].Ec — 1EC

LQ(X)
Q9+ €

2([1f Il 2x) + 1)

dp = p(ECAEY) < p(Es) <

2
If - 1ge o T™ — 2|75 x) < <||f Apeo T = f - L o T™|| o) + || - Lip 0 T = ZHL%X))
2
(15) < (Il 2y 11w © T = g 0 ™| ey + 17 - L 0 T = 2] )

= (Il 200 122 = Ll
Applying (14) to (15), we have that

2
x) T Hf Ao T — ZHL2(X)>

2
Q9 - € €

15 Lpe 0 T = 2lia) < ”f”L2<X>\/ 2120 +1>+§

(16)

(VA e f
e +1

With the values of || f[[;2x) > 0 and € > 0 fixed, there exists ap > 0 small enough such that

Vs - [ fll 2 \[
VI 2 +1

Taking square roots on both sides of (16), we conclude that

1f - 1ge o T™ = 2]l o x) < &

which implies that f-1g. o T™ € B(z,€). Since the choice of m € 7Z was arbitrary, it follows that
f ]-EC U B Z, 6

z2€Z

93
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and hence f - 1g. € AP(X|Y). By a similar argument we can show that
O(g-1g:) C U B(z,¢€),
z2€Z
which implies g-1g. € AP(X]|Y). This implies that (f +g)-1g. € AP(X]|Y). Since the choice of € > 0
was arbitrary, we conclude that f + g € AP,(X][Y). O

PROPOSITION 11.13. Given invertible measure preserving systems Y = (X, Xy, 1, T), X = (X, Xx, u, T)
and ® : Y — X an extension. Take any o € R. If f € AP,(X]|Y), then oof € AP,(X[Y).

ProoF. Take any f € AP(X|Y), a € R and fix ¢ > 0. The result is trivial if & = 0 since the
zero function is clearly conditionally almost periodic. Without loss of generality, assume |a| > 0. Since
f € AP(X][Y), there exists some E € ¥y such that u(E) < e and f-1g € AP(X[|Y). However, by
Proposition 11.11, we know that aif -1ge € AP(X[Y). Since the choice of € > 0 was arbitrary, it follows
that aof € AP,(X|Y). O

Following from Proposition 11.12 and Proposition 11.13, we have the following corollary.

COROLLARY 11.14. Given invertible measure preserving systems Y := (X, Xy, 1, T), X = (X, Ex,pu, T)

and ® : Y — X an extension. FEquipped with pointwise addition and scalar multiplication of functions,
the set of functions AP,(X[Y) is a subspace of L*(X|Y).

PROPOSITION 11.15. Given invertible measure preserving systems Y = (X, Xy, u, T), X = (X, Xx, u, T)
and ® : Y — X an extension. Then AP, (X|Y) is a closed subspace of L*(X|Y).

PROOF. Consider any convergent sequence (h,) C AP,(X]|Y) that converges to h € L*(X) in L*(X).
We verify that h € AP, (X]|Y). Fix e > 0. As (h,) € AP,(X|Y), for every n € N, there exists E,, € ¥y
with p(E,) < € such that h, - 13 € AP(X]Y).

Since (h,) € AP,(X|Y) converges to h € L*(X) in L?(X) there exists N € N such that for all n > N
€
5.

Further, by Definition 10.5, for every n € N, there exists d, € N, a set [,, C N with |,| = d,, and
functions fi ., fon, -, fa, € L*(X|Y) defining a finitely generated module zonotope

L= {Cl,nfl,n + -+ Cdn,nfdn,n “Cip € LOO(Y)a ||Ci,n||oo <lie ]”}’

1 = hll12x) <

such that

€
O(hy 15 ) C ]B%( ,—).
( ) C U z 9
ZEZn
Define F:= Ey and Z .= Zy. Fix any m € Z. Then there exists z € Z such that
- €
||hN‘1E‘cOT _ZHLQ(X)<§

Consider h - 1gc o T™ € O(h - 1gc). Then

Hh * ]_Ec OTm - ZHL2(X) S Hh * ]_Ec OTm - hN * ]_EC OTm”LQ(X) + HhN ° ]_E‘C OTm - ZHLQ(X)
€

< |lh = hn|lp2x) + 7
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cELE_
s tg=¢
This implies that h - 1gc o T™ € B(z,€). Since the choice of m € Z was arbitrary, it follows that
O(h - 1ge) U B(z,¢€)
z€Z

Since the choice of € > 0 was arbitrary, we conclude that h € AP,(X|Y) and hence the subspace
AP,(X[Y) is closed. O

With the fact that AP,(X|Y) constitutes a closed subspace of L*(X]|Y), the proof of the following
proposition proceeds very similarly to the proof of Proposition 6.28.

ProposITION 11.16 ([34, Proposition 10.17]). Given invertible measure preserving systems Y : =
(X, 3y, 11, T), X:= (X, Zx, 1, T) and ® : Y — X an extension. Then for every f € L*(X|Y) the
following statements are equivalent,

(i) The function f is conditionally almost periodic in measure, that is, f € AP, (X|Y).

(ii) The function f is measurable with respect to ¥ ap,(x|y), that is, f € L? (Xap,x|Y))-

11.B. Ancillary Results for the Proof of Theorem 11.8

PROPOSITION 11.17 ([29, Exercise 2.14.1]). Given invertible measure preserving systemsY = (X, Xy, u, T),
X:=(X,Zx, 1, T) and ® : Y — X an eatension. If f € L*(X|Y) is conditionally weak mizing and

g € L*(X|Y), then )
=0.
12(X)

C —lim H <f e} Tn, g)Lz(XW)‘

n—o0

PROPOSITION 11.18 ([29, Lemma 2.14.2]). Given invertible measure preserving systemsY = (X, Xy, u, T,
X:= (X,%x,1,T) and ® : Y — X an extension. If f € L*(X|Y) is conditionally weak mizing and
g € AP, (X]Y), then

(f9) r2xpy) = 0-
PROOF. Since the Koopman operator is an isometry on L?(X) (Corollary 2.16), for every n € N

H (fs g>L2(X|Y)’

In order to verify that (f, >L2 x|y) = 0, we show that

L2(X) - H<f’ ‘q)LQ(X\Y) oT" 12(X) - H<f oT", go Tn>L2(X\Y) L2(X)

n—oQ

B H { g>L2(X|Y)‘ L2(X)

= C'-lim H (f, g)LQ(X\Y)‘

L2(X) L2(X)

Fix any € > 0. Since g € AP,(X|Y) there exists d € N, a set I C N such that |/| = d and functions
fi, foy -+, fa € L*(X|Y) defining a finite dimensional module zonotope

Z={afi+ - +cafa:ci € L(Y),|lci|l, < 1,iel},

O(g)c | B ( CE Hwax)) '

z2€Z

such that
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For every n € N, there exists z, € Z such that

lgo T" — 2| < ‘
o — Zn .
g PEY (@5 1) [l

By Proposition 7.6, for every n € N
<f oT" go Tn>L2(X|Y) — <f oT" goT" — Zn>L2(X|Y) + <f oT™, ZTL>L2(X|Y) .
Taking the norm of this quantity, for every n € N

(foT" go Tn>L2(X|Y)‘

L*(X)

=||(foT" goT" — Zn>L2(X|Y) + (foT", zn>L2(XIY)‘ L2(X)

L2(X)

<||(foT™ goT" — Z”>L2(XIY)‘ L(X) * H<f oT", Zn>L2(X|Y)‘

Since z, € Z for every n € N, there exists functions ¢y, o, ,can € L(Y) such that [c;,| <1
for every 1 < i < d and

Zn = Cl,nfl + CQ,an +-+ Cd,nfd-
For every n € N, we have

<f e} T", Zn)LQ(X\Y) == <.f o Tn’ Cl,n.fl + CQ,an + -+ Cd,nfd>L2(X‘Y)
=c1n (foT", f1>L2(x|Y) + o (fo T, f2>L2(x|Y) + ot (fo T, fd>L2(X|Y) :
Since ||¢; || <1 for every 1 <i < d,

d
‘(f o T",Zn>L2(X|Y)’ < Z ‘(f oT™", fi)LQ(X\Y)‘ :
i=1
In turn, using the standard Cauchy-Schwarz inequality, this gives us that

H (foT™ go Tn>L2(X|Y)‘ ) < H (foTI" goT" — Zn>L2(X|Y)‘ ) + H (foT™, zm),;z(x\Y))

L2(X L2(X L2(X)
d
<l 90 T = zallao + 3 [ 0 T ) v
=1
c d
< . Tn7 ) ’
R vy 3] LALISCEE]

€

d
At + ; H(f oT™", fi)LQ(X|Y)’

Taking Cesaro limits on both sides, we obtain

L3(X)

€
L2(x)+ d+1

n— 00 L2

d
C—lim H(fOT"aQOTn>L2(X\Y)H ) < ZC_TL]EEOHUOTn’fi)”(X'Y)‘
=1



11.B. ANCILLARY RESULTS FOR THE PROOF OF THEOREM 11.8 97

Since f € L?(X[Y) is conditionally weak mixing and since f; € L*(X|Y), by Proposition 11.17, we have
that

€
—0 <€

C—li <
e 2x) d+1

n—0o0

(foT" go Tn>L2(X|Y)‘

Since the choice of € > 0 was arbitrary, we conclude that

0= C_nlglgo H<f oT", go Tn>L2(X|Y)‘ £2(X) - C_nhjgo H<f7 g)Lz(X|Y)‘ £2(X) = H<f> g>L2(X|Y)‘ 12(X)
which implies that (f, g) ;2 x/y) = 0. O

COROLLARY 11.19. Given invertible measure preserving systems Y = (X, Xy, 1, T), X = (X, Ex,pu, T)
and ® : Y — X an eatension. The only function in L*(X|Y) that is both conditionally weak mizing
and conditionally almost periodic in measure is the zero function.

PROOF. Let f € L*(X|Y) that is simultaneously conditionally weak mixing and conditionally almost
periodic in measure. It follows direactly from Proposition 11.18 that

(f2 P rexpyy = 0
However, by Proposition 7.19, this holds true if and only if f = 0. 0
DEFINITION 11.20. Given measure preserving systems Y := (X, %y, 4, T), X:= (X,Xx,u,T) and
® : Y — X an extension. Take any functions f,g € L*(X]|Y) and define the sequence of operators
Syn o LA(X]Y) — LA*(X]Y) where
| XN
Sf,N(g) = N Z <f © Tnag>L2(X|Y) ' f © Tna (g € L2(X|Y))

n=1

Using the definition of the weak operator topology on the space of all bounded operators on L?(X|Y)
as defined in Definition D.25, we have the following.

ProposITION 11.21 ([29, Proposition 2.14.11]). Given invertible measure preserving systems Y : =
(X, 3y, 1, T), Xo= (X, Zx, 1, T) and ® : Y — X an extension. Fiz any f € L*(X[Y) and consider the
sequence of operators (Sy ) defined in Definition 11.20. If Sy € L*(X|Y) is a limit point of (Syn) in
the weak operator topology, then S;(f) € AP,(X|Y).

PropPOSITION 11.22 ([29, Proposition 2.14.10]). Given invertible measure preserving systems Y : =
(X, 3y, 1, T), X:= (X, Zx,1,T) and ® : Y — X an extension. If a function f € L*(X|Y) has the
property that for every g € AP, (X|Y),

(f29) r2xpy) = 0-
Then the function f € L*(X[Y) is conditionally weak mizing.

PROOF. Assume for a contradiction there exists a function f € L?(X[Y) that has the property that
for every g € AP,(X|Y),
(f, g>L2(X|Y) =0
where f € L*(X]|Y) is not a conditionally weak mixing function. By Definition 9.3, this implies

Dlim (0T )i #0
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in L?(X). Written in terms of the L? norm
D_nhjgo |E(foT™- f|Y)|liQ(X) # 0.

For every h € L*(X]|Y), we have HhHQLQ(X) > 0. Therefore

N
. 1 n
lim sup — Z IE(foT™- f|Y)||ig(X) > 0.
N—ro0 N 1
Recalling the definition of the sequence of operators (Sf ) in Definition 11.20

limsup (Sg.n(f), f)r2x) = hmsup/ Sen(f) - f du
N—o0 X

N—oo

N
:limsup/){%;E(foT”.ﬂY).foT”.fdu

N—o0

N
znmsupiZ/ E(E(foT™- f[Y)- foT™- fIY) du
/X

N—oo N
n—=

N
1
:limsup—Z/ E(foT™- f[Y)? du
n=17X

N—oo N _

N
1
= limsup — E / E(foT™- fIY))? du

N—o0 N
n=

N

: 1 n

= limsup N Z [E(foT"- f|Y>||iQ(X) > 0.
N—o00 n—1

Since f € L*(X]|Y), the sequence of real numbers ({S; n(f), f)r2(x))ven is bounded. Therefore, there

exists v > 0 such that

hmsup <Sf,N(f)7 f>L2(X) =7 > 0.

N—oo
By Proposition B.9, the real number v > 0 is a limit point of the real valued sequence

((Sf,N(f)’ f>L2(X))N€N .

Therefore, there exists a subsequence (N;) € N such that (Syn,(f), f)2x) > 7/2 for all I € N. By
Corollary D.27 and Proposition D.28, there exists a further subsequence (/V;,) € N such that the
sequence of operators (Syy) converges to a limit point Sy in the weak operator topology along the
subsequence (V).

Define A;:= {N, : | € N} and A := {N,, : k € N}. Since Sy is a limit point of (St 4)aeca, in the weak
operator topology and (Sy.(f), f>L2(X) > /2 for all & € Ap C A;, we have that
<Sf(f)7 f>L2(x) > 7/2 > 0.
Yet, by Proposition 11.21 we know that Sy(f) € AP,(X|Y). This contradicts our assumption that
f € L*(X]Y) has the property that
(9, f>L2(x) =0
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for every g € AP,(X|Y). We conclude, therefore, that the function f € L*(X]|Y) is a conditionally
weak mixing function. O

Following from Propositions 11.18 and 11.22, we have the following.

COROLLARY 11.23 ([29, Proposition 2.14.10]). Given invertible measure preserving systemsY = (X, Xy, u, T,
X:=(X,Yx,u,T) and ® : Y — X an extension. Then a function f € L*(X|Y) is conditionally weak
mixing if and only if (f, g)LQ(X‘Y) =0 for all g € AP,(X[Y).



CHAPTER 12

Furstenberg Towers and the Structure Theorem

We are now finally in a position where we are able to use all the tools we have synthesized to prove
the Furstenberg Multiple Recurrence Theorem. Using the Dichotomy of Extensions result (Theo-
rem 11.8) and the results showing that the SZ property passes through both weak mixing and com-
pact extensions (Theorem 9.11 and Theorem 10.12), for an arbitrary invertible measure preserving
system X:= (X, X, u,T), we shall construct a tower of extensions starting from the trivial factor
Xo:= (X, X0, 41, T) and ending with the system X. By making use of compact and weak mixing exten-
sions, we aim to pass the SZ property from the trivial factor through the layers of compact and weak
mixing extensions all the way up to the system X. Barring a few technicalities, this is essentially all
that remains.

1. The Existence of Furstenberg Towers

First, we shall need to properly define such a tower of extensions.

DEFINITION 12.1 (Extension chains). Let X:= (X, Xy, pu,T) be a measure preserving system and «
an ordinal. For every 8 < a, let Xp:= (X, 33,1, T) be a measure preserving system that satisfies the
following conditions:

(i) For every 8 < a, the system X is an extension of Xz with extension denoted Vs : X5 — X.

(ii) For every v < /8 < «, the system Xp is an extension of X, with extension denoted ®, 5 : X, —
Xz.

If an ordinal-indexed collection of measure preserving systems, {Xpz}s<,, satisfies these conditions, it is
said to be an extension chain of the measure preserving system X.

DEFINITION 12.2 (Furstenberg tower, [29, Theorem 2.15.1]). Let X:= (X, %, 4, T) be an invertible
measure preserving system, a an ordinal and {Xps}s<, an extension chain. Consider the following
conditions:

(i) The trivial factor Xo = (X, 30, 1, T) € {X5}p<a-
(ii) For every successor ordinal 5+1 < a, we have that ®3 541 : Xg — X1 is a compact extension.

iii) For every limit ordinal 8 < o we have that >3 is generated by
p18g

U=

v<B

(iv) The extension ¥, : X, — X is a weak mixing extension.

100
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An extension chain of X that satisfies the above conditions is said to be a Furstenberg tower. In
particular, the element X, € {Ys}s<q is said to be the terminal factor.

THEOREM 12.3 (Furstenberg-Zimmer Structure Theorem, [29, Theorem 2.15.1]). For any invertible
measure preserving system X = (X, Xx,u,T), there exists a Furstenberg tower.

PROOF. Let X be a measure preserving system. Denote by R the set of all extension chains of X
that satisfy conditions (i) - (iii) in Definition 12.2.

Consider the trivial extension chain Pt:= {Xj}. It is clear that condition (i) is satisfied since X, € Pt.
Since the trivial extension chain is indexed by the ordinal 0, conditions (ii) and (iii) are trivially satisfied
since there exists no successor or limit ordinals a < 0. Therefore, Pt € R and hence R is non-empty.

We will apply Zorn’s Lemma to the set R equipped with an appropriate partial order to show the
existence of a maximal extension chain that satisfies conditions (i) - (iii). Further, we shall show that
this maximal extension chain satisfies condition (iv) to conclude the proof of theorem.

Take 01,05 € R and ordinals oy and a4y such that
o1 = {Xgl = (X7 Zgluﬂ’T)}ﬂéau 02 = {ng = (X’ Z?ﬂ H, T>}/3§a2'

Define the partial ordering on R by setting o; < o9 if and only if a1 < an, and for all # < aq, we have
that X7 = X2°.

Now, consider any non-empty chain of extension chains C:= {0,};e; C R. We show that there exists
some o’ € R such that o; < o' for all j € J.

For every j € J, let a; be the ordinal indexing the extension chain o;. Consider the set of ordinals
A:= {a; : j € J} and let n be least ordinal strictly larger than the elements of A. If C = {Pt},
then n = 1. Without loss of generality, assume there exists some a; € A such that a;; > 0. Such an
extension chain can by constructed by Theorem 11.8. Therefore, n is either a successor ordinal or a
limit ordinal.

Assume 7 is a successor ordinal. Then 7 must be the successor to some fixed o € A. Since 1 was
defined to be the least ordinal strictly larger than all elements in A, and since C is linearly ordered, this
implies that o; < ay, for all j € J. Since C is a linearly ordered set, for any o; € C distinct from o, € C,
we either have o; < o0}, or 0, < 0;. However, we have already shown that a; < «y for every j € J.
Therefore, it cannot hold that for some j € J, o, = 0; since this would require that a;; > a,. It follows
that o; < oy for every o; € C. Relabel oy as o’. This covers the case where 7 is a successor ordinal.

Now, assume 7 is a limit ordinal. For every o; € C, we have that o; = {ng = (X, Z;j,,u,T)}ggaj.
Define for each o; € C the collection of o-algebras

Ho'j = {E;J },Bgaj .

We define the extension chain ¢’ that will serve as our <-upper bound for the chain C in the following
way:

(I) For every o; € C and every < «, define Xg/ =Xj.

(IT) Let Z;‘)/ be the o-algebra generated by (J;c; 11, and define Xg/ = (X, E;’/, w, T)
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This gives us the extension chain ¢/ = {Xg,}ggn. Recalling conditions (i)-(iii) of Definition 12.2, we
verify that o’ € R:

(i) Since for every o; € C, we have that X, = X[ € 0y, it is clear that X, € o’

(ii) For any successor ordinal § + 1 < 7, by definition of the extension chain ¢’, there exists some
o; € C such that Xg'+1 = X;Ql. Since 0; € C C R, we know that Xg]ﬁ is a compact extension
of Xg = X7

(iii) For any limit ordinal v < 7, we either have that v < n or v = 7.

If v = n we have by the definition of the extension chain ¢’ that Zg/ is generated by
...
icJ

The collection of generating sets can be written as

Ut =U (U=

icJ jeJ \B<a;

Since C is a chain, it holds that II,, C II,, if and only if 0; < ;. Relabel all unique o-algebras
contained in (J;.; IL,, to eliminate all duplicates. Then

U = U s
icJ §<8

as required by Definition 12.2.

Lastly, assume that v < 7. There exists some o; € C such that Xgl = X7 = (X, %%, 1, T).
Further, since o; € C C 'R, we then have by definition that Eg' = X% is generated by

L =

6<y

Therefore, ¢’ € R. By the construction of o', we have that for every j € J, 0; = {X;j }p<a; = 0. Since
all cases have been considered for the ordinal 7, and we have shown that in all valid cases an upper
bound exists for C, we conclude that there exists a <-upper bound ¢’ to the non-empty chain C. By
Zorn’s Lemma, there exists an ordinal x and a <-maximal element of the set R, say 7 = {X}}p<,. It
only remains for us to show that ¥, : X7 — X is a weak mixing extension to conclude the proof of the
theorem.

By Theorem 11.8, we have that exactly one of the following holds:
(A) ¥, : X7 — X is a weak mixing extension.

(B) There exists a non-trivial factor Z:= (X, Xz, u,T) of X such that 37 C ¥, C ¥y and 9’ :
X7 — Z is a compact extension.

Suppose for the sake of a contradiction that (B) holds. This means that there exists a new extension
chain 7":= 7 U {Z} where Z can be indexed by the ordinal x + 1. Since x + 1 is the successor ordinal
of k and by our supposition ®,, ,.+; : X] — Z is a compact extension, it follows that 7 € R. Yet, this
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would imply that 7 < 7" and 7’ # 7. This contradicts the fact that 7 is a <-maximal element of R. We
conclude by Theorem 11.8 that ¥, : X7 — X is a weak mixing extension, as required. 0

2. Limit Ordinals and the Final Conclusion

Now that we have verified the existence of a Furstenberg tower for an arbitrary invertible measure
preserving system X, it only remains for us to show that the SZ property passes through all the layers
of extensions of the Furstenberg tower in order to conclude that the system X is SZ.

Recall the definition of a SZ systems from Definition 4.5. Using Definition 4.7 and Definition 5.5, it is
easy to verify the following propositions.

PROPOSITION 12.4. Given an invertible measure preserving system X := (X, 3, u, T, the trivial factor
Xo:= (X, X0, 1, T) is both weak mizing and compact. Hence Xq is SZ.

PROPOSITION 12.5. Given an invertible measure preserving system X = (X, X, u, T) and a Furstenberg
tower {Xg}p<a. For every successor ordinal v+ 1 < «, if X, is SZ then so is X, 4.

PROOF. By Definition 12.2, it follows that for every v < « the extension @, ;1 : X, = X, 41 is a
compact extensions and hence by Theorem 10.12 if X, is SZ, then so is X, . 0

PROPOSITION 12.6. Given an invertible measure preserving system X := (X, X, u, T) and a Furstenberg
tower {X3}s<a-. If the terminal factor X, is SZ, then so is X.

PrROOF. By Definition 12.2, the extension ¥, : X, — X is a weak mixing extension, so by Theo-
rem 9.11, we have that if X, is SZ, then so is X. O

The only complication that remains is showing that the SZ property also passes through layers of the
Furstenberg tower indexed by limit ordinals, if any are to be found. This is not as obvious as for the
cases of the trivial factor, successor ordinals and the terminal factor, as these were designed to exploit
the properties of weak mixing and compact extensions we have already verified.

PROPOSITION 12.7 (|29, Theorem 2.15.5]). Given a measure preserving system X = (X, X, u, T) and a
Furstenberg tower {Xg}p<qa. Define the set

L= {k <a:kis a limit ordinal}.
Consider for every k € L the linearly ordered set of extensions
{X'Y}WSH = {Xﬁ}ﬁﬁa-
Then for any k € L, if every X, where v < k is SZ, then so is X,.
Proor. We may assume, without loss of generality, that L is non-empty, otherwise there is nothing
to prove. Fix the least element x € L and consider the linearly ordered set of extensions {X7}V <. Let

k > 1 and take any f € L>(X,) such that f > 0 and [, fdu = ¢ > 0. Define the set Q:= {z € X :
f(z) > 0}. With the aim to apply Proposition 12.21, we find a § < x such that
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First, normalize f € L>(X,) such that f <1 by relabelling f/ | fll., as f if || f|l., > 1. Since {X3}s<a
is a Furstenberg tower and « is a limit ordinal, by Definition 12.2, the o-algebra 3, is generated by

g

<K

Note that f = E (f|X,) since f € L>*(X,). Fix any € > 0. By Corollary 12.17 there exists some § < k
such that
If = E (X 2 x) < €

Since f < 1, it follows by Proposition 7.6 that E (f|Xs) <1 and further, we also have that [, E (f|Xs) d
¢ > 0. Define the set .
A= {x € X : E(f|Xs) (z) > 5} € ;.

Suppose for a contradiction that p(A) = 0. This implies that

CZ/deu:/Afd/H [

~ [EUXD) dut [ B(1X) du

X\A

:0+/X\AE(f|X5) dp.

Yet, by the definition of the set X \ A € s

- _ Can="5. A =&
¢ /fdu /X\AE(fIXa)du</X\A2du Coux A=

But this implies that ¢ < §, which is clearly a contradiction. So it follows that p(A) > 0. Define the
set Q={reX: f(zx)> 0} We prove that the following pointwise inequality holds for all z € X

(17) (2) = E(fXs) (2)] 2 S1lac(2) - 1a(a)
Let x € Q¢N A. This implies that
[f(x) = E(fXs) (x)] = 10 — E(f[Xs) (2)] = [E(f]Xs) ()]
Since x € A, it is clear that .
[E(f1X5) ()] 2 5 = 51oe(2) - La(2).

Now, if x ¢ Q°N A, then it follows that 1gc(z) - 14(z) = 0. Regardless of the values of f(z) and
E (f|Xs) (z), we have that

NJlQ

F(@) = E(fI%5) (@)] 2 Flax(x) - La(x) = 0.

As all possible cases have been checked, the inequality (17) holds true. Now, squaring both sides of (17)
and integrating, we obtain,

[

C

&2 f ~E (Xl 2 T [ (1-10) Ly du
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Since the choice of € > 0 was arbitrary, we chose a value for € > 0 such that

1 4-¢
c X X

Since A € Y5, we have that

By Markov’s Inequality (Proposition 12.18), it follows that

u({xEX:(1—E(1Q\X5)(:v))-1A(:U)2%}) gk-/x(1_1@(1ﬂ|x5)).1A du<k%:1

Since 1/k > 0, we have that
}>:u<{xeA:1— (LalXs) () > })<L

u({z e s 0-E e @) 1) 2
M({xeA@—%zEumX&) (x)}) <1

wlr—t
wIH

Rewriting the inequality yields

We conclude that

u({xeX:E(IQ]X(;)(x) > 1_%}) ZM({xeA;E(1g\x5)(x) > 1-%}) > 0.

It follows by Proposition 12.21 that

N—oo

hmmf—Z/f foTm™ - foT® 1 gy > 0.

Since the limit ordinal k € L is the least element of L, by either Propositions 12.4 or 12.5, the system
Xs = (X, X5, 1, T) has the SZ property as 6 < k can only either be a successor ordinal or the first
ordinal. Since the choice of f € L*>(X,,) was arbitrary, it follows that X, has the SZ property as well.

Now that it has been shown that the desired property holds for the least ordinal x € L, the exact same
argument can used to show that for all elements of ¢ € L where k < ¢ that X, is SZ. O

With all this machinery at our disposal, all that remains is to combine these results with a final transfinite
induction argument. We make use of the following formulation of transfinite induction.

THEOREM 12.8 (Transfinite induction on a set of ordinals, [18, Proposition 4.13)). Let O be any set of
ordinals and let X be any class. If the following conditions hold:

(i) 0 € X.
(ii) For every o € O, if o € X implies that o +1 € X.

(iii) For every limit ordinal 5 € O, if for every a < B it follows that o € X, then we have that
pgeX.

Then it follows that O C X.
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DEFINITION 12.9. Given a measure preserving system X:= (X, % u,T) and a Furstenberg tower
{Xjs}s<a. Define the set
SZ={<a:Xzis SZ}.

THEOREM 12.10. Any invertible measure preserving system X := (X, X, u,T) is SZ.
PrOOF. By Theorem 12.3, there exists a Furstenberg tower {Xgz}g<,. By Definition 12.9, it is

enough to show that § € SZ for every 5 < a. We prove this using transfinite induction as stated in
Theorem 12.8:

(i) By Proposition 12.4, we have that 0 € SZ.
(ii) Let 8 < . It follows by Proposition 12.5 that if § € SZ, then 5+ 1 € SZ.

(iii) Define L as the set of limit ordinals less than or equal to . It follows by Proposition 12.7 that
for every x; € L, if X, € SZ for all v < &, then it follows that x; € SZ.

By Theorem 12.8, it follows that {5 : 8 < a} C SZ. Therefore, we know that in particular the terminal
factor X, is SZ, by Proposition 12.6, this implies that X is SZ. 0
Recall the definition of a measure preserving system X having the Furstenberg property (Definition 3.3).
By Theorem 4.6 and Theorem 12.10, the following corollary holds.

COROLLARY 12.11. Any invertible measure preserving system X:= (X, %X, u,T) has the Furstenberg
property.

Thus we have proven the Furstenberg Multiple Recurrence Theorem (Theorem 3.2). By the equivalence
results shown in Theorem 3.4 and 3.6, we have proven Szemerédi’s Theorem.

12.A. Generating o-Algebras
DEFINITION 12.12. Let I be a linearly ordered set and X := {A;};c; a non-empty collection of sets.
The collection X is said to a chain if for all 4,5 € I, ¢ < j if and only if A; C A;.

DEFINITION 12.13 (Rings, [14, p. 19]). Let X be a non-empty set and R a non-empty collection of
subsets of X. The set R is said to be a ring if the following two conditions are satisfied.

(i) For all A, B € R, we have that AU B € R.
(ii) For all A, B € R we have that A\ B € R.
PROPOSITION 12.14. Given a linearly ordered family of o-algebras S:= {X;}icr. That is, ¥; C X; if
and only if 1 < 5. Then
iel
1S @ TINg.

THEOREM 12.15 (Approximation of a o-algebra by a ring, [14, p. 56]). Given a probability space (X, %, )
where X is generated by a ring R. Fix any e > 0. Then, for every A € X, there exists some B € R such
that n(AAB) < e.
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Recall the definition of a chain given in Definition 12.12.

PROPOSITION 12.16. Given a chain of o-algebras S := {¥;}ier and let 3 be the o-algebra generated by

S and X:= (X, %, u) be a probability space. Fix any € > 0 and take any A € 3. There exists some
;€S and A’ € 3; such that
114 = 1|l ax) <€

ProOF. Take any A € ¥ and fix ¢ > 0. By Theorem 12.15, there exists A" € (J,; 3, such that
u(AAA") < €. Then,

114 = Lallfex) = /X 14— 1| du = p(ALA) < €.
Taking the square root on both sides
”1A—1A/”L2(X)<E. O

COROLLARY 12.17. Given a chain of o-algebras S:= {%;}ier, {Yi:= (X, %, p) bier a family of prob-
ability spaces, and 3 the o-algebra generated by S and X:= (X,%, u) be a probability space. Fix any
€ >0 and any f € L*(X) then there exists some ¥; € S such that

”f - ]E(f|Yz)||L2(X) < €.

PROOF. Let f € L*(X) and fix some ¢ > 0. By Propositions 2.12 and 12.16, there exists a sequence
of functions (f,) € U;c; L*(Y;) that converges to f € L*(X) in L*(X). For every i € I and n € N,

||f -k (f|Yi)||L2(X) < ||f - fn||L2(x) + ||fn —-E (fn|Yi)||L2(x) + HE (fn|YZ) -k (f|Yi)||L2(X) :
By Jensen’s Inequality (Proposition 10.13), for every i € I,

E(fulY3:) —E(FIY:) P = [E(fo — fIY:) P <E(Ifn = [I?[Y) .
Since Yy C 3; for every Y;:= (X, %;, ), by Proposition 7.6, for every n € N and i € I,

1B (£uY5) — B (FIY) o) = / E(f,[Y)) — E(fY)) P du
X

< [ B 1PIY) du= o = Flce
This implies that for every n € N and ¢ € 1

1B (fulYi) = E (1Y)l r200) < 1o = fllr2x) -
There exists N € N such that,

€
1f = fnllpex) < 3

There exists j € I such that fx € L*(Y;). Then it follows that
If =E(fIY )2y < I = Ivllpzxy + 1y = E NI ) oy + 1B (1Y) = E Y] 2
<2f = Il + 1y = E (N5 2x) -
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Since fy € L*(Y;), we have that fx = E (fn|Y;). Therefore
I~ E 1Y) o, < s

12.B. Ancillary Results for the Proof of Theorem 12.7

PROPOSITION 12.18 (Markov’s Inequality, [4, Proposition 2.3.10]). Given a probability space (X, %, )
and f € L*(X, %, u) such that f > 0. Define the sets M, = {x € X : f(z) > a} € ¥ for a > 0. Then
for every a > 0

1 1
wy < [ gap<t / fdu.
a M, o Jx

PROPOSITION 12.19 (29, Proposition 2.15.7]). Let X := (X, Xx, i, T') be a measure preserving systems,
k€N and f € L>*(X) where f >0 and p({x € X : f(z) >0}) >1—1/k. Then

N
1
hNHLio%fN;/Xf'foTn'”foT(k_l)n dp > 0.

PROOF. Let k € N and take a function f € L*>°(X) with f > 0 such that
p({x e X : f(x) >0}) >1—1/k.
We first show that there exists € > 0 such that 1/k > € > 0 and a set £ € ¥ such that for all z € X'\ E,
f(z) >eand u(E) < 1/k —e.
Suppose for the sake of a contradiction that for every n € N such that n > k the set
E,={zxeX: f(zx)<1/(n+k)}

has measure at least 1/k—1/(n+k). Since {z € X : f(z) <1/(n+k+1)} C{x € X : f(x) < 1/(n+k)},
the sequence of sets (E,,) is decreasing. Furthermore,

E={xeX: f(x)=0}= ﬂEn

By Proposition 3.31, the sequence of functions (1g,) C L°(X) converges pointwise to the function
1p. Further, for every n € N, we have that |1g,| < 1x. By the Dominated Convergence Theorem
(Theorem 6.17), we have that

1 1 1

— =1 - — < i 1p dp= 1 du.

2 ng?o(k n+k> =0 f B /X B aft
Therefore p(E’) > 1/k, which implies that pu({z € X : f(z) > 0}) < 1 — 1/k, which contradicts our
original assumption on the measure of the support of f € L>(X). Hence, we conclude there exists
some 1/k > € > 0 and a set E € ¥ with measure strictly less than 1/k — € such that f(x) > € for all
re X\ E.

Now, consider an arbitrary m € N. Then

u(ﬁijE) <k -(1/k—e)=1—k-e

Jj=0
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Define A, := X \ <ﬂk T ng> Then pu(A,) >1—(1—Fk-€¢)=k-e. Forallz € A,

fla)- f(T™a) - f(T*") - (T D7) > €.

Since f € L*>°(X) is a non-negative function, we have that

/f'fOTm"'foT(kDmd,U,Z/f‘fon . fOTk 1)m du>€ M(A)Zk'6k+1>0.
X A

Since the choice of m € N was arbitrary, we conclude that

N—oo

hmmf—Z/f foTm - foT® 1 gy > 0. O

PROPOSITION 12.20. Given measure preserving systems X := (X, Xx, 1, T), Y = (X, Xy, u, T) and an
extension ® 1 Y — X. Let f € L>°(X) be a non-negative function and r > 0. Define the set

Fo={z e X :E(f[Y)(x) >r}.
If W(Fy) =0, then [, f dp <r.

PrOOF. Fix r > 0 and assume that p(F,.) = 0. Consider the integral

/fwz Faus [ fdpu
X Fyr

X\F,

Since p(F,) = 0, we conclude that

[ran=[ gapsr [ teausr =
X X\Fr X\FT

PRroOPOSITION 12.21 ([29, Proposition 2.15.7]). Given measure preserving systems X := (X, Xx,u,T),
Y = (X, Xy, 1, T) and an extension ® :' Y — X. Assume that the factor Y is SZ. Fixz any k € N and
let f € L*(X) be a non-negative function whose support Q:={x € X : f(x) > 0} is such that

{xeX:E(IQW)(m) >1—%}

has positive measure. Then

N—o0

hmlnf—Z/f foTm™ - foT®bm gy > 0.

PROOF. By the same argument as given in the proof of Proposition 12.19, there exists € > 0 such
that 1/k > ¢ > 0 and a set £ € ¥ such that for all z € X \ E, f(z) > € and pu(EF) < 1/k — €. Define
A= X\ E. Then

M(A):/ 1ydpu>1—-1/k+e>0.

X

Applying the contrapositive of Proposition 12.20 for r = 1 — 1/k + €, the set
{r e X E4|Y)(x) >1—-1/k+ €}
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has positive measure. Define the set [':= {z € X : E(14]|Y) () >1—1/k + ¢} € Ey. Then we have
that 1 € L>*(Y) and f > 0 with fX 1p du = p(F) > 0. Since the measure preserving system Y was
given to be SZ, we know that

N
SN 1 n —1)n
S By T T

By Proposition B.8, there exists ¢ > 0 and a set S C N where d (S) > 0 such that for all n € S
/ 1p-1poT™ 1poT®E V" gy = (FNT"FNT"FA...T- ¢ Drpy > 0.
be

For every n € S, define the set F,,:= FNT"FNT>FN...T~k=Un [ Since f(x) > eforall z € A,
we have the pointwise inequality f(z) > e-14(x) for all z € X. Fix some n € S. For every x € X and
every n € S

fl@)- f(T"w) - f(T* ) - (T~ ) > - (La(e) - 1a(T"2) - 1a(T"x) - - La(TH V7))
(18) = (14(2) - Lpnag(@) - Lp2na(x) - Lpoonng())

- Ek ’ (1AQT*"AOT*%AW-ﬂT—(k—l)”A(x)) .

Since A= X \ F and 147 ngn.ar-t-1na(z) = 1if and only if x € X'\ (Uf;é T*j”E>, it follows that
forall x € X

T
L

(19) ]-AOT*”AﬁnﬂT’(’“*l)”A(x) Z 1 - ].T—an(,CL').

<.
Il
o

Therefore, inserting (19) into (18), taking conditional expectations on both sides and using the properties
of the conditional expectation (Proposition 7.6), for all x € X
Y) ()

_ k. (1 _ iE (17-inp|Y) (x)> :

J=0

k—1
E(f-foT™ foT™ - foT * DY) (2) Zek-E<1—ZlT—an
§=0

Since A = X\ E, for every 0 < j < k—1and z € X, we have that 1p-jnp(z) = 1 — 1p—ina(x). Further,
for any fixed 0 < j <k —1 and for all z € F,,
EQr-ing|Y) () =1 —E(1p-malY)(z) <1 —-(1—-1/k+e€)=1/k —e.

Therefore, for every x € F,,
k-1

Y EQr-mplY)(x) <k-(1/k—e)=1—k-e

j=0
This in turn implies that for every x € F,,

E(f-foT™ foT® - foT ¥ DY) (z)
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k—1
> L E (1 Y 1r-imp Y) (2)
=0

> (1-(1—k-¢)
=k

This implies that

/f-foT”-foTQ"---foT_(k_l)”d,u:/ E(f-foT"-foTQ”---foT_(k_l)"‘Y) du
X

S

v

/ ]E(f-foT"-foTZ”---foT_(k_l)”‘Y) du

n

]

> u(Fy) k-t
>c k- > 0.

Since the choice of n € S was arbitrary and d (S) > 0, by Proposition B.5

N
1
thgiO%fN;/Xf.foT".foT‘Z”.--foT<’f1>"du>o. O
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APPENDIX A

Properties of Upper and Lower Density

1. Basic Properties of Upper and Lower Density

The following proposition follows directly from the subadditivity of the limit superior and the superad-
ditivity of the limit inferior.

PROPOSITION A.1. Upper density is finitely subadditive with respect to complements, and lower density
1s finitely superadditive with respect to complements. That is to say, for any A C Z

d(AU(Z\ A) <d(A)+d(Z\ A).
and
d(AU(Z\ A) > d(A)+d(Z\ A)
PROPOSITION A.2 (Properties of sets with zero density). Let A C Z and {A;}icr a finite collection of
subsets of Z.
(i) If d(A) =0 and B C A, then d (B) = 0.
(i) If d(A;) = 0 for every i € I, then d ((J;c; Ai) = 0.

PrOOF. We prove (i). Let A, B C Z such that B C A and d (A) = 0. For every n € N
IBN{-n,—n+1--- ,n—1n} < AN{-n,—n+1--- ,n—1n}
2n+1 - 2n+1
It follows that 0 < d (B) < d (A) = 0, which implies d (B) = 0.

Next, we prove (ii). Consider the finite collection {A;};c; where d (4;) = 0 for every i € I. For every

n €N
’Uie]Aim{_na_n+17"',n—l,n}’< 1

2n + 1 ~2n+1

i€l

Therefore

_ ANf—n ...
OSdOJ&>Shmprﬂzﬂg;:1jw|
el

7;6[ n—oo
. AN {=n, -, n}| =
< 1 = d(A;) =0.
<2 _timsup = T 2 a4

O

PROPOSITION A.3. Let S C N such that 6 (S) > 0 andr € N fized. Define the setr-S:= {r-n:n € S}.
Then, we have that 0 (r-.S) > 0.
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PRrROOF. We wish to show that
lim inf [P Sl mi

m—o0 m

> 0.

Note that, for every n € N
ISO{1,--- ,n} =|r-Sn{l,---,r-n}.
Hence
fiming 2Ot el SO ] el SO ]

n—r00 n n—00 n n—r00 r-n

For every n € Nand j € {1,2,--- ,r — 1}, define
"_7“-|7“-Sﬂ{1,---,7“-n}|_r-|r-SF‘|{1,---,r-n+j}|+r-|r-Sﬂ{1,---,r-n+j}|

n,J -

0.

ren r-n+j r-n+j
B (r-n+j)|r-Sn{l,---,r-n}—r-njr-Sn{l,---,r-n+j}
_T'( r-n(r-n+j) )
N relr-SN{l,--- r-n+j}
r-n-+j

By the definition of the set r - S, for every ¢ € {1,--- ,r — 1} we have that r-n + i ¢ r - S. Further,
r-n €r-Sif and only if n € S. Therefore, for all j € {0,--- ,r —1} and n € N

lr-SN{l,---,r-n}=|r-SN{1l,--- ,r-n+j}.
For all n € N, define av, ;= |r- SN {1,--- ,r-n}|. Then, for all j € {0,--- ,r—1} andn € N

(r-n+j)ay,—r-n-a, oy, TN ]y TNy i Ty
Qpj =T" , - = : S
’ ren(reon+j) rent g ren(ren+ ) ren+tj

< j'an ) Ty

= ~ | + -
r-n(r-n+j) ren+j
Since o, < r-n for all n € N, it follows that

<( jer-n )+ Ty ( J )+ reap
an'_ B T = N L.
7 ren(r-n+j) ren+j (r-n-+j) ren+j

Further, since »r <1 and j <r — 1, we have that n < r-n <r-n+ 5. Therefore,

< J . rea <j+ r-Q <7’—1+ r-Q
Apj > . > T L C.
7 (r-n-+j) ren+j o n reon+4j n ren+j

This implies that for every n € N and a fixed j € {0,--- ,r — 1}

SN{1.... 1 .SN{1.-- - ;
SOl _r=1 e Sn L)
n n r-n+)
Further, for every m € N; there exists n,, € Nand j € {0,--- ,7 — 1} such that m = r - n,, + j. Hence,

for every m € N
‘Sﬂ{lﬂanm}‘ <r—1+r'|r-5ﬂ{1,---,m}\.

Nom, Nom, m
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This gives
Lo -1 ) 1...
lim inf SO ) < lim inf - + r - lim inf r- S0t m|
m=reo Nim m—0o0 Ty m—00 m
.. .r—1
= liminf +r-dy(r-S).
m—oo My,
Therefore
1,--- 1. 1
Oy (8) = liminf CIRR USSR Sliminf|8m{ SRARLLY ] S}jmjnfr_+r.éN<r.S).
oo n m—00 N m—00 Ty,

As the quantity m grows large, so will the quantity n,, grow large. Therefore

oooor—1
lim inf
m—00 N,

This gives 0y (r-S) > L -0 (S) > 0, as required. O

=0.

2. Properties of Syndetic Sets

Recall the definition of syndetic sets given in Definition 5.3.

REMARK A.4. Let S be a syndetic set. It follows directly from Definition 5.3 that S is necessarily
countably infinite. Otherwise, there would exist some n € N such that for all N € N

Sn{n,n+1,--- ,n+ N} =10
Let (an) be a strictly increasing enumeration of S. There exists d € N such that
d = max{|a,+1 — a,| : n € N}
In other words, gaps between consecutive elements in the syndetic set S are bounded.

LEMMA A.5. Let S C 7Z be syndetic. Then S has positive upper and lower density.

PROOF. Since S is syndetic, there exists some d € N which is the maximum gap between consecutive
elements in S. Further, we have that

- ISNn{-n,—n+1,---,0,--- ,n—1,n} ISN{-d-n,---,0,--- ,d-n}|

0(9) =li > 1
(5=l 20+ 1 = 2+ 1
2n + 1
>1i _—
2l
Since d(2n + 1) > 2d - n + 1, we have that
2 1 2 1 1 1
lim sup n > lim sup nt = limsup- = - > 0.

Therefore we have that 6 > 0. The same argument can be used to show that §(S) > 0. O
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Properties of Cesaro and Density Convergence

1. Properties of Density and Cesaro Limits

Recall the definitions of Cesaro and density convergence given in Definitions 4.1 and 4.3.

PROPOSITION B.1. Let (z,) be a bounded real valued sequence. If lim,, o |z, — x| = 0, then,

D—lim z, = x.
n—oo

PROOF. Assume that (z,) converges in norm to x € R. Fix any € > 0. Then there exists N € N
such that if n > N then |z, — 2| < €, which implies that the set

{neN:|z, —z| > €}

has upper density zero since the complement has at most N — 1 elements. Since the choice of € > 0 was
arbitrary, the sequence (x,) must converge in density. O

PROPOSITION B.2 (Properties of density limits). Consider sequences (z,,) and (y,) contained in R that
converge in density to x and y respectively.

(i) For every a € R, D—lim,,_,o, ax, = ax.
(il) D—lim, oo(zp + yn) = D—1lim, o , + D—lim,, ooy, = = + y.

Similarly, if we have sequences (a,) and (by,) contained in R that converge in the sense of Cesaro
to a and b respectively.

(iii) For every a € R, we have C'—lim,,_,, ax, = ax.

(iv) C=limy,— oo (2 + yn) = C—=limy, 00 T + C—limy, 00 Y = = + ¥.

PROOF. (i) If & = 0, then (ax,) is the zero sequence, which clearly converges in density to
zZero.

Now, since D —lim,,_, z, = z, for every € > 0, the set A.:= {n € N : |zx,, — x| > €} has zero
upper density. Fix any o € R with a # 0 and any € > 0. Consider the set

B.={neN:|ax, —azx|>e} ={neN: |z, —z| >¢/|lal}.

We verify that the set B, has zero upper density. Define ¢ := €¢/|a|. For every € > 0, the set A,
has zero upper density. So in particular, the set

{neN:|z, —z|>¢/la| =€}

has zero upper density. As our choice of € > 0 was arbitrary, it follows that D—lim,,_,,, ax, = ax.

116
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(ii) Fix an arbitrary € > 0 and define the sets
Se={neN:|(x,+yn) — (x+y)| > e},
U={neN: |z, — x| >¢/2},
Ve={n eN: |y, —y| > ¢/2}.
We wish to show that S, has zero upper density. To prove this, we will first show that S. C U.UV..
Consider any n € S.. It follows by the triangle inequality that
[T — @ + |y =yl = [(@n +y0) — (x+y)| Z €

From this we can conclude either |z, — x| > €/2 or |y, —y| > €/2, since if we had |z, — 2| < /2
and |y, — y| < €/2, then we would have the contradiction |z,, — x| + |y, — y| < €. Therefore,
n € U.U V.. By Proposition A.2, the set S, will have zero upper density as S, C U, U V..

The proofs for statements (iii) and (iv) follow from the known properties of norm convergence and finite
sums. O

PROPOSITION B.3 (Absolute convergence in density to zero). Given a bounded real valued sequence
(xn). If D—=lim, o |z, = 0 then D—lim,_, x, = 0.

PRroOF. By definition of convergence in density, for every € > 0 the set
{n e N:||z,| — 0| > €}
has upper density zero. But it is clear that for every e > 0
{neN:||lz,| =0 >€e} ={neN:|z,| > €}
By definition, it follows that D —lim,, .., x, = 0. [

2. Miscellaneous Convergence Results

PROPOSITION B.4. Let (y,) be a bounded non-negative real valued sequence such that y, > 0 for all
n € N and (x,) a bounded real valued sequence such that D—lim,, ., x, =0, then

D—lim z, -y, = 0.

n—oo
PROOF. Since (y,) is bounded, there exists some M € N such that |y,| < M for all n € N. Fix any
€ > 0. Since D—lim,,_,. x, = 0 the set
€
SE::{ eN: |z, >—}
nEN: o) > o
has upper density zero. Define the set
K.={neN:|z, y,| >¢€}.

For any n € K., we have that
|| - lynl > €
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Since |y,| < M for all n € N, this implies that 1/|y,| > 1/M for all n € N. Therefore, for all n € K,

Therefore K, C S.. By Proposition A.2 (i), the set K. has upper density zero. Since the choice of € > 0

was arbitrary, we have that
D—lim z, -y, = 0. O

n—o0

PROPOSITION B.5. Let (z,,) be a bounded non-negative real valued sequence. Assume there exists some
c¢>0 and a set S C N with §y(S) > 0 such that x, > c >0 for alln € S. Then

hmmf—Zmn > 0.

N—oo

ProoOF. For a given N € N, define the set
N.={ne{l,2,--- N}z, >c}
and let Nc:={1,2,--- , N} \ N>. Observe that for every N € N

1 & 1
N;xnzﬁ an+ an

neEN> nENS
V> 1
> N - C+ N Z L.
nENg
Since the sequence () is non-negative, it follows that for every N € N, 3\, > 0. Therefore
hmmf—zgv hmmf V-1 c=494(5)-¢c>0 O
N—00 " N '

With a similar argument one can prove the following proposition.

PROPOSITION B.6. Let (z,,) be a bounded non-negative real valued sequence. Assume there exists some
c>0 and a set S C N with 0x(S) > 0 such that x, > ¢ > 0 for alln € S then

hmsup—2$n > 0.

N—oo

PROPOSITION B.7. Given a bounded non-negative real valued sequence (x,) such that x, < 1 for all
n € N with the property that for every ¢ > 0, the set

{neN:z, >c>0}

has lower density zero. Then

hNHBo%f_Zx” =0.
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PROOF. Fix ¢ > 0 and € > 0. By assumption, there exists K € N such that for every M > K

) 1
A}rzlaﬁ|{n€N.xn>c>O}|<e.

For N > K define the sets
N.={ne{l,--- ,N}:x, >c>0}
and let Nc:={1,--- , N} \ N>. For every N > K

N
%;an% an—l-an _|N>+ Zn_|]j\<[>|+c-‘]]\;<|.

neEN> n€N<

Since |[N<| < N for every N > K

N

1 N

NE xn§|N>|+c.
n=1

Therefore for every M > K

| NS | .1
]\}2&—233”_]\}1;& +c= ]\}Q&N|{NEN-%>C>O}|+C

< €+ c.

Since the choice of € > 0 was arbitrary

The above proposition also gives us the contrapositive result.

PROPOSITION B.8. Given a bounded non-negative real valued sequence (x,,). If

then there exists some ¢ > 0 such that the set S:={n € N: x, > ¢} satisfies 0 (S) > 0.

3. Hierarchy of Density, Strong Cesaro and Cesaro Convergence

119

The following characterization of the limit superior will be useful to us for results to come in this section.

ProrosiTION B.9 ([1, Theorem 18.2, p. 124]). Given a bounded real valued sequence (ay).
limsup,, . a, = a if and only if

a = sup{a € R : « limit point of (a,)}.

Then
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PROPOSITION B.10. Let (y,) be a bounded real valued sequence. If D—lim, oy, =y, then

C—lim |y, —y| = 0.
n—oo

ProOOF. We show that for every ¢ > 0 there exists some M € N such that for all N > M
|
— Z [y — y| <.
N n=1

Take any € > 0. For every N € N define the set
Ne={ne{l,2,--- N} : |y, —y| <e¢/2}.

Let N> := {1,2,--- N} \ N.. Since D—lim,, o yn = ¥, the set {n € N : |y, — y| > €/2} has upper
density zero. Thus, there exists some M € N such that the set M_ is not empty. Fix such a M € N
and observe for all N > M

N
%Zm—m :% S v —uyl+ D lva—yl
n=1

neN« ”€N>
|N< 6 Z ‘ |
N Yn — Y
n€N>

Note that since (y,) is bounded there exists some R € N such that |y, — y| < R for all n € N. Further,
we know that |[N.| < N. Therefore, for all N > M

|N>|

Further, we also know that the set {n € N |y, —y| > €/2} has upper density zero. Therefore, there
exists K € N such that for all N > K

Therefore, if N > max{K, M} then

1 & € €
NZ|yn—y| < 54—5:6.
n=1
Since the choice of € > 0 was arbitrary, we conclude that
C—lim |y, —y| =0.
n—oo
U

PROPOSITION B.11. Let (z,,) be a bounded real valued sequence and x € R. Then C—lim,, o |2, —2| # 0

if and only if
N

1
hmsupN Z |z, — x| > 0.

N—o0 =1
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PROOF. Assume that limsupy_,., % ij:l |z, — x| > 0. Suppose for a contradiction that C'—
lim,, o |2, — x| = 0. But, this implies that

li - E li = E _
Nlm N |xn x| 11151 sup |:)3n
which is clearly a contradiction.

Next, assume that C'—lim, ., |z, — 2| # 0. Since (x,,) is a bounded sequence, for every N € N

LN
—Z\xn—ﬂzo.
Nn:l

Since C'—lim,, o |z, — x| # 0, there exists v > 0 and a sequence (Ny) such that

L
Mmzﬂum—ﬂ > .

for all £ € N. Therefore by Proposition B.9,
1 &
hmsup— E |x, — x| > hmsup— E |Tm — x| > v > 0.

N—oo

OJ
PROPOSITION B.12. Let (z,,) be a bounded real valued sequence and x € R. If D—lim,_, ©,, # z, then
C—lim |z, — x| #0.
n—»o0
Proor. By Proposition B.11, it suffices to show that
11]1\][[1_>sup— Z |z, — x| > 0.
Since D—lim,, . &, # x, there exists ¢ > 0 such that the set
Ao ={neN: |z, —z| > €}
has positive upper density. Note that
Bo={neN:|r,—z|>€/2} D{neN: |z, —z| > €},
which implies that oy (B~) > 0. By Proposition B.6, we have that

N
1

lim sup — T, — x| > 0.

N%OPN;! |

The following proposition is the contrapositive result of Proposition B.12.
PROPOSITION B.13. Let (z,) be a bounded real valued sequence and fiz some x € R. If

C—lim |z, —z|=0
n—oo
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then D—lim,,_ o T, = .

PROPOSITION B.14. Let (x,) be a bounded real valued sequence and fiz some x € R. If

C—lim |z, —z| =0,
n—oo

then C'—lim,,_,o |2, — z|> = 0.

PROOF. Fix some € > 0. Since (z,) is a bounded sequence there exists some R € N such that
|z, — x| < R for all n € N. As a result, we have that |z, — z|*> < R - |z, — 2| for every n € N. Since
C—lim,, o |2, — x| = 0, there exists some M € N such that if N > M

| X
R(an:lkcn—:d) < €.

Therefore, for N > M
1 & 1 &
2
N;un—xl <R<N;|xn—x|> < €.
Since the choice of € > 0 was arbitrary, we conclude that C—lim,, 4 |z, — z|? = 0. O

PROPOSITION B.15. Let (x,) be a bounded real valued sequence and fiz some x € R. If

C—lim |z, —z|*=0
n—oo

then C'—lim,,_, |z, — x| = 0.

PROOF. Fix some ¢ > 0. Suppose for a contradiction that C'—lim, . |z, — x| # 0. By the
contrapositive of Proposition B.10, this means there exists some a > 0 such that the set

S={neN:|z, —z|>a}
has positive upper density. For a given N € N, define the set
No={ne{l,2,--- N} : |z, — 2| < a}
and let N> :={1,2,--- , N} \ N.. Observe that for every N € N

N
rOBEEES Do e
n=1

nEN< nENZ

For every n € N, we have that |z, — z|*> > o? if and only if n € S. Therefore, for every N € N

1 S 2 1 2 |NZ| 2
NZM”—M 2N2|xn_x’+ N
n=1 neN«
Further, since |z, — x> > 0 for every n € N, it follows that for every N € N, &3 v |z, — x> > 0.
As a result
N [N |
limsupﬁz |z — 2|* > limsupTZ ca®=6(8)-a*>0.

N—o0 — N—oo
n=1
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This implies that lim supy_, % ZNf |z, — z|*> > 0. However, we assumed that

2 _ T
]\}EnOONZ|a:n—m| hmsup—2|xn x|* =

which is clearly a contradiction. We conclude that

C—lim |z, — x| = 0.
n—oo

O

COROLLARY B.16. Let (z,) be a bounded real valued sequence and fix some x € R. If we have that
C'—lim, o0 |T, — 2> = 0 then D—lim,, o T, = .

PROOF. By Proposition B.15 if C—lim,,_,o |7, — z|*> = 0 then, C—lim,,_,o, |, — 2| = 0. Further, by
Proposition B.13 it follows that if C'—lim,,_, |2, — x| = 0 then D—lim,, ,o, x, = x. O

The proof of Proposition B.10 can be modified to prove the following proposition.

PROPOSITION B.17. Let (x,,) be a bounded real valued sequence and fiz some x € R. If we have that
D—lim, o ¥, = x then C—lim,_,o |z, — x> = 0.

Following from all the above propositions in this section, we have the following corollary.

COROLLARY B.18. Let (x,) be any bounded real valued sequence and fix some x € R. Then the following
statements are all equivalent:

(a) C—lim, 00 |z, — x| = 0.
(b) C—lim,_.o |7, — z|* = 0.
(¢) D=lim,_yo0 x, = x.

Furthermore, all these statements imply that C'—lim,, .o, x,, = x.

PROOF. Let (z,,) be any bounded real valued sequence and fix some = € R. The proof that the
statements (a), (b) and (c) are equivalent is laid out in Propositions B.10 - B.17. To show that statements
(a), (b) and (c) all imply that C'—lim,,_,o x, = x, we assume (a) and prove that C'—lim,_, , = .

Fix any € > 0. We show that there exists M € N such that for all N > M

1 N
N;l’n—ﬁﬂ

< €.

Applying the triangle inequality

1 & al T, — N -z iy 1<
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Since we assumed that C'—lim,,_, |z, — 2| = 0, it follows that there exists M € N such that for all

N>M
L
—Z\xn—xl<e.
Nn:l

It follows that ‘% Ziv=1 Tp — x‘ < €. Since the choice of € > 0 was arbitrary, we conclude that C'—

lim,, o ¥, = x. Since the statements (a), (b) and (c) have all been shown to be equivalent, we conclude
that all three statements imply that C'—lim,, .o, z,, = x. [

COROLLARY B.19. Consider any bounded real valued sequence (x,,). If (x,) converges in norm to x, then
we have that (x,) converges in density to x. In turn, if (x,) converges in density to x, (x,) converges
to x in the sense of Cesaro.

PROOF. First consider a bounded real valued sequence (z,) that converges to a point € R in the
standard norm. For every e > 0, the sets
{neN: |z, —z| > €}

are finite, hence have upper density zero. It follows by Definition 4.3 that (x,) that converges to z € R
in density.

Lastly, if (z,,) converges in density to z, it follows by Proposition B.18 that (x,,) that converges to x € R
in the sense of Cesaro. 0



APPENDIX C

Equivalent Formulations of Compact Systems

In this section we verify that the statements in Definition 5.4 are indeed equivalent. In order to do this,
we will need to introduce some terminology and concepts from topological dynamics. As stated in [29],
the precompactness of orbits condition of almost periodic functions is viewed as the typical definition
of almost periodicity in the context of measure preserving systems, while the syndeticity condition is
typically used in the context of topological dynamics.

DEFINITION C.1 (Topological dynamical system, [29, p. 78]). Given a compact metrizable topological
space (X,7) and R : X — X a homeomorphism, the triple (X, 7, R) is said to be a topological dynamical
system.

DEFINITION C.2 (Almost periodicity, Topological dynamics, [29, Definition 2.3.2]). Given a topological
dynamical system (X, 7T, R). Let d : X x X — R the metric that defines 7. Then a point x € X is said
to be almost periodic if for every e > 0, the set

{neZ:dR"z,z)<e} CZ
is syndetic.

DEFINITION C.3 (Invariant subsets, [29, Example 2.2.3]). Given a topological dynamical system (X, T, R),
aset Y C X is said to be invariant if R7'Y =Y.

DEFINITION C.4 (Minimal systems, [29, Definition 2.2.7]). A topological dynamical system (X, 7T, R)
is said to be minimal if for every closed set Y C X that is invariant, either Y = () or Y = X.

THEOREM C.5 ([29, Lemma 2.3.3]). If (X, T, R) is a minimal topological dynamical system, then every
x € X is almost periodic.

PROPOSITION C.6 (Almost periodic functions, [29, Exercise 2.11.1]). Given an invertible measure pre-
serving system X := (X, 3, u, T) and f € L*(X) an almost periodic function, then the following state-
ments are equivalent:

(i) The orbit O(f) is precompact in L*(X) equipped with the norm topology.
(i) For every € >0, the set {n € Z : ||f — f o T"||;2x) < €} C Z is syndetic.

PROOF. (i) = (ii) Consider any f € L?(X) which is almost periodic. Since O(f) is precompact,

the Koopman operator is a homeomorphism on O(f). The induced topology 7). on O(f) is metrizable,
so by Definition C.1, the triple (O(f),7}., K1) is a topological dynamical system.

By Theorem C.5, we only need to verify that (O(f), 7}.|, Kr) is a minimal topological dynamical system
in order to conclude that condition (ii) holds.
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Suppose for the sake of a contradiction there exists some () # A C O(f) a closed set such that A is an
invariant set. Since A is a closed set and () # A C O(f), there exists f; € O(f) and some r > 0 such
that

B(fi,7) C O(f) \ A.

Since A is an invariant set, for every g € A, we have that goT™ € A for m € Z. Fix some a € A. Since

the orbit O(f) is dense in O(f), there exists ji, jo € Z such that

i = Fo Ty < /2

la— f OTjQHL?(X) <7/2.

Applying the triangle inequality and the fact that the Koopman operator is an isometry on L?*(X)
(Corollary 2.16),

Hfl _aole_j2HL2(X)
< la=foTH|[+|[foT" —aoTh 7| Ly
< g+ |foT? —ao T,
T .
~ 9 +|[f—aoT D”L?(X)
r .
=57 [ 0T — aHL?(X)
<.

This implies that a o 77772 € B(f1,7) € O(f) \ A. This contradicts the fact that a o /1772 € A,

as A was assumed to be an invariant subset of O(f). We conclude that there does not exist a closed

proper subset of O(f) that is invariant under Kp. Therefore, (O(f), 7)., Kr) is a minimal topological
dynamical system. By Theorem C.5, for every € > 0, the set

{neZ:|f=foT|px) <e}

is syndetic.

(i) = (i) Fix any € > 0. Define the set
S={neZ:||f—foT"2x) <e}
Let (a;)iez be a strictly increasing enumeration of S. Since S is syndetic, there exists d € N such that
d = max{|a; — a;_1| : 1 € Z}.

This implies that for every n € Z there exists m € S and a j € {1,2,--- ,d — 1} such that n = j + m.

Take any n € Z and consider foT" € O(f). There exists m € S and j € {0,1,2,---,d — 1} such that
n = j +m. Then

HfOTn - fOTme(X) - ||foTj+m N fOTjHLQ(X)‘

Since the Koopman operator is an isometry on L?*(X) (Corollary 2.16), we have that

07 o Ty = 1 07" = ey <
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Since the choice of foT™ € O(f) was arbitrary, and the set {1,2,--- ,d — 1} is finite, we have a finite

collection of closed balls
d—1

{B<f © Tj7 6)}]':1
such that

o) < B o,¢)

It follows that O(f) totally bounded, and hence by Proposition 6.18, O(f) is precompact in L*(X). [



APPENDIX D

Definitions of Function Spaces

1. LP Spaces

DEFINITION D.1 (Measurable functions, [24, Definition 1.3]). Given a probability space (X, %, u), a
topological space (Y, 7y) and a mapping f : X — Y. The mapping f is said to be measurable with
respect to X if for every V € Ty

ffV)={zecX: fz)eV}eXx.

Denote the set of all functions f : X — Y such that f is measurable with respect to ¥ as the set
M(X)Y).

DEFINITION D.2 (£° functions). Consider a probability space X := (X, 3, ) and R equipped with the
standard topology. Define the collection of functions

LOX)={f: X =R: fec M(X,R)}.
DEFINITION D.3 (A functions). Given a probability space X := (X, X, i), define the set of functions
NX) = {f € £9) : pul{a € X : f(x) £ 0}) = 0}.
DEFINITION D.4 (L° functions). Given a probability space X := (X, X, u1), define the quotient space
LX) = £ X o x) = {[f]-: £ € LX)}
where [f]. = {g € L%X) : f ~ g} and where f ~ ¢ if and only if f — g € N°(X).

DEFINITION D.5 (L functions, [4, Section 3.3, p. 96]). Given a probability space X:= (X, %, u) and
some 1 < p < 0o. Define the set of functions

£7(X) = {f e ) ( [ 1717 dn) " oo}.

DEFINITION D.6 (N? functions, [4, Section 3.3, p. 96]). Given a probability space X := (X, %, ) and
some 1 < p < 0o. Define the set of functions

NoX)= {7 e ) [ 117 au=0}.

DEFINITION D.7 (L? spaces, [4, Section 3.3, p. 96]). Given a probability space X := (X, 3, u) and some
1 < p < o0o. Define the quotient space

LX) 1= X)) = {1f)-+ f € £2(X)}
where [f]. = {g € LP(X) : f ~ g} and where f ~ g if and only if f — g € NP(X).
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PROPOSITION D.8 ([4, Section 3.3, p. 96]). Let X:= (X, X, 1) be a probability space and fir 1 < p < co.
Then the space of functions LP(X) equipped with pointwise addition and scalar multiplication is a vector
space. Further, the mapping ||| »x) : LP(X) — R where for any f € LP(X)

1/p
1l = ( [ du)

is a norm on the set of functions LP(X).

THEOREM D.9 (L?(X) is a Hilbert space, [5, Chapter I, Definition 1.6]). Given a probability space
X:= (X,3, ). Then the set of functions L*(X) equipped with the inner product (,+)2x) : L*(X) x
L*(X) — R, where

(@)= [ alt)-u(0) du
constitutes a Hilbert space.

ProposiTION D.10 (Holder’s Inequality, [24, Theorem 3.8]). Given a measure space X:= (X, %, ),
p,q € N such that 1/p+1/q =1 and functions f € LP(X) and g € LY(X). Then fg € L*(X) and

||f9||L1(X) < ||f||LP(X) ||9||Lq(x) :

THEOREM D.11 (Tonelli’s Theorem, [4, Proposition 5.2.1]). Given probability spaces X := (X, YXx, )
and Y = (Y, 3y, v) and a function f € L*(X x Y). Then

/X ( /Y f(.y) du(y)) () = /Y ( /X Fay) du(@) vl

2. Essentially Bounded Functions

In order to formulate the following definition, recall Definition 2.13.
DEFINITION D.12. Given a probability space X := (X, X, u), define the set
L£2(X):={f € LX) : there exists &« > 0: p({z € X : |f(z)| > a}) =0} .

DEFINITION D.13 (N functions, [4, Section 3.3, p. 96]). Given a probability space X:= (X, %, ),
define the set of functions

N=(X):={f € L2(X) : u({x € X : [f(x)| > 0}) = 0}.

DEFINITION D.14 (Essentially bounded functions, [4, Section 3.3, p. 96]). Given a probability space
X := (X, %, u), define the quotient space

12(X) = £ X)) = (] £ € £2(X))

where [f]. = {g € L>(X) : f ~ g} and where f ~ g if and only if f —¢g € N'°(X). The set of functions
L>(X) is said to be the set of essentially bounded functions on X.

DEFINITION D.15. Given a probability space X := (X, X, 1), define the infinity norm as the mapping
Il © L>(X) — R where

|fllo =inf{a e R: p({zr e X :[f(x)] > a}) = 0}.
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LEMMA D.16 (L*°(X) is a Banach algebra, [5, Chapter VII, Example 1.6]). Given a probability space
X:=(X,%, un). Equipping L>*(X) with pointwise addition and pointwise scalar multiplication makes the
pair (L®(X), ||*]l,.) into a Banach space. Further, equipping the pair with pointwise multiplication of
functions makes the pair (L>*(X), ||*||.,) into a Banach algebra.

LEMMA D.17. Given a measure preserving system X := (X, %, u,T), anyn € Z and f € L*(X). Then
foTm e L¥(X).

3. Continuous Functions

DEFINITION D.18 (Bounded continuous functions, [5, Chapter III, Example 1.6, p. 65]). Let (X, Tx) be
a Hausdorff topological space. Denote the set of all continuous functions f : X — R as the set C'(X).
Further, define the set of all bounded continuous functions

Co(X)={f € C(X): thereexists a > 0: |f(2)| < o,z € X}
Equip the set Cy(X) with the norm ||| _ : C'(X), — R where
[/l = sup{|f(2)] : 2 € X}

ProproSITION D.19 (Cy(X) is a Banach space, [5, Chapter 111, Proposition 1.7, p. 65]). If we equip
the set Cy(X) with pointwise addition and scalar multiplication, then Cy(X) is a vector space. The pair
(Co(X), ||l o) constitutes a Banach space.

DEFINITION D.20 (Continuous functions that vanish at infinity, [5, Chapter III, Proposition 1.7, p. 65]).
Given a locally compact space X. Define the set of functions

Co(X)={feC(X): Ye>0,{x € X :|f(x)] > €} is compact in X}.

ProrosiTION D.21 (Cy(X) is a Banach space, [5, Chapter III, Proposition 1.7, p. 65]). The set of
functions Co(X) is a closed subspace of Cy(X). Therefore, (Co(X), ||*|l,) s a Banach space.

ProposiTION D.22 ( [5, Chapter III, Proposition 1.7, p. 65] ). If X is a compact Hausdorff topological
space, then Co(X) = C(X) = Cp(X).
4. The Weak Operator Topology

DEFINITION D.23. Let H be a Hilbert space. Denote by B(H) the set of all bounded linear operators
on H.

DEFINITION D.24 (Weak operator seminorms, [6, p. 37]). Let H be a Hilbert space. For all f,g € H,
define the seminorm py (7)== |(T'f, ) | for T € B(H).

DEFINITION D.25 (Weak operator topology, [6, p. 37]). Define the locally convex topology on B(H)
generated by the collection of seminorms {ps, : f,g € H} as the weak operator topology on B(H).

PropoSITION D.26 ([6, Exercise 1, p. 40]). Let H be a Hilbert space. If H is separable, then the closed
unit ball in B(H) is metrizable in the weak operator topology.

Given a probability space X, the following is a direct consequence of the separability of L*(X).
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COROLLARY D.27. Given a probability space X := (X, 3, 1), the closed unit ball of B (L*(X)) is metriz-
able in the weak operator topology.

ProposITION D.28 ([6, Proposition 8.3]). Given a Hilbert space H, the closed unit ball in B(H) is
compact in the weak operator topology.
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