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Summary

In this dissertation, Szemerédi’s Theorem is proven using ergodic theoretic techniques via the Fursten-

berg Multiple Recurrence Theorem. Brief historical remarks, along with a non-technical layout of the

ideas behind the proof of the Furstenberg Multiple Recurrence Theorem, are given in Chapter 1. After

introducing some notation, preliminary definitions and propositions in Chapter 2, the equivalence of the

Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem is laid out in detail in Chapter 3.

The rest of this work is devoted to providing a proof of the Furstenberg Multiple Recurrence Theorem.

Two important classes of invertible measure preserving systems, weak mixing and compact systems, are

introduced in Chapters 4 and 5 respectively, where it is shown that these classes of measure preserving

systems satisfy the Furstenberg Multiple Recurrence Theorem. (We shall say these systems have the

Furstenberg property). In Chapter 6, a dichotomy result is proven that characterizes all invertible

measure preserving systems in terms of weak mixing and compact systems.

After introducing more preliminary definitions and propositions in Chapter 7, a short proof of Roth’s

Theorem, the first non-trivial special case of Szemerédi’s Theorem, is given in Chapter 8. In Chapter 9,

a generalization of weak mixing systems, known as weak mixing extensions, is introduced. It is shown

that if a measure preserving Y has the Furstenberg property and X is a weak mixing extension of

Y, the Furstenberg property passes through the extension to the extended system X. The analogous

generalization of compact systems - compact extensions - is introduced in Chapter 10 and it is shown that

the Furstenberg property passes through compact extensions. Similar to what was done in Chapter 6, a

dichotomy result is proven in Chapter 11 that characterizes extensions of invertible measure preserving

systems in terms of weak mixing and compact extensions. All of the necessary tools developed in

previous chapters are put to use in Chapter 12 where the Furstenberg Multiple Recurrence Theorem is

proven - thus establishing Szemerédi’s Theorem.
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Part I: Furstenberg Multiple Recurrence and

Szemerédi’s Theorem



CHAPTER 1

Introduction

1. Ramsey Theory and Szemerédi’s Theorem

Ramsey Theory is a relatively new area of Mathematics, with the earliest results in the field only being

discovered in the early 20th century. The name was taken after F. Ramsey who proved one of the first

Ramsey Theoretic results in 1928 [10, p. 2].

Ramsey’s Theorem. For all n,m ∈ N such that n,m ≥ 2, there exists an M ∈ N such that for every

R ≥ M , any 2-colouring of the edges of the complete graph KR, there exists a red complete subgraph

Kn or a blue complete subgraph Km of KR.1

An equally famous theorem is that of van der Waerden, proven in 1927 [32].

van der Waerden’s Theorem (Finitary version). Let k, r ∈ N. There exists an integer M =

W (k, r) such that for every N ≥ M and for every partition C1, C2, · · · , Cr of the set {1, 2, · · · , N},
there exists a Ci that contains a length k arithmetic progression.

For a fixed pair k, r ∈ N, the number W (k, r) defined above is known as the van der Waerden number.

Both van der Waerden and Ramsey’s Theorems are good examples of the typical form of results in

Ramsey Theory: Both give sufficient conditions under which a finite partition of a certain structure

is guaranteed to give rise to some sort of regular substructure. Stated differently, results in Ramsey

Theory guarantee that, in some way, it is impossible to impose complete disorder on a sufficiently large

structure via the application of a finite partition.

The above finitary version of van der Waerden’s Theorem has an equivalent infinitary formulation.

van der Waerden’s Theorem (Infinitary version). Let k, r ∈ N. If the natural numbers are

partitioned into r classes

N =
r⋃
i=1

Ci

then at least one of these classes Ci must contain an arithmetic progression of length k.

Van der Waerden’s Theorem tells us that we can never impose a finite partition on the natural numbers

and avoid having one of the classes of the partition containing arbitrarily long arithmetic progressions.

This naturally leads to the question: For a given partition of the natural numbers C1, C2, · · · , Cr, is

1This is, in fact, the simplest case of Ramsey’s Theorem. The statement can be generalized to n-hypergraphs and n-dimensional colourings of
the edges of the n-hypergraph. This generalization claims the existence of a complete sub-n-hypergraph where all the edges share the same

n-dimensional colour.

2
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there a sufficient condition we can use to identify which of the Ci’s contain arbitrarily long arithmetic

progressions? Van der Waerden’s Theorem does not reveal this. An appropriate sufficient condition

needed to be identified in order to establish this strengthening of van der Waerden’s Theorem.

In 1936, Paul Erdös and Paul Turán studied conditions under which a set of integers {1, 2, · · · , N}
contains a set A := {a1, · · · , an} such that no three elements of A form a length 3 arithmetic progression

[7]. This study was done in the hopes of establishing stronger bounds on the van der Waerden numbers

and make progress on the conjecture that the primes contain arbitrarily long arithmetic progressions,

which was only proven in 2004 by Ben Green and Terence Tao [30]. Erdös and Turán would later

also make several conjectures of varying strength that they suspected would provide a sufficient condi-

tion to determine whether a given subset of the natural numbers contains arbitrarily long arithmetic

progressions [28]. One of those conditions (Definition 2.2) is central to our study:

Definition. Let A ⊆ Z. The upper density of A in Z is defined as

δ(A) := lim sup
N→∞

1

N

N∑
n=1

|A ∩ {−N,−N + 1, · · · , N − 1, N}|
2N + 1

.

The motivation behind this definition is that the upper density of a set A quantifies the relative size of

the set A in comparison to the entire set of integers. It is clear from the defintion that d (Z) = 1, and

for any set B ⊆ Z with only a finite number of elements, that d (B) = 0. With this definition in mind,

Erdös and Turán made the following (then) conjecture.

Conjecture. Let A ⊆ Z. If d (A) > 0, then set A contains arbitrarily long arithmetic progressions.

The first major stepping stone towards verifying this result came in 1952 from Roth [23].

Roth’s Theorem. Let A ⊆ Z. If d (A) > 0 then A contains an arithmetic progression of length three.

The Hungarian mathematician Endre Szemerédi was able to extend this result to the case of arithmetic

progressions of length four in 1969 [26], and in 1975 extended his argument to the full result [27].

Szemerédi’s Theorem. Let k ∈ N. If A ⊆ Z is such that d (A) > 0, then there exits a ∈ Z and d ∈ N
such that

{a, a+ d, a+ 2d, · · · , a+ (k − 1)d} ⊆ A.

Szemerédi’s proof has gained some notoriety for its intricacies, and we will not attempt to expound

upon it in this dissertation. Given the periods of time between the initial conjecture by Erdös and

Turán, the treatment of the first non-trivial case by Roth, and the eventual full proof by Szemerédi,

it is surprising that it took only another year for an entirely different proof of Szemerédi’s Theorem

to be published. Furstenberg proved the following statement, which he had shown to be equivalent to

Szemerédi’s Theorem [15].

Furstenberg’s Multiple Recurrence Theorem. Let (X,Σ, µ, T ) be an invertible measure pre-

serving system and k ∈ N. For any E ∈ Σ such that µ(E) > 0 there exists n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.
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A measure preserving system (X,Σ, µ, T ) is said to have the Furstenberg property if for every E ∈ Σ

with µ(E) > 0 there exists n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.

It is the proof of this result, along with its equivalence to Szemerédi’s Theorem that we will turn to

shortly.

Szemerédi’s Theorem has over the years been proven to be an interface between many different, often

seemingly disparate, fields of Mathematics with no less than five unique proofs of the theorem from:

(i) Combinatorics - (Szemerédi)

(ii) Ergodic Theory - (Furstenberg)

(iii) Fourier Analysis - (Gowers, [12])

(iv) Hypergraphs - (Nagle, Rödl, Schacht [20], Rödl, Schacht [21], Rödl, Skokan [22])

(v) Non-standard analysis - (Gordon, [11])

The approach to Szemerédi’s Theorem, via the Furstenberg Multiple Recurrence Theorem, we will lay

out follows in large part the works of Tao in [29, § 2.1-2.15], supplemented by the works of Furstenberg

[9], McCutcheon [17] and notes by Zhao [34].

2. A Non-Technical Overview of the Proof

Although some of the details of the proof - especially in the last few chapters - require some work, the

proof still has the advantage of having a clear structure, which we depict in Figure 1 on p. 5 and also

expound upon in a non-technical fashion.

The proof we will lay out starts off with the verification that the Furstenberg Multiple Recurrence

Theorem and Szemerédi’s Theorem are equivalent. For the forward implication, we are given a set

A ⊆ Z with positive upper density and k ∈ N. Having constructed a particular measure preserving

system (X,Σ, µ, T ) and a particular set E ∈ Σ with µ(E) > 0, we use the regularity of the set

E := E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE

and the fact that µ(E) > 0 in order to find a point x ∈ E such that

x, T nx, T 2nx, · · · , T (k−1)nx ∈ E.

This will allow us to prove the existence of a length k arithmetic progression

{a, a+ d, a+ 2d, · · · , a+ (k − 1)d} ⊆ A.

For the converse implication, we are given a measure preserving system (X,Σ, µ, T ) and some set E ∈ Σ

with µ(E) > 0. We use the fact that Szemerédi’s Theorem gives us arithmetic progressions of the form

a, a+ d, a+ 2d, · · · , a+ (k − 1)d

along with splitting the set X into a countable union of measurable sets in order to establish that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.
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(Equivalence of Szemerédi’s Theorem and FMR)

(Weak Mixing Systems) (Compact Systems)

(Dichotomy of Systems)

(Roth’s Theorem)

(Weak Mixing Extensions) (Compact Extensions)

(Dichotomy of Extensions)

(Furstenberg Towers and the Structure Theorem)

(Szemerédi’s Theorem)

Figure 1. A flowchart depicting the overall structure of the proof of Szemerédi’s Theorem via the
Furstenberg Multiple Recurrence Theorem

The full details of this equivalence are given in Chapter 3.

The proof of the Furstenberg Multiple Recurrence Theorem can be viewed, loosely speaking, as an

inductive argument. For the ‘base case’ of the argument, we establish that the Furstenberg property

holds for two special classes of invertible measure preserving systems - weak mixing systems and compact

systems.

An invertible measure preserving system (X,Σ, µ, T ) is said to be weak mixing if for every A ∈ Σ,

the events A ∈ Σ and T−nA ∈ Σ tend, in a certain sense, towards independence as the value n ∈ N
increases. Specifically

1

N

N∑
n=1

|µ(A ∩ T−nA)− µ(A)2| → 0 as N →∞.

There are many different characterizations of weak mixing systems, and we shall use a slightly different

version in Chapter 4 when we prove that all weak mixing systems have the Furstenberg property.
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An invertible measure preserving system (X,Σ, µ, T ) is said to be compact if for every B ∈ Σ, the

sequence of events (T−nB) is almost periodic in the sense that, for every ε > 0, the set

{n ∈ N : µ(E4T−nE) < ε}

is syndetic2. This is also not the only way to characterize a compact system, and we will use two

equivalent formulations introduced in Chapter 5, where we show that all compact systems have the

Furstenberg property.

Knowing that weak mixing and compact systems have the Furstenberg property is already significant

progress, but this does not cover the case of an arbitrary measure preserving system. To this end, we

shall endeavour to characterize all measure preserving systems in terms of weak mixing and compact

systems. A dichotomy result between weak mixing and compact systems will be established, which,

loosely speaking, will state the following:

Every invertible measure preserving system is either weak mixing, or contains a compact measure pre-

serving system embedded inside it.

The embedded measure preserving system is known as a factor. The complete proof of this dichotomy

result is given in Chapter 6. Knowing this, it is easy to establish that for any invertible measure

preserving system, there exists at least a factor of the system which has the Furstenberg property.

Using this, and a few extra propositions, we will be able to provide a rather short proof of Roth’s

Theorem, given in Chapter 8.

Further tools will need to be developed in order for the special case of Roth’s Theorem to be generalized

to Szemerédi’s Theorem. One of the most central concepts we shall make use of moving forward is that

of an extension: Instead of considering single measure preserving systems, we shall consider a measure

preserving system along with a factor embedded inside it. The larger system with the factor embedded

inside it will be known as the extension. In this new picture, important properties of an extension

can be defined relative to a factor. All the tools we will need to talk about factors and extensions are

given in Chapters 6 and 7. This idea of extensions leads to a natural generalization of weak mixing and

compact systems: Weak mixing and compact extensions, where a system is respectively weak mixing or

compact relative to a factor.

These new concepts will allow us to move closer to proving that an arbitrary invertible measure pre-

serving system has the Furstenberg property. Given an invertible measure preserving system Y with

Furstenberg property, we shall show that if the system Y is a factor of X, and the extension is either a

weak mixing or compact extension, the Furstenberg property passes through the extension to the larger

system X. This is shown in Chapters 9 and 10, respectively.

However, knowing that the Furstenberg property passes through the weak mixing or compact extensions

alone is also not quite enough. A measure preserving system X may be the extension of a factor Y

which is either a weak mixing or compact system, yet the extension itself need not be a weak mixing nor

a compact extension! To this end, in a similar manner to the previous dichotomy result, we establish a

general characterization of extensions in terms of weak mixing and compact extensions:

2A set A ⊆ Z is said to be syndetic if it is countable and has bounded gaps between consecutive elements. The formal definition is given in

Definition 5.3.
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Given a measure preserving system X and a factor Y and the extension

φ : Y → X,

Either φ is a weak mixing extension or there exists an intermediate factor Z between Y and X such that

the intermediate extension

ψ : Y → Z

is a compact extension.

Now, given any measure preserving system X := (X,Σ, µ, T ) and starting with the extension from the

trivial system, X0 := (X, {∅, X}, µ, T ), using Zorn’s Lemma and this new dichotomy of extensions result

will allows us to create an ordinal indexed tower of extensions of cardinality κ

X0 → X1 → · · · → Xα → Xα+1 → · · · → Xκ → X.

It’s easy to show that the trivial system X0 is both compact and weak mixing, hence has the Furstenberg

property. Proving that the Furstenberg property passes through this ordinal indexed tower of extensions

from the trivial factor all the way up to the system X will allow us to conclude that the measure

preserving system X has Furstenberg property, proving the Furstenberg Multiple Recurrence Theorem,

and thus giving us Szemerédi’s Theorem as a corollary.

A reader who is only interested in the proof of the Furstenberg Multiple Recurrence Theorem and is

familiar with the definitions introduced in Chapters 2, 6 and 7, a reading of Chapters 9 - 12 alone

would constitute a full proof of the Furstenberg Multiple Recurrence Theorem. However, the themes

and ideas developed in proving that weak mixing and compact systems have the Furstenberg property

in Chapters 4 and 5, as well as the simpler dichotomy of systems result in Chapter 6, repeat themselves

strongly in the later chapters, which may be easier to follow having understood the more simple ‘base

case’.



CHAPTER 2

Preliminaries and Notation

Before we begin with the treatment of Szemerédi’s Theorem via the Furstenberg Multiple Recurrence

Theorem, we introduce a few preliminary concepts and the general notation style that will be used in

this dissertation. First, we give the formal definitions of the terms used in the statement of Szemerédi’s

Theorem.

1. Preliminary Definitions

Definition 2.1 (Arithmetic progressions). An arithmetic progression of length k in Z is a set of integers

{a, a+ d, a+ 2d, · · · , a+ (k − 1)d}

where a ∈ Z and d ∈ N.

Definition 2.2 (Upper and lower density in Z, [17, Definition 3.2.1, p.84]). Take A ⊆ Z. Define the

upper density of the set A in the integers to be

d (A) := lim sup
N→∞

|A ∩ {−N,−N + 1, · · · , N − 1, N}|
2N + 1

.

The lower density of the set A in the integers, denoted as d (A), is similarly defined by replacing the

limit superior with the limit inferior.

As we shall see, we will from time to time need to make use of a definition for upper and lower density

in the natural numbers instead of the integers.

Definition 2.3. Take B ⊆ N. We define the upper density of the set B in the natural numbers to be

δN (B) := lim sup
N→∞

|B ∩ {1, · · · , N − 1, N}|
N

.

The lower density of the set B, denoted as δN (B), is defined similarly by replacing the limit superior

with the limit inferior.

Some basic properties regarding upper and lower density is given in Appendix A.

The concept that will be the most central in our discussion moving forward is that of a measure preserving

system. All of the measure preserving systems we shall discuss will be formed from an underlying

probability space. The conventions and terms we will make use of regarding probability spaces and

basic measure theoretic concepts are written concisely in [17, § 3.1].

Definition 2.4 (Measure preserving systems, [9, Section 3.1, p. 59]). Let (X,Σ, µ) be a probability

space. A mapping T : X → X is said to be measure preserving if the following conditions are satisfied

8
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(i) For every A ∈ Σ, we have T−1A ∈ Σ.

(ii) For every A ∈ Σ, we have µ(T−1A) = µ(A).

If T is measure preserving, then the quadruple (X,Σ, µ, T ) is referred to as a measure preserving system.

Definition 2.5 (Invertible measure preserving system, [25, p. 67]). A measure preserving system

(X,Σ, µ, T ) is said to be invertible if the measure preserving map T : X → X is a bijection and both

the maps T and T−1 are measure preserving.

2. Notation and Conventions

The Lp and L∞ function spaces will play a very important role in the analysis to follow. For the sake

of completeness, the construction of these function spaces, along with some important related facts we

use frequently, are given in Appendix D.

Remark 2.6. For the sake of brevity, we will denote a measure preserving system (X,ΣX , µ, T ) as

X. If we are considering two measure preserving systems, we denote them as X := (X,ΣX , µ, T ) and

Y := (X,ΣY , µ, T ), this will allow us to develop useful, and unambiguous, shorthand notation.

As seen in Appendix D, the Lp and L∞ function spaces are defined using an underlying probability space.

In chapters to come, we will refer to Lp spaces constructed with respect to measure preserving systems

X := (X,Σ, µ, T ) instead of a probability space (X,Σ, µ). When this occurs, for the sake of brevity and

readability, it is understood that L2(X) is defined in terms of the underlying probability space (X,Σ, µ)

of the measure preserving system X.

We shall further abuse this shorthand notation by often denoting measure preserving systems and

probability spaces by the shorthand X. This is done for brevity and to improve readability. It will,

however, always be clear from the given context which object the symbol refers to.

For the sake of clarity, we point out that the elements of the Lp spaces, as constructed Appendix D,

are in fact cosets of functions and not functions themselves. However, we will continue to refer to the

elements of Lp spaces as functions in their own right, as the construction of these spaces allows us

to avoid technicalities like functions differing on sets of measure zero, and not much further clarity is

gained by emphasising the fact that the elements of the Lp spaces are cosets.

Definition 2.7 (Set of all simple functions generated by Σ′.). Given a probability space X := (X,Σ, µ)

and Σ′ a sub-σ-algebra of Σ. Denote the set of all simple functions on Σ′ as

S(Σ′) :=

{∑
i∈I

αi1Ai : {Ai}i∈I ⊆ Σ′, {αi}i∈I , |I| <∞

}
.

With these notational conventions in mind, the following operator on the space of L2 functions will

make regular appearances.

Definition 2.8. Given a measure preserving system X := (X,Σ, µ, T ), define the Koopman operator

as a mapping

KT : L2(X)→ L2(X)
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where KTf := f ◦ T .

One of the results we shall use most often is the fact that the Koopman operator preserves the integrals

of L2 functions, the proof of which we lay out here.

Definition 2.9 ([5, Chapter I, Proposition 5.2]). Given a real Hilbert space H, a linear operator

U : H → H is said to be an isometry if for every x ∈ H

‖U(x)‖H = ‖x‖H .

Proposition 2.10. Given a measure preserving system X := (X,Σ, µ, T ) then for every A ∈ Σ

‖1A ◦ T‖L2(X) = ‖1A‖L2(X) .

Proof. Fix any A ∈ Σ. Then

‖1A‖2
L2(X) =

∫
X

|1A|2 dµ =

∫
X

1A dµ = µ(A).

Further

‖1A ◦ T‖2
L2(X) =

∫
X

|1A ◦ T |2 dµ =

∫
X

|1T−1A|2 dµ =

∫
X

1T−1A dµ = µ(T−1A).

However, since T is a measure preserving map, we know that µ(A) = µ(T−1A). Therefore

‖1A ◦ T‖L2(X) = ‖1A‖L2(X) . �

Since the Koopman operator has been shown to act as a isometry on the indicator functions, we have

the following simple corollary.

Corollary 2.11. Given a measure preserving system X := (X,Σ, µ, T ). Then for every h ∈ S(Σ)∫
X

h dµ =

∫
X

h ◦ T dµ.

Proof. Let n ∈ N and consider a simple function h =
∑n

i=1 αi1Ai . Then∫
X

h dµ =

∫
X

n∑
i=1

αi1Ai dµ =
n∑
i=1

αi

∫
X

1Ai dµ =
n∑
i=1

αi

∫
X

1Ai ◦ T dµ =

∫
X

h ◦ T dµ. �

The following result will prove indispensable for approximation results moving forward.

Proposition 2.12 (Simple functions are dense in L2, [24, Theorem 3.13, p. 69]). Given a probability

space X := (X,Σ, µ). Then for every p ∈ N the set S(Σ) is dense in Lp(X).

Proposition 2.13. Let X := (X,Σ, µ) be a probability space and any f ∈ L0(X). For every x ∈ X,

define

f+(x) = max{f(x), 0} f−(x) = max{−f(x), 0}.
Then f+, f− ∈ L0(X) are non-negative and f = f+ − f−.

Proposition 2.14. Given a measure preserving system X := (X,Σ, µ, T ). Then for every f ∈ L1(X)

such that f ≥ 0, ∫
X

f dµ =

∫
X

f ◦ T dµ.
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Proof. Take any f ∈ L1(X). By the definition of the integral and Corollary 2.11∫
X

f dµ = sup

{∫
X

s dµ : s =
n∑
i=1

αi1Ai ∈ S(Σ), s ≤ f

}

= sup

{∫
X

s ◦ T dµ : s =
n∑
i=1

αi1Ai ∈ S(Σ), s ≤ f

}

= sup

{∫
X

s ◦ T dµ : s =
n∑
i=1

αi1Ai ∈ S(Σ), s ◦ T ≤ f ◦ T

}

=

∫
X

f ◦ T dµ. �

Corollary 2.15. Given a measure preserving system X := (X,Σ, µ, T ). Then for every f ∈ L1(X),∫
X

f dµ =

∫
X

f ◦ T dµ.

Proof. Take any f ∈ L1(X). By Proposition 2.13, there exists non-negative functions f+, f− ∈
L1(X) such that f = f+ − f−. Then, by Proposition 2.14,∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ =

∫
X

f+ ◦T dµ−
∫
X

f− ◦T dµ =

∫
X

(f+−f−)◦T dµ =

∫
X

f ◦T dµ. �

Corollary 2.16. Let X := (X,Σ, µ, T ) be a measure preserving system. Then the Koopman operator

is an isometry on L2(X).

Proof. Take any f ∈ L2(X) and consider

‖f ◦ T‖2
L2(X) =

∫
X

|f ◦ T |2 dµ =

∫
X

|f |2 ◦ T dµ.

Further, if f ∈ L2(X) then |f |2 ∈ L1(X). Therefore, by Proposition 2.15,

‖f ◦ T‖2
L2(X) =

∫
X

|f |2 ◦ T dµ =

∫
X

|f |2 dµ = ‖f‖2
L2(X) .

Since the choice of f ∈ L2(X) was arbitrary, we conclude that the Koopman operator is an isometry on

L2(X). �

Next we introduce a few standard pieces of notation we will use throughout.

Remark 2.17 (Trivial σ-algebra). Take any non-empty set X. It is easy to verify that the collection

of sets Σ0 := {∅, X} is a σ-algebra. Throughout the dissertation, we shall refer to the collection Σ0 as

the trivial σ-algebra.

Any measure preserving system X := (X,Σ, µ, T ) where Σ0 ( Σ is said to be a non-trivial measure

preserving system.

Remark 2.18 (Closed and open balls). Given a metric space (X, d) a point x ∈ X and ε > 0, we denote

closed and open balls in the following way;

B(x, ε) = {y ∈ X : d(y, x) ≤ ε}
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and

B(x, ε) = {y ∈ X : d(y, x) < ε}.

Remark 2.19. Let (Y, TY ) be a topological space and X := (X,Σ, µ, T ) a measure preserving system.

We note that the essential supremum of a essentially bounded function f ∈ L∞(X) and the supremum

norm of a continuous function g ∈ Cb(Y ) are both denoted by ‖•‖∞. We will make use of this notational

abuse, while always clearly denoting whether the function lies in Cb(Y ) or L∞(X) to make it clear from

context which norm is being referred to.

With these definitions and conventions, along with some propositions from the appendices, we are

sufficiently armed to prove that the Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem

are equivalent, as well as proving the first special cases of the Furstenberg Multiple Recurrence Theorem.



CHAPTER 3

The Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theorem

In order to keep the proof of the equivalence of the following results focused and relatively concise,

while still providing a sufficient amount of detail, a significant number of smaller propositions used

in the proof have been placed in Appendix 3.A and 3.B and are referenced in the main body of the

proof. Readers who are familiar or convinced by the referenced statements can happily skip over these

ancillary sections. This proof structure will be used throughout the entire dissertation. Now, restating

the theorems of interest.

Theorem 3.1 (Szemerédi’s Theorem, [9, Theorem 3.21]). Let k ∈ N. If A ⊆ Z is such that d (A) > 0,

then A contains a length k arithmetic progression.

Theorem 3.2 (Furstenberg Multiple Recurrence Theorem, [9, Theorem 7.15]). Let X := (X,Σ, µ, T )

be an invertible measure preserving system and k ∈ N. For any E ∈ Σ such that µ(E) > 0 there exists

n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.

Definition 3.3. A measure preserving system X := (X,Σ, µ, T ) is said to have the Furstenberg property

if for every E ∈ Σ such that µ(E) > 0 and every k ∈ N there exists n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0.

1. The Furstenberg Multiple Recurrence Theorem implies Szemerédi’s Theorem

Theorem 3.4 ([9, Theorem 3.21]). The Furstenberg Multiple Recurrence Theorem (Theorem 3.2) im-

plies Szemerédi’s Theorem (Theorem 3.1).

Proof. Define Ω := {0, 1}Z as the set of all Z-indexed binary strings. Equip Ω with the mapping

ρ : Ω× Ω→ R where

ρ(η, γ) :=

{
1

min{|j|+1:η(j)6=γ(j)} if η 6= γ

0 if η = γ
(η, γ ∈ Ω).

By Proposition 3.13, (Ω, ρ) is a compact metric space. Let Tρ denote the metric topology on (Ω, ρ).

For every i ∈ Z, define πi : Ω → {0, 1} as the coordinate projection mappings. Define the shift map

T : Ω→ Ω where

T (a)i := ai−1 (i ∈ Z)

for every a = (ai)i∈Z ∈ Ω. Define the inverse shift map T−1 : Ω→ Ω where

T (a)i := ai+1 (i ∈ Z)

13



1. THE FURSTENBERG MULTIPLE RECURRENCE THEOREM IMPLIES SZEMERÉDI’S THEOREM 14

for every a = (ai)i∈Z ∈ Ω. By Proposition 3.14, the shift mappings T and T−1 are Lipschitz continuous

functions on Ω.

Assume the statement of the Furstenberg Multiple Recurrence Theorem (Theorem 3.2). Let k ∈ N and

choose some A ⊆ Z such that d (A) > 0. Define the binary string α = (αi) ∈ Ω where

αi =

{
1 if i ∈ A
0 if i 6∈ A

(i ∈ Z).

Now, define X := {T nα : n ∈ Z} ⊆ Ω and the set

E := X ∩ π−1
0 ({1}).

Note that {Tmα : (Tmα)(0) = 1,m ∈ Z} ⊆ E.

We will use the set X to construct a measure preserving system. Having done this, we will apply the

Furstenberg Multiple Recurrence Theorem to obtain a length k arithmetic progression in the set A ⊆ Z.

Take Σ to be the Borel σ-algebra on Ω generated by Tρ. Equip the set {0, 1} with the discrete topology.

Then the inverse image is π−1
0 ({1}) clopen in Tρ. Furthermore, the set X is also clopen in the induced

topology on the set X, which implies that E ∈ Σ is also clopen.

The shift map T will serve as our measure preserving map. It remains to construct a measure µ ∈M(X)

with respect to which T is measure preserving and µ(E) > 0 in order to apply the Furstenberg Multiple

Recurrence Theorem.

Since d (A) > 0, there exists a sequence of intervals (Ik) contained in Z such that

lim
k→∞

|A ∩ Ik|
|Ik|

= d (A) > 0.

Since X is compact, by Proposition 3.18, C(X) is separable, so there exists a countable dense sequence

of linearly independent functions D := (gn) ⊆ C(X). Further, since X is compact, the range in R of

every f ∈ C(X) is a compact subset of R. Therefore, the sets

{gn(x) : x ∈ X} ⊆ R

are compact for every gn ∈ D. Next, define the following countable family of sequences in R

(Rk,n)k∈N :=

(
1

|Ik|
∑
i∈Ik

gn(T iα)

)
k∈N

.

Since the ranges of every function gn ∈ D is compact, we conclude that for every n ∈ N, sequence

(Rk,n)k∈N is bounded. By Proposition 3.17, there exists a strictly increasing sequence (mj) ⊆ N such

that Ξn := limj→∞Rmj ,n exists for every gn ∈ D. We can now define a functional φ∗ : spanD → R.

Take any f̃ =
∑n

i=1 αigi ∈ spanD and define

φ∗(f̃) := φ∗

(
n∑
i=1

αigi

)
=

n∑
i=1

αiΞi.
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This functional is well-defined since the sequence (gn) consists of linearly independent functions. By

Proposition 3.22, the functional φ∗ is linear and bounded. It follows by Proposition 3.21 that the unique

extension φ : C(X)→ R of φ∗ is a bounded linear functional.

By the Riesz Representation Theorem (Theorem 3.27), since C(X)∗ and M(X) are isometrically iso-

morphic, there exists some µ ∈M(X) such that for every f ∈ C(X)

Fµ(f) :=

∫
X

f dµ = φ(f).

By Proposition 3.25 and 3.26, we have the following two results regarding the functional φ ∈ C(X)∗:

(I) For every f ∈ C(X), φ(f ◦ T ) = φ(f).

(II) For every f ∈ C(X), φ(f) = limj→∞
1
|Inj |

∑
m∈Inj

f(Tmα).

We claim that µ ∈M(X) is a measure such that (X,Σ, µ, T ) is a measure preserving system. Consider

any B ∈ Σ. We show that for every ε > 0∣∣µ(T−1B)− µ(B)
∣∣ < ε.

Since the measure µ is regular, there exists a sequence of open sets (Bn) ⊆ Σ such that (µ(Bn)) converges

to µ(B). Further, by Proposition 3.14, since the mapping T−1 : X → X is Lipschitz continuous, the

sequence (µ(T−1Bn)) converges to µ(T−1B). Therefore, for every n ∈ N∣∣µ(T−1B)− µ(B)
∣∣

≤
∣∣µ(T−1B)− µ(T−1Bn)

∣∣+
∣∣µ(T−1Bn)− µ(B)

∣∣
≤
∣∣µ(T−1B)− µ(T−1Bn)

∣∣+
∣∣µ(T−1Bn)− µ(Bn)

∣∣+ |µ(Bn)− µ(B)| .

Since (µ(Bn)) converges to µ(B) and (µ(T−1Bn)) converges to µ(T−1B) there exists N1 ∈ N such that

if n ≥ N1 ∣∣µ(T−1B)− µ(B)
∣∣ < 2ε

3
+
∣∣µ(T−1Bn)− µ(Bn)

∣∣ .
Further, for every n ∈ N, by Proposition 3.20, there exists a sequence of functions (f

(n)
j ) ⊆ C(X) such

that
(∫

X
f

(n)
j dµ

)
converges to µ(Bn). Therefore, consider∣∣µ(T−1Bn)− µ(Bn)

∣∣
≤
∣∣∣∣µ(T−1Bn)−

∫
X

f
(n)
j dµ

∣∣∣∣+

∣∣∣∣∫
X

f
(n)
j dµ− µ(Bn)

∣∣∣∣
By Proposition 3.25,∣∣µ(T−1Bn)− µ(Bn)

∣∣ ≤ ∣∣∣∣µ(T−1Bn)−
∫
X

f
(n)
j ◦ T dµ

∣∣∣∣+

∣∣∣∣∫
X

f
(n)
j dµ− µ(Bn)

∣∣∣∣ .
Since T : X → X is a Lipschitz continuous mapping and

(∫
X
f

(n)
j dµ

)
converges to µ(Bn), we have

that ∫
X

f
(n)
j ◦ T dµ→ µ(T−1Bn) as j →∞.
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Therefore, there exists N2 ∈ N such that if n ≥ N2 then∣∣µ(T−1Bn)− µ(Bn)
∣∣ < ε/3.

Taking M := {N1, N2}, it follows that if n ≥M then∣∣µ(T−1B)− µ(B)
∣∣ < ε.

Since the choice of ε > 0 was arbitrary, we know that µ(B) = µ(T−1B) and since the choice of B ∈ Σ

was arbitrary, we conclude that (X,Σ, µ, T ) is a measure preserving system. The same argument can

be used to show that for any B ∈ Σ, µ(TB) = µ(B). Hence, (X,Σ, µ, T ) is an invertible measure

preserving system.

In order to apply the Furstenberg Multiple Recurrence Theorem, we verify that µ(E) > 0. By Propo-

sition 3.30, since the set E is clopen, 1E ∈ C(X). By Proposition 3.26, we conclude that

µ(E) =

∫
X

1E dµ = lim
j→∞

1

|Inj |
∑
i∈Inj

1E(T iα).

The values i ∈ Z such that 1E(T iα) takes on a non-zero value are precisely the i ∈ A. Therefore

µ(E) = lim
j→∞

1

|Inj |
∑
i∈Inj

1E(T iα) = lim
j→∞

|A ∩ Inj |
|Inj |

= d (A) > 0.

Applying the Furstenberg Multiple Recurrence Theorem to the measure preserving system (X,Σ, µ, T ),

there exists n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ T−(k−1)nE) > 0.

As a result, there exists some x ∈ X such that x ∈ E and T jnx ∈ E, for every j ∈ {1, · · · , k − 1}.
By definition of the set E = X ∩ π−1

0 ({1}), the point x ∈ E corresponds to a limit point of a sequence

contained in the set {T nα : n ∈ Z}. Let (T rα) be a sequence in {T nα : n ∈ Z} that approximates the

limit point x ∈ E. There exists some R ∈ N such that for all r ≥ R, we have that

ρ(T rα, x) <
1

k · n
.

Then, by Lemma 3.10, 1 = x(t) = TRα(t) for all t ∈ {−(k−1)n,−(k−1)n+1, · · · , (k−1)n−1, (k−1)n}.
And therefore, by the definition of α ∈ Ω, the set A contains an arithmetic progression of length k. �

2. Szemerédi’s Theorem implies the Furstenberg Multiple Recurrence Theorem

Definition 3.5. For every k ∈ N, define APk ⊆ Zk as the set of all points ~x ∈ Zk for which there exists

some a ∈ Z and d ∈ N such that

~x = (a, a+ d, a+ 2d, · · · , a+ (k − 1)d) ∈ Zk.

Theorem 3.6 ([34, p. 15]). Szemerédi’s Theorem (Theorem 3.1) implies the Furstenberg Multiple Re-

currence Theorem (Theorem 3.2).

Proof. Assume the statement of Szemerédi’s Theorem (Theorem 3.1). Let (X,Σ, µ, T ) be some

invertible measure preserving system. Let k ∈ N and E ∈ Σ such that µ(E) > 0.
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Define for each ~a = (ai)
k
i=1 ∈ APk the set

K~a := {x ∈ X : T aix ∈ E for each 1 ≤ i ≤ k,~a ∈ APk} =
k⋂
i=1

T−aiE ∈ Σ.

Define K :=
⋃
~a∈APk K~a ∈ Σ. By Lemma 3.32, since µ(E) > 0, there exists some F ∈ Σ with µ(F ) > 0,

such that for every x ∈ F , the set Γx := {n ∈ Z : T nx ∈ E} has positive upper density.

Therefore, by Szemerédi’s Theorem, for each x ∈ F , the set Γx must contain a length k progression. So,

for every x ∈ F , there is some ~c ∈ APk such that {c1, c2, · · · , ck} ⊆ Γx. Therefore, x ∈ K~c ⊆ K. As this

holds true for all x ∈ F , we have F ⊆ K. Therefore, µ(K) ≥ µ(F ) > 0.

Since APk ⊆ Zk, the set APk is at most countable. Since K =
⋃
~a∈APk K~a, there exists some ~b ∈ APk

such that µ(K~b) > 0, otherwise, this would contradict the fact that µ(K) > 0. Denote the entries of
~b ∈ APk as {b, b+ n, b+ 2n, · · · , b+ (k − 1)n} ⊆ Z. For every x ∈ K~b, T

bx, T b+nx, · · · , T b+(k−1)nx ∈ E.

Therefore

K~b ⊆ T−bE ∩ T−(b+n)E ∩ T−(b+2n)E ∩ · · · ∩ T−(b+(k−1)n)E

which implies that

T bK~b ⊆ E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE

Since T is an invertible measure preserving transformation, we know that µ(T bK~b) > 0. From this, we

conclude that µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0 and the required result follows. �

3.A. Ancillary Results for the Proof of Theorem 3.4

Definition 3.7 (Metric Space, [16, Definition 1.1-1]). Let X be a non-empty set. A mapping d :

X ×X → R is said to be a metric on X if the following conditions hold.

(i) For all x, y ∈ X, we have d(x, y) ≥ 0.

(ii) For all x, y ∈ X, the value d(x, y) = 0 if and only if x = y.

(iii) For all x, y ∈ X, the value d(x, y) = d(y, x).

(iv) For all x, y, z ∈ X
d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is said to be a metric space.

Definition 3.8. Consider the set Ω := {0, 1}Z and define the mapping ρ : Ω× Ω→ R as

ρ(η, γ) :=

{
1

min{|j|+1:η(j) 6=γ(j)} if η 6= γ,

0 if η = γ,
(η, γ ∈ Ω).

As a shorthand, for any γ, η ∈ Ω, define γ∧η := min{|k|+ 1 : γ(k) 6= η(k)}.
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Lemma 3.9. The pair, (Ω, ρ) as defined in Definition 3.8, satisfies the first three axioms of a metric

space in Definition 3.7.

Proof. (i) Take any γ, η ∈ Ω. Since 1 ≤ γ∧η < ∞, we have 0 < 1/γ∧η ≤ 1. Therefore,

ρ : Ω × Ω → R takes on a finite value for any (γ, η) ∈ Ω × Ω. Further, the mapping ρ(η, γ) ∈
{1/n : n ∈ N} ⊆ R+, hence ρ(η, γ) ≥ 0.

(ii) By the definition of ρ : Ω× Ω→ R, if γ = η then ρ(γ, η) = 0. Conversely, if ρ(γ, η) = 0 then it

follows that γ = η, since if γ 6= η then

ρ(γ, η) ∈ {1/n : n ∈ N}

and 1/n > 0 for any n ∈ N.

(iii) Take any γ, η ∈ Ω. Since γ∧η = η∧γ, by the definition above, we have

ρ(γ, η) = 1/γ∧η = 1/η∧γ = ρ(η, γ). �

The following lemma is an immediate consequence of the definition of the mapping ρ : Ω × Ω → R
defined in Definition 3.8.

Lemma 3.10. For η, γ ∈ Ω, ρ(η, γ) < 1/n if and only if γ(k) = η(k) for k ∈ {−(n−1),−(n−2), · · · , n−
2, n− 1}.

Lemma 3.11. The mapping ρ : Ω× Ω→ R defined in Definition 3.8 satisfies the triangle inequality.

Proof. Using the shorthand notation from Defintion 3.8, we show for all γ, η, δ ∈ Ω, the values

γ∧η, γ∧δ and δ∧η satisfy the triangle inequality:

1/γ∧η ≤ 1/γ∧δ + 1/δ∧η,

Let γ, δ, η ∈ Ω be arbitrary. Define A := γ∧η, B := γ∧δ and C := δ∧η.

(i) If A = B = C:

Then 1/A = 1/B = 1/C, and clearly, 1/A ≤ 2/A = 1/B + 1/C.

(ii) If B < A < C or B < C < A:

Assume B < A < C. Then, we have that 1/B > 1/A > 1/C. If follows that, 1/B + 1/C >

1/A + 1/C > 1/A, since 1/C > 0. This gives 1/B + 1/C > 1/A, as required. To prove the

result if B < C < A, permute the occurrences of B and C. The cases where B < A = C and

B = A < C can be treated in a very similar way.

(iii) If C < A < B or C < B < A:

Assume C < A < B. Then, we have that 1/C > 1/A > 1/B. It follows that, 1/C + 1/B >

1/A+ 1/B > 1/A since 1/B > 0. This gives 1/C+ 1/B > 1/A, as required. To prove the result

if C < B < A, permute the occurrences of B and A.

(iv) Lastly, we show that the inequalities A < B < C and A < C < B are not possible.
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Assume A < B < C. Then, by definition of A, B and C:

γ(k) = η(k) ∀k ∈ {−A+ 1, · · · , A− 1},
γ(k) = δ(k) ∀k ∈ {−B + 1, · · · , B − 1},
δ(k) = η(k) ∀k ∈ {−C + 1, · · · , C − 1},

while one from each of the following three possibilities holds true.

γ(A) 6= η(A) or γ(−A) 6= η(−A),(1)

γ(B) 6= δ(B) or γ(−B) 6= δ(−B),(2)

δ(C) 6= η(C) or δ(−C) 6= η(−C).(3)

But, since γ(k) = δ(k) for all k ∈ {−B + 1, · · · , B − 1} and δ(k) = η(k) for all k ∈ {−C +

1, · · · , C − 1} and B < C, we conclude that γ(k) = η(k) for at least all k ∈ {−B + 1, · · · , B −
1}. But, since we assumed that A < B, this would contradict the fact that either γ(A) 6=
η(A) or γ(−A) 6= η(−A). Therefore, we discard the possibility that A < B < C.

The same argument can be used to exclude the case A < C < B. �

From Lemma 3.9 and 3.11, we have the following corollary.

Corollary 3.12. The set Ω := {0, 1}Z equipped with the mapping ρ : Ω × Ω → R defined in Defini-

tion 3.8 is a metric space.

Proposition 3.13. The metric space (Ω, ρ) is compact.

Proof. Take any sequence (xn) ⊆ Ω. Since {0, 1} is a finite set, there exists some α0 ∈ {0, 1} such

that |{n ∈ N : xn(0) = α0}| =∞. Define K0 := {n ∈ N : xn(0) = α0} and n1 := minK0.

Next, define K1 := {n > n1 : xn(0) = α0, xn(1) = α1, xn(−1) = α1} where α1 ∈ {0, 1} has been chosen

such that |K1| =∞. Define n2 := minK1.

Continuing in this way, for every j ≥ 2, we define Kj := {n > nj−1 : xn(i) = αi, xn(−i) = αi ∀i ∈
{0, 1, · · · , j − 1}, xn(j) = αj, xn(−j) = αj} where all the αi’s have been previously defined for i ∈
{0, 1, · · · , j − 1} and where αj ∈ {0, 1} such that |Kj| = ∞. Define nj+1 : = minKj and x : =

(· · · , α2, α1, α0, α1, α2, · · · ) ∈ Ω.

We claim that the subsequnce (xnj) converges to x ∈ Ω. Fix any ε > 0, there exists some N ∈ N such

that 1/N < ε. It is enough for us to show that ρ(xnk , x) < ε for every k ≥ N . However, by definition of

the subsequence (xnj)

min{|j|+ 1 : xnk(j) 6= x(j)} ≥ N + 1 > N.

Therefore, ρ(xnk , x) ≤ 1/(N + 1) ≤ 1/N < ε for every k ≥ N . Since the choise of ε > 0 was arbitrary,

the subsequence (xnj) converges to x. Since (xn) was an arbitrary subsequence contained in Ω, we

conlcude that (Ω, ρ) is a compact metric space. �
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Proposition 3.14. Consider the set Ω := {0, 1}Z and the shift mapping T : Ω→ Ω as defined on p. 13.

Then the mappings T and T−1 are Lipschitz continuous with Lipschitz constant L = 2.

Proof. Fix any γ, η ∈ Ω. Define n0 := min{|j|+ 1 : γ(j) 6= η(j)}. We check all possible cases.

(i) If n0 = 1, then we must have that γ(0) 6= η(0). It follows that ρ(Tγ, Tη) ≤ 2 = 2
n0

= 2ρ(γ, η).

(ii) If n0 > 1 and j > 0 for |j|+ 1 = min{|j|+ 1 : γ(j) 6= η(j)}, it follows that ρ(Tγ, Tη) = 1
n0−1

≤
2
n0

= 2ρ(γ, η).

(iii) If n0 > 1 and j < 0 for |j| + 1 = min{|j| + 1 : γ(j) 6= η(j)}, it follows that ρ(Tγ, Tη) ≤ 1
n0
≤

2
n0

= 2ρ(γ, η).

As this covers all possible cases, we conclude that the shift mapping T is indeed Lipschitz continuous.

The same argument can be used to show that the inverse shift map T−1 : Ω → Ω is also Lipschitz

continuous with Lipschitz constant L = 2. �

Theorem 3.15 (Bolzano-Weierstraß, [16, Appendix A1.7]). Given a bounded sequence (an) ⊆ R, there

exists a sequence (nk) ⊆ N such that limk→∞ ank exists.

We shall need a generalization of the Bolzano-Weierstraß Theorem from a single bounded sequence

to a countable collection of bounded sequences. To avoid messy notation with subsequences, we first

introduce the following notation.

Definition 3.16. Let A be some infinite subset of N and (xn) a sequence in R. The sequence (xn)

converges along A if for every ε > 0 there exists some N ∈ N such that if n ≥ N and n ∈ A, then

|xn − x| < ε. We write this as

lim
n∈A

xn = x.

Proposition 3.17. For every m ∈ N, let (a
(m)
n ) ⊆ R be a bounded sequence. There exists a strictly

increasing sequence (nj) ⊆ N such that limj→∞ a
(m)
nj exists for every m ∈ N.

Proof. Consider some countable collection of bounded sequences, {(a(m)
n )}m∈N. By the Bolzano-

Weierstraß Theorem (Theorem 3.15), for the sequence (a
(1)
n ), there exists a infinite subset B1 ⊆ N such

that limn∈B1 a
(1)
n exists.

Consider the subsequence (a
(2)
n )n∈B1 of (a

(2)
n ). Since (a

(2)
n ) is a bounded sequence, the subsequence

(a
(2)
n )n∈B1 is bounded. By the Bolzano-Weierstraß Theorem (Theorem 3.15), there exists an infinite

subset B2 ⊆ B1 such that limn∈B2 a
(2)
n exists.

Continuing in this way, for every k ∈ N, we can find an infinite subset Bk ⊆ Bk−1 ⊆ · · · ⊆ B1 for which

limn∈Bk a
(k)
n exists.

Define the sequence (nj) ⊆ N recursively where n1 = b1 ∈ B1 and ni := min{n ∈ Bi : n > ni−1} for

n ≥ 2. We wish to show that for any m ∈ N, that limj→∞ a
(m)
nj exists.
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Fix some m ∈ N andε > 0. We have the infinite subset Bm ⊆ N such that a(m) := limn∈Bm a
(m)
n exists.

In other words, there exists some N ∈ Bm such that for all r ∈ Bm for which r ≥ N we have

|a(m)
r − a(m)| < ε.

Simply take nk ∈ (nj) such that nk ≥ N . Then for all n ≥ nk where n ∈ (nj) we have that |a(m)
n −a(m)| <

ε. This nk is guaranteed to exist by the definition of the sets Bm and the sequence (nj). Since the choice

of ε > 0 and m ∈ N was arbitrary, the required result follows. �

Proposition 3.18 ([8, Lemma 3.23]). Let (X, ρ) be a compact metric space, then C(X) is separable.

The following result is a stronger version of Urysohn’s Lemma [19, Theorem 33.1] stated in the context

of metric spaces.

Theorem 3.19 ([19, § 33, Exercise 5]). Given a metric space (X, d) and disjoint closed sets A,B ⊆ X,

there exists f ∈ C(X) such that f(A) = {0}, f(B) = {1} and f(x) ∈ (0, 1) for x ∈ X \ (A ∪B)

Proposition 3.20. Let (X, d) be a metric space and define Σ as the Borel σ-algebra generated by the

induced topology Td on X. If µ ∈ M(X) and A ∈ Td. Then, there exists a sequence (fn) ⊆ C(X) such

that ∣∣∣∣∫
X

fn dµ− µ(A)

∣∣∣∣→ 0 as n→∞.

Proof. Since µ is a regular measure, for every n ∈ N there exists a compact set Kn ⊆ A such that

µ(A \Kn) < 1/n. Consider the disjoint closed sets Kn and X \ A. By Theorem 3.19, for every n ∈ N,

there exists fn ∈ C(X) such that f(X \ A) = {0}, f(Kn) = {1} and f(x) ∈ (0, 1) for x ∈ A \Kn. Fix

ε > 0 and consider∣∣∣∣∫
X

fn dµ− µ(A)

∣∣∣∣ =

∣∣∣∣∫
X

(fn − 1A) dµ

∣∣∣∣
≤
∣∣∣∣∫
X\A

(fn − 1A) dµ

∣∣∣∣+

∣∣∣∣∫
A\Kn

(fn − 1A) dµ

∣∣∣∣+

∣∣∣∣∫
Kn

(fn − 1A) dµ

∣∣∣∣
=

∣∣∣∣∫
A\Kn

(fn − 1A) dµ

∣∣∣∣ ≤ ∫
A\Kn

|fn − 1A| dµ =

∫
A\Kn

1A − fn dµ

Therefore, there exists N ∈ N such that ε > 1/N . Then, for all n ≥ N∣∣∣∣∫
X

fn dµ− µ(A)

∣∣∣∣ ≤ µ(A \Kn) < 1/n < ε. �

Proposition 3.21 ([16, Theorem 2.7-11]). Let X be a subspace of a normed space A, Y a Banach

space and B : X → Y be a bounded linear operator. Then B has a unique extension B̃ : X → Y where

B̃ is a bounded linear operator.

Most of the results to follow are concerned with the functional φ∗ : spanD → R defined in Theorem 3.4

on page 14 as

φ∗(f̃) := φ∗

(
n∑
i=1

αigi

)
=

n∑
i=1

αiΞi (f̃ ∈ spanD).
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Proposition 3.22. The functional φ∗ : spanD → R defined in Theorem 3.4 is linear and bounded.

Proof. The linearity of φ∗ follows easily. We claim that the functional φ∗ : spanD → R is bounded.

Take any f =
∑n

i=1 βifi ∈ spanD. Then

|φ∗(f)| =

∣∣∣∣∣
n∑
i=1

βiΞi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

βi lim
j→∞

Rnj ,i

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣
n∑
i=1

βiRnj ,i

∣∣∣∣∣
For any j ∈ N

Rnj ,i =
1

|Inj |
∑
m∈Inj

fi(T
mα).

Hence

|φ∗(f)| = lim
j→∞

1

|Inj |

∣∣∣∣∣∣
n∑
i=1

βi
∑
m∈Inj

fi(T
mα)

∣∣∣∣∣∣
= lim

j→∞

1

|Inj |

∣∣∣∣∣∣
∑
m∈Inj

n∑
i=1

βifi(T
mα)

∣∣∣∣∣∣
≤ lim

j→∞

1

|Inj |
∑
m∈Inj

|f(Tmα)|

≤ lim
j→∞

1

|Inj |
∑
m∈Inj

‖f‖∞

= lim
j→∞
‖f‖∞

= ‖f‖∞ <∞. �

By direct application of Proposition 3.21, we obtain the following corollary.

Corollary 3.23. The functional φ∗ : spanD → R defined in Theorem 3.4 has a unique extension

φ ∈ C(X)∗.

The following corollary follows as a direct application of the Riesz Representation Theorem [5, Chap-

ter III, Theorem 5.7, p.75].

Corollary 3.24. Consider the functional φ∗ : spanD → R defined in Theorem 3.4 and the unique

extension φ ∈ C(X)∗. There exists µ ∈M(X) such that

φ(f) = Fµ(f) :=

∫
X

f dµ.

Proposition 3.25. Let X be the compact Hausdorff metric space defined in Theorem 3.4 on page 14.

Consider the functional φ∗ : spanD → R defined in Theorem 3.4, the unique extension φ ∈ C(X)∗ and

the shift mapping T : X → X. Then, for every f ∈ C(X)

φ(f ◦ T ) = φ(f).
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Proof. Fix any f ∈ C(X). We claim that for every ε > 0

|φ(f)− φ(f ◦ T )| < ε.

Since D is a dense subset of C(X), there exists a sequence (fn) ⊆ D such that, (fn) converges in norm

to f . Fix any ε > 0 and consider

|φ(f)− φ(f ◦ T )| ≤ |φ(f)− φ(fn)|+ |φ(fn)− φ(f ◦ T )|
≤ |φ(f)− φ(fn)|+ |φ(fn)− φ(fn ◦ T )|+ |φ(fn ◦ T )− φ(f ◦ T )|.

As (fn) converges in norm to f , there exists some N ∈ N such that if n ≥ N

|φ(f)− φ∗(fn)| < ε/3.

Further, since (fn) converges in norm to f , and by Proposition 3.14, we know that T is a Lipschitz

continuous mapping, (fn ◦T ) converges in norm to f ◦T . Therefore, there exists some M ∈ N such that

if n ≥M , then

|φ(fn ◦ T )− φ(f ◦ T )| < ε/3.

Applying the definition of the functional φ∗ : spanD → R

|φ(fn)− φ(fn ◦ T )| =

∣∣∣∣∣∣ limj→∞

1

|Inj |
∑
i∈Inj

fn(T iα)− fn(T i+1α)

∣∣∣∣∣∣ .
But every interval Inj is of the form {−L,−(L− 1), · · · , L− 1, L} for some L ∈ N. Therefore, for every

interval Inj

|φ(fn)− φ(fn ◦ T )| ≤ lim
j→∞

1

|Inj |

∣∣∣∣∣∣
∑
i∈Inj

fn(T iα)− fn(T i+1α)

∣∣∣∣∣∣
≤ lim

j→∞

1

|Inj |
∣∣fn(Tmin Injα)− fn(Tmax Inj+1α)

∣∣
≤ lim

j→∞

1

|Inj |
∣∣fn(Tmin Injα)

∣∣+
∣∣fn(Tmax Inj+1α)

∣∣
≤ lim

j→∞

2

|Inj |
‖fn‖∞ .

As a result, there exists some K ∈ N such that if j ≥ K

|φ(fn)− φ(fn ◦ T )| ≤ 2

|Inj |
‖fn‖∞ < ε/3.

Take P := max{N,M,K}. Then all the above approximations will hold and for every n ≥ P

|φ(f ◦ T )− φ(f)| < ε.

Since the choice of ε > 0 and f ∈ C(X) were arbitrary, it follows that φ(f ◦ T ) = φ(f) for every

f ∈ C(X). �
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Proposition 3.26. Consider the functional φ∗ : spanD → R defined in Theorem 3.4 and its unique

extension φ ∈ C(X)∗. For every f ∈ C(X)

φ(f) = lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα).

Proof. Take f ∈ C(X) and fix any ε > 0. We claim that∣∣∣∣∣∣φ(f)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ < ε.

Since D is dense in C(X), there exists some sequence (fn) ⊆ D such that (fn) converges in norm to f .

For any n ∈ N

∣∣∣∣∣∣φ(f)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ ≤ |φ(f)− φ(fn)|+

∣∣∣∣∣∣φ(fn)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ .
Since the functional φ ∈ C(X)∗ is continuous and (fn) converges in norm to f , there exists some N1 ∈ N
such that if n ≥ N1 then |φ(fn)− φ(f)| < ε/2.

Further, for any n ∈ N, since fn ∈ D∣∣∣∣∣∣φ(fn)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ limj→∞

1

|Inj |
∑
m∈Inj

fn(Tmα)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣
≤ lim

j→∞

1

|Inj |
∑
m∈Inj

|fn(Tmα)− f(Tmα)|

= lim
j→∞

1

|Inj |
∑
m∈Inj

|(fn − f)(Tmα)|

≤ lim
j→∞

1

|Inj |
∑
m∈Inj

‖fn − f‖∞

= lim
j→∞
‖fn − f‖∞

= ‖fn − f‖∞ .

As such, there exists some N2 ∈ N such that if n ≥ N2, then∣∣∣∣∣∣φ(fn)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ < ε/2.

Define N = max{N1, N2}. Then, if n ≥ N∣∣∣∣∣∣φ(f)− lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα)

∣∣∣∣∣∣ < ε.
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As the choice of f ∈ C(X) and ε > 0 were arbitrary, we conclude that

φ(f) = lim
j→∞

1

|Inj |
∑
m∈Inj

f(Tmα). �

Theorem 3.27 (Riesz Representation Theorem, [5, Chapter III, Theorem 5.7, p.75]). If X is a locally

compact space and µ ∈M(X), define Fµ : C(X)→ R by

Fµ(f) =

∫
X

f dµ.

Then the mapping Fµ ∈ C(X)∗ and the mapping µ 7→ Fµ is an isometric isomorphism of M(X) onto

C(X)∗.

The following result follows directly from the Riesz Representation Theorem (Theorem 3.27).

Corollary 3.28. Let (X, d) be a compact metric space and consider any regular Borel measures µ, ν ∈
M(X). If

∫
X
fdµ =

∫
X
fdν for every f ∈ C(X), then µ = ν.

Proof. Let µ, ν ∈ M(X). By the Riesz Representation Theorem (Theorem 3.27), there exists

unique bounded linear functionals Fµ, Gν ∈ C(X)∗ such that

Fµ(f) :=

∫
X

f dµ, Gν(f) :=

∫
X

f dν (f ∈ C(X)).

By assumption, for every f ∈ C(X)

Fµ(f) =

∫
X

f dµ =

∫
X

f dν = Gν(f).

Hence, Fµ = Gν . Since M(X) and C(X)∗ are isometrically isomorphic, we conclude that µ = ν. �

Proposition 3.29. Let (X, d) a compact metric space with topology Td and consider a probability space

(X,Σ, µ) where Σ is the Borel σ-algebra generated by Td. Let T : X → X be a measure preserving

homeomorphism. Define the measure ν : Σ→ [0, 1] where ν(A) = µ(T−1A) for every A ∈ Σ. For every

f ∈ C(X) ∫
X

f dµ =

∫
X

f dν.

Proof. It is easy to verify that ν : Σ→ [0, 1] is indeed a measure on Σ. Take any f ∈ C(X). Using

the definition of the integral∫
X

fdν = sup

{
n∑
i=1

aiν(Ai) : s =
n∑
i=1

ai1Ai ∈ S(Σ), s ≤ f

}

= sup

{
n∑
i=1

aiµ(T−1Ai) : s =
n∑
i=1

ai1Ai ∈ S(Σ), s ≤ f

}

= sup

{
n∑
i=1

aiµ(Ai) : s =
n∑
i=1

ai(1Ai ◦ T ) ∈ S(Σ), s ≤ f

}
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= sup

{
n∑
i=1

aiµ(Ai) : s =
n∑
i=1

ai(1Ai) ∈ S(Σ), s ≤ f ◦ T−1

}

=

∫
X

f ◦ T−1dµ.

By Proposition 3.24 and Proposition 3.25,∫
X

f dν = φ(f ◦ T−1) = φ(f ◦ T−1 ◦ T ) = φ(f) =

∫
X

f dµ. �

Proposition 3.30. Given (X, TX) a topological space, and let (X,Σ, µ) be a probability space where Σ

is the Borel σ-algebra generated by the topology TX . If E ∈ Σ then 1E ∈ C(X) if and only if E is clopen

in the topology TX .

3.B. Ancillary Results for the Proof of Theorem 3.6

Proposition 3.31 ([4, Proposition 1.2.5]). Given (X,Σ, µ) a probability space and (An) a decreasing

sequence of sets that belong to Σ, then µ (
⋂∞
n=1An) = limn→∞ µ(An).

Lemma 3.32 ([34, Lemma 3.5]). Let (X,Σ, µ, T ) be a measure preserving system. For each E ∈ Σ with

µ(E) > 0, there exists F ∈ Σ with µ(F ) > 0 such that for each x ∈ F , the set Γx := {n ∈ Z : T nx ∈ E}
has positive upper density.

Proof. Take an arbitrary E ∈ Σ such that µ(E) > 0. For each N ∈ N, define the mapping

DN : X → [0, 1] where for each x ∈ X

DN(x) :=
|{n ∈ Z : −N ≤ n ≤ N, T nx ∈ E}|

2N + 1
.

For each N ∈ N, rewrite DN as a summation of Koopman operators, where for each x ∈ X

DN(x) =
1

2N + 1

N∑
n=−N

(Kn
T (1E))(x).

We claim that for every N ∈ N, we have that
∫
X
DN dµ = µ(E). Fix any N ∈ N. Then∫

X

DN dµ =
1

2N + 1

∫
X

N∑
n=−N

Kn
T (1E) dµ =

1

2N + 1

N∑
n=−N

∫
X

1E ◦ T n dµ

=
1

2N + 1

N∑
n=−N

∫
X

1T−nE dµ =
1

2N + 1

N∑
n=−N

µ(T−nE).

But as T is a measure preserving map, we have that µ(T−nE) = µ(E) for each n ∈ N. As such, we have

that
∫
X
DN dµ = µ(E) for each N ∈ N. Now, for every N ∈ N, define the set

AN := {x ∈ X : DN(x) ≥ 1

2
µ(E)}.
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We claim that µ(AN) ≥ 1
2
µ(E). Fix any N ∈ N. Using the previously proven claim

µ(E) =

∫
X

DN dµ =

∫
AN

DN dµ+

∫
X\AN

DN dµ.

By the definition of AN it follows that∫
X\AN

DN dµ ≤
∫
X\AN

1

2
µ(E) dµ =

1

2
µ(E)µ(X \ AN).

Since µ(X \ AN) ≤ 1, it follows that, µ(E)µ(X \ AN) ≤ µ(E). As such

µ(E) ≤
∫
AN

DN dµ+
1

2
µ(E).

From this, and the definition of DN , we know that DN(x) ≤ 1 for all x ∈ AN ⊆ X. Therefore

1

2
µ(E) ≤

∫
AN

DN dµ ≤
∫
AN

1X dµ = µ(AN).

Define the collection of sets, BN :=
⋃
n≥N An. It is clear that (BN) is a decreasing sequence of sets.

Then, for each N ∈ N, AN ⊆ BN , and so 1
2
µ(E) ≤ µ(AN) ≤ µ(BN). Define F :=

⋂∞
N=1BN .

Since µ(BN) ≥ 1
2
µ(E) for every N ∈ N, it follows from Proposition 3.31 that µ(F ) = limN→∞ µ(BN) ≥

1
2
µ(E) > 0.

We claim that for any x ∈ F , the set Γx = {n ∈ Z : T nx ∈ E} has positive upper density.

Consider

lim sup
N→∞

DN(x) = lim sup
N→∞

|{n ∈ Z : −N ≤ n ≤ N, T nx ∈ E}|
2N + 1

> 0.

Let x ∈ F . Then x ∈
⋂
N≥1

⋃
n≥N An. There exists a strictly increasing sequence (Ni)i∈N such that

x ∈ ANi for all i ∈ N. Since x ∈ ANi for every i ∈ N

x ∈
{
x ∈ X : DNi(x) ≥ 1

2
µ(E) > 0

}
=

{
x ∈ X :

|{n ∈ Z : −Ni ≤ n ≤ Ni, T
nx ∈ E}|

2Ni + 1
≥ 1

2
µ(E) > 0

}
.

Since for every i ∈ N
|{n ∈ Z : −Ni ≤ n ≤ Ni, T

nx ∈ E}|
2Ni + 1

≥ 1

2
µ(E) > 0,

the value of lim supN→∞DN(x) is strictly positive. Therefore the set Γx has positive upper density for

every x ∈ F , and the desired result follows. �



Part II: Special Cases of the Furstenberg Multiple

Recurrence Theorem



CHAPTER 4

Weak Mixing Systems

Having proven the equivalence of the Furstenberg Multiple Recurrence Theorem and Szemerédi’s Theo-

rem, the rest of our efforts will be spent on developing tools that will allow us to prove the Furstenberg

Multiple Recurrence Theorem. Much of this work will involve investigating limits and various types of

convergence - two of which we shall introduce next.

1. Modes of Convergence

Definition 4.1 (Cesàro convergence, [29, Definition 2.12.1]). Let (xn) be a sequence in R. We say

that the sequence (xn) converges in the sense of Cesàro to x ∈ R if

lim
N→∞

1

N

N∑
n=1

xn = x.

In this case, we write

C−lim
n→∞

xn = x.

Definition 4.2 ([9, Definition 4.2]). Let (X, TX) be a topological space, (xn) a sequence in X and

x ∈ X. The sequence is said to converge in density to x ∈ X if for every neighbourhood V of x the set

{n ∈ N : xn 6∈ V }

has upper density zero. In this case, we write

D−lim
n→∞

xn = x.

This definition can be restricted to the specific case of density convergence in the real numbers, which

is the context in which we shall make use of density convergence the most.

Definition 4.3. Let (xn) be a real valued sequence and x ∈ R. The sequence is said to converge in

density to x ∈ X if for every ε > 0 the set

{n ∈ N : |xn − x| ≥ ε}

has upper density zero.

As we shall see in the coming chapters, most of the analysis that we will need to do involves verifying

that various sequences converge with respect to different notions of convergence as well as the relations

between these various modes of convergence. Important properties of Cesàro and density convergence

are laid out in Appendix B, which we shall reference throughout. One of the more important properties

shall use is the following.

29
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Proposition 4.4. Consider a bounded real valued sequence (xn). If (xn) converges in norm to x ∈ R,

then (xn) converges in density to x ∈ R, which in turn implies that (xn) converges in the sense of

Cesàro.

2. SZ Systems

Instead of proving directly that all measure preserving systems have the Furstenberg property, we will

endeavour to show that all measure preserving systems satisfy a stronger condition, known as being a

SZ system.

Definition 4.5 (SZ Systems, [29, p. 279]). Given a measure preserving system X := (X,Σ, µ, T ). The

measure preserving system X is said to be SZ of level k ∈ N if for every f ∈ L∞(X) such that f ≥ 0

and
∫
X
fdµ > 0, we have

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ > 0.

If the measure preserving system is SZ for every level k ∈ N, then we simply say the system X is SZ.

With the definitions of weak mixing and compact systems we will introduce, and with a focus on the

analysis of the behaviour of L2 and L∞ functions rather than the underlying σ-algebra that define these

functions, it will be easier to prove a measure preserving system is SZ rather than showing it has the

Furstenberg property directly.

Theorem 4.6. Given a measure preserving system X := (X,Σ, µ, T ). If X is SZ, then X has the

Furstenberg property.

Proof. Let X := (X,Σ, µ, T ) be a measure preserving system and assume that it is a SZ system.

Fix any E ∈ Σ such that µ(E) > 0 and any k ∈ N. Clearly we have that 1E ∈ L∞(X) and µ(E) =∫
X

1E dµ > 0. Therefore we have that

lim inf
N→∞

1

N

N∑
n=1

∫
X

1E · 1E ◦ T n · 1E ◦ T 2n · · ·1E ◦ T (k−1)ndµ

= lim inf
N→∞

1

N

N∑
n=1

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE)

> 0.

This implies that there exists some n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(k−1)nE) > 0. �
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3. Weak Mixing Systems are SZ Systems

Definition 4.7 (Weak mixing system, [29, p. 296]). A measure preserving system X := (X,Σ, µ, T ) is

said to be weak mixing if for all f, g ∈ L2(X)

D−lim
n→∞

∫
X

f · g ◦ T n dµ =

(∫
X

f dµ

)(∫
X

g dµ

)
.

Definition 4.7 can be reconciled with the definition mentioned when the idea behind weak mixing systems

was motived in Chapter 1: For any A ∈ Σ, consider the indicator function 1A ∈ L2(X).

At this stage, there is no inherent advantage in using definitions formulated in terms of functions

in L2(X) as opposed to those formulated purely in terms of the underlying σ-algebra of a measure

preserving system. However, the concepts and methods we will use in later chapters can only easily be

formulated in terms of functions, at least for the general method of proof we are pursuing.

Proposition 4.8. Given an invertible measure preserving system X := (X,Σ, µ, T ) such that X is weak

mixing. Then for all f, g ∈ L2(X)

D−lim
n→∞

∫
X

f · g ◦ T−n dµ =

(∫
X

f dµ

)(∫
X

g dµ

)
.

Proof. Fix any f, g ∈ L2(X). Since X is weak mixing and T is invertible, it follows that

D−lim
n→∞

∫
X

f · g ◦ T−n dµ = D−lim
n→∞

∫
X

(
f · g ◦ T−n

)
◦ T n dµ

=D−lim
n→∞

∫
X

f ◦ T n · g dµ =

(∫
X

f dµ

)(∫
X

g dµ

)
.

By Definition 4.7, the system (X,Σ, µ, T−1) is weak mixing. �

The following lemma will be central to the proof that all weak mixing systems are SZ. A full proof is

provided in [9].

Lemma 4.9 (van der Corput’s Lemma, [9, Lemma 4.9]). Given a Hilbert space H, let (hn) be a bounded

sequence in H. Suppose that

D−lim
m→∞

(
D−lim

n→∞
〈hn+m, hn〉

)
= 0.

Then with respect to the weak topology, D−limn→∞ hn = 0.

Theorem 4.10 ([9, Theorem 4.10]). Given an invertible measure preserving system X := (X,Σ, µ, T )

such that X is weak mixing. Let k ∈ N. Then for all f0, f2, · · · fk−1 ∈ L∞(X) and R ∈ {T, T−1},

D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n dµ =

(∫
X

f0 dµ

)(∫
X

f1 dµ

)
· · ·
(∫

X

fk−1 dµ

)
.

Proof. This is proven using induction.

Base case, k = 1.

Fix f0, f1 ∈ L∞(X). The result follows directly from Definition 4.7 and Proposition 4.8.
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Induction step, k > 1. Assume for all l ≤ k that for any f0, f1, · · · , fl−1 ∈ L∞(X)

D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fl−1 ◦R(l−1)n dµ =

(∫
X

f0 dµ

)(∫
X

f1 dµ

)
· · ·
(∫

X

fl−1 dµ

)
.

Fix f0, f1, · · · , fk−1, fk ∈ L∞(X). We wish to show that

D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · fk ◦Rkn dµ

=

(∫
X

f0 dµ

)(∫
X

f1 dµ

)
· · ·
(∫

X

fk−1 dµ

)(∫
X

fk dµ

)
.

Define f̃ := fk −
∫
X
fk dµ. It is clear that

∫
X
f̃ dµ = 0. In order to prove that the desired statement

holds true, we show that

D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · f̃ ◦Rkn dµ = 0.(4)

If this is case, by the definition of f̃ ∈ L∞(X)

0 = D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · fk ◦Rkn dµ

−
(∫

X

fk dµ

)
·D−lim

n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n dµ.

Therefore, by the induction hypothesis for l = k − 1

0 = D−lim
n→∞

∫
X

f0 · f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · fk ◦Rkn dµ

−
(∫

X

f0 dµ

)(∫
X

f1 dµ

)
· · ·
(∫

X

fk−1 dµ

)(∫
X

fk dµ

)
.

Under the assumption of (4), this gives the desired result. Now, define the sequence (gn) of functions

in L∞(X) where

gn := f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · f̃ ◦Rkn.

We wish to apply Lemma 4.9, to show that D− limn→∞ gn = 0 in the weak topology on L2(X). Fix

values n,m ∈ N and consider the inner product

(5) 〈gn+m, gn〉L2(X) =

∫
X

(
f1 ◦Rn+m · f2 ◦R2(n+m) · · · fk−1 ◦R(k−1)(n+m) · f̃ ◦Rk(n+m)

)
×(

f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · f̃ ◦Rkn
)
dµ.

Define functions in L∞(X) where for every x ∈ X

F
(m)
0 (x) := f̃(x) · f̃ ◦Rkm(x),

F
(m)
1 (x) := f1(x) · f1 ◦Rm(x),

F
(m)
2 (x) := f2(x) · f2 ◦R2m(x),

...
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F
(m)
k−1(x) := fk−1(x) · fk−1 ◦R(k−1)m(x).

Then

〈gn+m, gn〉L2(X) =

∫
X

F
(m)
0 ◦Rkn · F (m)

1 ◦Rn · · ·F (m)
k−1 ◦R

(k−1)n dµ

=

∫
X

(
F

(m)
0 ◦Rkn · F (m)

1 ◦Rn · · ·F (m)
k−1 ◦R

(k−1)n
)
◦R−kn dµ.

=

∫
X

F
(m)
0 · F (m)

1 ◦
(
R−1

)(k−1)n · F (m)
2 ◦

(
R−1

)(k−2)n · · ·F (m)
k−1 ◦

(
R−1

)n
dµ.

Since the mapping R is just a place holder for either T or T−1, both of which are weak mixing mappings,

we may replace R−1 by R, without any loss in generality. Applying the induction hypothesis, we obtain

D−lim
m→∞

(
D−lim

n→∞
〈gn+m, gn〉

)
= D−lim

m→∞

(∫
X

F
(m)
0 dµ

)(∫
X

F
(m)
1 dµ

)
· · ·
(∫

X

F
(m)
k−1 dµ

)
.

Since the functions f1, f2, · · · , fk ∈ L∞(X) are bounded, the sequences

am :=

∫
X

F
(m)
0 dµ,

bm :=

(∫
X

F
(m)
1 dµ

)(∫
X

F
(m)
2 dµ

)
· · ·
(∫

X

F
(m)
k−1 dµ

)
are bounded. Since X is weak mixing, by Definition 4.7 we obtain

D−lim
m→∞

am = D−lim
m→∞

∫
X

F
(m)
0 dµ = D−lim

m→∞

∫
X

f̃ · f̃ ◦Rkm dµ =

(∫
X

f̃ dµ

)2

.

However, since
∫
X
f̃ dµ = 0, by Theorem B.4, we conclude that

D−lim
m→∞

(
D−lim

n→∞
〈gn+m, gn〉

)
= D−lim

m→∞
am · bm = 0.

Therefore, by Lemma 4.9, the definition of the weak topology on L2(X) and since L2(X) is self-dual,

for the fixed f0 ∈ L∞(X)

D−lim
n→∞

〈f0, gn〉 = 〈f0, 0〉 = 0.

This implies that

0 = D−lim
n→∞

〈f0, gn〉 = D−lim
n→∞

∫
X

(f0) ·
(
f1 ◦Rn · f2 ◦R2n · · · fk−1 ◦R(k−1)n · f̃ ◦Rkn

)
dµ

and the required result follows. �

Recalling the definition of a SZ system (Definition 4.5), the properties of density limits and using

Theorem 4.10 we have just proven, it can be concluded that all weak mixing systems are SZ, and thus

have the desired Furstenberg property.

Theorem 4.11 (Weak mixing systems are SZ systems, [9, Theorem 4.12]). If an invertible measure

preserving system X := (X,Σ, µ, T ) is weak mixing, then X is a SZ system.
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Proof. Take f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0. Then it follows by Theorem 4.10 that

D−lim
n→∞

∫
X

f · f ◦ T−n · f ◦ T−2n · · · f ◦ T−(k−1)n dµ =

(∫
X

f dµ

)k
> 0.

It follows by Proposition B.19 that

C−lim
n→∞

∫
X

f · f ◦ T−n · f ◦ T−2n · · · f ◦ T−(k−1)n dµ =

(∫
X

f dµ

)k
> 0.

This further implies that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ =

(∫
X

f dµ

)k
> 0. �



CHAPTER 5

Compact Systems

1. Almost Periodic Functions

Having proven that weak mixing systems are SZ, we now turn to the second special case we need to

treat. The definitions central to the concept of compact systems, as was the case for weak mixing

systems, are cast in terms of the behaviour of the L2 functions under applications of the measure

preserving mapping T .

Definition 5.1 (Precompactness). Given a complete metric space (X, d) and some K ⊆ X, the set K

is said to be precompact if K is compact in X.

Definition 5.2 (Orbit of a function, [29, Definition 2.11.1]). Given an invertible measure preserving

system X := (X,Σ, µ, T ) and f ∈ L2(X). The orbit of the function f ∈ L2(X) is defined as

O(f) := {f ◦ T n : n ∈ Z} ⊆ L2(X).

Definition 5.3 (Syndetic sets). Let S ⊆ Z. The set S is said to be a syndetic set if there exists some

N ∈ N such that for every n ∈ Z, the set S ∩ {n, n+ 1, · · · , n+N} is non-empty.

The concept of an almost periodic function, which we define next, is central to our definition of compact

systems. We will employ two equivalent definitions to characterize almost periodic functions, the first

being the standard definition used in Ergodic Theory and the second a reformulation of the analogous

concept of a compact system in Topological Dynamics.

Definition 5.4 (Almost periodic function, [29, Definition 2.11.1]). Given an invertible measure pre-

serving system X := (X,Σ, µ, T ) and f ∈ L2(X). The function f ∈ L2(X) is said to be almost periodic

if one of the following conditions are satisfied:

(i) The orbit O(f) is precompact in L2(X) equipped with the norm topology.

(ii) For every ε > 0, the set {n ∈ Z : ‖f − f ◦ T n‖L2(X) < ε} ⊆ Z is syndetic.

We prove in Appendix C that the above two notions of almost periodicity are indeed equivalent.

Definition 5.5 (Compact measure preserving system, [29, Definition 2.11.7]). Consider an invertible

measure preserving system X := (X,Σ, µ, T ). If every f ∈ L2(X) is almost periodic, then the measure

preserving system is said to be compact.

2. Compact Systems are SZ Systems

Theorem 5.6 ([29, Proposition 2.11.5]). If an invertible measure preserving system X := (X,Σ, µ, T )

is compact, then X is a SZ system.

35
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Proof. Fix any k ∈ N and consider an arbitrary f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0.

There exists some R > 0 such that

µ({x ∈ X : |f(x)| > R}) = 0.

Assume, without loss of generality, that f ≤ 1 by redefining the function f as f/ ‖f‖∞. Fix any ε > 0.

Since X is a compact measure preserving system, f ∈ L∞(X) is an almost periodic function. Define

the constant C := 2k−1. By Definition 5.4, the set

Sε :=
{
n ∈ Z : ‖f − f ◦ T n‖L2(X) <

ε

C · k · 2k
}

is syndetic. Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), for a fixed n ∈ N
and for every i ∈ N

‖f − f ◦ T n‖L2(X) =
∥∥f ◦ T in − f ◦ T in+n

∥∥
L2(X)

.

Fix any n ∈ Sε. For every 1 ≤ j < k, we have∥∥f ◦ T jn − f ◦ T (j+1)n
∥∥
L2(X)

<
ε

C · k · 2k
.

Therefore, for every 1 ≤ j < k∥∥f − f ◦ T jn∥∥
L2(X)

≤
j−1∑
i=0

∥∥f ◦ T in − f ◦ T (i+1)n
∥∥
L2(X)

<
j · ε

C · k · 2k
<

ε

C · 2k
.

Now, for every 1 ≤ j < k, define gj ∈ L2(X) as gj := f ◦ T jn − f . Therefore

‖gj‖L2(X) =
∥∥f − f ◦ T jn∥∥

L2(X)
<

ε

C · 2k
.

We also have that ‖gj‖∞ ≤ ‖f‖∞ + ‖f ◦ T nj‖∞ ≤ 2, since f ≤ 1. By Proposition 5.9,∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ =

∫
X

f(f + g1)(f + g2) · · · (f + gk−1)dµ >

∫
X

fk dµ− ε.

Since the choice of ε > 0 was arbitrary, take ε > 0 small enough such that there exists some c > 0 for

which
∫
X
fk dµ− ε > c > 0. By Lemma A.5, the set Sε has positive lower density. Therefore, we have

that ∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ > c > 0

for all n ∈ Sε. Consequently, by Proposition B.5, we have that

lim inf
N→∞

1

N

N∑
n=0

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ > 0.

Since the choice of k ∈ N and f ∈ L∞(X) was arbitrary, the system X is SZ. �

5.A. Ancillary Results for the Proof of Theorem 5.6

Proposition 5.7. Given a probability space X := (X,Σ, µ) and functions f ∈ L2(X) and g ∈ L∞(X),

then

‖f · g‖L2(X) ≤ ‖f‖L2(X) · ‖g‖∞ .
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Proof. Take any f ∈ L2(X) and g ∈ L∞(X). Then

‖f · g‖L2(X) =

(∫
X

|f · g|2 dµ

)1/2

≤
(∫

X

(|f | ‖g‖∞)2 dµ

)1/2

=

(
‖g‖2

∞

∫
X

|f |2 dµ

)1/2

= ‖f‖L2(X) ‖g‖∞ .

�

The following proposition can be verified by induction.

Proposition 5.8. Given n ∈ N, functions f ∈ L∞(X) and gi ∈ L∞(X) for each 1 ≤ i ≤ n. Then

f ·
n∏
i=1

(f + gi) = fn+1 +
n∑
i=1

fn · gi +
∑

1≤i<j≤n

fn−1 · (gi · gj)

+ · · ·+
∑

1≤i1<i2<···<in−1≤n

f 2 · (gi1 · gi2 · · · gin) + f · g1 · g2 · · · gn.

Proposition 5.9. Fix ε > 0, n ∈ N and define the constant Cn := 2n−1 · 2n. Consider a measure

preserving system X := (X,Σ, µ, T ), functions f ∈ L∞(X) such that f ≤ 1 and gi ∈ L∞(X) such that

‖gi‖L2(X) <
ε
Cn

and ‖gi‖∞ ≤ 2 for every 1 ≤ i ≤ n. Then∫
X

f(f + g1)(f + g2) · · · (f + gn) dµ >

∫
X

fn+1 dµ− ε.

Proof. By Proposition 5.8, we have that∫
X

f(f + g1)(f + g2) · · · (f + gn) dµ =

∫
X

fn+1 dµ+
n∑
i=1

∫
X

fn · gi dµ+
∑
i<j

∫
X

fn−1 · (gi · gj) dµ

+ · · ·+
∑

i1<i2<···<in−1

∫
X

f 2 · (gi1 · gi2 · · · gin−1) dµ+

∫
X

f · g1 · g2 · · · gn dµ.

Let a, b ≤ n such that a+ b = n+ 1 and ji ∈ {1, 2, · · · , n} for every 1 ≤ i ≤ b. Consider a general term

of the form ∫
X

fa · (gj1 · gj2 · · · gjb) dµ.

Since f ≤ 1, it follows for every a ∈ N that |fa|2 ≤ 1 and, as a result, ‖fa‖L2(X) ≤ 1. Therefore∫
X

fa · (gj1 · gj2 · · · gjb) dµ = 〈fa, gj1 · gj2 · · · gjb〉L2(X) ≤ ‖f
a‖L2(X) ‖gj1 · gj2 · · · gjb‖L2(X)

≤ ‖gj1 · gj2 · · · gjb‖L2(X) .

Since ‖gj‖∞ ≤ 2 for every j ∈ {1, 2, · · · , n}, applying Proposition 5.7 repeatedly yields,

‖gj1 · gj2 · · · gjb‖L2(X) ≤ ‖gi1‖∞ · ‖gi2‖∞ · · ·
∥∥gib−1

∥∥
∞ · ‖gib‖L2(X)

≤ 2n−1 · ‖gib‖L2(X) <
2n−1 · ε
Cn

=
2n−1 · ε

2n−1 · 2n
=

ε

2n
.
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Further, since the expansion of the polynomial expression f(f + g1) · · · (f + gn) contains 2n terms, it

follows that ∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T kn dµ >
∫
X

fkdµ− ε. �



CHAPTER 6

The Dichotomy Between Weak Mixing and Compact Systems

Having proved that all weak mixing and compact systems are SZ systems, our hope is to establish

a characterization of all invertible measure preserving systems in terms of weak mixing and compact

systems. This is indeed possible and this dichotomy result will be useful for the purposes of providing

a relatively short proof for Roth’s Theorem in Chapter 8.

Strictly speaking, as mentioned before in Chapter 1, the following chapter is not materially necessary

for the proof the Furstenberg Multiple Recurrence Theorem. However, the concepts and techniques

used here will be repeated in a more general context in Chapter 11. As such, the current chapter serves

as a intuitive stepping stone to the results in Chapter 11.

First, we shall need to give the formal defintions of factors and extensions mentioned in Chapter 1.

Although both of these complementary concepts are introduced here, we will only start making explicit

use of extensions later in Chapter 9.

1. Factors and Extensions

We begin by considering the general definition of factors and extensions often found in the literature.

Definition 6.1 ([29, Definition 2.2.1]). Given measure preserving systems (X,Σ, µ, T ) and (Y,Σ′, ν, S).

The system (Y,Σ′, ν, S) is said to be a factor of (X,Σ, µ, T ), and the system (X,Σ, µ, T ) is said to be

a extension of (Y,Σ′, ν, S), if there exists a mapping φ : X → Y which satisfies the following properties

(i) (Intertwining maps) The mapping φ : X → Y has the property that

S ◦ φ = φ ◦ T.

(ii) (Preserves preimages) For every A ∈ Σ′, we have that φ−1(A) ∈ Σ.

(iii) (Preserves measure) For every A ∈ Σ′, we have that µ(φ−1(A)) = ν(A).

The above definition is complicated by the fact that we are allowing the measure preserving systems to

be completely distinct. This definition reduces to a very simple criterion if we restrict our attention to

factors residing within a given system.

Definition 6.2 (Factors and extensions). Given measure preserving systems X := (X,ΣX , µ, T ) and

Y := (X,ΣY , µ, T ). Then the system Y is said to be a factor of X if ΣY is a sub-σ-algebra of ΣX .

Conversely, the system X is said to be a extension of Y.
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For the sake of notational convenience, we denote an extension between a measure preserving system

X and a factor Y as

Φ : Y → X.

Remark 6.3. Consider measure preserving systems X := (X,ΣX , µ, T ) and Y := (X,ΣY , µ, T ). In

this case the identity mapping ι : X → X will serve as a mapping that satisfies the conditions in

Definition 6.1. Note that in this simplified case, condition (i) is trivially satisfied. Condition (ii) reduces

to the requirement that ΣY needs to be a sub-σ-algebra of ΣX . If condition (ii) is satisfied, condition

(iii) becomes trivial as well.

This simplified view on factors and extensions will be enough for our purposes since we will only ever

need to refer to factors from within a particular system. In this simplified case, both the measure

µ and the measure preserving map T remain fixed, making most of the conditions in Definition 6.1

unnecessary.

Definition 6.4. Given a measure preserving systems X := (X,ΣX , µ, T ) and Y := (X,ΣY , µ, T ) and

Φ : Y → X an extension. If ΣY ( ΣX , the extension Φ is said to be a non-trivial extension.

2. Compact Systems and the Kronecker Factor

Definition 6.5 (Space of almost periodic functions). Given an invertible measure preserving system

X := (X,Σ, µ, T ), let AP (X) ⊆ L2(X) denote the set of functions that are almost periodic as defined

in Definition 5.4.

With this notation, we restate the definition of compact systems (Definition 5.5) in more concise terms.

Definition 6.6 (Compact system). An invertible measure preserving system X := (X,Σ, µ, T ) is a

compact system if L2(X) = AP (X).

The following alleged σ-algebra will be very important for our analysis moving forward.

Definition 6.7 (Kronecker σ-algebra, [34, p. 33]). Given an invertible measure preserving system

X := (X,Σ, µ, T ). Define the collection of sets ΣAP (X) := {A ∈ Σ : 1A ∈ AP (X)}.

The Kronecker σ-algebra, which defines what we will call the Kronecker factor will turn out to be useful

for our characterization of invertible measure preserving systems in terms of weak mixing and compact-

ness. The concept of a Kronecker system actually arises in Topological Dynamics [29, Definition 2.6.5],

and is important in that context due to its role in the characterization of isometric topological dynamical

systems [29, § 2.6], as well as the characterization of compact systems in the context of Ergodic Theory

[29, § 2.11]. We shall not delve too deeply into this topic, and will only treat the Kronecker factor as a

necessary tool.
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Proposition 6.8. Given an invertible measure preserving system X := (X,Σ, µ, T ), then ΣAP (X) is a

sub-σ-algebra of Σ.

Proof. We first verify that ΣAP (X) is indeed a σ-algebra.

(i) Since 1X ◦ T = 1X , we have that O(1X) = {1X ◦ T n : n ∈ Z} = {1X}, which is compact in

L2(X). Therefore, we have that X ∈ ΣAP (X).

(ii) Fix any A ∈ ΣAP (X). Then by Definition 6.7 we have 1A ∈ AP (X). By Proposition 6.19, AP (X)

is a subspace of L2(X). As such, we have that 1X\A = 1X − 1A ∈ AP (X). By Definition 6.7, it

follows that X \ A ∈ ΣAP (X).

(iii) Take any sequence of sets (Ai) ⊆ ΣAP (X). Define the sequence of sets (Bn) by setting Bn :=⋃n
i=1Ai for n ∈ N, and define the sequence of functions (fn) ⊆ AP (X) as fn := 1Bn for n ∈ N.

Define A :=
⋃
i∈NAi. It is clear that (fn) converges pointwise to 1A. By Proposition 6.20,

AP (X) is a closed subspace of L2(X). Fix any ε > 0. We show that there exists N ∈ N such

that if n ≥ N then

‖fn − 1A‖2 < ε.

For every n ∈ N, we have that

‖fn − 1A‖2
2 = ‖1Bn − 1A‖2

2 =

∫
X

|1Bn − 1A|2 dµ =

∫
X

(1Bn − 1A) dµ.

Since (fn) converges pointwise to 1A and fn ≤ 1X for every n ∈ N, by the Dominated Conver-

gence Theorem (Theorem 6.17), it follows that

lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
X

1Bndµ =

∫
X

lim
n→∞

1Bn(x) dµ(x) =

∫
X

1A dµ.

Which implies that there exists some N ∈ N such that for all n ≥ N

‖fn − 1A‖2 =

(∫
X

(1Bn − 1A) dµ

)1/2

< ε.

Therefore, since (fn) ⊆ AP (X) converges to 1A in L2(X) and AP (X) is a closed subspace of

L2(X), it follows that 1A ∈ AP (X). By Definition 6.7, it follows that A =
⋃
i∈NAi ∈ ΣAP (X).

From the definition of ΣAP (X), we know that ΣAP (X) ⊆ Σ. Therefore, ΣAP (X) constitutes a sub-σ-algebra

of Σ. �

Having established that, for a given measure preserving system X := (X,Σ, µ, T ), the collection ΣAP (X)

is indeed a sub-σ-algebra of Σ, we have the following proposition.

Proposition 6.9. Given an invertible measure preserving system X := (X,Σ, µ, T ). The quadruple

XAP (X) := (X,ΣAP (X), µ, T ) is an invertible measure preserving system and a factor of X.

We call the factor XAP (X) the Kronecker factor, which is said to be trivial if ΣAP (X) = Σ0.

Proposition 6.10. Given an invertible measure preserving system X := (X,Σ, µ, T ), the Kronecker

factor XAP (X) is compact.
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Proof. By Proposition 6.28, we have that L2(XAP (X)) = AP (X). We claim that AP (X) =

AP (XAP (X)).

Let f ∈ AP (XAP (X)). Then O(f) is precompact in L2(XAP (X)). Since ΣAP (X) is a sub-σ-algebra of Σ,

the space L2(XAP (X)) is a closed subspace of L2(X) and, therefore, O(f) is precompact in L2(X). By

Definition 5.4, we have that f ∈ AP (X).

Now, let f ∈ AP (X), then by Proposition 6.28, we have that f ∈ L2(XAP (X)). Further, since f ∈
AP (X), for every ε > 0, the set

{n ∈ Z : ‖f − f ◦ T n‖L2(X) < ε}

is syndetic. Since L2(XAP (X)) is a subspace of L2(X), we conclude that f ∈ L2(XAP (X)) is almost

periodic. Therefore, by Definition 5.4, we have that, f ∈ AP (XAP (X)).

Therefore, we have that

L2(XAP (X)) = AP (XAP (X)). �

Having shown that the Kronecker factor XAP (X) of an invertible measure preserving system X is always a

compact system in itself, the next result shows that one, in a sense, cannot do better than the Kronecker

factor in a search for compact factors of an invertible measure preserving system X.

Proposition 6.11. Given an invertible measure preserving system X := (X,Σ, µ, T ), the Kronecker

factor is the maximal compact factor of X.

Proof. By Proposition 6.10, the Kronecker factor XAP (X) is compact. Now, consider any other

factor Y := (X,ΣY , µ, T ) which is given to be compact. Consider any A ∈ ΣY . Since Y is compact, it

follows that 1A ∈ AP (X). But, this implies, by the definition of the Kronecker factor, that A ∈ ΣAP (X).

Since the choice of A ∈ ΣY was arbitrary, we conclude that ΣY ⊆ ΣAP (X). As the choice of compact

factor Y was arbitrary, it follows that the Kronecker factor is a maximal compact factor of X.

The above argument also applies to any other purported maximal compact factor of X. Hence, we

conclude that XAP (X) is the unique maximal compact factor of X. �

3. The Dichotomy of Systems Result

Theorem 6.12. If an invertible measure preserving system X := (X,Σ, µ, T ) is weak mixing, then

AP (X) = {λ · 1X : λ ∈ R}.

Proof. Let f ∈ AP (X). Since X is weak mixing, for every δ > 0, there exists a set Kδ ⊆ Z with

d (Z \Kδ) = 0 such that for all n ∈ Kδ∣∣∣∣∣
∫
X

f · f ◦ T n dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ < δ.
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Fix any ε > 0. We claim that the function f ∈ AP (X) is constant. By Proposition 6.22, it suffices to

show that ∣∣∣∣∣
∫
X

f 2 dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ < ε.

Applying the triangle inequality, for every n ∈ N∣∣∣∣∣
∫
X

f 2 dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ ≤

∣∣∣∣∫
X

f 2 dµ−
∫
X

f · f ◦ T n dµ
∣∣∣∣+

∣∣∣∣∣
∫
X

f · f ◦ T n dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ .

Since X is weak mixing, we have that for every n ∈ Kε/2∣∣∣∣∣
∫
X

f · f ◦ T n dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ < ε/2.

Applying the Cauchy-Schwarz inequality∣∣∣∣∫
X

f 2 dµ−
∫
X

f · f ◦ T n dµ
∣∣∣∣ =

∣∣∣∣∫
X

f (f − f ◦ T n) dµ

∣∣∣∣ ≤ ‖f‖L2(X) ‖f − f ◦ T
n‖L2(X) .

Since f ∈ AP (X), there exists a syndetic set S such that for all n ∈ S, we have

‖f − f ◦ T n‖L2(X) <
ε

2 ‖f‖L2(X)

.

Note that the set Kε/2 ∩ S cannot be empty as Kε/2 has upper density 1 while the syndetic set S has

positive upper density. If the intersection were empty, it would imply that the complement of Kε/2 in

Z has positive upper density, which cannot hold. Therefore, for all n ∈ Kε/2 ∩ S∣∣∣∣∣
∫
X

f 2 dµ−
(∫

X

f dµ

)2
∣∣∣∣∣ < ε.

The last inequality is, however, independent of the choice of n ∈ Kε/2 ∩ S. By Proposition 6.22 and

since the choice of ε > 0 was arbitrary, we conclude that f is a constant function. �

Corollary 6.13. If an invertible measure preserving system X := (X,Σ, µ, T ) is weak mixing then the

Kronecker factor is trivial.

We recall the definition of ergodicity, an important ergodic theoretical concept that we have not needed

to make use of until now.

Definition 6.14 ([33, Definition 1.2]). A measure preserving system X := (X,Σ, µ, T ) is said to be

ergodic if one of the following equivalent conditions holds:

(i) If every A ∈ Σ such that T−1A = A then µ(A) = 1 or µ(A) = 0,

(ii) Every function f ∈ L0(X) such that f ◦ T = f , is constant.

This allows us to formulate an important result we shall use to prove the converse to Theorem 6.12.

The proof we lay out is also given in [15, Proposition 5.3].

Theorem 6.15. Given an invertible measure preserving system X := (X,Σ, µ, T ). If the product system

X×X is not ergodic, then there exists a function f ∈ AP (X) that is non-constant.
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Proof. Let H ∈ L2(X × X) be a T × T -invariant function that is non-constant. Without loss

of generality, assume that X is an ergodic system, since if X were not ergodic, this would imply the

existence of a function g ∈ L2(X) that is T -invariant and non-constant. This would then serve as our

function g ∈ AP (X) that is non-constant.

Define the function h ∈ L2(X) as

h(x′) :=

∫
X

H(x, x′) dµ(x)

Since H ∈ L2(X×X) is T × T -invariant, we have that

h(Tx′) =

∫
X

H(x, Tx′) dµ(x) =

∫
X

H(Tx, Tx′) dµ(x) =

∫
X

H(x, x′) dµ(x) = h(x′).

Therefore, the function h ∈ L2(X) is T -invariant. Since X is ergodic, this implies that h ∈ L2(X) is a

constant function. Adding an appropriate constant, redefine H ∈ L2(X×X) such that for all x′ ∈ X

h(x′) :=

∫
X

H(x, x′) dµ(x) = 0.

Since H ∈ L2(X ×X) is non-constant, there exists φ ∈ L2(X) such that for a set A ∈ Σ with positive

measure, for every x ∈ A ∫
X

H(x, x′)φ(x′) dµ(x′) 6= 0.

Define the function f ∈ L2(X) such that

f(x) :=

∫
X

H(x, x′)φ(x′) dµ(x′)

which is also non-constant. Then∫
X

f(x) dµ(x) =

∫
X

(∫
X

H(x, x′)φ(x′) dµ(x′)

)
dµ(x).

By Tonelli’s Theorem (Theorem D.11),∫
X

f(x) dµ(x) =

∫
X

(
φ(x′)

∫
X

H(x, x′) dµ(x)

)
dµ(x′)

=

∫
X

φ(x′)

(∫
X

H(x, x′) dµ(x)

)
dµ(x′)

=

∫
X

φ(x′) · 0 dµ(x′)

= 0.

Using the T × T -invariance of H ∈ L2(X×X), for every n ∈ Z and x ∈ X

(f ◦ T n)(x) =

∫
X

H(T nx, x′)φ(x′) dµ(x′) =

∫
X

H(T nx, T nx′)φ(x′) dµ(x′) =

∫
X

H(x, x′)φ(x′) dµ(x′).

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), for every n ∈ Z and x ∈ X

(f ◦ T n)(x) =

∫
X

H(x, x′)φ(x′) dµ(x′) =

∫
X

H(x, x′)φ(T nx′) dµ(x′).
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Consider the operator K : L2(X)→ L2(X), where

(Kφ)(x) =

∫
X

H(x, x′)φ(x′) dµ(x′).

By Proposition 6.24, K is a compact operator. Consider

O(f) = {K(φ ◦ T n)}n∈Z .

Since φ ∈ L2(X), the closure of {φ ◦ T n}n∈Z is a bounded subset in L2(X) and since K is a compact

operator, the closure of O(f) = {K(φ ◦ T n)}n∈Z is precompact in L2(X). Therefore, by Definition 5.4,

the non-constant function f ∈ L2(X) is almost periodic, and the required result follows. �

With all of that out of the way, we are finally in a position to precisely state the sought after dichotomy

result.

Theorem 6.16 ([34, Theorem 6.20]). Given an invertible measure preserving system X := (X,Σ, µ, T ),

then exactly one of the following statements holds true.

(i) The system X is weak mixing.

(ii) The Kronecker factor of X is non-trivial.

Proof. Take any invertible measure preserving system X := (X,Σ, µ, T ). If the system is weak

mixing, condition (i) is satisfied and by Corollary 6.13 that the Kronecker factor is trivial.

Now, assume that X is not weak mixing. It follows by Theorem 6.21 that the product system X×X is

not ergodic. By Theorem 6.15 there exists a function f ∈ AP (X) that is nonconstant. By Proposition

6.28 the nonconstant function f ∈ AP (X) is measurable with respect to the Kronecker factor XAP (X).

This means that the Kronecker factor XAP (X) is non-trivial, since only constant functions are measurable

with respect to the trivial σ-algebra Σ0 := {∅, X}. �

6.A. AP (X) is a Closed Subspace of L2(X)

Theorem 6.17 (Dominated Convergence Theorem, [4, Theorem 2.4.5]). Let X := (X,Σ, µ) be a prob-

ability space. Let (fn) ⊆ L1(X) be a sequence of functions and g ∈ L1(X). If fn converges pointwise to

f and |fn| ≤ g, then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proposition 6.18 ([19, Theorem 45.1]). Given a complete metric space (X, ρ) and a subset A ⊆ X.

The set A is precompact if and only if for every ε > 0, there exists a finite collection of closed balls

{B(xi, ε)}Ni=1 such that

A ⊆
N⋃
i=1

B(xi, ε).

Proposition 6.19. Given an invertible measure preserving system X := (X,Σ, µ, T ). Then AP (X) is

a subspace of L2(X).
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Proof. Take any functions f, g ∈ AP (X) and scalars α, β ∈ R. We show that αf + βg ∈ AP (X).

To do this, we verify that the set O(αf +βg) is precompact, which we prove using Proposition 6.18, by

showing that O(αf + βg) is totally bounded. Fix any ε > 0. Since f, g ∈ AP (X), by Proposition 6.18,

we know that there exists finite collections of balls{
B

(
xi,

ε

2|α|

)}
i∈I

,

{
B

(
yj,

ε

2|β|

)}
j∈J

such that

O(f) ⊆
⋃
i∈I

B

(
xi,

ε

2|α|

)
, O(g) ⊆

⋃
j∈J

B

(
yj,

ε

2|β|

)
.

It is easy to show that O(αf) ⊆
⋃
i∈I B

(
αxi,

ε
2

)
and O(βg) ⊆

⋃
j∈J B

(
βyj,

ε
2

)
, and it follows that

O(αf + βg) ⊆
⋃

i∈I,j∈J

B (βαxi + βyj, ε)

where {B (βαxi + βyj, ε)}i∈I,j∈J is a finite collection of balls. By Proposition 6.18, it follows that

O(αf + βg) is precompact in L2(X) and so αf + βg ∈ AP (X). Therefore, AP (X) is a subspace of

L2(X). �

Proposition 6.20. Given an invertible measure preserving system X := (X,Σ, µ, T ). Then AP (X) is

closed in L2(X).

Proof. Consider a sequence (hn) ⊆ AP (X) which converges to h ∈ L2(X) in L2(X). We verify

that h ∈ AP (X). To do this, fix some ε > 0. We show that there exists a syndetic set Sε ∈ Z such that

for all i ∈ Sε ∥∥h ◦ T i − h∥∥
L2(X)

< ε.

Now, for all i, n ∈ Z, by the triangle inequality∥∥h ◦ T i − h∥∥
L2(X)

≤
∥∥h ◦ T i − hn ◦ T i∥∥L2(X)

+
∥∥hn ◦ T i − hn∥∥L2(X)

+ ‖hn − h‖L2(X) .

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16)∥∥h ◦ T i − h∥∥
L2(X)

≤
∥∥hn ◦ T i − hn∥∥L2(X)

+ 2 ‖hn − h‖L2(X) .

There exists N ∈ N such that ‖hn − h‖L2(X) < ε/3 for all n ≥ N . Further, since (hn) ⊆ AP (X), for all

n ∈ N there exists a syndetic set K
(n)
ε/3 ⊆ Z such that for all i ∈ K(n)

ε/3∥∥hn ◦ T i − hn∥∥L2(X)
< ε/3.

Define the sydetic set Sε := K
(N)
ε/3 ⊆ Z. Then for all i ∈ Sε∥∥h ◦ T i − h∥∥
L2(X)

≤
∥∥hN ◦ T i − hN∥∥2

+ 2 ‖hN − h‖L2(X) <
ε

3
+

2ε

3
= ε.

Therefore, h ∈ AP (X), and we conclude that AP (X) is a closed subspace of L2(X). �
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6.B. Ancillary Results for the Proof of Proposition 6.16

Proposition 6.21 ([25, Proposition 6.4.1]). Given a measure preserving system X := (X,Σ, µ, T ), the

following two statements are equivalent.

(i) The system X is weak mixing.

(i) The product system X×X is ergodic.

Proposition 6.22. Let X := (X,Σ, µ) be a probability space. If a function f ∈ L2(X) satisfies the

condition ∫
X

f 2 dµ =

(∫
X

f dµ

)2

if and only if f ∈ L2(X) is a constant function.

Proof. Fix any function f ∈ L2(X) and assume that it satisfies the condition∫
X

f 2 dµ =

(∫
X

f dµ

)2

.

Assume, without loss of generality, that f 6= 0. The above condition can be rewritten in terms of the

inner product on L2(X) as

〈f, f〉L2(X) = 〈f,1X〉L2(X) · 〈1X , f〉L2(X) = ‖f‖2
L2(X) .

By the Cauchy-Schwarz inequality, f ∈ L2(X) and the constant function 1X are scalar multiples if and

only if ∣∣∣〈f,1X〉L2(X)

∣∣∣ = ‖f‖L2(X) ‖1X‖L2(X) = ‖f‖L2(X) .

But we have that ∣∣∣〈f,1X〉L2(X)

∣∣∣2 = 〈f,1X〉2L2(X) = ‖f‖2
L2(X) .

This implies that ∫
X

f 2 dµ =

(∫
X

f dµ

)2

if and only if the function f ∈ L2(X) is constant. �

Definition 6.23. Given Hilbert spaces H1 and H2, a linear operator

L : H1 → H2

is said to be a compact operator if the image of the unit ball of H1 under L is precompact in H2.

Proposition 6.24 ([5, Proposition II.4.7]). Given a probability space X : = (X,Σ, µ, T ) and H ∈
L2(X×X), then the mapping K : L2(X)→ R defined as

(Kf)(x) =

∫
X

H(x, x′)f(x′) dµ(x′)

is a compact operator.
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Proposition 6.25. Given an invertible measure preserving system X := (X,Σ, µ, T ). Let Φ : L2(X)×
L2(X)→ L2(X) be a uniformly continuous map that commutes with T . That is, for all f, g ∈ L2(X)

Φ(f ◦ T, g ◦ T ) = Φ(f, g) ◦ T.

Then AP (X) is closed under compositions with Φ.

Proof. Let Φ : L2(X) × L2(X) → L2(X) be any uniformly continuous map that commutes with

T . Fix any f, g ∈ AP (X). We show that Φ(f, g) ∈ AP (X) by verifying that O(Φ(f, g)) is precompact.

By Proposition 6.18, we need only show that O(Φ(f, g)) is totally bounded.

Fix ε > 0. Since Φ is uniformly continuous, there exists δ > 0 such that if

‖f ◦ T n − f‖2 <
δ

2

and

‖g ◦ T n − g‖2 <
δ

2
then ‖Φ(f, g) ◦ T n − φ(f, g)‖ < ε. Since f, g ∈ AP (X), there exists finite collections of balls with radius

δ/2 such that

O(f) ⊆
N⋃
i=1

B(xi, δ/2)

and

O(g) ⊆
N⋃
j=1

B(yj, δ/2).

Take any n ∈ Z and consider Φ(f, g) ◦ T n ∈ O(Φ(f, g)). There exists functions fi, gj ∈ L2(X) such that

‖f ◦ T n − fi‖2 <
δ

2

and

‖g ◦ T n − gj‖2 <
δ

2
.

Since Φ is uniformly continuous, we have that

‖Φ(f, g) ◦ T n − φ(fi, gj)‖ < ε.

Since the choice of n ∈ Z was arbitrary, it follows that

O(Φ(f, g)) ⊆
⋃
i,j

B(Φ(xi, yj), ε),

and since the choice of ε > 0 was arbitary, we have that Φ(f, g) ∈ AP (X). �

Proposition 6.26. Given an invertible measure preserving system X := (X,Σ, µ, T ). For any f, g ∈
L2(X), the pointwise operations, m : R2 → R and M : R2 → R defined for every x ∈ X as

m(f(x), g(x)) := min{f(x), g(x)}, M(f(x), g(x)) := max{f(x), g(x)}

are uniformly continuous on L2(X) and commute with T .
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Proof. Fix any two f, g ∈ L2(X). Note that the pointwise operations m and M can be rewritten

as

min{f(x), g(x)} =
1

2
(f(x) + g(x) + |f(x)− g(x)|) ,

max{f(x), g(x)} =
1

2
(f(x) + g(x)− |f(x)− g(x)|) .

The pointwise addition and subtraction operators are uniformly continuous in L2(X) and the mapping

| • | : R→ R is uniformly continuous in R. Since composition of uniformly continuous mappings remains

uniformly continuous, we conclude that the pointwise operations m and M are uniformly continuous. �

Proposition 6.27. Given an invertible measure preserving system X := (X,Σ, µ, T ). Then S(ΣAP ) ⊆
AP (X).

Proof. Take any h ∈ S(ΣAP ), where

h =
∑
i∈I

αi1Ai .

By Proposition 6.9, 1Ai ∈ AP (X) for every i ∈ I. By Proposition 6.19, since AP (X) is a subspace of

L2(X) we conclude that

h =
∑
i∈I

αi1Ai ∈ AP (X). �

Proposition 6.28 ([34, Proposition 6.21]). Given an invertible measure preserving system X : =

(X,Σ, µ, T ). Then for every f ∈ L2(X) the following statements are equivalent.

(i) The function f is almost periodic, that is, f ∈ AP (X).

(ii) The function f is measurable with respect to ΣAP , that is, f ∈ L2(XAP (X)).

Proof. We first show that (ii) =⇒ (i). Let f ∈ L2(XAP (X)). By Propositions 6.19 and 6.20,

AP (X) is a closed subspace of L2(X). By Proposition 2.12 there exists (fn) ⊆ S(ΣAP ) such that (fn)

converges to f ∈ L2(XAP (X)) in L2(X). By Proposition 6.27, the approximating sequence satisfies

(fn) ⊆ AP (X). Hence, it follows that f ∈ AP (X).

Next, we show that (i) =⇒ (ii). Let f ∈ AP (X). Fix any α ∈ R and consider the set

Aα := {x ∈ X : f(x) > α}.

Recall that ΣAP = {A ∈ Σ : 1A ∈ AP (X)}. It will follow that f ∈ L2(XAP (X)) if we can show that

1Aα ∈ AP (X). Consider the pointwise defined sequence such that for every x ∈ X and n ∈ N

gn(x) := min{max{n(f(x)− α), 0}, 1}.

Since AP (X) is a subspace of L2(X), we know that for every n ∈ N, we have n(f − α) · 1X ∈ AP (X).

By Proposition 6.26 and Proposition 6.25, it follows that (gn) ⊆ AP (X). Define the sequence where for

every x ∈ X and n ∈ N
hn(x) := max{n(f(x)− α), 0}.
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By the definition of the sequence (hn), for every n ∈ N, hn ≥ 0 and further

{x ∈ X : hn ≥ 0} = {x ∈ X : f ≥ α}.

Consider the following pointwise defined map J : AP (X)→ AP (X) where for every x ∈ X

Jf(x) := min{f(x), 1}.

It is clear that gn = Jhn for every n ∈ N. Fix any x ∈ Aα. Then there exists some N ∈ N such that

if n ≥ N then n(f(x) − α) ≥ 1. So for every x ∈ Aα, there exists N ∈ N such that hn(x) ≥ 1. This

gives us that gn(x) converges to 1Aα(x) for all x ∈ X. Furthermore, since gn ≤ 1X for all n ∈ N, by the

Dominated Convergence Theorem (Theorem 6.17), we have that

lim
n→∞

∫
X

gn =

∫
X

1Aα dµ.

Since the function 1Aα and the sequence of functions (gn) are non-negative by definition, we have that

lim
n→∞

∫
X

|gn − 1Aα| dµ = lim
n→∞

‖1X · (gn − 1Aα)‖L1(X)

By Hölder’s Inequality (Proposition D.10), for every n ∈ N, we have that ‖1X · (gn − 1Aα)‖L1(X) ≤
‖gn − 1Aα‖L2(X). Therefore, we can conclude that

lim
n→∞

‖gn − 1Aα‖L2(X) = 0.

Since (gn) ⊆ AP (X) and AP (X) is a closed subspace of L2(X), this implies that 1Aα ∈ AP (X) and by

definition of the Kronecker factor, Aα ∈ ΣAP . Since the choice of α ∈ R was arbitrary, we conclude that

f ∈ L2(XAP (X)). �



Part III: Extending the Special Cases Towards the

Final Result



CHAPTER 7

Further Preliminaries

We have now essentially dealt with the ‘base case’ of the Furstenberg Multiple Recurrence Theorem -

the simple cases of weak mixing and compact systems, as well as the dichotomy of systems result. After

formally defining the notion of a conditional expectation, along with a few other important concepts, we

will be ready to move on to what we may call the ‘induction step’ of the proof.

1. Conditional Expectations

Definition 7.1 ([3, Definition 2.4, p. 27]). Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-

algebra of Σ defining X′ := (X,Σ′, µ). Then for every f ∈ L1(X) a conditional expectation of f against

Σ′ is a function denoted by E (f |X′), which satisfies the following properties.

(i) E (f |X′) ∈ L1(X′).

(ii) For every A ∈ Σ, we have that.∫
A

E (f |X′) dµ =

∫
A

f dµ.

Let E (•|X′) : L1(X)→ L1(X′) denote a mapping such that conditions (i) and (ii) are satisfied for every

f ∈ L1(X). This mapping is said to be a conditional expectation of X onto X′.

For a a given probability space X := (X,Σ, µ) and a sub-σ-algebra Σ′ of Σ defining X′ := (X,Σ′, µ), it

is necessary for us to verify the existence of a mapping E (•|X′) that satisfies conditions (i) and (ii) for

every f ∈ L1(X). Further, note the phrase a conditional expectation in the above definition. It has not

been established that E (•|X′) : L1(X)→ L1(X′) is the unique mapping that satisfies conditions (i) and

(ii). To prove the former, we shall need the following theorem.

Theorem 7.2 (Radon-Nikodym, [3, Theorem 2.1, p. 28]). Let X := (X,Σ, µ) be a probability space and

Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Then for every f ∈ L1(X) there exists a function

g ∈ L1(X′) such that for each A ∈ Σ′ ∫
A

f dµ =

∫
A

g dµ.

The existence of a conditional expectation follows directly from the Radon-Nikodym Theorem.

Corollary 7.3. Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining X′ :=

(X,Σ′, µ). Then for any f ∈ L1(X), the conditional expectation E (f |X′) ∈ L1(X′) exists.

Now that existence of E (f |X′) ∈ L1(X′) for every f ∈ L1(X) has been verified, we turn to uniqueness.

52
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Proposition 7.4 (Uniqueness of the conditional expectation). Let X := (X,Σ, µ) be a probability space

and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Then for every f ∈ L1(X), there exists a unique

conditional expectation E (f |X′) ∈ L1(X′).

Proof. Let f ∈ L1(X). Suppose for the sake of a contradiction there exists functions g, h ∈ L1(X′)

with the property that g 6= h and that both satisfy conditions (i) and (ii) of Definition 7.1. This implies

that for any A ∈ Σ′ ∫
A

g dµ =

∫
A

f dµ =

∫
A

h dµ.

By linearity of the integral, for every A ∈ Σ′∫
A

(g − h) dµ = 0.(6)

Define the set

B := {x ∈ X : g(x)− h(x) 6= 0} ∈ Σ′.

Since we assumed that g 6= h, it follows that µ(B) > 0. Otherwise, if µ(B) = 0, this would imply that

g = h, contradicting our original assumption. Next, define

B+ := {x ∈ X : g(x)− h(x) > 0}, B− := {x ∈ X : g(x)− h(x) < 0}

so that B = B+∪B−. Since B ∈ Σ′ has positive measure, at least one of the sets B+ or B− has positive

measure. Without loss of generality, assume B+ has positive measure.

There exists some ε > 0 such that the set C := {x ∈ X : g(x)− h(x) > ε} ∈ Σ′ has positive measure. If

no such ε > 0 existed, applying Proposition 3.31, would imply that B+ has measure zero.

Now, given that µ(C) > 0, from (6) we have

0 =

∫
C

(g − h) dµ > ε

∫
C

dµ = ε · µ(C) > 0.

This is clearly a contradiction. Therefore, we conclude that there cannot exist two distinct functions

g, h ∈ L1(X′) that both satisfy conditions (i) and (ii) of Definition 7.1. Therefore, the conditional

expectation E (f |X′) of a given function f ∈ L1(X) is indeed unique. Since the choice of f ∈ L1(X)

was arbitrary, we conclude that the mapping E (•|X′) : L1(X)→ L1(X′) is uniquely defined for a given

sub-σ-algebra Σ′ of Σ. �

With that, we have verified that the conditional expectation exists and is indeed unique. We will come

to rely on conditional expectations and their properties a great deal in future chapters. Therefore, we

now state a few of the well-known properties of the conditional expectation.

Corollary 7.5 (Conditional Expectation onto the trivial σ-algebra). Given a probability space X :=

(X,Σ, µ), the trivial probability space X0 := (X,Σ0, µ) where Σ0 = {∅, X} and some f ∈ L1(X). Then

E (f |X0) =

∫
X

f dµ · 1X .

That is, the function E (f |X0) ∈ L1(X0) is the constant function that takes on the value of the integral∫
X
f dµ.



1. CONDITIONAL EXPECTATIONS 54

The following properties of conditional expectations will be indispensable for many results moving

forward.

Proposition 7.6 (Properties of the conditional expectation, [3, Proposition 2.4, p. 29]). Let X :=

(X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ, and Σ′′ a further sub-σ-algebra of Σ′,

defining probability spaces X′ := (X,Σ′, µ) and X′′ := (X,Σ′′, µ). Then the following properties hold

true.

(i) If α, β ∈ R and f, g ∈ L1(X), then E (αf + βg|X′) = αE (f |X′) + βE (g|X′).

(ii) If f ∈ L1(X) and h ∈ L1(X′), then E (f · h|X′) = h · E (f |X′).

(iii) If f ≤ g, then E (f |X′) ≤ E (g|X′).

(iv) E (E (f |X′) |X′′) = E (f |X′′).

In proofs to come, our approach will often be of a functional analytic nature. Given that the concept

of the conditional expectation will be used often, we characterize the behaviour of the conditional

expectation from that point of view.

Definition 7.7 ([5, Definition 2.8]). Let H be a Hilbert space and M a closed subspace. The orthogonal

projection of H onto M is defined to be the mapping P : H → M where for every x ∈ H, Px ∈ M is

the unique value such that 〈y, Px− x〉L2(X) = 0 for all y ∈M .

Proposition 7.8. Let H be a Hilbert space. If for every x ∈ H, 〈u, x〉H = 0, then u = 0.

Proof. Observe that if u 6= 0, there exists x ∈ H such that 〈u, x〉H 6= 0, namely, u = x. The result

follows as the contrapositive of this statement. �

Theorem 7.9. Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining X′ :=

(X,Σ′, µ). Then L2(X′) is a closed subspace of L2(X).

Corollary 7.10. Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining X′ :=

(X,Σ′, µ). Let P : L2(X) → L2(X′) be the orthogonal projection onto L2(X′). Then for every f ∈
L2(X), we have that Pf = E (f |X′).

Proof. Fix any f ∈ L2(X). By conditions (i) and (ii) of Proposition 7.6, it is enough for us to

verify that E (Pf − f |X′) = 0.

Let g ∈ L2(X′) be arbitrary. Consider the inner product

〈g,E (Pf − f |X′)〉L2(X) =

∫
X

g ·
(
E (Pf − f |X′)〉L2(X)

)
=

∫
X

g · E (Pf |X′) dµ−
∫
X

g · E (f |X′) dµ.

By Definition 7.7 and condition (ii) of Proposition 7.6, we know that
∫
X
g · E (Pf |X′) dµ =

∫
X
g ·

Pf dµ. Further, by Definition 7.7 and condition (ii) of Proposition 7.6, we have
∫
X
g · E (f |X′) dµ =∫

X
E (g · f |X′) dµ =

∫
X
g · f dµ. Hence

〈g,E (Pf − f |X′)〉L2(X) =

∫
X

g · Pf dµ−
∫
X

g · f dµ = 〈g, Pf − f〉L2(X).
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However, by Defintion 7.7, we know that for every g ∈ L2(X′), we have 〈g, Pf − f〉L2(X) = 0. It follows

by Proposition 7.8 that E (Pf − f |X′) = 0. By conditions (i) and (ii) of Proposition 7.6, we conclude

that Pf = E (f |X′). �

2. Hilbert Modules

Looking at Proposition 7.6, we see that conditional expectations and the L2 inner product exhibit some

important similarities. If the conditional expectation behaves similar to the L2 inner product, this

would allow us to take a functional analytic approach to problems and establish useful results that are

analogous to known results for L2 spaces.

Consider a probability space X := (X,Σ, µ) and Σ′ a sub-σ-algebra of Σ. Loosely speaking, the condi-

tional expectation may be thought of as a ‘function-valued inner product’ where the elements of L2(X)

are acted upon by the conditional expectation, outputting elements in L2(X′), which in a sense, behave

like constants with respect to the conditional expectation as shown in (ii) of Proposition 7.6. To make

our notion of function valued inner products more precise, we introduce the concept of a Hilbert module.

Definition 7.11 (Hilbert modules, [29, p. 196]). Let X := (X,Σ, µ) be a probability space and Σ′ a

sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Define the Hilbert module as the set

L2(X|X′) :=
{
f ∈ L2(X) : E

(
|f |2
∣∣X′)1/2 ∈ L∞(X′)

}
.

The Hilbert module, which we will soon show is a vector subspace of L2(X), will prove to be the

appropriate setting in which we define a ‘function-valued inner product’.

Although the Hilbert module L2(X|X′) does indeed constitute a module over the commutative von

Neumann algebra L∞(X′) [29, p. 196], we will never make use of this fact directly and we will be more

interested in the topological nature of Hilbert modules.

Proposition 7.12 (Hölder inequality for conditional expectations, [2, Theorem 4.7.2, p. 88]). Let X :=

(X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Let p, q ∈ (1,∞)

such that 1/p+ 1/q = 1. Then for all f, g ∈ L1(X)

E (|fg||X′) ≤ E (|f |p|X′)1/p · E (|g|q|X′)1/q
.

Proposition 7.13. Given a probability space X := (X,Σ, µ) and a function f ∈ L2(X) such that f ≥ 0,

and g ∈ L∞(X). If we have that f ≤ g, then f ∈ L∞(X).

Proposition 7.14 ([29, p. 196]). Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ

defining X′ := (X,Σ′, µ). Then the Hilbert module L2(X|X′) is a vector subspace of L2(X).

Proof. Fix any f, g ∈ L2(X|X′) and any α, β ∈ R. By the triangle inequality, for every x ∈ X

|αf(x) + βg(x)| ≤ |α||f(x)|+ |β||g(x)|.

Since the real valued function φ : R→ R where φ(a) = a2 is monotonically increasing on a ∈ [0,∞), we

have that for every x ∈ X

|αf(x) + βg(x)|2 ≤ (|α||f(x)|+ |β||g(x)|)2 = |α|2|f(x)|2 + |α||β||f(x)g(x)|+ |β|2|g(x)|2.
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By Proposition 7.6 (i) and (iii) we have that

E
(
|αf + βg|2

∣∣X′) ≤ E
(
|α|2|f |2

∣∣X′)+ E (|α||β||fg||X′) + E
(
|β|2|g|2

∣∣X′)
= |α|2 E

(
|f |2
∣∣X′)+ |α||β| E (|fg||X′) + |β|2 E

(
|g|2
∣∣X′) .

By Proposition 7.12,

E
(
|αf + βg|2

∣∣X′) ≤ |α|2 E (|f |2∣∣X′)+ |α||β| E
(
|f |2
∣∣X′)1/2 · E

(
|g|2
∣∣X′)1/2

+ |β|2 E
(
|g|2
∣∣X′) .

Since f, g ∈ L2(X|X′), by Proposition 7.13, we conclude that

E
(
|αf + βg|2

∣∣X′) ∈ L∞(X′),

and hence αf + βg ∈ L2(X|X′). Since the choice of f, g ∈ L2(X|X′) was arbitrary, this shows that

L2(X|X′) is a subspace of L2(X). �

3. Conditional Inner Products

Definition 7.15 (Conditional inner product, [29, p. 198]). Let X := (X,Σ, µ) be a probability space

and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Define the conditional inner product 〈•, •〉L2(X|X′) :

L2(X)× L2(X)→ L1(X′) where for every f, g ∈ L2(X)

〈f, g〉L2(X|X′) := E (f · g|X′) ∈ L1(X′).

The fact that for all f, g ∈ L2(X) we have that E (f · g|X′) ∈ L1(X′) follows from Hölder’s Inequality

(Proposition D.10).

Remark 7.16. Note that if we set Σ′ = Σ0 = {∅, X} in Definition 7.15, the definition of the conditional

inner product on L2(X) reverts to the definition of standard inner product on L2(X) as

E (f · g|X′) = E (f · g|X0) =

(∫
X

f · g dµ
)
· 1X = 〈f, g〉L2(X) · 1X

and therefore ‖E (f · g|X′)‖L2(X) =
∫
X
f · g dµ = 〈f, g〉L2(X) .

Definition 7.17 ([29, p. 198]). Let X := (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ

defining X′ := (X,Σ′, µ). Define the conditional norm

‖f‖L2(X|X′) :=
√
〈f, f〉L2(X|X′) =

√
E (|f |2|X′).

Therefore, we can write the Hilbert module L2(X|X′) as

L2(X|X′) = {f ∈ L2(X) : ‖f‖L2(X|X′) ∈ L
∞(X′)}.

The conditional inner product has analogous properties to a standard inner product.

Proposition 7.18. Let X : = (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining

X′ := (X,Σ′, µ). For every α ∈ L∞(X′) and f, g, h ∈ L2(X)

(i) 〈f, g〉L2(X|X′) = 〈g, f〉L2(X|X′),

(ii) 〈f + g, h〉L2(X|X′) = 〈f, h〉L2(X|X′) + 〈g, h〉L2(X|X′),
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(iii) 〈αf, g〉L2(X|X′) = α 〈f, g〉L2(X|X′).

Proposition 7.19. Let X : = (X,Σ, µ) be a probability space and Σ′ a sub-σ-algebra of Σ defining

X′ := (X,Σ′, µ). Then for every f ∈ L2(X) we have that ‖f‖L2(X|X′) = 0 if and only if f = 0.

Proof. Assume that f = 0, which gives that |f |2 = 0. By Proposition 7.6, since it holds true that

|f |2 ≤ 0 and 0 ≤ |f |2, we have that ‖f‖2
L2(X|X′) = E (|f |2|X′) = 0, and thus ‖f‖L2(X|X′) = 0.

Now, assume that ‖f‖L2(X|X′) = E (|f |2|X′) = 0. Assume for a contradiction that f 6= 0. This implies

that there exists A ∈ Σ′ with µ(A) > 0 such that∫
A

|f |2 dµ > 0.

However, by the definition of the conditional expectation∫
A

E
(
|f |2|X′

)
dµ =

∫
A

|f |2 dµ > 0.

But this implies that

0 =

∫
X

‖f‖L2(X|X′) dµ =

∫
X

E
(
|f |2|X′

)
dµ ≥

∫
A

E
(
|f |2|X′

)
dµ > 0,

which is a contradiction. We conclude that f = 0. �

Theorem 7.20 (Pointwise conditional Cauchy-Schwarz inequality, [29, p. 198]). Let X := (X,Σ, µ) be

a probability space and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Given f, g ∈ L2(X|X′) then

| 〈f, g〉L2(X|X′) |(x) ≤ ‖f‖L2(X|X′) (x) ‖g‖L2(X|X′) (x)

for almost every x ∈ X.

Proof. Fix any f, g ∈ L2(X|X′) and consider

0 ≤
∥∥∥‖g‖L2(X|X′) f − ‖f‖L2(X|X′) g

∥∥∥2

L2(X|X′)

=
〈
‖g‖L2(X|X′) f − ‖f‖L2(X|X′) g, ‖g‖L2(X|X′) f − ‖f‖L2(X|X′) g

〉
L2(X|X′)

= ‖g‖2
L2(X|X′) 〈f, f〉L2(X|X′) + ‖f‖2

L2(X|X′) 〈g, g〉L2(X|X′) − 2 ‖f‖L2(X|X′) ‖g‖L2(X|X′) 〈f, g〉L2(X|X′)

=2 ‖g‖2
L2(X|X′) ‖f‖

2
L2(X|X′) − 2 ‖f‖L2(X|X′) ‖g‖L2(X|X′) 〈f, g〉L2(X|X′)

This gives

0 ≤ 2 ‖g‖L2(X|X′) ‖f‖L2(X|X′)

(
‖g‖L2(X|X′) ‖f‖L2(X|X′) − 〈f, g〉L2(X|X′)

)
.(7)

There are three possible cases to consider. Firstly, if ‖g‖L2(X|X′) ‖f‖L2(X|X′) = 0, we may assume

without loss of generality that ‖f‖L2(X|X′) = 0. By Proposition 7.19 it follows that f = 0 and the

desired inequality

| 〈f, g〉L2(X|X′) |(x) ≤ ‖f‖L2(X|X′) (x) ‖g‖L2(X|X′) (x),

holds true for almost all x ∈ X.
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Next, fix any x ∈ X. If ‖g‖L2(X|X′) (x) ‖f‖L2(X|X′) (x) > 0, then it follows from (7) that,

〈f, g〉L2(X|X′) (x) ≤ ‖f‖L2(X|X′) (x) ‖g‖L2(X|X′) (x),

for almost all x ∈ X.

Lastly, for any h ∈ L2(X|X′), ‖h‖L2(X|X′) (y) =
√
E (|h|2|X′)(y) ≥ 0 for all y ∈ X since |h|2(y) ≥ 0 for

all y ∈ X. Therefore, for the fixed x ∈ X, the case where ‖g‖L2(X|X′) (x) ‖f‖L2(X|X′) (x) < 0 cannot

occur.

We conclude therefore that∣∣∣〈f, g〉L2(X|X′)

∣∣∣ (x) ≤ ‖f‖L2(X|X′) (x) ‖g‖L2(X|X′) (x)

for almost all x ∈ X. �

Theorem 7.21 (Pointwise conditional triangle inequality). Let X := (X,ΣY , µ) be a probability space

and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Given f, g ∈ L2(X|X′) then

‖f + g‖L2(X|X′) (x) ≤ ‖f‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)

for almost every x ∈ X.

Proof. Take any f, g ∈ L2(X|X′). We wish to show that

‖f + g‖L2(X|X′) (x) ≤ ‖f‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)

for almost all x ∈ X. Rewriting this in terms of the definition of the conditional norm and squaring

both sides, we wish to show that

‖f + g‖2
L2(X|X′) (x) = E

(
|f + g|2|X′

)
(x) ≤

(
‖f‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)

)2

= E
(
|f |2|X′

)
(x) + E

(
|g|2|X′

)
(x) + 2

√
E (|f |2|X′) (x)

√
E (|g|2|X′) (x)

for almost all x ∈ X. Fix any x ∈ X and consider the left hand side of the above expression

E
(
|f + g|2|X′)

)
(x) = E

(
(f + g)2|X′)

)
(x) = E

(
|f |2|X′)

)
(x) + E

(
|g|2|X′)

)
(x) + 2 · E (fg|X′)) .

By Theorem 7.20, it follows that

E (fg|X′)) (x) = 〈f, g〉L2(X|X′) (x) ≤
∣∣∣〈f, g〉L2(X|X′)

∣∣∣ (x) ≤
√

E (|f |2|X′)) (x)
√

E (|g|2|X′)) (x)

= ‖f‖L2(X|X′) (x) ‖g‖L2(X|X′) (x)

for almost all x ∈ X. Therefore, we have that

E
(
|f + g|2|X′)

)
(x) = E

(
|f |2|X′)

)
(x) + E

(
|g|2|X′)

)
(x) + 2 · E (fg|X′))

≤ E
(
|f |2|X′)

)
(x) + E

(
|g|2|X′)

)
(x) + 2

√
E (|f |2|X′)) (x)

√
E (|g|2|X′)) (x)

for almost all x ∈ X. Therefore

‖f + g‖2
L2(X|X′) (x) ≤

(
‖f‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)

)2

for almost all x ∈ X. Taking the square root on both sides, we conclude that

‖f + g‖L2(X|X′) (x) ≤ ‖f‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)
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for almost all x ∈ X. �

Theorem 7.22 (Pointwise conditional reverse triangle inequality). Let X := (X,ΣY , µ) be a probability

space and Σ′ a sub-σ-algebra of Σ defining X′ := (X,Σ′, µ). Given f, g ∈ L2(X|X′) then∣∣∣‖f‖L2(X|X′) − ‖g‖L2(X|X′)

∣∣∣ (x) ≤ ‖f − g‖L2(X|X′) (x)

for almost every x ∈ X.

Proof. Take any f, g ∈ L2(X). Then for almost all x ∈ X

‖f‖L2(X|X′) (x) = ‖f − g + g‖L2(X|X′) (x).

By the pointwise conditional triangle inequality (Theorem 7.21),

‖f‖L2(X|X′) (x) = ‖f − g + g‖L2(X|X′) (x) ≤ ‖f − g‖L2(X|X′) (x) + ‖g‖L2(X|X′) (x)

for almost all x ∈ X. Therefore

‖f‖L2(X|X′) (x)− ‖g‖L2(X|X′) (x) ≤ ‖f − g‖L2(X|X′) (x).(8)

Similarly

‖g‖L2(X|X′) (x) = ‖g − f + f‖L2(X|X′) (x) ≤ ‖g − f‖L2(X|X′) (x) + ‖f‖L2(X|X′) (x)

for almost all x ∈ X. This gives

−
(
‖f‖L2(X|X′) (x)− ‖g‖L2(X|X′) (x)

)
= ‖g‖L2(X|X′) (x)− ‖f‖L2(X|X′) (x) ≤ ‖f − g‖L2(X|X′) (x)(9)

for almost all x ∈ X. Combining inequalities (8) and (9), for almost all x ∈ X we have∣∣∣‖f‖L2(X|X′) − ‖g‖L2(X|X′)

∣∣∣ (x) ≤ ‖f − g‖L2(X|X′) (x). �



CHAPTER 8

Roth’s Theorem

Having proven the Dichotomy of Systems result (Theorem 6.16) in Chapter 6 and introduced relevant

notation and definitions in Chapter 7, we are now in a position where we can provide a rather short

proof of Roth’s Theorem [23], the first non-trivial special case of Szemerédi’s Theorem.

Theorem 8.1 (Roth’s Theorem). If A ⊆ Z such that d (A) > 0, then A contains a arithmetic progression

of length three.

By the definition of factors and extensions we employ (Definition 6.2), we can interpret a measure

preserving system X := (X,Σ, µ, T ) with Σ0 ( Σ as a non-trivial factor of itself. With this in mind and

recalling the definition of a SZ system (Definition 4.5), the following result is a corollary of Theorem 6.16.

Corollary 8.2. Given any invertible measure preserving system X := (X,ΣX , µ, T ), then there exists

a non-trivial factor Y := (X,ΣY , µ, T ) for which Y is a SZ system.

Proof. If X is weak mixing, then by Theorem 4.11, the measure preserving system X, a non-trivial

factor of itself, has the SZ property.

Otherwise, if X is not weak mixing, then by Theorem 6.16 the Kronecker factor XAP (X) is non-trivial. By

Proposition 6.10, the Kronecker factor XAP (X) is a compact measure preserving system. By Theorem 5.6,

we know that XAP (X) has the SZ property. �

Consider the following special case of the Furstenberg Multiple Recurrence Theorem.

Theorem 8.3 (Triple Recurrence Theorem). Let X := (X,Σ, µ, T ) be an invertible measure preserving

system. For any E ∈ Σ such that µ(E) > 0 there exists n ∈ N such that

µ(E ∩ T−nE ∩ T−2nE) > 0.

The proofs of Theorem 3.4 and Theorem 3.6 can easily be repurposed to show that Roth’s Theorem

and the Triple Recurrence Theorem are equivalent by replacing all instances of the variable k ∈ N with

k = 3. In order to prove the Triple Recurrence Theorem, and by equivalence, Roth’s Theorem, it is

only necessary for us to consider the following special cases.

First, we have the following corollary to Theorem 4.11.

Corollary 8.4. Given any invertible measure preserving system X := (X,ΣX , µ, T ) such that X is

weak mixing. Then for any f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ > 0.
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In order to keep this digression short, we use the following proposition from [9] without providing the

proof.

Proposition 8.5 ([9, Theorem 4.22]). Given any invertible measure preserving system X := (X,ΣX , µ, T )

such that X is not weak mixing. Then for any f ∈ L∞(X) we have that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ

= lim inf
N→∞

1

N

N∑
n=1

∫
X

E
(
f |XAP (X)

)
· E
(
f ◦ T n|XAP (X)

)
· E
(
f ◦ T 2n|XAP (X)

)
dµ.

Assuming this result, we have the following corollary.

Corollary 8.6. Given any invertible measure preserving system X := (X,Σ, µ, T ) which is not weak

mixing, then for any f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ > 0.

Proof. Take any f ∈ L∞(X) with f ≥ 0 and
∫
X
f dµ > 0. By Proposition 8.5

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ

= lim inf
N→∞

1

N

N∑
n=1

∫
X

E
(
f |XAP (X)

)
· E
(
f ◦ T n|XAP (X)

)
· E
(
f ◦ T 2n|XAP (X)

)
dµ.

By Definition 7.11, since f ∈ L∞(X), we have that E
(
f |XAP (X)

)
∈ L∞(XAP (X)). By Proposition 6.10,

XAP (X) is a compact measure preserving system, so it follows by Theorem 5.6 that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ

= lim inf
N→∞

1

N

N∑
n=1

∫
X

E
(
f |XAP (X)

)
· E
(
f ◦ T n|XAP (X)

)
· E
(
f ◦ T 2n|XAP (X)

)
dµ

> 0.

Since the choice of f ∈ L∞(X) was arbitrary, the required result follows. �

From Corollary 8.4 and Corollary 8.6, we have the following result.

Theorem 8.7 (All measure preserving systems are SZ systems of level 3). Let X := (X,Σ, µ, T ) be an

invertible measure preserving system. For any f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0 we have

that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n dµ > 0.
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We conclude that the Triple Recurrence Theorem (Theorem 8.3) holds true for all invertible measure

preserving systems. Hence, via the equivalence laid out in Chapter 3, we have proven Roth’s Theorem.



CHAPTER 9

Weak Mixing Extensions

1. Relativising Weak Mixing Systems

Having introduced all the necessary terms and definitions, we are now able to formulate a relativized

version of weak mixing systems, where a system X is no longer weak mixing in itself, but weak mixing

relative to a factor Y.

In order to emphasize the similarities we will see between weak mixing systems and weak mixing

extensions, we consider the following characterization of standard weak mixing systems which we have

not used previously.

Definition 9.1 (Weak mixing function, [29, Definition 2.12.3]). Given a measure preserving system

X := (X,ΣX , µ, T ), a function f ∈ L2(X) is said to be a weak mixing function if

D−lim
n→∞

〈f, f ◦ T n〉L2(X) = 0.

Proposition 9.2 (Equivalent forms of weak mixing systems, [29, Exercise 2.12.9]). Given a measure

preserving system X := (X,ΣX , µ, T ), the following statements are equivalent.

(i) The system X is weak mixing.

(ii) Every f ∈ L2(X) with
∫
X
f dµ = 0 is a weak mixing function.

These notions of weak mixing functions and weak mixing systems can now be generalized in a natural

way to the notions of conditionally weak mixing functions and weak mixing extensions.

Definition 9.3 (Conditionally weak mixing function, [29, p. 206]). Given invertible measure preserving

systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. A function f ∈ L2(X|Y)

is said to be conditionally weak mixing function if

D−lim
n→∞

〈f ◦ T n, f〉L2(X|Y) = 0

in L2(X).

Definition 9.4 (Weak mixing extension, [29, Definition 2.14.3]). Given invertible measure preserving

systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. The extension Φ is said

to be a weak mixing extension if every f ∈ L2(X|Y) such that E (f |Y) = 0 is a conditionally weak

mixing function.

63
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The definition of weak mixing extensions is a bona fide generalization of weak mixing systems if we

consider the specific extension of a measure preserving system X from its trivial factor X0.

Proposition 9.5. Given a measure preserving system X := (X,ΣX , µ, T ) and the trivial factor X0 :=

(X,Σ0, µ, T ), then

L2(X|X0) = L2(X).

Proof. Since only constant functions are measurable with respect to Σ0, the set of functions L∞(X0)

is exactly the set of all constant functions. By Definition 7.11, we have that L2(X|X0) ⊆ L2(X). Now,

take any f ∈ L2(X). By Definition D.7 (∫
X

|f |2dµ
)1/2

<∞.

Therefore

E
(
|f |2|X0

)1/2
=

(∫
X

|f |2dµ
)1/2

· 1X ∈ L∞(X0).

Which implies that f ∈ L2(X|X0). Therefore, it follows that L2(X|X0) ⊆ L2(X). Combining these

inclusions, we have that L2(X|X0) = L2(X). �

Proposition 9.6. Given an invertible measure preserving system X := (X,ΣX , µ, T ) and the trivial

factor X0 := (X,Σ0, µ, T ). Then X is weak mixing if and only if Φ : X0 → X is a weak mixing extension.

Proof. Assume the measure preserving system X := (X,ΣX , µ, T ) is a weak mixing system. We

show that Φ : X0 → X is a weak mixing extension. Consider the set of functions

L2(X|X0) =
{
f ∈ L2(X) : E

(
|f |2|Σ0

)1/2 ∈ L∞(X0)
}
.

By Definition 9.4 and Proposition 9.5, the extension Φ : X0 → X is a weak mixing extension if and only

if every f ∈ L2(X) = L2(X|X0) such that E (f |X0) = 0 is a conditionally weak mixing function. Fix

any f ∈ L2(X) such that E (f |X0) = 0, then f ∈ L2(X) is conditionally weak mixing if

0 = D−lim
n→∞

〈f ◦ T n, f〉L2(X|X0) = D−lim
n→∞

E (f · f ◦ T n|X0) = D−lim
n→∞

(∫
X

f · f ◦ T ndµ
)
· 1X

in L2(X). Therefore

D−lim
n→∞

〈f ◦ T n, f〉L2(X|X0) = 0

in L2(X) if

D−lim
n→∞

∫
X

f · f ◦ T ndµ = 0.

However, since X := (X,ΣX , µ, T ) was assumed to be a weak mixing system, we know by Proposition

9.2 that every f ∈ L2(X) such that
∫
X
f dµ = 0 satisfies

D−lim
n→∞

∫
X

f · f ◦ T ndµ = 0.

Hence Φ : X0 → X is a weak mixing extension.
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Conversely, assume that Φ : X0 → X is a weak mixing extension. Therefore, for every f ∈ L2(X|X0) =

L2(X) such that
∫
X
fdµ = 0, we have that

D−lim
n→∞

∫
X

f · f ◦ T ndµ = 0.

By Proposition 9.2, X is a weak mixing system. �

The preceding result, along with those in the next section, technically render the treatment of weak

mixing systems in Chapter 4 unnecessary. However, the general ideas and techniques used earlier when

dealing with weak mixing systems will serve us well as a guide for our aim of showing that the SZ

property of a factor Y can pass through to an extension X via a weak mixing extension.

2. The SZ property is Carried Through Weak Mixing Extensions

Analogous to the method in Chapter 4, we shall need a new version of the van der Corput Lemma

(Theorem 4.9) along with a few more preliminary results, including the more high powered result of the

von Neumann Mean Ergodic Theorem (Theorem 9.8), in order for us to reach our stated aim for this

section.

Proposition 9.7 ([17, Theorem 5.1.4]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X a weak mixing extension. For all functions f, g ∈ L2(X) such that

either E (f |Y) = 0 or E (g|Y) = 0

D−lim
n→∞

‖E (f ◦ T n · g|Y)‖L2(X) = 0.

Theorem 9.8 (Von Neumann mean ergodic theorem, [17, Theorem 5.1.5]). Consider a measure pre-

serving system X := (X,Σ, µ, T ) and the closed subspace of L2(X)

J := {f ∈ L2(X) : f ◦ T = f}.

Denote by P : L2(X)→ J the projection of L2(X) onto J . Then for every f ∈ L2(X)

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

f ◦ T n − Pf

∥∥∥∥∥
L2(X)

= 0.

Lemma 9.9 (Uniform van der Corput Lemma, [17, Theorem 5.1.6]). Given a Hilbert space H and a

bounded sequence (xn) in H. If we have that

D−lim
m→∞

(
C−lim

n→∞
〈xn+m, xn〉H

)
= 0,

then

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

xn

∥∥∥∥∥
H

= 0.

The proof of the following result is similar in strategy to the proof of Theorem 4.10 in Chapter 4.
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Theorem 9.10 ([17, Theorem 5.1.7]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X a weak mixing extension. Then for all f1, f2, · · · , fk ∈ L∞(X)

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k∏
i=1

fi ◦ T in −
k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

= 0.

Proof. As for Theorem 4.10, the proof follows by induction.

Base case, k = 1. Take any f ∈ L∞(X). We show that

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n − E (f ◦ T n|Y))

∥∥∥∥∥
L2(X)

= 0.

Define the set of functions

J := {f ∈ L2(X) : f ◦ T = f}
and the projection P : L2(X)→ J , and fix any ε > 0. Then, for any N ∈ N∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n − E (f ◦ T n|Y))

∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n)− Pf

∥∥∥∥∥
L2(X)

+

∥∥∥∥∥Pf − 1

N

N∑
n=1

(E (f ◦ T n|Y))

∥∥∥∥∥
L2(X)

.

By the von Neumann Mean Ergodic Theorem (Theorem 9.8), there exists some M1 such that if N ≥M1,

then ∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n)− Pf

∥∥∥∥∥
L2(X)

<
ε

2
.

Now, for any N ∈ N∥∥∥∥∥ 1

N

N∑
n=1

(E (f ◦ T n|Y))− Pf

∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥ 1

N

N∑
n=1

(E (f ◦ T n|Y))− P (E (f |Y))

∥∥∥∥∥
L2(X)

+ ‖P (E (f |Y)− Pf)‖L2(X) .

Again, by the von Neumann Mean Ergodic Theorem (Theorem 9.8), there exists some M2 ∈ N such

that if N ≥M2, then ∥∥∥∥∥ 1

N

N∑
n=1

(E (f ◦ T n|Y))− P (E (f |Y))

∥∥∥∥∥
L2(X)

<
ε

2
.

By Proposition 9.13 the set J is a closed subspace of L2(Y), which in turn is a closed subspace of

L2(X). Therefore, the projections E (•|Y) : L2(X) → L2(Y) and P : L2(X) → J commute and

P (E (f |Y)) = Pf . Hence

‖Pf − P (E (f |Y))‖L2(X) = 0.
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Therefore, there exists M := max{M1,M2} such that if N ≥M∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n − E (f ◦ T n|Y))

∥∥∥∥∥
L2(X)

<
ε

2
+
ε

2
= ε.

Since the choice of ε > 0 was arbitrary, we conclude that

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

(f ◦ T n − E (f ◦ T n|Y))

∥∥∥∥∥
L2(X)

= 0.

Induction step, k > 1. Fix any k > 1. Assume for every l ≤ k − 1 and for all f1, f2, · · · , fl ∈ L∞(X)

that

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
l∏

i=1

fi ◦ T in −
l∏

i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

= 0.

Fix any f1, f2, · · · , fk ∈ L∞(X). We show that

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k∏
i=1

fi ◦ T in −
k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

= 0.

Define the function f̃ := fk − E (fk|Y). Then for every N ∈ N

1

N

N∑
n=1

(
k∏
i=1

fi ◦ T in
)

=
1

N

N∑
n=1

((
k−1∏
i=1

fi ◦ T in
)
×
(
f̃ ◦ T kn + E

(
fk ◦ T kn|Y

)))
and

1

N

N∑
n=1

(
k∏
i=1

E
(
fi ◦ T in|Y

))
=

1

N

N∑
n=1

((
k−1∏
i=1

E
(
fi ◦ T in|Y

))
× E

(
f̃ ◦ T kn + E

(
fk ◦ T kn|Y

)∣∣∣Y)) .
Combining these∥∥∥∥∥ 1

N

N∑
n=1

(
k∏
i=1

fi ◦ T in −
k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

fi ◦ T in
)
× f̃ ◦ T kn

∥∥∥∥∥
L2(X)

+

∥∥∥∥∥ 1

N

N∑
n=1

((
k−1∏
i=1

fi ◦ T in
)
× E

(
fk ◦ T kn|Y

)
−

k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

+

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

E
(
fi ◦ T in|Y

))
× E

(
f̃ ◦ T kn|Y

)∥∥∥∥∥
L2(X)

=: K
(1)
N +K

(2)
N +K

(3)
N .

We show that the terms K
(1)
N , K

(2)
N and K

(3)
N converge to zero as N → ∞ in order to prove the result.

By the definition of the function f̃ , we have that E
(

˜f |Y
)

= 0. Therefore

E
(
f̃ ◦ T kn|Y

)
= E

(
f̃ |Y

)
◦ T kn = 0
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for every n ∈ N so that K
(3)
N = 0 for every N ∈ N.

Further

K
(2)
N =

∥∥∥∥∥ 1

N

N∑
n=1

((
k−1∏
i=1

fi ◦ T in
)
× E

(
fk ◦ T kn|Y

)
−

k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

=

∥∥∥∥∥ 1

N

N∑
n=1

(
E
(
fk ◦ T kn|Y

))
×

(
k−1∏
i=1

fi ◦ T in −
k−1∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

.

Since fk ∈ L∞(X), we have that
(
E
(
fk ◦ T kn|Y

))
is a bounded sequence of functions, so there exists

some R ≥ 0 such that
∥∥E (fk ◦ T kn|Y)∥∥∞ ≤ R for all n ∈ N. Therefore

K
(2)
N =

∥∥∥∥∥ 1

N

N∑
n=1

(
E
(
fk ◦ T kn|Y

))
×

(
k−1∏
i=1

fi ◦ T in −
k−1∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

≤ R ·

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

fi ◦ T in −
k−1∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

.

By the induction hypothesis for l = k − 1, we have that

lim
n→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

fi ◦ T in −
k−1∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

= 0.

Therefore, limN→∞K
(2)
N = 0. It remains to show that

lim
N→∞

K
(1)
N = lim

N→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

fi ◦ T in
)
× f̃ ◦ T kn

∥∥∥∥∥
L2(X)

= 0.

Define the sequence of functions (gn) ⊆ L∞(X) as

gn :=

(
k−1∏
i=1

fi ◦ T in
)
× f̃ ◦ T kn.

Aiming to apply the uniform van der Corput Lemma, (Lemma 9.9), we claim that

D−lim
m→∞

(
C−lim

n→∞
〈gn+m, gn〉L2(X)

)
= 0.

Fix some m ∈ N. For every N ∈ N

1

N

N∑
n=1

〈gn+m, gn〉L2(X) =
1

N

N∑
n=1

∫
X

((
k−1∏
i=1

fi ◦ T i(n+m)

)
× f̃ ◦ T k(n+m)

)
·

((
k−1∏
i=1

fi ◦ T in
)
× f̃ ◦ T kn

)
dµ

=
1

N

N∑
n=1

∫
X

(
k−1∏
i=1

(
fi ◦ T im · fi

)
◦ T in

)
·
(
f̃ ◦ T km · f̃

)
◦ T kn dµ.
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Define functions in L∞(X),

F
(m)
1 := f1 ◦ Tm · f1,

F
(m)
2 := f2 ◦ T 2m · f2,

...

F
(m)
k−1 := fk−1 ◦ T (k−1)m(x) · fk−1,

F
(m)
k := f̃ ◦ T km · f̃ .

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), for every N ∈ N

1

N

N∑
n=1

〈gn+m, gn〉L2(X) =
1

N

N∑
n=1

∫
X

k∏
i=1

F
(m)
i ◦ T in dµ.

=
1

N

N∑
n=1

∫
X

F
(m)
1 ◦ T n ·

(
k∏
i=2

F
(m)
i ◦ T in

)
dµ

=

∫
X

F
(m)
1 · 1

N

N∑
n=1

(
k∏
i=2

F
(m)
i ◦ T (i−1)n

)
dµ.

By the induction hypothesis for l = k − 1

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k∏
i=2

F
(m)
i ◦ T (i−1)n −

k∏
i=2

E
(
F

(m)
i ◦ T (i−1)n|Y

))∥∥∥∥∥
L2(X)

= 0.

Since norm convergence implies weak convergence in L2(X), it follows that

C−lim
n→∞

〈gn+m, gn〉L2(X) = lim
N→∞

1

N

N∑
n=1

〈gn+m, gn〉L2(X)

= lim
N→∞

∫
X

F
(m)
1 · 1

N

N∑
n=1

(
k∏
i=2

F
(m)
i ◦ T (i−1)n

)
dµ

= lim
N→∞

∫
X

F
(m)
1 · 1

N

N∑
n=1

(
k∏
i=2

E
(
F

(m)
i |Y

)
◦ T (i−1)n

)
dµ.

By the definition of the conditional inner product (Definition 7.1)

C−lim
n→∞

〈gn+m, gn〉L2(X) =

∫
X

E

(
F

(m)
1 · 1

N

N∑
n=1

(
k∏
i=2

E
(
F

(m)
i |Y

)
◦ T (i−1)n

)∣∣∣∣∣Y
)

dµ

=
1

N

N∑
n=1

∫
X

k∏
i=1

E
(
F

(m)
i |Y

)
◦ T (i−1)n dµ

=
1

N

N∑
n=1

∫
X

(
k−1∏
i=1

E
(
F

(m)
i |Y

)
◦ T (i−1)n

)
· E
(
F

(m)
k |Y

)
◦ T (k−1)n dµ.
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By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20)

C−lim
n→∞

〈gn+m, gn〉L2(X) ≤ lim
N→∞

1

N

N∑
i=1

∥∥∥∥∥
k−1∏
i=1

E
(
F

(m)
i |Y

)
◦ T (i−1)n

∥∥∥∥∥
L2(X)

∥∥∥E(F (m)
k |Y

)
◦ T (k−1)n

∥∥∥
L2(X)

.

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16)

lim
N→∞

1

N

N∑
i=1

〈gn+m, gn〉L2(X) ≤ lim
N→∞

1

N

N∑
i=1

∥∥∥∥∥
k−1∏
i=1

E
(
F

(m)
i |Y

)∥∥∥∥∥
L2(X)

∥∥∥E(F (m)
k |Y

)∥∥∥
L2(X)

=

∥∥∥∥∥
k−1∏
i=1

E
(
F

(m)
i |Y

)∥∥∥∥∥
L2(X)

∥∥∥E(F (m)
k |Y

)∥∥∥
L2(X)

.

By Proposition 9.14

lim
N→∞

1

N

N∑
i=1

〈gn+m, gn〉L2(X) ≤
k−1∏
i=1

‖fi‖2
∞

∥∥∥E(F (m)
k |Y

)∥∥∥
L2(X)

.

This gives

D−lim
m→∞

(
C−lim

n→∞
〈gn+m, gn〉L2(X)

)
≤

k−1∏
i=1

‖fi‖2
∞ ·D−lim

m→∞

∥∥∥E(f̃ ◦ T km · f̃ |Y)∥∥∥
L2(X)

.

By Proposition 9.7, since E
(
f̃ |Y

)
= 0, we have that

D−lim
m→∞

∥∥∥E(f̃ ◦ T km · f̃ |Y)∥∥∥
L2(X)

= 0.

This implies that

D−lim
m→∞

(
C−lim

n→∞
〈gn+m, gn〉L2(X)

)
= 0.

Therefore, using the uniform van der Corput Lemma (Theorem 9.9)

lim
N→∞

K
(1)
N = lim

N→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k−1∏
i=1

fi ◦ T in × f̃ ◦ T kn
)∥∥∥∥∥

L2(X)

= 0.

We conclude that

0 ≤ lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

(
k∏
i=1

fi ◦ T in −
k∏
i=1

E
(
fi ◦ T in|Y

))∥∥∥∥∥
L2(X)

≤ lim
N→∞

K
(1)
N +K

(2)
N +K

(3)
N = 0.

Since our choice of k ∈ N was arbitrary, the required result follows by induction. �

Still following a similar approach to that of Chapter 4, using properties of the limit inferior and condi-

tional expectations, we reach our desired conclusion.

Theorem 9.11. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X a weak mixing extension. If the system Y is SZ, then so is X.
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Proof. Fix any k ∈ N and let f ∈ L∞(X) such that f ≥ 0 and
∫
X
f dµ > 0. Consider

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)n dµ

= lim inf
N→∞

(
1

N

N∑
n=1

∫
X

f ·
k−1∏
i=1

f ◦ T in − f ·
k−1∏
i=1

E
(
f ◦ T in|Y

)
+ f ·

k−1∏
i=1

E
(
f ◦ T in|Y

)
dµ

)
.

By the superadditivity of the limit inferior

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)n dµ

≥ lim inf
N→∞

(
1

N

N∑
n=1

∫
X

f ·
k−1∏
i=1

f ◦ T in − f ·
k−1∏
i=1

E
(
f ◦ T in|Y

)
dµ

)

+ lim inf
N→∞

(
1

N

N∑
n=1

∫
X

f ·
k−1∏
i=1

E
(
f ◦ T in|Y

)
dµ

)
.

By Theorem 9.10, since norm convergence implies weak convergence in L2(X), we have that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f ·
k−1∏
i=1

f ◦ T in − f ·
k−1∏
i=1

E
(
f ◦ T in|Y

)
dµ = 0.

Therefore, by the definition of the conditional expectation (Definition 7.1)

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)n dµ

≥ lim inf
N→∞

1

N

N∑
n=1

∫
X

f ·
k−1∏
i=1

E
(
f ◦ T in|Y

)
dµ

= lim inf
N→∞

1

N

N∑
n=1

∫
X

E

(
f ·

k−1∏
i=1

E
(
f ◦ T in|Y

)∣∣∣∣∣Y
)

dµ

= lim inf
N→∞

1

N

N∑
n=1

∫
X

E (f |Y)E (f ◦ T n|Y)E
(
f ◦ T 2n|Y

)
· · ·E

(
f ◦ T (k−1)n|Y

)
dµ.

Since f ≥ 0, we have that E (f |Y) ≥ 0 and
∫
X
E (f |Y) dµ =

∫
X
f dµ > 0. Further, since Y is SZ, we

conclude that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)n dµ > 0. �
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9.A. Ancillary Results for the Proof of Theorem 9.11

Proposition 9.12 ([31, Proposition 4.3]). Given a Hilbert space H and continuous linear operators

P : H → H and Q : H → H. Then the set

{x ∈ H : P (x) = Q(x)}

is closed in H.

Proposition 9.13. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X a weak mixing extension. Define the set

J :=
{
f ∈ L2(X) : f ◦ T = f

}
.

Then J is a closed subspace of L2(Y).

Proof. It is clear that J is closed under pointwise addition and scalar multiplication and is hence

a subspace of L2(X). Since the identity map I : L2(X) → L2(X) and the Koopman operator KT :

L2(X)→ L2(X) are continuous linear operators, by Proposition 9.12, J is a closed subspace of L2(X).

It remains to show that J ⊆ L2(Y). Take any f ∈ J . It is clear that if f ◦ T = f , then E (f ◦ T |Y) =

E (f |Y). Therefore, for every f ∈ J , we also have E (f |Y) ∈ J . Define f̃ := f − E (f |Y) ∈ J . It

follows that E
(
f̃ |Y

)
= 0. Since Φ is a weak mixing extension, it follows by Definition 9.4 that f̃ is a

conditionally weak mixing function. That is

D−lim
n→∞

〈
f̃ ◦ T n, f̃

〉
L2(X|Y)

= 0,

in L2(X). But

D−lim
n→∞

〈
f̃ ◦ T n, f̃

〉
L2(X|Y)

= D−lim
n→∞

E
(
f̃ ◦ T n · f̃

∣∣∣Y) = 0,

in L2(X). Since f̃ ∈ J

0 = D−lim
n→∞

E
(
f̃ ◦ T n · f̃

∣∣∣Y) = D−lim
n→∞

E
(
f̃ · f̃

∣∣∣Y) = D−lim
n→∞

E
(
f̃ 2
∣∣∣Y) =

∥∥∥f̃ 2
∥∥∥2

L2(X|Y)

in L2(X), and hence
∥∥∥f̃ 2
∥∥∥
L2(X|Y)

= 0. By Proposition 7.19, we have that f̃ = 0 and therefore f =

E (f |Y), which means that f ∈ L2(Y). Therefore, J is a closed subspace of L2(Y). �

Proposition 9.14. Given measure preserving systems Y : = (X,ΣY , µ, T ), X : = (X,ΣX , µ, T ) and

Φ : Y → X an extension. Fix any s, r ∈ N. Then for all f1, f2, · · · fs ∈ L∞(X)∥∥∥∥∥
s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥
s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)∥∥∥∥∥
∞

≤
s∏
i=1

‖fi‖2
∞ .

Proof. Take any s, r ∈ N and f1, f2, · · · fs ∈ L∞(X). By Proposition 5.7∥∥∥∥∥
s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)∥∥∥∥∥
L2(X)

=

∥∥∥∥∥
(

s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)) · 1X
∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥
s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)∥∥∥∥∥
∞

.
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For every 1 ≤ i ≤ s, we have that fi ≤ ‖fi‖∞ and fi ◦ T ir ≤ ‖fi‖∞. This implies that

E

(
s∏
i=1

fi ◦ T ir · fi

∣∣∣∣∣Y
)
≤ E

(
s∏
i=1

‖fi‖2
∞

∣∣∣∣∣Y
)

=
s∏
i=1

‖fi‖2
∞ .

Taking the infinity norm on both sides gives∥∥∥∥∥
s∏
i=1

E
(
fi ◦ T ir · fi

∣∣Y)∥∥∥∥∥
∞

≤

∥∥∥∥∥
s∏
i=1

‖fi‖2
∞

∥∥∥∥∥
∞

=
s∏
i=1

‖fi‖2
∞ . �



CHAPTER 10

Compact Extensions

Next, we introduce the relativized version of compact systems - compact extensions. Similar to the

case with weak mixing extensions, we shall first introduce an alternative characterization of compact

systems that will emphasize the similarity between the formulation of compact systems and compact

extensions.

1. Relativising Compact Systems

In order to set up the definition of compact extensions, we shall need a few more preliminary concepts.

Definition 10.1 (Zonotopes, [29, p. 199]). Let X := (X,Σ, µ) is a probability space, d ∈ N, and take

f1, f2, · · · , fd ∈ L2(X). The set

Z = {c1f1 + c2f2 + · · ·+ cdfd : c1, c2, · · · , cd ∈ R, |c1|, |c2|, · · · , |cd| ≤ 1} .

is said to be a bounded finite dimensional zonotope.

Proposition 10.2 ([29, p. 199]). Given a measure preserving system X := (X,ΣX , µ, T ), the following

statements are equivalent.

(i) A subset E ⊆ L2(X) is precompact.

(ii) For every ε > 0, there exists a collection {fi}ni=1 ⊆ L2(X) defining a finite dimensional zonotope,

Z := {c1f1 + c2f2 + · · ·+ cnfn : |c1|, · · · , |cn| ≤ 1} ,

such that

E ⊆
⋃
z∈Z

B(z, ε).

Definition 10.3 (Finitely generated module zonotope, [29, p. 199]). Given measure preserving sys-

tems Y : = (X,ΣY , µ, T ), X : = (X,ΣX , µ, T ) and Φ : Y → X an extension. Consider d ∈ N and

f1, f2, · · · , fd ∈ L2(X|Y) and define a finitely generated module zonotope as

Z = {c1f1 + c2f2 + · · ·+ cdfd : c1, c2, · · · , cd ∈ L∞(Y ), ‖c1‖∞ , ‖c2‖∞ , · · · , ‖cd‖∞ ≤ 1.} .

Definition 10.4 (Conditionally precompact, [29, Definition 2.13.7]). Given measure preserving systems

Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. A subset E of L2(X|Y) is said

to be conditionally precompact if for every ε > 0, there exists a finitely generated module zonotope Z

contained in L2(X|Y) such that

E ⊆
⋃
z∈Z

B(z, ε).

74



1. RELATIVISING COMPACT SYSTEMS 75

Definition 10.5 (Conditionally almost periodic, [29, Definition 2.13.7]). Given invertible measure

preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. A function

f ∈ L2(X|Y) is said to be conditionally almost periodic if the orbit O(f) is conditionally precompact

in L2(X|Y).

Let AP (X|Y) denote the set of all functions contained in L2(X|Y) that are conditionally almost periodic.

Definition 10.6 (Conditionally almost periodic in measure, [29, Definition 2.13.7]). Given invertible

measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. A

function f ∈ L2(X|Y) is said to be conditionally almost periodic in measure if for every ε > 0 there

exists some E ∈ ΣY such that µ(E) ≤ ε and f · 1Ec ∈ AP (X|Y).

Let APµ(X|Y) denote the set of all functions contained in L2(X|Y) that are conditionally almost periodic

in measure.

As we shall see, having both the notion of almost periodicity as well as almost periodicity in measure

will be useful. The following proposition follows directly by the formulation of Definition 10.6.

Proposition 10.7. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Then AP (X|Y) ⊆ APµ(X|Y).

We use the weaker notion of almost periodicity in measure to define the notion of compact extensions.

Definition 10.8 (Compact extension, [29, Definition 2.13.7]). Given invertible measure preserving

systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. The extension Φ is said

to be a compact extension if L2(X|Y) = APµ(X|Y).

As before with weak mixing extensions, the notion of a compact extension fully generalizes that of a

compact system.

Proposition 10.9. Given an invertible measure preserving system X := (X,ΣX , µ, T ) and the trivial

factor X0 := (X,Σ0, µ, T ). Then X is compact if any only if Φ : X0 → X is a compact extension.

Proof. Assume X := (X,ΣX , µ, T ) is a compact system and consider the extension Φ : X0 → X.

We show that Φ : X0 → X is a compact extension by proving that every f ∈ L2(X|X0) is conditionally

almost periodic in measure, that is, L2(X|X0) = APµ(X|X0). By Proposition 9.5, we know that

L2(X|X0) = L2(X).

By Definition 10.6, without loss of generality, we need only verify for 1 > δ > 0 that there exists E ∈ Σ0

for which µ(E) ≤ δ < 1 such that f ·1Ec is a conditionally almost periodic function. Fix any f ∈ L2(X)

and any 1 > δ > 0, the only element E ∈ Σ0 such that µ(E) ≤ δ < 1 is E = ∅. This implies that is it

enough for us to show that f = f · 1X ∈ AP (X|X0).

Fix any ε > 0. Since X is a compact system, the orbit O(f) of f ∈ L2(X) is precompact in L2(X).

By Proposition 10.2, there exists a collection of functions {fi}ni=1 ⊆ L2(X) defining a finite dimensional

zonotope

Z := {c1f1 + c2f2 + · · ·+ cnfn : |c1|, · · · , |cn| ≤ 1} ,
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such that

O(f) ⊆
⋃
z∈Z

B(z, ε).

Therefore, Z constitutes a finitely generated module zonotope contained in L2(X|X0) and f ∈ AP (X|X0).

We conclude that Φ : X0 → X is a compact extension.

Conversely, assume that Φ : X0 → X is a compact extension. Fix any f ∈ L2(X). We show that the

orbit O(f) is precompact in L2(X). By Proposition 9.5, we know that L2(X|X0) = L2(X). Since Φ is a

compact extension, the function f ∈ L2(X|X0) is conditionally almost periodic. By Proposition 10.2, the

orbit O(f) is precompact. Since f ∈ L2(X|X0) = L2(X) was arbitrary, it follows that X := (X,ΣX , µ, T )

is a compact system. �

Proposition 10.10. Given measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and

Φ : Y → X an extension. Then, L∞(X) ⊆ L2(X|Y) ⊆ L2(X).

2. The SZ property is Carried Through Compact Extensions

In order to prove that the SZ property passes through compact extensions, we will need to make use

of van der Waerden’s Theorem.

Theorem 10.11 (van der Waerden’s Theorem, finitary version, [13, p. 30]). For every k, r ∈ N there

exists some W (k, r) ∈ N such that if the set

{0, 1, 2, 3, · · · ,W (k, r)− 1}

is partitioned into sets C1, C2, · · · , Cr, then there exists at least one 1 ≤ i ≤ r such that for some a ∈ Z
and d ∈ N

{a, a+ d, a+ 2d, · · · , a+ (k − 1)d} ⊆ Ci.

At this stage, we warn the reader that the following proof is rather involved. The important ideas of

the proof without the smaller details included is given in [29, Theorem 2.13.11].

We give a brief summary of the thinking that lies at the heart of the proof.

Consider a measure preserving system Y := (X,ΣY , µ, T ), a finite set L and d ∈ N. We shall construct

a sequence of simple functions {~cm : X → Ld}m∈Z. Using van der Waerden’s Theorem, we show that

there exists a set B ∈ ΣY such that µ(B) > 0 and an length k arithmetic progression

P := {a, a+ r, a+ 2r, · · · , a+ (k − 1)r}

such that for all p, q ∈ P , the functions ~cp(x) = ~cq(x) for all x ∈ B. This will allow us to identify ‘almost

periodic’ behaviour of a function along the arithmetic progression P .

Theorem 10.12. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X a compact extension. If the system Y is SZ, then so is X.

Proof. Fix f ∈ L∞(X) where f ≥ 0 and
∫
X
f dµ > 0, and some k ∈ N. We show that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ > 0.
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Since f ∈ L∞(X) and Φ is a compact extension, it follows by Proposition 10.10 that f ∈ APµ(X|Y).

Therefore, for any κ > 0, there exists some Aκ ∈ ΣY with µ(Aκ) ≤ κ such that gκ := f ·1Acκ ∈ AP (X|Y),

and

‖f − gκ‖L2(X) < κ.

Without any loss of generality, we may assume that f ∈ AP (X|Y). This follows from the fact that for

every κ > 0, the function gκ ≤ f satisfies

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ

≥ lim inf
N→∞

1

N

N∑
n=1

∫
X

gκ · gκ ◦ T n · gκ ◦ T 2n · · · gκ ◦ T (k−1)ndµ.

Further, if necessary, rescale the function f ∈ AP (X|Y) such that ‖f‖∞ ≤ 1. Fix ε > 0 and define

δ > 0 such that the set

E := {y ∈ X : E (f |Y) (y) > δ} ∈ ΣY(10)

has positive measure. Such a δ > 0 must exist since we assumed that f ≥ 0 and
∫
X
f dµ > 0.

Since f ∈ AP (X|Y), the orbit of f is conditionally precompact. Therefore, there exists some d ∈ N
and functions f1, f2, · · · , fd ∈ L2(X|Y) which defines a finitely generated module zonotope

Z = {c1f1 + c2f2 + · · ·+ cdfd : ‖c1‖∞ ≤ 1, · · · ‖cd‖∞ ≤ 1},

such that

O(f) ⊆
⋃
z∈Z

B(z, ε).

By definition, for every m ∈ Z, there exists c1,m, · · · , cd,m ∈ L∞(Y) such that

‖c1,m‖∞ ≤ 1, · · · , ‖cd,m‖∞ ≤ 1,

and

‖f ◦ Tm − (c1,mf1 + c2,mf2 + · · ·+ cd,mfd)‖L2(X|Y) < ε.

Therefore, for every m ∈ Z the function em ∈ L2(X|Y) defined as

em := f ◦ Tm − c1,mf1 + c2,mf2 + · · ·+ cd,mfd

satisfies ‖em‖L2(X|Y) < ε. At this point, we aim to replace the ci,m ∈ L∞(Y) with simple functions

c̃i,m ∈ L∞(Y).

Now, for every m ∈ Z and 1 ≤ i ≤ d, define the set Bi,m := {x ∈ X : |ci,m(x)| < ‖ci,m‖∞} ∈ ΣY . For

every m ∈ Z, 1 ≤ i ≤ d and every x ∈ Bi,m, define the quantity

L
(ε)
i,m(x) := min

{
s ∈ Z :

∥∥∥s · ε
d
− ci,m

∥∥∥
L2(X|Y)

(x) < ε/d

}
.

For every m ∈ Z and 1 ≤ i ≤ d, define a new function c̃i,m ∈ L∞(Y) where for every x ∈ Bi,m

c̃i,m(x) := L
(ε)
i,m(x) · ε

d
.
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For every m ∈ Z and 1 ≤ i ≤ d, without loss of generality, assume that c̃i,m takes on the value zero

on the set of measure zero X \ Bi,m ∈ ΣY . By their definition, it is clear that for every m ∈ Z and

1 ≤ i ≤ d, we have c̃i,m ∈ L∞(Y) and ‖c̃i,m‖∞ ≤ 1.

Define, for every m ∈ Z, the quantity

γm := inf
{
γ ∈ R : ‖f ◦ Tm − (c̃1,mf1 + c̃2,mf2 + · · ·+ c̃d,mfd)‖L2(X|Y) (x) < γ · ε, a.e. x ∈ X

}
.

Any error introduced by this construction may be absorbed into the error term em ∈ L2(X|Y), defining

a new error term ẽm ∈ L2(X|Y) such that ‖ẽm‖L2(X|Y) < γm · ε.

Let M ∈ N, and define for every n ∈ N, the set

Ωn := E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(M−1)nE ∈ ΣY .

Since the set E ∈ ΣY defined in (10) on p. 77 has positive measure and the system Y was assumed to

be SZ,

lim inf
N→∞

1

N

N∑
n=1

µ(Ωn) = lim inf
N→∞

1

N

N∑
n=1

∫
X

1E · 1E ◦ T n · 1E ◦ T 2n · · ·1E ◦ T (M−1)ndµ > 0.

By Proposition B.8, there exists c > 0 such that the set S := {n ∈ N : µ(Ωn) > c > 0} has positive

lower density. Let n ∈ S be arbitrary.

Fix any 0 ≤ j ≤M − 1 and x ∈ X. As f ∈ AP (X|Y), for every 1 ≤ i ≤ d and for almost all x ∈ X∥∥f ◦ T jn − (c̃1,jnf1 + c̃2,jnf2 + · · ·+ c̃d,jnfd)
∥∥
L2(X|Y)

(x) < γjn · ε.

Define the finite subset of Z
L :=

{
m ∈ Z : m · ε

d
∈ [−1, 1]

}
.

For every m ∈ Z, define the mapping ~cm : X → Ld as

~cm(x) := (L
(ε)
1,m(x), L

(ε)
2,m(x), · · · , L(ε)

d,m(x)) ∈ Ld, (x ∈ X).

Since the choice of integer 0 ≤ j ≤ M − 1 was arbitrary, we interpret every ~cjn(x) ∈ Ld for the fixed

x ∈ X as an Ld colouring of the set {0, 1, · · · ,M − 1} of integers. By van der Waerden’s Theorem

(Theorem 10.11), there exist M ∈ N (mentioned earlier) and ax, rx ∈ Z such that

{ax, ax + rx, ax + 2rx, · · · , ax + (k − 1)rx} ⊆ {0, 1, · · · ,M − 1}

and ~cax(x) = ~cax+rx(x) = ~cax+2rx(x) = · · · = ~cax+(k−1)rx(x).

Note that for every m ∈ Z

~cm(x) · ε
d

=
(
L

(ε)
1,m(x) · ε

d
, L

(ε)
2,m(x) · ε

d
, · · · , L(ε)

d,m(x) · ε
d

)
= (c̃1,mn(x), c̃2,mn(x) · · · , c̃d,mn(x)).

It follows that for the fixed x ∈ X and all s, t ∈ {0, 1, · · · k − 1}

(c̃1,(ax+srx)n(x), · · · , c̃d,(ax+srx)n(x)) = (c̃1,(ax+trx)n(x), · · · , c̃d,(ax+trx)n(x)).

In other words, for the fixed x ∈ X and for all s, t ∈ {0, 1, · · · k − 1}(
c̃1,(ax+srx)nf1 + c̃2,(ax+srx)nf2 + · · ·+ c̃d,(ax+srx)nfd

)
(x)



2. THE SZ PROPERTY IS CARRIED THROUGH COMPACT EXTENSIONS 79

=
(
c̃1,(ax+trx)nf1 + c̃2,(ax+trx)nf2 + · · ·+ c̃d,(ax+trx)nfd

)
(x).

Since the choice of x ∈ X was arbitrary, define functions

a : X → {0, 1, · · · ,M − 1} r : X → {0, 1, · · · ,M − 1}

where a(x) := ax and r(x) := rx. By Proposition 10.15, we know that a, r ∈ L0(Y).

Let I := |a(X)| and J := |r(X)|. It is clear that I, J ∈ N as a, r ∈ L0(Y) have finite ranges. Next, we

finitely partition the probability space (X,ΣY , µ) in two separate ways, namely,

X =
⋃

i∈a(X)

a−1({i}), X =
⋃

j∈r(X)

r−1({j}).

By Proposition 10.14, there exists a ∈ a(X) and r ∈ r(X) defining Bn := Ωn∩a−1({a})∩r−1({r}) ⊆ Ωn

such that µ(Bn) > 0. By the definition of Bn ∈ ΣY , we have that r(y) = r and a(y) = a for all y ∈ Bn.

Notice that our above argument was independent of the choice of n ∈ S made earlier, which implies

that there exists some σ > 0 such that µ(Bn) > σ > 0 for all n ∈ S.

Continuing with the fixed n ∈ S we chose earlier, and the fixed values of a ∈ a(X) and r ∈ r(X), for

all s, t ∈ {0, 1, · · · k − 1} and y ∈ Bn(
c̃1,(a+sr)nf1 + c̃2,(a+sr)nf2 + · · ·+ c̃d,(a+sr)nfd

)
(y) =

(
c̃1,(a+tr)nf1 + c̃2,(a+tr)nf2 + · · ·+ c̃d,(a+tr)nfd

)
(y).

This last step is the crucial detail we highlighted before the proof, and will allow us to identify ‘almost

periodic’ behaviour of O(f) along the arithmetic progression found earlier using van der Waerden’s

Theorem.

Therefore, for all s, t ∈ {0, 1, · · · k − 1} and every y ∈ Bn∥∥f ◦ T (a+sr)n − (c̃1,(a+tr)nf1 + c̃2,(a+tr)nf2 + · · ·+ c̃d,(a+tr)nfd)
∥∥
L2(X|Y)

(y) < γ(a+sr)n · ε.(11)

Using the pointwise conditional triangle inequality (Theorem 7.21) and (11), for every 0 ≤ s ≤ k − 1

there exists λs > 0 such that for almost all y ∈ Bn∥∥f ◦ T (a+sr)n − f ◦ T an
∥∥
L2(X|Y)

(y) ≤
∥∥f ◦ T (a+sr)n − (c̃1,anf1 + c̃2,anf2 + · · ·+ c̃d,anfd)

∥∥
L2(X|Y)

(y)

+ ‖f ◦ T an − (c̃1,anf1 + c̃2,anf2 + · · ·+ c̃d,anfd)‖L2(X|Y) (y)

< γ(a+sr)n · ε+ γan · ε
< λs · ε.

By Corollary 10.17, there exists η > 0 such that for almost all y ∈ Bn∥∥∥f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n − (f ◦ T an)k
∥∥∥
L2(X|Y)

(y) < η · ε.

By the pointwise conditional reverse triangle inequality (Theorem 7.22), we have that for almost all

y ∈ Bn ∥∥f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n
∥∥
L2(X|Y)

(y)−
∥∥∥(f ◦ T an)k

∥∥∥
L2(X|Y)

(y)

≤
∣∣∣∣∥∥f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

∥∥
L2(X|Y)

(y)−
∥∥∥(f ◦ T an)k

∥∥∥
L2(X|Y)

(y)

∣∣∣∣
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≤
∥∥∥f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n − (f ◦ T an)k

∥∥∥
L2(X|Y)

(y)

< η · ε.

Therefore, for almost all y ∈ Bn∥∥f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n
∥∥
L2(X|Y)

(y) >
∥∥∥(f ◦ T an)k

∥∥∥
L2(X|Y)

(y)− η · ε.

This implies, by the definition of the conditional norm (Definition 7.15), that for almost all y ∈ Bn

E
((
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)2
∣∣∣Y)1/2

(y) > E
(

(f ◦ T an)2k
∣∣∣Y)1/2

(y)− η · ε.

Squaring both sides gives

E
((
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)2
∣∣∣Y) (y)

>

(
E
(

(f ◦ T an)2k
∣∣∣Y)1/2

(y)− η · ε
)2

= E
(

(f ◦ T an)2k
∣∣∣Y) (y)− 2η · ε · E

(
(f ◦ T an)2k

∣∣∣Y)1/2

(y) + η2 · ε2.

The monotonicity of the integral yields∫
Bn

(
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)2
dµ >

∫
Bn

(f ◦ T an)2k dµ−2η · ε
∫
Bn

(f ◦ T an)2k dµ+η2 · ε2.

Note that since f ≥ 0 and ‖f‖∞ ≤ 1, for almost all y ∈ Bn(
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)
(y) ≥

(
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)2
(y).

Therefore, since f ≥ 0 ∫
X

f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n dµ

≥
∫
Bn

f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n dµ

≥
∫
Bn

(
f ◦ T anf ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n

)2
dµ

>

∫
Bn

(f ◦ T an)2k dµ− 2η · ε
∫
Bn

(f ◦ T an)2k dµ+ η2 · ε2.

Since the choice of ε > 0 was arbitrary, there exists an ε > 0 small enough and C > 0 such that∫
X

f ◦ T an · f ◦ T (a+r)n · · ·T (a+(k−1)r)n dµ > C > 0.

Since the Koopman operator preserves integrals, (Corollary 2.15)∫
X

f ◦ T an · f ◦ T (a+r)n · · ·T (a+(k−1)r)n dµ

=

∫
X

(
f ◦ T an · f ◦ T an+rn · f ◦ T an+2rn · · ·T an+(k−1)rn

)
◦ T−an dµ
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=

∫
X

f · f ◦ T rnf ◦ T 2rn · · ·T (k−1)rn dµ > C > 0.

Recall the value M ∈ N defined earlier. For every N ≥ M , define UN := {z ∈ {1, 2, · · · , N} : z =

rn, n ∈ N}. Then

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ

=
1

N

∑
u∈UN

∫
X

f · f ◦ T u · f ◦ T 2u · · · f ◦ T (k−1)udµ+
1

N

∑
n6∈UN

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ.

Since f ≥ 0

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)ndµ

≥ 1

N

∑
u∈UN

∫
X

f · f ◦ T u · f ◦ T 2u · · · f ◦ T (k−1)udµ.

By the definition of the set UN , we have that UN = r · S ∩ {1, 2, · · · , N}. By Proposition A.3, the set

r · S has positive lower density. Therefore, by Proposition B.5

lim inf
N→∞

1

N

N−1∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T (k−1)n dµ

≥ lim inf
N→∞

1

N

∑
u∈UN

∫
X

f · f ◦ T u · f ◦ T 2u · · · f ◦ T (k−1)udµ

> 0.

Since the choice of f ∈ L∞(X) with f ≥ 0 was arbitrary, we conclude that X has the SZ property. �

10.A. Ancillary Results for the Proof of Theorem 10.12

Proposition 10.13 (Jensen’s Inequality, [3, Theorem 2.2, p. 31]). Let (X,Σ, µ) be a probability space

and Σ′ a sub-σ-algebra of Σ. Given a convex function φ : R→ R and f ∈ L1(X) such that
∫
X
φ(f)dµ <

∞. Then

E (φ(f)|Y ) ≥ φ(E (f |Y )).

Proposition 10.14. Given a probability space (X,Σ, µ), a set A ∈ Σ such that µ(A) > 0 and finite

collections {Bi}i∈I ⊆ Σ, {Cj}j∈J ⊆ Σ such that

X =
⋃
i∈I

Bi, X =
⋃
j∈J

Cj.

Then there exists i0 ∈ I and j0 ∈ J such that µ(A ∩Bi0 ∩ Cj0) > 0.
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Proof. Assume for a contradiction that for every i ∈ I, we have that µ(A∩Bi) = 0. It follows that

0 ≤ µ(A) = µ(A ∩X) = µ

(
A ∩

(⋃
i∈I

Bi

))
≤
∑
i∈I

µ(A ∩Bi) = 0.

But this contradicts the assumption that µ(A) > 0, therefore there must exist at least one i0 ∈ I such

that µ(A ∩Bi0) > 0. The same argument applied to the set A ∩Bi0 where µ(A ∩Bi0) > 0 implies that

there exists at least one j0 ∈ J such that

µ(A ∩Bi0 ∩ Cj0) > 0,

as required. �

Proposition 10.15. Consider the functions

a : X → {0, 1, · · · ,M − 1} r : X → {0, 1, · · · ,M − 1}

defined in Theorem 10.12 on p. 79, then a, r ∈ L0(Y).

Proof. We show that a ∈ L0(Y), the argument to show r ∈ L0(Y) is very similar.

Recall the definition of a measurable function given in Definition D.1. Endow Ld with the discrete

topology P(Ld). Fix any m ∈ Z, take any ~̀ := (l1, · · · , ld) ∈ Ld and consider

~c
−1

m

(
{~̀}
)

=
{
x ∈ X : ~cm(x) = ~̀

}
=

{
x ∈ X :

∥∥∥f ◦ Tm − (l1 ε
d
· f1 + l2

ε

d
· f2 + · · ·+ ld

ε

d
· fd
)∥∥∥

L2(X|Y)
(x) < γm · ε

}
.

Since f ∈ L2(X|Y) and fi ∈ L2(X|Y) for every 1 ≤ i ≤ d, by Definition 7.11, we have that∥∥∥f ◦ Tm − (l1 ε
d
· f1 + l2

ε

d
· f2 + · · ·+ ld

ε

d
· fd
)∥∥∥

L2(X|Y)
∈ L∞(Y),

and hence, ~c
−1

jn

(
{~̀}
)
∈ ΣY , therefore, since the choice of m ∈ Z and ~̀ ∈ Ld were arbitrary, the mappings

~cm : X → Ld defined in Theorem 10.12 on p. 79 are measurable with respect to ΣY for every m ∈ Z.

Now, fix any α ∈ a(X). Consider

a−1({α}) = {x ∈ X : a(x) = α} = {x ∈ X : ax = α}
=
{
x ∈ X : ~cα = ~cα+β = ~cα+2β = · · · = ~cα+(k−1)β,∀ β ∈ r(X)

}
.

Since it has been shown that ~cm : X → Ld is measurable with respect to ΣY

a−1({α}) =
{
x ∈ X : ~cα = ~cα+β = ~cα+2β = · · · = ~cα+(k−1)β, ∀ β ∈ r(X)

}
∈ ΣY .

Since the choice of α ∈ a(X) was arbitrary, we conclude that a ∈ L0(Y). The same argument can be

used to show that r ∈ L0(Y). �

Proposition 10.16. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X a compact extension. Fix some ε > 0, a, r, k ∈ N and let A ∈ ΣY such that µ(A) > 0.

Consider f ∈ L∞(Y) such that f ≥ 0, ‖f‖∞ ≤ 1 and for all 0 ≤ s ≤ k− 1 there exists λs > 0 such that
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for all y ∈ A ∥∥f ◦ T (a+sr)n − f ◦ T an
∥∥ (y)L2(X|Y) < λs · ε.

Let K := {0, 1, · · · , k − 1}. Then, for every, l ≤ k − 1 and for all i1, i2, · · · , il ∈ K such that i1 < i2 <

· · · < il, there exists ηl > 0 such that for almost all y ∈ A∥∥f ◦ T (a+i1r)n · f ◦ T (a+i2r)n · · · f ◦ T (a+ilr)n − (f ◦ T an)l
∥∥ (y)L2(X|Y) < ηl · ε.

Proof. Base case: l = 2.

Take any i, j ∈ K such that i > j. For any y ∈ A∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − (f ◦ T an)2
∥∥
L2(X|Y)

(y)

=
∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − f ◦ T (a+ir)n · f ◦ T an + f ◦ T (a+ir)n · f ◦ T an − (f ◦ T an)2

∥∥
L2(X|Y)

(y)

≤
∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − f ◦ T (a+ir)n · f ◦ T an

∥∥
L2(X|Y)

(y)

+
∥∥f ◦ T (a+ir)n · f ◦ T an − (f ◦ T an)2

∥∥
L2(X|Y)

(y)

=: I1(y) + I2(y).

Considering the first term, we have that for almost all y ∈ A

I1(y) =
∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − f ◦ T (a+ir)n · f ◦ T an

∥∥
L2(X|Y)

(y)

=
∥∥f ◦ T (a+ir)n ·

(
f ◦ T (a+jr)n − f ◦ T an

)∥∥
L2(X|Y)

(y)

= E
((
f ◦ T (a+ir)n ·

(
f ◦ T (a+jr)n − f ◦ T an

))2
∣∣∣Y)1/2

(y)

= E
((
f ◦ T (a+ir)n

)2 ·
(
f ◦ T (a+jr)n − f ◦ T an

)2
∣∣∣Y)1/2

(y)

=
〈(
f ◦ T (a+ir)n

)2
,
(
f ◦ T (a+jr)n − f ◦ T an

)2
〉1/2

L2(X|Y)
(y)

=

∣∣∣∣〈(f ◦ T (a+ir)n
)2
,
(
f ◦ T (a+jr)n − f ◦ T an

)2
〉
L2(X|Y)

∣∣∣∣1/2 (y).

By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), we have that for almost all

y ∈ A

I1(y) =
∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − f ◦ T (a+ir)n · f ◦ T an

∥∥
L2(X|Y)

(y)

≤
∥∥∥(f ◦ T (a+ir)n

)2
∥∥∥1/2

L2(X|Y)
(y)
∥∥∥(f ◦ T (a+jr)n − f ◦ T an

)2
∥∥∥1/2

L2(X|Y)
(y).

Since ‖f‖∞ ≤ 1, we have that∥∥∥(f ◦ T (a+ir)n
)2
∥∥∥1/2

L2(X|Y)
= E

((
f ◦ T (a+ir)n

)4
∣∣∣Y)1/4

≤ 1.(12)

Therefore, for almost all y ∈ A

I1(y) ≤
∥∥∥(f ◦ T (a+jr)n − f ◦ T an

)2
∥∥∥1/2

L2(X|Y)
(y).
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Further, since ‖f‖∞ ≤ 1 and f ≥ 0, for almost all x ∈ X

f ◦ T (a+jr)n(x) ∈ [0, 1], f ◦ T an(x) ∈ [0, 1].

Hence

f ◦ T (a+jr)n(x)− f ◦ T an(x) ∈ [−1, 1]

so that (
f ◦ T (a+r)n(x)− f ◦ T an(x)

)4 ∈ [0, 1]

for almost all x ∈ X. For every t ∈ [0, 1], we have that t4 ≤ t2. Therefore for almost all y ∈ A∥∥∥(f ◦ T (a+jr)n − f ◦ T an
)2
∥∥∥1/2

L2(X|Y)
(y)

= E
((
f ◦ T (a+jr)n − f ◦ T an

)4
∣∣∣Y)1/4

(y)

≤ E
((
f ◦ T (a+jr)n − f ◦ T an

)2
∣∣∣Y)1/4

(y)

=
∥∥f ◦ T (a+jr)n − f ◦ T an

∥∥1/2

L2(X|Y)
(y)

<
√
λj · ε.

(13)

Now, considering the second term, we proceed in a similar way. For almost all y ∈ A

I2(y) =
∥∥f ◦ T (a+ir)n · f ◦ T an − (f ◦ T an)2

∥∥
L2(X|Y)

(y)

=
∥∥f ◦ T an · (f ◦ T (a+ir)n − f ◦ T an

)∥∥
L2(X|Y)

(y)

= E
((
f ◦ T an ·

(
f ◦ T (a+ir)n − f ◦ T an

))2
∣∣∣Y)1/2

(y)

=
〈

(f ◦ T an)2 ,
(
f ◦ T (a+ir)n − f ◦ T an

)2
〉1/2

L2(X|Y)
(y)

=

∣∣∣∣〈(f ◦ T an)2 ,
(
f ◦ T (a+ir)n − f ◦ T an

)2
〉
L2(X|Y)

∣∣∣∣1/2 (y).

By the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), we have that for almost all

y ∈ A

I2(y) =
∥∥f ◦ T (a+ir)n · f ◦ T an − (f ◦ T an)2

∥∥
L2(X|Y)

(y)

≤
∥∥(f ◦ T an)2

∥∥1/2

L2(X|Y)
(y)
∥∥∥(f ◦ T (a+ir)n − f ◦ T an

)2
∥∥∥1/2

L2(X|Y)
(y)

≤
∥∥∥(f ◦ T (a+ir)n − f ◦ T an

)2
∥∥∥1/2

L2(X|Y)
(y).

By the same argument as in (13), we have that for almost all y ∈ A

I2(y) =
∥∥f ◦ T (a+ir)n · f ◦ T an − (f ◦ T an)2

∥∥
L2(X|Y)

(y)

≤
∥∥f ◦ T (a+ir)n − f ◦ T an

∥∥1/2

L2(X|Y)
(y)
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<
√
λi · ε.

We conclude, since the choice of i, j ∈ K with i > j was arbitrary, that there exists η2 > 0 such that

for almost all y ∈ A ∥∥f ◦ T (a+ir)n · f ◦ T (a+jr)n − (f ◦ T an)2
∥∥
L2(X|Y)

(y)

<
√
λi · ε+

√
λj · ε =

(√
λi +

√
λj

)
·
√
ε

< η2 · ε

for all i, j ∈ K with i > j.

General case: 2 ≤ l ≤ k− 1. We proceed in a similar manner as laid out in the cases l = 2. Assume

that the result has been proven up to the case l−1. Consider i1, · · · , il ∈ K such that i1 < i2 < · · · < il.

Then, for almost all y ∈ A∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − (f ◦ T an)l
∥∥
L2(X|Y)

(y)

≤
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)nf ◦ T an

∥∥
L2(X|Y)

(y)

+
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)nf ◦ T an − (f ◦ T an)l

∥∥
L2(X|Y)

(y)

=: L1(y) + L2(y).

Consider the term L1. Using the pointwise conditional Cauchy-Schwarz inequality (Theorem 7.20), for

almost all y ∈ A

L1(y) =
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)nf ◦ T an

∥∥
L2(X|Y)

(y)

= E
((
f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n

)2 (
f ◦ T (a+ilr)n − f ◦ T an

)2
∣∣∣Y)1/2

(y)

=

∣∣∣∣〈(f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n
)2
,
(
f ◦ T (a+ilr)n − f ◦ T an

)2
〉
L2(X|Y)

∣∣∣∣1/2 (y)

≤
∥∥∥(f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n

)2
∥∥∥1/2

L2(X|Y)

∥∥∥(f ◦ T (a+ilr)n − f ◦ T an
)2
∥∥∥1/2

L2(X|Y)
(y).

Since ‖f‖∞ ≤ 1, we have that∥∥∥(f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n
)2
∥∥∥1/2

L2(X|Y)
≤ 1.

Therefore, using the same argument as in (12) and (13), for almost all y ∈ A

L1(y) =
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)nf ◦ T an

∥∥
L2(X|Y)

(y)

≤
∥∥∥(f ◦ T (a+ilr)n − f ◦ T an

)2
∥∥∥1/2

L2(X|Y)
(y)

≤
∥∥f ◦ T (a+ilr)n − f ◦ T an

∥∥1/2

L2(X|Y)
(y)

<
√
λl · ε.
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Further, for the second term, also using the pointwise conditional Cauchy-Schwarz inequality (Theo-

rem 7.20) and (13), for almost all y ∈ A

L2(y) =
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)nf ◦ T an − (f ◦ T an)l

∥∥
L2(X|Y)

(y)

= E
(

(f ◦ T an)2 (f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n − (f ◦ T an)l−1
)2
∣∣∣Y)1/2

(y)

=

∣∣∣∣〈(f ◦ T an)2 ,
(
f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n − (f ◦ T an)l−1

)2
〉
L2(X|Y)

∣∣∣∣1/2 (y)

≤
∥∥(f ◦ T an)2

∥∥1/2

L2(X|Y)
(y)
∥∥∥(f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n − (f ◦ T an)l−1

)2
∥∥∥1/2

L2(X|Y)
(y)

≤
∥∥∥(f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n − (f ◦ T an)l−1

)2
∥∥∥1/2

L2(X|Y)
(y)

≤
∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+il−1r)n − (f ◦ T an)l−1

∥∥1/2

L2(X|Y)
(y)

<ηl−1 · ε.

Therefore, for almost all y ∈ A∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − (f ◦ T an)l
∥∥
L2(X|Y)

(y) <
√
λl · ε+ ηl−1 · ε.

As the choice of i1, · · · , il ∈ K such that i1 < i2 < · · · < il was arbitrary, it follows that there exists

ηl > 0 such that ∥∥f ◦ T (a+i1r)n · · · f ◦ T (a+ilr)n − (f ◦ T an)l
∥∥
L2(X|Y)

< ηl · ε.
for all i1, · · · , il ∈ K such that i1 < i2 < · · · < il.

This approach can be repeated for any given value of k ∈ N to obtain the desired result. �

Corollary 10.17. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X a compact extension. Fix some ε > 0, a, r, k ∈ N and let A ∈ ΣY such that µ(A) > 0.

Consider f ∈ L∞(Y) such that f ≥ 0, ‖f‖∞ ≤ 1 and for all 0 ≤ s ≤ k− 1 there exists λs > 0 such that

for all y ∈ A ∥∥f ◦ T (a+sr)n − f ◦ T an
∥∥ (y)L2(X|Y) < λs · ε.

Then, there exists η > 0 such that for almost all y ∈ A∥∥f ◦ T an · f ◦ T (a+r)n · · · f ◦ T (a+(k−1)r)n − (f ◦ T an)k
∥∥ (y)L2(X|Y) < η · ε.



CHAPTER 11

The Dichotomy Between Weak Mixing and Compact Extensions

In this chapter, we shall prove the result we need in order to complete what can be called the ‘induction

step’ of the proof of the Furstenberg Multiple Recurrence Theorem.

Earlier, we proved a dichotomy result that characterized all invertible measure preserving systems

in terms of weak mixing and compact systems. Here, making use of the weak mixing and compact

extensions developed in the previous two chapters, and following the same general method of proof

developed in Chapter 6, we formulate and prove a dichotomy result for extensions themselves.

1. The Relative Kronecker Factor

We will make use of a relativized version of the Kronecker factor, which will turn out to have properties

that are direct analogues of those of the standard Kronecker factor.

Definition 11.1 (Relative Kronecker factor σ-algebra, [34, p. 50]). Given invertible measure preserving

systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Define the σ-algebra of

the relative Kronecker factor as collection of sets

ΣAPµ(X|Y) := {A ∈ ΣX : 1A ∈ APµ(X|Y)} .

Proposition 11.2 ([29, Exercise 2.13.6]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Then the collection ΣAPµ(X|Y) is a sub-σ-algebra of

ΣX and, further, ΣY is a sub-σ-algebra of ΣAPµ(X|Y).

Proof. We first verify that ΣAPµ(X|Y) is indeed a σ-algebra.

(i) In order to show that X ∈ ΣAPµ(X|Y), we need to verify that 1X ∈ APµ(X|Y). It is clear that

O(1X) = {1X ◦ T n : n ∈ Z} = {1X}.

Define the trivial module zonotope

Z := {c · 1X : c ∈ L∞(Y), ‖c‖∞ ≤ 1}.

Fix any ε > 0. It follows that O(1X) ⊆
⋃
z∈Z B(z, ε). Therefore, 1X ∈ AP (X|Y). Further, for

every δ > 0, we have ∅ ∈ ΣY , 0 = µ(∅) ≤ δ and 1X · 1∅c = 1X ∈ AP (X|Y). Hence, we conclude

that 1X ∈ APµ(X|Y) and consequently X ∈ ΣAPµ(X|Y).

(ii) Take any A ∈ ΣAPµ(X|Y). This means that 1A ∈ APµ(X|Y). By Corollary 11.14, APµ(X|Y) is

a subspace of L2(X|Y). Consequently, we have that 1X\A = 1X − 1A ∈ APµ(X|Y), which in

turn implies that X \ A ∈ ΣAPµ(X|Y).

87
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(iii) Take any sequence of sets (Ai) ⊆ ΣAPµ(X|Y). Define the sequence of sets (Bn) where for every

n ∈ N, Bn :=
⋃n
i=1Ai, and define the sequence of functions (fn) ⊆ APµ(X|Y) as

fn := 1Bn .

Define A :=
⋃
i∈NAi. It is clear that (fn) converges pointwise to 1A. Fix any ε > 0. We show

that there exists N ∈ N such that if n ≥ N , then

‖fn − 1A‖L2(X) < ε.

For every n ∈ N we have that

‖fn − 1A‖2
L2(X) = ‖1Bn − 1A‖2

L2(X) =

∫
X

|1Bn − 1A|2 dµ =

∫
X

(1Bn − 1A) dµ.

Since (1A − fn) converges pointwise to the zero function, and 1A − fn ≤ 1X for every n ∈ N, it

follows by the Dominated Convergence Theorem (Theorem 6.17) that

lim
n→∞

∫
X

1A − fn dµ = lim
n→∞

∫
X

1A − 1Bndµ = 0.

This implies that there exists some N ∈ N such that for all n ≥ N

‖fn − 1A‖L2(X) =

(∫
X

(1A − 1Bn) dµ

)1/2

< ε.

By Proposition 11.15, APµ(X|Y) is a closed subspace of L2(X|Y). Therefore, since (fn) con-

verges to 1A in L2(X) and since (fn) ⊆ APµ(X|Y), it follows that 1A ∈ APµ(X|Y). By

Definition 11.1, it follows that A =
⋃
i∈NAi ∈ ΣAPµ(X|Y).

Therefore ΣAPµ(X|Y) is a sub-σ-algebra of ΣX . It remains to show that ΣY is a sub-σ-algebra of ΣAPµ(X|Y).

Take any A ∈ ΣY . We verify that 1A ∈ APµ(X|Y). Consider the trivial module zonotope

Z := {c · 1X : c ∈ L∞(Y ), ‖c‖∞ ≤ 1}.

Fix any m ∈ Z. Then 1A ◦ Tm = 1T−mA ∈ O(1A). Further, it is clear that 1A ◦ Tm ∈ L∞(Y) and that

‖1A ◦ Tm‖∞ = ‖1A‖∞ ≤ 1. Therefore, 1A ◦ Tm = 1T−mA · 1X ∈ Z. Therefore, for every ε > 0, we have

that

O(1A) ⊆
⋃
z∈Z

B(z, ε).

Therefore, 1A ∈ APµ(X|Y). Now, for every δ > 0, we have that 0 = µ(∅) ≤ δ and 1A · 1∅c = 1A ∈
APµ(X|Y) and so we conclude that 1A ∈ APµ(X|Y). Therefore A ∈ ΣAP (X|Y). Since the choice of

A ∈ ΣY was arbitrary it follows that ΣY is a sub-σ-algebra of ΣAP (X|Y). �

Definition 11.3 (Relative Kronecker factor, [34, p. 50]). Given invertible measure preserving systems

Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. We call the measure preserving

system XKr := (X,ΣAPµ(X|Y), µ, T ) the relative Kronecker factor of X.

Corollary 11.4 (Simple functions in ΣY are almost periodic in measure). Given invertible measure

preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Then

S(ΣY ) ⊆ APµ(X|Y).
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Proof. Take a finite collection of sets {Ai}Ni=1 ⊆ ΣY and a finite collection of real numbers {αi}Ni=1 ⊆
R defining the simple function h =

∑N
i=1 αi1Ai ∈ S(ΣY ). By Proposition 11.2, ΣY is a sub-σ-algebra

of ΣAPµ(X|Y). Further, by Proposition 11.14, APµ(X|Y) is a subspace of L2(X|Y). This implies that

h ∈ APµ(X|Y). �

Corollary 11.5. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Then

L∞(Y) ⊆ APµ(X|Y).

Proposition 11.6. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Then the extension ΨKr : Y → XKr is compact.

Proof. We show that L2(XKr|Y) = APµ(XKr|Y) in order to verify that ΨKr is compact. By

Definition 10.6, APµ(XKr|Y) ⊆ L2(XKr|Y).

Now, take any f ∈ L2(XKr|Y) which implies that f ∈ L2(X,ΣAPµ(X|Y), µ). By Proposition 11.16

applied to the extension ΨKr, this implies that f ∈ APµ(XKr|Y). We conclude, therefore, that ΨKr is

a compact extension. �

Theorem 11.7 ([29, Exercise 2.13.6]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X : = (X,ΣX , µ, T ) and Φ : Y → X an extension. Then the relative Kronecker factor XKr is the

maximum factor of X such that the extension ΨKr : Y → XKr is compact.

Proof. By Proposition 11.6, the extension ΨKr : Y → XKr is compact. Now, consider any other

factor Z := (X,ΣZ , µ, T ) of X such that Φ′ : Y → Z is a compact extension. Consider any A ∈ ΣZ .

Since Φ′ is a compact extension, by Definition 10.8, APµ(Z|Y) = L2(Z|Y). Hence, 1A ∈ APµ(Z|Y).

However, since ΣZ ⊆ ΣX we have that 1A ∈ APµ(Z|Y) ⊆ APµ(X|Y). It follows by Definition 11.1 that

A ∈ ΣAPµ(X|Y). Therefore ΣZ ⊆ ΣAPµ(X|Y). As the choice of factor Z of X such that Φ′ : Y → Z is a

compact extension was arbitrary, we conclude that XKr is a maximal factor of X such that ΨKr : Y →
XKr is a compact extension.

The above argument also applies to any other purported maximal factor Z′ of X such that Ψ′ : Y → Z′

is a compact extension. Hence, we conclude that XKr is the unique maximal factor of X such that

ΨKr : Y → XKr is a compact extension. �

2. The Dichotomy of Extensions Result

Recalling the definition of a non-trivial extension given in Definition 6.4, we formulate the following

dichotomy result.

Theorem 11.8 ([29, Proposition 2.14.9]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Consider the extension ΨKr : Y → XKr. Then exactly

one of the following statements holds true.

(i) The extension Φ is weak mixing.

(ii) The extension ΨKr : Y → XKr is non-trivial.



11.A. AP (X|Y) IS A CLOSED SUBSPACE OF L2(X|Y) 90

Proof. Assume that Φ is a weak mixing extension. Suppose for a contradiction that the extension

ΨKr : Y → XKr is non-trivial. Therefore, there exists some f ∈ APµ(X|Y) such that f 6∈ L∞(Y). Since

E (f |Y) ∈ L∞(Y) ⊆ APµ(X|Y), by Proposition 11.14, it follows that f ′ := f − E (f |Y) ∈ APµ(X|Y).

Further, we have that

E (f ′|Y) = E (f − E (f |Y)|Y) = E (f |Y)− E (f |Y) = 0.

But, since Φ : Y → X is a weak mixing extension and E (f ′|Y) = 0, we have that f ′ = f − E (f |Y)

is a conditionally weak mixing function. Therefore, f ′ is simultaneously a conditionally weak mixing

function and f ∈ APµ(X|Y). By Proposition 11.23, this would mean that

〈f ′, f ′〉L2(X|Y) = 0.

By Corollary 11.19, the only function that is f ′ is simultaneously a conditionally weak mixing function

and conditionally almost periodic in measure is the zero function. Therefore, we have that f ′ = 0. This

in turn implies that f = E (f |Y). Since f ∈ L2(X|Y) it follows that f ∈ L∞(Y), but this contradicts

our supposition that ΨKr : Y → XKr is non-trivial. We must therefore conclude that there does not

exist any f ∈ APµ(X|Y) such that f 6∈ L∞(Y), hence the extension ΨKr : Y → XKr is indeed trivial

(i.e. ΣAPµ(X|Y) = ΣY ) if Φ : Y → X is a weak mixing extension.

Next, assume that Φ is not a weak mixing extension. By Definition 9.4, this implies that there exists

some f ∈ L2(X|Y) which is not conditionally weak mixing such that E (f |Y) = 0. By Proposition 11.23,

there exists some g ∈ APµ(X|Y) such that

〈f, g〉L2(X|Y) 6= 0.

Further, note that if g ∈ L∞(Y) ⊆ APµ(X|Y), by the definition of the conditional inner product

(Definition 7.15), we would have

〈f, g〉L2(X|Y) = E (fg|Y) = g · E (f |Y) = g · 0 = 0.

Therefore, g 6∈ L∞(Y). Since g ∈ APµ(X|Y) and g 6∈ L∞(Y), this implies that ΣY ( ΣAPµ(X|Y) and

the extension ΨKr : Y → XKr is non-trivial. �

11.A. AP (X|Y) is a Closed Subspace of L2(X|Y)

Proposition 11.9. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. If f, g ∈ AP (X|Y), then f + g ∈ AP (X|Y).

Proof. Take any f, g ∈ AP (X|Y) and fix ε > 0. By Definition 10.5, there exist r, s ∈ N, sets

I, J ⊆ N such that |I| = r, |J | = s, functions p1, · · · , pr ∈ L2(X|Y) and q1, · · · , qs ∈ L2(X|Y) defining

finitely generated module zonotopes

Zf :=
{
c1,fp1 + · · ·+ cr,fpr : ci,f ∈ L∞(Y), ‖ci,f‖∞ ≤ 1, i ∈ I

}
,

Zg :=
{
c1,gq1 + · · ·+ cs,gqr : cj,g ∈ L∞(Y), ‖cj,g‖∞ ≤ 1, j ∈ J

}
,

such that

O(f) ⊆
⋃
z∈Zf

B
(
z,
ε

2

)
, O(g) ⊆

⋃
z∈Zg

B
(
z,
ε

2

)
.
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Define the finitely generated module zonotope

Z :=
{
c1,fp1 + · · ·+ cr,fpr + c1,gq1 + · · ·+ cs,gqr : ci,f , cj,g ∈ L∞(Y ), ‖ci,f‖∞ , ‖cj,g‖∞ ≤ 1, i ∈ I, j ∈ J

}
.

We show that

O(f + g) = {(f + g) ◦ T n : n ∈ Z} ⊆
⋃
z∈Z

B (z, ε) .

Fix any m ∈ Z and consider the function (f + g) ◦ Tm = f ◦ Tm + g ◦ Tm ∈ O(f + g). There exists

z1 ∈ Zf and z2 ∈ Zg such that

‖f ◦ Tm − z1‖L2(X) <
ε

2
, ‖g ◦ Tm − z2‖L2(X) <

ε

2
.

This implies that

‖(f ◦ Tm + g ◦ Tm)− (z1 + z2)‖L2(X) ≤ ‖f ◦ T
m − z1‖L2(X) + ‖g ◦ Tm − z2‖L2(X)

<
ε

2
+
ε

2
= ε.

Hence, (f + g) ◦ Tm ∈ B(z1 + z2, ε). Since the choice of m ∈ Z was arbitrary, it follows that

O(f + g) ⊆
⋃
z∈Z

B (z, ε) ,

and since Z is a finitely generated module zonotope, we conclude that f + g ∈ AP (X|Y). �

Proposition 11.10. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Take any α ∈ R. If f ∈ AP (X|Y), then αf ∈ AP (X|Y).

Proof. Take any f ∈ AP (X|Y), α ∈ R and fix ε > 0. The result is trivial if α = 0 since the

zero function is clearly conditionally almost periodic. Without loss of generality, assume |α| > 0. By

Definition 10.5, there exists d ∈ N, a set I ⊆ N such that |I| = d, and functions f1, · · · , fd ∈ L2(X|Y)

defining a finitely generated module zonotope

Zf := {c1f1 + · · ·+ cdfd : ci ∈ L∞(Y ), ‖ci‖∞ ≤ 1, i ∈ I} ,

such that

O(f) ⊆
⋃
z∈Zf

B
(
z,

ε

|α|

)
.

Define the finitely generated module zonotope

Z := {αc1f1 + · · ·+ αcdfd : ci ∈ L∞(Y ), ‖ci‖∞ ≤ 1, i ∈ I} .

We show that

O(αf) = {αf ◦ T n : n ∈ Z} ⊆
⋃
z∈Z

B (z, ε) .

Fix any m ∈ Z and consider the function αf ◦ Tm ∈ O(αf). There exists z1 ∈ Zf such that

‖f ◦ Tm − z1‖L2(X) <
ε

|α|
.

This implies that

‖αf ◦ Tm − αz1‖L2(X) ≤ |α| ‖f ◦ T
m − z1‖L2(X) < |α| ·

ε

|α|
= ε.
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Hence, αf ◦ Tm ∈ B(αz1, ε), where αz1 ∈ Z. Since the choice of m ∈ Z was arbitrary, it follows that

O(αf) ⊆
⋃
z∈Z

B (z, ε) ,

and since Z is a finitely generated module zonotope, we conclude that αf ∈ AP (X|Y). �

Following directly from Proposition 11.9 and Proposition 11.10, we have the corollary.

Corollary 11.11. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Equipped with pointwise addition and scalar multiplication of functions,

the set of functions AP (X|Y) is a subspace of L2(X|Y).

Proposition 11.12. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. If f, g ∈ APµ(X|Y), then f + g ∈ APµ(X|Y).

Proof. Take any f, g ∈ APµ(X|Y) and fix some ε > 0. Also fix some 1 > α1 > 0 and 1 > α2 > 0

to be specified later. Since f, g ∈ APµ(X|Y), there exists E1, E2 ∈ ΣY such that

µ(E1) ≤ α2 · ε
2(‖g‖L2(X) + 1)

, µ(E2) ≤ α1 · ε
2(‖f‖L2(X) + 1)

.

and

f̃ := f · 1Ec1 ∈ AP (X|Y),

g̃ := g · 1Ec2 ∈ AP (X|Y).

Define E := E1 ∪ E2 where µ(E) ≤ ε. Since f̃ , g̃ ∈ AP (X|Y), by Definition 10.5, there exists r, s ∈ N,

sets I, J ⊆ N such that |I| = r, |J | = s, and functions p1, · · · , pr ∈ L2(X|Y) and q1, · · · , qs ∈ L2(X|Y)

defining finitely generated module zonotopes,

Zf̃ :=
{
c1,fp1 + · · ·+ cr,fpr : ci,f ∈ L∞(Y ), ‖ci,f‖∞ ≤ 1, i ∈ I

}
,

Zg̃ :=
{
c1,gq1 + · · ·+ cs,gqr : cj,g ∈ L∞(Y ), ‖cj,g‖∞ ≤ 1, j ∈ J

}
,

such that

O(f̃) ⊆
⋃
z∈Zf

B
(
z,
ε

2

)
, O(g̃) ⊆

⋃
z∈Zg

B
(
z,
ε

2

)
.

Define the finitely generated module zonotope

Z :=
{
c1,fp1 + · · ·+ cr,fpr + c1,gq1 + · · ·+ cs,gqr : ci,f , cj,g ∈ L∞(Y ), ‖ci,f‖∞ , ‖cj,g‖∞ ≤ 1, i ∈ I, j ∈ J

}
.

We show that

O((f + g) · 1Ec) ⊆
⋃
z∈Z

B (z, ε) .

By Corollary 11.11, the set of functions AP (X|Y) is a subspace of L2(X|Y). In order to prove f + g ∈
APµ(X|Y), we only need to show that

f · 1Ec , g · 1Ec ∈ AP (X|Y).



11.A. AP (X|Y) IS A CLOSED SUBSPACE OF L2(X|Y) 93

Fix any m ∈ Z. Since f̃ ∈ AP (X|Y) there exists z ∈ Zf̃ such that∥∥∥f̃ ◦ Tm − z∥∥∥
L2(X)

=
∥∥f · 1Ec1 ◦ Tm − z∥∥L2(X)

<
ε

2
.

Now, consider

‖f · 1Ec ◦ Tm − z‖L2(X)

≤
∥∥f · 1Ec ◦ Tm − f · 1Ec1 ◦ Tm∥∥L2(X)

+
∥∥f · 1Ec1 ◦ Tm − z∥∥L2(X)

< ‖f‖L2(X)

∥∥1Ec ◦ Tm − 1Ec1 ◦ T
m
∥∥
L2(X)

+
ε

2
.

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16),∥∥1Ec ◦ Tm − 1Ec1 ◦ T
m
∥∥2

L2(X)
=
∥∥1Ec − 1Ec1

∥∥2

L2(X)

=

∫
X

∣∣1Ec − 1Ec1
∣∣2 dµ = µ(Ec4Ec

1) ≤ µ(E2) ≤ α2 · ε
2(‖f‖L2(X) + 1)

.
(14)

This gives us that

‖f · 1Ec ◦ Tm − z‖2
L2(X) ≤

(∥∥f · 1Ec ◦ Tm − f · 1Ec1 ◦ Tm∥∥L2(X)
+
∥∥f · 1Ec1 ◦ Tm − z∥∥L2(X)

)2

≤
(
‖f‖L2(X)

∥∥1Ec ◦ Tm − 1Ec1 ◦ T
m
∥∥
L2(X)

+
∥∥f · 1Ec1 ◦ Tm − z∥∥L2(X)

)2

=
(
‖f‖L2(X)

∥∥1Ec − 1Ec1
∥∥
L2(X)

+
∥∥f · 1Ec1 ◦ Tm − z∥∥L2(X)

)2

(15)

Applying (14) to (15), we have that

‖f · 1Ec ◦ Tm − z‖2
L2(X) <

‖f‖L2(X)

√
α2 · ε

2(‖f‖L2(X) + 1)
+
ε

2

2

=

√α2 · ‖f‖L2(X)√
‖f‖L2(X) + 1

·
√
ε

2
+
ε

2

2

.

(16)

With the values of ‖f‖L2(X) ≥ 0 and ε > 0 fixed, there exists α2 > 0 small enough such that
√
α2 · ‖f‖L2(X)√
‖f‖L2(X) + 1

·
√
ε

2
<
ε

2
.

Taking square roots on both sides of (16), we conclude that

‖f · 1Ec ◦ Tm − z‖L2(X) < ε,

which implies that f · 1Ec ◦ Tm ∈ B(z, ε). Since the choice of m ∈ Z was arbitrary, it follows that

O(f · 1Ec) ⊆
⋃
z∈Z

B(z, ε),
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and hence f · 1Ec ∈ AP (X|Y). By a similar argument we can show that

O(g · 1Ec) ⊆
⋃
z∈Z

B(z, ε),

which implies g ·1Ec ∈ AP (X|Y). This implies that (f + g) ·1Ec ∈ AP (X|Y). Since the choice of ε > 0

was arbitrary, we conclude that f + g ∈ APµ(X|Y). �

Proposition 11.13. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Take any α ∈ R. If f ∈ APµ(X|Y), then αf ∈ APµ(X|Y).

Proof. Take any f ∈ AP (X|Y), α ∈ R and fix ε > 0. The result is trivial if α = 0 since the

zero function is clearly conditionally almost periodic. Without loss of generality, assume |α| > 0. Since

f ∈ AP (X|Y), there exists some E ∈ ΣY such that µ(E) ≤ ε and f · 1Ec ∈ AP (X|Y). However, by

Proposition 11.11, we know that αf ·1Ec ∈ AP (X|Y). Since the choice of ε > 0 was arbitrary, it follows

that αf ∈ APµ(X|Y). �

Following from Proposition 11.12 and Proposition 11.13, we have the following corollary.

Corollary 11.14. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Equipped with pointwise addition and scalar multiplication of functions,

the set of functions APµ(X|Y) is a subspace of L2(X|Y).

Proposition 11.15. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. Then APµ(X|Y) is a closed subspace of L2(X|Y).

Proof. Consider any convergent sequence (hn) ⊆ APµ(X|Y) that converges to h ∈ L2(X) in L2(X).

We verify that h ∈ APµ(X|Y). Fix ε > 0. As (hn) ⊆ APµ(X|Y), for every n ∈ N, there exists En ∈ ΣY

with µ(En) ≤ ε such that hn · 1cEn ∈ AP (X|Y).

Since (hn) ⊆ APµ(X|Y) converges to h ∈ L2(X) in L2(X) there exists N ∈ N such that for all n ≥ N

‖hn − h‖L2(X) <
ε

2
.

Further, by Definition 10.5, for every n ∈ N, there exists dn ∈ N, a set In ⊆ N with |In| = dn and

functions f1,n, f2,n, · · · , fdn ∈ L2(X|Y) defining a finitely generated module zonotope

Zn := {c1,nf1,n + · · ·+ cdn,nfdn,n : ci,n ∈ L∞(Y ), ‖ci,n‖∞ ≤ 1, i ∈ In},

such that

O(hn · 1cEn) ⊆
⋃
z∈Zn

B
(
z,
ε

2

)
.

Define E := EN and Z := ZN . Fix any m ∈ Z. Then there exists z ∈ Z such that

‖hN · 1Ec ◦ Tm − z‖L2(X) <
ε

2

Consider h · 1Ec ◦ Tm ∈ O(h · 1Ec). Then

‖h · 1Ec ◦ Tm − z‖L2(X) ≤ ‖h · 1Ec ◦ T
m − hN · 1Ec ◦ Tm‖L2(X) + ‖hN · 1Ec ◦ Tm − z‖L2(X)

< ‖h− hN‖L2(X) +
ε

2
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<
ε

2
+
ε

2
= ε.

This implies that h · 1Ec ◦ Tm ∈ B(z, ε). Since the choice of m ∈ Z was arbitrary, it follows that

O(h · 1Ec) ⊆
⋃
z∈Z

B(z, ε).

Since the choice of ε > 0 was arbitrary, we conclude that h ∈ APµ(X|Y) and hence the subspace

APµ(X|Y) is closed. �

With the fact that APµ(X|Y) constitutes a closed subspace of L2(X|Y), the proof of the following

proposition proceeds very similarly to the proof of Proposition 6.28.

Proposition 11.16 ([34, Proposition 10.17]). Given invertible measure preserving systems Y : =

(X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Then for every f ∈ L2(X|Y) the

following statements are equivalent,

(i) The function f is conditionally almost periodic in measure, that is, f ∈ APµ(X|Y).

(ii) The function f is measurable with respect to ΣAPµ(X|Y), that is, f ∈ L2(XAPµ(X|Y)).

11.B. Ancillary Results for the Proof of Theorem 11.8

Proposition 11.17 ([29, Exercise 2.14.1]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X an extension. If f ∈ L2(X|Y) is conditionally weak mixing and

g ∈ L2(X|Y), then

C−lim
n→∞

∥∥∥〈f ◦ T n, g〉L2(X|Y)

∥∥∥2

L2(X)
= 0.

Proposition 11.18 ([29, Lemma 2.14.2]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X an extension. If f ∈ L2(X|Y) is conditionally weak mixing and

g ∈ APµ(X|Y), then

〈f, g〉L2(X|Y) = 0.

Proof. Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), for every n ∈ N∥∥∥〈f, g〉L2(X|Y)

∥∥∥
L2(X)

=
∥∥∥〈f, g〉L2(X|Y) ◦ T

n
∥∥∥
L2(X)

=
∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

.

In order to verify that 〈f, g〉L2(X|Y) = 0, we show that

C−lim
n→∞

∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

= C−lim
n→∞

∥∥∥〈f, g〉L2(X|Y)

∥∥∥
L2(X)

=
∥∥∥〈f, g〉L2(X|Y)

∥∥∥
L2(X)

= 0.

Fix any ε > 0. Since g ∈ APµ(X|Y) there exists d ∈ N, a set I ⊆ N such that |I| = d and functions

f1, f2, · · · , fd ∈ L2(X|Y) defining a finite dimensional module zonotope

Z := {c1f1 + · · ·+ cdfd : ci ∈ L∞(Y), ‖ci‖∞ ≤ 1, i ∈ I} ,

such that

O(g) ⊆
⋃
z∈Z

B

(
z,

ε

(d+ 1) ‖f‖L2(X)

)
.
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For every n ∈ N, there exists zn ∈ Z such that

‖g ◦ T n − zn‖L2(X|Y) <
ε

(d+ 1) ‖f‖L2(X)

.

By Proposition 7.6, for every n ∈ N

〈f ◦ T n, g ◦ T n〉L2(X|Y) = 〈f ◦ T n, g ◦ T n − zn〉L2(X|Y) + 〈f ◦ T n, zn〉L2(X|Y) .

Taking the norm of this quantity, for every n ∈ N∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

=
∥∥∥〈f ◦ T n, g ◦ T n − zn〉L2(X|Y) + 〈f ◦ T n, zn〉L2(X|Y)

∥∥∥
L2(X)

≤
∥∥∥〈f ◦ T n, g ◦ T n − zn〉L2(X|Y)

∥∥∥
L2(X)

+
∥∥∥〈f ◦ T n, zn〉L2(X|Y)

∥∥∥
L2(X)

.

Since zn ∈ Z for every n ∈ N, there exists functions c1,n, c2,n, · · · , cd,n ∈ L∞(Y) such that ‖ci,n‖∞ ≤ 1

for every 1 ≤ i ≤ d and

zn = c1,nf1 + c2,nf2 + · · ·+ cd,nfd.

For every n ∈ N, we have

〈f ◦ T n, zn〉L2(X|Y) = 〈f ◦ T n, c1,nf1 + c2,nf2 + · · ·+ cd,nfd〉L2(X|Y)

= c1,n 〈f ◦ T n, f1〉L2(X|Y) + c2,n 〈f ◦ T n, f2〉L2(X|Y) + · · ·+ cd,n 〈f ◦ T n, fd〉L2(X|Y) .

Since ‖ci,n‖∞ ≤ 1 for every 1 ≤ i ≤ d,∣∣∣〈f ◦ T n, zn〉L2(X|Y)

∣∣∣ ≤ d∑
i=1

∣∣∣〈f ◦ T n, fi〉L2(X|Y)

∣∣∣ .
In turn, using the standard Cauchy-Schwarz inequality, this gives us that∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

≤
∥∥∥〈f ◦ T n, g ◦ T n − zn〉L2(X|Y)

∥∥∥
L2(X)

+
∥∥∥〈f ◦ T n, zn〉L2(X|Y)

∥∥∥
L2(X)

≤ ‖f‖L2(X) ‖g ◦ T
n − zn‖L2(X) +

d∑
i=1

∥∥∥〈f ◦ T n, fi〉L2(X|Y)

∥∥∥
L2(X)

< ‖f‖L2(X) ·
ε

(d+ 1) ‖f‖L2(X)

+
d∑
i=1

∥∥∥〈f ◦ T n, fi〉L2(X|Y)

∥∥∥
L2(X)

=
ε

d+ 1
+

d∑
i=1

∥∥∥〈f ◦ T n, fi〉L2(X|Y)

∥∥∥
L2(X)

.

Taking Cesaro limits on both sides, we obtain

C−lim
n→∞

∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

<

d∑
i=1

C−lim
n→∞

∥∥∥〈f ◦ T n, fi〉L2(X|Y)

∥∥∥
L2(X)

+
ε

d+ 1
.
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Since f ∈ L2(X|Y) is conditionally weak mixing and since fi ∈ L2(X|Y), by Proposition 11.17, we have

that

C−lim
n→∞

∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

<
ε

d+ 1
< ε.

Since the choice of ε > 0 was arbitrary, we conclude that

0 = C−lim
n→∞

∥∥∥〈f ◦ T n, g ◦ T n〉L2(X|Y)

∥∥∥
L2(X)

= C−lim
n→∞

∥∥∥〈f, g〉L2(X|Y)

∥∥∥
L2(X)

=
∥∥∥〈f, g〉L2(X|Y)

∥∥∥
L2(X)

,

which implies that 〈f, g〉L2(X|Y) = 0. �

Corollary 11.19. Given invertible measure preserving systems Y := (X,ΣY , µ, T ), X := (X,ΣX , µ, T )

and Φ : Y → X an extension. The only function in L2(X|Y) that is both conditionally weak mixing

and conditionally almost periodic in measure is the zero function.

Proof. Let f ∈ L2(X|Y) that is simultaneously conditionally weak mixing and conditionally almost

periodic in measure. It follows direactly from Proposition 11.18 that

〈f, f〉L2(X|Y) = 0.

However, by Proposition 7.19, this holds true if and only if f = 0. �

Definition 11.20. Given measure preserving systems Y : = (X,ΣY , µ, T ), X : = (X,ΣX , µ, T ) and

Φ : Y → X an extension. Take any functions f, g ∈ L2(X|Y) and define the sequence of operators

Sf,N : L2(X|Y)→ L2(X|Y) where

Sf,N(g) :=
1

N

N∑
n=1

〈f ◦ T n, g〉L2(X|Y) · f ◦ T
n, (g ∈ L2(X|Y)).

Using the definition of the weak operator topology on the space of all bounded operators on L2(X|Y)

as defined in Definition D.25, we have the following.

Proposition 11.21 ([29, Proposition 2.14.11]). Given invertible measure preserving systems Y : =

(X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Fix any f ∈ L2(X|Y) and consider the

sequence of operators (Sf,N) defined in Definition 11.20. If Sf ∈ L2(X|Y) is a limit point of (Sf,N) in

the weak operator topology, then Sf (f) ∈ APµ(X|Y).

Proposition 11.22 ([29, Proposition 2.14.10]). Given invertible measure preserving systems Y : =

(X,ΣY , µ, T ), X := (X,ΣX , µ, T ) and Φ : Y → X an extension. If a function f ∈ L2(X|Y) has the

property that for every g ∈ APµ(X|Y),

〈f, g〉L2(X|Y) = 0.

Then the function f ∈ L2(X|Y) is conditionally weak mixing.

Proof. Assume for a contradiction there exists a function f ∈ L2(X|Y) that has the property that

for every g ∈ APµ(X|Y),

〈f, g〉L2(X|Y) = 0

where f ∈ L2(X|Y) is not a conditionally weak mixing function. By Definition 9.3, this implies

D−lim
n→∞

〈f ◦ T n, f〉L2(X|Y) 6= 0
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in L2(X). Written in terms of the L2 norm

D−lim
n→∞

‖E (f ◦ T n · f |Y)‖2
L2(X) 6= 0.

For every h ∈ L2(X|Y), we have ‖h‖2
L2(X) ≥ 0. Therefore

lim sup
N→∞

1

N

N∑
n=1

‖E (f ◦ T n · f |Y)‖2
L2(X) > 0.

Recalling the definition of the sequence of operators (Sf,N) in Definition 11.20

lim sup
N→∞

〈Sf,N(f), f〉L2(X) = lim sup
N→∞

∫
X

Sf,N(f) · f dµ

= lim sup
N→∞

∫
X

1

N

N∑
n=1

E (f ◦ T n · f |Y) · f ◦ T n · f dµ

= lim sup
N→∞

1

N

N∑
n=1

∫
X

E (E (f ◦ T n · f |Y) · f ◦ T n · f |Y) dµ

= lim sup
N→∞

1

N

N∑
n=1

∫
X

E (f ◦ T n · f |Y)2 dµ

= lim sup
N→∞

1

N

N∑
n=1

∫
X

|E (f ◦ T n · f |Y)|2 dµ

= lim sup
N→∞

1

N

N∑
n=1

‖E (f ◦ T n · f |Y)‖2
L2(X) > 0.

Since f ∈ L2(X|Y), the sequence of real numbers (〈Sf,N(f), f〉L2(X))N∈N is bounded. Therefore, there

exists γ > 0 such that

lim sup
N→∞

〈Sf,N(f), f〉L2(X) = γ > 0.

By Proposition B.9, the real number γ > 0 is a limit point of the real valued sequence(
〈Sf,N(f), f〉L2(X)

)
N∈N

.

Therefore, there exists a subsequence (Nl) ⊆ N such that 〈Sf,Nl(f), f〉L2(X) > γ/2 for all l ∈ N. By

Corollary D.27 and Proposition D.28, there exists a further subsequence (Nlk) ⊆ N such that the

sequence of operators (Sf,N) converges to a limit point Sf in the weak operator topology along the

subsequence (Nlk).

Define Al := {Nl : l ∈ N} and Ak := {Nlk : k ∈ N}. Since Sf is a limit point of (Sf,α)α∈Ak in the weak

operator topology and 〈Sf,α(f), f〉L2(X) > γ/2 for all α ∈ Ak ⊆ Al, we have that

〈Sf (f), f〉L2(X) ≥ γ/2 > 0.

Yet, by Proposition 11.21 we know that Sf (f) ∈ APµ(X|Y). This contradicts our assumption that

f ∈ L2(X|Y) has the property that

〈g, f〉L2(X) = 0
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for every g ∈ APµ(X|Y). We conclude, therefore, that the function f ∈ L2(X|Y) is a conditionally

weak mixing function. �

Following from Propositions 11.18 and 11.22, we have the following.

Corollary 11.23 ([29, Proposition 2.14.10]). Given invertible measure preserving systems Y := (X,ΣY , µ, T ),

X := (X,ΣX , µ, T ) and Φ : Y → X an extension. Then a function f ∈ L2(X|Y) is conditionally weak

mixing if and only if 〈f, g〉L2(X|Y) = 0 for all g ∈ APµ(X|Y).



CHAPTER 12

Furstenberg Towers and the Structure Theorem

We are now finally in a position where we are able to use all the tools we have synthesized to prove

the Furstenberg Multiple Recurrence Theorem. Using the Dichotomy of Extensions result (Theo-

rem 11.8) and the results showing that the SZ property passes through both weak mixing and com-

pact extensions (Theorem 9.11 and Theorem 10.12), for an arbitrary invertible measure preserving

system X : = (X,Σ, µ, T ), we shall construct a tower of extensions starting from the trivial factor

X0 := (X,Σ0, µ, T ) and ending with the system X. By making use of compact and weak mixing exten-

sions, we aim to pass the SZ property from the trivial factor through the layers of compact and weak

mixing extensions all the way up to the system X. Barring a few technicalities, this is essentially all

that remains.

1. The Existence of Furstenberg Towers

First, we shall need to properly define such a tower of extensions.

Definition 12.1 (Extension chains). Let X := (X,ΣX , µ, T ) be a measure preserving system and α

an ordinal. For every β ≤ α, let Xβ := (X,Σβ, µ, T ) be a measure preserving system that satisfies the

following conditions:

(i) For every β ≤ α, the system X is an extension of Xβ with extension denoted Ψβ : Xβ → X.

(ii) For every γ ≤ β ≤ α, the system Xβ is an extension of Xγ with extension denoted Φγ,β : Xγ →
Xβ.

If an ordinal-indexed collection of measure preserving systems, {Xβ}β≤α, satisfies these conditions, it is

said to be an extension chain of the measure preserving system X.

Definition 12.2 (Furstenberg tower, [29, Theorem 2.15.1]). Let X := (X,Σ, µ, T ) be an invertible

measure preserving system, α an ordinal and {Xβ}β≤α an extension chain. Consider the following

conditions:

(i) The trivial factor X0 = (X,Σ0, µ, T ) ∈ {Xβ}β≤α.

(ii) For every successor ordinal β+1 ≤ α, we have that Φβ,β+1 : Xβ → Xβ+1 is a compact extension.

(iii) For every limit ordinal β ≤ α we have that Σβ is generated by⋃
γ<β

Σγ.

(iv) The extension Ψα : Xα → X is a weak mixing extension.

100
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An extension chain of X that satisfies the above conditions is said to be a Furstenberg tower. In

particular, the element Xα ∈ {Yβ}β≤α is said to be the terminal factor.

Theorem 12.3 (Furstenberg-Zimmer Structure Theorem, [29, Theorem 2.15.1]). For any invertible

measure preserving system X := (X,ΣX , µ, T ), there exists a Furstenberg tower.

Proof. Let X be a measure preserving system. Denote by R the set of all extension chains of X

that satisfy conditions (i) - (iii) in Definition 12.2.

Consider the trivial extension chain Pt := {X0}. It is clear that condition (i) is satisfied since X0 ∈ Pt.

Since the trivial extension chain is indexed by the ordinal 0, conditions (ii) and (iii) are trivially satisfied

since there exists no successor or limit ordinals α ≤ 0. Therefore, Pt ∈ R and hence R is non-empty.

We will apply Zorn’s Lemma to the set R equipped with an appropriate partial order to show the

existence of a maximal extension chain that satisfies conditions (i) - (iii). Further, we shall show that

this maximal extension chain satisfies condition (iv) to conclude the proof of theorem.

Take σ1, σ2 ∈ R and ordinals α1 and α2 such that

σ1 = {Xσ1
β := (X,Σσ1

β , µ, T )}β≤α1 , σ2 = {Xσ2
β := (X,Σσ2

β , µ, T )}β≤α2 .

Define the partial ordering on R by setting σ1 � σ2 if and only if α1 ≤ α2, and for all β ≤ α1, we have

that Xσ1
β = Xσ2

β .

Now, consider any non-empty chain of extension chains C := {σj}j∈J ⊆ R. We show that there exists

some σ′ ∈ R such that σj ≤ σ′ for all j ∈ J .

For every j ∈ J , let αj be the ordinal indexing the extension chain σj. Consider the set of ordinals

A := {αj : j ∈ J} and let η be least ordinal strictly larger than the elements of A. If C = {Pt},
then η = 1. Without loss of generality, assume there exists some αj′ ∈ A such that αj′ > 0. Such an

extension chain can by constructed by Theorem 11.8. Therefore, η is either a successor ordinal or a

limit ordinal.

Assume η is a successor ordinal. Then η must be the successor to some fixed αk ∈ A. Since η was

defined to be the least ordinal strictly larger than all elements in A, and since C is linearly ordered, this

implies that αj ≤ αk for all j ∈ J . Since C is a linearly ordered set, for any σj ∈ C distinct from σk ∈ C,
we either have σj � σk or σk � σj. However, we have already shown that αj ≤ αk for every j ∈ J .

Therefore, it cannot hold that for some j ∈ J , σk � σj since this would require that αj ≥ αk. It follows

that σi � σk for every σi ∈ C. Relabel σk as σ′. This covers the case where η is a successor ordinal.

Now, assume η is a limit ordinal. For every σj ∈ C, we have that σj = {Xσj
β = (X,Σ

σj
β , µ, T )}β≤αj .

Define for each σj ∈ C the collection of σ-algebras

Πσj :=
{

Σ
σj
β

}
β≤αj

.

We define the extension chain σ′ that will serve as our �-upper bound for the chain C in the following

way:

(I) For every σj ∈ C and every β ≤ αj, define Xσ′

β := X
σj
β .

(II) Let Σσ′
η be the σ-algebra generated by

⋃
j∈J Πσj and define Xσ′

η := (X,Σσ′
η , µ, T )
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This gives us the extension chain σ′ = {Xσ′

β }β≤η. Recalling conditions (i)-(iii) of Definition 12.2, we

verify that σ′ ∈ R:

(i) Since for every σj ∈ C, we have that X0 = Xσi
0 ∈ σj, it is clear that X0 ∈ σ′.

(ii) For any successor ordinal β + 1 < η, by definition of the extension chain σ′, there exists some

σj ∈ C such that Xσ′

β+1 = X
σj
β+1. Since σj ∈ C ⊆ R, we know that X

σj
β+1 is a compact extension

of Xσ′

β = Xσi
β .

(iii) For any limit ordinal γ ≤ η, we either have that γ < η or γ = η.

If γ = η we have by the definition of the extension chain σ′ that Σσ′
η is generated by⋃

i∈J

Πσi .

The collection of generating sets can be written as

⋃
i∈J

Πσi =
⋃
j∈J

 ⋃
β≤αj

Σ
σj
β


Since C is a chain, it holds that Πσi ⊆ Πσj if and only if σi � σj. Relabel all unique σ-algebras

contained in
⋃
i∈J Πσi to eliminate all duplicates. Then⋃

i∈J

Πσi =
⋃
δ<β

Σδ

as required by Definition 12.2.

Lastly, assume that γ < η. There exists some σi ∈ C such that Xσ′
γ = Xσi

γ = (X,Σσi
γ , µ, T ).

Further, since σi ∈ C ⊆ R, we then have by definition that Σσ′
γ = Σσi

γ is generated by⋃
δ<γ

Σδ.

Therefore, σ′ ∈ R. By the construction of σ′, we have that for every j ∈ J , σj = {Xσj
β }β≤αj � σ′. Since

all cases have been considered for the ordinal η, and we have shown that in all valid cases an upper

bound exists for C, we conclude that there exists a �-upper bound σ′ to the non-empty chain C. By

Zorn’s Lemma, there exists an ordinal κ and a �-maximal element of the set R, say τ = {Xτ
β}β≤κ. It

only remains for us to show that Ψκ : Xτ
κ → X is a weak mixing extension to conclude the proof of the

theorem.

By Theorem 11.8, we have that exactly one of the following holds:

(A) Ψκ : Xτ
κ → X is a weak mixing extension.

(B) There exists a non-trivial factor Z := (X,ΣZ , µ, T ) of X such that Στ
κ ( ΣZ ⊆ ΣX and Φ′ :

Xτ
κ → Z is a compact extension.

Suppose for the sake of a contradiction that (B) holds. This means that there exists a new extension

chain τ ′ := τ ∪ {Z} where Z can be indexed by the ordinal κ + 1. Since κ + 1 is the successor ordinal

of κ and by our supposition Φκ,κ+1 : Xτ
κ → Z is a compact extension, it follows that τ ′ ∈ R. Yet, this
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would imply that τ � τ ′ and τ ′ 6= τ . This contradicts the fact that τ is a �-maximal element of R. We

conclude by Theorem 11.8 that Ψκ : Xτ
κ → X is a weak mixing extension, as required. �

2. Limit Ordinals and the Final Conclusion

Now that we have verified the existence of a Furstenberg tower for an arbitrary invertible measure

preserving system X, it only remains for us to show that the SZ property passes through all the layers

of extensions of the Furstenberg tower in order to conclude that the system X is SZ.

Recall the definition of a SZ systems from Definition 4.5. Using Definition 4.7 and Definition 5.5, it is

easy to verify the following propositions.

Proposition 12.4. Given an invertible measure preserving system X := (X,Σ, µ, T ), the trivial factor

X0 := (X,Σ0, µ, T ) is both weak mixing and compact. Hence X0 is SZ.

Proposition 12.5. Given an invertible measure preserving system X := (X,Σ, µ, T ) and a Furstenberg

tower {Xβ}β≤α. For every successor ordinal γ + 1 ≤ α, if Xγ is SZ then so is Xγ+1.

Proof. By Definition 12.2, it follows that for every γ < α the extension Φγ,γ+1 : Xγ → Xγ+1 is a

compact extensions and hence by Theorem 10.12 if Xγ is SZ, then so is Xγ+1. �

Proposition 12.6. Given an invertible measure preserving system X := (X,Σ, µ, T ) and a Furstenberg

tower {Xβ}β≤α. If the terminal factor Xα is SZ, then so is X.

Proof. By Definition 12.2, the extension Ψα : Xα → X is a weak mixing extension, so by Theo-

rem 9.11, we have that if Xα is SZ, then so is X. �

The only complication that remains is showing that the SZ property also passes through layers of the

Furstenberg tower indexed by limit ordinals, if any are to be found. This is not as obvious as for the

cases of the trivial factor, successor ordinals and the terminal factor, as these were designed to exploit

the properties of weak mixing and compact extensions we have already verified.

Proposition 12.7 ([29, Theorem 2.15.5]). Given a measure preserving system X := (X,Σ, µ, T ) and a

Furstenberg tower {Xβ}β≤α. Define the set

L := {κ ≤ α : κ is a limit ordinal}.

Consider for every κ ∈ L the linearly ordered set of extensions

{Xγ}γ≤κ � {Xβ}β≤α.

Then for any κ ∈ L, if every Xγ where γ < κ is SZ, then so is Xκ.

Proof. We may assume, without loss of generality, that L is non-empty, otherwise there is nothing

to prove. Fix the least element κ ∈ L and consider the linearly ordered set of extensions {Xγ}γ≤κ. Let

k > 1 and take any f ∈ L∞(Xκ) such that f ≥ 0 and
∫
X
fdµ = c > 0. Define the set Ω := {x ∈ X :

f(x) > 0}. With the aim to apply Proposition 12.21, we find a δ < κ such that

µ({x ∈ X : E (1Ω|Xδ) (x) > 1− 1/k}) > 0.
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First, normalize f ∈ L∞(Xκ) such that f ≤ 1 by relabelling f/ ‖f‖∞ as f if ‖f‖∞ > 1. Since {Xβ}β≤α
is a Furstenberg tower and κ is a limit ordinal, by Definition 12.2, the σ-algebra Σκ is generated by⋃

γ<κ

Σγ.

Note that f = E (f |Xκ) since f ∈ L∞(Xκ). Fix any ε > 0. By Corollary 12.17 there exists some δ < κ

such that

‖f − E (f |Xδ)‖L2(X) ≤ ε.

Since f ≤ 1, it follows by Proposition 7.6 that E (f |Xδ) ≤ 1 and further, we also have that
∫
X
E (f |Xδ) dµ =

c > 0. Define the set

A :=
{
x ∈ X : E (f |Xδ) (x) ≥ c

2

}
∈ Σδ.

Suppose for a contradiction that µ(A) = 0. This implies that

c =

∫
X

f dµ =

∫
A

f dµ+

∫
X\A

f dµ

=

∫
A

E (f |Xδ) dµ+

∫
X\A

E (f |Xδ) dµ

= 0 +

∫
X\A

E (f |Xδ) dµ.

Yet, by the definition of the set X \ A ∈ Σδ

c =

∫
X

f dµ =

∫
X\A

E (f |Xδ) dµ <

∫
X\A

c

2
dµ =

c

2
· µ(X \ A) =

c

2
.

But this implies that c < c
2
, which is clearly a contradiction. So it follows that µ(A) > 0. Define the

set Ω = {x ∈ X : f(x) > 0}. We prove that the following pointwise inequality holds for all x ∈ X

|f(x)− E (f |Xδ) (x)| ≥ c

2
1Ωc(x) · 1A(x)(17)

Let x ∈ Ωc ∩ A. This implies that

|f(x)− E (f |Xδ) (x)| = |0− E (f |Xδ) (x)| = |E (f |Xδ) (x)|.

Since x ∈ A, it is clear that

|E (f |Xδ) (x)| ≥ c

2
=
c

2
1Ωc(x) · 1A(x).

Now, if x 6∈ Ωc ∩ A, then it follows that 1Ωc(x) · 1A(x) = 0. Regardless of the values of f(x) and

E (f |Xδ) (x), we have that

|f(x)− E (f |Xδ) (x)| ≥ c

2
1Ωc(x) · 1A(x) = 0.

As all possible cases have been checked, the inequality (17) holds true. Now, squaring both sides of (17)

and integrating, we obtain,

ε2 ≥ ‖f − E (f |Xδ)‖2
L2(X) ≥

c2

4

∫
X

(1− 1Ω) · 1A dµ.
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Since the choice of ε > 0 was arbitrary, we chose a value for ε > 0 such that

1

k
>

4 · ε2

c2
≥
∫
X

(1− 1Ω) · 1A dµ =

∫
X

E ((1− 1Ω) · 1A|Xδ) dµ.

Since A ∈ Σδ, we have that
1

k
>

∫
X

(1− E (1Ω|Xδ)) · 1A dµ.

By Markov’s Inequality (Proposition 12.18), it follows that

µ

({
x ∈ X : (1− E (1Ω|Xδ) (x)) · 1A(x) ≥ 1

k

})
≤ k ·

∫
X

(1− E (1Ω|Xδ)) · 1A dµ < k · 1

k
= 1.

Since 1/k > 0, we have that

µ

({
x ∈ X : (1− E (1Ω|Xδ) (x)) · 1A(x) ≥ 1

k

})
= µ

({
x ∈ A : 1− E (1Ω|Xδ) (x) ≥ 1

k

})
< 1.

Rewriting the inequality yields

µ

({
x ∈ A : 1− 1

k
≥ E (1Ω|Xδ) (x)

})
< 1.

We conclude that

µ

({
x ∈ X : E (1Ω|Xδ) (x) > 1− 1

k

})
≥ µ

({
x ∈ A : E (1Ω|Xδ) (x) > 1− 1

k

})
> 0.

It follows by Proposition 12.21 that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · · · f ◦ T (k−1)n dµ > 0.

Since the limit ordinal κ ∈ L is the least element of L, by either Propositions 12.4 or 12.5, the system

Xδ = (X,Σδ, µ, T ) has the SZ property as δ < κ can only either be a successor ordinal or the first

ordinal. Since the choice of f ∈ L∞(Xκ) was arbitrary, it follows that Xκ has the SZ property as well.

Now that it has been shown that the desired property holds for the least ordinal κ ∈ L, the exact same

argument can used to show that for all elements of ζ ∈ L where κ ≤ ζ that Xζ is SZ. �

With all this machinery at our disposal, all that remains is to combine these results with a final transfinite

induction argument. We make use of the following formulation of transfinite induction.

Theorem 12.8 (Transfinite induction on a set of ordinals, [18, Proposition 4.13]). Let O be any set of

ordinals and let X be any class. If the following conditions hold:

(i) 0 ∈ X.

(ii) For every α ∈ O, if α ∈ X implies that α + 1 ∈ X.

(iii) For every limit ordinal β ∈ O, if for every α < β it follows that α ∈ X, then we have that

β ∈ X.

Then it follows that O ⊆ X.
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Definition 12.9. Given a measure preserving system X : = (X,Σ, µ, T ) and a Furstenberg tower

{Xβ}β≤α. Define the set

SZ := {β ≤ α : Xβ is SZ} .

Theorem 12.10. Any invertible measure preserving system X := (X,Σ, µ, T ) is SZ.

Proof. By Theorem 12.3, there exists a Furstenberg tower {Xβ}β≤α. By Definition 12.9, it is

enough to show that β ∈ SZ for every β ≤ α. We prove this using transfinite induction as stated in

Theorem 12.8:

(i) By Proposition 12.4, we have that 0 ∈ SZ.

(ii) Let β ≤ α. It follows by Proposition 12.5 that if β ∈ SZ, then β + 1 ∈ SZ.

(iii) Define L as the set of limit ordinals less than or equal to α. It follows by Proposition 12.7 that

for every κi ∈ L, if Xγ ∈ SZ for all γ < κi, then it follows that κi ∈ SZ.

By Theorem 12.8, it follows that {β : β ≤ α} ⊆ SZ. Therefore, we know that in particular the terminal

factor Xα is SZ, by Proposition 12.6, this implies that X is SZ. �

Recall the definition of a measure preserving system X having the Furstenberg property (Definition 3.3).

By Theorem 4.6 and Theorem 12.10, the following corollary holds.

Corollary 12.11. Any invertible measure preserving system X := (X,Σ, µ, T ) has the Furstenberg

property.

Thus we have proven the Furstenberg Multiple Recurrence Theorem (Theorem 3.2). By the equivalence

results shown in Theorem 3.4 and 3.6, we have proven Szemerédi’s Theorem.

12.A. Generating σ-Algebras

Definition 12.12. Let I be a linearly ordered set and X := {Ai}i∈I a non-empty collection of sets.

The collection X is said to a chain if for all i, j ∈ I, i ≤ j if and only if Ai ⊆ Aj.

Definition 12.13 (Rings, [14, p. 19]). Let X be a non-empty set and R a non-empty collection of

subsets of X. The set R is said to be a ring if the following two conditions are satisfied.

(i) For all A,B ∈ R, we have that A ∪B ∈ R.

(ii) For all A,B ∈ R we have that A \B ∈ R.

Proposition 12.14. Given a linearly ordered family of σ-algebras S := {Σi}i∈I . That is, Σi ⊆ Σj if

and only if i ≤ j. Then

R =
⋃
i∈I

Σi

is a ring.

Theorem 12.15 (Approximation of a σ-algebra by a ring, [14, p. 56]). Given a probability space (X,Σ, µ)

where Σ is generated by a ring R. Fix any ε > 0. Then, for every A ∈ Σ, there exists some B ∈ R such

that µ(A4B) < ε.
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Recall the definition of a chain given in Definition 12.12.

Proposition 12.16. Given a chain of σ-algebras S := {Σi}i∈I and let Σ be the σ-algebra generated by

S and X := (X,Σ, µ) be a probability space. Fix any ε > 0 and take any A ∈ Σ. There exists some

Σi ∈ S and A′ ∈ Σi such that

‖1A − 1A′‖L2(X) < ε.

Proof. Take any A ∈ Σ and fix ε > 0. By Theorem 12.15, there exists A′ ∈
⋃
i∈I Σi such that

µ(A4A′) < ε2. Then,

‖1A − 1A′‖2
L2(X) =

∫
X

|1A − 1A′| dµ = µ(A4A′) < ε2.

Taking the square root on both sides

‖1A − 1A′‖L2(X) < ε. �

Corollary 12.17. Given a chain of σ-algebras S := {Σi}i∈I , {Yi := (X,Σi, µ)}i∈I a family of prob-

ability spaces, and Σ the σ-algebra generated by S and X := (X,Σ, µ) be a probability space. Fix any

ε > 0 and any f ∈ L2(X) then there exists some Σi ∈ S such that

‖f − E (f |Yi)‖L2(X) < ε.

Proof. Let f ∈ L2(X) and fix some ε > 0. By Propositions 2.12 and 12.16, there exists a sequence

of functions (fn) ⊆
⋃
i∈I L

2(Yi) that converges to f ∈ L2(X) in L2(X). For every i ∈ I and n ∈ N,

‖f − E (f |Yi)‖L2(X) ≤ ‖f − fn‖L2(X) + ‖fn − E (fn|Yi)‖L2(X) + ‖E (fn|Yi)− E (f |Yi)‖L2(X) .

By Jensen’s Inequality (Proposition 10.13), for every i ∈ I,

|E (fn|Yi)− E (f |Yi) |2 = |E (fn − f |Yi) |2 ≤ E
(
|fn − f |2|Yi

)
.

Since Σ0 ⊆ Σi for every Yi := (X,Σi, µ), by Proposition 7.6, for every n ∈ N and i ∈ I,

‖E (fn|Yi)− E (f |Yi)‖2
L2(X) =

∫
X

|E (fn|Yi)− E (f |Yi) |2 dµ

≤
∫
X

E
(
|fn − f |2|Yi

)
dµ = ‖fn − f‖2

L2(X) .

This implies that for every n ∈ N and i ∈ I

‖E (fn|Yi)− E (f |Yi)‖L2(X) ≤ ‖fn − f‖L2(X) .

There exists N ∈ N such that,

‖f − fN‖L2(X) <
ε

2
.

There exists j ∈ I such that fN ∈ L2(Yj). Then it follows that

‖f − E (f |Yj)‖L2(X) ≤ ‖f − fN‖L2(X) + ‖fN − E (fN |Yj)‖L2(X) + ‖E (fN |Yj)− E (f |Yj)‖L2(X)

≤ 2 ‖f − fN‖L2(X) + ‖fN − E (fN |Yj)‖L2(X) .
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Since fN ∈ L2(Yj), we have that fN = E (fN |Yj). Therefore

‖f − E (f |Yj)‖L2(X) < ε. �

12.B. Ancillary Results for the Proof of Theorem 12.7

Proposition 12.18 (Markov’s Inequality, [4, Proposition 2.3.10]). Given a probability space (X,Σ, µ)

and f ∈ L2(X,Σ, µ) such that f ≥ 0. Define the sets Mα = {x ∈ X : f(x) ≥ α} ∈ Σ for α ≥ 0. Then

for every α > 0

µ(Mα) ≤ 1

α

∫
Mα

fdµ ≤ 1

α

∫
X

fdµ.

Proposition 12.19 ([29, Proposition 2.15.7]). Let X := (X,ΣX , µ, T ) be a measure preserving systems,

k ∈ N and f ∈ L∞(X) where f ≥ 0 and µ({x ∈ X : f(x) > 0}) > 1− 1/k. Then

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · · · f ◦ T (k−1)n dµ > 0.

Proof. Let k ∈ N and take a function f ∈ L∞(X) with f ≥ 0 such that

µ({x ∈ X : f(x) > 0}) > 1− 1/k.

We first show that there exists ε > 0 such that 1/k > ε > 0 and a set E ∈ Σ such that for all x ∈ X \E,

f(x) > ε and µ(E) < 1/k − ε.

Suppose for the sake of a contradiction that for every n ∈ N such that n > k the set

En := {x ∈ X : f(x) ≤ 1/(n+ k)}

has measure at least 1/k−1/(n+k). Since {x ∈ X : f(x) ≤ 1/(n+k+1)} ⊆ {x ∈ X : f(x) ≤ 1/(n+k)},
the sequence of sets (En) is decreasing. Furthermore,

E ′ := {x ∈ X : f(x) = 0} =
∞⋂
n=1

En.

By Proposition 3.31, the sequence of functions (1En) ⊆ L0(X) converges pointwise to the function

1E′ . Further, for every n ∈ N, we have that |1En| ≤ 1X . By the Dominated Convergence Theorem

(Theorem 6.17), we have that

1

k
= lim

n→∞

(
1

k
− 1

n+ k

)
≤ lim

n→∞

∫
X

1En dµ =

∫
X

1E′ dµ.

Therefore µ(E ′) ≥ 1/k, which implies that µ({x ∈ X : f(x) > 0}) ≤ 1 − 1/k, which contradicts our

original assumption on the measure of the support of f ∈ L∞(X). Hence, we conclude there exists

some 1/k > ε > 0 and a set E ∈ Σ with measure strictly less than 1/k − ε such that f(x) > ε for all

x ∈ X \ E.

Now, consider an arbitrary m ∈ N. Then

µ

(
k−1⋂
j=0

T−jmE

)
≤ k · (1/k − ε) = 1− k · ε.
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Define Am := X \
(⋂k−1

j=0 T
−jmE

)
. Then µ(Am) ≥ 1− (1− k · ε) = k · ε. For all x ∈ Am

f(x) · f(Tmx) · f(T 2mx) · · · f(T (k−1)mx) > εk.

Since f ∈ L∞(X) is a non-negative function, we have that∫
X

f · f ◦ Tm · · · f ◦ T (k−1)m dµ ≥
∫
A

f · f ◦ Tm · · · f ◦ T (k−1)m dµ > εk · µ(A) ≥ k · εk+1 > 0.

Since the choice of m ∈ N was arbitrary, we conclude that

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · · · f ◦ T (k−1)n dµ > 0. �

Proposition 12.20. Given measure preserving systems X := (X,ΣX , µ, T ), Y := (X,ΣY , µ, T ) and an

extension Φ : Y → X. Let f ∈ L∞(X) be a non-negative function and r > 0. Define the set

Fr := {x ∈ X : E (f |Y) (x) > r}.

If µ(Fr) = 0, then
∫
X
f dµ ≤ r.

Proof. Fix r > 0 and assume that µ(Fr) = 0. Consider the integral∫
X

f dµ =

∫
Fr

f dµ+

∫
X\Fr

f dµ.

Since µ(Fr) = 0, we conclude that∫
X

f dµ =

∫
X\Fr

f dµ ≤ r ·
∫
X\Fr

1X dµ ≤ r. �

Proposition 12.21 ([29, Proposition 2.15.7]). Given measure preserving systems X := (X,ΣX , µ, T ),

Y := (X,ΣY , µ, T ) and an extension Φ : Y → X. Assume that the factor Y is SZ. Fix any k ∈ N and

let f ∈ L∞(X) be a non-negative function whose support Ω := {x ∈ X : f(x) > 0} is such that{
x ∈ X : E (1Ω|Y) (x) > 1− 1

k

}
has positive measure. Then

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · · · f ◦ T (k−1)n dµ > 0.

Proof. By the same argument as given in the proof of Proposition 12.19, there exists ε > 0 such

that 1/k > ε > 0 and a set E ∈ Σ such that for all x ∈ X \ E, f(x) > ε and µ(E) < 1/k − ε. Define

A := X \ E. Then

µ(A) =

∫
X

1A dµ > 1− 1/k + ε > 0.

Applying the contrapositive of Proposition 12.20 for r = 1− 1/k + ε, the set

{x ∈ X : E (1A|Y) (x) > 1− 1/k + ε}
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has positive measure. Define the set F := {x ∈ X : E (1A|Y) (x) > 1− 1/k + ε} ∈ ΣY . Then we have

that 1F ∈ L∞(Y) and f ≥ 0 with
∫
X

1F dµ = µ(F ) > 0. Since the measure preserving system Y was

given to be SZ, we know that

lim inf
N→∞

1

N

N∑
n=1

∫
X

1F · 1F ◦ T n · · ·1F ◦ T (k−1)n dµ > 0.

By Proposition B.8, there exists c > 0 and a set S ⊆ N where δN (S) > 0 such that for all n ∈ S∫
X

1F · 1F ◦ T n · · ·1F ◦ T (k−1)n dµ = µ(F ∩ T−nF ∩ T−2nF ∩ · · ·T−(k−1)nF ) > c > 0.

For every n ∈ S, define the set Fn := F ∩ T−nF ∩ T−2nF ∩ · · ·T−(k−1)nF . Since f(x) > ε for all x ∈ A,

we have the pointwise inequality f(x) ≥ ε · 1A(x) for all x ∈ X. Fix some n ∈ S. For every x ∈ X and

every n ∈ S
f(x) · f(T nx) · f(T 2nx) · · · f(T−(k−1)nx) ≥ εk ·

(
1A(x) · 1A(T nx) · 1A(T 2nx) · · ·1A(T (k−1)nx)

)
= εk · (1A(x) · 1T−nA(x) · 1T−2nA(x) · · ·1T−(k−1)nA(x))

= εk · (1A∩T−nA∩T−2nA∩···∩T−(k−1)nA(x)) .

(18)

Since A = X \ E and 1A∩T−nA∩···∩T−(k−1)nA(x) = 1 if and only if x ∈ X \
(⋃k−1

j=0 T
−jnE

)
, it follows that

for all x ∈ X

1A∩T−nA∩···∩T−(k−1)nA(x) ≥ 1−
k−1∑
j=0

1T−jnE(x).(19)

Therefore, inserting (19) into (18), taking conditional expectations on both sides and using the properties

of the conditional expectation (Proposition 7.6), for all x ∈ X

E
(
f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n

∣∣Y) (x) ≥ εk · E

(
1−

k−1∑
j=0

1T−jnE

∣∣∣∣∣Y
)

(x)

= εk ·

(
1−

k−1∑
j=0

E (1T−jnE|Y) (x)

)
.

Since A = X \E, for every 0 ≤ j ≤ k− 1 and x ∈ X, we have that 1T−jnE(x) = 1−1T−jnA(x). Further,

for any fixed 0 ≤ j ≤ k − 1 and for all x ∈ Fn

E (1T−jnE|Y) (x) = 1− E (1T−jnA|Y) (x) < 1− (1− 1/k + ε) = 1/k − ε.

Therefore, for every x ∈ Fn

k−1∑
j=0

E (1T−jnE|Y) (x) < k · (1/k − ε) = 1− k · ε.

This in turn implies that for every x ∈ Fn

E
(
f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n

∣∣Y) (x)
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≥ εk · E

(
1−

k−1∑
j=0

1T−jnE

∣∣∣∣∣Y
)

(x)

> εk (1− (1− k · ε))
= k · εk+1.

This implies that∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n dµ =

∫
X

E
(
f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n

∣∣Y) dµ
≥
∫
Fn

E
(
f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n

∣∣Y) dµ
> µ(Fn) · k · εk+1

> c · k · εk+1 > 0.

Since the choice of n ∈ S was arbitrary and δN (S) > 0, by Proposition B.5

lim inf
N→∞

1

N

N∑
n=1

∫
X

f · f ◦ T n · f ◦ T 2n · · · f ◦ T−(k−1)n dµ > 0. �
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APPENDIX A

Properties of Upper and Lower Density

1. Basic Properties of Upper and Lower Density

The following proposition follows directly from the subadditivity of the limit superior and the superad-

ditivity of the limit inferior.

Proposition A.1. Upper density is finitely subadditive with respect to complements, and lower density

is finitely superadditive with respect to complements. That is to say, for any A ⊆ Z

d (A ∪ (Z \ A)) ≤ d (A) + d (Z \ A) .

and

d (A ∪ (Z \ A)) ≥ d (A) + d (Z \ A)

Proposition A.2 (Properties of sets with zero density). Let A ⊆ Z and {Ai}i∈I a finite collection of

subsets of Z.

(i) If d (A) = 0 and B ⊆ A, then d (B) = 0.

(ii) If d (Ai) = 0 for every i ∈ I, then d
(⋃

i∈I Ai
)

= 0.

Proof. We prove (i). Let A,B ⊆ Z such that B ⊆ A and d (A) = 0. For every n ∈ N
|B ∩ {−n,−n+ 1 · · · , n− 1, n}|

2n+ 1
≤ |A ∩ {−n,−n+ 1 · · · , n− 1, n}|

2n+ 1

It follows that 0 ≤ d (B) ≤ d (A) = 0, which implies d (B) = 0.

Next, we prove (ii). Consider the finite collection {Ai}i∈I where d (Ai) = 0 for every i ∈ I. For every

n ∈ N
|
⋃
i∈I Ai ∩ {−n,−n+ 1, · · · , n− 1, n}|

2n+ 1
≤ 1

2n+ 1

∑
i∈I

|Ai ∩ {−n, · · · , n}|

Therefore

0 ≤ d

(⋃
i∈I

Ai

)
≤ lim sup

n→∞

∑
i∈I

|Ai ∩ {−n, · · · , n}|
2n+ 1

≤
∑
i∈I

lim sup
n→∞

|Ai ∩ {−n, · · · , n}|
2n+ 1

=
∑
i∈I

d (Ai) = 0.

�

Proposition A.3. Let S ⊆ N such that δ N (S) > 0 and r ∈ N fixed. Define the set r·S := {r·n : n ∈ S}.
Then, we have that δ N (r · S) > 0.
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Proof. We wish to show that

lim inf
m→∞

|r · S ∩ {1, · · · ,m}|
m

> 0.

Note that, for every n ∈ N

|S ∩ {1, · · · , n}| = |r · S ∩ {1, · · · , r · n}|.

Hence

lim inf
n→∞

|S ∩ {1, · · · , n}|
n

= lim inf
n→∞

|r · S ∩ {1, · · · , r · n}|
n

= lim inf
n→∞

r · |r · S ∩ {1, · · · , r · n}|
r · n

> 0.

For every n ∈ N and j ∈ {1, 2, · · · , r − 1}, define

an,j :=
r · |r · S ∩ {1, · · · , r · n}|

r · n
− r · |r · S ∩ {1, · · · , r · n+ j}|

r · n+ j
+
r · |r · S ∩ {1, · · · , r · n+ j}|

r · n+ j

= r ·
(

(r · n+ j) |r · S ∩ {1, · · · , r · n}| − r · n|r · S ∩ {1, · · · , r · n+ j}|
r · n (r · n+ j)

)
+

r · |r · S ∩ {1, · · · , r · n+ j}|
r · n+ j

.

By the definition of the set r · S, for every i ∈ {1, · · · , r − 1} we have that r · n + i 6∈ r · S. Further,

r · n ∈ r · S if and only if n ∈ S. Therefore, for all j ∈ {0, · · · , r − 1} and n ∈ N

|r · S ∩ {1, · · · , r · n}| = |r · S ∩ {1, · · · , r · n+ j}|.

For all n ∈ N, define αn := |r · S ∩ {1, · · · , r · n}|. Then, for all j ∈ {0, · · · , r − 1} and n ∈ N

an,j = r ·
(

(r · n+ j)αn − r · n · αn
r · n (r · n+ j)

)
+

r · αn
r · n+ j

=

(
r · n · αn + j · αn − r · n · αn

r · n (r · n+ j)

)
+

r · αn
r · n+ j

=

(
j · αn

r · n (r · n+ j)

)
+

r · αn
r · n+ j

.

Since αn ≤ r · n for all n ∈ N, it follows that

an,j ≤
(

j · r · n
r · n (r · n+ j)

)
+

r · αn
r · n+ j

=

(
j

(r · n+ j)

)
+

r · αn
r · n+ j

.

Further, since r ≤ 1 and j ≤ r − 1, we have that n ≤ r · n ≤ r · n+ j. Therefore,

an,j ≤
(

j

(r · n+ j)

)
+

r · α
r · n+ j

≤ j

n
+

r · α
r · n+ j

≤ r − 1

n
+

r · α
r · n+ j

.

This implies that for every n ∈ N and a fixed j ∈ {0, · · · , r − 1}
|S ∩ {1, · · · , n}|

n
≤ r − 1

n
+ r · |r · S ∩ {1, · · · , r · n+ j}|

r · n+ j
.

Further, for every m ∈ N, there exists nm ∈ N and j ∈ {0, · · · , r− 1} such that m = r · nm + j. Hence,

for every m ∈ N
|S ∩ {1, · · · , nm}|

nm
≤ r − 1

nm
+ r · |r · S ∩ {1, · · · ,m}|

m
.
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This gives

lim inf
m→∞

|S ∩ {1, · · · , nm}|
nm

≤ lim inf
m→∞

r − 1

nm
+ r · lim inf

m→∞

|r · S ∩ {1, · · · ,m}|
m

= lim inf
m→∞

r − 1

nm
+ r · δN (r · S) .

Therefore

δN (S) = lim inf
n→∞

|S ∩ {1, · · · , n}|
n

≤ lim inf
m→∞

|S ∩ {1, · · · , nm}|
nm

≤ lim inf
m→∞

r − 1

nm
+ r · δN (r · S) .

As the quantity m grows large, so will the quantity nm grow large. Therefore

lim inf
m→∞

r − 1

nm
= 0.

This gives δN (r · S) ≥ 1
r
· δN (S) > 0, as required. �

2. Properties of Syndetic Sets

Recall the definition of syndetic sets given in Definition 5.3.

Remark A.4. Let S be a syndetic set. It follows directly from Definition 5.3 that S is necessarily

countably infinite. Otherwise, there would exist some n ∈ N such that for all N ∈ N

S ∩ {n, n+ 1, · · · , n+N} = ∅.

Let (an) be a strictly increasing enumeration of S. There exists d ∈ N such that

d = max{|an+1 − an| : n ∈ N}.

In other words, gaps between consecutive elements in the syndetic set S are bounded.

Lemma A.5. Let S ⊆ Z be syndetic. Then S has positive upper and lower density.

Proof. Since S is syndetic, there exists some d ∈ N which is the maximum gap between consecutive

elements in S. Further, we have that

δ(S) = lim sup
n→∞

|S ∩ {−n,−n+ 1, · · · , 0, · · · , n− 1, n}|
2n+ 1

≥ lim sup
n→∞

|S ∩ {−d · n, · · · , 0, · · · , d · n}|
2d · n+ 1

≥ lim sup
n→∞

2n+ 1

2d · n+ 1
.

Since d(2n+ 1) ≥ 2d · n+ 1, we have that

lim sup
n→∞

2n+ 1

2d · n+ 1
≥ lim sup

n→∞

2n+ 1

d(2n+ 1)
= lim sup

n→∞

1

d
=

1

d
> 0.

Therefore we have that δ > 0. The same argument can be used to show that δ(S) > 0. �



APPENDIX B

Properties of Cesàro and Density Convergence

1. Properties of Density and Cesàro Limits

Recall the definitions of Cesàro and density convergence given in Definitions 4.1 and 4.3.

Proposition B.1. Let (xn) be a bounded real valued sequence. If limn→∞ |xn − x| = 0, then,

D−lim
n→∞

xn = x.

Proof. Assume that (xn) converges in norm to x ∈ R. Fix any ε > 0. Then there exists N ∈ N
such that if n ≥ N then |xn − x| < ε, which implies that the set

{n ∈ N : |xn − x| ≥ ε}

has upper density zero since the complement has at most N − 1 elements. Since the choice of ε > 0 was

arbitrary, the sequence (xn) must converge in density. �

Proposition B.2 (Properties of density limits). Consider sequences (xn) and (yn) contained in R that

converge in density to x and y respectively.

(i) For every α ∈ R, D−limn→∞ αxn = αx.

(ii) D−limn→∞(xn + yn) = D−limn→∞ xn +D−limn→∞ yn = x+ y.

Similarly, if we have sequences (an) and (bn) contained in R that converge in the sense of Cesàro

to a and b respectively.

(iii) For every α ∈ R, we have C−limn→∞ αxn = αx.

(iv) C−limn→∞(xn + yn) = C−limn→∞ xn + C−limn→∞ yn = x+ y.

Proof. (i) If α = 0, then (αxn) is the zero sequence, which clearly converges in density to

zero.

Now, since D−limn→∞ xn = x, for every ε > 0, the set Aε := {n ∈ N : |xn − x| ≥ ε} has zero

upper density. Fix any α ∈ R with α 6= 0 and any ε > 0. Consider the set

Bε := {n ∈ N : |αxn − αx| ≥ ε} = {n ∈ N : |xn − x| ≥ ε/|α|}.

We verify that the set Bε has zero upper density. Define ε′ := ε/|α|. For every ε > 0, the set Aε
has zero upper density. So in particular, the set

{n ∈ N : |xn − x| ≥ ε/|α| = ε′}

has zero upper density. As our choice of ε > 0 was arbitrary, it follows that D−limn→∞ αxn = αx.
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(ii) Fix an arbitrary ε > 0 and define the sets

Sε := {n ∈ N : |(xn + yn)− (x+ y)| ≥ ε},
Uε := {n ∈ N : |xn − x| ≥ ε/2},
Vε := {n ∈ N : |yn − y| ≥ ε/2}.

We wish to show that Sε has zero upper density. To prove this, we will first show that Sε ⊆ Uε∪Vε.
Consider any n ∈ Sε. It follows by the triangle inequality that

|xn − x|+ |yn − y| ≥ |(xn + yn)− (x+ y)| ≥ ε.

From this we can conclude either |xn−x| ≥ ε/2 or |yn− y| ≥ ε/2, since if we had |xn−x| < ε/2

and |yn − y| < ε/2, then we would have the contradiction |xn − x| + |yn − y| < ε. Therefore,

n ∈ Uε ∪ Vε. By Proposition A.2, the set Sε will have zero upper density as Sε ⊆ Uε ∪ Vε.

The proofs for statements (iii) and (iv) follow from the known properties of norm convergence and finite

sums. �

Proposition B.3 (Absolute convergence in density to zero). Given a bounded real valued sequence

(xn). If D−limn→∞ |xn| = 0 then D−limn→∞ xn = 0.

Proof. By definition of convergence in density, for every ε > 0 the set

{n ∈ N : ||xn| − 0| ≥ ε}

has upper density zero. But it is clear that for every ε > 0

{n ∈ N : ||xn| − 0| ≥ ε} = {n ∈ N : |xn| ≥ ε}.

By definition, it follows that D−limn→∞ xn = 0. �

2. Miscellaneous Convergence Results

Proposition B.4. Let (yn) be a bounded non-negative real valued sequence such that yn ≥ 0 for all

n ∈ N and (xn) a bounded real valued sequence such that D−limn→∞ xn = 0, then

D−lim
n→∞

xn · yn = 0.

Proof. Since (yn) is bounded, there exists some M ∈ N such that |yn| ≤M for all n ∈ N. Fix any

ε > 0. Since D−limn→∞ xn = 0 the set

Sε :=
{
n ∈ N : |xn| ≥

ε

M

}
has upper density zero. Define the set

Kε := {n ∈ N : |xn · yn| ≥ ε} .

For any n ∈ Kε, we have that

|xn| · |yn| ≥ ε.
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Since |yn| ≤M for all n ∈ N, this implies that 1/|yn| ≥ 1/M for all n ∈ N. Therefore, for all n ∈ Kε

|xn| ≥
ε

|yn|
≥ ε

M
.

Therefore Kε ⊆ Sε. By Proposition A.2 (i), the set Kε has upper density zero. Since the choice of ε > 0

was arbitrary, we have that

D−lim
n→∞

xn · yn = 0. �

Proposition B.5. Let (xn) be a bounded non-negative real valued sequence. Assume there exists some

c > 0 and a set S ⊆ N with δN(S) > 0 such that xn > c > 0 for all n ∈ S. Then

lim inf
N→∞

1

N

N∑
n=1

xn > 0.

Proof. For a given N ∈ N, define the set

N> := {n ∈ {1, 2, · · · , N} : xn > c}

and let N≤ := {1, 2, · · · , N} \N>. Observe that for every N ∈ N

1

N

N∑
n=1

xn =
1

N

∑
n∈N>

xn +
∑
n∈N≤

xn


>
|N>|
N
· c+

1

N

∑
n∈N≤

xn.

Since the sequence (xn) is non-negative, it follows that for every N ∈ N, 1
N

∑
n∈N≤ xn ≥ 0. Therefore

lim inf
N→∞

1

N

N∑
n=1

xn > lim inf
N→∞

|N>|
N
· c = δ(S) · c > 0. �

With a similar argument one can prove the following proposition.

Proposition B.6. Let (xn) be a bounded non-negative real valued sequence. Assume there exists some

c > 0 and a set S ⊆ N with δN(S) > 0 such that xn > c > 0 for all n ∈ S then

lim sup
N→∞

1

N

N∑
n=1

xn > 0.

Proposition B.7. Given a bounded non-negative real valued sequence (xn) such that xn ≤ 1 for all

n ∈ N with the property that for every c > 0, the set

{n ∈ N : xn > c > 0}

has lower density zero. Then

lim inf
N→∞

1

N

N∑
n=1

xn = 0.
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Proof. Fix c > 0 and ε > 0. By assumption, there exists K ∈ N such that for every M ≥ K

inf
N≥M

1

N
|{n ∈ N : xn > c > 0}| < ε.

For N ≥ K define the sets

N> := {n ∈ {1, · · · , N} : xn > c > 0},
and let N≤ := {1, · · · , N} \N>. For every N ≥ K

1

N

N∑
n=1

xn =
1

N

∑
n∈N>

xn +
∑
n∈N≤

xn

 ≤ |N>|
N

+
1

N

∑
n∈

xn ≤
|N>|
N

+ c · |N≤|
N

.

Since |N≤| ≤ N for every N ≥ K

1

N

N∑
n=1

xn ≤
|N>|
N

+ c.

Therefore for every M ≥ K

inf
N≥M

1

N

N∑
n=1

xn ≤ inf
N≥M

|N>|
N

+ c = inf
N≥M

1

N
|{n ∈ N : xn > c > 0}|+ c

< ε+ c.

Since the choice of ε > 0 was arbitrary

lim inf
N→∞

1

N

N∑
n=1

xn ≤ c.

Further, since the choice of c > 0 was also arbitrary, we conclude that

lim inf
N→∞

1

N

N∑
n=1

xn = 0. �

The above proposition also gives us the contrapositive result.

Proposition B.8. Given a bounded non-negative real valued sequence (xn). If

lim inf
N→∞

1

N

N∑
n=1

xn > 0,

then there exists some c > 0 such that the set S := {n ∈ N : xn > c} satisfies δ N (S) > 0.

3. Hierarchy of Density, Strong Cesàro and Cesàro Convergence

The following characterization of the limit superior will be useful to us for results to come in this section.

Proposition B.9 ([1, Theorem 18.2, p. 124]). Given a bounded real valued sequence (an). Then

lim supn→∞ an = a if and only if

a = sup{α ∈ R : α limit point of (an)}.
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Proposition B.10. Let (yn) be a bounded real valued sequence. If D−limn→∞ yn = y, then

C−lim
n→∞

|yn − y| = 0.

Proof. We show that for every ε > 0 there exists some M ∈ N such that for all N ≥M

1

N

N∑
n=1

|yn − y| < ε.

Take any ε > 0. For every N ∈ N define the set

N< := {n ∈ {1, 2, · · · , N} : |yn − y| < ε/2}.

Let N≥ := {1, 2, · · · , N} \ N<. Since D− limn→∞ yn = y, the set {n ∈ N : |yn − y| ≥ ε/2} has upper

density zero. Thus, there exists some M ∈ N such that the set M< is not empty. Fix such a M ∈ N
and observe for all N ≥M

1

N

N∑
n=1

|yn − y| =
1

N

∑
n∈N<

|yn − y|+
∑
n∈N≥

|yn − y|


<
|N<|
N
· ε

2
+

1

N

∑
n∈N≥

|yn − y|.

Note that since (yn) is bounded there exists some R ∈ N such that |yn − y| < R for all n ∈ N. Further,

we know that |N<| ≤ N . Therefore, for all N ≥M

1

N

N∑
n=1

|yn − y| <
ε

2
+
|N≥|
N
·R.

Further, we also know that the set {n ∈ N : |yn − y| ≥ ε/2} has upper density zero. Therefore, there

exists K ∈ N such that for all N ≥ K
|N≥|
N
·R <

ε

2
.

Therefore, if N ≥ max{K,M} then

1

N

N∑
n=1

|yn − y| <
ε

2
+
ε

2
= ε.

Since the choice of ε > 0 was arbitrary, we conclude that

C−lim
n→∞

|yn − y| = 0.

�

Proposition B.11. Let (xn) be a bounded real valued sequence and x ∈ R. Then C−limn→∞ |xn−x| 6= 0

if and only if

lim sup
N→∞

1

N

N∑
n=1

|xn − x| > 0.
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Proof. Assume that lim supN→∞
1
N

∑N
n=1 |xn − x| > 0. Suppose for a contradiction that C−

limn→∞ |xn − x| = 0. But, this implies that

lim
N→∞

1

N

N∑
n=1

|xn − x| = lim sup
N→∞

1

N

N∑
n=1

|xn − x| = 0

which is clearly a contradiction.

Next, assume that C−limn→∞ |xn − x| 6= 0. Since (xn) is a bounded sequence, for every N ∈ N

1

N

N∑
n=1

|xn − x| ≥ 0.

Since C−limn→∞ |xn − x| 6= 0, there exists γ > 0 and a sequence (Nk) such that

1

Nk

Nk∑
m=1

|xm − x| > γ.

for all k ∈ N. Therefore by Proposition B.9,

lim sup
N→∞

1

N

N∑
n=1

|xn − x| ≥ lim sup
k→∞

1

Nk

Nk∑
m=1

|xm − x| ≥ γ > 0.

�

Proposition B.12. Let (xn) be a bounded real valued sequence and x ∈ R. If D−limn→∞ xn 6= x, then

C−lim
n→∞

|xn − x| 6= 0.

Proof. By Proposition B.11, it suffices to show that

lim sup
N→∞

1

N

N∑
n=1

|xn − x| > 0.

Since D−limn→∞ xn 6= x, there exists ε′ > 0 such that the set

Aε′ := {n ∈ N : |xn − x| ≥ ε′}

has positive upper density. Note that

Bε′ := {n ∈ N : |xn − x| > ε′/2} ⊇ {n ∈ N : |xn − x| ≥ ε′},

which implies that δN (Bε′) > 0. By Proposition B.6, we have that

lim sup
N→∞

1

N

N∑
n=1

|xn − x| > 0.

�

The following proposition is the contrapositive result of Proposition B.12.

Proposition B.13. Let (xn) be a bounded real valued sequence and fix some x ∈ R. If

C− lim
n→∞

|xn − x| = 0
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then D−limn→∞ xn = x.

Proposition B.14. Let (xn) be a bounded real valued sequence and fix some x ∈ R. If

C− lim
n→∞

|xn − x| = 0,

then C−limn→∞ |xn − x|2 = 0.

Proof. Fix some ε > 0. Since (xn) is a bounded sequence there exists some R ∈ N such that

|xn − x| < R for all n ∈ N. As a result, we have that |xn − x|2 < R · |xn − x| for every n ∈ N. Since

C−limn→∞ |xn − x| = 0, there exists some M ∈ N such that if N ≥M

R

(
1

N

N∑
n=1

|xn − x|

)
< ε.

Therefore, for N ≥M

1

N

N∑
n=1

|xn − x|2 < R

(
1

N

N∑
n=1

|xn − x|

)
< ε.

Since the choice of ε > 0 was arbitrary, we conclude that C−limn→∞ |xn − x|2 = 0. �

Proposition B.15. Let (xn) be a bounded real valued sequence and fix some x ∈ R. If

C− lim
n→∞

|xn − x|2 = 0

then C−limn→∞ |xn − x| = 0.

Proof. Fix some ε > 0. Suppose for a contradiction that C− limn→∞ |xn − x| 6= 0. By the

contrapositive of Proposition B.10, this means there exists some α > 0 such that the set

S := {n ∈ N : |xn − x| ≥ α}

has positive upper density. For a given N ∈ N, define the set

N< := {n ∈ {1, 2, · · · , N} : |xn − x| < α}

and let N≥ := {1, 2, · · · , N} \N<. Observe that for every N ∈ N

1

N

N∑
n=1

|xn − x|2 =
1

N

∑
n∈N<

|xn − x|2 +
∑
n∈N≥

|xn − x|2


For every n ∈ N, we have that |xn − x|2 ≥ α2 if and only if n ∈ S. Therefore, for every N ∈ N

1

N

N∑
n=1

|xn − x|2 ≥
1

N

∑
n∈N<

|xn − x|2 +
|N≥|
N
· α2.

Further, since |xn − x|2 ≥ 0 for every n ∈ N, it follows that for every N ∈ N, 1
N

∑
n∈N< |xn − x|

2 ≥ 0.

As a result

lim sup
N→∞

1

N

N∑
n=1

|xn − x|2 ≥ lim sup
N→∞

|N≥|
N
· α2 = δ(S) · α2 > 0.
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This implies that lim supN→∞
1
N

∑N
n=1 |xn − x|2 > 0. However, we assumed that

lim
N→∞

1

N

N∑
n=1

|xn − x|2 = lim sup
N→∞

1

N

N∑
n=1

|xn − x|2 = 0,

which is clearly a contradiction. We conclude that

C−lim
n→∞

|xn − x| = 0.

�

Corollary B.16. Let (xn) be a bounded real valued sequence and fix some x ∈ R. If we have that

C−limn→∞ |xn − x|2 = 0 then D−limn→∞ xn = x.

Proof. By Proposition B.15 if C−limn→∞ |xn− x|2 = 0 then, C−limn→∞ |xn− x| = 0. Further, by

Proposition B.13 it follows that if C−limn→∞ |xn − x| = 0 then D−limn→∞ xn = x. �

The proof of Proposition B.10 can be modified to prove the following proposition.

Proposition B.17. Let (xn) be a bounded real valued sequence and fix some x ∈ R. If we have that

D−limn→∞ xn = x then C−limn→∞ |xn − x|2 = 0.

Following from all the above propositions in this section, we have the following corollary.

Corollary B.18. Let (xn) be any bounded real valued sequence and fix some x ∈ R. Then the following

statements are all equivalent:

(a) C−limn→∞ |xn − x| = 0.

(b) C−limn→∞ |xn − x|2 = 0.

(c) D−limn→∞ xn = x.

Furthermore, all these statements imply that C−limn→∞ xn = x.

Proof. Let (xn) be any bounded real valued sequence and fix some x ∈ R. The proof that the

statements (a), (b) and (c) are equivalent is laid out in Propositions B.10 - B.17. To show that statements

(a), (b) and (c) all imply that C−limn→∞ xn = x, we assume (a) and prove that C−limn→∞ xn = x.

Fix any ε > 0. We show that there exists M ∈ N such that for all N ≥M∣∣∣∣∣ 1

N

N∑
n=1

xn − x

∣∣∣∣∣ < ε.

Applying the triangle inequality∣∣∣∣∣ 1

N

N∑
n=1

xn − x

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

xn −N · x
N

∣∣∣∣∣ ≤
N∑
n=1

∣∣∣∣xn − xN

∣∣∣∣ =
1

N

N∑
n=1

|xn − x| .
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Since we assumed that C− limn→∞ |xn − x| = 0, it follows that there exists M ∈ N such that for all

N ≥M

1

N

N∑
n=1

|xn − x| < ε.

It follows that
∣∣∣ 1
N

∑N
n=1 xn − x

∣∣∣ < ε. Since the choice of ε > 0 was arbitrary, we conclude that C−
limn→∞ xn = x. Since the statements (a), (b) and (c) have all been shown to be equivalent, we conclude

that all three statements imply that C−limn→∞ xn = x. �

Corollary B.19. Consider any bounded real valued sequence (xn). If (xn) converges in norm to x, then

we have that (xn) converges in density to x. In turn, if (xn) converges in density to x, (xn) converges

to x in the sense of Cesàro.

Proof. First consider a bounded real valued sequence (xn) that converges to a point x ∈ R in the

standard norm. For every ε > 0, the sets

{n ∈ N : |xn − x| ≥ ε}

are finite, hence have upper density zero. It follows by Definition 4.3 that (xn) that converges to x ∈ R
in density.

Lastly, if (xn) converges in density to x, it follows by Proposition B.18 that (xn) that converges to x ∈ R
in the sense of Cesàro. �



APPENDIX C

Equivalent Formulations of Compact Systems

In this section we verify that the statements in Definition 5.4 are indeed equivalent. In order to do this,

we will need to introduce some terminology and concepts from topological dynamics. As stated in [29],

the precompactness of orbits condition of almost periodic functions is viewed as the typical definition

of almost periodicity in the context of measure preserving systems, while the syndeticity condition is

typically used in the context of topological dynamics.

Definition C.1 (Topological dynamical system, [29, p. 78]). Given a compact metrizable topological

space (X, T ) and R : X → X a homeomorphism, the triple (X, T , R) is said to be a topological dynamical

system.

Definition C.2 (Almost periodicity, Topological dynamics, [29, Definition 2.3.2]). Given a topological

dynamical system (X, T , R). Let d : X×X → R the metric that defines T . Then a point x ∈ X is said

to be almost periodic if for every ε > 0, the set

{n ∈ Z : d(Rnx, x) < ε} ⊆ Z

is syndetic.

Definition C.3 (Invariant subsets, [29, Example 2.2.3]). Given a topological dynamical system (X, T , R),

a set Y ⊆ X is said to be invariant if R−1Y = Y .

Definition C.4 (Minimal systems, [29, Definition 2.2.7]). A topological dynamical system (X, T , R)

is said to be minimal if for every closed set Y ⊆ X that is invariant, either Y = ∅ or Y = X.

Theorem C.5 ([29, Lemma 2.3.3]). If (X, T , R) is a minimal topological dynamical system, then every

x ∈ X is almost periodic.

Proposition C.6 (Almost periodic functions, [29, Exercise 2.11.1]). Given an invertible measure pre-

serving system X := (X,Σ, µ, T ) and f ∈ L2(X) an almost periodic function, then the following state-

ments are equivalent:

(i) The orbit O(f) is precompact in L2(X) equipped with the norm topology.

(ii) For every ε > 0, the set {n ∈ Z : ‖f − f ◦ T n‖L2(X) < ε} ⊆ Z is syndetic.

Proof. (i) =⇒ (ii) Consider any f ∈ L2(X) which is almost periodic. Since O(f) is precompact,

the Koopman operator is a homeomorphism on O(f). The induced topology T‖•‖ on O(f) is metrizable,

so by Definition C.1, the triple (O(f), T‖•‖, KT ) is a topological dynamical system.

By Theorem C.5, we only need to verify that (O(f), T‖•‖, KT ) is a minimal topological dynamical system

in order to conclude that condition (ii) holds.

125
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Suppose for the sake of a contradiction there exists some ∅ 6= A ( O(f) a closed set such that A is an

invariant set. Since A is a closed set and ∅ 6= A ( O(f), there exists f1 ∈ O(f) and some r > 0 such

that

B(f1, r) ⊆ O(f) \ A.
Since A is an invariant set, for every g ∈ A, we have that g ◦Tm ∈ A for m ∈ Z. Fix some a ∈ A. Since

the orbit O(f) is dense in O(f), there exists j1, j2 ∈ Z such that∥∥f1 − f ◦ T j1
∥∥
L2(X)

< r/2,∥∥a− f ◦ T j2∥∥
L2(X)

< r/2.

Applying the triangle inequality and the fact that the Koopman operator is an isometry on L2(X)

(Corollary 2.16), ∥∥f1 − a ◦ T j1−j2
∥∥
L2(X)

≤
∥∥f1 − f ◦ T j1

∥∥+
∥∥f ◦ T j1 − a ◦ T j1−j2∥∥

L2(X)

<
r

2
+
∥∥f ◦ T j1 − a ◦ T j1−j2∥∥

L2(X)

=
r

2
+
∥∥f − a ◦ T−j2∥∥

L2(X)

=
r

2
+
∥∥f ◦ T j2 − a∥∥

L2(X)

< r.

This implies that a ◦ T j1−j2 ∈ B(f1, r) ⊆ O(f) \ A. This contradicts the fact that a ◦ T j1−j2 ∈ A,

as A was assumed to be an invariant subset of O(f). We conclude that there does not exist a closed

proper subset of O(f) that is invariant under KT . Therefore, (O(f), T‖•‖, KT ) is a minimal topological

dynamical system. By Theorem C.5, for every ε > 0, the set

{n ∈ Z : ‖f − f ◦ T n‖L2(X) < ε}

is syndetic.

(ii) =⇒ (i) Fix any ε > 0. Define the set

S := {n ∈ Z : ‖f − f ◦ T n‖L2(X) < ε}.

Let (ai)i∈Z be a strictly increasing enumeration of S. Since S is syndetic, there exists d ∈ N such that

d = max{|ai − ai−1| : i ∈ Z}.

This implies that for every n ∈ Z there exists m ∈ S and a j ∈ {1, 2, · · · , d− 1} such that n = j +m.

Take any n ∈ Z and consider f ◦ T n ∈ O(f). There exists m ∈ S and j ∈ {0, 1, 2, · · · , d− 1} such that

n = j +m. Then ∥∥f ◦ T n − f ◦ T j∥∥
L2(X)

=
∥∥f ◦ T j+m − f ◦ T j∥∥

L2(X)
.

Since the Koopman operator is an isometry on L2(X) (Corollary 2.16), we have that∥∥f ◦ T j+m − f ◦ T j∥∥
L2(X)

= ‖f ◦ Tm − f‖L2(X) < ε.
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Since the choice of f ◦ T n ∈ O(f) was arbitrary, and the set {1, 2, · · · , d− 1} is finite, we have a finite

collection of closed balls {
B(f ◦ T j, ε)

}d−1

j=1

such that

O(f) ⊆
d−1⋃
j=1

B(f ◦ T j, ε)

It follows that O(f) totally bounded, and hence by Proposition 6.18, O(f) is precompact in L2(X). �



APPENDIX D

Definitions of Function Spaces

1. Lp Spaces

Definition D.1 (Measurable functions, [24, Definition 1.3]). Given a probability space (X,Σ, µ), a

topological space (Y, TY ) and a mapping f : X → Y . The mapping f is said to be measurable with

respect to Σ if for every V ∈ TY
f−1(V ) := {x ∈ X : f(x) ∈ V } ∈ Σ.

Denote the set of all functions f : X → Y such that f is measurable with respect to Σ as the set

M(X, Y ).

Definition D.2 (L0 functions). Consider a probability space X := (X,Σ, µ) and R equipped with the

standard topology. Define the collection of functions

L0(X) := {f : X → R : f ∈M(X,R)}.

Definition D.3 (N 0 functions). Given a probability space X := (X,Σ, µ), define the set of functions

N 0(X) :=
{
f ∈ L0(X) : µ({x ∈ X : f(x) 6= 0}) = 0

}
.

Definition D.4 (L0 functions). Given a probability space X := (X,Σ, µ), define the quotient space

L0(X) := L
0(X)/
N 0(X) =

{
[f ]∼ : f ∈ L0(X)

}
where [f ]∼ = {g ∈ L0(X) : f ∼ g} and where f ∼ g if and only if f − g ∈ N 0(X).

Definition D.5 (Lp functions, [4, Section 3.3, p. 96]). Given a probability space X := (X,Σ, µ) and

some 1 ≤ p <∞. Define the set of functions

Lp(X) :=

{
f ∈ L0(X) :

(∫
X

|f |p dµ
)1/p

<∞

}
.

Definition D.6 (N p functions, [4, Section 3.3, p. 96]). Given a probability space X := (X,Σ, µ) and

some 1 ≤ p <∞. Define the set of functions

N p(X) :=

{
f ∈ Lp(X) :

∫
X

|f |p dµ = 0

}
.

Definition D.7 (Lp spaces, [4, Section 3.3, p. 96]). Given a probability space X := (X,Σ, µ) and some

1 ≤ p ≤ ∞. Define the quotient space

Lp(X) := L
p(X)/
N p(X) = {[f ]∼ : f ∈ Lp(X)}

where [f ]∼ = {g ∈ Lp(X) : f ∼ g} and where f ∼ g if and only if f − g ∈ N p(X).

128
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Proposition D.8 ([4, Section 3.3, p. 96]). Let X := (X,Σ, µ) be a probability space and fix 1 ≤ p <∞.

Then the space of functions Lp(X) equipped with pointwise addition and scalar multiplication is a vector

space. Further, the mapping ‖•‖Lp(X) : Lp(X)→ R where for any f ∈ Lp(X)

‖f‖Lp(X) :=

(∫
X

|f |p dµ
)1/p

is a norm on the set of functions Lp(X).

Theorem D.9 (L2(X) is a Hilbert space, [5, Chapter I, Definition 1.6]). Given a probability space

X := (X,Σ, µ). Then the set of functions L2(X) equipped with the inner product 〈•, •〉L2(X) : L2(X) ×
L2(X)→ R, where

〈x, y〉L2(X) :=

∫
X

x(t) · y(t) dµ

constitutes a Hilbert space.

Proposition D.10 (Hölder’s Inequality, [24, Theorem 3.8]). Given a measure space X := (X,Σ, µ),

p, q ∈ N such that 1/p+ 1/q = 1 and functions f ∈ Lp(X) and g ∈ Lq(X). Then fg ∈ L1(X) and

‖fg‖L1(X) ≤ ‖f‖Lp(X) ‖g‖Lq(X) .

Theorem D.11 (Tonelli’s Theorem, [4, Proposition 5.2.1]). Given probability spaces X := (X,ΣX , µ)

and Y := (Y,ΣY , ν) and a function f ∈ L2(X×Y). Then∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

2. Essentially Bounded Functions

In order to formulate the following definition, recall Definition 2.13.

Definition D.12. Given a probability space X := (X,Σ, µ), define the set

L∞(X) :=
{
f ∈ L0(X) : there exists α > 0 : µ({x ∈ X : |f(x)| > α}) = 0

}
.

Definition D.13 (N∞ functions, [4, Section 3.3, p. 96]). Given a probability space X := (X,Σ, µ),

define the set of functions

N∞(X) := {f ∈ L∞(X) : µ({x ∈ X : |f(x)| > 0}) = 0} .

Definition D.14 (Essentially bounded functions, [4, Section 3.3, p. 96]). Given a probability space

X := (X,Σ, µ), define the quotient space

L∞(X) := L
∞(X)/

N∞(X) = {[f ]∼ : f ∈ L∞(X)}

where [f ]∼ = {g ∈ L∞(X) : f ∼ g} and where f ∼ g if and only if f −g ∈ N∞(X). The set of functions

L∞(X) is said to be the set of essentially bounded functions on X.

Definition D.15. Given a probability space X := (X,Σ, µ), define the infinity norm as the mapping

‖•‖∞ : L∞(X)→ R where

‖f‖∞ := inf{α ∈ R : µ({x ∈ X : |f(x)| > α}) = 0}.
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Lemma D.16 (L∞(X) is a Banach algebra, [5, Chapter VII, Example 1.6]). Given a probability space

X := (X,Σ, µ). Equipping L∞(X) with pointwise addition and pointwise scalar multiplication makes the

pair (L∞(X), ‖•‖∞) into a Banach space. Further, equipping the pair with pointwise multiplication of

functions makes the pair (L∞(X), ‖•‖∞) into a Banach algebra.

Lemma D.17. Given a measure preserving system X := (X,Σ, µ, T ), any n ∈ Z and f ∈ L∞(X). Then

f ◦ T n ∈ L∞(X).

3. Continuous Functions

Definition D.18 (Bounded continuous functions, [5, Chapter III, Example 1.6, p. 65]). Let (X, TX) be

a Hausdorff topological space. Denote the set of all continuous functions f : X → R as the set C(X).

Further, define the set of all bounded continuous functions

Cb(X) := {f ∈ C(X) : there exists α > 0 : |f(x)| ≤ α, x ∈ X}

Equip the set Cb(X) with the norm ‖•‖∞ : C(X)b → R where

‖f‖∞ := sup{|f(x)| : x ∈ X}.

Proposition D.19 (Cb(X) is a Banach space, [5, Chapter III, Proposition 1.7, p. 65]). If we equip

the set Cb(X) with pointwise addition and scalar multiplication, then Cb(X) is a vector space. The pair

(Cb(X), ‖•‖∞) constitutes a Banach space.

Definition D.20 (Continuous functions that vanish at infinity, [5, Chapter III, Proposition 1.7, p. 65]).

Given a locally compact space X. Define the set of functions

C0(X) := {f ∈ Cb(X) : ∀ε > 0, {x ∈ X : |f(x)| ≥ ε} is compact in X}.

Proposition D.21 (C0(X) is a Banach space, [5, Chapter III, Proposition 1.7, p. 65]). The set of

functions C0(X) is a closed subspace of Cb(X). Therefore, (C0(X), ‖•‖∞) is a Banach space.

Proposition D.22 ( [5, Chapter III, Proposition 1.7, p. 65] ). If X is a compact Hausdorff topological

space, then C0(X) = C(X) = Cb(X).

4. The Weak Operator Topology

Definition D.23. Let H be a Hilbert space. Denote by B(H) the set of all bounded linear operators

on H.

Definition D.24 (Weak operator seminorms, [6, p. 37]). Let H be a Hilbert space. For all f, g ∈ H,

define the seminorm ρf,g(T ) := | 〈Tf, g〉H | for T ∈ B(H).

Definition D.25 (Weak operator topology, [6, p. 37]). Define the locally convex topology on B(H)

generated by the collection of seminorms {ρf,g : f, g ∈ H} as the weak operator topology on B(H).

Proposition D.26 ([6, Exercise 1, p. 40]). Let H be a Hilbert space. If H is separable, then the closed

unit ball in B(H) is metrizable in the weak operator topology.

Given a probability space X, the following is a direct consequence of the separability of L2(X).
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Corollary D.27. Given a probability space X := (X,Σ, µ), the closed unit ball of B (L2(X)) is metriz-

able in the weak operator topology.

Proposition D.28 ([6, Proposition 8.3]). Given a Hilbert space H, the closed unit ball in B(H) is

compact in the weak operator topology.
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