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Effective fault diagnosis techniques are important to ensure that expensive assets such as

wind turbines can operate reliably. Vibration condition monitoring data are rich with infor-

mation pertaining to the dynamics of the rotating machines and are therefore popular for

rotating machine diagnostics. However, vibration data do not only contain diagnostic infor-

mation, but operating condition information as well. The performance of many conventional

fault diagnosis techniques is impeded by inherent varying operating conditions encountered in

machines such as wind turbines and draglines. Hence, it is not only important to utilise fault

diagnosis techniques that are sensitive to faults, but the techniques should also be robust to

changes in operating conditions.

Much research has been conducted to address the many facets of gearbox fault diagnosis

e.g. understanding the interactions of the components, the characteristics of the vibration

signals and the development of good vibration analysis techniques. The aforementioned

knowledge, as well as the availability of historical data, are regarded as prior knowledge (i.e.

information that is available before inferring the condition of the machine) in this thesis.

The available prior knowledge can be utilised to ensure that effective gearbox fault di-

agnosis techniques are designed. Therefore, methodologies are proposed in this work which

can utilise the available prior knowledge to effectively perform fault diagnosis, i.e. detec-

tion, localisation and trending, under varying operating conditions. It is necessary to design
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different methodologies to accommodate the different kinds of historical data (e.g. healthy

historical data or historical fault data) that can be encountered and the different signal anal-

ysis techniques that can be used.

More specifically, a methodology is developed to automatically detect localised gear dam-

age under varying operating conditions without any historical data being available. The

success of the methodology is attributed to the fact that the interaction between gear teeth

in a similar condition results in data being generated which are statistically similar and this

prior knowledge may be utilised. Therefore, a dissimilarity measure between the probability

density functions of two teeth can be used to detect a gear tooth with localised gear damage.

Three methodologies are also developed to utilise the available historical data from a

healthy machine for gearbox fault diagnosis. Firstly, discrepancy analysis, a powerful novelty

detection technique which has been used for gear diagnostics under varying operating condi-

tions, is extended for bearing diagnostics under varying operating conditions. The suitability

of time-frequency analysis techniques and different models are compared for discrepancy anal-

ysis as well. Secondly, a methodology is developed where the spectral coherence, a powerful

second-order cyclostationary technique, is supplemented with healthy historical data for fault

detection, localisation and trending. Lastly, a methodology is proposed which utilises nar-

rowband feature extraction methods such as the kurtogram to extract a signal rich with novel

information from a vibration signal. This is performed by attenuating the historical infor-

mation in the signal. Sophisticated signal analysis techniques such as the squared envelope

spectrum and the spectral coherence are also used on the novel signal to highlight the benefits

of utilising the novel signal as opposed to raw vibration signal for fault diagnosis.

Even though a healthy state is the desired operating condition of rotating machines, fault

data will become available during the operational life of the machine. Therefore, a methodol-

ogy, centred around discrepancy analysis, is developed to utilise the available historical fault

data and to accommodate fault data becoming available during the operation of the ma-

chine. In this investigation, it is recognised that the machine condition monitoring problem

is in fact an open set recognition problem with continuous transitions between the healthy

machine condition and the failure conditions. This is explicitly incorporated into the method-

ology and used to infer the condition of the gearbox in an open set recognition framework.

This methodology uses a different approach to the conventional supervised machine learning

techniques found in the literature.

The methodologies are investigated on numerical and experimental datasets generated
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under varying operating conditions. The results indicate the benefits of incorporating prior

knowledge into the fault diagnosis process: the fault diagnosis techniques can be more ro-

bust to varying operating conditions, more sensitive to damage and easier to interpret by a

non-expert. In summary, fault diagnosis techniques are more effective when prior knowledge

is utilised.
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Chapter 1

Introduction

1.1 Background

Gearboxes are critical assets used in industries such as the power generation (e.g. wind

turbines) and mining industries (e.g. draglines). It is crucial to use effective maintenance

strategies for gearboxes due to their high downtime when performing maintenance, their

high replacement cost and their susceptibility to damage [1, 2]. The most common main-

tenance strategies can be ineffective as corrective maintenance leads to unexpected failures,

unexpected downtime and potential secondary damage, while time-based preventative main-

tenance is inefficient due to unnecessary downtime and components being replaced with

unutilized remaining useful life [3–5].

Condition-based maintenance is an effective alternative to time-based preventative and

corrective maintenance, because the inferred condition of the machine is for example used as

a basis for maintenance decisions as opposed to the time of operation [3]. In condition-based

maintenance, event and condition monitoring data are collected from the machine under con-

sideration, whereafter the data are processed and subsequently used to perform maintenance

decisions. Condition-based maintenance consists of diagnostics, where the collected data are

used to detect, localise and trend damage, and prognostics, where the remaining useful life or

time to failure is estimated from the collected data [3–5]. While prognostics can result in more

effective maintenance planning, it remains imperative to be able to detect and characterise

damage early in the degradation process, i.e. using an effective diagnostic system.

In wind turbines, the most prominent failure modes in gearboxes are for example teeth

surface pitting, teeth bonding, gear fracture and bearing damage and are attributed to for

example improper installation, inadequate lubrication, and excessive overloading [1, 6]. It
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is therefore very important to be able to detect gear and bearing damage to ensure that

the gearboxes operate as intended. Vibration-based condition monitoring techniques are

most commonly used for rotating machine diagnostics (e.g. bearing and gear diagnostics),

because the vibration data are rich with information pertaining to the current condition of

the machine, it is possible to use sophisticated signal processing techniques to detect and

identify the damaged component and the data are relatively easy to acquire [1, 7, 8].

However, rotating machines such as wind turbines [9], conveyor systems [10], bucket wheel

excavators [11] and draglines [12] operate continuously under varying operating conditions e.g.

varying load and speeds. The varying operating conditions result in changes in the vibration

data, which make detecting changes in machine condition more difficult [11, 13–15]. This

can result in the wrong condition to be inferred and subsequently inappropriate maintenance

decisions to be made. Hence, it is critical to use gearbox fault diagnosis techniques that are

sensitive to changes in machine conditions, while their performance is unaffected by varying

operating conditions.

There is a need for effective gearbox fault diagnosis techniques, capable of detecting,

localising and trending gear and bearing damage under varying operating conditions. A

literature survey of vibration-based condition monitoring techniques for gearbox diagnostics

is performed in the next section.

1.2 Literature survey

A literature survey is conducted on vibration-based condition monitoring techniques for gear-

box diagnostics (i.e. gear and bearing diagnostics) and is partitioned as follows: In Section

1.2.1, the characteristics of the vibration data of gearboxes are investigated, whereafter signal

analysis techniques for fault diagnosis are considered in Section 1.2.2 for the vibration data.

Finally, data-driven fault diagnosis techniques are investigated in Section 1.2.3 to incorporate

the available historical data into the fault diagnosis process.

1.2.1 Gearbox vibrations for fault diagnosis

It is important to understand the relationship between the interacting machine components

in different conditions and the resulting vibration signal to ensure that the appropriate signal

analysis techniques can be used to diagnose the condition of the machine. It is also important

to generate numerical gearbox data to validate new fault diagnosis methods in a completely
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controlled environment. Therefore, the characteristics of gearbox vibration signals are inves-

tigated in Sections 1.2.1.1 and 1.2.1.2, while methods to generate numerical gearbox data are

presented in Section 1.2.1.3.

1.2.1.1 Gearbox vibration signals under constant operating conditions

Gearbox vibration signals are dominated by the vibrations resulting from the periodic mesh-

ing of the gear teeth. This is attributed to the variation of the gear mesh stiffness due to

non-integer contact ratios, deviations from the involute gear profile and the deformation of

the gear teeth under load which ultimately manifest as strong excitations at the gear mesh

frequency [7, 16]. Gear damage results in changes in the gear mesh stiffness of the gear [17, 18]

which manifest as changes in the amplitude of the vibration signal [16] and changes in the

instantaneous angular speed of the gears [19]. Localised gear damage results in localised

amplitude modulation i.e. amplitude modulation with a short duration relative to the gear

rotation period, while distributed gear damage results in amplitude modulation with a longer

period [16].

In rolling element bearings, damage on the inner or outer race of the bearing results in

impacts as the load-carrying rolling elements move through the damaged portion, whereas a

damaged rolling element results in impacts as the damaged region makes contact with the

inner and outer races of the bearing [20]. The magnitude of the bearing impulses is dependent

on the load zone. For example, inner race and rolling element damage signals are amplitude

modulated as the fault moves through a constant load zone, while the outer race damage

signal remains constant with respect to a constant load zone [20]. The magnitude of the

bearing impulses is also non-linearly related to the condition of the bearing. El-Thalji and

Jantunen [21] and Cerrada et al. [22] illustrated how changes in the condition of the bearing

influence the magnitude of the impacts due to the damage and the measured vibrations.

The vibrations resulting from interacting machine components such as the impacts due to

bearing damage in a gearbox are transmitted through the machine components (e.g. shafts

and bearings) and casing of the machine to reach sensors such as accelerometers. The fre-

quency response function of the transmission path acts as a filter on the vibration signal and

therefore the measured vibration signal is dependent on the frequency response function of the

machine, the location of the sensors and the rotational speed of the system [19, 23–25]. The

interaction between the rotating components e.g. gear mesh interactions or bearing damage,

also results in changes in the statistics of the vibration signal of the machine over time i.e.
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the vibration signals are inherently non-stationary. However, due to the periodic nature of

the interactions, the statistics of the vibration signals are periodic as well and therefore the

signals are a special class of non-stationary, namely, cyclostationary [23, 26, 27]. To be more

precise, the signals are angle-cyclostationary under stationary operating conditions due to

the angle-locked periodic mechanisms of rotating machine components [23]. Different types

of cyclostationary signals are formally defined and related to machine vibration by Antoni

et al. [23]. Pure first-order cyclostationary signals, generated by misalignments and gear

meshing for example have periodic means, while pure second-order cyclostationary signals

generated by wear for example have periodic autocovariance functions. Hence, this distinc-

tion necessitates using appropriate techniques for first-order and second-order cyclostationary

component detection [23].

1.2.1.2 Gearbox vibration signals under varying operating conditions

It is evident that the vibrations of the machines are inherently operating condition dependent;

the gear mesh signal is load and speed dependent due to the load dependent deformation

and the speed dependent interactions between the gear teeth during meshing [13, 25]. The

frequency of the impacts in damaged bearings is for example dependent on the rotation of

the shaft, while the magnitude of the impacts is dependent on the rotational speed and the

applied load [28, 29]. The transmission path effect also plays a significant role under varying

speed and varying load (which inherently result in varying speed [13, 19]) conditions. The

magnitude and phase of the frequency response function between the interactions of the

machine components and the sensor are frequency dependent, which means that changes in

rotational speed result in changes in the amplitude and the phase of the measured vibration

signals [25, 30]. Therefore, the statistics of the vibration signals are operating condition

dependent, which result in the cyclostationarity of the signal being compromised i.e. the

signal is cyclo-non-stationary under varying operating conditions [31].

The frequency modulation due to varying rotational speeds is usually attenuated by con-

verting the signal from a time domain representation to an angle representation by using

rotational speed information with order tracking [32]. The rotational speed can be estimated

with measurement equipment such as a zebra tape shaft encoder and an optical probe [33] or

from the vibration signal itself using tacholess speed estimation methods [34–39]. Instanta-

neous angular speed measurements also contain diagnostic information and have been used

for fault diagnosis as opposed to vibration transducers e.g. accelerometers, because it min-
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imises the number of sensors, the path between the vibration source and the measurement

equipment is simpler and the noise contamination is less in the signals [19, 40]. Recently,

much research are focused on tacholess order tracking methods i.e. performing order tracking

without rotational speed measurements. Tacholess methods are attractive for condition mon-

itoring, because the rotational speed measurements are not always possible due to limited

access to the rotating components and harsh operating environments, the rotational speed

measurement equipment can increase the cost of performing condition monitoring and phase

distortion occurs when utilising the rotational speed measurements for order tracking signals

from transducers with different transfer paths [30, 35–37].

The amplitude modulation due to varying load and speed conditions can be cyclic sta-

tionary (e.g. a sinusoidal load with a period equal to the rotational period of the gear) or

non-cyclic stationary. Stander et al. [13] developed a load demodulation normalisation tech-

nique for normalising the amplitude modulation for cyclic stationary conditions and used

the synchronous average, discussed further in Section 1.2.2.5, for non-cyclic stationary con-

ditions. Abboud et al. [41] developed the generalised synchronous average to accommodate

the amplitude modulation caused by varying speed conditions.

1.2.1.3 Physics-based modelling of gearboxes

It is further useful to develop gearbox models which can replicate and help to understand

experimental phenomena, help to understand the dynamics of the rotating components and

to provide a controlled environment for testing new fault diagnosis techniques. The modelling

approaches are categorised as lumped mass models, finite element models and phenomeno-

logical models [28, 42, 43].

Lumped mass models aim to lump the continuous components that have mass, stiffness

and damping, into discrete mass-spring-damper components. These models are relatively

easy to implement and computationally fast to solve compared to finite element models for

example. Some interesting lumped mass models have been developed by Bartelmus [44],

Howard et al. [45], Chaari et al. [17, 46], Bartelmus et al. [10], and Mohammed et al.

[18, 47]. The time-varying gear mesh stiffness, due to the interaction of the gear teeth during

meshing, is usually modelled using analytical techniques or obtained from finite element

analyses [42, 46, 48]. Finite element models are capable of modelling the interaction of the

dynamics of the interacting components more accurately at the expense of increased modelling

complexity and the high computational cost [42].
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Phenomenological models aim to directly model the signal components generated by gear-

boxes based on experimental observations and by having a physical understanding of the in-

teraction between the components e.g. understanding the statistical properties of the signals.

Some important phenomenological models include a bearing damage model [29], a revised

gearbox signal model [49] and a bearing and distributed gear damage model developed for

varying speed conditions [28]. Even though the phenomenological models may not be as accu-

rate as lumped mass or finite element models, it is computationally very efficient to generate

data that can replicate complicated experimental observations e.g. amplitude modulation

due to varying speeds and therefore it is advantageous to use in the early stages of developing

fault diagnosis techniques.

The appropriate signal analysis techniques can therefore be selected by understanding the

characteristics of vibration signals and by testing the techniques on data generated from a

controlled environment. In the next section, different signal analysis techniques are considered

by using the information contained in this section.

1.2.2 Signal analysis for fault diagnosis

The vibration data of rotating machines contain much information related to the machine

and its operation. Fault diagnosis is impeded by non-diagnostic information, because the

weak diagnostic information associated with bearings is masked by strong non-diagnostic

information such as gear mesh interactions for example. It is therefore beneficial to process the

vibration data by enhancing the diagnostic information and attenuating the non-diagnostic

information. Various methods are investigated in this section for processing and analysing

vibration data for gearbox fault diagnosis.

1.2.2.1 Condition indicators

Statistical time domain condition indicators are one of the simplest metrics for analysing

vibration signals. The assumption is made that changes in the condition of the machine result

in the average statistical properties of the signal such as the energy and the impulsiveness to

change as well. Tandon [50] compared different metrics for bearing diagnostics and found that

the root-mean-square and the peak value are good condition indicators. However, localised

changes in the vibration signal can be masked by other dominating components such as gear

mesh frequencies for example, which has resulted in more sophisticated metrics such as the

FM4, i.e. the kurtosis of the residual signal to be used instead [7]. Hu et al. [51] used the
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averaged logarithmic ratio, calculated from the side band ratios of the gear mesh frequencies,

for diagnosing distributed gear damage. The degree-of-cyclostationarity and indicators-of-

cyclostationarity can also be used as diagnostic metrics. McCormick and Nandi [52] used the

degree-of-cyclostationarity for bearing diagnostics and Raad et al. [53] used indicators-of-

cyclostationarity for gear diagnostics. Antoni and Borghesani [54] developed an interesting

methodology to systematically design condition indicators for effective fault diagnosis and

applied it for bearing diagnostics.

However, varying speed and load conditions result in changes in the statistical properties

of the vibration signal as well. This makes it difficult to distinguish between changes in

operating conditions and changes in the condition of the machine. Bartelmus and Zimroz [11]

found that the statistical properties become more sensitive to changes in operating conditions

as a gearbox deteriorates and used this information to distinguish between a healthy and a

damaged bucket wheel excavator gearbox. Zimroz et al. [9] used the regression coefficients,

determined for a statistical feature and the operating condition information, as a diagnostic

metric to detect and trend wind turbine gearbox damage. Gryllias et al. [55] extended

indicators of cyclostationarity for cyclo-non-stationary signals e.g. bearing signals acquired

under varying operating conditions.

1.2.2.2 Time-frequency analysis

A frequency domain representation of the vibration data can provide useful insight into the

characteristics of rotating components and can assist with localising the fault i.e. determine

the component that is damaged. However, the Fourier spectrum is only useful to analyse

signals that are first-order time-cyclostationary e.g. typically gear mesh signals [23, 27].

The time-cyclostationarity of the vibration signals is violated under varying load and speed

conditions and therefore it is useful to use a multi-dimensional representation.

Time-frequency analysis techniques describe the flow of different frequency characteristics

over time and are therefore useful for analysing vibration signals. The Short-Time Fourier

Transform (STFT) assumes the signal is quasi-stationary in its calculation and can be used to

represent the time-frequency properties of signals [3, 56]. For example, the spectrogram, i.e.

the squared magnitude of the STFT, has been used for early gear fault detection [57]. Wang

and McFadden [58] also used image processing techniques to quantify the characteristics of

the damage in the spectrogram, where it was possible to effectively detect changes in the

condition of the gear in a helicopter gearbox.
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However, the STFT has a constant time and frequency resolution which can impede the

characterisation of non-stationary signals [17]. Hence, it is beneficial to use more sophisticated

techniques for analysing non-stationary signals. The Chirplet transform [35], the Wigner-Ville

distribution [13, 19], the wavelet transform [59] and the empirical mode decomposition [60]

are examples of techniques which are better suited for characterising non-stationary signals.

The wavelet transform and the empirical mode decomposition are discussed further in Section

1.2.2.3 and Section 1.2.2.4 respectively.

1.2.2.3 Wavelet analysis

The wavelet transform uses a dilated and translated wavelet basis function i.e. a short,

oscillatory, non-zero function, to decompose signals into time-scale representations. The

benefits of using the wavelet transform is that it has good time and frequency localisation

which makes it appropriate for analysing non-stationary signals and it is well-suited for

detecting discontinuities in the signals. These aforementioned properties make the wavelet

transform well-suited for fault diagnosis [59, 61–63].

Three variations of the wavelet transform that are mostly used for rotating machine fault

diagnosis are the Continuous Wavelet Transform (CWT), the Discrete Wavelet Transform

(DWT) and the Wavelet Packet Transform (WPT). The CWT decomposes the signal into

continuous predetermined frequencies over time and has been extensively used for gear di-

agnostics [24, 61, 64–68] and bearing diagnostics [67, 69]. The CWT has for example been

used for signal denoising [67], combined with residual signal analysis for more effective gear

crack detection [24], used to develop a condition indicator for varying load conditions [70]

and used with data-driven methodologies for automatic fault diagnosis [61, 64, 65]. However,

much redundant information exists in the CWT and it can be difficult to select the specific

frequencies when applying the transform.

The DWT uses quadrature mirror filters to decompose the signal into approximation

and detail coefficients, whereafter the approximation coefficients are decomposed again with

quadrature mirror filters [71]. This results in a set of wavelet coefficients to be obtained,

where the high frequency bands have poor frequency resolution and good time resolution and

lower frequency bands have good frequency resolution and poor time resolution [71]. Using

the DWT is advantageous for fault diagnosis due to its computational efficiency and less data

are being generated compared to the CWT. It has performed well for engine diagnostics [72]

and bearing diagnostics [73].
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However, in rotating machine diagnostics the important diagnostic information is usually

located in the higher frequency bands, which means that good frequency resolution is required

for those frequency bands as well. The WPT works on a similar principle as the DWT, but

instead of only decomposing the approximation coefficients at each decomposition level, the

approximation and the detail coefficients are decomposed at each level [71]. The consequence

of this is that each set of approximation and detail coefficients at a specific decomposition

level have the same bandwidth [71]. The aforementioned property and the computational

efficient decomposition procedure make the WPT ideal for rotating machine fault diagnosis

[74–77].

However, wavelet analysis has some drawbacks. Its performance is dependent on the

choice of the wavelet basis function as well as the level of decomposition (for DWT and

WPT) or the frequencies that are analysed (for the CWT) [59, 69]. It is also difficult to

interrogate the wavelet transformed signal for the presence of damage [61] and therefore

wavelet transform is frequently combined with data-driven techniques discussed in Section

1.2.3.

1.2.2.4 Empirical mode decomposition

The Empirical Mode Decomposition (EMD) is a time-frequency, non-parametric decomposi-

tion of a signal into intrinsic mode functions. The intrinsic mode functions are natural modes

embedded in the vibration signal and can be used for diagnosing rotating machines [60, 78–

81]. The EMD is performed using a recursive sifting process, where the higher frequency

content is embedded in the first intrinsic mode functions and the lower frequency content

manifests in the last intrinsic mode functions [60].

The benefits of the EMD are that it is self-adaptive i.e. the basis functions do not

have to be specified before the signals can be analysed and it is suitable for analysing non-

stationary and non-linear signals [60]. These properties have made it very attractive for

bearing diagnostics [78] and gear diagnostics [80, 81] for example. However, the EMD has

serious problems such as mode mixing which adversely influences its performance. This has

resulted in many improvements being investigated for fault diagnosis applications [60]. For

example the noise assisted EMD, usually referred to as the Ensemble EMD (EEMD), aims to

reduce the mode mixing phenomenon by calculating the ensemble average of intrinsic mode

functions [82, 83].
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1.2.2.5 Cyclostationary analysis

Cyclostationary analysis techniques are well-suited for detecting damage which manifest as

cyclostationary components in the vibration signals. First and second-order cyclostationary

analysis techniques are considered in this section, because first and second-order cyclosta-

tionary signals are frequently encountered in rotating machine diagnostics [23, 27, 28, 84].

The synchronous average is a popular first-order cyclostationary technique; it is an es-

timate of the first-order cyclostationary components in a signal under the assumption of

cyclo-ergodicity [23]. It can be used to retain mechanisms with periodic mean functions e.g.

gear mesh signals and synchronous modulation due to varying loads [13, 23, 41] and it can

be used to attenuate non-synchronous mechanisms e.g. non-synchronous modulation and

second-order cyclostationary signals [19]. However, the efficiency of the synchronous average

for gearbox diagnostics is poor when used in isolation [24, 43, 85]; the synchronous average

of the filtered signal [85] and the residual signal e.g. by removing the gear mesh components

have been much more successful for gearbox diagnostics [24, 43, 86].

Second order cyclostationary signals, which have zero mean functions and periodic auto-

covariance functions, manifest in the vibration signal due to wear and bearing damage for

example [23, 87]. It is firstly necessary to separate the deterministic i.e. first-order cyclosta-

tionary components and random components e.g. second-order cyclostationary components

in the vibration signal before the appropriate analysis techniques can be applied [41]. The

second-order cyclostationary signal can be estimated by subtracting the periodic mean func-

tion i.e. the synchronous average from the vibration signal [20, 28, 41] or by extracting

bandlimited second-order cyclostationary signals with bandpass filters [20, 28, 88]. The ap-

propriate structural resonance frequency band can be calculated with healthy historical data

[89, 90], historical fault data or without historical data, with techniques to address the latter

presented in Section 1.2.2.6. The synchronous variance i.e. the synchronous average of the

mean instantaneous power of the residual signal, is a second-order technique which has been

successful for gear and bearing diagnostics [23, 68, 91].

Envelope analysis is another important second-order cyclostationary technique [28, 88, 92].

In a damaged bearing vibration signal, the time invariant structure is being modulated by

periodic impulses, produced by bearing damage, and masked by deterministic components

such as gear mesh signals [7, 20]. In envelope analysis, either the spectrum of the amplitude

demodulated random part of the vibration signal is calculated [88, 93] or the spectrum of
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the squared envelope (i.e. instantaneous power) of the random part is calculated [28, 93],

whereafter the spectrum is interrogated for the presence of the modulating signal e.g. the

cyclic frequency of the bearing impulses.

The spectral correlation of the signal is a bi-spectral distribution which indicates the power

of a signal in a cyclic frequency, spectral frequency plane [84] and it is robust for detecting

and characterising second-order cyclostationary signals [31]. It is often useful to enhance

weak second-order cyclostationary components in the spectral correlation. This can be done

by utilising the spectral coherence, a normalised form of the spectral correlation [27, 84, 87].

Antoni [84] formalised the spectral correlation and compared different estimators, whereas

Antoni [87] investigated cyclic spectral analysis techniques for bearing diagnostics. Antoni et

al. [94] developed an algorithm for the fast spectral correlation and Borghesani and Antoni

[95] developed a faster spectral correlation, which significantly reduces the computational cost

for estimating the spectral correlation. Capdessus et al. [96] used the spectral correlation

and spectral coherence to detect the presence of a spall on a gear tooth.

There is actually a close connection between envelope analysis and cyclic spectral analy-

sis; the squared envelope spectrum and the enhanced envelope spectrum can be obtained by

marginalising over the frequency bands of the spectral coherence and the absolute spectral

coherence respectively [94]. The enhanced envelope spectrum is able to detect weak compo-

nents better than the squared envelope spectrum, and is therefore better suited for incipient

damage detection [94].

However, the cyclostationarity of the vibration signals is destroyed under varying speed

conditions; the bearing vibration signals are neither time- nor angle-cyclostationary, but

rather cyclo-non-stationary [31]. The impacts and modulation induced by bearing impacts are

angle-dependent, while the carrier frequency is time-invariant and for limited speed fluctua-

tions [31] the vibration signals can be approximated as angle-time cyclostationary [31, 97, 98].

Abboud et al. [28] and Borghesani et al. [92] investigated the extension of envelope analysis

under varying speed conditions, while Abboud et al. [31, 97] developed the order-frequency

spectral correlation and the order-frequency spectral coherence for detecting second-order

angle-time cyclostationary components. The instantaneous power spectrum is another im-

portant cyclostationary analysis technique that describes the instantaneous power of the

different frequency bands of a signal over time or angle and has also been very useful for

gearbox diagnostics under varying load conditions [99]. Urbanek et al. [15, 100] used the

synchronous averaged angle-frequency instantaneous power spectrum for detecting gear and
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bearing damage in wind turbine gearboxes under varying operating conditions.

1.2.2.6 Narrowband feature extraction

Bearing damage manifests in specific frequency bands which result in changes in the average

statistical properties, e.g. impulsiveness, in those frequency bands. Hence, narrowband

feature extraction techniques (i.e. techniques which extract features from a set of narrowband

signals) are capable of identifying frequency bands with changing statistical properties due

to damage.

The spectral kurtosis estimates the kurtosis of different frequency bands and can there-

fore indicate the frequency bands that contain much transient information [56]. The spectral

kurtosis has to be estimated using time-frequency analysis approaches e.g. STFT and its

performance depends on the parameters of the time-frequency distribution e.g. the win-

dow length [56]. Antoni [56] provided suggested parameters for the window overlap and the

window type for the STFT. The optimal window length depends significantly on the charac-

teristics of the investigated data and therefore Antoni [56, 101] suggested that the spectral

kurtosis needs to be calculated for all potential window lengths. The spectral kurtosis over

a range of candidate window lengths is referred to as the kurtogram. The kurtogram can be

estimated by calculating many STFTs [101] or by using the wavelet coefficients, calculated at

each level of the WPT [102], with the latter referred to as the fast kurtogram due to its com-

putational efficiency. The kurtogram can ultimately be used to design a bandpass filter for

envelope analysis, where the resulting envelope spectrum will contain the information which

had the maximum impulsiveness in the spectral frequency bands [56, 101, 102]. Combet and

Gelman [103] proposed using the spectral kurtosis to design a filter that enhances impulsive

frequency bands. Barszcz and Randall [104] also successfully applied the spectral kurtosis for

wind turbine gearbox diagnostics.

Even though the spectral kurtosis and the kurtogram have successfully been used for

rotating machine diagnostics, they have inherent deficiencies: The spectral kurtosis and the

kurtogram are adversely affected by the presence of spurious impulses and their performance

is dependent on the repetition rate of the impulses [105]. Hence, other estimators have been

proposed to improve the robustness of the important frequency band estimations, namely, the

protrugram [106], the improved kurtogram [107], the enhanced kurtogram [108], the optimised

spectral kurtosis [109], the sparsogram [108], the infogram [105, 110, 111] as well as various

other estimators [112]. The envelope harmonic-to-noise ratio is another useful technique to
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detect periodic impulses in frequency bands [113]. Hence, it is evident that many statistics

can be estimated or features can be extracted from localised frequency bands to detect subtle

changes due to damage.

1.2.3 Data-driven fault diagnosis

The aforementioned signal analysis tools can be used to perform fault diagnosis of rotating

machines, however, it can be difficult to implement and to interpret for a non-expert. Hence,

it is beneficial to use an intelligent system or decision making model to learn the important

characteristics of the data, whereafter the model1 is used for automatic decision making. This

is performed by building a data-driven model of the available data, whereafter the model can

for example return a diagnostic metric e.g. a health index, or the condition of the machine

[22].

It is necessary to train the model on the available historical data i.e. finding the param-

eters of the model which minimise a loss function for the data under consideration. In this

thesis, two different learning approaches are considered: Supervised learning using historical

fault data and novelty detection when only healthy gearbox data or data of a gearbox in a

reference condition are available.

1.2.3.1 Supervised learning with historical fault data

Classification models such as neural networks and support vector machines can be optimised

by providing the model with the data and the loss function with a corresponding label [71,

114, 115]. This results in models that can be used to automatically assign labels to new

data i.e. to automatically infer the condition of the machine from the processed condition

monitoring data.

A popular approach for classification is to have a separate feature extraction and feature

modelling step [65, 73, 116–121]. Firstly, features are extracted and selected based on the

knowledge of an expert or by using a data-dependent criterion e.g. selecting features which

maximise the distance between classes [71]. In most cases, signal analysis tools such as the

average statistical indicators of vibration data [79], wavelet analysis [65, 77, 79, 117], EMD

[119, 122, 123] and EEMD [83] are used as basis for feature extraction due to their ability

to highlight or extract diagnostic information from a vibration signal. Thereafter, different

1In this section, the term model refers to a data-driven model (e.g. neural network, Gaussian mixture
model) of the acquired vibration data and should not be confused with physics-based models discussed in
Section 1.2.1.
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models such as support vector machines [116, 124], neural networks [116, 125], hidden Markov

models [73, 126], Gaussian mixture models [126], k-Nearest Neighbours [127], k-means clus-

tering [128], and non-Naive Bayes classifiers [123], are used to learn the relationship between

the extracted features and the labels with a supervised learning optimisation procedure. The

optimised model can then be used to subsequently learn to automatically infer the condition

of the machine from the extracted features.

Dimensionality reduction techniques are also important in the machine learning field, be-

cause the problems associated with high-dimensional data e.g. the curse of dimensionality can

be circumvented by projecting the data onto a lower-dimensional subspace or manifold. Van

der Maaten et al. [129] compared various dimensionality reduction approaches on artificial

and real datasets, and their results indicated the importance of principal component analy-

sis for dimensionality reduction of real datasets. Zimroz and Bartkowiak [130] used conical

discriminant analysis and principal component analysis to project high dimensional features

to a two-dimensional feature space which can be used to separate a healthy gearbox and a

damaged gearbox under non-stationary operating conditions. Bartkowiak and Zimroz [131]

performed dimensionality reduction by performing feature subset selection for gearbox fault

diagnosis. Wan et al. [77] compared linear and different non-linear dimensionality reduction

techniques for gear diagnostics, with the use of principal component analysis before different

classification models having the best predictive performance.

The recent advances of deep learning approaches in the computer vision field [132] has

resulted in deep learning approaches to be applied for condition monitoring [133, 134]. This is

based on the assumption that the features are selected manually with expert knowledge of the

domain and the standard neural networks are not sufficiently flexible to capture the important

characteristics in the data of condition monitoring problems [133]. This has resulted in

interesting methodologies based on deep neural networks [133], deep support vector machines

[134], deep random forests [135], deep autoencoders [136], convolutional neural networks [137]

and generative adversarial networks [138] to automatically extract features from the data,

whereafter the condition of the machine is inferred from the extracted features. A review

of deep learning approaches in system health monitoring is given by Khan and Yairi [139].

Their review indicated that even though there is much potential for deep learning approaches,

there are also some shortcomings, e.g. the design of the network architecture is machine and

application dependent and there is not a systematic method to design the architecture.

Even though powerful classification techniques exist, historical fault data can be difficult
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or impractical to acquire for rotating machines. This has resulted in researchers developing

physics-based approaches, where firstly physical models are used to generate numerical vibra-

tion data from a machine with different damage modes. Thereafter, a data model is trained

on the numerical data and used to predict the condition of an actual machine. Gryllias et

al. [140] and Sobie et al. [141] used physical models to generate bearing data, which are

subsequently used to train a classification model for predicting the condition of measured

data.

However, most supervised learning methodologies fail to recognise or acknowledge that

for many practical problems only a sample of the population of class labels are available

at the time of model optimisation. The supervised learning-based optimised models, only

provide the label of the most probable class during inference; the models cannot distinguish

between a novel class and a class that was present during model optimisation, which could

lead to erroneous inferences. It is impractical and expensive to develop models based on the

assumption that data from the population of all class labels are available at training time i.e.

this means that the machine has to have failed in all of its damage modes before the models

are optimised. Therefore, it is sensible to recognise that the training data do not represent

the population of class labels, but only a sample of the class labels.

It is therefore important to be able to distinguish between data that are present in the

training set and data from novel classes when making predictions. The notion that models

should have a reject option is not a new concept [114, 127, 142], however Scheirer et al.

[143, 144] formally recognised that many machine learning problems are in fact Open Set

Recognition (OSR) problems and not Closed Set Recognition (CSR) problems. Both CSR

and OSR frameworks aim to infer which class is associated with the data, but the OSR

framework realises that the data can potentially be from a new class that was not present

in the dataset used to optimise the model. Hence, it is necessary to be able to reject the

inferred label by labelling the data as a novelty. The OSR problem has also been investigated

by [145] for different datasets.

1.2.3.2 Novelty detection with only healthy historical data

It is desired to have rotating machines that operate in a healthy condition, which makes access

to healthy condition monitoring data relatively easy. Hence, it is practical to use data-driven

approaches in a novelty detection framework, where the objective is to determine whether

the condition of the machine is healthy or not. This is a special case of OSR, where only one
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class is available when optimising the model. Good overviews of different novelty detection

approaches for a wide range of applications are found in Refs. [146–148].

Specifically in the condition monitoring field, many methods have been investigated for

novelty detection. Timusk et al. [149] compared different novelty detection models for rotat-

ing machine diagnostics under varying operating conditions. Fernandez-Francos et al. [90]

used a one-class support vector machine model for bearing novelty detection, with the model

used to also determine the frequency band for envelope analysis. The Kullback-Leibler di-

vergence is also popular for novelty detection in various applications; for example, changes

in the probability density function of the data have been used to detect distillation process

anomalies [150, 151]. Figueiredo et al. [152] used a Bayesian Gaussian mixture model ap-

proach to detect novelties caused by damage for structural health monitoring applications.

Heyns et al. [153] proposed an interesting approach where autoregressive models, trained

on the healthy gearbox data, are used to perform gear diagnostics under varying operating

conditions.

Discrepancy analysis is another powerful rotating machine diagnostics technique when

only healthy vibration data are available [154–156]. Localised novelty detection measures

are generated for the angular data under investigation to form a discrepancy signal. This

is performed by using a model of the angular data from a healthy machine. The discrep-

ancy signal can then subsequently be analysed with synchronous averaging to perform fault

diagnosis under varying operating conditions. Discrepancy analysis has been successful for

gearbox diagnostics under varying load and speed conditions [154–157].

1.3 Scope of work

The scope of this work is divided into three sections: The term prior knowledge is defined

in Section 1.3.1, whereafter the focus of the research (i.e. developing effective fault diagnosis

methodologies) is discussed in Section 1.3.2. Lastly, a summary and the connectivity of the

proposed methodologies are given in Section 1.3.3.

1.3.1 Prior knowledge

It is evident from Section 1.2.1 that much research has been conducted in the condition

monitoring field to understand the physics of rotating machines and the implications of

damaged components on the dynamics of the system. As seen in Sections 1.2.1 and 1.2.3,
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much research has also been conducted to develop and use different signal analysis techniques

that can provide representations of the data that are rich with diagnostic information, and to

implement data models that can be used to assist with the decision making process by utilising

historical data. The aforementioned information is categorised into engineering knowledge

and knowledge extracted from machine learning algorithms and collectively referred to as

prior knowledge, with the prior knowledge summarised in Figure 1.1.

Understanding 
the physical

characteristics 
of the machine and 

their kinematics
e.g. gear tooth

interactions and 
fault frequencies

"Knowledge" which can 
be extracted with machine 

learning algorithms.
Engineering knowledge

Prior knowledge

Understanding
the characteristics
of the condition
monitoring data

e.g. cyclostationarity

Historical data: 
Four levels

of data availability
(Level 0, Level 1, 
Level 2, Level 3)

Effective fault 
diagnosis

Figure 1.1: The prior knowledge that can be used for performing effective fault diagnosis.
Two different types of categories are identified: Engineering knowledge obtained from under-
standing the dynamics of the machines and information learned by a machine learning model
from the historical data. The engineering knowledge, for example, entails understanding that
gear teeth interactions result in periodic phenomena, outer race bearing damage manifests
at specific cyclic frequencies and gear mesh signals are first-order cyclostationary, while wear
results in second-order cyclostationary vibration signals. The machine learning model can
for example learn how a healthy system’s response looks like from the historical data and
use this information to automatically detect a deteriorating system. The different levels of
historical data are discussed in Section 1.3.2 and presented in Figures 1.2 and 1.3.

The approach presented in this work, is in a sense philosophically different from deep

learning, because it not only relies on models of the historical data, but also on engineering

knowledge to perform fault diagnosis. Deep learning aims to overcome the need for expert

diagnosticians to apply advanced signal processing techniques or to perform feature engineer-

ing in the fault diagnosis process. However, the engineering knowledge obtained from the

condition monitoring literature (e.g. rotating machine signals are inherently cyclostation-

ary) or from knowledge of the machines can be used to design methodologies that effectively
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extract the diagnostic information from the data, it can result in models which require less

data and less time to optimise, and it can result in predictions that are easier to interpret

for a non-expert. Therefore, the focus of this thesis is developing effective fault diagnosis

methodologies by using the available prior knowledge.

1.3.2 Methodologies for effective fault diagnosis

It is well-known that the gears and bearings found in gearboxes are prone to failure, with

long downtimes associated with each failure [1, 6]. Therefore, in this thesis, different novel

methodologies are proposed and investigated to systematically incorporate the available prior

knowledge for performing effective gearbox diagnostics under varying operating conditions.

This is done by firstly identifying different degrees of historical data availability and to develop

methods which incorporate the available historical data for gearbox fault diagnosis. The

identified degrees of historical data availability that can be encountered are summarised in

Figure 1.2 and addressed separately in the subsequent sections.

Figure 1.2: Different levels of historical data availability are illustrated in Figure 1.2(a)-(d)
with respect to the population of conditions that could be encountered throughout the life of
the machine in Figure 1.2(e). The data are shown in a general feature space. For example,
each point in the power spectral density can be considered a dimension in the feature space.
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1.3.2.1 Level 0: Historical data are not available

If a gearbox is new or if condition monitoring has not previously been performed on the

gearbox, it is possible that there is no historical data available to use data-driven models for

automatic condition inference. In this case, it is possible for an expert to use well developed

signal analysis techniques such as cyclostationary analysis [27, 92, 94] to interrogate current

data for potential damage. It is also possible to use condition indicators to detect changes in

the properties of the data [53, 54]. However, by using prior engineering knowledge, it is for

example possible to obtain a data-driven methodology for localised gear damage detection.

Localised gear damage is especially important to detect, because this could significantly

shorten the life of the gearbox and it can be difficult to detect in industrial applications

[67, 112]. It is also important to detect localised damage for gear discrepancy analysis.

Discrepancy analysis, which requires healthy historical data, assumes that each portion of

the gear is in the same condition i.e. no localised gear damage is present. Therefore, if

localised damage is unwittingly present on the gear in the training data, it can significantly

impede the performance of discrepancy analysis.

Hence, a methodology is proposed in this thesis to automatically detect the presence

of localised gear anomalies due to localised damage. This is performed by exploiting the

fact that interactions between healthy gear teeth result in vibration characteristics that are

statistically similar. Therefore, this would not be possible without using prior knowledge of

the physics of gears.

1.3.2.2 Level 1: Healthy historical data are available

Gearboxes are expected to operate for long periods in a healthy condition, while potentially

operating for short periods in a damaged condition. The damaged component is replaced by

applying the appropriate or available maintenance strategy e.g. time-preventative mainte-

nance. The implication of this is that healthy condition monitoring data are easily acquired

and therefore healthy historical data will have the highest availability. Hence, a large por-

tion of this thesis is dedicated to developing gearbox fault diagnosis methodologies which

utilise the available healthy historical data and to supplement the available signal analysis

techniques. The developed methodologies aim to not only detect deviations from the nor-

mal condition like standard novelty detection approaches, but to also provide information on

the characteristics of the damage, i.e. the damaged component as well as the extent of the
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damage.

It is possible to utilise different categories of signal analysis techniques e.g. time-frequency

or cyclic frequency-spectral frequency analysis and therefore separate methodologies are de-

veloped for each category. This is performed to illustrate how different signal analysis cate-

gories could be supplemented with prior knowledge such as historical data and also to ensure

that this work is not constrained to a specific category of signal analysis techniques i.e. the

spectral coherence and the instantaneous power spectrum are both very important for gearbox

fault diagnosis. The following signal analysis categories are considered in this thesis2:

• Time-frequency analysis techniques such as empirical mode decomposition, wavelet

analysis, and cyclostationary analysis.

• Cyclic frequency-spectral frequency representations obtained from second-order cyclo-

stationary tools such as the spectral correlation.

• Narrowband feature extraction techniques resulting in the kurtogram and infogram

for example. Time-domain analysis techniques such as the synchronous average and

the synchronous variance and frequency domain analysis techniques such as envelope

analysis are also considered in this work, but they are supplemented with historical

data indirectly using the narrowband feature analysis techniques discussed here.

The focus is placed on the aforementioned signal analysis categories, because they are very

relevant to gearbox fault diagnosis (i.e. fault detection, isolation and trending) and all can

be used with historical data to obtain effective fault diagnosis techniques.

1.3.2.3 Level 2: Historical fault data of a sample of the damage modes

Even though the desired condition of the gearbox is healthy, specific damage modes from

a population of possible damage modes will develop within a gearbox during its operation.

Hence, it is not only important to develop a methodology that can utilise the available

historical fault data, but the methodology should also acknowledge the fact that this is

an open set recognition problem. Historical fault data could also become available during

the operation of the machine and need to be accommodated. This is in contrast to most

supervised learning techniques applied in literature for machine fault diagnosis; they do not

2The extensions of the categories to the angle and angle-frequency domains are implied. For example angle-
frequency and angle-order analysis techniques are in the same category as time-frequency analysis techniques.
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account for the fact that the problem is an open set recognition problem and the fact that

historical fault data could become available during the operation of the machine.

Hence, a methodology is developed which utilises discrepancy analysis as a pre-processing

technique for performing open set recognition on the available historical fault data. The open

set recognition methodology is centred around discrepancy analysis, because discrepancy

analysis is sensitive to the presence of damage under varying operation conditions [154–157].

However, if desired, it is possible to utilise the other techniques developed in Section 1.3.2.2

instead.

1.3.2.4 Level 3: Historical fault data of the population of the damage modes

The last level that could be encountered is if historical fault data of all potential damage

modes are available. The implication of this is that this becomes a closed set recognition

framework and conventional supervised learning classification techniques could be used for

this task. However, this is not investigated in this thesis, because the open set recognition

framework developed for the data availability of Level 2 can be used for this task and many

techniques have already been developed specifically for this.

1.3.3 Summary of proposed methodologies

A number of methodologies are developed to address the different data availability levels as

well as different potential signal analysis techniques. A summary of these methodologies and

their relationships with the data availability are given in Figure 1.3.

1.4 Layout of thesis

The methodologies are presented in this thesis in the order of their current data availabil-

ity, i.e. data availability: Level 0 precedes historical data availability: Level 1. Therefore,

in Chapter 2 the localised gear anomaly detection without historical data methodology is

presented and investigated on experimental gearbox data.

The methodologies for data availability: Level 1 are presented in Chapter 3, Chapter 4

and Chapter 5. In Chapter 3, a discrepancy analysis methodology for bearing diagnostics is

presented and investigated on a phenomenological gearbox model, an experimental bearing

dataset acquired under constant operating conditions and a experimental dataset acquired

under varying speed conditions. A methodology for utilising the spectral coherence and prior
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Discrepancy
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Spectral coherence
novelty detection

methodology

Open set recognition
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Data availability:
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Data availability:
Level 1

Data availability:
Level 2

Data availability:
Level 3

Chapter 2

Chapter 4 Chapter 5

Chapter 3

Chapter 6

This is investigated in this thesis.
This can be performed, however, it is not investigated in this thesis.

Well researched. Level 2 methodologies could however also be applied for this level.

Figure 1.3: An overview is given of the methodologies presented in this thesis. The method-
ologies are presented with respect to the data requirement for applying the methodology,
where more details on each data availability level are given in Figure 1.2. The dashed arrow
between Level 0 and Level 1 reinforces that the localised gear damage methodology can be
used to determine whether the training data actually corresponds to gears without localised
gear damage. The arrows between Level 1 and Level 2 indicate that one of the methodologies
can be used as input to the open set recognition methodology, however, only the discrepancy
analysis methodology in Level 1 is used.

knowledge about the kinematics of the machines is presented in Chapter 4 and investigated

on phenomenological gearbox data as well as experimental gearbox data. In Chapter 5, a

methodology is presented to utilise narrowband feature extraction methods to enhance novel

information in the vibration signal for more effective fault diagnosis. The methodology is

investigated on phenomenological gearbox data as well as experimental gearbox data.

The open set recognition methodology for data availability: Level 2 is presented in Chap-

ter 6. The methodology is able to incorporate historical fault data into the methodology for

more effective fault diagnosis. Investigations are performed on synthetic as well as experi-

mental gearbox datasets, where the results emphasise the importance of using an open set

recognition framework for machine condition monitoring applications.

Finally, the work is concluded on in Chapter 7 of this thesis, where an overview of the

methodologies is given, the contributions of the work are summarised and recommendations

are made for future work.

Two appendices are included after the conclusion, where Appendix A contains additional

information and results for the different chapters in this work. Appendix B contains addi-
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tional information related to the phenomenological bearing model used throughout this work.

References to the respective appendices are given in the relevant chapters.

The abbreviations used throughout this thesis are properly defined at its first usage and

given on page viii as well. The definitions of the mathematical symbols, used in a specific

chapter, are properly defined in each relevant chapter.
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Chapter 2

Localised gear anomaly detection method-

ology

2.1 Introduction

It is important to monitor gearboxes for localised gear damage, because the localised gear

damage results in increased stress concentrations which accelerate the deterioration of the

gear tooth. This can also result in the condition of adjacent gear teeth and the condition of the

gear teeth meshing with the damaged gear to deteriorate, because the contact during meshing

is imperfect which results in portions of the gear teeth carrying larger loads. Historical data

could potentially be used with a data-driven methodology such as discrepancy analysis to

automatically detect the gear damage, however, historical data will not always be available. If

discrepancy analysis is unintentionally optimised on data obtained from a gear with localised

gear damage, it can obstruct its ability to diagnose damage.

Therefore, a novel diagnostic technique is proposed in this chapter to automatically detect

localised anomalies i.e. localised segments that differ statistically from the other segments,

using only the vibration data of a single measurement. This is performed by using prior

knowledge that the data generated from the meshing of healthy gears should be statistically

similar (i.e. generated from the same distribution) and localised damage result in data being

statistically different. After the gears are identified as being healthy, it is possible to utilise

more advanced approaches such as discrepancy analysis to detect localised and distributed

changes in the condition of the gears. The purpose of this methodology is therefore not

to replace techniques that utilise historical data such as discrepancy analysis or supervised

learning approaches, but rather to address the special case where historical data are not
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available.

The methodology is presented in Section 2.2, whereafter it is validated in Section 2.3

on experimental gearbox data acquired under different constant load and constant speed

conditions and on experimental data acquired under time-varying operating conditions.

2.2 Methodology

The general methodology is presented in Figure 2.1(a), with the specific steps used in this

chapter shown in Figure 2.1(b). For the implementation used in this chapter, it is assumed

Order tracked vibration signal 
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F

ea
tu

re
 e

xt
ra

ct
io

n 
an

d 
pr

oc
es

si
ng

 p
ha

sePerform the continuous 
wavelet transform on the signal

Window the wavelet 
coefficients

Extract features from the 
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Vibration signal
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each synchronous window

Calculate the divergence 
metric for each synchronous 

window pair

Perform post-processing on
the divergence data for

condition inference

Feature extraction and 
processing phase

(a) General methodology (b) Process diagram used in chapter

Figure 2.1: The process diagrams of the methodology and the specific implementation of the
general methodology used in the chapter are shown in Figure 2.1(a) and 2.1(b).

that an order tracked vibration signal is available, which was measured over Nr shaft rota-

tions. A gear with Nteeth teeth is connected to the aforementioned shaft and is investigated

for potential localised damage. Machine condition features are extracted from the windowed,

processed vibration signal, which allow localised changes to be detected within the signal.

The processed data are windowed into Nw windows per gear revolution from which features

are extracted and processed. The processed features are grouped together with other syn-

chronous windows i.e. windows which correspond to the same angular position on the gear,

whereafter the features of each synchronous window set are modelled with a probabilistic

model. The windowing scheme’s connection with the synchronous windows is illustrated in

Figure 2.2. The windowing scheme and modelling approach result in Nw models, where each
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Figure 2.2: The synchronous (equal angular) windows are illustrated over three shaft rev-
olutions (Nr = 3), with five windows being used per shaft rotation i.e. Nw = 5. The
Nr ×Nw windows are distinguished by different letters. The different synchronous windows
are: A-F-K, B-G-L, C-H-M etc.

model captures the characteristics of the features within the respective synchronous window.

The dissimilarity between the probability density functions of the models is used to generate

a divergence matrix which is subsequently processed for fault detection.

The feature extraction and processing phase is considered in the next section, whereafter

the modelling of the data, and the generation and processing of the dissimilarly measure for

the models are discussed.

2.2.1 Feature extraction and processing

Time-frequency analysis methods are important for analysing non-stationary signals found

in rotating machine condition monitoring applications. The temporal signal is transformed

into a two-dimensional time-frequency plane, which makes it possible to detect time-localised

changes in the frequency content of the signals e.g. bearing damage excites specific frequency

bands at specific cyclic frequencies [3, 59]. The continuous wavelet transform [3]

CWT(a, b) =
1√
a

∫ ∞
−∞

x(t) · ψ∗
(
t− b
a

)
dt, (2.1)

is a time-frequency method which decomposes the signal x(t) into a time-scale representation

by translating and dilating a wavelet basis function ψ(t) with the translation b and scale a

parameters, respectively. The conjugate of the wavelet basis function ψ(t) is denoted by ψ∗(t).

The continuous wavelet transform is well-suited for non-stationary signals, is appropriate for

extracting features with diagnostic information and is sensitive to the presence of singularities

[59]; this makes it a popular analysis tool for rotating machine diagnostics [3, 59, 65, 69, 70,

75]. However, the performance of the continuous wavelet transform is sensitive to the wavelet

basis function that is used [69]. The Daubechies db1 wavelet is used in this chapter, due to
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its good performance in the gear and bearing fault detection field [65, 69].

The gear mesh frequency contains diagnostic information and therefore the continuous

wavelet transform is applied at the scales situated around the fundamental gear mesh fre-

quency of the gearbox and its four harmonics. Twenty scales at a bandwidth of 3× k orders

around the gear mesh frequency are selected, with k = 1 for the gear mesh frequency, k = 2

for its harmonic, etc. Each scale is windowed with rectangular windows into Nw segments per

rotation, from which the Root-Mean-Square (RMS) of the windowed wavelet coefficients is

calculated in a similar procedure as Heyns et al. [156]. The window length is set to 360/Nteeth

degrees with a 0 degree overlap between consecutive windows, which results in a window for

each gear tooth in each shaft rotation (i.e. Nw = Nteeth). It is expected that the vibration

signal segments, associated with the portions of the gear that are in the same condition, are

similar and therefore the extracted features will be statistically similar.

The RMS features, extracted from the 20 scales at the five gear mesh frequencies, result

in a 100 dimensional feature space with a total of Nr ×Nw observations and Nr synchronous

observations at each window. The dimensionality of the feature space and the small number

of synchronous observations make the model optimisation process susceptible to overfitting.

Principal component analysis, a linear dimensionality reduction technique [114], is used to

transform the original feature space to a lower dimensional feature space, while retaining most

of the information content. Principal component analysis has performed very well compared

to other non-linear dimensionality methods for gear fault diagnosis and is therefore well-

suited for this application [77]. The accumulative contribution rate [83] is used to select the

appropriate dimensionality of the new feature space to ensure that the information loss is

minimal in the dimensionality reduction process.

2.2.2 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence, a subset of f -divergence [158], is very popular in the

fault detection field [150, 151, 159–161] because of its sensitivity to changes in the density of

the data [150]. The KL divergence [114]

KL(pi||pj) = −
∫
x
pi(x) log

(
pj(x)

pi(x)

)
dx, (2.2)

describes the dissimilarity between the probability density function pi and pj , associated

with synchronous window i and j respectively, over the data space x. If pi and pj are the
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same, it means that the data in window i and j are from the same distribution and then

KL(pi||pj) = 0, otherwise KL(pi||pj) > 0. The KL divergence has for example been used to

detect gear damage [150, 159], distillation process anomalies [150, 151] and electrical motor

damage [160]. Liu et al. [158] found that the symmetrised Pearson divergence outperforms

the forward and the backward Pearson divergence for change point detection and therefore

the symmetrised KL divergence

Dij = KL(pi||pj) +KL(pj ||pi), (2.3)

over window pair i and j is used instead of the KL divergence given by Equation (2.2).

Equation (2.3) is symmetric in the probability density functions pi and pj , which means

that Dij = Dji for any i and j. The symmetrised KL divergence is used to generate a

divergence matrix over the gear, denoted by D, which is a set of divergence measures over

all synchronous window combinations. The divergence data of window i is represented by

di ∈ RNw×1, which is used to construct the divergence matrix over all window combinations

D = [d1,d2, . . .dNw ], i.e. D ∈ RNw×Nw .

The KL divergence only has a closed form solution for special probability density functions

such as Gaussian distributions. If the datasets are non-Gaussian, the density ratio pj(x)/pi(x)

can be modelled using kernel density estimators to calculate the KL divergence [150, 158].

Ferracuti et al. [160] used kernel density estimators to model the probability density functions,

whereafter the discrete form of the KL divergence was adopted. Equation (2.2) can also be

evaluated using Monte Carlo integration, however it is very computationally expensive when

performed over all window pair combinations i and j for each investigated dataset.

The objective is to find an efficient procedure to calculate the Nw (Nw + 1) /2 unique

divergence values for each matrix D of a specific measurement. It is assumed that the

processed features are described sufficiently well by a multivariate Gaussian distribution.

This results in the following closed form solution for Equation (2.3) [71]

Dij =
1

2

(
µi − µj

)T (
Σ−1
i + Σ−1

j

) (
µi − µj

)
+

1

2
trace

(
Σ−1
j Σi + Σ−1

i Σj − 2I
)
, (2.4)

where the mean and the covariance matrix of the processed features, associated with syn-

chronous window i, are denoted by µi and Σi respectively and the identity matrix is denoted

by I. The Jarque-Bera test, available in Reference [162], is used later in this chapter to deter-
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mine whether the Gaussian assumption is correct. If the data are non-Gaussian distributed,

more flexible models such as Gaussian mixture models [114] or density ratio estimation ap-

proaches [150, 158] can be used. However, due to the limited number of observations Nr in

the dataset, it can be difficult to properly estimate and motivate the values of the hyperpa-

rameters of the more sophisticated modelling approaches.

In Figure 2.3, divergence matrices are presented for a healthy gear and a gear with lo-

calised damage; the matrix of each dataset is calculated by using Equation (2.4) over all

window combinations. The divergence matrices are calculated from vibration data that was

acquired during the gear fatigue experiments discussed in Section 2.3. The symmetry in the
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Figure 2.3: Divergence matrix data D for a healthy gear and a gear with localised damage
obtained during experiments discussed in Section 2.3. Please note that different scales are
used for the two plots and that a helical gear with 37 teeth is considered.

distribution can easily be seen, with the diagonal having a divergence of zero due to the

properties of the KL divergence. The divergence data of the healthy gear differ slightly for

each window, with small differences indicating that the teeth are approximately in the same

condition. In the presence of localised damage, the data associated with the damaged tooth

differ significantly from the data of the other healthy teeth, which results in dissimilar models

that are easily identified in the image of the divergence matrix. The extent of the localised

gear damage can be inferred from the techniques proposed in the next section.

2.2.3 Data analysis for automatic condition inference

The data in Figure 2.3 are shown in Figure 2.4(i) over a full gear rotation for a healthy

and a damaged gear. The healthy gear divergence data are relatively close to one another

when considering the same tooth, with some slight variations being present between different
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Figure 2.4: The synchronous divergence data are shown over a gear rotation for the healthy
and the damaged gear in 2.4(i). The outliers are identified and shown in 2.4(ii) for the
damaged gear using the proposed outlier removal process. The gear under consideration has
37 teeth.

teeth. The divergence data of the healthy portion of the damaged gear contains very similar

characteristics to those of a healthy gear, with the exception that a large outlier is present.

This outlier is due to the presence of localised damage on the gear, which manifests over all

gear teeth as a result of the properties of D seen in Figure 2.3.

The outliers caused by localised damage and the zero divergence when i = j in Equation

(2.4) have to be removed from the dataset, given that they do not reflect the true condition

of the portion of the gear associated with the window. The outliers in the divergence data,

due to the presence of localised damage, are automatically estimated in a three step process;

this is performed separately on the data of each window and is as follows for the data di of

window i:

1. Calculate the υ/2th and the (100 − υ/2)th percentiles of di, and momentarily only

retain the data in between those percentiles. The retained divergence data in between

the percentile bounds are denoted by d̃i.

2. Calculate the mean µi and the standard deviation σi of the retained samples of d̃i.

3. Subsequently use rj =
(
Dij−µi
krσi

)2
for each j ∈ [1, Nw], to determine whether the data

point Dij is an outlier rj > 1 or not rj ≤ 1. The n data points, which are not removed

in this process are denoted by dprocj and the data are subsequently used to perform

condition inference.

The parameters υ and kr, used in the outlier removal process, are equal to 5.0 and 3.0
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respectively in this chapter. It should be noted that after the outlier removal process, each

window may not have the same number of data points left and cannot strictly be written

as a matrix. However, the processed divergence data are denoted by Dproc for the sake of

notational simplicity where the superscript proc highlights that the processed data are used.

It is important to emphasise that other outlier removal processes can be used if desired.

The outliers that are present in the damaged gear divergence data, shown in Figure 2.4(i),

were identified with the proposed method and shown in Figure 2.4(ii). The benefits of the

outlier removal process are shown in Figure 2.5 on the point estimates of the data. It is

observed that the point estimates calculated from the processed data are significantly better

than the raw data, because it has a smaller variance and a mean without a bias. Hence, the

processed data can lead to more robust results.
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Figure 2.5: The point estimates of the processed data (using the outlier removal process) and
the raw (unprocessed) data are compared for a gear with localised damage.

An automatic method is required to infer the condition of the gear i.e. to detect localised

damage and evaluate changes in the extent of the damage. Bayesian analysis techniques

[163, 164] are employed in this chapter to perform this task. Bayesian analysis techniques

use probability densities to quantify the uncertainty in the random variables, which is sub-

sequently used to make inferences on the random variables. It is assumed that the mean µ

and the precision λ or the reciprocal of the variance of the data, of a specific window that is

under consideration, are unknown and need to be inferred. The data are denoted by X in this

section, because two distinct datasets are investigated with the approach outlined here. The

prior distribution, incorporates prior knowledge of the parameters into the inference process
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and is chosen to be a Normal-Gamma distribution in the form of

p(µ, λ|µ0, κ0, α0, β0) = Gaussian
(
µ|µ0, (κ0λ)−1

)
Gamma(λ|α0, β0), (2.5)

where µ0, κ0, α0, β0 are the unknown hyperparameters of the prior distribution. The data

X are assumed to be independent identically distributed, where an individual data point is

represented by a Gaussian probability density function with mean µ and precision λ. The

choice of prior and likelihood function results in a Normal-Gamma posterior distribution in

the form of

p(µ, λ|X,µ0, κ0, α0, β0) = Gaussian
(
µ|µn, (κnλ)−1

)
Gamma(λ|αn, βn), (2.6)

where [165]

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
x̄ (2.7)

κn = κ0 + n (2.8)

αn = α0 +
n

2
(2.9)

βn = β0 +
1

2

n∑
i=1

(xi − x̄)2 +
1

2

(x̄− µ0)2

1
n + 1

κ0

, (2.10)

are the parameters of the posterior distribution with n being the number of observations,

and x̄ being the sample mean of the data X of the considered window. The precision λ is a

nuisance parameter and is marginalised out to obtain the posterior marginal distribution of

the mean [114, 165]

p(µ|X) =

∫
λ
p(µ, λ|X)dλ (2.11)

= Student2αn

(
µ

∣∣∣∣µn, βn
αnκn

)
, (2.12)

which is in the form of the Student-t distribution, with 2αn degrees of freedom, a variance of

βn/(αnκn) and a mean of µn. The dependence on the fixed hyperparameters are neglected

for future notational simplicity. The mode and mean of the posterior marginal distribution of

the mean, presented in Equation (2.11), are the same. The marginal distribution in Equation

(2.11) is used to infer the condition of the gear, by calculating the probability that the
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posterior mean exceeds an alarm threshold i.e.

P (µ > threshold|X) =

∫ ∞
threshold

∫
λ
p(µ, λ|X)dλdµ, (2.13)

where the preselected threshold indicates the region where the divergence is far from normal

behaviour. The Bayesian data analysis approach is used on the divergence data of each win-

dow and it is used to calculate the sensitivity of the divergence matrix to machine condition

changes as well. It should be noted that it is possible to use other analysis techniques to infer

the condition of the gears, however some of the benefits of Bayesian data analysis techniques

that are highlighted later in this chapter, will be lost.

2.3 Validation

The proposed methodology is validated in two experimental investigations in this chapter.

The experimental setup, used to generate the data, is presented and discussed in the next

section whereafter the results of the investigations are presented.

2.3.1 Experimental setup

An experimental setup, designed by Stander and Heyns [19], was refurbished to conduct

gear fatigue tests under fluctuating operating conditions. The vibration data were acquired

from the experimental setup in Figure 2.6, which consists of an alternator, three helical

gearboxes and an electrical motor. The instantaneous load applied by the alternator and

the instantaneous rotational speed applied by the electrical motor, were controlled with a

personal computer. The axial acceleration from a 100mV/g tri-axial accelerometer, located

Figure 2.6: The experimental setup.

on the bearing housing of the monitored helical gearbox, is used in the condition monitoring

process. The acceleration vibration signal was sampled at 25.6kHz and the optical probe

signal was sampled at 51.2kHz with an OROS OR35 data acquisition device, where the
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optical probe is used with an 88 pulse per revolution zebra tape shaft encoder to calculate the

instantaneous angular speed of the input shaft of the monitored gearbox. Data were acquired

from a healthy gearbox, whereafter the gearbox was disassembled so that localised damage

could be seeded on the gear and thereafter the gearbox was reassembled. The gearbox,

with the damaged gear shown in Figure 2.7(i), was subsequently operated for approximately

twenty days under the operating conditions depicted in Figure 2.8, until the damaged tooth

finally failed. During the fatigue experiments, approximately 1400 measurements were taken,

with a smaller subset of the complete dataset used in this investigation. The gear with the

(i) Before fatigue experiment (ii) After fatigue experiment

Figure 2.7: The gear with seeded damage before and after the fatigue experiment was com-
pleted.

broken tooth (i.e. after the fatigue experiment was completed) is shown in Figure 2.7(ii).
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Figure 2.8: The operating conditions during the fatigue experiment at the input shaft of the
monitored gearbox.

2.3.2 Investigation 1

In the first investigation, the effectiveness of the methodology is investigated and compared

to conventional fault diagnosis techniques on gearbox data obtained from three cases with
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different constant operating conditions. This investigation is performed to validate the ro-

bustness of the proposed methodology to detect localised anomalies in the data under different

operating conditions.

The load and rotational speed properties of the three cases are presented in Table 2.1 and

the operating conditions are present for measurements taken for a gearbox with a healthy

gear and with a gear without a tooth (see Figure 2.7(ii)), respectively.

Table 2.1: Operating conditions at the input shaft of the monitored gearbox for investigation
1. These operating conditions were present for the healthy and the damaged experiments.

Load [N.m] Speed [rad/s]

Case 1 0 7.48
Case 2 32.48 14.81
Case 3 38.31 14.83

2.3.2.1 Conventional fault diagnosis techniques

The Synchronous Average (SA) of the vibration signal has been successfully used for gear

fault diagnosis [19] and is investigated on the signals described in Table 2.1. The synchronous

averages of the investigated computed order tracked vibration signals are presented in Figure

2.9(i). The amplitudes of the synchronous averaged signals in Figure 2.9(i) change signifi-
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Figure 2.9: The Synchronous Average (SA) of the computed order tracked vibration signals of
the gears and the Synchronous Variance (SV) of the gears in different conditions are compared
for the operating conditions in Table 2.1. Each signal is given a unique offset to compare
the results, with the damage being present at 180 degrees for the damaged gear cases. The
legend indicates <Condition>: <Operating condition number>.

cantly with changes in operating conditions for gears in the same condition, with evidence

of the broken tooth not being seen. Hence, it is difficult to distinguish between changes
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in operating conditions and changes in machine condition utilising the synchronous average

for fault diagnosis under different operating conditions. This also makes it difficult to set

a threshold for automatic fault diagnosis; the gear damage is not evident and the data are

significantly influenced by the different operating conditions.

The residual signal i.e. the departure of the vibration signal from the average deterministic

vibration components can be used for more effective fault diagnosis [24, 86]; for example, it

has performed significantly better than the conventional synchronous average for gear crack

detection [24]. The Synchronous Variance (SV) i.e. the synchronous average of the squared

residual signal is a second-order cyclostationary technique that has been used for gear and

bearing fault diagnosis [23] and is displayed in Figure 2.9(ii). The SV is estimated with the

procedure used in Ref. [23]. The gear damage is seen for operating condition Case 2 and

Case 3, with the gear damage at Case 1 not being seen because no load is applied to the

system. However, the results are also dependent on the operating conditions i.e. the variance

of the synchronous variance is operating condition dependent and the damage is not very

prominent for Case 2 and Case 3; the latter result is attributed to the fact that the helical

gears have high contact ratios which mitigates the influences of the missing tooth on the gear

mesh stiffness.

The Power Spectral Density (PSD) of the computed order tracked vibration signals is

presented in Figure 2.10 similarly to the results in Figure 2.9. The variation of the gear
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Figure 2.10: The Power Spectral Density (PSD) of the order tracked vibration signal for the
different datasets described in Table 2.1.

mesh components with respect to operating condition changes is clearly observed, however,

the differences between the gear conditions are not prominent. The results corroborate the

observation that it is not easy to detect the damage using conventional techniques with

the different operating conditions adversely influencing the fault diagnosis task. It is also

difficult to assign a threshold to automatically detect the presence of localised damage with

Page 36



the aforementioned techniques, because the data are operating condition dependent and the

damage is not prominent in the processed signals.

2.3.2.2 Proposed methodology

Hence, a more sophisticated approach needs to be used to automatically infer the condition

of the machine and therefore the proposed methodology is investigated on the same dataset.

For each measurement considered in this investigation, the following procedure is followed:

The vibration signal is order tracked using the optical probe and zebra tape shaft encoder

whereafter the features are extracted and processed as described in Section 2.2.1. The new

dimensionality of the principal component feature space is selected as two, because the cor-

responding accumulative contribution rate is approximately 95%. A multivariate Gaussian

model is optimised on the principal component features of each set of Nw synchronous fea-

tures, whereafter the divergence is calculated using Equation (2.4) for all synchronous window

combinations. The outliers in D are removed with the procedure described in Section 2.2.3

to obtain the processed divergence matrix Dproc, which is used in subsequent analyses.

Bayesian data analysis is used in the condition inference process as described in Section

2.2.3. The posterior distribution is a compromise between the prior information and the

evidence obtained from the investigated dataset [114, 163]. The prior distribution conveys

the prior beliefs in the data and are governed by a set of hyperparameters. The appropriate

hyperparameters are unknown for the data under investigation and are set to µ0 = 0.0,

κ0 = 0.01, α = 10, β = 0.01 so that the inferred posterior marginal distribution of the

mean is dominated by the data. The consequences of the selected hyperparameter values are

critically investigated in Appendix A.1.

It is necessary to specify an alarm threshold to infer the condition using Equation (2.13).

If historical data of a healthy machine are available, it is possible to set an alarm threshold

to perform automatic novelty detection and if historical fault data are available it is even

possible to set an alarm threshold for the different stages of degradation. However, the latter

is not possible in the absence of historical data and a different strategy is therefore required

to perform this task.

The following procedure is used to estimate a threshold using only the data from a single

measurement: It is assumed that a large portion of the gear is in the same condition and

potentially a small portion of the gear is damaged i.e. localised damage is present. A threshold

needs to be estimated from statistics that are robust to outliers due to localised gear damage,
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therefore the median and the median absolute difference are used as opposed to the mean

and the standard deviation to calculate the threshold

threshold = median (Dproc) + kthres ·median (Dproc −median (Dproc)) , (2.14)

where median (X) ∈ R is the median of the data X and kthres is a threshold factor and

selected as five. Hence, it is possible to set a threshold with Equation (2.14) using only the

current data under consideration i.e. historical data are not required.

The Posterior Mode of the Marginal Distribution of the Mean (PMMDM), for the healthy

and the damaged gear divergence data of the three load cases, is superimposed in Figure 2.11

with the alarm threshold calculated with Equation (2.14). The alarm threshold for each

dataset was approximately the same and therefore only their average is presented to keep the

figures uncluttered. The results in Figure 2.11(i) indicate that in the absence of localised gear
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Figure 2.11: The Posterior Mode of the Marginal Distribution of the Mean (PMMDM) is
shown for the healthy gear and the gear with a broken tooth for the operating condition cases
described in Table 2.1. Only the average threshold of the different measurements is shown to
ensure that the figure is not cluttered.

damage, the divergence does not exceed the threshold. It is clearly possible from the results

in Figure 2.11(ii) to detect localised gear damage using the proposed technique when loads

are applied to the system; in the absence of loads acting on the system, the damage is not

detected. The magnitude of the divergence associated with the broken tooth varies slightly

with changes in load and speed due to the fact that the physical impacts resulting from the

missing tooth varies with operating conditions. The aforementioned results are reasonable,

given the fact that helical gearboxes are investigated. Helical gears, that have large contact
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ratios, will always have one tooth in contact, even if a tooth is missing. Hence, in the absence

of loads, the impulses due to a missing tooth will be very small and may be undetected in

many circumstances.

It is necessary to consistently compare the divergence data to the alarm threshold to

perform automatic condition inference. This is performed by calculating the probability that

the posterior mean is larger than the threshold using Equation (2.13) for each tooth. The

results for the data in Figure 2.11 are shown in Figure 2.12. The results corroborate the
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Figure 2.12: The probability that the posterior mean exceeds the threshold is calculated
with Equation (2.13) for the data in Figure 2.11. The threshold, calculated for a specific
measurement with Equation (2.14), is used with Equation (2.13) to infer the condition of
the specific measurement i.e. the average threshold shown in Figure 2.11 is not used in the
calculation procedure.

condition inferred from the results in Figure 2.11. The benefit of using the representation in

Figure 2.12 is that it is easy to understand for a non-expert and the damage can clearly be

seen.

The Jarque-Bera test [162] was performed on the features and it indicated that the features

are not Gaussian distributed. Hence, even though the data are not Gaussian distributed, the

developed technique detected the localised damage on the gear. Hence, the KL divergence

detected a change in the mean and the covariance matrix of the data as the condition changed,

even though the density itself is not well represented by a Gaussian distribution. More

appropriate models and techniques could be used to possibly increase the sensitivity of the

divergence matrix to damage, at the cost of an increase in computational time and it requires

the hyperparameters to be estimated; which can be difficult if a single measurement is used.

It is evident from the results in Figures 2.11 and 2.12 that the proposed methodology
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performs significantly better when compared to the results of the conventional fault diagnosis

techniques in Figures 2.9 and 2.10; the damage is significantly more prominent, it is possible

to automatically infer the condition of the gears and the healthy portions of the gear are

unaffected by the different operating conditions.

2.3.3 Investigation 2

In the second investigation, the performance of the proposed method is investigated and

compared to conventional fault diagnosis methods for the gearbox fatigue dataset described

in Section 2.3.1. Conventional fault diagnosis methods are investigated in Section 2.3.3.1, the

methodology’s fault detection and localisation capabilities are considered in Section 2.3.3.2,

whereafter the damage trending potential of the methodology is illustrated in Section 2.3.3.3.

The data considered in this section were acquired under the operating conditions presented

in Figure 2.8 and the same properties as in Section 2.3.2, such as the dimensionality of the

feature space and the values of the hyperparameters are used.

2.3.3.1 Conventional fault diagnosis techniques

The synchronous averaged order tracked vibration signals and the synchronous variance of

the residual signals are presented in Figure 2.13(i) and Figure 2.13(ii), respectively. The
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Figure 2.13: The Synchronous Average (SA) and the Synchronous Variance (SV) of the
residual signal are compared for different datasets. The legend indicates the condition of the
gearbox as well as the time from the start of the damaged experiment in Day-Hour-Minute
format. Each signal is given a unique offset to make the comparison between the results
easier, with the localised damage being present at 180 degrees.

residual signal, used to calculate the SV, is calculated by subtracting the generalised syn-

chronous average from the synchronous average; the generalised synchronous average is a
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better estimation of the periodic part under varying operating conditions than the conven-

tional synchronous average [41]. A more detailed overview of its calculation is given in Section

4.2.1. The damage is seen in the synchronous average as well as the synchronous variance for

the damaged vibration signals. Due to the fact that the operating conditions are the same

for each dataset in this section, the influence of varying operating conditions on the data is

not evident. The PSDs of the order tracked vibration signals are presented in Figure 2.14 for

the measurements investigated in Figure 2.13 as well. It is difficult to detect the presence of
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Figure 2.14: The Power Spectral Densities (PSDs) of the order tracked vibration signals,
investigated also in Figure 2.13, are shown. The Gear Mesh Frequency (GMF) and its
harmonics are also incorporated into the plot. Each signal is given a unique offset to make
the comparison between the results easier.

localised gear damage in the PSD; it is even difficult when comparing the damaged gearbox

data to the healthy gearbox data. It is only possible to observe changes in the harmonics of

the gear mesh frequency for the damaged gearbox as the gearbox deteriorates.

It is also possible to compare the trending capabilities of conventional metrics and the

metrics obtained from the proposed methodology i.e. the sensitivity of metrics to changes in

condition. The kurtosis, which is an indication of the impulsiveness of the vibration signal,

and the RMS, which is an indication of the average energy in the signal, can be used for fault

trending and are compared in Figure 2.15 on the fatigue data i.e. as the gear deteriorated

from Figure 2.7(i) to Figure 2.7(ii). The healthy gear data are also inserted at the start of
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Figure 2.15: The kurtosis of the residual signal and the Root-Mean-Square (RMS) of the
vibration signal are presented as function of measurement number.
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the measurement number, with the healthy gearbox and the gearbox with the seeded damage

separated with the Change In Condition (CIC) vertical line. A prominent change in the RMS

is observed at the CIC line, which is attributed to the disassembling-reassembling procedure to

damage the gear. Thereafter, the RMS decreases with measurement number. The kurtosis

increased slightly at the CIC line, whereafter it remains constant between measurement

number 100 and 450. A change in the kurtosis and the RMS is observed at the 480th

measurement when the gear failed, however, the deterioration of the gear is not prominent

from the data.

Hence, the conventional analysis techniques can be used for fault detection, fault locali-

sation and fault trending by manually investigating the data. However, the results are not

ideal e.g. the damage is not very prominent in the synchronous averages and the deteriora-

tion of the gear is not clearly seen in the trended results. Therefore, more robust metrics are

required for automatic condition inference.

2.3.3.2 Automatic fault detection and localisation without historical data

The proposed methodology is implemented with exactly the same procedure as Section 2.3.2.

The PMMDM is shown in Figure 2.16(i) for different time stamps, in day-hour-minute format,

from the start of the fatigue experiment with the damaged gear. The PMMDM, calculated
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Figure 2.16: The Posterior Mode of the Marginal Distribution of the Mean (PMMDM) of
the divergence for each window and the averaged threshold for the measurements are shown
in Figure 2.16(i). The probability that the posterior mean of a specific measurement exceeds
the threshold of the specific measurement is shown in Figure 2.16(ii). The legend indicates
the day-hour-minute after the fatigue experiment was started with the damaged gear.

from Equation (2.11) for the processed divergence of the healthy data, does not exceed the
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threshold; while the PMMDM of the damaged gear data exceed the threshold where the

localised damage is situated (approximately 180 degrees).

The probability that the posterior mean exceeds the threshold, is presented in Figure

2.16(ii) and the results support the conclusions drawn from the PMMDM in Figure 2.16(i).

Hence, this approach allows localised damage to be automatically detected without using

historical data, with changes in damage severity observed as well.

2.3.3.3 Sensitivity of metrics to machine condition changes

Damage severity trending is a very important task in the diagnostics field, because it helps

to infer the stability of the damage growth and provides support for subsequent maintenance

decisions. Intrinsically, fault trending requires historical data to be available, whereafter

changes in the data with respect to the reference data are investigated. In this section, fault

trending is investigated to assess the sensitivity of the proposed methodology to changes in

machine condition. More specifically, the following investigations are performed:

• The sensitivity fo the PMMDM to changes in machine conditions is investigated to

determine whether it contains information on the severity of the damage.

• The performance of the automatic condition inference for different fault severities is

investigated. This is performed by presenting the probability that the PMMDM exceeds

the alarm threshold, calculated with Equation (2.14) by using the procedure described

in Section 2.3.2, as a function of measurement number.

• The sensitivity of the statistics of the divergence data to changes in condition is inves-

tigated for all of the measurements. The PMMDM of the statistics of the divergence

data are also calculated by utilising historical reference data to highlight the sensitivity

of the statistics to changes in condition.

• Lastly, fault trending by utilising historical reference data with Bayesian data analysis

techniques is illustrated. This is to further support the benefits of using Bayesian data

analysis techniques and to illustrate that this method can be used even when historical

data are available.

The PMMDM of the divergence is shown in Figure 2.17(i) for 38 healthy measurements

and 498 damaged measurements, with the probability that the posterior mean exceeds the

threshold shown in Figure 2.17(ii). The Change In Condition (CIC) line indicates the start
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of the damage measurements. The healthy and the damaged measurements are presented
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Figure 2.17: The surface plot of the PMMDM of the divergence data is shown in Figure 2.17(i)
as function of measurement number and the probability that the posterior mean exceeds the
threshold is shown in 2.17(ii). The threshold used to calculate the results in Figure 2.17(ii)
is calculated separately for each measurement. The healthy and damaged data are separated
by the Change In Condition (CIC) line.

together in Figure 2.17 to highlight the ability of the proposed approach to detect changes

in machine condition. The change in the localised gear damage is evident from the results in

Figure 2.17(i), especially in the last stages of the experiment.

In some instances in Figure 2.17(ii), it may seem that the angular arc of the damage

is larger than in other cases. This occurs because the windows for feature extraction start

arbitrarily between different datasets, but remain consistent for each dataset, because the

order tracking is performed correctly. The consequence of this is that in some instances

the damaged tooth is situated between two windows which result in the divergence data

of two windows exceeding the threshold. This can potentially be alleviated by overlapping

consecutive windows. Four statistics, calculated from the divergence metric are presented

as a function of measurement number and compared to the metrics investigated in Figure

2.18. It is not only possible to observe the change in condition, but also the change from the

seeded damaged gear to the gear with the broken tooth for the mean, standard deviation and

maximum statistics in Figure 2.18. This is in contrast to the results in Figure 2.15, where

only the change in condition is observed at the CIC line. Hence, the metrics are significantly

more sensitive to changes in machine condition and therefore the proposed methodology is

better suited for fault diagnosis.

In this part of the investigation, historical reference data are utilised for automatic fault
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Figure 2.18: The mean, standard deviation (denoted by std), maximum (denoted by max)
and the kurtosis of Dproc is shown as function of measurement number. The change in the
gear condition is indicated by the Change In Condition (CIC) line.

trending to prove that the metrics do change with respect to measurement number as the

condition of the gearbox changes. However, it is also investigated to emphasise that the

metrics obtained from this methodology can be used for fault trending, if historical data do

become available. It is assumed that twenty healthy measurements are available to calculate

an alarm threshold, whereafter the trending procedure for all subsequent data is as follows:

• Calculate a statistic, such as the mean, of the whole processed divergence matrix Dproc

for each measurement as done in Figure 2.18.

• Window the one-dimensional statistic into windows with length NL and an overlap of

NO between consecutive windows.

• Model the windowed data with a Gaussian likelihood function and impose a Normal-

Gamma prior distribution on the parameters. Use Equation (2.7) to (2.10), with the

same hyperparameters as the previous sections, to obtain the posterior distribution

parameters.

• Determine the probability that the mean of the windowed data exceeds the threshold

with Equation (2.13). The threshold is calculated with Equation (2.14) for the first 20

measurements.

The four statistics of Dproc used in Figure 2.18 are independently investigated and compared

to an independently calculated threshold, with the results shown in Figure 2.19. The windows

have a length of NL = 20 and an overlap of NO = 18 measurements in all investigations.

The results in Figure 2.19 indicate that it is essential to analyse the data with probabilistic

techniques due to the variation thereof. It can be observed that the PMMDM of all statistics
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Figure 2.19: The PMMDM and the threshold of the data in Figure 2.18 are presented with
the data in Figure 2.18.

changes at the change in condition line (i.e. where the healthy and the damaged measurements

meet). Note that because the threshold is set far from the healthy data and windows are used,

the threshold is not immediately exceeded for the first damaged measurements. A change in

the metrics can however be observed.

The mean, standard deviation and the maximum value of Dproc contain less noise for

the healthy measurements and therefore an alarm threshold is obtained which is close to

the healthy data. The kurtosis, is very sensitive to the noise which is present in Dproc. The

implications of this is that the mean, standard deviation and the maximum of Dproc are more

sensitive to changes in machine condition than the kurtosis, with the standard deviation and

maximum values being the most sensitive.
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Figure 2.20: The probability that the mean of each statistic exceeds the threshold is shown
in Figure 2.19. The change in condition line is shown as well.

If noise, for example from environmental effects or operating condition changes, is present

in the trended statistics, it is uncertain whether the mean of the dataset exceeds the threshold.

In Frequentist statistical approaches, the parameters are fixed [114] and therefore the mean

will either be larger or smaller than the threshold. The Bayesian analysis approach allows
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the uncertainty in the parameters due to the noise to be quantified, which helps with the

maintenance decision process. Another observation that is made, is that using the posterior

mean with Equation (2.13) is better suited for the condition inference task than using the

individual values in Figure 2.19. This is because the posterior mean is less susceptible to

noise and other outliers and it will therefore cause fewer false alarms if for example a new

operating condition is observed for a specific measurement.

Hence, from this investigation it can be concluded that the PMMDM of the synchronous

divergence data is sensitive to changes in machine condition, the condition can be automati-

cally inferred throughout the life of the component, statistics such as the standard deviation

of the divergence data are sensitive to changes in machine condition and that Bayesian data

analysis techniques can be used for effective fault trending if historical reference data are

available.

2.3.4 Diagnosis of the pinion

Up to this point, a gearbox with a damaged gear was investigated in this chapter, with

the pinion remaining healthy for all the measurements that were made. It is important to

distinguish between damage on the gear and damage on the pinion and therefore a brief

investigation is now performed to determine whether the condition of the pinion is correctly

inferred with the proposed technique.

The same process is performed as in Section 2.3.3.2 for the gear, with the exception that

the number of windows (Nw) per revolution is 20 instead of 37, because the number of teeth

on the gear and the pinion is different. The PMMDM and the probability that the posterior

mean of a tooth exceeds the newly calculated threshold, is shown in Figure 2.21. Note that

the exact same datasets are used as in Figure 2.16, with the same procedure performed as

well. According to the results, the pinion is in a healthy condition and this proves that the

condition of a healthy gear in a damaged gearbox can correctly be inferred by using the

proposed technique.

The influence of the damaged gear on the statistics of the pinion’s divergence data needs

to be assessed, therefore, the statistics of the pinion are calculated for each measurement

in the dataset. The same process is used as in Section 2.3.3.3 with the results shown in

Figure 2.22 for the pinion. The results indicate that the statistics of the pinion divergence

data contain much noise, however it remains fairly constant until the 480th measurement

whereafter a slight increase is observed.
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Figure 2.21: The PMMDM and the probability that the mean exceeds the threshold for the
pinion.
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Figure 2.22: Statistics of Dproc as a function of measurement number for the divergence
data, obtained by considering the pinion of the gearbox instead of the gear. The same
measurements are used as in Figure 2.19.

The probability that the mean of the windowed statistics exceed the threshold, calculated

with the procedure in Section 2.3.3.3, is shown in Figure 2.23. The results indicate that

the data reflect the true condition of the pinion for most of the measurements. Only in the

last stages of the experiment, the damaged portion of the gear dominates the vibration data,

which is ultimately reflected in the pinion statistics as well. Hence, the increase in the pinion’s

statistics and the results from Section 2.3.3.3 indicate that failure of the gear is imminent at

the 480th measurement; albeit actually because of damage on the gear, rather than on the

pinion. Figure 2.23 however illustrates that the proposed approach is able to largely separate

the gear and the pinion effects so that the correct gear condition can be inferred.

2.4 Conclusion and recommendations

In this chapter, a localised gear anomaly detection methodology is proposed to automatically

detect localised gear damage with a data availability level 0, i.e. no historical data are
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Figure 2.23: The probability that the mean of the statistics in Figure 2.22 exceeds the
threshold is shown as a function of measurement number.

available. This is performed by utilising prior knowledge that gear teeth which are in the

same condition should generate data that are statistically similar and localised gear anomalies

generate data that are statistically different from other teeth. The Kullback-Leibler (KL)

divergence is therefore calculated of the features of two gear teeth, with a large KL divergence

indicating the gear teeth are in a different condition. Bayesian data analysis techniques are

subsequently used to automatically detect the presence of localised gear damage from the

processed divergence data.

The methodology is compared to the results obtained from conventional i.e. non-data-

driven signal analysis tools on experimental gearbox datasets. The results emphasise the

fact that data-driven techniques pose unique advantages to the condition monitoring domain

e.g. damage can be detected automatically from diagnostic metrics which are sensitive to

damage and robust to varying operating conditions. The results also emphasise the benefits

of utilising engineering knowledge with data-driven techniques as opposed to purely data-

driven techniques; it is possible to automatically detect the presence of localised gear damage

without any historical data. Hence, an effective fault diagnosis methodology is obtained by

using the available prior knowledge.

It is suggested that future work should investigate the benefits of using non-Gaussian

models by comparing their results to the results of the Gaussian model used in this chapter.
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Chapter 3

Discrepancy analysis methodology for bear-

ings

3.1 Introduction

Discrepancy analysis is a novelty detection approach which has specifically been used for

performing gear diagnostics under varying operating conditions. In discrepancy analysis,

a statistical model is developed of short segments of the raw or processed vibration signal

of a healthy gearbox. For example, the windowed raw data have been modelled by neural

networks [154] and Gaussian mixture models [155], and the windowed wavelet transform

of the vibration data have been modelled by a combination of hidden Markov models and

Gaussian mixture models [156]. The models of the healthy data are subsequently used to

assign a discrepancy measure or a localised novelty score to the windowed data of a new

vibration measurement, whereafter the localised discrepancy measures are concatenated to

form a discrepancy signal [154–157]. The synchronous averaged discrepancy signal [155, 156],

the spectrum of the discrepancy signal [154] and the cepstrum of the discrepancy signal [154]

have been used for gear diagnostics.

In this chapter, a discrepancy analysis methodology is proposed specifically for bearing

diagnostics. Performing bearing diagnostics is important to ensure that gearboxes operate as

intended [1, 6], and it is important to illustrate how time-frequency analysis techniques such

as the wavelet packet transform can be supplemented with historical data for more effective

diagnostics.

In Section 3.2, the methodology is presented, whereafter the methodology is validated on

numerical gearbox data in Section 3.3 and on experimental bearing data in Section 3.4.
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3.2 Methodology

3.2.1 Overview

The general process diagram for discrepancy analysis is presented in Figure 3.1, with the

exact discrepancy analysis procedure implemented in this chapter presented in Figure 3.2.

However, one of the benefits of the proposed methodology is that sub-processes such as the

Discrepancy signal 
processing

Data acquisitioning Feature extraction

Discrepancy signal 
generation

Feature modelling

Data acquisitioning Feature extraction

Training:

Testing/Application:

Use model

Figure 3.1: The key steps of the training and testing phase of the rolling element bearing
diagnostic methodology are presented.

feature extraction procedure can be replaced with a more appropriate procedure if desired. In

Vibration
measurements

Rotational speed or 
phase infomation

of shaft

Calculate the WPT
of the data

Order track the Wavelet
Coefficients (WC)

Window each WC signal and
extract features from the 

windowed data

Assign a discrepancy 
measure to the features

to calculate the discrepancy
signal

 

Process discrepancy signal
to compensate for varying 

speed conditions

Section 3.2.2

Section 3.2.2

Section 3.2.2
Section 3.2.4

Section 3.2.5
Section 3.3 and 3.4

Investigate the characteristics 
of the discrepancy signal

Feature extraction procedure

Figure 3.2: The steps in the methodology used in subsequent investigations are presented.
It is assumed that the model parameters used to generate the discrepancy signal are already
estimated with the method in Section 3.2.3 and therefore this step is excluded from the
process diagram. Different characteristics of the discrepancy signal are investigated for the
different datasets and therefore only Section 3.3 and Section 3.4.

the training phase, the features are extracted from the healthy vibration data, whereafter the

features are modelled with a statistical model. In the testing phase, the features are extracted

with the same approach as in the training phase, but the model of the healthy features are

used to generate a discrepancy measure. The sequence of consecutive discrepancy measures is

used to form a discrepancy signal which is processed to infer the presence of bearing damage.
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3.2.2 Feature extraction

The feature extraction process that is used in this chapter, is presented in Figure 3.3. Wavelet

Vibration signal

Rotational speed 
information

Perform the WPT 
on vibration signal

Wavelet coefficient 
signal 1

Wavelet coefficient 
signal 2

Wavelet coefficient 
signal N

Order track 
the signal

Order track 
the signal

Order track 
the signal

Window the order 
tracked signal

Window the order 
tracked signal

Window the order 
tracked signal

Extract features 
from windows

Extract features 
from windows

Extract features 
from windows

Features

Figure 3.3: The feature generation process used in the proposed methodology. The features
are in the angular domain due to the order tracking that is performed in the process. The
abbreviations are, WPT: Wavelet Packet Transform; N: Total number of wavelet coefficient
signals.

analysis is used in the feature extraction process, because it proved successful in detecting

singularities and it is sensitive to impulses induced by bearing damage [59]. The WPT

decomposes the signal into a set of wavelet coefficients with a filter bank of scaling and

wavelet basis functions, where the wavelet coefficients are associated with specific sub-bands.

The wavelet coefficients are dependent on the wavelet basis function, the appropriate choice

depending on the characteristic that needs to be detected, and the level of decomposition,

which depends on the frequency resolution that is required for the wavelet coefficients. The

WPT is applied to the time domain signal, because the resonances which are excited by the

bearing damage are independent of the rotational speed.

The features need to be sensitive to the presence of impulses, which manifest as time-

localised bursts of energy and are quasi-periodic with respect to shaft angle due to rolling

element slip. Hence, the extracted wavelet packet coefficients are subsequently order tracked

with rotational speed information to transform it from the time to the angle domain. Hence,

the order tracked wavelet coefficients preserve the angle-time cyclostationary properties of

the bearing damage [31, 98]. Localised features are extracted from the wavelet coefficients,

by windowing the wavelet coefficients with rectangular windows, whereafter the Root-Mean-

Square (RMS) is extracted from each window. The RMS of the windowed wavelet coefficient

is appropriate as a feature, because the localised energy and not the frequency characteristics

Page 52



(a) (b)

(c) (d)

(e)

Time Time 

Time Angle

Angle

Figure 3.4: The windowing procedure is illustrated for a synthetic signal under constant
operating conditions. In (a), a train of bearing impulses is shown. In (b), broadband Gaussian
noise is added to the signal in (a) and is used for subsequent analyses. The WPT with a
decomposition level of Ndec is performed on the signal in (b) which resulted in 2Ndec wavelet
coefficient signals. In (c), a single wavelet coefficient signal is shown and windowed with 20
non-overlapping windows in (d). The signal in (c) is order tracked to obtain the signal in (d).
Finally, the RMS is extracted from the windows in (d) and a signal with 20 samples is shown
in (e). The procedure in (d) and (e) is repeated for all 2Ndec wavelet coefficients to obtain
2Ndec signals similar to (e) which constitute the 2dec-dimensional feature set which consist of
20 observations.

of the windowed data are important. The windowing procedure is illustrated in Figure 3.4 for

a single wavelet coefficient signal extracted by applying the WPT on a synthetic bearing signal

immersed in noise. The RMS of the windowed wavelet coefficients improves the sensitivity

of the wavelet coefficients to damage and is therefore ideal for discrepancy analysis. The

windows do not overlap in Figure 3.4 to make the illustration easier to understand. In the

methodology, rectangular windows as opposed to Hamming windows for example are used

to ensure that no information is lost and overlapping windows are used to ensure that no

information on the edges of the non-overlapping windows is lost. The number of windows per

shaft revolution should be more than twice the fault order that needs to be detected, but the

window length should be sufficiently long to ensure that the statistics are properly estimated.

It is suggested that the overlap should at least be 50% between coinciding windows to ensure

that no information on the edges are lost.

Using additional statistics such as the kurtosis can potentially improve the diagnostic

capabilities of discrepancy analysis, especially for incipient damage detection. However, opti-

mising the discrepancy analysis procedure is beyond the scope of this work. The magnitude

of the bearing impulses and of the vibration signal are dependent on the operating conditions,
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which can cause problems when performing condition inference. This aspect is addressed in

Section 3.2.5.

The window length is selected as 2π/20 rad with a 50% overlap, to allow localised impulses

to be detected. Wu and Liu [72] found that the Daubechies db20 wavelet basis function

outperformed the Daubechies db4 and db10 wavelet basis functions for engine diagnostics and

the Daubechies db20 has the shape of an impulse, which is why it is used in this chapter. The

level of the decomposition, denoted by Ndec, is related to the number of wavelet coefficients

by 2Ndec , with only the wavelet coefficients of the final decomposition level used for feature

extraction. Hence, as only the RMS of the windowed wavelet coefficients is calculated and

there are 2Ndec wavelet coefficients, the dimensionality of the feature space (i.e. the number

of features) is equal to D = 2Ndec . The level of the decomposition is Ndec = 4 for all

datasets investigated in this chapter which result in 16 wavelet coefficients. This means that

the dimensionality of the feature space is 16, which provides an ideal compromise between

having sufficient resolution to detect changes in localised spectral frequency bands but also

to have a sufficiently low dimensionality to avoid the curse of dimensionality. Dimensionality

reduction techniques, such as principal component analysis [114], can also be performed to

alleviate the problems associated with the curse of dimensionality, but is not performed in

this investigation due to the relatively low dimensionality of the feature space and the models

that are used.

3.2.3 Feature modelling

The features, extracted in Section 3.2.2 from the healthy data, can be modelled with a

Gaussian model, a Gaussian mixture model or a hidden Markov model to list a few examples.

In this chapter, a Gaussian model is used to model the features extracted from the healthy

data. The motivation for using a Gaussian model as opposed to other models is that it is

very simple to implement and with the post-processing, which will be presented in Section

3.2.5, it is robust to varying speed conditions.

The D-dimensional features extracted from window i are denoted by bi ∈ RD×1, with

the features of the healthy machine denoted by btraini ∈ RD×1. The training feature set

{btraini } comprises of Nobs observations of the D-dimensional features and is used to obtain

the parameters of the model. The maximum likelihood estimates of the mean µb ∈ RD×1
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and the covariance Σb ∈ RD×D of the healthy feature set {btraini } are given by [114]

µb =
1

Nobs

Nobs∑
i=1

btraini , (3.1)

Σb =
1

Nobs

Nobs∑
i=1

(btraini − µb)(btraini − µb)T , (3.2)

where the transpose is denoted by superscript T . If a single measurement is used to obtain

the model parameters, Nobs is equal to the number of windows used for extracting features

from the measurement. If multiple measurements are used to obtain the model parameters,

then the extracted features of the respective measurements are concatenated together to form

a single D-dimensional training set with a total of Nobs samples.

3.2.4 Discrepancy signal generation

The Mahalanobis distance is used as the discrepancy measure, which quantifies the deviation

of the new data point from the model of the healthy data. The discrepancy measure is

denoted by ηj for the features associated with the window j [114]

ηj =
√

(bj − µb)TΣ−1
b (bj − µb), (3.3)

where the model parameters are obtained using Equations (3.1) and (3.2) from the healthy

data, and bj denotes the features, extracted from the wavelet coefficients in the jth window,

of the testing feature set. The squared Mahalanobis distance is proportional to the negative

logarithm of the probability density function of a Gaussian model, where the latter is in

general available for all probabilistic models. The discrepancy measure, obtained from each

time step, is used to form a discrepancy signal which can be processed to develop a diagnostic

metric so that the condition of the bearing can be inferred. Therefore, the discrepancy signal

η ∈ RNobs×1 corresponds to the features extracted from the Nobs windows applied to the

vibration measurement under consideration.

3.2.5 Processing the discrepancy signal

The discrepancy signal is obtained in terms of shaft angle or shaft revolutions and need to

be processed and analysed so that the condition of the bearing can be inferred. The simplest

processing technique is to calculate the RMS of the discrepancy signal, but it will only be
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possible to detect and trend damage and it will not be possible to perform fault localisation.

Even though the discrepancy signal is relatively robust to varying operating conditions, it is

not immune to it. Due to the sensitivity of the transmission path, between the excitation

source and the measurement point, to the rotational speed and the presence of resonances,

it is expected that the discrepancy measure η will be dependent on the rotational speed ω.

Bartelmus and Zimroz [11] and Zimroz et al. [9] showed that the parameters of a lin-

ear regression model, aiming to capture the relationship between the diagnostic metric and

the operating conditions, are very good condition monitoring metrics. In this chapter, the

conditional distribution p(η|ω) is modelled and used to mitigate the adverse influences of

the varying speed conditions on the diagnostic metric. It is possible to model p(η|ω) by

using Bayesian linear regression for example, however standard regression approaches as-

sume that the noise has constant statistical properties [114], which is not always true for

the data considered. In Figure 3.5, the sensitivity of the discrepancy measure with respect

to rotational speed is presented for a phenomenological gearbox model, discussed in Section

3.3, that contains no bearing damage. The mean as well as the variance of the discrepancy

Figure 3.5: The discrepancy measure η vs. the rotational speed ω from the phenomenological
gearbox model, considered in Section 3.3.

measure conditioned on the rotational speed are dependent on the rotational speed, with a

resonance band being excited approximately at 105 rad/s. The data, presented in Figure 3.5,

are introduced in this section to motivate and illustrate the processing method that is used

in this chapter.

Heteroscedastic models are a class of models where the noise in the data is assumed to be

a function of the inputs [114, 166, 167]. Mixture density networks [114], Gaussian processes

[166] and Bayesian neural networks [167] have been used and extended for heteroscedastic

models. The computational complexity of the aforementioned regression models increase
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because Monte Carlo Markov Chain (MCMC) [166] or gradient-based optimisation methods

are required [167] to estimate the noise parameters.

In this chapter, a very simplified non-parametric model is used to estimate the conditional

distribution p(η|ω). If the assumption is made that the statistics of the discrepancy measure

are independent of the input for small changes in the rotational speed, and that a sufficient

amount of training data is available, then the conditional mean

µη|ω(ω) = LI ({Ωi}, {µΩi,∆Ω}, ω) , (3.4)

and variance

σ2
η|ω(ω) = LI

(
{Ωi}, {σ2

Ωi,∆Ω}, ω
)
, (3.5)

can be good approximations for the actual conditional mean and variance for a specific

rotational speed ω. The approach uses the discrepancy measures of the training dataset

which correspond to a specific operating condition range ω ∈
[
Ωi − 1

2∆Ω, Ωi + 1
2∆Ω

]
to calculate the mean µΩi,∆Ω and the variance σ2

Ωi,∆Ω. A set of window centres {Ωi} are

generated with a preselected window length ∆Ω to generate a corresponding set of localised

means {µΩi,∆Ω} and variances {σ2
Ωi,∆Ω} of the discrepancy measure η; whereafter the linear

interpolation function, denoted by LI, is used to predict the conditional mean µη|ω given the

rotational speed ω with Equation (3.4).

The benefits of this conditional modelling approach, as opposed to Bayesian regression

for example, is that

• no a priori assumptions are made about the form of µη|ω(ω) nor σ2
η|ω(ω),

• it can be extended to other noise distributions,

• it is very computationally efficient as opposed to models requiring MCMC simulations,

which is an advantage when performing condition monitoring.

The quality of the fit, using Equation (3.4) and Equation (3.5), depends on the distance

between the window centres {Ωi} and the window length ∆Ω. The unknown window length

∆Ω is selected with a grid search optimisation process, discussed in Appendix A.2.1.1.

After, the parameters are estimated, equation (3.4) and Equation (3.5) are used to scale

the discrepancy measure for the features associated with window j of the testing set, denoted
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by ηj , with

ξj =
ηj − µη|ω(ωj)

ση|ω(ωj)
(3.6)

where ξj denotes the new, scaled discrepancy measure and ωj denotes the average rotational

speed for the features associated with window j. The above procedure can be extended

to other distributions, for example if the actual distribution p(η|ω) is skew in the direction

where the discrepancy measure increases, the logarithm of the discrepancy measure log η can

be used instead of η to make the distribution more symmetric. The benefits of the proposed

discrepancy processing procedure, used in this section, are only seen when applied under time

varying speed conditions and will not be seen under constant operating conditions.

The proposed methodology as presented in Figure 3.2 is investigated on phenomenological

gearbox model data in the next section, whereafter it is investigated on experimental data in

Section 3.4.

3.3 Numerical validation

3.3.1 Phenomenological gearbox model

The phenomenological gearbox model that is used in this chapter, is obtained from the paper

by Abboud et al. [28]. The model developed by Abboud et al. [28] approximates compli-

cated physical phenomena such as other damaged machine components and the sensitivity

of the signal’s amplitude to varying rotational speeds, while it is simple to implement and

computationally efficient to calculate, as opposed to lumped-mass and finite element gearbox

models aiming to replicate the same phenomena. The casing or measured vibration signal

for the gearbox is decomposed into four distinct parts [28]

xc(t) = xgmc(t) + xdgd(t) + xb(t) + xn(t), (3.7)

where the deterministic gear component due to gear mesh interactions xgmc, the random gear

component due to distributed gear damage xdgd, the outer race bearing damage component

from a defective bearing xb and the noise xn components can be decomposed into the signal

at the source, convoluted with the associated impulse response function to the point of
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measurement [28]. The decomposition of the signals

xgmc(t) = hgmc ⊗ qgmc(t), (3.8)

xdgd(t) = hdgd ⊗ qdgd(t), (3.9)

xb(t) = hb ⊗ qb(t), (3.10)

is written in terms of the impulse response function hi, the signal at the source qi and the

convolution operator is denoted by ⊗. The impulse response function is written as a single

degree of freedom system with viscous damping

hi(t) = e−ζi2πfn,it sin

(
2π
√

1− ζ2
i fn,it

)
, (3.11)

where the damping ratio of component i is denoted by ζi and the natural frequency of

component i is denoted by fn,i. The deterministic gear component at the source, simulates

the excitation due to the gear mesh interactions

qgmc(t) = Mgmc(ωr(t))

Ngmc∑
k=1

A(k)
gmc cos

(
kNt,g

∫ t

0
ωr(τ)dτ + ϕ(k)

gmc

)
, (3.12)

where Ngmc is the number of gear mesh components which are considered, A
(k)
gmc is the ampli-

tude of the kth component, ϕ
(k)
gmc is the phase of the kth component, ωr(t) is the rotational

speed of the shaft in radians per second and Nt,g is the number of teeth on the gear that is

connected to the shaft under consideration. The monotonic function Mgmc(ωr), simulates the

dependence of the amplitude of the signal component on the rotational speed. The random

gear component, simulates distributed gear damage, and is incorporated to complicate the

bearing condition inference task

qdgd(t) = Mdgd(ωr(t)) · εdgd(t)
Ndgd∑
k=1

A
(k)
dgd cos

(
k

∫ t

0
ωr(τ)dτ + ϕ

(k)
dgd

)
, (3.13)

and it incorporates similar components as Equation (3.12), except for a random component

εdgd, obtained from

εdgd(t) ∼ N (0, σ2
dgd), (3.14)

where N (0, σ2
dgd) is a zero-mean Gaussian distribution with variance σ2

dgd and ∼ denotes that

a random sample is taken from the distribution. The noise from other components such as
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ambient effects is written as

xn(t) = εn(t) ·Mn(ωr(t)), (3.15)

where the monotonic function of ωr is denoted by Mn and the random component

εn(t) ∼ N (0, σ2
n), (3.16)

is a sample from a zero-mean Gaussian function with constant variance σ2
n.

Lastly, the damaged bearing signal is addressed. The outer race damage is simulated as

a train of Dirac functions

qb(t) = Mb(t)

NT∑
i=1

Ab(i) · δ(t− Ti), (3.17)

centred at Ti, where Ti depends on the characteristics of the bearing, slip in the bearing as well

as the shaft speed. Hence, the angle of the impacts with respect to shaft orders, is calculated

in the angle domain and transformed back to the time domain using the relationship between

shaft angle and time [97]. The bearing slip is introduced by adding zero mean Gaussian

noise with a standard deviation of 0.1 to the expected impact angles. The random factor

Ab(i) ∼ N (Āb, σ
2
Ab

) simulates the fact that the magnitudes of the bearing impulses, for a

damaged bearing, are not constant over time. A change in the condition of the bearing, can

be simulated by changing the magnitude of the bearing component in the casing vibration

signal. This is performed by explicitly including a Fault Severity (FS) factor in the modified

casing vibration signal

xc(t) = xgmc(t) + xdgd(t) + FS · x̃b(t) + xn(t), (3.18)

where x̃b(t) is a baseline bearing damage component and FS linearly scales the magnitude

of the bearing impulse. The characteristic frequency of the outer race bearing component is

2.57 shaft orders and it manifest in a frequency band at 5 kHz. A healthy bearing is obtained

by setting FS = 0.
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3.3.2 Vibration data

The proposed methodology is investigated on the phenomenological gearbox model presented

in Section 3.3.1, with the four rotational speed profiles investigated for this model given by

ωr,1(t) =2π(1.3t+ 7), (3.19)

ωr,2(t) =2π(5 sin(0.4πt)− 20 (0.1t− 0.5)2 + 15), (3.20)

ωr,3(t) =2π(6.5 cos (0.2πt) + 13.5), (3.21)

ωr,4(t) =2π(6.5 sin (0.2πt) + 13.5), (3.22)

in rad/s. The rotational speed profiles are also presented in Figure 3.6, where it can be

observed that the four operating conditions have the same maximum and minimum values

and the same mean. Only the healthy data for the first three operating conditions are
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Figure 3.6: The four rotational speed profiles ωr,i for the phenomenological model are pre-
sented, where the i in ωr,i denotes the operating condition profile number indicated in the
legend of the figure. The corresponding equations of rotational speed profiles are given in
Equation (3.19) to Equation (3.22).

used for the model optimisation process. The casing vibration signal and the corresponding

spectrogram for the second operating condition profile are presented in Figure 3.7 for a fault

severity FS = 1 in Equation (3.18). The meshing components, the resonance band excited

by the gear meshing components at 2.0 kHz as well as the resonance band excited by the

random gear component at 3.5 kHz are clearly seen in the spectrogram presented in Figure

3.7(ii). However, the resonance band that is excited by the bearing impulses at 5.0 kHz is not

seen in the spectrogram. The ability of the methodology to detect the presence of damage in

the signal model is investigated in the next section.
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Figure 3.7: The casing vibration signal is shown in its time and the time-frequency domain
representations for the second operating condition profile in Figure 3.7(i) and Figure 3.7(ii),
respectively.

3.3.3 Results

The feature extraction procedure in Section 3.2.2 and the feature modelling procedure in

Section 3.2.3 were applied to the gearbox without bearing damage i.e. xb(t) = 0 for t ∈ R.

This is not strictly a healthy gearbox, because distributed gear damage is present in the

gearbox as well. However, this represents the gearbox in a reference condition, whereafter

changes in the condition of the bearing is detected.

The model parameters are estimated from the vibration data of the first three operat-

ing condition profiles. The discrepancy measure, generated using Equation (3.3), is firstly

obtained for the reference data and is presented with the corresponding rotational speed in

Figure 3.5. Features are extracted from the order tracked and windowed wavelet coefficients

after which a discrepancy measure is obtained for the 16 features extracted from each window.

The discrepancy measure, denoted by η, is processed with Welch’s power spectral density to

calculate how its energy is distributed in the frequency domain with unit orders instead of

Hertz. The spectrum in Figure 3.8 is presented for the four operating conditions that are

under consideration as well as for three Fault Severities (FS) where FS, used in Equation

(3.18), is equal to 1, 2 and 4, respectively.

The Ball Pass Frequency of the Outer race (BPFO) components in shaft orders are de-

tected in all three cases, and as the damage increases the amplitude of the BPFO and its

harmonics increase as well. However, the amplitude of the BPFO is different for the various

operating conditions given the same fault severity. As a result, it is difficult to distinguish

between changes in operating condition and changes in machine condition.
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Figure 3.8: Comparing the spectrum of the discrepancy signals for the four operating condi-
tions and the three fault severities (FS) which are investigated. Note that different scales are
used for the three cases.

However, to make the results more robust, it is necessary to take into account the fact

that the vibration signal and its components are dependent on the operating conditions. The

conditional modelling procedure in Section 3.2.5 is used to obtain the conditional statistics.

Equation (3.4) is used to obtain µη|ω and Equation (3.5) is used to obtain σ2
η|ω, which are

presented in Figure 3.9(i) as µη|ω ± 3 · ση|ω and superimposed on the reference data. A

satisfactory fit is obtained with η in Figure 3.9(i) and therefore it is used further in this

section. In Figure 3.9(ii), the scaled discrepancy measure that is obtained using Equation

(3.6) is presented over the rotational speed. The scaled discrepancy signal, ξi, presents the

desired property as its magnitude is relatively speed independent.

The spectrum of the processed discrepancy signal is presented in Figure 3.10 and it

should be highlighted that the amplitude of the BPFO is independent of the rotational
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Figure 3.9: The discrepancy data over the rotational speed, originally presented in Figure
3.5, is presented with the fit µη|ω(ω) and ση|ω(ω) in Figure 3.9(i). The processed discrepancy
signal is presented in Figure 3.9(ii) for the reference data.

speed profile. The slight amplitude differences between the BPFO, estimated under the same

operating condition, are attributed to a variation in noise, the random gear component and

the model fit which is not perfect as seen in Figure 3.9. However, a significant improvement

has been achieved by processing the discrepancy measure. This makes detecting, localising

and trending the bearing damage easier under varying speed conditions.

3.4 Experimental validation

Two experimental investigations are performed in this section. In the first investigation, the

ability of the methodology to detect damage, localise damage and to trend the diagnostic

metric as a function of measurement time is investigated. The dataset was acquired un-

der constant operating conditions and therefore the results do not reflect the ability of the

methodology to be used under varying speed conditions. Hence, in the second investigation,

the ability of the methodology to detect and localise damage is investigated on experimental

data that were acquired under varying speed conditions.

3.4.1 Investigation 1

The IMS bearing dataset [168, 169] for the case where outer race damage occurred on a

bearing, which ultimately resulted in the complete failure of the bearing, is investigated in

this section. A schematic of the setup is presented in Figure 3.11. The run-to-failure test-rig

contains four bearings supporting the same shaft, where the shaft is connected with a belt

to an electric motor. A constant load of 6000 lbs and a constant shaft speed of 2000 rpm

were applied during the experiments. Vibration measurements of 1 second long were sampled

at 20 kHz, and ultimately 984 measurements were obtained during the experiment until the

amount of debris in the oil, that were attached to a magnetic plug, exceeded a predefined
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Figure 3.10: Comparing the spectrum of the processed discrepancy signals for the four oper-
ating conditions and the three fault severities that are investigated for the phenomenological
gearbox model.

level [169].

The proposed methodology was applied to the dataset, where the first ten measurements of

bearing B1 that ultimately failed, were used to optimise the Gaussian model. The processed

discrepancy signal in the angle domain is used in this section, even though the data were

acquired under constant operating conditions. There will not be any benefits from using the

proposed discrepancy processing technique in Section 3.2.5 when the shaft speed is constant,

however it is used for consistency. The power spectral density for each measurement was

calculated and presented over the measurement number in Figure 3.12(i), while the spectrum

for a single measurement is shown in Figure 3.12(ii). The theoretical BPFO component

of 7.059 shaft orders and its harmonics are presented in Figure 3.12 as well. The damage

components became visible at the 535th measurement in Figure 3.12(i).
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Figure 3.11: The IMS experimental setup [169]. The different bearings are indicated by B1,
B2, B3 and B4. Bearing B1 is the bearing that failed.
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Figure 3.12: The discrepancy as a function of measurement number and frequency (in shaft
orders) is presented for all the measurement files in Figure 3.12(i), while the spectrum of a
single measurement is presented in Figure 3.12(ii) for the IMS bearing dataset. The theo-
retical BPFO and its harmonics are presented as vertical, dashed lines in Figure 3.12(i) and
Figure 3.12(ii).

Lastly, developing and trending a diagnostic metric over the measurement number are

investigated. The first proposed metric, is to calculate the Root-Mean-Square (RMS) of the

discrepancy signal for each measurement, which is presented over the measurement number

in Figure 3.13. An alarm threshold is considered by calculating the mean µ and the standard

deviation σ of the diagnostic metric for the first ten measurements, and then calculating

µ + kσ, where k = 3. If the number of measurements used to calculate the alarm threshold

is too little, poor estimates of the mean and the standard deviation will be obtained. The

second metric that is proposed is the amplitude of the fundamental component of the BPFO.

An alarm threshold is calculated with the same method as the RMS metric. The change in

condition, estimated at the time instant or measurement number where the mean of three

consecutive diagnostic metrics exceed the threshold, is presented in Figure 3.13. The trending
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Figure 3.13: Two diagnostic metrics are shown on a logarithmic scale as function of the
measurement number for the IMS dataset. For the first diagnostic metric, the RMS of the
entire discrepancy signal is calculated and for the second diagnostic metric the fundamental
outer race component in the spectrum for each measurement is calculated.

procedure is more robust to false alarms when using three consecutive measurements as

opposed to a single measurement.

The diagnostic metrics presented in Figure 3.13 do not increase monotonically, which

emphasises that the methodology’s aim is to infer the presence of damage by detecting the

presence of impulses in the signal. The progression of bearing damage, as indicated and

discussed by El-Thalji and Jantunen [21], does not result in the magnitude of impulses to

increase monotonically, but it can go through increasing and decreasing phases. This possibly

reflects the characteristics that are observed in Figure 3.13.

Hence, from the results in Figure 3.12 and Figure 3.13 it is concluded that the developed

methodology allows damage to be detected, located and trended prior to the failure of the

bearing. The discrepancy signal is sensitive to changes in machine condition and the RMS

of the discrepancy signal is a very good metric to be used for fault detection and trending.

By using the amplitude of the BPFO component as a metric, the development of localised

damage can be detected as well.

3.4.2 Investigation 2

In this section, four run-up datasets that correspond to four bearing conditions are analysed

using the proposed diagnostic methodology. An overview of the setup as well as the data are

presented in the next section, whereafter the methodology is applied on the data.
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3.4.2.1 Overview of setup

Experimental data, acquired from a SpectraQuest, Inc. Machinery Fault Simulator, are

processed in this section. The experimental setup, presented in Figure 3.14, consists of a 0.5

HP three-phase electrical motor that has a nominal speed of 3450 rpm and a shaft loader

which applies a static load of 49.05 N to the system. The left bearing was in a healthy

LoadElectric motor
Healthy
bearing

Testing 
bearing

Coupling y

z

Figure 3.14: A schematic of the test bench that is investigated for the SpectraQuest, Inc.
dataset.

condition, while the condition of the right bearing, i.e. the testing bearing, was changed

between the different experiments. The four bearing conditions that were investigated for

the right bearing are presented in Table 3.1, with the short name that is used in the figures

and the analytical defect frequency, calculated from the properties of the bearing, included

as well.

Table 3.1: Characteristics of the right bearing of the experimental setup in Figure 3.14.

Testing bearing condition Short name for measurement Defect frequency
(shaft orders)

Healthy HH -
Outer race damage HO 3.5913
Rolling element damage HB 2.3751
Inner race damage HI 5.4087

For each of the bearing conditions presented in Table 3.1, a speed run-up was per-

formed while various signals such as acceleration measurements and a one-pulse per revo-

lution tachometer signal were acquired. The rotational speed profiles for the four cases, using

the tachometer signal information, are presented in Figure 3.15. The angular acceleration of

the shaft was different for all four cases, with approximately the same maximum rotational

speed obtained in each case. The vibration signals in the y-direction for the four cases listed

in Table 3.1, sampled at 25.6 kHz, are presented in Figure 3.16. The sensitivity of the accel-

eration signal’s amplitude to rotational speed is clearly observed for all four cases in Figure
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Figure 3.15: Rotational speeds as a function of measurement time of the four datasets from
the SpectraQuest, Inc. setup. The data are labelled as follows: HH: Healthy bearing; HB:
Rolling element damage; HI: Inner race damage; HO: Outer race damage.

3.16.

3.4.2.2 Results

The proposed feature extraction approach in Section 3.2.2 was applied to the healthy vibra-

tion data, whereafter a model of the features was created following the procedure described

in Section 3.2.3. The discrepancy metric was generated using Equation (3.3), with the pa-

rameters of the aforementioned model, and used with the rotational speed in Figure 3.15 to

estimate µη|ω(ω) and ση|ω(ω)2 with Equation (3.4) and (3.5), respectively. The same feature

extraction procedure was applied for the damaged cases, whereafter the discrepancy metric

was generated with Equation (3.3) and processed using Equation (3.6). The processed dis-

crepancy metric is analysed using Welch’s power spectral density estimate and the results

are separately presented for the four bearing conditions in Figure 3.17. More information on

the bearings is given in Table 3.1.

The spectrum of the healthy bearing in Figure 3.17(i) contains the expected frequency

components such as the shaft orders and its harmonics, but the magnitude of the amplitudes

is very small. In the spectrum for the bearing with outer race damage in Figure 3.17(ii), the

fundamental outer race component and its harmonics are seen within the spectrum with other

frequency components such as the shaft order and its harmonics. The rolling element damage

components dominates the spectrum in Figure 3.17(iii), with a slight difference between

the theoretical defect frequency and the actual defect frequency presented. The inner race

component and its harmonics are not clearly seen in the spectrum in Figure 3.17(iv), because

the spectrum is contaminated by other components. The spectrum of all cases presented
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Figure 3.16: The vibration signals for the healthy testing bearing 3.16(i) and the testing
bearing that has outer race damage 3.16(ii), rolling element damage 3.16(iii) and inner race
damage 3.16(iv) are presented.

in Figure 3.17 is contaminated by harmonics of the Fundamental Train Frequency (FTF)

which is equal to 0.4 shaft orders. The presence of these components can be attributed to an

improper installation of the bearing.

The discrepancy data versus the rotational speed data are presented in Figure 3.18(i)

with the fit µη|ω(ω) and ση|ω(ω) presented as well. The fit in Figure 3.18(i) does not capture

the characteristics of the data properly and this practically indicates that Equation (3.6)

does not scale the data appropriately using the current fit. The discrepancy measure, for a

fixed rotational speed, is skewed in the direction of increasing discrepancy which means that

a Gaussian fit is not appropriate. It is possible to make the distribution more symmetric, by

calculating the logarithm of the discrepancy measure i.e. log η instead. Hence, in Equation

(3.4), Equation (3.5) and Equation (3.6) the discrepancy measure η is replaced by log η to

obtain the result presented in Figure 3.18(ii). The fit is significantly better when using the

logarithm of the data and it can be seen that only the lower bound of the fit (i.e. µ − 3σ)

deviates from the actual lower bound. The spectrum of the new processed logarithm of the
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Figure 3.17: The spectrum of the processed discrepancy signals for the case where the testing
bearing was healthy is presented in Figure 3.17(i) and where it had outer race damage is
presented in Figure 3.17(ii), rolling element damage is presented in Figure 3.17(iii) and inner
race damage is presented in Figure 3.17(iv).

discrepancy signal is presented in Figure 3.19.

If the spectrum of the healthy bearing in Figure 3.19(i) is compared to the spectrum of

Figure 3.17(i), it can be observed that the shaft order components are seen more clearly. In

Figure 3.19(ii), the outer race damage components are very prominent in the spectrum. The

contaminating frequency components, surrounding the outer race damage components, are

smaller with respect to the amplitude of the outer race damage components when compared

to the result in Figure 3.17(ii). The spectrum in Figure 3.19(iii), contains the rolling element

damage component and its harmonics. The rolling element bearing damage components seem

slightly smaller with respect to the shaft order components when compared to the spectrum in

Figure 3.17(iii). The improper scaling used in Figure 3.17(iii) amplified the defect frequencies

of the rolling element damage. In the spectrum in Figure 3.19(iii), it is possible to detect

the presence of rolling element damage and the scaling with log η can be consistently used to

draw conclusions from future datasets.

The inner race damage components are slightly more prominent in the spectrum in Figure

3.19(iv) as compared to the spectrum in Figure 3.17(iv). A zoomed view of the inner race

damage spectrum, presented in Figure 3.20, indicates that there is an inner race component

present and it is surrounded by the shaft order and the other contaminating components.
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Figure 3.18: The fit of µη|ω(ω) and ση|ω(ω) is compared in Figure 3.18(i) for the original
discrepancy data η and for log η in Figure 3.18(ii).

Hence, from the results it is possible to detect the presence of outer race, rolling ele-

ment and inner race damage components in varying speed conditions using the proposed

methodology. Even though the initial results that were obtained by modelling η made it

possible to detect the damage components, the results were more robust by using a more

appropriate density i.e. when log η was modelled instead. The large speed changes in this

dataset complicated the noise distribution of the discrepancy signal due to possible non-linear

effects seen in Figure 3.18. It is therefore suggested that more elaborate noise models need

to be investigated for equipment with significant speed changes throughout its operation to

ensure that the processed discrepancy signal is speed independent. It is also prevalent from

the results that are presented in Figure 3.19 and Figure 3.20 that the proposed procedure

is not capable of removing the contaminating noise components generated by the 0.4 shaft

order components nor the shaft order harmonics. The proposed method is designed to detect

the presence of singularities and impulses and therefore the presence of impulses and singu-

larities in the signal will be reflected in the discrepancy signal as well. The contaminating

spectral components can be attenuated by methods proposed in literature for example see

Refs. [28, 92].

3.5 Additional investigations

In the introduction of this chapter, it is stated that the methodology is presented without

optimising each sub-process. This is because optimising each sub-process is machine depen-

dent and it usually requires historical fault data to be available to maximise the detection

capabilities of the model. Hence, the feature extraction and feature modelling steps were

designed based on the information from literature and may not be optimal.

However, it is sensible to compare different time-frequency analysis procedures such as
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Figure 3.19: The spectrum of the processed discrepancy signals for the case where the testing
bearing was healthy is presented in Figure 3.19(i) and where it had outer race damage is
presented in Figure 3.19(ii), rolling element damage is presented in Figure 3.19(iii) and inner
race damage is presented in Figure 3.19(iv).

the the angle-order spectrogram, the angle-frequency instantaneous power spectrum, the em-

pirical mode decomposition and wavelet packet transform for bearing diagnostics. It is also

sensible to compare the performance of Gaussian models to Gaussian mixture models and

hidden Markov models i.e. other discrepancy models that have been used in literature as well

as a principal component analysis model. Hence, separate investigations were performed to

compare different time-frequency decomposition approaches and different models for discrep-

ancy analysis. Only the results are discussed in this section, with the complete investigations

and results found in Appendix A.2.2 and Appendix A.2.3.

In summary, the results in Appendix A.2.2 indicate that the angle-frequency instantaneous

power spectrum and the wavelet packet transform using the db1, db4 and db44 have potential

for discrepancy analysis under varying speed conditions. The benefit of the instantaneous

power spectrum is that the basis function does not need to be determined beforehand and

therefore it needs to be considered for future investigations using discrepancy analysis. Even

though the investigation indicated that the angle-order spectrogram is sensitive damage, it is

not suggested for bearing diagnostics, because the extracted features are inherently sensitive

to varying speed conditions. The empirical mode decomposition performed poorly on the

investigated datasets; this is attributed to the potential occurrence of mode mixing which
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Figure 3.20: Zoomed view of the spectrum of the inner race damage bearing case (HI)
originally presented in Figure 3.19(iv).

means that the features do not have a consistent meaning for discrepancy analysis.

The results indicate in Section A.2.3 that the Gaussian mixture model’s discrepancy signal

is the most sensitive to bearing damage and the most robust to varying speed conditions

for the specific dataset under consideration. The Gaussian and hidden Markov models’

discrepancy signals are also sensitive to bearing damage, but they are also sensitive to changes

in operating conditions. The latter shortcoming can be circumvented by using the discrepancy

processing technique in Section 3.2.5. Lastly, the principal component model, which uses the

reconstruction error as a discrepancy measure, performed poorly on the investigated datasets.

3.6 Conclusion and recommendations

In this chapter, a novelty detection methodology is presented for bearing diagnostics under

varying speed conditions. The methodology follows a similar process as gear discrepancy

analysis methodologies [155, 156], however, care is taken to retain the angle-time cyclosta-

tionary properties of the bearing signal in the feature extraction process. After the features

are extracted, a corresponding discrepancy signal is generated and processed to increase its

robustness to varying speed conditions. The power spectral density of the processed discrep-

ancy signal is used to diagnose the bearing.

The numerical gearbox and experimental bearing investigation indicate that it is possible

to supplement time-frequency analysis approaches such as the wavelet packet transform with

historical data, which can increase the effectiveness of the condition monitoring process un-

der varying operating conditions. For a complex gearbox fault diagnosis methodology, it is

suggested that a separate discrepancy methodology be used for the gears and the bearings,

because the damage modes manifest differently in the signals. This is a potential avenue that

can be investigated for future work.
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Chapter 4

Spectral coherence novelty detection method-

ology

4.1 Introduction

Cyclic spectral analysis techniques such as the spectral correlation and the spectral coherence

are some of the most powerful rotating machine fault diagnosis techniques [26, 84, 87]. This

is attributed to their ability to effectively represent the cyclic and spectral frequencies of

second order cyclostationary signal components in a two-dimensional frequency-frequency

plane. The spectral coherence, for example, is able to amplify weak components in the

frequency-frequency plane which makes it very effective for incipient fault detection [94]. It

is even possible to localise the damaged component by utilising the available prior knowledge

of the kinematics of the machine e.g. shaft frequency and bearing fault frequency. These

properties make a novelty detection methodology, centred around the spectral coherence,

sensible to ensure rotating machines can be effectively diagnosed.

Therefore, in this chapter, a methodology is proposed by combining the spectral coherence

with historical data of a healthy machine and by incorporating prior knowledge about the

kinematics of the machine. The methodology is capable of not only detecting changes in the

condition of the machine, but it is also capable of determining which component is damaged.

However, the conventional frequency-frequency spectral coherence is ill-suited for varying

operating conditions and therefore the order-frequency spectral coherence, which generalises

the spectral coherence to varying speed conditions [31, 97], is used throughout this chapter.

The methodology is validated on the phenomenological gearbox model used in Section 3.3.1

and the experimental gearbox data presented in Section 2.3.3.
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4.2 Methodology

An overview of the spectral coherence novelty detection methodology is presented in Figure

4.1. A temporal vibration signal y(t) and a corresponding rotational speed signal ω(t) are

Spectral
coherence
calculation

Diagnostic metric
Healthy data 

model
evaluation

Feature 
extraction

Residual
signal

calculation

Vibration
signal

Rotational speed
signal

Figure 4.1: Overview of the proposed methodology.

acquired under non-stationary operating conditions, whereafter the residual signal x(t) is

calculated by subtracting the generalised synchronous average from the vibration signal.

The Order-Frequency Spectral Coherence (OFSCoh) of the residual signal is calculated and

features are extracted from the OFSCoh. The extracted features and a probabilistic model,

optimised on the healthy data, are used with a discrepancy function to calculate a diagnostic

metric. The diagnostic metric indicates the novelty of the measurement and is used to infer

the condition of the machine.

A more detailed description of each step in the process is given in the subsections of this

section.

4.2.1 Estimating the residual signal

The spectral coherence is a second order cyclostationary analysis technique, therefore it is

good practice to remove the first order cyclostationary components from the signal to ob-

tain a residual signal, whereafter the spectral coherence is calculated of the residual signal.

It is possible to calculate the residual signal by using the synchronous average to estimate

the first order cyclostationary components, whereafter the synchronous average is subtracted

from the vibration signal. However, this procedure is only valid under constant speed op-

erating conditions where the cyclo-ergodic assumption is valid. Varying speed conditions

result in additional amplitude modulation due to the transmission path effect which violates

the cyclo-ergodicity assumption made in the synchronous averaging procedure and therefore

the residual signal cannot be properly estimated with the conventional synchronous average

[13, 41].

Abboud et al. [28] compared different envelope enhancement techniques under varying

speed conditions. According to their results, the generalised synchronous average performs
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very well in attenuating deterministic components under varying speed conditions and there-

fore it is used in this methodology. In the generalised synchronous average, the measured

vibration signal y(t) and the rotational speed signal ω(t) are transformed from the time to

the angle domain y(θ) and ω(θ) using order tracking, whereafter the raw estimator of the

generalised synchronous average of the signal y(θ) [41],

m̂y(θΘ, ωr) =
1

card{Kr (ωr)}
∑
k∈Kr

y(θΘ + k ·Θ), (4.1)

defined for θΘ ∈ [0,Θ), is calculated for R rotational speed regimes {ωr}. In Equation (4.1),

the set of all k ∈ N∗ for which the average rotational speed is in the bounds [ωr−∆ω/2, ωr +

∆ω/2] is given by [41]

Kr(ωr) =

{
k ∈ N∗

∣∣∣∣∣ωr − ∆ω

2
≤ 1

Θ

∫ kΘ

(k−1)Θ
ω(θ)dθ < ωr +

∆ω

2

}
, (4.2)

with the cardinality of Kr denoted card{Kr} and N∗ = {1, 2, . . .}.

A smoothed estimate of the generalised synchronous average using kernel density estima-

tors K(·) is used as opposed to the raw estimate [41]

M̂y(θΘ, ω) =
1∑R

r=1K
(
ω−ωr
λ

) R∑
r=1

K
(
ω − ωr
λ

)
m̂y(θΘ, ωr), (4.3)

where λ is a smoothing parameter and R ∈ N∗ denotes the number of regimes used in the

estimation. Ultimately, the generalised synchronous average is used to estimate the angular

residual signal

x(θ) = y(θ)− M̂y

(
2π

θ

Θ
, ω(θ)

)
, (4.4)

whereafter the temporal residual signal x(t) can be obtained from the relationship between

the angle and the time domain i.e. θ and t.

4.2.2 Order-Frequency Spectral Coherence (OFSCoh)

The OFSCoh of the residual signal x(t) is defined as [31]

Γ2x(αθ, f) =
S2x(αθ, f)(

S2x(0, f)S2xαθ
(0, f)

)1/2
, (4.5)
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where S2x(αθ, f) denotes the Order-Frequency Spectral Correlation (OFSC) of signal x at

cyclic order αθ and at spectral frequency f . The OFSC is calculated with [31]

S2x(αθ, f) = lim
T→∞

1

θ(T )
E
{
FT (x(t))∗FT

(
x(t)e−jαθθ(t)ω(t)

)}
, (4.6)

where ω(t) is the rotational speed and θ(t) =
∫ t

0 ω(u)du is the phase of the shaft, T is the

time duration of the measurement, and FT (x) is the Fourier transform of the signal x over the

time interval T . The OFSC of the signal xαθ = x(t)e−jαθθ(t)ω(t) is denoted by S2xαθ
(αθ, f)

in Equation (4.5).

The OFSC given by Equation (4.6) cannot be calculated analytically for measured vibra-

tion signals and therefore estimators need to be used. One of the most popular estimators

for cyclic spectral analysis [84], namely, the Averaged Cyclic Periodogram (ACP) is used

throughout this chapter. The ACP is used because it has good variance and bias properties

[41, 98] and it is computationally efficient relative to other estimators [84]. The recent ad-

vances in more computationally efficient spectral correlation estimators [94, 95] make it even

more beneficial to use the OFSCoh for condition monitoring applications with much data.

4.2.3 Feature extraction

It is possible to learn the complete spectral coherence of a healthy gearbox as an image with

advanced machine learning models for example, whereafter the trained models can be used

to determine whether the gearbox is healthy or whether a novelty is present from a spectral

coherence. However, this learning task is complex, because the complete spectral coherence

needs to be learned, many healthy datasets are required to ensure that the parameters can

be properly estimated and the output of the model will probably only indicate the presence

of anomalous behaviour and not its cause.

Hence, a feature extraction procedure is used in this methodology which reduces the

dimensionality of the data and it allows not only novelties to be detected, but the condition of

the different machine components in the machine can be inferred as well. This is performed by

firstly utilising the available engineering prior knowledge of the machine i.e. the characteristic

frequencies of the damage modes that need to be detected, whereafter the statistics are

extracted from the spectral coherence at the identified frequencies.

The first step in the feature extraction procedure is to identify the characteristic frequen-

cies of the set of machine components, denoted Sc, that will be monitored. For example, if
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Sc = {gear, pinion, BPFO, BPFI, BSF} is the set of characteristics which is being monitored,

the corresponding set of fundamental cyclic orders {αc} = {αgear, αpinion, . . . , αBSF} can eas-

ily be determined from bearing catalogues and the gear ratios of the gearbox. Therefore, each

characteristic c ∈ Scond has a corresponding fundamental cyclic order denoted by αc which is

approximately known beforehand.

Secondly, it is necessary to extract features at the identified set of fundamental cyclic

frequencies {αc} and their harmonics. The Improved Envelope Spectrum (IES) has performed

very well for enhancing specific frequency bands for bearing diagnostics [28] and therefore

it is sensible to use as a starting point. The IES is calculated by integrating the squared

spectral coherence over a specific frequency range f ∈ [fl, fu] [98]

IES(k · αc; fl, fu) =
1

fu − fl

∫ fu

fl

|Γ(k · αc, f)|2df, (4.7)

where k · αc is the kth harmonic of the cyclic order of characteristic c. However, there are

a few potential problems when using the IES as a feature in a data-driven fault diagnosis

methodology:

• the exact cyclic order of characteristic c, denoted by αc, needs to be known a priori.

Usually, only an analytical estimate is available, which can differ slightly from the actual

cyclic order.

• the integration bounds fl and fu also need to be known a priori i.e. the important

spectral frequency bands are not known without historical fault data. It is possible to

integrate over the entire frequency band i.e. fl = 0 and fu = fs/2, however, this can

potentially decrease the sensitivity of the methodology to subtle changes in a specific

frequency band, because the signal-to-noise ratio of the spectrum will decrease.

The shortcomings of the IES in a data-driven fault diagnosis methodology are circum-

vented by using the modified IES

IESmod(k · αc, fm; ∆α,∆f) =
1

∆α ·∆f

∫ k·αc+∆α/2

k·αc−∆α/2

∫ fm+∆f/2

fm−∆f/2
|Γ(α, f)|2df dα, (4.8)

as a feature, where IESmod(k · αc, fm; ∆α,∆f) denotes the average value of the spectral

coherence for α ∈ [k · αc − ∆α/2, k · αc + ∆α/2] and f ∈ [fm − ∆f/2, fm + ∆f/2]. The

modified IES is a multivariate function of both cyclic frequency k ·αc and spectral frequency

Page 79



fm. The shortcomings of using the IES as a feature are circumvented with the modified IES

as follows:

• The requirement of knowing the exact cyclic order of the characteristic is relaxed by

assuming that the actual cyclic order is in the bounds [k · αc −∆α/2, k · αc + ∆α/2].

• The IES in Equation (4.8) is integrated for a specific integration bound [fl, fu], but

the modified IES is now a function of fm as well, which means that a grid of spectral

frequencies fm can be used to obtain a two-dimensional IES.

The feature given by Equation (4.8) can be generalised by using the concept of a feature

window shown in Figure 4.2. A feature window extracts features e.g. the mean or kurtosis

(k · αc, fm)

Cylic orders α

S
p

ec
tr

al
fr

eq
u
en

cy
f

∆
f

∆f

Figure 4.2: A feature window is presented on the α− f spectral coherence plane, where the
centre of the rectangle is given by (k · αc, fm) and the length and width of the rectangle are
given by ∆α and ∆f respectively.

from a rectangular region in the spectral coherence. For example, if the mean of the spectral

coherence in the rectangle in Figure 4.2 is calculated, it is equivalent to using Equation (4.8).

In Figure 4.3 an example of the application of feature windows is given, where the feature

windows of four characteristics Sc = {A,B,C,D} are presented. It is illustrated that multiple

harmonics can be used to extract features from a single characteristic and it is possible to

make ∆α and ∆f characteristic dependent and ∆α harmonic dependent. After the feature

windows have been designed, it is possible to extract statistics from each feature window in

Figure 4.3 as diagnostic features.

4.2.4 Healthy data model evaluation

A probabilistic model is optimised on the features extracted from the healthy datasets to

estimate the probability density function of the healthy features. The estimated probability

density function p(b) of the features b is used throughout the process. It is subsequently
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Figure 4.3: Two representations of the feature windows are shown. In (a) the feature windows
and their numbering are given, while only the centre of the feature windows and their width
are shown in (b). Different feature windows are used on four characteristics Sc = {A,B,C,D},
where A can for example be the fundamental shaft order component and its harmonic.

possible to use a diagnostic metric such as the negative logarithm of the probability density

function − log p(b) to infer whether the gearbox is healthy or whether anomalous behaviour

is observed. However, it is not possible to determine which component is damaged with the

diagnostic metric. Hence, a different approach needs to be used to infer the condition of the

machine.

The features extracted from the squared-magnitude OFSCoh, denoted by b ∈ RD×1, can

be decomposed into N sub-features b = [b1, . . . bc, . . . bN ]T , where bc denotes the features

associated with characteristic c and N = card{Sc}. It is possible to evaluate how well the

feature of characteristic c corresponds to the features of characteristic c in the healthy dataset

with the marginal distribution

p(bc) =

∫
p(b)dbć, (4.9)

where bc denotes the features of the characteristic that is considered and bć denotes the

complementary features.

Gaussian models are used in this investigation as opposed to more sophisticated models

such as Gaussian mixture models. This is because Gaussian models have fewer parameters

and therefore need less training data to ensure that the parameters of p(b) are estimated

properly. Gaussian models are also computationally efficient to implement with closed form

solutions for the marginal and conditional distributions. The Gaussian model is denoted by

N (x|µ,Σ), where the mean µ and the covariance Σ are calculated for the healthy features.

The distribution over the complete feature space is therefore obtained with

p(b) = N (b|µ,Σ), (4.10)
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while the marginal distribution over the features of a specific characteristic, p(bc), is obtained

with [114]

p(bc) = N (bc|µc,Σcc), (4.11)

where µc is the mean and Σcc is the covariance of the healthy model that correspond to the

features set c.

4.2.5 Novelty detection

The full or marginal distribution can easily be used to obtain a discrepancy measure in the

form of the negative logarithm of the probability density function for novelty detection. For

example, the corresponding discrepancy measure for Equation (4.11) is − log p(bc).

In the next section, the different modelling approaches given by Equation (4.10) and

(4.11), are compared on numerical data for different fault cases.

4.3 Numerical validation

In this investigation, the phenomenological gearbox model used in Section 3.3 is used to

simulate a healthy gearbox and a damaged gearbox that contains different severities of bearing

and distributed gear damage. The purpose of this investigation is to validate that it is

possible to detect and characterise damage with the proposed methodology and to illustrate

the benefits of using the marginal distribution p(bc) for fault diagnosis.

4.3.1 Phenomenological gearbox model

The casing vibration signal xc(t) of the gearbox can be decomposed in terms of the damaged

outer race bearing component xb(t), the random gear component attributed to distributed

gear damage xdgd(t), the deterministic gear component attributed to the gear mesh interac-

tions xgmc(t) and the noise xn(t) as follows [28]

xc(t) = xb(t) + xdgd(t) + xgmc(t) + xn(t). (4.12)

The equations of the different casing vibration components are given by Equations (3.8),

(3.9), (3.10) and (3.15). The bearing and distributed gear damage components in Equation

(4.12) are decomposed into a fault severity factor FSi and a baseline signal component x̃i to

simulate different bearing and gear conditions, where the revised casing vibration signal is
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given by

xc(t) = FSb · x̃b(t) + FSdgd · x̃dgd(t) + xdg(t) + xn(t). (4.13)

The investigated fault severity factors of the bearing and the gear are FSb ∈ {0, 1, 2} and

FSdgd ∈ {0, 1, 2}, respectively, with all combinations of the fault severity factors investigated.

A healthy gearbox is defined as a gearbox with only the gear mesh and noise components i.e.

FSb = FSdgd = 0 in Equation (4.13). The fault severity factors FSi in Equation (4.13) are

used to investigate the sensitivity of the proposed methodology to changes in the vibration

amplitudes of the damaged components. The two damage modes have the following fixed

properties: The bearing damage excites a natural frequency at 6.0 kHz with a cyclic order

of αb = 3.59 shaft orders, while the distributed gear damage excites a resonance band at 1.5

kHz with a cyclic order of αdgd = 1.0 shaft orders. More information related to the model

used in this investigation is given in Appendix B.2.

The gearbox operates under varying speed and constant load conditions. The rotational

speed of the gearbox for a specific measurement is obtained by taking a random sample of

a template operating condition profile. The rotational speed of each measurement used in

this investigation is presented in Figure 4.4(ii) and obtained from sampling the minimum and

maximum values of a template operating condition profile presented in Figure 4.4(i) from a

uniform distribution. This is performed to increase the difficulty of the condition monitoring
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Figure 4.4: The template rotational speed profiles of the four operating conditions are pre-
sented in Figure 4.4(i) and the samples from the template rotational speed profile, used
to generate the datasets, are presented 4.4(ii). The maximum and minimum values of the
template profile are scaled separately with a factor sampled from U [0.9, 1.1] to obtain the
maximum and minimum value of the actual rotational speed profile shown in Figure 4.4(ii).
A uniform distribution with a domain of [0.9, 1.1] is denoted U [0.9, 1.1].
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Figure 4.5: The bearing impulses and the distributed gear component magnitudes that cor-
respond to the three investigated magnitudes for operating condition profile 3 (i.e. OC:
3).

task.

In Figure 4.5, the bearing and distributed gear signals are presented for the three fault

severities that are investigated, i.e. xb(t) = FSb · x̃b(t) and xdgd(t) = FSdgd · x̃dgd(t) are

presented.

4.3.2 Results

The methodology is applied on the phenomenological gearbox model discussed in Section

4.3.1, where the outer race component of a bearing and the gear are being monitored for

changes in machine condition. Hence, the set of components being monitored consist of the

gear and the outer race bearing component i.e. Sc = {dgd, b}, with the corresponding

cyclic orders cdgd = 1.0 and cb = 3.59. These cyclic orders will be used to design the feature

windows.

The OFSCoh of the residual casing signal for a gearbox with bearing and gear damage is

shown in Figure 4.6(i). The bearing damage is clearly seen at 3.59 · k, k ∈ N∗ shaft orders

and a frequency band centred around 6 kHz, while the gear damage manifest at 1 · k, k ∈ N∗

shaft orders and located at a frequency band centred around 1.5 kHz. The OFSCoh in Figure

4.6(i) confirms that the spectral coherence is capable of detecting second order components

in the vibration signal.

The feature windows are designed based on the identified cyclic orders of the monitored

characteristics and presented in Figure 4.6(ii). Four harmonics of each characteristic are

used in this investigation which results in eight feature windows being used along the cyclic
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Figure 4.6: The OFSCoh for the gearbox that has bearing and distributed gear damage is
shown in Figure 4.6(i) . The raw spectral coherence is shown as well as the 64 feature windows
superimposed on the spectral coherence in Figure 4.6(ii). The following abbreviations are
used: B - Outer race Bearing component; DGD - Distributed Gear Damage component; FB
- Feature Bands.

order axis. However, there is a compromise between the number of feature windows that

is used, the resulting number of data points available for estimating the features and the

number of features that need to be learned by the model. Hence, eight feature windows

along the spectral frequency axis are also used to ensure that the frequency resolution is

sufficient to properly estimate the features and to detect bandlimited changes in the frequency

bands. The frequency resolution and the cyclic resolution of the feature windows are 937.5

Hz and ∆α = 0.16 shaft orders. Note that if a significant deviation between the analytical

characteristic frequency and the actual characteristic frequency are expected it is best to

use a ∆α which is harmonic dependent, e.g. ∆α = 0.16 × k, k ∈ N∗, to ensure that the

components can be detected at the kth harmonic.

The mean of each feature window is extracted as a feature i.e. Equation (4.8) is used to

extract the features, which means that a total of 64 features are extracted from the 64 windows

for each measurement. The training features are extracted from 100 healthy measurements

(FSdgd = FSb = 0 in Equation (4.13)) and subsequently used to obtain the mean µ and the

covariance Σ of the healthy model. The same feature extraction procedure is investigated for

the different machine conditions and then the healthy model is subsequently evaluated with

the procedure described in Section 4.2.4.

The diagnostic metric − log p(b), calculated for the healthy gearbox and the gearbox in

the different damaged conditions, is shown in Figure 4.7. This diagnostic metric changes

as the condition of the gearbox changes and therefore it can be used to detect novelties.
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Figure 4.7: The diagnostic metric − log p(b) for all of the features is calculated for the
combinations of gearbox conditions.

However, it is not possible to use the diagnostic metric to infer which component is damaged,

because it changes as the condition of the bearing and the gear change.

The marginal distribution of each characteristic p(bc) is also investigated on the same

data, with the results presented in Figure 4.8(i). In Figure 4.8(i), the diagnostic metric of the
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Figure 4.8: The diagnostic metric to detect distributed gear damage and the bearing dam-
age, denoted by − log p(bdgd) and − log p(bb), are presented in Figure 4.8(i) for different
fault severity factors. The threshold in Figure 4.8(i) is used to calculate an alarm trigger,
whereafter the average alarm trigger is presented in Figure 4.8(ii).

bearing − log p(bb) increases as the fault severity factor of the bearing FSb increases, while

being unaffected by changes in the condition of the gear. An equivalent result is obtained for
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the distributed gear damage diagnostic metric − log p(bdgd); it is sensitive to changes in the

fault severity of the gear, while being robust to changes in the condition of the bearing.

A threshold is also calculated with the healthy data in Figure 4.8(ii) and used to determine

whether the condition of the gearbox has changed or not. The threshold is compared to each

data point in Figure 4.8 to calculate a corresponding alarm value i.e. if the data point exceeds

the threshold the alarm value is unity, while being zero for healthy data. An average alarm

value is presented in Figure 4.8(ii) for the different data points.

The benefits of using the proposed approach are highlighted by the results in Figure 4.8(ii).

The alarm metric is easy to understand and to interpret, while being sensitive to damage

and robust to varying operating conditions due to the advanced technology used in the

process. Therefore, it is possible to automatically detect and characterise numerical bearing

and distributed damage under varying speed conditions with the proposed methodology.

In the next section, the methodology is applied to experimental gearbox data, where it is

illustrated how to use the methodology for data acquired over the life of the machine.

4.4 Experimental validation

The methodology is investigated on the gearbox dataset presented in Section 2.3.1 to further

highlight the potential of the proposed methodology. The ability of the methodology to detect

gear damage and also to localise the damaged component are investigated in this section.

4.4.1 Procedure

A gearbox in a healthy condition was operated under varying operating conditions, where-

after the healthy gearbox was disassembled, damage was seeded on the gear, the gearbox was

reassembled and operated until the gear tooth failed as discussed in Section 2.3.1. In this

investigation, the gear and pinion are monitored i.e. Sc = {gear, pinion}. From the informa-

tion contained in Refs. [16], it is expected that the damage will manifest as modulation with

a period equal to the shaft rotation and therefore the characteristic orders of the monitored

components are αgear = 1.0 and αpinion = 1.85 shaft orders. The gear ratio of the monitored

gearbox is therefore 1.85.

The localised gear damage manifests as localised higher order non-stationary behaviour

in the vibration data and therefore attenuating the gear mesh component will enhance the

diagnostic information in the signal [85, 86]. The deterministic components are removed
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with the same procedure as the numerical data in the previous section i.e. the generalised

synchronous average is calculated and subtracted from the vibration signal to obtain the

residual signal. Therefore, the spectral coherence of the residual signal is calculated based on

specification of [41]. The spectral coherence for two measurements are presented in Figure

4.9(i) and Figure 4.9(iii). The damaged gear is located on the reference shaft and therefore
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Figure 4.9: The OFSCoh of two damaged gearbox measurements are presented in Figure
4.9(i) and Figure 4.9(iii). The feature windows are superimposed on the two OFSCoh in
Figure 4.9(ii) and 4.9(iv).

strong modulations are expected at 1.0·k, k ∈ N∗ shaft orders. The damaged gear component

is seen in a frequency band between [400, 500] Hz for the measurement in Figure 4.9(i) and

as the damage progresses it manifests in a broader frequency range, with prominent peaks

observed at approximately 350 Hz and 650 Hz, as seen in Figure 4.9(iii).

A frequency bandwidth of [0, 1.2] kHz is used with four feature windows used along the

spectral frequency axis. The cyclic order bandwidth is [0, 4.5] shaft orders, which allows the
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first four harmonics of the gear component and the first two harmonics of the pinion compo-

nent to be monitored. The resulting 20 feature windows are presented for two measurements

of the damaged gearbox in Figures 4.9(ii) and 4.9(iv). To ensure that it is possible to properly

estimate the parameters of the model with the available data, it is important to not use too

many feature windows relative to the available data.

In the training phase, 35 healthy measurements are used to estimate the parameters of

the model, whereafter the model is used to infer the condition of the monitored components

i.e. the gear and pinion are compared to a threshold with a similar procedure as Section

4.3.2. The damaged dataset consisted of 103 measurements, evenly spaced over the life of

the gear.

4.4.2 Results

The diagnostic metric of the gear and the pinion, denoted − log p(bgear) and − log p(bpinion)

respectively, are calculated for each measurement in the damaged dataset and presented in

Figure 4.10(i). The diagnostic metric of the gear remains constant for the first few measure-
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Figure 4.10: The diagnostic metric of the gear and the pinion are presented in Figure 4.10(i)
for the damaged measurements. An alarm metric of each measurement is calculated and
presented in Figure 4.10(ii). The alarm metric indicates whether the diagnostic metric of a
specific measurement exceeds the threshold.

ments, whereafter the modulation in the vibration signal of the gear increases significantly.

This resulted in the diagnostic metric to exceed the threshold and it indicates a change in

the condition of the gear. After this occurrence, the diagnostic metric remains approximately

constant, whereafter another significant change in the diagnostic metric is seen at measure-

ment number 80. This significant change in the diagnostic indicator of the gear indicates
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that failure of the gear is imminent and therefore the gearbox has to be stopped immediately.

In contrast to the results of the gear diagnostic metric, the diagnostic metric of the pinion

remains constant over measurement number and it does not exceed the threshold i.e. the

condition of the pinion did not change.

The diagnostic metrics are compared to the threshold to infer the condition of the ma-

chine. The mean value of the previous N measurements is calculated and compared to the

threshold to obtain the alarm metric shown in Figure 4.10(ii). The results in Figure 4.10(ii)

corroborate the observations made in Figure 4.10(i). The alarm metric of the gear indicates

that anomalous behaviour is present due to the presence of gear damage, while the alarm

value of the pinion indicates that healthy behaviour is observed. It is sensible to use the previ-

ous N measurements to calculate an alarm metric of the current measurement, because if the

average value of the diagnostic metrics of the previous N measurements is compared to the

threshold to calculate the alarm value, it attenuates short-term (non-diagnostic) anomalous

behaviour, attributed to anomalous operating conditions for example.

4.5 Conclusion and recommendations

A novelty detection methodology is presented which utilises the available historical data to

detect anomalous behaviour in a gearbox. This methodology is not only capable of detecting

gear and bearing damage under varying operating conditions, it is also possible to localise

the damaged component under varying operating conditions. The methodology is applied for

a numerical and experimental gearbox investigation.

In the numerical gearbox investigation, the gearbox is monitored for outer race bearing

damage and distributed gear damage under varying speed conditions. In the investigation, it

is illustrated that using the negative logarithm of the marginal distribution to calculate a di-

agnostic metric, damage can be detected and the damaged component can be inferred as well.

In the experimental investigation, the gears of the gearbox are being monitored with vibra-

tion data acquired under varying load and speed conditions. The results further demonstrate

the effectiveness of the methodology to detect, localise the damage component and detect

changes in the severity of the damaged component under varying operating conditions.

The results from the two investigations illustrate the benefits of using prior knowledge

i.e. knowledge about sophisticated signal processing techniques and the kinematics of the

machine, in the fault diagnosis process. It is possible to design an effective fault diagno-
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sis methodology that provides robust diagnostic metrics that can be processed to obtain

alarm metrics. The alarm metrics are easy to interpret, which simplifies the fault diagnosis

procedure under varying operating conditions.

It is suggested that future investigations should compare the suitability of different fea-

tures (e.g. the energy of a feature window) and different models (e.g. kernel density estima-

tors) for gearbox diagnostics using this methodology.
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Chapter 5

Novel information enhancement methodol-

ogy

5.1 Introduction

Narrowband feature extraction methods such as the kurtogram are very popular for rotating

machine fault diagnosis applications [101, 102, 104, 106, 170]. In narrowband feature extrac-

tion methods, discussed in Section 1.2.2.6, the frequency band which maximises a specific

statistic (e.g. kurtosis) is identified and can subsequently be used to automatically design the

bandpass filter (i.e. it specifies the centre frequency and bandwidth of the filter) for envelope

analysis. In the paper by Combet and Gelman [103], they illustrated that the spectral kur-

tosis can be used to design a filter, where frequency bands with much impulsive information

are enhanced to improve their ability to detect gear faults.

Incorporating historical data with narrowband feature extraction methods could poten-

tially lead to more effective fault diagnosis. It is therefore desired to develop a methodology

where narrowband feature extraction methods and the available historical data of a machine

in a healthy condition are utilised to obtain a novelty rich signal (i.e. a signal rich with infor-

mation not present in the healthy historical data), by attenuating frequency bands with sim-

ilar characteristics as a healthy machine. This will increase the effectiveness of conventional

signal analysis techniques to perform fault diagnosis, because the diagnostic information in

the signal under consideration is enhanced.

The methodology is presented in Section 5.2, whereafter the methodology is investigated

on phenomenological gearbox data in Section 5.3 and experimental gearbox data in Section

5.4.

Page 92



5.2 Methodology

The purpose of the methodology is to extract a novel signal xnovel ∈ RNx×1 from a measured

vibration signal x = [x[0], x[1], . . . x[Nx − 1]]T with Nx samples i.e. x ∈ RNx×1 by using a

dataset from the machine in a reference condition. The reference dataset contains Ntrain

measurements and is denoted by
{
x

(i)
train

}
, i = 0, . . . Ntrain − 1.

A methodology to extract the novel vibration signal (i.e. it contains novel information)

is presented in Figure 5.1. The methodology consists of two main phases, namely a training

Vibration
signal

Estimated 
novel signal

Signal 
decomposition

Feature extraction 
from 

frequency bands

Feature comparison
to reference model
to design the filter

Signal 
reconstruction

Reference
dataset

Signal 
decomposition

Feature extraction 
from 

frequency bands

Feature model
optimisation

Feature model

Training:

Testing/Application:

Figure 5.1: An overview of the methodology

phase and a testing phase. The training phase is used to obtain the model parameters

through a model optimisation process on the reference dataset. The testing phase uses the

model parameters to design a filter that is used to extract a novel signal that corresponds to

the input vibration signal.

A detailed overview of each step in the methodology is given in subsequent sections.

5.2.1 Signal decomposition and feature extraction

The assumption is made that the machine component damage manifests in specific frequency

bands and results in changes in the statistical properties of the associated feature bands

e.g. the damage results in the impulsiveness to increase. Hence, features are extracted from

narrowband signals to detect changes in the statistical properties of the frequency bands.

The first step of the feature extraction procedure is to decompose the signal into a time-

frequency representation. The Short-Time Fourier Transform (STFT) of the signal x ∈

RNx×1,

Sx[n,m; ∆fl] =

Nw−1∑
k=0

x[n · (Nw −No) + k] · υ[k] · e−j2πkm
∆fl
fs , (5.1)

is used for this task. The STFT is calculated for a pre-determined frequency resolution ∆fl

and a corresponding time resolution ∆tl, with the time step and frequency that correspond

to Sx[n,m; ∆fl] given by t = n∆tl and f = m∆fl, respectively. The windowing function
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υ ∈ RNw×1 can for example be a Hann function, where Nw is the length of the discrete

window function and No denotes the number of samples overlapping between consecutive

windows. The sampling frequency of the signal x is denoted by fs.

The optimal window length for the STFT for machine diagnostics depends on the rota-

tional speed of the component [103, 106] and therefore under varying speed conditions the

optimal window length becomes difficult to estimate. Therefore, in this methodology Nl

time-frequency decompositions are investigated to alleviate the influence of varying speed

conditions. The novel information, detected in the different time-frequency distributions, is

combined to obtain a single novel signal with the method discussed in Section 5.2.4. In the

investigations performed in this chapter, a Hann window is used for all decomposition levels,

with the following window lengths {Nw} = {8, 16, 32, 64, 128, 256, 512, 1024, 2048} and a 75%

overlap between consecutive windows being used.

A feature extraction function Ψfeat is used to extract a diagnostic feature U (f,∆fl) from

the temporal signal associated with each centre frequency f = m ·∆fl of the STFT with a

frequency resolution of ∆fl

U (m ·∆fl,∆fl) = Ψfeat (Sx[n,m; ∆fl]) . (5.2)

The feature extraction function Ψfeat can be used to extract the kurtosis of the bandlimited

signals, whereafter the kurtogram [56]

U (m ·∆fl,∆fl) =

〈
|Sx[n,m; ∆fl]|4

〉
n〈

|Sx[n,m; ∆fl]|2
〉2

n

− 2, (5.3)

is obtained. The squared envelope negentropy can also be extracted which results in the

squared envelope infogram [105]

U (m ·∆fl,∆fl) =

〈
|Sx[n,m; ∆fl]|2〈
|Sx[n,m; ∆fl]|2

〉
n

log

 |Sx[n,m; ∆fl]|2〈
|Sx[n,m; ∆fl]|2

〉
n

〉
n

, (5.4)

or the kurtosis and the squared envelope negentropy can for example simultaneously be used

as features. In Equations (5.3) and (5.4), 〈·〉n denotes the time averaging operator over Nt

time steps e.g.

〈|Sx[n,m; ∆fl]|〉n =
1

Nt

Nt−1∑
n=0

|Sx[n,m; ∆fl]|. (5.5)
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The Nfeat features extracted from the different frequency bands of the Nl STFT decomposi-

tions are written as a vector u ∈ RNfeat to simplify the notation and computations used in

the subsequent sections. The features that correspond to the reference dataset are denoted

by {u(i)
train}, i = 0, . . . , Ntrain − 1 and is the training dataset that is modelled in the next

section.

5.2.2 Feature modelling

In this step of the process, it is necessary to determine whether the features of specific

frequency bands conform to the expected behaviour governed by the probability density

function of the reference features or whether there is novelty in that region.

The features u are parametrised by the Gaussian Probability Density Function (PDF)

p(u;µu,Σu) =
1

(2π)Nfeat/2
1

|Σu|1/2
exp

(
−1

2
(u− µu)T Σ−1

u (u− µu)

)
, (5.6)

where the mean and covariance of the features are denoted by µu and Σu respectively. The

Gaussian PDF is used because of its simplicity and effectiveness for detecting changes in the

features. It is also sensible to use a Gaussian PDF for the features in this dataset as there can

potentially be many features and only a few training datasets, which increases the difficulty

of estimating the unknown parameters and hyperparameters of complicated models properly.

The naive assumption is made that the features are uncorrelated i.e. the full covariance

matrix reduces to a diagonal matrix with the variances of the respective features being on

the diagonal of the covariance matrix. This assumption is made to reduce the number of

parameters that need to be estimated from the reference datasets. The mean

µu[k] =
1

Ntrain

Ntrain−1∑
i=0

u
(i)
train[k], (5.7)

and diagonal covariance matrix

Σu[a, k] =
1

Ntrain − 1

Ntrain−1∑
i=0

(
u

(i)
train[k]− µu[k]

)2
· δ(a− k), (5.8)

of the Gaussian PDF in Equation (5.6) are obtained from the healthy features, where δ

denotes the Kronecker delta function i.e. δ(0) = 1 and 0 otherwise.

The parameters of the model are denoted Θ = {µu,Σu} and a novelty detection scoring

function M(u[k]; Θ) is used with an associated threshold βthres[k] to detect novelties in
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specific frequency bands i.e. a novelty is detected if M(u[k]; Θ) > βthres[k]. A good novelty

detecting scoring function for a Gaussian PDF is the squared Mahalanobis distance which

can be simplified to

M(u[k]; Θ) =

(
µu[k]− u[k]√

Σu[k, k]

)2

, (5.9)

for a diagonal covariance matrix.

5.2.3 Filter design to enhance novel information

It is desired to retain the frequency bands which contain novel information in the novel

vibration signal. This is achieved by using the novelty detection score M(u[k]; Θ) and the

associated threshold βthres[k] to find the filter coefficient h[k] associated with feature u[k]

h[k] =

 1.0 if M(u[k]; Θ) > βthres[k],

0.0 if M(u[k]; Θ) ≤ βthres[k].
(5.10)

The filter coefficient is equal to unity if a novelty is detected and zero if not. The filter has a

similar form to the filter proposed by Combet and Gelman [103], where informative frequency

bands are identified and amplified by the square root of the spectral kurtosis. However, in

the aforementioned paper, the informative frequency bands were determined from a uniform

statistical threshold and did not use historical data in the process. The threshold in Equation

(5.10) is βthres[k] = 9 for k = 0, . . . , Nfeat − 1. The motivation for the threshold is that it

corresponds to µ± 3σ which covers 99.7% of the probability density function of a Gaussian

distribution.

In Equation (5.10), it is possible to use a more sophisticated filter as well; for example, if

a novelty is detected h[k] =M(u[k]; Θ), i.e. the novel information is amplified proportionally

to its novelty score. However, the binary filter is investigated here to reduce the number of

hyperparameters in the model.

5.2.4 Novel signal estimation

The novel signal is estimated from the novelty filter in two steps. Firstly, each frequency

band m of the time-frequency representations of the different window lengths l are scaled by

the novelty filter

S̃x[n,m; ∆fl] = h[κ(m, l)] · Sx[n,m; ∆fl], (5.11)
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where S̃x[n,m; ∆fl] denotes the scaled time-frequency representation Sx[n,m; ∆fl]. The filter

coefficient associated with the centre frequency m ·∆fl and decomposition level l is given by

h[κ(m, l)], where κ(m, l) is a function which relates the centre frequency and decomposition

level to the index of a filter coefficient. In the second step, the inverse STFT of the time-

scale distribution at level l, S−1
x , is calculated by the scaled time-frequency representation to

obtain an estimation of the novel signal

x̂novel[n; ∆fl] = S−1
x (S̃x[n,m; ∆fl]). (5.12)

The ·̂ makes it explicit that an estimate of the novel signal is obtained. The inverse STFT

S−1
x can be used to perfectly reconstruct the signal if the constant overlap-add constraint is

satisfied.

The dependence of the estimation on the frequency resolution ∆fl of the time-frequency

decomposition is emphasised in Equation (5.12). It is ideal to use an estimate that does not

depend on the frequency resolution i.e. to use x̂novel[n] instead of x̂novel[n; ∆fl]. This can be

approximated with a weighted sum of the novel signals associated with each decomposition

l

x̂novel[n] =

Nl−1∑
l=0

x̂novel[n; ∆fl] · w[l], (5.13)

where w ∈ RNl×1 denotes the weight vector, which has the following constraint
∑Nl−1

k=0 w[k] =

1. There are many potential methods to select the elements of the weight vector w, with the

simplest being to assign an equal weight to each frequency band, which results in

x̂novel[n] =
1

Nl

Nl−1∑
l=0

x̂novel[n; ∆fl]. (5.14)

Finally, the estimated novel signal can for example be analysed using cyclostationary

techniques for the presence of damage in the machine components. Different techniques are

investigated for the datasets and described in the following sections.

The methodology, discussed in Section 5.2.1 to Section 5.2.4, is summarised in Figure 5.2

to clarify the steps followed in the training and testing phases.
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Figure 5.2: The proposed methodology is illustrated to obtain a novel vibration signal x̂novel
from a vibration signal x. In the training phase, the reference dataset is used to obtain the
model parameters, whereafter a novel signal is extracted from the vibration signal in the
testing phase.
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5.3 Phenomenological gearbox model

The phenomenological gearbox model, used in Section 3.3.1, is used to generate data of

a gearbox operating in various machine conditions under constant load and varying speed

conditions. The model is slightly modified to include inner race damage as well.

5.3.1 Model

The phenomenological gearbox model is used to generate data in a reference condition, where-

after additional inner and outer race bearing damage is simulated in the gearbox. The gearbox

signal in its reference condition consists of a gear mesh component xgmc, a noise component

xn and a distributed gear damage component xdgd, with the corresponding casing vibration

signal given by

xc(t) = xgmc(t) + xdgd(t) + xn(t). (5.15)

The condition of the gearbox in its reference condition is changed by introducing localised

outer race damage xblo(t) and localised inner race damage xbli(t) with the updated casing

vibration signal given by

xc(t) = xgmc(t) + xdgd(t) + FSblo · xblo(t) + FSbli · xbli(t) + xn(t). (5.16)

The fault severity factors FSi help to explicitly change the magnitude of the bearing damage

components with respect to the other signal components e.g. FSi = 0 indicates that the

associated signal component is not present in the signal.

The gear mesh component, the distributed gear damage component and the noise com-

ponent are given by Equations (3.8), (3.9) and (3.15) respectively and discussed in Section

3.3.1. The outer race bearing damage component

xblo(t) = M(ω(t)) · hblo(t)⊗

NT ,blo−1∑
k=0

Ablo(k) · δ
(
t− T (k)

blo

) , (5.17)

consists of a train of Dirac impulses δ convolved with the impulse response function hblo(t).

The impulses are random in magnitude, captured by the random variable Ablo(k), and are

modulated by the rotational speed of the system with the function M(ω(t)) as well. The

time-of-arrival of bearing impulse k, denoted by T (k)
blo , is influenced by the rotational speed

of the system as well as by slip [97]. Hence, the instantaneous phase of the shaft is used to
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Figure 5.3: The rotational speeds used for the phenomenological gearbox model are presented,
with the rotational speed associated with a specific measurement obtained from ω(t) = at+b.
The parameters a and b are sampled from a normal distribution with unit variance, with
E{ω(t)} = 10π · t+ 30π rad/s.

relate the angle and time of the impulses whereafter slippage effects are introduced by adding

noise from a uniform distribution to the time of arrival of the impulses.

The inner race damage component

xbli(t) = zstribeck

(∫ t

0
ω(τ)dτ

)
·M(ω(t)) · hbli ⊗

NT ,bli−1∑
k=0

Abli(k) · δ
(
t− T (k)

bli

) , (5.18)

has a similar form as the outer race component, except for the presence of the Stribeck

equation [88]

zstribeck(ϕ) =

 z0 ·
(
1− 1

2ε (1− cos(ϕ))
)cstr for |wrp(ϕ)| < ϕmax

0 otherwise,
(5.19)

which simulates the damaged portion of the inner ring moving in-and-out of the load zone.

The wrap function, denoted by wrp(ϕ), returns the phase of the shaft ϕ in the domain

of [−π/2, π/2]. The constants associated with the Stribeck equation are selected as [88]:

cstr = 3/2, ε = 0.49, ϕmax = 0.99π/2rad, and z0 = 1.

However, it is important to highlight the model characteristics that assist with interpreting

the results; the ball-pass outer race and inner race orders of the bearing are 4.12 and 5.88,

while, the natural frequencies being excited by the outer race damage and inner race damage

are 7.0 kHz and 5.5 kHz, respectively.

The rotational speeds for all casing vibration signals are linear ramp-ups (i.e. of the form

ω(t) = at + b), with the initial rotational speed and the gradient sampled from a normal

distribution. The random rotational speed profiles are presented in Figure 5.3.
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Figure 5.4: The Squared Envelope Spectrum (SES) of the original casing vibration signal
(i.e. without any pre-processing performed) from the phenomenological gearbox model that
contains outer race bearing damage and inner race damage, is presented. The analytical fault
frequencies and their harmonics are superimposed on the spectra as well.

5.3.2 Results with raw data

The Squared Envelope Spectrum (SES) is one of the most powerful tools in bearing diagnostics

[28] and therefore it is investigated on the casing vibration signals. In Figure 5.4(i), the SES

of the raw vibration signal is presented, which corresponds to the bearing with outer race

damage. In Figure 5.4(ii), the SES of the raw vibrations signal, which corresponds to the

bearing with inner race damage is presented. The distributed gear damage manifests at the

shaft orders and their harmonics are clearly seen, while the gear mesh component is prominent

at 20 shaft orders. The bearing damage signal components’ are not seen in Figure 5.4 for

both cases. Usually, the SES of the random part is calculated i.e. where the deterministic

components such as the gear mesh components are attenuated [41], but the distributed gear

damage will not be removed due to the statistical nature of its characteristics i.e. it is second-

order cyclo-non-stationary. The complete signal, as opposed to the residual signal, is used

in all analyses to illustrate the ability of the proposed methodology to remove the historical

information from the data.

It is possible to design a bandpass filter by selecting the centre frequency band and the

frequency resolution that maximise the SE infogram shown in Figure 5.5(i) for the outer

race damage and in Figure 5.5(ii) for the inner race damage. However, the distributed gear

damage signal components dominate the feature plane which results in the wrong bandpass

filter to be designed i.e. the resulting bandlimited signal only contains the distributed gear

damage information. Hence, it is sensible to use the proposed methodology to incorporate

the information of the historical data of the machine in a reference condition into the signal

analysis procedure to assist with diagnosing the gearbox. The proposed methodology is

investigated in the next section.
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(i) Outer race damage: FSblo = 1 (ii) Inner race damage: FSbli = 1

Figure 5.5: The squared envelope infogram of the raw casing vibration signal of the phe-
nomenological gearbox model that contains outer race and inner race damage respectively,
is presented. The infogram in Figure 5.5(i) corresponds to the SES in Figure 5.4(i) and the
infogram in Figure 5.5(ii) corresponds to the SES in Figure 5.4(ii).

5.3.3 Results with proposed methodology

Twenty datasets of the gearbox in its reference condition are generated with Equation (5.15)

and used in the training phase of the methodology. The squared envelope infogram given

by Equation (5.4) is used as the features in this investigation, however other features could

also be investigated as alternatives as discussed in Section 5.2.1. The model parameters are

obtained from the features of the reference dataset using the procedure described in Section

5.2.2.

In the testing phase, the vibration data of the phenomenological gearbox model that

contains either inner race or outer race damage are considered. Different magnitudes of the

signal components associated with the damaged bearing are investigated by changing FSi

in Equation (5.16). This is performed to ensure that it is possible to not only detect and

localise the bearing damage, but that it is also possible to infer changes in the condition of the

bearing. The methodology is applied on the datasets by using the same feature extraction

procedure, whereafter the model is used to assign a novelty score to each feature in the

feature map with Equation (5.9). This is used with the threshold to design the filter given

by Equation (5.10), whereafter the estimated novel signal is obtained with the procedure

described in Section 5.2.4.

The squared envelope infogram is presented in Figure 5.6 for the novel signals corre-

sponding to the squared envelope infogram in Figure 5.5. It is evident that the bearing

damage located in the higher frequency bands are retained in the filtering process, while the

distributed gear damage components are not dominating the feature plane any more. It is
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(i) Outer race damage: FSblo = 1 (ii) Inner race damage: FSbli = 1

Figure 5.6: The squared envelope infogram of the estimated novel signal of the phenomenolog-
ical gearbox model that contains outer race and inner race damage respectively, is presented.
The raw signal counterpart of Figure 5.5(i) is presented in Figure 5.6(i), while the raw signal
counterpart of Figure 5.5(ii) is presented in Figure 5.6(ii).

also observed that some spurious frequency bands are retained in the higher decomposition

levels. This is possibly attributed to the statistics being improperly estimated due to the

poor time resolution. However, with the averaging approach in Equation (5.14), the effect of

the spurious components is attenuated.

The SES of the novel signals are presented in Figure 5.7. A significant improvement is

observed in Figure 5.7 compared to the results in Figure 5.4 for a FSi = 1. The bearing fault

frequencies and the associated modulations are prominent in the spectra of the novel signals,

which is in contrast to the SES of the raw signals where the distributed gear damage and

the fundamental gear mesh frequency dominated the lower frequency range of the spectrum.

The squared envelope spectra in Figure 5.7 also indicate that changes in the condition of the

bearings can be detected i.e. an increase in FSi results in an increase in the amplitudes of

the fault components.

The vibration signals are cyclo-non-stationary under varying speed conditions, while the

bearing vibration signal can be approximated as an angle-time cyclostationary signal. This

makes the Order-Frequency Spectral Correlation (OFSC) [31] a powerful tool for analysing

the vibration signals. The OFSC in Equation (4.6) is estimated with the Averaged Cyclic

Periodogram (ACP) for the considered discrete signals [31].

The spectral correlation is presented for a bearing with outer race damage in Figure 5.8(i)

and Figure 5.8(ii) for the original and estimated novel signals respectively. As opposed to

the results in Figure 5.8(i) that are dominated by the gear components at 20 shaft orders,

the bearing damage can be seen at the spectral frequency of 7 kHz, spaced at cyclic orders

of 4.12 in Figure 5.8(ii).
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Figure 5.7: The Squared Envelope Spectrum (SES) of the novel vibration signals for outer
race and inner race bearing damage are shown. The outer race damage spectra with FSi of 1
and 4 are shown in Figure 5.7(i) and Figure 5.7(iii) respectively, while the inner race damage
spectra with FSi of 1 and 4 are shown in Figure 5.7(ii) and Figure 5.7(iv) respectively.
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Figure 5.8: The magnitude of the spectral correlation of the gearbox with outer race damage
is presented in Figure 5.8(i) for the original signal and 5.8(ii) for the estimated novel signal.
The corresponding Enhanced Envelope Spectrum based on the Spectral Correlation EESSC

is shown in Figure 5.8(iii) for the original signal and Figure 5.8(iv) for the novel signals.
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The Enhanced Envelope Spectrum (EES), estimated with the Spectral Correlation (SC)

EESSC(αθ) =

∫
|S2x(αθ, f)|df, (5.20)

highlights the spectral frequency components that are present in the OFSC and is presented in

Figure 5.8(iii) and Figure 5.8(iv) for the spectral correlation of the original and novel signals

investigated in Figure 5.8(i) and Figure 5.8(ii). The EESSC of the original vibration signal

is dominated by the distributed damage and the gear mesh component, while the EESSC of

the novel vibration signal is similar to the results seen in the squared envelope spectrum in

Figure 5.7(iii). Hence, by using the estimated novel vibration signal of the vibration signal,

the novel information associated with the bearing damage is highlighted, while the historical

information is attenuated. Similar conclusions were drawn from the inner race damage signal

results and therefore the results are excluded for the sake of brevity.

The Order-Frequency Spectral Coherence (OFSCoh), given in Equation (4.5), is another

useful technique for analysing second-order cyclo-non-stationary signals. The OFSCoh is a

normalised representation of the SC, which helps to amplify small second-order components.

The Enhanced Envelope Spectrum (EESSCoh) based on the Spectral Coherence (SCoh) [94]

EESSCoh(αt) =

∫
|Γ(αt, f)|df, (5.21)

is calculated from the OFSCoh and is another useful quantity to detect small second-order

cyclostationary components. The OFSCoh is presented in Figure 5.9(i) and Figure 5.9(ii) for

the original and the estimated novel vibration signals also investigated in Figure 5.8. The

attenuated gear components are more prominent in the OFSCoh as opposed to the OFSC.

This is attributed to the fact that the OFSCoh enhances small signal components, which is

also verified by the EESSCoh of the signals, which shows that the attenuated gear components

are enhanced. The bearing damage is more prominent with respect to the gear components

in Figure 5.9(iv) than in Figure 5.9(iii). This illustrates two important points that while the

OFSCoh and the EESSCoh are very powerful and important for detecting small second-order

cyclostationary components in vibration signals, these techniques do not accurately convey

the novel information content of the vibration signal (i.e. they amplify the information that

was previously attenuated).

The results in this investigation illustrate the potential of the proposed methodology. It
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Figure 5.9: The magnitude of the Order-Frequency Spectral Coherence (OFSCoh) is shown
for the original signal with outer race damage in Figure 5.9(i) and the estimated novel signal
in Figure 5.9(ii). This corresponds to the Order-Frequency Spectral Correlation (OFSC) in
Figure 5.8(i) and Figure 5.8(ii). The Enhanced Envelope Spectrum (EESSCoh) is shown in
Figure 5.9(iii) for the OFSCoh in Figure 5.9(i) and the EES is shown in Figure 5.9(iv) for
the OFSCoh in Figure 5.9(ii).

is possible to attenuate the historical information from different interfering sources, which re-

sults in the novel damage information to be enhanced. The implication is that non-diagnostic

frequency bands that dominate the signal and impede the fault diagnosis process, are auto-

matically attenuated based on a statistical criterion.

5.4 Experimental gearbox dataset

5.4.1 Overview of dataset

The experimental gearbox dataset, discussed in detail in Section 2.3.1, is used to validate

the proposed methodology in this section. In the training phase of the methodology, 30

measurements are used to calculate the parameters of the model in Section 5.2.2, while 100

measurements, equally spaced over the operational life of the gear, are used in the testing or

application phase of the methodology.

The axial component of a tri-axial accelerometer located on the bearing housing of the test

gearbox is used in this investigation. The spectrogram of the vibration signal of the gearbox

with localised gear damage is presented in Figure 5.10(i) where the vertical lines indicate
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Figure 5.10: The spectrogram of a gearbox with localised damage under variable operating
conditions is presented in Figure 5.10(i). The benefits for using the statistics of narrowband
signals as opposed to the amplitudes of the frequency components for detecting frequency
bands with novel information are illustrated in Figure 5.10(ii). The difference in the spectrum,
between the damaged gearbox signal used in Figure 5.10(i) and the averaged spectrum of a
healthy gearbox is presented in Figure 5.10(ii) and denoted as ∆Amplitude. The difference
in the squared envelope infogram, between the damaged gearbox signal used in Figure 5.10(i)
and the squared envelope infogram of a healthy gearbox is presented in Figure 5.10(ii) and
denoted as ∆SE infogram. The squared envelope infogram is calculated for a specific window
length to make the illustration easier.

the approximate spectral frequencies where the gear damage can be observed. The time

varying frequency components, attributed to the gear mesh interactions, are proportional to

the rotational speed of the input shaft presented in Figure 2.8, and clearly seen throughout

the spectrogram of the signal. The time invariant frequency components are also clearly seen.

The benefit of using features of narrowband signals as opposed to spectral differencing

is illustrated in Figure 5.10(ii), with the vertical lines being used to make the comparison

easier between the two plots in Figure 5.10(ii) and the spectrogram in Figure 5.10(i). It is

evident that the largest value for ∆SE infogram between the SE infogram of the damaged

gearbox signal and the averaged SE infogram of the healthy gearbox signals occurs in the

frequency bands where the damage is observed in Figure 5.10(i) i.e. they are highlighted with

the vertical lines. This is in contrast to the results of ∆ Amplitude; the amplitude difference

is very sensitive to the operating conditions and the time-invariant frequency content seen

at approximately 1100Hz. This supports using features in the methodology as opposed to

differences in spectra for designing the novel filter.

The methodology is further motivated by:

• The damage results in significant changes in the SE infogram in two distinct frequency
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bands in Figure 5.10(ii) as indicated by the vertical lines. This emphasises that more

than one frequency band can potentially be used for demodulation for example. This

is contrast to the methods in literature where only a single frequency band is selected

for further analyses.

• The ∆SE infogram in Figure 5.10(ii) can be difficult to interpret manually, especially

if many window lengths are investigated for the STFT decomposition, which is why an

automatic statistical approach to incorporate the information of the different frequency

bands into a single signal which can be used for further analyses, is required.

5.4.2 Results

The proposed methodology is implemented as in the numerical gearbox dataset. The SE info-

gram is used as features for consistency, whereafter a Gaussian model is used to describe the

model parameters of the healthy dataset. The healthy dataset consists of 30 measurements.

The novel information filter is designed using the proposed procedure and compared to the

original signal using different signal processing techniques for different measurements.

5.4.2.1 Results with conventional methods

A popular signal analysis technique for gear diagnosis is the synchronous average of the vibra-

tion signal [13, 19]. The synchronous average is adversely affected by the modulation induced

by varying operating conditions, but the load and speed variations are non-synchronous with

respect to the shaft rotations and their influence are attenuated by the synchronous averaging

process [19].

The synchronous averages for an original vibration signal and the corresponding novel

vibration signal are presented for two measurements in Figure 5.11. Note that a total of 100

measurements are used between the two gear conditions shown in Figure 2.7, e.g. Measure-

ment 75 means that 75% of the experimental time has elapsed. The gear damage was less

developed for the measurement used in Figures 5.11(i) and 5.11(ii) compared to the mea-

surement used in Figures 5.11(iii) and 5.11(iv) which resulted in vibration signals with larger

amplitudes in the latter results for the novel signal. This is not evident in the original signal.

Even though the synchronous averages of the raw vibration signals in Figure 5.11(i) and Fig-

ure 5.11(iii) do not clearly highlight the fact that only localised gear damage at approximately

135 degrees is present, the results are improved when calculating the synchronous average of
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Figure 5.11: The synchronous averages of two measurements of the damaged gear dataset
are presented.

the novel vibration signals shown in Figure 5.11(ii) and Figure 5.11(iv). In the novel vibration

results, the damage component is more prominent with fewer spurious impulses that impede

the condition inference process.

The squared envelope of the vibration signal indicates the instantaneous power of the

vibration signal over time and can highlight potential impulses induced by damage. The

localised gear damage results in periodical, localised changes in the power of the vibration

signal and therefore the synchronous average of the squared envelope is investigated as well.

The synchronous averages of the square envelope corresponding to the signals in Figure 5.11

are presented in Figure 5.12. It is evident from the results that the synchronous average of

the instantaneous power highlights the localised damage better for the original and the novel

cases as opposed to the synchronous average of the vibration signals. However, a significant

improvement is seen in the novel vibration signals’ results in Figure 5.12(ii) and Figure

5.12(iv) when compared to the corresponding original vibration signals’ results in Figure

5.12(i) and Figure 5.12(iii). This highlights that the proposed pre-processing methodology is

capable of highlighting the diagnostic information better and it also leads to results that are

easier to analyse.

The SES is also investigated and presented in Figure 5.13 for the different signals being

considered. Even though the SES is useful for characterising pure second-order cyclosta-
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Figure 5.12: The synchronous averages of the squared envelope of two measurements of the
damaged gear dataset are presented.
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Figure 5.13: The Squared Envelope Spectrum (SES) is presented for the damaged gearbox
data, with different y-axis scales being used. The SES presented in this figure corresponds
to the results in Figure 5.12.
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tionary signals, it is useful to quantify periodic changes in the instantaneous power of the

vibration signal induced by the localised gear damage. The damaged gear is located on the

shaft with the zebra tape shaft encoder and therefore the damage occurs at one shaft order

and its harmonics. It is evident from the results in Figure 5.13(i) and Figure 5.13(iii) that the

modulation induced by the localised gear damage is not prevalent in the original vibration

signal. The signal component at 9.12 shaft orders is attributed to the shaft at the alternator

being slightly unbalanced. This is in contrast to the SES of the novel vibration signals in

Figure 5.13(ii) and Figure 5.13(iv). The signal components at the shaft harmonics due to

the gear damage are clearly visible and dominate the SES. This further validates that the

novel vibration signal highlights the diagnostic information in the vibration signal, with the

periodicity of the damage clearly being detected.

It is reassuring to show that the results presented in Figures 5.11, 5.12 and 5.13 were not

obtained by cherry picking and therefore the results are presented for all measurements used

in this investigation. The results for the 100 damaged measurements are presented in Figure

5.14. The results in Figure 5.14 are obtained by adding a vertical offset to each measurement,

with the offset increasing linearly with measurement number. It is clear from the results of

the synchronous averages of the squared envelope i.e. SA of SE and the SES, that the novel

signal is more sensitive to damage. The damage component and the change in of the damage

component in the final stages of the gears’ life are very prominent when compared to the

original signal.

5.4.2.2 Quantification of performance

It is difficult to compare the performance of the methodology to the raw signal from Figure

5.14. Therefore, it is advantageous to use quantitative measures as basis of comparison and

therefore three performance metrics are used on this dataset. The first metric is the kurtosis

of the vibration signal x ∈ RNx

kurtosis(x) =
1
Nx

∑Nx
i=1 (x[i]− x̄)4(

1
Nx

∑Nx
i=1 (x[i]− x̄)2

)2 − 3, (5.22)

which is popular for incipient fault detection. In Equation (5.22), the mean of the vibration

data x is denoted by x̄. The kurtosis, as defined in Equation (5.22), is zero for Gaussian data

and increases as the tails of the distribution increase e.g. as the impulsiveness of the dataset

increase.
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Figure 5.14: The waterfall plots of the smoothed Synchronous Average (SA) of the vibration
signals, the smoothed Synchronous Average of the Squared Envelope (SA of SE) of the
vibration signals and the smoothed Squared Envelope Spectrum (SES) are presented for the
100 damaged measurements. The 100 measurements were spaced throughout the life of the
damaged gear i.e. from Figure 2.7(i) to Figure 2.7(ii). The smoothing, calculated from a
second averaging process, is permissible for data acquired over a long time and is used to
remove spurious noise which makes the results difficult to interrogate. The arrow indicates
an increase in measurement number. A critical study of the statistics of the raw results is
presented in Figure 5.15.
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The second metric under consideration is the Quality Measure (QM) of the SES and given

by

QMSES = 10 log

(
SESdamaged (x)

SESnoise (x)

)
. (5.23)

In Equation (5.23), SESdamaged(x) denotes the average of the damage components in the

SES and SESnoise(x) is an estimate of the noise floor of the SES. Hence, it is desired to

obtain a SES which maximises the QM for the SES i.e. QMSES. The calculation procedure

is illustrated in Figure A.16 in Appendix A.3.

The QM of the synchronous average

QMSA(x) = 10 log

(
P SA
damaged(x)

P SA
healthy(x)

)
, (5.24)

is the last metric that is investigated. The QM of the synchronous average is a function of

the ratio of the average power of the damaged portion P SA
damaged(x) and the power of the

healthy portion P SA
healthy(x) of the synchronous average of the signal x. A large QMSA(x)

indicates that the synchronous averaged x’s average power of the damaged portion is more

significant than the average power of the healthy portion. The healthy portion and the

damaged portions are calculated with the procedure given in A.3. The metric is used for

the synchronous averaged vibration signals as well as the synchronously averaged square

envelope.

The four metrics are presented in Figure 5.15 for the damaged measurements. It is evident

from the various metrics that the novel signal is more sensitive to damage when compared

to the original signal. However, the quality of the novel signal can vary over time, depending

on the noise characteristics of the signal. If the long term data are effectively used i.e. by

smoothing the results, it is evident from the results that the novel signal is significantly more

sensitive to damage.

5.4.2.3 Additional analyses

The Instantaneous Power Spectrum (IPS) is also a powerful cyclostationary analysis tool

which has been successful for gearbox diagnostics under varying operating conditions [15, 99,
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Figure 5.15: Different metrics of the healthy and the damaged vibration signals are calculated
for all measurement numbers and with a smoothed estimate of the metrics being presented
as well. The raw metrics, denoted by (Raw) in the legend, are calculated by using Equation
(5.22), (5.23) and (5.24) on each measurement, where the smoothed estimate is calculated
with a moving average with length eight and an overlap of 6. The kurtosis, calculated with
Equation (5.22), of the synchronously averaged signal is calculated.

100]. The spectrogram estimator of the time-frequency IPS, given by [98]

ITF-IPS[n,m] =
1

fs ·Nx ·
∑Nw−1

a=0 υ[a]

∣∣∣∣∣
Nw−1∑
k=0

υ[k] · x[k + n · (Nw −No)] · e−j2πkm/Nw
∣∣∣∣∣
2

,

(5.25)

is inappropriate for varying speed conditions and therefore the Angle-Frequency IPS (AF-

IPS), obtained from order tracking each frequency band of the time-frequency IPS separately

[98]

IAF-IPS[a,m] = OTn→a (ITF-IPS[n,m]) , (5.26)

where OTn→a(·) indicates that the time index n is converted to an angle index a through

order tracking [32, 37]. The AF-IPS is presented in Figure 5.16 for the original vibration

signal of the damaged gearbox and its corresponding novel vibration signal. Two frequency

bands are prominent in Figure 5.16(i), whereas only one frequency band is prominent in

Figure 5.16(ii). This indicates that the frequency band centred at 400 Hz contains significant

novel information, while the frequency band centred at 1100 Hz was excited in the reference

condition as well and is therefore attenuated in the methodology.

Urbanek et al. [15] illustrated the efficiency of the synchronous averaged IPS to perform
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(i) Original signal: Measurement 15 (ii) Novel signal: Measurement 15

Figure 5.16: The Angle-Frequency Instantaneous Power Spectrum (AF-IPS) for the vibration
signal of a damaged gearbox is presented. Figure 5.16(i) contains the AF-IAS of the raw
vibration signal and Figure 5.16(ii) contains the AF-IAS for the corresponding novel signal.
The two plots are not on the same scales to highlight the dominant components better.
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Figure 5.17: The synchronous average of the instantaneous power spectra shown in Figure
5.16(ii) are presented. The two plots are not on the same scale to highlight the dominant
components better.

bearing diagnostics under varying operating conditions. This reduced the influence of varying

operating conditions and non-synchronous components and therefore highlighted the repeti-

tive diagnostic information. Hence, the synchronous average of the IPS, with a cycle period

of one shaft order

ĪAF-IPS[a,m] =
1

Nrot

Nrot−1∑
k=0

IAF-IPS[a+Ns · k,m], (5.27)

is calculated for the signals, with Nrot indicating the number of revolutions completed by the

shaft and Ns the number of samples per revolution. The synchronous averaged IPS presented

in Figure 5.17 corresponds to the IPS presented in Figure 5.16. In Figure 5.17(i), the two

excited frequency bands are clearly seen in the spectrum, with the localised gear damage at

approximately 135 degrees seen in the lower frequency band. In the higher frequency band

of Figure 5.17(i), spurious components are seen which can make it difficult to diagnose the
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Figure 5.18: The marginal synchronous averages of the instantaneous power spectra shown
in Figure 5.17 are presented.

machine. In Figure 5.17(ii), only one frequency band is prominent with the gear damage seen

at approximately 135 degrees. The implications of the additional frequency band are not

prevalent from the results in Figure 5.17 and therefore another representation is investigated.

The marginal synchronous average of the IPS i.e. by marginalising over the Nf spectral

frequency bands

īAF-IPS[a] =
1

Nrot ·Nf

Nf−1∑
m=0

Nrot−1∑
k=0

IAF-IPS[a+Ns · k,m], (5.28)

is used to highlight the localised gear damage and it makes it easier to illustrate the benefits

of using the novel signal as opposed to the original signal. The marginal synchronous average

of the IPS is presented in Figure 5.18 for the corresponding results presented in Figure

5.16(i) and Figure 5.17(i). Clearly, the presence of the second frequency band that does not

contain diagnostic information in Figure 5.17(i) adversely influences the ability to detect the

localised gear damage in Figures 5.18(i) and 5.18(iii). In the marginal IPS of the novel signal,

presented in Figures 5.18(ii) and 5.18(iv), the damage is very prominent and clear, with the

non-diagnostic information attenuated.

Hence, it is evident from the results that there are considerable benefits in incorporating

historical information in the diagnosis procedure. Hence, it is possible to enhance the ability

of existing signal processing techniques to detect damage, characterise damage and trend
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damage for gear diagnostics under varying operating conditions.

5.5 Conclusion and recommendations

In this chapter, a methodology is presented to enhance the novel information in the vibra-

tion signal by attenuating frequency bands which do not have new information compared to

the historical data. This is performed by using narrowband feature extraction techniques

such as the squared envelope infogram or the kurtogram to extract statistics from narrow-

band signals, whereafter the statistics of a healthy machine are learned with a model. The

model is subsequently used to identify frequency bands with anomalous behaviour, which are

enhanced.

The methodology is applied to numerical gearbox data as well as experimental gearbox

data where it is illustrated that the methodology can enhance the diagnostic information in

the vibration data which subsequently leads to more effective fault diagnosis. It is specifically

shown that by using the methodology as a pre-processing technique, it is possible to enhance

the performance of signal analysis techniques e.g. cyclostationary analysis for fault diagnosis.

Hence, it is sensible to combine narrowband feature extraction techniques with the available

historical data to enhance the diagnostic information in the vibration data. This improves

the effectiveness of conventional signal analysis techniques in the fault diagnosis field.

Lastly, the methodology is presented in its simplest form without optimising any of the

sub-processes. However, there are many potential areas that can be investigated further, such

as selecting different features, using non-Gaussian models, investigating different thresholds

and different filter designs.
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Chapter 6

Open set recognition methodology

6.1 Introduction

A central part of the condition-based maintenance is determining or inferring the condition

of the machine from the condition monitoring data [1, 3]. However, performing this task

reliably can be time consuming and difficult, especially when performed by a non-expert

[3, 61]. Therefore, classification algorithms utilising machine learning [65, 77, 83] and even

more recently deep learning techniques [133, 137, 139] are used to automatically infer the

condition of the machine i.e. assigning a condition label to the machine from the condition

monitoring data.

The machine learning models are trained with the available historical fault data to perform

predictions in the application (or testing) phase of the condition monitoring process. However,

the historical fault data can be difficult to acquire, because the machine operates mostly in

a healthy condition (i.e. there is a class imbalance between the available healthy data and

the historical fault data [171]), new machines do not have historical fault data available,

historical fault data from all of the damage modes may not be available for the machine

when optimising the model, and acquiring historical fault data from all of the damage modes

is time consuming and expensive.

Hence, it is unrealistic to assume that historical data, representing a population of all

possible damage modes, would be available when training the condition recognition model for

most machines. Hence, the machine condition monitoring problem needs to be addressed as an

open set recognition problem [143] and not as a closed set recognition problem, the latter being

the conventional method for performing classification in condition monitoring applications. In

Figure 1.2, different data availability levels are defined, with the OSR problem corresponding
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to Data availability: Level 2 and the CSR problem corresponding to Data availability: Level

3.

In this chapter, an open set recognition methodology, using a discrepancy analysis pro-

cedure as a pre-processing step, is proposed. This is performed to not only illustrate the

importance of open set recognition problems for the condition monitoring field, but also to

illustrate that discrepancy analysis, conventionally used as a novelty detection approach, can

be used to increase the predictive performance of the condition recognition system.

However, before presenting the methodology, it is firstly important to emphasise the dif-

ferences between Closed Set Recognition (CSR) and Open Set Recognition (OSR) problems.

This is performed in the next section.

6.2 Condition recognition for condition monitoring

In this section, the differences between CSR and OSR problems are highlighted for machine

condition monitoring problems, with Figure 6.1(a) and Figure 6.1(b) containing the decision

boundaries of the condition recognition problem for a machine with healthy historical data

and historical fault data of two damage modes available. Discrete conditions are used in
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Figure 6.1: The differences between the decision boundaries of a Closed Set Recognition
(CSR) framework and an Open Set Recognition (OSR) framework are shown in (a) and (b)
respectively for artificial data. The proposed decision boundaries that are required for an
ideal OSR framework for machine condition monitoring are shown in (c). In (c), the five
classes used in (a) and (b) are reduced to three classes i.e. healthy, damage mode 1 and
damage mode 2. The intermediate condition refers to a machine that is somewhere between
a healthy and a failure state.

Figures 6.1(a) and 6.1(b), because this is the conventional method used in literature e.g.

Page 119



[133, 172]. In the OSR framework (i.e. Figure 6.1(b)), predictions are only made in regions

supported by historical data as opposed to the CSR (i.e. Figure 6.1(a)). In the CSR frame-

work, class labels are assigned to the complete feature space which can lead to erroneous

predictions when used for data from a new class or data not supported by the historical data,

i.e. outliers.

However, a subtle but significant problem, arises when addressing the condition recog-

nition procedure as open set recognition problem. Throughout the operational lifetime of a

machine, the machine transitions from a healthy state to some damaged state e.g. a crack ini-

tialises and grows. However, this results in problems when using the OSR framework shown

in Figure 6.1(b); only the discrete conditions can be labelled with a class label, with the

transitions between conditions labelled as novelties when the conditions are well-separated

in the feature space. Hence, it is important to learn the complete trajectory of the dataset,

as the machine transitions from a healthy state to a damaged state. It is therefore necessary

to exploit the complete dataset (i.e. as the machine transitions from a healthy state to a

damaged state) to learn the transition path of the features so that the correct label can be

assigned as the machine transitions between conditions as well. This approach results in the

decision regions shown in Figure 6.1(c). It is also easier to assign class labels to the approach

in Figure 6.1(c) as opposed to 6.1(b), because the damage initiation time and the interme-

diate states may not be known for the historical fault data and can be difficult to estimate

without stopping and disassembling the machine.

Hence, it is not only important to use an open set recognition framework for condition

monitoring applications, it is also necessary to use the full dataset (i.e. as the machine deteri-

orates) when training the models as opposed to labelling discrete states. Therefore, an open

set recognition methodology is proposed for gear diagnostics under varying operating condi-

tions in this chapter to obtain results similar to Figure 6.1(c). An overview of the proposed

methodology is given in Section 6.3, whereafter an investigation is performed in Section 6.4

on synthetic data to illustrate the benefits of using an open set recognition methodology.

Finally, the methodology is validated in Section 6.5 on experimental gearbox data.

6.3 Methodology

The proposed methodology is presented in Figure 6.2. Vibration data and rotational speed

information of the machine component are converted to a processed discrepancy signal using
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Figure 6.2: The proposed automatic novelty detection and condition inference methodology
is presented, with the sections containing each part of the methodology given as well. In this
figure, it is assumed that there are historical data of N − 1 damage modes available, with
the class labels used consistently throughout this chapter e.g. a class label of 0 will always
indicate a novelty or a rejected class label.

the discrepancy analysis framework. The processed discrepancy signal is rich with diagnos-

tic information and therefore discrepancy features are extracted from the processed signal.

The extracted discrepancy signal features serve as an input to an OSR condition recogni-

tion system which is capable of performing novelty detection and inferring the condition of

the machine under varying operating conditions. The rotational speed information can be

acquired from tachometers or it can be estimated from the vibration data itself.

More information on each step in Figure 6.2 is given in the subsequent sections. The

proposed methodology is a proof of concept and therefore different features and models can

be used if desired.

6.3.1 Discrepancy analysis

Discrepancy analysis uses a model of the features, extracted from data that were acquired

from a healthy machine, to assign discrepancy measures to the features of new data. This dis-

crepancy measure is used to form a discrepancy signal which is analysed using techniques such

as synchronous averaging to infer the condition of the gearbox [154–157]. A brief overview

of the features and models used in this chapter are given in this section.
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6.3.1.1 Feature extraction for discrepancy analysis

In discrepancy analysis, it is necessary for the features to be described in terms of time

or shaft angle and therefore time-frequency analyses methods are employed [156]. Hence,

the Continuous Wavelet Transform (CWT), which is popular for analysing non-stationary

signals for rotating machine diagnostics [59, 65, 69, 70], is used with a Mexican hat basis

function to obtain an angle-order distribution of the order tracked vibration signal, with the

order tracking performed with the available rotational speed (or phase) information. The

rotational speed can be estimated from measurement equipment [33] or estimated from the

vibration signal [37] depending on the available equipment. The wavelet coefficients of the first

three gear mesh components are extracted for different shaft angles, whereafter a windowing

procedure is used to extract localised features from the wavelet coefficient signals. The

windowing procedure is described in detail in Section 3.2.2. In this work, ninety rectangular

windows per gear revolution with an overlap of 50% between coinciding windows are used

on the wavelet coefficients of each gear mesh component. The features extracted from each

window are given in Table 6.1. The ten statistical features in Table 6.1, applied to the

Table 6.1: The statistical features calculated for the windowed wavelet coefficients of each
gear mesh frequency, with more details on the features found in Refs. [77, 122, 123].

1 Mean 2 Standard deviation
3 RMS 4 Maximum
5 Kurtosis 6 Skewness
7 Shape factor 8 Impulse factor
9 Crest factor 10 Clearance factor

wavelet coefficients of the three gear mesh components, result in a 30 dimensional feature

space and are denoted by bi ∈ R30 for the features extracted from window i. Changes in the

localised statistics of the wavelet coefficients, such as the localised impulsiveness for example,

as opposed to changes in the values of the wavelet coefficients are detected by the healthy

feature model. The benefit of this is illustrated in Figure 3.4, where the localised features

can enhance the diagnostic information in the wavelet coefficients.

6.3.1.2 Discrepancy signal generation

The discrepancy signal is generated by firstly modelling the features extracted from the

healthy data, whereafter a discrepancy measure is assigned to the new features to construct

a discrepancy signal. A Gaussian Mixture Model (GMM) is used to model the features
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extracted with the process in Section 6.3.1.1, because it is able to represent any distribution

to an arbitrary level of accuracy if a sufficient number of mixture components is used [114]

and it has performed well for discrepancy analysis [155]. Heyns et al. [155] did not find an

improvement by incorporating the operating conditions in the GMM for discrepancy analysis

and therefore only the fault features are used to optimise the GMM in this section.

The GMM parameters are obtained from the Expectation Maximisation (EM) algorithm,

which is very efficient in iteratively obtaining the maximum likelihood estimates of the model

parameters [114]. The Negative Log-Likelihood (NLL) of a GMM with Nc mixture compo-

nents [114]

η[l] = − log

 Nc∑
j=1

πb,jN (bl|µb,j ,Σb,j)

 , (6.1)

is used as a discrepancy measure, where bl denotes the features extracted from window l, πb,j

is the mixture coefficient, µb,j is the mean and Σb,j is the covariance of mixture component

j of the GMM. The mixture component πb,j weights the contribution of the jth Gaussian

model to the probability density function of the features and can be interpreted as the prior

probability that component j is active in the GMM [114]. The mean µb,j , covariance Σb,j

and mixture coefficient πb,j of each component j are the unknown parameters of the GMM

and are estimated with the EM algorithm on the healthy features. The number of latent

states or mixture components, denoted by Nc, is obtained by performing cross-validation. A

multivariate Gaussian distribution over b is denoted by N (b|µ,Σ) in Equation (6.1), where

its mean and covariance are denoted by µ and Σ, respectively.

6.3.1.3 Discrepancy signal post-processing

The synchronous average is a useful tool for analysing whether the discrepancy signal contains

deterministic components attributed to gear fault impacts [155]. The synchronous average of

the discrepancy signal of measurement j, denoted by m
(j)
η ∈ RNs , is calculated with

m(j)
η [k] =

1

Nr

Nr∑
i=1

η [k + (i− 1)Ns] , (6.2)

where 1 ≤ k ≤ Ns, the discrepancy signal is denoted by η, the number of rotations that was

completed by the shaft is denoted by Nr and the number of samples per shaft revolution is

an integer and denoted by Ns. The synchronous average can also be useful for attenuating

the amplitude modulation due to non-cyclic stationary loads [19], which means that the
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synchronous averaged discrepancy signal can be even more robust to non-cyclic stationary

operating conditions.

In the next section, the features extracted from the processed discrepancy signal and

subsequently used for the condition recognition procedure, are presented and discussed.

6.3.2 Discrepancy feature extraction

Two features are extracted from the synchronous average of the discrepancy signal, calculated

with Equation (6.2), to infer the condition of the gear. The first feature

rj1 =
max(m

(j)
η )−min(m

(j)
η )√

1
Ns

(∑Ns
i=1m

(j)
η [i]2

) , (6.3)

makes it possible to discern between localised changes and uniform changes in the synchronous

average of the discrepancy signal. This is an important generalisation of the previous work

in discrepancy analysis which was focused on localised faults. The second feature

rj2 = max(m(j)
η )−min(m(j)

η ), (6.4)

is the range of the synchronous average of the discrepancy signal and is sensitive to localised

changes in the discrepancy signal. The features extracted from the synchronous average of

measurement j is denoted by a two-dimensional vector rj = [rj1, rj2]T . The two features,

extracted from Equation (6.3) and Equation (6.4), have a low dimensionality which means

that neither feature subset selection nor dimensionality reduction techniques are required to

circumvent the curse of dimensionality or to visualise the features. The low-dimensionality of

the feature space helps with understanding the performance of different classifiers for machine

condition monitoring which subsequently supports the conclusions that are drawn from the

results in this chapter. However, more optimised features can certainly be investigated to

obtain classifiers that perform better.

The DC offset or mean value of the synchronous average of a healthy machine can be

dependent on the discrepancy model which can adversely affect the features extracted from

the discrepancy signal. Hence, the synchronous average of the first measurement of a dataset

is subtracted from the entire dataset to obtain synchronous averages that are roughly model

independent, with the new synchronous averages used in the feature extraction process. This

is allowed, because it is assumed that the machine starts from an approximately healthy

Page 124



condition and deteriorates over time.

6.3.3 Condition recognition procedure

In this section, the condition recognition procedure that uses the discrepancy signal features

in Section 6.3.2 to infer the condition of the gear is presented. In the condition recognition

procedure, the objective is to recognise that the data is part of a specific class and to classify

or label the data accordingly. However, if the condition cannot be recognised, it means that

either a new damage mode is present or an outlier is detected and the data is labelled as a

novelty. This is implemented with a OSR model which consists of two steps; probabilistic

condition inference is performed to predict the class label of the machine, whereafter the class

label is either accepted or rejected.

6.3.3.1 Probabilistic condition inference

It is desired to cast the condition inference problem in a OSR framework as opposed to the

conventional CSR framework. Scheirer et al. [143] formalised the OSR problem in their work

and contrasted it to the CSR framework used in many applications. Casimir et al. [127]

investigated a methodology using a nearest neighbour classifier with two rejection options

for induction motor diagnostics, while Lazzaretti [173] investigated an OSR methodology for

power distribution events. The work in Refs. [143–145, 173] used support vector machines

to address the OSR problem, where Lazzaretti et al. [173] found a support vector data

description model performs the best of the considered OSR models for power distribution

event detection.

In the machine condition monitoring field, the machine starts from an approximately

healthy condition and deteriorates to a specific damage mode until the machine is stopped or

the component fails. Instead of searching for the crack initiation time in the historical data

and discretizing the data into different conditions to create different damage classes which can

result in classification problems as discussed previously, it is desired to learn the trajectory

of the data by using the complete dataset for the OSR model optimisation problem. If the

trajectory of the data is learned, it can be used to infer the condition of the machine at

arbitrary damage states as seen in Figure 6.1(c). This is essential for applying OSR in the

condition monitoring field.

The problem with learning the trajectory of the data is the resulting overlap between the

data of the healthy class and the data from the damaged modes as seen in Figure 6.1(c).
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This implicitly violates the objectives in the support vector optimisation task i.e. finding a

hyperplane that maximises the distance between two classes, and due to the fact that the

trajectory needs to be learned, it is concluded that support vector machines are not ideal for

this task. GMMs have been successfully used for fault classification [126] and can potentially

learn the trajectory of the data through the feature space. However, density-based meth-

ods such as GMMs suffer from the curse of dimensionality which adversely influence their

performance in OSR problems [173]. The discrepancy features’ dimensionality in condition

monitoring is significantly lower than the dimensionality of most OSR applications and alle-

viates the problems of GMMs in OSR problems. Hence, GMMs are used with Bayes’ rule for

the OSR task in this work.

The condition is inferred from the discrepancy signal features by selecting the class with

the highest posterior probability i.e. arg max
i

(P (Ci|r)), with the posterior probability of class

Ci being obtained with Bayes’ rule

P (Ci|r) =
p(r|Ci)P (Ci)

p(r)
. (6.5)

The likelihood function and prior probability of class i are denoted by p(r|Ci) and P (Ci)

respectively, with the unconditional density over the features denoted by p(r). A unique

GMM likelihood function is used for each class, with the GMM associated with class i denoted

by

p(r|Ci) =

Nc,r∑
j=1

π
(i)
r,jN

(
r|µ(i)

r,j ,Σ
(i)
r,j

)
. (6.6)

In Equation (6.6), the parameters of the GMM are estimated with the EM algorithm sepa-

rately for each class i, with π
(i)
r,j , µ

(i)
r,j and Σ

(i)
r,j denoting the parameters of the jth component

of class i. The appropriate number of mixture components Nc,r in the GMM for the condi-

tion recognition procedure is estimated by cross-validation. The complete dataset, i.e. from

a healthy machine to a damaged machine, is used in this methodology to optimise the GMM

with each damage mode, with only the healthy data being used to optimise the GMM of the

healthy machine.

In Refs. [117, 118], the class with the largest likelihood for the dataset is the inferred class

i.e. arg max
i

p(r|Ci), which is the same as arg max
i

P (Ci|r) when each class has the same prior

probability. The same prior probability cannot be assigned to each class in this framework,

because there is a large overlap in the healthy data space when using the complete datasets of
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the damage modes for trajectory learning, which can lead to significant classification errors in

the healthy data region. This problem can be resolved by giving the model that correspond

to the healthy machine features preference by ensuring that its prior probability is larger

than the other models i.e. P (Chealthy) > P (Ci) for all i 6= healthy. This comes from the

expectation that the machine is healthy, unless there is strong evidence that the machine is

in a damaged condition. In this work P (Ci) = c for all i 6= healthy and P (Chealthy) = 2 · c,

with the unknown constant c obtained by ensuring the prior is a valid probability distribution

i.e. by solving
∑

i P (Ci) = 1.

The benefit of using Bayes’ rule with the GMM is that it is efficient to incorporate

historical data from a new damage mode into this framework. This is performed by optimising

a GMM on the newly acquired data, whereafter the prior probabilities of all the models have

to be recalculated with the prior probability of the new class i set to P (Ci) = c as well.

Thereafter, Equation (6.5) can be used to predict the class label.

6.3.3.2 Acceptance or rejection of inferred class label

The posterior prediction obtained with Bayes’ rule in Equation (6.5) is dependent on the

likelihood value of the other classes due to the unconditional density, and it does not account

for other classes that can be present in the OSR problem [142]. Hence, a Decision Rule (DR)

is used on the likelihood function of the model or class i to determine whether the model is

capable of predicting the class label si ≥ 0 or not si < 0, with

si = log p(r|Ci)− αDR
i . (6.7)

The threshold and model fitness metric associated with the log-likelihood of class i is denoted

by αDR
i and si, respectively. If si < 0 for all i, it means that none of the models are capable of

inferring the correct class and therefore the class label predicted in Section 6.3.3.1 is rejected

and a novelty is detected. The posterior probabilities P (Ci|r) corresponding to the detected

novelties are invalid and are not used further in the analysis. If a novelty is detected by the

condition recognition system, it does not necessarily indicate that a new damage mode is

present, but the data should rather be investigated further by an expert in the field.

There are many criteria to select the threshold of class i, which will depend on the

application e.g. a tighter threshold can be used for critical machinery. In this work, αDR
i is

selected so that 1% of the validation set is labelled as a novelty.
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6.3.4 Final remarks on the methodology

If discrete conditions are used to define damage modes, performance metrics such as the class

averaged accuracy and Youden’s index can be used to quantify the performance of the OSR

model [145]. However, in the methodology, the complete dataset is used for training the

condition recognition system which poses some difficulties in quantifying the performance

of the condition recognition system i.e. the damaged class contains healthy data and the

condition varies significantly throughout the dataset. Hence, the following procedure is used

for evaluating the performance of the proposed methodology:

• The measurement number at which the damage is detected and the characteristics of

the posterior probabilities of the classes are investigated.

• The characteristics of the decision boundaries of different classifiers are investigated and

compared, which is possible due to the two-dimensional discrepancy signal feature space.

This makes it possible to investigate the implications of different decision boundaries

for detecting a deteriorating gear condition which helps to evaluate the performance of

the associated classification models.

• The OSR abilities of the methodology is investigated by visualising the two-dimensional

discrepancy signal feature space. This makes it possible to evaluate the possibility of

the OSR to generalise for other damage modes.

6.4 Synthetic data investigation

An investigation is performed in this section on the discrepancy feature extraction and con-

dition recognition parts of the methodology presented in Figure 6.2, where it is assumed that

the synchronous average of the different damage modes are already available. The purpose

of this investigation is

• to investigate the characteristics of the discrepancy features,

• to highlight the importance of the decision boundaries for machine condition monitor-

ing,

• to highlight that it is beneficial to use the complete dataset as the gear transitions from

a healthy to a damaged state in OSR condition monitoring problems,
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• and to compare the performance of the OSR condition recognition system to other

conventional CSR classifiers on the same data.

6.4.1 Synthetic dataset

For the synthetic dataset, synchronous averages of six classes are generated with the following

equations

m1(j)
η [l] = 0.1 · ε[l], (6.8)

m2(j)
η [l] = κ · β · δ(l − blmedc) + 0.1 · ε[l], (6.9)

m3(j)
η [l] = κ · β + 0.1 · ε[l], (6.10)

m4(j)
η [l] = κ · β ·

δ(l − blmedc) +
3∑
j=1

2∑
k=1

(0.8− 0.2 · j) · δ
(
l − blmedc − j · (−1)k

)+ 0.1 · ε[l],

(6.11)

m5(j)
η [l] = κ · β ·

bNs/3c∑
j=0

δ(j − l) + 0.1 · ε[l], (6.12)

m6(j)
η [l] = κ · β + 0.1 · sin (10π · l/Ns) + 0.1 · ε[l], (6.13)

where for example, m1 denotes the synchronous average of Class 1 in Equation (6.8). In

Equations (6.8)-(6.13), j denotes the measurement number, l denotes the position on the

gear with 1 ≤ l ≤ Ns and l ∈ Z. The median of l is denoted by lmed. The condition of the

component is indicated with a scalar factor 0 ≤ κ ≤ 1, where 0 indicates a healthy condition

and 1 indicates the component is in its failure state according to the respective damage mode

or class. The magnitude of the damaged component in its failure state, denoted β, is sampled

from a uniform distribution U with a domain of [0.75, 0.90], i.e. β ∼ U [0.75, 0.90]. Zero

mean Gaussian noise with a standard deviation of 1 is denoted by ε[l]. The function δ(x) = 1

for x = 0 and δ(x) = 0 if x 6= 0 and the number of samples in the synchronous average is

Ns = 100. The mean and standard deviation of the six synthetic synchronous average profiles

are presented in Figure 6.3. Class 1 represents a healthy system, Class 2 and Class 4 represent

localised damage such as a damaged gear tooth with slightly different characteristics [155],

Class 3 and Class 6 represent damage over the whole profile of the gear and lastly, Class 5

contains a relatively small portion of the gear that is damaged. The similarity between Class

2 and 4 and Class 3 and 6 is purposefully used to make it a challenging problem for the

classifiers which will result in interesting decision regions.
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Figure 6.3: The mean µ and the standard deviation σ of 100 synchronous averages of the
discrepancy signals of the six synthetic classes, investigated in Section 3. The data are
generated with Equation (6.8) - (6.13).

The discrepancy features of the different classes, extracted with the procedure presented

in Section 6.3.2 are presented in Figure 6.4(i) for the data in Figure 6.3. The assumption is
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Figure 6.4: The features for the six classes in Figure 6.3 are presented in Figure 6.4(i). In
Figure 6.4(ii), a stochastic transition from Class 1 to Class 3 is presented as an example.

made that the system starts from a healthy condition (i.e. Class 1 in Figure 6.3 and Figure

6.4(i)) and stochastically transitions to the other conditions with an example shown in Figure

6.4(ii). The transition between Class 1 and Class i is performed by linearly increasing the

factor κ in the appropriate Equation e.g. the κ in Equation (6.13) is changed for a transition

between Class 1 and Class 6. The stochastic transition seen in Figure 6.4(ii) is because β in

Equation (6.10) is a random variable.

In the next section, CSR classification models are compared to the proposed OSR model

with the data of the discrete classes in Figure 6.4(i) being used as training data.
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6.4.2 Discrete machine conditions for model optimisation

In this section, a conventional classification process is used where discrete states (e.g. a gear

with a broken tooth, a healthy gear etc.) are used as classes in the classification task to

highlight the limitations of CSR models and the limitations of using discrete states for OSR

models.

Due to the characteristics of the features in Figure 6.4(i), it is expected that Linear

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression

(LR) and Gaussian Naive Bayes (GNB) models will perform very well on the data and

therefore the additional flexibility that neural networks and support vector machines provide

are not required. The aforementioned models are implemented with scikit-learn [174] on the

data in Figure 6.4(i) and compared to the OSR model discussed in Section 6.3.3.1 and Section

6.3.3.2. The training data and a query point are superimposed on the decision boundaries in

Figure 6.5 for the LDA, QDA, LR and the OSR model. The query point highlights that the

CSR classifiers predict a class label for data far from the training data and that the predictions

are different due to the different characteristics of the decision boundaries. The classification

error of the classifiers are given in Table 6.2 on the testing data, with the result of a GNB

classifier presented as well. The LDA, QDA, LR and the OSR GMM classifiers perform

equally well, with the GNB performing slightly worse. The classification error is attributed

to the large overlap between Class 3 and Class 6. Even though the classification error is

Table 6.2: Average classification error of the different models on the 200 testing measurements
of each class, with the testing data generated similarly to the data in Figure 6.4(i).

LDA QDA GNB LR GMM
9.25% 9.92% 12.33% 9.25% 9.25%

similar for the aforementioned models, their decision boundaries in Figure 6.5 have very

different characteristics. The implication of this is that different predictions are made by the

different classifiers as the data transition from Class 1 to another class. This emphasises that

the classification errors are not the only important performance metric, but also the decision

boundaries of the classifiers. The decision boundaries in a CSR framework are obtained

from an optimisation process aiming to minimise the prediction error of the classifier for the

historical data and may not necessarily have the desired properties for machine condition

monitoring problems.

The superiority of the OSR GMM with three mixture components is seen in Figure
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(iii) LR
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(iv) OSR GMM
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Figure 6.5: The decision regions for three classifiers using a CSR framework and the OSR
model are superimposed on the training data in this figure. The colourbar indicates the
class label, where a class label of 0 indicates that a novelty is detected in that region. Ab-
breviations: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
Logistic Regression (LR) and Open Set Recognition Gaussian Mixture Model (OSR GMM).

6.5(iv). The OSR GMM contains tightly fit boundaries around the regions supported by the

historical data and a white region between the clusters which has a class label of 0. This

indicates that the model is incapable of predicting the class label of the data in the regions

that are not supported by the historical data and therefore novelties are detected in those

regions. This is in contrast to the CSR classifiers, which can have misleading predictions in

regions unsupported by the data.

The large novelty detection regions in Figure 6.5(iv) can however lead to problems when

inferring the condition of a deteriorating machine, i.e. novelties will be detected in the

transition process. A solution for this problem is therefore investigated in the next section.
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6.4.3 Complete dataset for model optimisation

The OSR GMM decision boundaries in Figure 6.5(iv) are impractical for condition moni-

toring purposes because novelties will be detected almost continuously during the condition

transition process. Therefore, it is proposed in this chapter that the data of the transition

from Class 1 to the other classes are used for optimising the GMM classifier i.e. the whole

dataset, as it transitions from Class 1 to Class 3 in Figure 6.4(ii), is labelled as Class 3 in

this section. Therefore, no distinctions are made between the initial state and the final state

when optimising the model.

The number of mixture components in the GMM of each class was determined with five-

fold cross-validation, with the number of components determined to be four. The training

data and the resulting decision regions of the OSR GMM are presented in Figure 6.6. It can be
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Figure 6.6: The decision regions for the OSR GMM that is optimised with the transition
data is presented. For example, the data of the transition from Class 1 to Class 3 in Figure
6.4(ii) are the training data of Class 3 for the OSR GMM.

observed that the decision regions surround the training data, while the regions unsupported

by the training data are classified as novelties i.e. a class label of 0 is obtained.

The posterior probability of the OSR GMM classifier using the complete dataset is com-

pared to the posterior probability of the CSR LR classifier for the transition from Class 1 to

Class 3 in Figure 6.7, with arg max(P (Ci|r)) being used to infer the class label. A moving

average with a length of 30 and an overlap of 25 measurements was used on the raw proba-

bility data to reduce the noise due to the stochastic transition process. The corresponding

decision boundaries of the OSR GMM and CSR LR classifiers are shown in Figure 6.6 and

Figure 6.5(iii) respectively. Initially, the data are in the healthy region and therefore the

predicted class label is Class 1 for both classifiers. In Figure 6.7(i), the LR classifier incor-
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Figure 6.7: The posterior probability of the different classes for the LR classifier and the
condition recognition system using the GMMs as the data stochastically transitions from
Class 1 to Class 3. This is presented for the transition data in Figure 6.4(ii), using the
decision boundaries in Figure 6.6 and Figure 6.5(iii).

rectly infers that Class 5 is present between measurement number 150 and 300 due to the

characteristics of its decision boundary. In contrast to the LR classifier, the GMM condition

recognition system in Figure 6.7(ii) correctly infers the class during the transition process. It

is therefore clear from the results in Figure 6.6 and Figure 6.7(ii) that the decision regions

can be controlled by learning the trajectory of the data with an appropriate classifier and the

full training set (i.e. using continuous as opposed to discrete machine states), which is ben-

eficial for the condition recognition process. This also emphasises that care should be taken

when using non-linear classifiers that either transform the data to a high dimensional space

e.g. support vector machines, or perform automatic feature selection e.g. neural networks.

Using the aforementioned classifiers can result in the classes to be perfectly separated, but

the decision regions may not preserve the important characteristics for machine condition

monitoring applications.

The posterior probability in Figure 6.7(ii) does not indicate a change in condition between

measurement number 200 and 1000 and can therefore not be used for fault trending. This is

because the only aim of the condition recognition system is to determine whether the data

belong to a specific class or not (when a novelty is detected). Therefore, it is suggested that

the latent variables or hidden states of the GMM be used to detect changes in the features.

The hidden states for the testing data, obtained from maximising the posterior distribution

over the latent states as described in Ref. [114], are presented in Figure 6.8 for the model of

Class 3, with three progression stages identified. The rapid alternation between two states

indicate that the data reside in a region of the feature space well supported by two clusters

i.e. there is a large overlap between the two clusters. The first hidden state is associated

with the healthy data region, whereafter the active hidden state change as the data move
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Figure 6.8: The hidden states of the GMM associated with the data of Class 3 as the data
transition from Class 1 to Class 3.

through the different clusters, which can support maintenance decisions. For example, the

first progression stage can signal a warning and if the latent state of the GMM reaches the

final progression stage i.e. stage 3, the machine needs to be stopped immediately.

The results in this section validate the abilities of the proposed discrepancy features, they

highlight the benefits of using an OSR as opposed to a CSR framework, and the importance

of the decision boundaries in the machine condition monitoring field is emphasised as well.

In the next section, the methodology is validated on experimental data.

6.5 Experimental validation

The proposed methodology is validated on experimental gearbox data, acquired under varying

operating conditions, in this section.

An overview of the dataset is given in Section 6.5.1, whereafter the proposed methodology

is investigated in Section 6.5.2 and compared to a conventional classification approach in

Section 6.5.3.

6.5.1 Experimental dataset

Two experimental datasets are used in this investigation, with a detailed overview of the

experimental setup given in Section 2.3.1. In the first experimental dataset, also discussed in

Section 2.3.1, a healthy gearbox was monitored, whereafter the gearbox was disassembled and

the gear was seeded with damage as shown in Figure 2.7(i). The gearbox was reassembled

with the damaged gear and operated again with the operating conditions shown in Figure 2.8

until the gear tooth failed as shown in Figure 2.7(ii). In the second experiment, data were

collected from a healthy gearbox whereafter the gearbox was disassembled and reassembled

with a gear shown in Figure 6.9(i). The gearbox was operated again, with the operating

conditions in Figure 2.8 imposed on the system, until the damaged tooth ultimately failed as
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(i) Exp. 2: Before (ii) Exp. 2: After

Figure 6.9: Damaged gears before and after the two fatigue experiments are presented with
an arrow that indicates the location of the damage. The gear of the first experiment was
tested for approximately 20 days before failure, in contrast to the second gear that ran
approximately for 3 days before failing.

shown in Figure 6.9(ii). More severe damage was seeded in the gear in Figure 6.9(i) compared

to the gear in Figure 2.7(i) by creating a slot that was 20% deeper in the gear tooth. This

resulted in a significantly shorter time of operation (i.e. 3 days as opposed to 20 days) and

a more abrupt failure for the damaged gear in the second experiment.

In all subsequent sections where the data are shown as a function of measurement number

for the damaged gears, the first measurement was acquired for the gear in the initial condition

(i.e. Figure 2.7(i) for experiment 1 or Figure 6.9(i) for experiment 2) and the last measurement

was acquired for the gears in their final condition (i.e. Figure 2.7(ii) for experiment 1 or Figure

6.9(ii) for experiment 2). In contrast, the healthy gears were in the same condition for all

healthy gear measurements of the two experiments. The healthy gear data will be referred

to as healthy or a class label of 1 will be given, while the damaged gears will be referred to

as damaged or a class label of 2 will be given where necessary. This is to be consistent with

the class labels in Figure 6.2. If more damage modes were to be investigated, it would be

necessary to use more descriptive labels for the damaged datasets.

6.5.2 Application of proposed methodology

In this section, the proposed methodology in Section 6.3 is investigated on the experimental

data of Section 6.5.1. The first part of the investigation focuses on a novelty detection

problem where only healthy historical data are available and the second part focuses on a

novelty detection and classification problem where there are historical fault data available as

well. A summary of the data used in the investigations of this section is presented in Table
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6.3. Discrepancy analysis, the first step of the methodology in Figure 6.2, is investigated for

Table 6.3: The number of measurements used for the different datasets in the investigations,
with the training and testing datasets being unique. The novelty detection training data
refer to the case where the condition recognition system is only optimised with healthy data,
where the classification training data refer to the case where the condition recognition system
is optimised with historical fault data as well.

Dataset Training Training Testing
description (Novelty detection) (Classification) (Novelty detection & Classification)

Exp. 1: Healthy 44 44 50
Exp. 2: Healthy 0 0 50
Exp. 1: Damaged 0 166∗ 500∗

Exp. 2: Damaged 0 0 215∗

∗The measurements are evenly spaced throughout the life of the gear.

the experimental datasets in the next section.

6.5.2.1 Discrepancy analysis

The discrepancy analysis step is implemented using the procedure described in Section 6.3.1

on the healthy historical experimental data. The number of latent states in the GMM is

estimated by using five-fold cross validation which resulted in eight latent states i.e. Nc = 8

in Equation (6.1) to be used. The synchronous average of a healthy gearbox and a gearbox

with localised gear damage, calculated with Equation (6.2), are presented in Figure 6.10. The
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Figure 6.10: The synchronous average of the discrepancy signals of a healthy gearbox and of
a gearbox with a damaged tooth at 180o is presented.

localised damage at 180o is easily identified when compared to the synchronous average of a

healthy gearbox and looks similar to Class 2 and Class 4 in Figure 6.3.

Heyns et al. [155] illustrated that discrepancy analysis is better suited than using the

synchronous average or power spectral density of the vibration signal for gearbox diagnos-

tics under varying operating conditions. This is illustrated by comparing the synchronous

averaged vibration signal and the synchronous averaged discrepancy signal in Figure 6.11 for

two measurements of the damaged gearbox of the first experiment. It is evident that the

synchronous averaged discrepancy signal is more sensitive to damage than the synchronous
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Figure 6.11: Synchronous averaged vibration signals are compared to synchronous averaged
discrepancy signals of a gearbox with a damaged tooth at 180o for two measurements.

averaged vibration signal. Therefore, it is sensible to use the synchronous averaged discrep-

ancy signal as opposed to the synchronous averaged vibration signal in the next step.

6.5.2.2 Discrepancy feature space of experimental dataset

The discrepancy features, discussed in Section 6.3.2, are presented in Figure 6.12 for the four

gear datasets presented in Section 6.5.2 and Table 6.3. In Figure 6.12(i), all the datasets start

at the zoomed portion box, also indicated by ”Initial” and as the gear condition changes, the

features move to ”Final” with a trajectory in a similar direction as Class 2 and Class 4 in

Figure 6.4(i). The large overlap in the healthy data region in Figure 6.12(ii) is attributed to
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Figure 6.12: The full feature space of the four experiments is presented, with a zoomed
view of the healthy feature region as well. In Figure 6.12(i), the starting position of the
transition process, denoted ”Initial”, and the stopping position of the transition process,
denoted ”Final”, are presented for clarity.

the fact that the damaged gears start approximately in a healthy condition, i.e. the seeded

damage is small, whereafter the gears deteriorate during the experiments. The influence

of the deterioration of the gear is clearly seen in Figure 6.12(i), with the two gears having
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approximately the same trajectory. The slight differences in the trajectories are attributed

to the fact that the seeded damage had different characteristics which resulted in a more

abrupt failure for the second gear. The disassembling and reassembling process between the

experiments also resulted in the features to have slightly different characteristics, however,

the effect of this is negligible in comparison to the changes in the features as the condition

of the gear changes.

In the next section, the condition recognition system is only optimised on healthy data,

to test its ability to perform novelty detection.

6.5.2.3 Classification with only healthy historical data (Novelty detection)

It is necessary to test the ability of the condition recognition system to perform novelty

detection when only historical data from a healthy machine are available. Therefore, it is

assumed that only the healthy historical data in Table 6.3 are available for optimising the

classifier presented in Figure 6.2. The discrepancy features are extracted from the afore-

mentioned healthy historical data with the procedure discussed in Section 6.3.2, whereafter

a single GMM is optimised on the healthy historical data with the procedure discussed in

Section 6.3.3.1.

The objective of the condition recognition system is only to infer whether the features

are from a healthy machine or not i.e. a novelty is detected and therefore it is unnecessary

to use Bayes’ rule given by Equation (6.5). Hence, the GMM of the healthy features and the

decision rule given by Equation (6.7) are used in the condition recognition system to label

the data as healthy (i.e. class label of 1) or as a novelty (i.e. class label of 0).

The next step is to evaluate whether the trained condition recognition system can infer

the condition of the gearbox correctly for different gear conditions. The testing measurements

from the four datasets in Table 6.3 are used to evaluate the performance of the condition

recognition system, with the class labels presented in Figure 6.13. The healthy gear data

in Figure 6.13(i) and 6.13(ii) are classified correctly with only three measurements being

incorrectly labelled as novelties in Figure 6.13(i) i.e. they are labelled as class 0. These three

measurements are outliers in the dataset.

Most of the initial damaged gear measurements of the first experiment are classified as

healthy in Figure 6.13(iii) due to the small damage which resulted in an overlap in the

healthy feature region as seen in Figure 6.12(ii). As the condition of the gear deteriorates,

novelties are detected at an increasing rate until the gear tooth ultimately fails. In contrast
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Figure 6.13: The output of the condition recognition system in Figure 6.2 for the different
datasets when only healthy historical data are available. The inferred class label correspond
to the class labels in Figure 6.2, with 0 indicating a novelty and 1 corresponding to the
healthy class.

to the result in Figure 6.13(iii), the damaged gear of the second experiment does not contain

evidence of a long transition from healthy to damage period in Figure 6.13(iv). A few of the

measurements are classified as novelties which can indicate the presence of damage, with the

failure occurring in the final stages of the experiment. The detection of the failure in the

final stages of the experiment is not a deficiency of the method; the seeded damage was more

severe for the second experiment than for the first experiment which resulted in a significantly

shorter experimental time (i.e. 3 days as opposed to 20 days) due to the gear tooth failing

abruptly.

The synchronous averaged discrepancy signals, corresponding to the measurements where

novelties are detected in Figure 6.13(iii) and Figure 6.13(iv), are presented in Figure 6.14. The
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Figure 6.14: The synchronous averaged discrepancy signals which correspond to the novelties
detected in Figure 6.13(iii) and 6.13(iv) are presented in Figure 6.14(i) and Figure 6.14(ii),
respectively. Different colours are used to emphasise that the synchronous averages of different
measurements are presented.
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many synchronous averages in Figure 6.14(i) make it difficult to interpret the results in the

figure and therefore a three-dimensional figure is presented in Figure 6.15 of the same results.

There are not many novelties detected in Figure 6.13(iv) and not many synchronous averages

presented in Figure 6.14(ii), which makes the results in Figure 6.14(ii) easy to interpret and

therefore a three-dimensional surface is not shown for that data. The results in Figures 6.14

and 6.15 indicate that the novelties, detected in Figure 6.13(iii) and Figure 6.13(iv), are due

to localised damage on a gear tooth. Hence, it is not only possible to automatically label the

Figure 6.15: The results in Figure 6.14(i) are presented as a three-dimensional surface to
make it easier to interpret the results.

measurements from a damaged gearbox under the varying operating conditions as novelties

with the condition recognition system, but also to characterise the damage by manually

investigating the corresponding synchronous averaged discrepancy signal.

In the next section, it is investigated whether it is possible to update the condition

recognition system after historical fault data become available. The ability of the condition

recognition system to correctly infer the condition of the gearbox is investigated as well.

6.5.2.4 Classification with healthy and damaged gear historical data

In this section, it is assumed that the historical damaged gear data, presented in Section 6.5.1

and Table 6.3, are available after the condition recognition system has already been optimised

as a novelty detector in the previous section. Hence, the historical fault data, labelled as the

training data in Table 6.3 need to be incorporated into the condition recognition system. The

training data of the damaged class are spaced throughout the life of the gear from its initial

damaged state and its failure state as described in Table 6.3.

The condition recognition system is updated by firstly optimising a new GMM on the
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damaged class discrepancy signal features, whereafter the prior probabilities of the healthy

and damaged gear classes are calculated as discussed in Section 6.3.3.1. The resulting prior

probabilities of the classes are therefore P (Chealthy) = 2/3 and P (Cdamaged) = 1/3. Hence,

the condition inference procedure works in two steps: Firstly, the likelihood p(r|Ci) of the

GMM of the damaged gear (optimised in this section) and the GMM of the healthy gear

(optimised in the previous section) are calculated for the discrepancy signal features of a new

measurement. Thereafter, the likelihoods and the prior probabilities are used with Bayes’

rule to infer the condition of the gear as described in Section 6.3.3.1. The inferred class is

then either accepted or rejected (i.e. labelled as a novelty) or not according to the procedure

in Section 6.3.3.2.

The OSR GMM using Bayes’ rule, with and without the decision rule given by Equa-

tion (6.7), are investigated on the four experimental datasets, with the resulting decision

boundaries presented in Figure 6.16. Both classifiers distinguish the different classes well,
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Figure 6.16: The decision region for the GMM condition recognition system in Section 6.3.3.1
with and without the decision rule is superimposed on the features of the experimental
datasets. Note: Different colour bar ranges are used in Figure 6.16(i) and 6.16(ii)

but the classifier without the decision rule is incapable of detecting new classes and outliers

as evidenced in Figure 6.16(i). The classifier with the decision rule learned the trajectory of

the data as the gear’s condition deteriorates and can indicate when there is a region in the

feature space unsupported by the training data as seen in Figure 6.16(ii).

The posterior probability of the different classes calculated using Equation (6.5) for the

four datasets, are smoothed using a moving average window with a length of 5% the number

of measurements and a 90% overlap, and presented in Figure 6.17. The healthy gear data

in Figure 6.17(i) and Figure 6.17(ii) are classified correctly. The damaged gear posterior

probabilities in Figure 6.17(iii) and Figure 6.17(iv) indicate that the gears started from ap-

proximately healthy conditions, whereafter the damage progressed up to the failure of the
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Figure 6.17: Posterior probability of the two classes for the four experimental datasets using
the condition recognition system with the decision rule.

tooth. The damage in Figure 6.17(iii) can be detected at the 244th measurement, while the

damage in Figure 6.17(iv) is detected at the 203rd measurement. The different characteristics

in Figure 6.17(iii) and Figure 6.17(iv) are attributed to the different characteristics of the

seeded damage and experimental time discussed in Section 6.5.1.

The change in probability for the damaged gears is evidence that the condition of the

gears change with measurement number, however, it is shown in Section 6.4 that the hidden

states contain useful information as well. The hidden states of the GMM for the associated

class, determined by the procedure described in Bishop [114], are presented in Figure 6.18 for

the damaged gears. The two damaged datasets exhibit very similar characteristics. The first
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Figure 6.18: The hidden state in which the data reside as a function of measurement number
for the damaged gears. Three stages are identified in Figure 6.18(i) and labelled with Roman
numerals.

two states are visited for the initial measurements and as the gear deteriorates, state 3 and

4 become more active. The presence of Stage II and III in Figure 6.18(i) indicate that the

Page 143



tooth failed or that failure is imminent. Due to the abrupt failure of the second gear tooth,

the progression between Stage II and III is not seen. The hidden states can therefore be used

in the maintenance decision making process, for example if the gear is classified as damaged

and if state 2 is visited more frequently, a warning is issued and if state 3 and 4 (i.e. Stage

II to III) is reached, the machine needs to be stopped as soon as possible.

It is concluded that the methodology is capable of detecting novelties and classifying the

data correctly. The benefits of the open set recognition framework is clearly highlighted on

the synthetic and experimental data. However, the benefits of using discrepancy analysis as a

pre-processor for the classification problem has not yet been investigated. This investigation

is performed in the next section.

6.5.3 Comparison to a Conventional Classification Procedure (CCP)

The aim of the investigation in this section is to highlight the benefits of using discrepancy

analysis prior to extracting the features used for classification. The feature extraction pro-

cedure in Section 6.3.1.1 is extended for a Conventional Classification Procedure (CCP) to

circumvent the use of discrepancy analysis in the condition inference procedure. The following

process is used:

• Calculate the CWT of the order tracked vibration signal for the first three gear mesh

components according to Section 6.3.1.1.

• Calculate the statistics given in Table 6.1 for the entire measurement. Hence, the

windowing procedure is not used and this results in a single 30 dimensional feature set

to be extracted for each measurement of the four datasets.

• The condition recognition system cannot be efficiently optimised due to the high di-

mensionality of the features, hence the dimensionality of the features is reduced with

Principal Component Analysis (PCA). PCA is used, because it performed the best of

all dimensionality reduction methods used for gear diagnostics in Ref. [77]. The PCA

model is optimised on the historical data which is used to project the features on a

lower-dimensional principal component feature space. The accumulative contribution

rate is used to determine the appropriate dimensionality of the principal component

feature space, which resulted in three dimensions to be used.

In Figure 6.19, the proposed discrepancy features and the CCP features are compared

for 44 healthy historical measurements and 44 historical damage measurements, with the
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latter spaced evenly over two days before the first gear failed. The 44 historical damage

measurements used in Figure 6.19(ii) are not included in Table 6.3 and are used to compare

the sensitivity of the features to faults. The two classes in Figure 6.19(i) are fairly well

(i) Conventional PCA features
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Figure 6.19: A comparison of the feature space using the proposed discrepancy features in
Section 6.3.1.1 and the conventional features discussed in Section 6.5.3.

separated, with only a few samples overlapping. However, the proposed discrepancy analysis

features in Figure 6.19(ii) separate the two classes significantly better than using the principal

components of the raw features, which indicate that the proposed discrepancy features are

more sensitive to damage. The large variance of the historical damaged data in Figure 6.19(ii)

is attributed to features’ sensitivity to the large change in machine condition as the gear tooth

failed.

In Section 6.5.2, 44 healthy measurements are used for optimising the healthy GMM and

166 damaged gear measurements are used for optimising the model of the damaged GMM as

outlined in Table 6.3. However, the 166 damaged measurements did not work very well with

the PCA model due to the large overlap between the healthy historical data and the healthy

portion of the historical fault data as shown in Figure 6.20(i). In contrast, the condition

recognition system in Figure 6.20(ii) performs significantly better when using the 44 damaged

measurements in Figure 6.19(ii). Performing dimensionality reduction with the complete

dataset did not separate the classes well which resulted in poor decision boundaries. Hence,

the historical features presented in Figure 6.19(i) are used in the CCP for all subsequent

analyses.

The principal component feature space, superimposed on the decision boundaries of the

condition recognition system, is presented in Figure 6.21 for the four datasets. It is difficult to

see the trajectory of the features as the gear condition deteriorates for the two experiments

in contrast to Figure 6.12. There a difference in the trajectory in the final stages of the

condition transition process for the two experiments i.e. Exp. 1: Damaged and Exp. 2:
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(i) With 166 historical damage measurements
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Figure 6.20: The decision region for the proposed condition recognition procedure with the
44 measurements in Figure 6.19(i) used for optimising the damaged model in contrast to
using the damaged measurements discussed in Table 6.3. A class label of 0 corresponds to
a novelty, a class label of 1 corresponds to a healthy gear and 2 corresponds to a gear with
localised damage.

Damaged in Figure 6.12. This resulted in some measurements of the second experiment with
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Figure 6.21: The principal component feature space of the features from the four experimental
datasets using the procedure discussed in Section 6.5.3 is shown with the decision regions of
the condition recognition system.

the damaged gear i.e. Exp. 2: Damaged to be incorrectly classified as outliers.

The posterior probability of the datasets, calculated with the same procedure as section

6.5.2, is presented in Figure 6.22. It is clear from the results that the classifier is capable

of predicting the class label correctly for the healthy measurements and in the final mea-

surements of the damaged gears, the damage is detected. The damage in Figure 6.22(iv) is

detected at the same measurement number as in Figure 6.17(iv) due to the fact that the tooth

failed abruptly. However, the damage in Figure 6.22(iii) is detected at the 460th measure-

ment, which is significantly later than in Figure 6.17(iii), because the discrepancy features

are more sensitive to changes in machine condition.
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Figure 6.22: The posterior probabilities of the two classes for the four experiments using the
principal component features with the condition recognition system, i.e. discrepancy analysis
is not used.

Hence, processing the data with discrepancy analysis results in a better performance (e.g.

it detects damage earlier and clearer decision boundaries are obtained) and therefore it is

sensible to include discrepancy analysis in the OSR methodology.

6.6 Conclusion and recommendations

In this chapter, it is emphasised that machine condition monitoring problems should be

addressed as open set recognition and not as closed set recognition problems. An open set

condition recognition methodology is proposed which can be used to automatically infer the

condition of gears using an open set recognition framework. The proposed methodology

is effective in the fault diagnosis task, because the historical fault data are utilised in the

condition recognition process and condition recognition predictions are only made in regions

well supported by the historical data, with data from new damage modes or outliers being

labelled as novelties. The methodology is validated on synthetic as well as experimental

datasets, where the importance of using an open set recognition framework with the full

training dataset is illustrated.

In future investigations, it is suggested that the methodology be extended to include

the different damage modes that can be encountered in gearboxes. Deep learning methods,

which have much potential in the condition monitoring field, also need to be extended to

accommodate the openness of the condition monitoring problem.
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Chapter 7

Conclusion and recommendations

7.1 Conclusion of thesis

In this thesis, effective fault diagnosis methodologies are proposed for gearboxes operating

under varying operating conditions by utilising the available prior knowledge about the ma-

chine. Prior knowledge can be used to obtain effective fault diagnosis methods as follows:

• Prior knowledge related to the kinematics of the gearbox (e.g. gear ratios, bearing fault

frequencies) can be used to extract diagnostic rich information, which can ultimately

be used to not only detect damage, but the damaged component can be inferred as

well.

• Prior knowledge related to the characteristics of the vibration data can be utilised to

select the appropriate signal analysis techniques to extract or enhance the diagnostic

information in the data and it can be used to discern between the healthy parts and

damaged parts of rotating machine components e.g. to discern between healthy gear

teeth and damaged gear teeth.

• Prior knowledge in the form of historical data can be used to supplement the avail-

able signal analysis techniques, to ensure that damage can be automatically detected,

localised and that changes in the condition of the component can also be detected.

In this thesis, five methodologies are proposed to illustrate how prior knowledge can

be used for effective fault diagnosis. More specifically, different data availability levels, sum-

marised in Figure 1.2, and different signal analysis techniques, are investigated in the method-

ologies. In Chapter 2, a novel methodology is developed to automatically detect localised

gear anomalies without any historical data being available. This methodology is especially
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important, because some gearboxes may not have any historical data available (e.g. machines

for which condition monitoring has not been performed in the past) and localised gear dam-

age significantly decreases the life of the gearbox. It is also illustrated in this methodology

that Bayesian techniques can be utilised to incorporate uncertainty in the condition infer-

ence process. The methodology was investigated on experimental gearbox data, acquired

under constant operating conditions, and experimental gearbox data, acquired under varying

operating conditions.

Designing fault diagnosis techniques for a gearbox with only healthy historical data is very

important, because gearboxes operate for relatively long periods in a healthy condition, which

makes healthy historical data easy to obtain. Therefore, three methodologies are developed for

gearboxes where only healthy historical data are available, with each methodology specifically

designed to highlight how historical data can be used to supplement a different class of signal

analysis technique.

In the first methodology presented in Chapter 3, discrepancy analysis is extended for

performing bearing diagnostics under varying speed conditions using time-frequency analysis

techniques such as the wavelet packet transform, the empirical mode decomposition and the

instantaneous power spectrum to extract diagnostic rich features, whereafter a healthy data

model is used to assign a localised novelty detection score to the data, which is used to

obtain a discrepancy signal which can be processed to detect, localise and trend damage. In

this methodology, a discrepancy signal processing method is also developed to compensate for

varying speed conditions, with the processed discrepancy signal being a reliable estimate of the

condition of the machine under varying speed conditions. The methodology was investigated

on numerical gearbox data, experimental bearing data acquired under constant operating

conditions and experimental bearing data acquired under varying speed conditions.

In Chapter 4, a methodology is developed to supplement the spectral coherence, a very

powerful second-order cyclostationary analysis technique, with healthy historical data. The

spectral coherence is utilised to decompose the signal into a cyclic order-spectral frequency

plane, whereafter features can be extracted from the spectral coherence and the healthy fea-

tures are modelled with a probabilistic model. It is shown that the marginal distribution

of the features of a specific characteristic can be used to not only detect localised damage,

but also to determine which component is damaged. The methodology was investigated

on numerical gearbox data and experimental gearbox data acquired under varying operat-

ing conditions, where the modified improved envelope spectrum is used as basis for feature
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extraction.

The last methodology for this data availability class, presented in Chapter 5, utilises

narrowband feature extraction techniques to extract the statistics of different frequency bands

in a signal, whereafter the statistics are modelled and used to enhance the novel information in

the vibration signal. The novelty rich signal can be analysed using conventional signal analysis

techniques such as the synchronous average, synchronous squared envelope and the spectral

coherence to infer the condition of the machine. After extracting a novelty rich signal with

the proposed methodology, it is illustrated that the novelty rich signal is significantly more

sensitive to damage, which improves the ability of conventional signal analysis techniques to

detect, localise and trend damage. The methodology was investigated on numerical gearbox

data as well as experimental gearbox data, acquired under varying operating conditions, with

the squared envelope infogram used as a feature extraction technique.

In Chapter 6, the last data availability level is considered by developing a methodology to

automatically infer the condition of the machine by using the available historical data. It is

illustrated that the condition monitoring problem is actually an open set recognition problem,

where only historical data of a sample of a population of damage modes are available and

therefore the inferred condition should be treated with care. Conventional supervised learning

approaches do not recognise the openness of the condition monitoring problem, which means

that erroneous results can be obtained when a new damage mode, not present in the historical

data, is encountered. The open set recognition framework makes it necessary to use the full

dataset (i.e. as the healthy machine degrades in its failure state) as the training dataset,

as opposed to using discrete states. This is performed to ensure that predictions can be

made throughout the life of the machine, with the added benefit that it requires less human

intervention to label the dataset. In this methodology, it is also illustrated that by using

discrepancy analysis as a pre-processing step, the performance of the methodology can be

significantly improved. The methodology was investigated on a synthetic dataset, where the

benefits of using an open set recognition methodology are illustrated, and on two experimental

gearbox datasets.

Hence, the proposed methodologies, which rely on the availability of prior knowledge, can

be used to perform effective fault diagnosis.
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7.2 Recommendations for future work

The following recommendations are made for future work in the gearbox condition monitoring

field:

• The purpose of this thesis was not to find the optimal methodologies for gearbox fault di-

agnosis, and therefore standard signal analysis and feature modelling techniques, which

have been widely established and proven to be successful in literature, were used. How-

ever, there is much potential for investigating and optimising the methodologies to

improve their performance.

• The experimental gearbox data were only acquired for healthy gears and gears with

localised damage. There are many other damage modes that can be encountered in

gearboxes, for example, distributed gear damage is widely encountered in wind turbine

gearboxes. It is therefore necessary to apply the proposed methods on other typical

damage modes such as wear, pitting and scuffing to validate their capabilities further.

• The datasets considered in this thesis were generated in a controlled laboratory en-

vironment. Even though industrial gearboxes were used in the experimental gearbox

datasets and the experiments were performed under time-varying operating conditions,

the operating conditions do not have the same non-stationary characteristics that could

be encountered in industrial machines such as wind turbines. Therefore, it is suggested

that the methodologies need to be investigated on industrial gearboxes in real applica-

tion environments, acquired under non-stationary operating conditions, to fully validate

them.

• Instantaneous angular speed measurements have much potential for gearbox condition

monitoring applications. Therefore, the benefits of using the proposed methodologies,

with instantaneous angular speed measurements used as source of condition monitoring

data, need to be investigated.

Page 151



Bibliography

[1] J. P. Salameh, S. Cauet, E. Etien, A. Sakout, and L. Rambault. Gearbox condition

monitoring in wind turbines: A review. Mechanical Systems and Signal Processing,

111:251–264, 2018.

[2] I. El-Thalji and J. P. Liyanage. On the operation and maintenance practices of wind

power asset. Journal of Quality in Maintenance Engineering, 18(3):232–266, 2012.

[3] A. K. S. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal

Processing, 20(7):1483–1510, 2006.

[4] A. Prajapati, J. Bechtel, and S. Ganesan. Condition based maintenance: A survey.

Journal of Quality in Maintenance Engineering, 18(4):384–400, 2012.

[5] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel. Prognostics and health

management design for rotary machinery systems - Reviews, methodology and appli-

cations. Mechanical Systems and Signal Processing, 42(1-2):314–334, 2014.

[6] Y. Lin, L. Tu, H. Liu, and W. Li. Fault analysis of wind turbines in China. Renewable

and Sustainable Energy Reviews, 55:482–490, 2016.

[7] R. B. Randall. Vibration-based condition monitoring. Wiley, 2011.

[8] F. Pedro, G. Márquez, A. Mark, J. Maŕıa, P. Pérez, and M. Papaelias. Condition
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Appendix A

Additional results and investigations

In this appendix, supporting information is given for the main content of the thesis. In Section

A.1, a sensitivity analysis is performed to determine the effect the prior hyperparameters in

Chapter 2 have on the inferred results. In Section A.2, additional information is given and

additional investigations are performed for the bearing discrepancy analysis methodology

presented in Chapter 3. Lastly, additional information is also provided in Section A.3 for the

novel information enhancement methodology presented in Chapter 5.

A.1 Sensitivity analysis for prior parameters in Chapter 2

In Chapter 2, the hyperparameters of the prior distribution are selected a priori to the analysis

and subsequently used to perform Bayesian inference. However, the hyperparameters of the

prior distribution can have a significant impact on the posterior distribution and therefore

the choice of the hyperparameters, that were used in the previous analyses, needs to be

motivated. The hyperparameters were chosen so that the posterior marginal distribution on

the mean is dominated by the data and not by the prior information. However, the choice

may not be appropriate and therefore the sensitivity of the hyperparameter choice on the

resulting posterior distribution is investigated in this section.

Hierarchical or multilevel Bayesian analysis can be used to incorporate uncertainty in the

hyperparameters into the inference process, by using hyperpriors [164]. Hence, the full joint

distribution over the random variables is as follows

p(µ, λ, µ0, κ0, α0, β0|X,φ) = p(µ, λ|µ0, κ0, α0, β0, X)p(µ0, κ0, α0, β0|φ), (A.1)

where p(µ, λ|µ0, κ0, α0, β0, X) is the posterior distribution if the hyperparameters are fixed,
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p(µ0, κ0, α0, β0|φ) is the distribution over the prior hyperparameters, known as the hyperprior,

and φ is the hyperprior parameters. The joint distribution over the posterior mean and

precision is subsequently calculated as

p(µ, λ|X,φ) =

∫
α0

∫
β0

∫
µ0

∫
κ0

p(µ, λ, α0, β0, µ0, κ0|X,φ) dα0 dβ0 dµ0 dκ0, (A.2)

which allows the uncertainty in the hyperparameters to be reflected in the posterior distribu-

tion parameters which are subsequently used in the condition inference process. The model

with the hyperpriors in Equation (A.1) is called a three-level model and the approach in

Section 2.2.3, with the fixed hyperparameters, is known as a two-level model [164]. Sampling

methods are investigated to allow arbitrary hyperpriors to be investigated. A sample s from

the hyperprior distribution

µs0, κ
s
0, α

s
0, β

s
0 ∼ p(µ0, κ0, α0, β0|φ), (A.3)

is used to obtain the posterior Gaussian-Gamma distribution parameters using the process

described in Section 2.2.3. Note that the superscript s denotes that a sample of the variable

is obtained or considered. The posterior precision sample is obtained from

λs ∼ Gamma(λ|αsn, βsn), (A.4)

and the posterior mean sample is obtained from

µs ∼ Gaussian(µ|µsn, (κsnλs)−1), (A.5)

which is used for subsequent inference procedures. The sampling process is repeated multiple

times to obtain a sufficient number of samples, which is used to represent the posterior

distribution over the parameters of interest.

In this chapter, the hyperparameters are assumed to be uncorrelated and uniformly dis-

tributed between a and b, which is denoted by U [a, b]. The true hyperparameter values

are unknown and therefore all values within a sensible range are assumed to be equally

probable. The hyperparameters for the processed divergence data dproci are sampled from,

κ0 ∼ U [10−4, n/5], µ0 ∼ U [min (dproci ),max (dproci )], α0 ∼ U [10−4, 20], β0 ∼ U [10−4, 20],

which is subsequently used to obtain the posterior parameters. The number of elements in
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Figure A.1: Probability density function constructed from 20,000 samples taken from the
hyperprior.

dproci is n and min(dproci ) and max(dproci ) denotes the minimum and maximum value of dproci

respectively.

The samples from the hyperprior is shown in Figure A.1. The posterior distribution

from this three-level approach is compared to the two-level approach in Figure A.2. The

hyperparameters of the two-level approach are the same as in Section 2.3.2 for the divergence

data of a specific window. The posterior marginal distribution on the mean is very similar
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Figure A.2: The probability density function constructed from 20,000 samples, taken from
the hyperprior of the three-level approach, is compared to the two-level approach and the
maximum likelihood (ML) estimate.

for the two approaches, with the probability density function of the two-level approach being

slightly more localised. This means that the uncertainty in the posterior mean is larger for the

three-level approach due to the additional uncertainty in the hyperparameters. The precision

is more sensitive to the choice of hyperparameters, and therefore a broader probability density

function is seen for the three-level approach. The mode of the three-level precision posterior

is closer to the maximum likelihood data than the two-level approach. The posterior marginal

distribution of the mean is used for condition inference and is very similar for the two-level
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and the three-level approaches, which validates that the choice of hyperparameters in the

previous analyses is sensible.

As a result, the three-level approach was not used for the other investigations in Chapter

2, because similar inferences will be made if Equation (2.13) is used, but with a significant

increase in computational time.

A.2 Bearing discrepancy analysis methodology information

Additional information is given in this section for the bearing discrepancy analysis methodol-

ogy in Chapter 3. In Section A.2.1, supporting information is given for the derivation of the

rotational speed compensation algorithm presented in Section 3.2.5 and in Section A.2.1.1 the

window length optimisation procedure, used in the rotational speed compensation algorithm,

is presented and discussed. It is also possible to use different features in the methodology as

stated throughout Chapter 3. Therefore, in Section A.2.2 the suitability of different features

and in Section A.2.3 the suitability of the different models are compared for discrepancy

analysis.

A.2.1 Compensating for rotational speed variations

In this section, the procedure that is used in Section 3.2.5 to estimate the mean and the

variance of the conditional distribution p(η|ω) is presented. It is assumed that the actual

conditional density of the discrepancy measure η given the rotational speed ω, p(η|ω), is

unknown and samples cannot be easily obtained from it. The process is started by considering

the analytical form of the expected value E[η|ω]

E[η|ω] =

∫
η · p(η|ω)dη. (A.6)

If an infinite number of samples is taken from the conditional distribution p(η|ω), then it can

be used to calculate the expected value of η given ω

E[η|ω] = lim
N→∞

1

N

N∑
i=1

ηi|ω, (A.7)
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where ηi|ω is a sample from p(η|ω). A different form of Equation (A.7) is analysed because

it is assumed that it is not possible to sample from p(η|ω) directly

E [η|ω] = lim
dΩ→0

lim
N→∞

1

N

N∑
i=1

ηi|ω ∈ [Ω− dΩ/2,Ω + dΩ/2] , (A.8)

where ηi|ω is a sample from the conditional distribution p(ηi|ω), where the rotational speed

ω ∈ [Ω− dΩ/2,Ω + dΩ/2] and defining the variable Ω in the equation is useful for later. If

it is assumed that the actual set of discrepancy measures for a healthy dataset {ηi} and the

corresponding set of rotational speeds {ωi} are samples from the actual distribution p(η, ω),

then it can be used to approximate E[η|ω]. Equation (A.8) is extended to accommodate the

experimental data

E [η|ωj ] ≈
1

Nη|ω

Nη|ω∑
i=1

ηi|ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2] , (A.9)

with ωj ∈ [Ω−∆Ω/2,Ω + ∆Ω/2] and ηi|ωi denoting the sample ηi for which the corre-

sponding rotational speed ωi falls within the range ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2]. There are

Nη|ω samples in the set {ωi} for which ωi ∈ [Ω−∆Ω/2,Ω + ∆Ω/2]. Hence, it can be seen

from Equation (A.8) that the smaller the window length ∆Ω is and the more samples Nη|ω

are used, the better the approximation in Equation (A.9) becomes. However, because the

actual data are considered, there is a compromise between the selected window length and

the number of samples that can possibly be used.

Ultimately, this procedure is implemented by generating a grid {Ωi} of window centres

and preselecting the window width ∆Ω. For each window centre j a single value of E[η|Ωj ] is

obtained. Instead of assuming that E[η|ω] is constant for a given window centre and within

the bounds, it is assumed that E[η|ω] varies linearly between window centres. Hence, the

value of E[η|ω] for a specific ω is obtained by linear interpolation by using the window centres

{Ωi} and the corresponding set {E[η|Ωi]}. The notation µη|ω(ω) = E[η|ω] is used in Chapter

3. The approach is easily extended to calculate the variance of the discrepancy measure given

the operating conditions.

A.2.1.1 Determining the window length of the speed compensation procedure

The following procedure is followed to calculate the window length used in the rotational speed

compensation procedure in Section 3.2.5. A grid of candidate window lengths is generated
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and then the following process is followed for each candidate window length on the grid and

a preselected window overlap:

1. Calculate the set of window centres {Ωi}, the conditional mean {µΩi,∆Ω} and the vari-

ance {σ2
Ωi,∆Ω} based on the current window length and the window overlap. The

position of the window centre k is determined from

Ωk =
1

2
∆Ω + k (∆Ω− Ωoverlap) , (A.10)

for k = 0, 1, . . ., where the window overlap is denoted by Ωoverlap and the window

overlap fraction is given by Ωoverlap/∆Ω.

2. Discretize the rotational speed axis with a fixed resolution ∆ω, by starting at the

minimum rotational speed ωmin. This discretization process is used in the next step

to evaluate the suitability of the current window length. A relatively fine resolution of

∆ω = 0.1 rad/s is used for all future investigations in this chapter.

3. Evaluate the following cost function

C =

N−1∑
k=1

(
µη|ω(ωmin + k∆ω)− µη|ω(ωmin + (k − 1)∆ω)

)2
, (A.11)

where N is the number of grid-points that were generated in the previous step. The

function in Equation (A.11) gives an indication on how smooth µη|ω(ω) is.

4. Change the window length ∆Ω and then repeat the process until all grid points are

evaluated.

The cost function in Equation (A.11) was evaluated for the data presented in Figure

3.5 for a grid of window lengths and three window overlap fractions i.e. Ωoverlap/∆Ω. The

window length which is selected from the process, is indicated by the ideal label in Figure

A.3 and is not the window length that corresponds to the smallest value of the cost function.

If the window length is too long, µη|ω(ω) will be too smooth to capture the localised trend

within the data. This is presented in Figure A.4, where the results of different window

lengths (indicated by the candidate lines in Figure A.3) are presented for the data shown in

Figure 3.5. All of the curves µη|ω(ω) for the different window lengths ∆Ω are shown over one

another in Figure A.4(i). In Figure A.4(ii), each curve is given a different offset which helps

to compare the different results that are obtained. It is concluded from the results that all
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Figure A.3: The cost function in Equation (A.11) is evaluated for several window lengths,
with the vertical candidate lines indicating the window lengths which are investigated in
subsequent figures. The overlap fraction is obtained by Ωoverlap/∆Ω.
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Figure A.4: Two plots of the function µη|ω are shown for the candidate lines and the ideal
line in Figure A.3. In Figure A.4(i) the fitted function is shown on the actual ordinate, and
in Figure A.4(ii) a unique value is added to η for each dataset to separate the fitted functions
for a simpler visual interpretation. An overlap fraction of 0.8 is used.

curves have the same trend, however if the window length is too small a very noisy function

is obtained while a too large window length results in an overly smooth curve which does

not fully capture the local characteristics of the data. A window length between 1.5 rad/s

and 5.5 rad/s gives sufficiently good results for the data under consideration. The window

fraction overlap of 0.8 was used for all investigations, because it provides smoother results

without losing local information.

A.2.2 Comparing the suitability of different features

The purpose of this investigation is to compare the suitability of different features for discrep-

ancy analysis. The sensitivity of the discrepancy signal for the presence of bearing damage

and the robustness of the discrepancy signal to changes in operating conditions are com-

pared for different features in this section. The same procedure for discrepancy analysis is
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followed as Figure 3.1, except, different features are investigated and compared and instead

of using the Mahalanobis distance as a discrepancy measure, the negative log-likelihood of

the Gaussian model is used.

A.2.2.1 Features for discrepancy analysis

It is necessary to extract diagnostic information from the measured vibration signal to im-

prove the condition inference capabilities of discrepancy analysis. In discrepancy analysis,

the multi-dimensional features should represent information pertaining to the condition of

the machine as a function of angle. Another important consideration of potential discrepancy

features is that even though the modulation due to bearing damage is angle-dependent, the

carrier component is time-invariant [31, 98]. The implication of this is that the signal is

approximately angle-time cyclostationary as opposed to time- or angle-cyclostationary un-

der varying speed conditions [31, 98] and therefore the feature extraction methods should

be carefully designed. The Wavelet Packet Transform (WPT), angle-order Spectrogram,

Angle-Frequency Instantaneous Power Spectrum (AF-IPS) and Empirical Mode Decomposi-

tion (EMD) are considered to perform feature extraction in this investigation.

Wavelet Packet Transform (WPT)

The Wavelet Packet Transform (WPT) forms part of wavelet analysis where a signal is

recursively decomposed into approximation (i.e. low-frequency content) and detail (i.e. high-

frequency content) coefficients by using a filter bank of quadrature mirror filters [74]. A

two-level wavelet packet decomposition of the temporal signal x(m) is shown in Figure A.5

with the Wavelet Coefficients (WCs) of each level presented as well. The impulse response

x(m)
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Figure A.5: Two-level wavelet packet decomposition of a discrete temporal signal x(m) with
a filterbank of low-pass (L) and high-pass (H) quadrature mirror filters for the WPT features
is presented. WCji (n) indicates the ith coefficients of the jth level.

function of the low-pass filter hL and of the high-pass filter hH are determined by the specific

wavelet basis function that is used [74]. For example, the filters are used to obtain filtered
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versions of the original signal x(m)

xL(m) = x(m)⊗ hL, (A.12)

xH(m) = x(m)⊗ hH , (A.13)

where xL and xH denote the low-pass and high-pass filtered signals. The low-pass and high-

pass filtered signals are decimated with a factor of two to obtain the wavelet coefficients at

the first level. This is performed repeatedly on the wavelet coefficients as shown in Figure A.5

to obtain a set of wavelet coefficients. The effectiveness of the WPT for diagnostics depends

on the level of the decomposition as well as the wavelet function that is used and therefore a

few common wavelet basis functions are investigated.

As outlined in Figure 3.3 and Figure A.5, the WPT is performed on the temporal vibration

signal to decompose the signal into a set of narrowband WCs. The WCs of the final level

are order tracked to obtain an angle domain representation of the specific WCs which are

subsequently used as features in the discrepancy analysis process. The resulting features are

given by

bn =
[
WCN1 (n),WCN2 (n), . . . ,WCN2N (n)

]T
, (A.14)

where WCNi (n) denotes the n-sample of the ith order tracked wavelet coefficients at level N

and the superscript T indicates the vector is transposed.

In the feature extraction procedure used in Chapter 3, the WCs are windowed to extract

localised statistics as features to enhance the discrepancy signal. However, this is not per-

formed on the wavelet packet features, because this can be applied to all investigated features

and does not convey their actual ability to extract diagnostic information.

Angle-order Spectrogram

The spectrogram is the squared magnitude of the Short-Time Fourier Transform (STFT) and

can show how the time-frequency components of the vibration signal evolve over time. How-

ever, there is a trade-off between the time and frequency resolution of the STFT and therefore

the STFT is ill-suited for representing the time-frequency information of non-stationary sig-

nals in general. Despite its limitations, some diagnostic information may still be contained

within the spectrogram and it has the benefit that it is relatively computationally efficient

to calculate due to the Fast Fourier Transform (FFT) being an essential part of the calcula-

tion process. The fact that the signal has a relatively poor time (or angle) resolution is not
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problematic for discrepancy analysis where the sampling frequency of the signal is usually

reduced by windowing the signal [155, 156]. The feature extraction procedure is as follows:

• Order track the vibration signal.

• Calculate the STFT of the order tracked vibration signal.

• Calculate the spectrogram, as the squared magnitude of the STFT, and use as features.

The number of frequency bins is equal to the number of features that is extracted. The

discrete spectrogram of the order-tracked vibration signal x(m) is given by

S(l, k) =

∣∣∣∣∣
Lw−1∑
m=0

x(m+Rwl)w(m)e−2jπnk/Lw

∣∣∣∣∣
2

, (A.15)

and calculated for a windowing function w(m) of length Lw and an overlap between consec-

utive windows Ow, where Rw = Lw − Ow. The D-dimensional features extracted from the

spectrogram are denoted by

bn = [S(n, 0), S(n, 1), . . . , S(n,Lw − 1)]T , (A.16)

where n relates to the shaft angle with n∆ϕ/2 rad, where ∆ϕ is the angular resolution of

the spectrogram in radians. Due to the fact that the angle-time cyclostationary properties

of the bearing damage are not preserved in the calculation of the features, it is expected

that the features will be sensitive to varying speeds, which is non-ideal under varying speed

conditions.

Instantaneous Power Spectrum (IPS)

The interactions of rotating components (e.g. gear meshing, impacts due to bearing dam-

age) of machines operating under stationary conditions result in the generation of time-

cyclostationary signals i.e. stochastic vibration signals with periodic statistical properties in

terms of time. This makes cyclostationary analysis very powerful for performing rotating

machine diagnostics [27]. However, for bearings operating under varying speed conditions,

the time-cyclostationary properties of the signal are lost and the signals are rather cyclo-

non-stationary. Abboud et al. [31, 98] showed that the signals from damaged bearings can

be approximated as angle-time second-order cyclostationary under varying speed conditions

and gave angle-time cyclostationary estimators for classical second-order cyclostationary tools
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such as the spectral coherence and the IPS. The IPS is very powerful for rotating machine

diagnostics [15, 99] and is used as discrepancy analysis features in this work. The time-

frequency IPS (TF-IPS)

ITF (t, f) =

∫ ∞
−∞
R2x(t, τ) · e−2πτfdτ, (A.17)

describes how the power of the signal manifest in its frequency bands over time whereR2x(t, τ)

denotes the time-autocorrelation function. The Welch-based estimator of the TF-IPS [98]

ÎTF (l, k) =
1

fs · L
∑Nw−1

a=0 w(a)2

∣∣∣∣∣
Lw−1∑
m=0

x(m+Rw · l)w(m)e−2jπmk/Lw

∣∣∣∣∣
2

, (A.18)

has a very similar form to Equation (A.15) and is used in this work with the same notation.

Under varying speed conditions, the Angle-Frequency IPS (AF-IPS) is more appropriate and

obtained by order-tracking each frequency band of the TF-IPS separately [98]

ÎAF (n, k) = OTt→ϕ

(
ÎTF (l, k)

)
, (A.19)

where OTt→ϕ indicates that the time index l is converted to an angle n with Order Tracking

(OT). The features at angle index n is obtained by concatenating the values of the AF-IPS

at all frequency bands for angle increment n and given by

bn =
[
ÎAF (n, 0), ÎAF (n, 1), . . . , ÎAF (n,Lw − 1)

]T
. (A.20)

It is evident from Equation (A.16) and Equation (A.18) that the dimensionality of the feature

space is governed by the length of the window that is used, while Equation (A.15) and

Equation (A.17) indicate the time resolution is dependent on the length of the window as

well as the overlap between consecutive windows. In all subsequent investigations the AF-IPS

as opposed to the TF-IPS is used for feature extraction and is shortened to IPS in the figures

and when it is being referred to.

Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) is a powerful self-adaptive time-frequency anal-

ysis technique that decomposes a signal into a set of orthogonal Intrinsic Mode Functions

(IMFs). The EMD is capable of analysing non-stationary signals in contrast to the STFT and
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it does not rely on a priori assumptions on the form of the signal components compared to

the WPT [60]. However, the EMD has a few problems such as the IMFs not being orthogonal

and the occurrence of mode mixing, a phenomenon where a signal component manifest within

a few IMFs. The ensemble EMD and other techniques have been proposed in literature aim-

ing to circumvent the aforementioned problems of the EMD [60]. In this investigation, the

standard EMD without any improvements is used in spite of the aforementioned problems,

because this is an initial investigation of the EMD. The EMD is performed on the temporal

vibration signal to extract N temporal IMFs. The temporal IMFs are order tracked to obtain

the angular IMFs which are subsequently used as features in the discrepancy analysis process,

with the features given by

bn = [IMF1(n), . . . , IMFN (n)]T . (A.21)

In discrepancy analysis, localised features are converted to a discrepancy measure. This

means that phenomena which result in spurious changes in features such as mode mixing will

result in corresponding spurious discrepancies. These spurious discrepancies may dominate

the discrepancy signal which will cause erroneous inferences to be made.

A.2.2.2 Dataset

The phenomenological gearbox model, proposed by Abboud et al. [28], and presented in

Section 3.3.1, is used in this section as well. The impulse response functions of the deter-

ministic gear component, the random gear component and the bearing damage component

have the same damping ratio of 0.05 and natural frequencies of 1.5 kHz, 2.5 kHz and 5.0 kHz

respectively. The ball-pass outer race order of the bearing is 8.14 shaft orders. Six bearing
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Figure A.6: Rotational speed profiles for the phenomenological gearbox model.

conditions are investigated with the model namely FS = [0.0, 0.02, 0.04, 0.08, 0.12, 0.16].
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A.2.2.3 Overview of investigation

The first step of the discrepancy analysis procedure used in this work is to extract diagnostic

features from the vibration signal. The dimensionality of the features should be approxi-

mately the same to ensure that a fair comparison between the different features can be given.

The dimensionality of the features in this investigation is set to 16 unless it is not practically

possible. The WPT decomposition level is set to four, which results in 16 wavelet coefficients

to be extracted from the vibration signal. Many wavelet basis functions can be used to per-

form the decomposition, with the focus placed on Daubechies wavelets which is very popular

for bearing diagnostics. The following Daubechies wavelet basis functions are investigated in

this section: db1, db2, db4, db8, db10, db16, db20, and db44.

The spectrogram features are calculated by using a Hann windowing function with a

window length of 16 and an overlap of 75% between consecutive windows. The TF-IPS is

implemented with the same characteristics as the spectrogram features, whereafter the TF-

IPS is order tracked to obtain the AF-IPS. The window length is selected to have the same

dimensionality as the WPT features.

The EMD is a self-adaptive signal processing technique to extract multiple IMFs which

are used to obtain features as discussed in Section A.2.2.1. It was found that a different

number of IMFs is extracted for different signals and to ensure that all measurements have

the same dimensionality, the number of IMFs that is extracted is set to 12. If more IMFs

are used in the training phase, there is a risk that some datasets in the testing phase may be

unusable due to an insufficient number of IMFs being extracted.

The features of a system with a healthy bearing (i.e. FS = 0.0) for the first four operating

conditions are used to obtain the healthy model as discussed in Chapter 3. The negative log-

likelihood

η(n) = − logN (bn|µ,Σ), (A.22)

is used to generate the discrepancy signals for the different datasets, whereafter the spectra

of the discrepancy signals are calculated. The spectra are presented in the next section.

A.2.2.4 Sensitivity to damage

The spectra of the discrepancy signals are presented in Figure A.7, where the bearing damage

component at 8.14 shaft orders and its harmonics are clearly seen for the AF-IPS, spectrogram

and most WPT features. The spectra associated with the spectrogram features contain a
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relatively large gear mesh component at 20 shaft orders when compared to the other features,

while only the fundamental bearing component can clearly be seen in the spectra of the

discrepancy signal associated with the WPT db44. In contrast to the other results, the

EMD features do not contain any clear diagnostic information in its spectra. It is difficult to
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Figure A.7: Discrepancy spectra for the different features used for the phenomenological
gearbox model with a fault severity of 0.08.

compare the performance of the features from the spectra in Figure A.7 and therefore their

performance is quantified and compared next.

The amplitude of the fundamental ball-pass outer race component contains diagnostic

information as seen in Figure A.7 and is investigated over fault severity to quantify the

sensitivity of the features to damage. The raw amplitude is presented in Figure A.8(i) and the

normalised amplitude is presented in Figure A.8(ii). The normalised amplitude, calculated

by dividing the amplitude of the different fault severities by the amplitude of the healthy

bearing component (FS = 0.0), is used to quantify the relative change of the amplitude over

fault severity. Surprisingly, from the results in Figure A.8, the spectrogram features are the

most sensitive to the damage, with the AF-IPS being second most sensitive. The discrepancy

signal associated with the EMD features is the least sensitive to damage. This is attributed
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Figure A.8: The sensitivity of the amplitude of the fundamental bearing component versus
fault severity.

to mode mixing, which results in spurious discrepancies to be detected.

It is recommended to use other performance metrics as well, to ensure that the perfor-

mance of the features can be completely quantified.

A.2.2.5 Robustness to varying speed conditions

It is not only important to quantify the sensitivity of the features to damage, but also their

robustness to varying speed conditions. The amplitude of the fundamental outer race com-

ponent is presented over rotational speed in Figure A.9(i) and the normalised amplitude is

presented in Figure A.9(ii). The normalised amplitude is obtained by dividing the mean am-
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Figure A.9: The sensitivity of the amplitude of the fundamental bearing component versus
fault severity.

plitude of the fundamental component at different speeds by the amplitude of the component

corresponding to the minimum rotational speed. The results of the EMD features are not

included in Figure A.9, because the EMD features are relatively insensitive to changes in

operating conditions and distorted the results in the figure. The EMD features were the least

sensitive to changes in speed, while the AF-IPS performed second best. Even though the
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(i) AF-IPS

(ii) Spectrogram

Figure A.10: A comparison of the spectrogram features and the AF-IPS features over shaft
rotations for the phenomenological gearbox model with bearing damage. Operating condition
profile three was used to generate the results.

Spectrogram features average normalised amplitude was not the most, the variation of the

features in Figure A.9 was the most. This indicates that it is relatively sensitive to varying

speed conditions with fairly large fluctuations with respect to rotational speed.

A.2.2.6 Discussion

The spectrogram features performed the best of the features in terms of its sensitivity to

damage, however, the features were also sensitive to speed changes as seen in Figure A.9(ii).

The spectrogram features and the AF-IPS features are presented for the phenomenological

gearbox model with operating condition profile three being present in Figure A.10. It is

clear that the spectrogram features are very sensitive to rotational speed changes because

the bearing damage resides in different features as the speed varies which is in contrast to

the AF-IPS features. The characteristics of the features depend on the rotational speed

which makes feature selection approaches difficult to apply. This also means that a healthy

Gaussian model, which is likely non-isotropic, may be more sensitive to bearing damage for

specific features than others which is an undesirable characteristic.

The WPT features also performed very well compared to the AF-IPS. The db4 features

performed the best, while the db10 features performed the worst as can be seen in Figure

A.8(ii). The db44 wavelet basis function, which has performed very well in the literature [120],
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does not perform well in this numerical investigation. Hence, it is clear that the performance

of the WPT features is sensitive to the choice of wavelet basis functions and therefore care

should be taken when using it in a novelty detection framework. This also highlights the

benefits of using the AF-IPS; the basis function is fixed and does not have to be altered for

different applications. In contrast to the other feature extraction approaches, the EMD was

time-consuming to apply and also did not perform very well for discrepancy analysis due to

mode mixing. However, there are many improvements to the EMD such as the ensemble

EMD that is not investigated in this work but can potentially result in better features for

discrepancy analysis.

A.2.3 Comparing the suitability of different data models

In discrepancy analysis, many different data models can be used to describe the characteristics

of the data e.g. Gaussian mixture models [155]. The purpose of this investigation is to

compare the suitability of different models for the discrepancy analysis methodology presented

in Chapter 3. A similar feature extraction procedure is used as Chapter 3 and summarised

in the next section, whereafter an overview of the different models are given and investigated

on a numerical gearbox dataset.

A.2.3.1 Features for discrepancy analysis

The bearing features used in this investigation are based on the features used in Chapter 3.

The wavelet packet transform is used with a Daubechies db1 wavelet function to decompose

the time domain vibration signal into a set of wavelet coefficients. The Daubechies db1 basis

function is used because it is able to detect singularities induced by bearing damage. A

four level wavelet packet decomposition is performed which results in 16 wavelet coefficients,

associated with different frequency bands, to be obtained. This allows the frequency bands

to have a relatively fine resolution to detect damage manifesting in specific frequency bands

and the features to have an acceptable dimensionality to avoid potential problems associated

with the curse of dimensionality.

The wavelet coefficients of each frequency band are separately order tracked, whereafter

the localised RMS is extracted from a moving average window with a length of 2π/50 radians

and a 50% overlap between adjacent windows. The short window length makes it possible

to detect localised changes in the vibration signal, however, a method to select the optimal

window length for bearing diagnostics still needs to be determined. Hence, instead of obtain-
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ing a single 16 dimensional feature for a single vibration measurement i.e. by calculating the

RMS of the wavelet coefficients for all shaft angles, many localised 16 dimensional features

are extracted from a single vibration measurement by extracting features from the moving

windows. A detailed description of the windowing and feature extraction procedures can be

found in Chapter 3.

A.2.3.2 Feature modelling approaches for discrepancy analysis

The features of a healthy gearbox, extracted from the previous section, is subsequently mod-

elled by the models investigated in this section, where new features extracted from a single

window, denoted by b, are evaluated with the discrepancy function to obtain a discrepancy

measure. The discrepancy measures that correspond to the features extracted from each win-

dow are combined to form a discrepancy signal which is subsequently analysed for damage.

The dimensionality of the feature space is 16, which means that the dimensionality of the

feature vector is b ∈ R16. A brief overview of each model and its associated discrepancy

measure M(b) are given in this section.

Gaussian Model (GM)

A multivariate Gaussian Model (GM) is one of the simplest models that can be used for

discrepancy analysis and has been successful for bearing diagnostics under varying speed

conditions as seen in Chapter 3. The Mahalanobis distance for the features

M(b) =

√
(b− µ)Σ−1(b− µ), (A.23)

uses the mean µ and covariance Σ, estimated from the healthy data, to calculate the discrep-

ancy between the features b and the healthy features. If the features have a dimensionality of

D, then the mean is defined µ ∈ RD×1 while the covariance is defined Σ ∈ RD×D. The fea-

tures investigated in this work result in D = 16 and the mean and covariances have the same

size throughout this work, unless stated otherwise. The GM has the benefit that it is easy (i.e.

it has closed form maximum likelihood solutions) and computationally efficient to implement,

however, it is incapable of describing multi-modal and non-Gaussian distributions.

Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) is a generalisation of the GM, where a weighted sum of

N-Gaussian densities are used to approximate the density of the features under investigation.
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The GMM has the benefit that it can approximate any density to an arbitrary accuracy if a

sufficient number of mixture components is used [114]. The GMM has been successfully used

for discrepancy analysis-based gear diagnostics [155, 156], with the NLL of the discrepancy

signal

M(b) = − log

(
Nc∑
i=1

πiN (b|µi,Σi)

)
, (A.24)

used as a discrepancy measure for the GMM. In Equation (A.24), πi is the weight of the

ith mixture component and denotes the Gaussian probability density function associated

with the ith mixture component. Even though the GMM is very flexible, it requires the

estimation of many parameters (i.e. N-means, N-covariances and N-weight parameters) with

an optimisation procedure, and the appropriate number of mixture components needs to

be estimated from the data as well. GMMs are also susceptible to overfitting and care

needs to be taken when optimising the models [114]. In this investigation, the Expectation-

Maximisation (EM) algorithm is used to obtain the model parameters using a maximum

likelihood framework.

Hidden Markov Model (HMM)

The aforementioned models are optimised based on the assumption that each data point is

independent and identically distributed (i.i.d.), which may be limiting. HMMs overcome the

i.i.d. limitation by assuming that the features are generated by a latent state that follows a

Markov process and the features are related to the latent states by an observation density.

A first-order Markov process is used with a Gaussian observation distribution for each latent

state in this investigation. The discrepancy measure for the HMM is calculated with

M(b) = − log p(bi|bi−1, . . . , b1), (A.25)

for the feature at window i. The HMM is even more computationally expensive than the

GMM, because the transition probability matrix of the Markov process needs to be estimated

as well. The additional temporal dimension gives the HMM additional discriminatory power

for detecting novelties over the GMM and GM. The mean and covariance of the Gaussian

observation density of each state, the initial state, and the transition matrix are obtained

using the Baum-Welch algorithm using a maximum likelihood framework in this investigation.
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Principal Component Analysis-based Reconstruction (PCA-R)

Principal Component Analysis (PCA) is a popular dimensionality reduction technique, where

the eigenvectors of the covariance matrix of the features are used to transform the features

to a lower subspace by removing redundant information. The dimensionality reduction is

performed with

z = V T
1:d (b− µ) , (A.26)

where V 1:d ∈ RD×d represents the eigenvectors associated with the d-largest eigenvalues, µ

denotes the mean of the healthy features and z ∈ Rd×1 denotes the principal components. It

is possible to obtain a one dimensional signal from the original signal with PCA (i.e. d = 1),

however, this is not a discrepancy signal and very poor results are obtained when using it in

a discrepancy analysis context.

In this investigation, a new discrepancy analysis approach based on PCA is investigated.

The mean and the eigenvectors of the healthy features are used to map the lower dimensional

principal component features with a dimensionality of Rd×1 back to the original feature space

with

brec = V 1:dV
T
1:d (b− µ) + µ, (A.27)

where the reconstructed features are denoted by brec which is a vector. The root-mean-square

of the reconstruction error b− brec is used as a discrepancy measure

M(b) =

√
1

D

(
b− V 1:dV

T
1:d (b− µ)− µ

)T (
b− V 1:dV

T
1:d (b− µ)− µ

)
. (A.28)

If d < D, then the reconstruction error will be non-zero and if the machine condition changes,

the reconstruction error will increase. The dimensionality d is estimated by selecting the

minimum PCA dimension that has an accumulative contribution rate of 95%.

A.2.3.3 Numerical Validation

Five different FS, namely 0.0, 0.02, 0.04, 0.06 and 0.08 are investigated here as well. The FS

merely quantifies the relative magnitude of the bearing impulses of the different cases e.g. a

FS of 0.02 contains impulses that are on average four times smaller than a FS of 0.08, while

FS of 0.0 simulates a healthy bearing.
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Figure A.11: The Operating Condition (OC) profiles investigated for the phenomenological
gearbox model.

Spectrum of the discrepancy signals

The frequency content of the discrepancy signals, where the bearing has a FS of 0.02, is

shown in Figure A.12 for the four investigated models. This is obtained by calculating the

spectrum of the discrepancy signal of each measurement in the dataset. The damage has

(i) GM (ii) GMM

(iii) HMM (iv) PCA-R

Figure A.12: The spectra of the discrepancy signals obtained from the different models for a
bearing with a FS of 0.02.

a fundamental component at 4.12 shaft orders, with the fundamental component and a few

harmonics being seen in the spectra of all the models. However, the spectra are definitely

sensitive to changes in operating conditions as seen by the variation of the amplitudes between

different operating condition profiles. The spectra of the discrepancy signals generated with

the GM, GMM and the HMM contain mostly diagnostic information, whereas the PCA-R

spectrum contains much noise which impedes the condition inference process.

It is difficult to quantify the robustness of the different models to varying operating
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conditions and the sensitivity of the models to damage from the spectra and therefore two

separate investigations are performed in the next sections to quantify the performance of the

models.

Sensitivity to damage

The sensitivity of the discrepancy signals obtained from the different models to damage is

investigated in this section. The amplitude of the fundamental component of the character-

istic frequency (i.e. 4.12 shaft orders) in the spectrum is used to quantify the magnitude of

the damage for the different FS values and the different models in this section. The ampli-

(i) (ii)

Figure A.13: The sensitivity of the models to bearing damage are compared. The amplitude
(a) and normalised amplitude (b) of the fundamental ball-pass outer race component are
shown over fault severity.

tude of the fundamental components in Figure A.13(i) are averaged over the four operating

condition profiles, and presented over bearing fault severity. The HMM has the largest dis-

crepancy values with respect to damage, where in contrast the PCA-R and the GM have the

smallest discrepancy values. However, it is not desired to quantify the absolute values, but

instead to quantify the relative increase in the values as the damage progresses. Therefore,

the amplitudes in Figure A.13(i) are normalised by the amplitude of the component from a

healthy machine, with the results presented in Figure A.13(ii).

It can be observed that the GMM is the most sensitive to damage, while the GM is second

most sensitive to damage, performing even better than the HMM. The PCA-R model does

not perform very well relative to the other models, however, it successfully detects changes in

the bearings condition. The GM is very simple relative to the GMM and HMM and may not

represent the exact density of the healthy features, however, it is clearly capable of detecting

small changes in the spectrum of the machine and is therefore well suited for discrepancy

analysis.
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Sensitivity to operating conditions

The discrepancy signal of a healthy gearbox is presented over rotational speed in Figure

A.14 for the different models. The conditional mean and variance of the discrepancy signal,

given the rotational speed, varies over rotational speed. The GM, GMM and the PCA-R

models contain very similar characteristics, however, the HMMs statistics vary significantly

over rotational speed. It is desired to quantify the sensitivity of the discrepancy signal

(i) GM (ii) GMM

(iii) HMM (iv) PCA-R

Figure A.14: The discrepancy signal of a healthy gearbox versus the rotational speed is
presented for the different models.

to rotational speed and therefore the conditional mean of the discrepancy signal given the

rotational speed is calculated with the procedure used in Chapter 3. The raw conditional

mean results are presented in Figure A.15(i). It can be observed that the HMM contains

the largest changes in discrepancy value, while the GM and the PCA-R models contain the

smallest changes.

Similar to the investigation in Section 3.2.2., the normalised discrepancy, obtained from

dividing the discrepancy value by the discrepancy value that correspond to the lowest rota-

tional speed, is investigated as well. The results in Figure A.15(ii) indicate the PCA-R and

the GM are the most sensitive to changes in rotational speed, while the GMM is the most

robust. Even though the GM results are sensitive to rotational speed variations, it can easily

be compensated for by the method proposed in Section 3.2.5.

Discussion

In this investigation, different models for discrepancy analysis were investigated and com-
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(i) (ii)

Figure A.15: The sensitivity of the discrepancy signal to rotational speed is compared for the
different models by comparing the conditional mean A.15(i) and the normalised conditional
mean A.15(ii) of the results in Figure A.14.

pared. The Gaussian mixture model is the most sensitive to damage and the most robust to

varying speed conditions and is therefore best suited for discrepancy analysis according to

this investigation. The hidden Markov model is quite sensitive to operating conditions which

may be ascribed to the Markov process of the model which struggles to distinguish between

changes in machine conditions and operating conditions. The Gaussian model performed

very well with the bearing diagnostics task which has the advantage that it can be easily im-

plemented without considering convergence and hyperparameter optimisation issues. Lastly,

even though the principal component reconstruction-based model did not perform as well as

the other models, the investigation indicated how the reconstruction model framework can

be used for discrepancy analysis.

A.3 Quality metrics used in Chapter 5

In Chapter 5, different squared envelope spectra and synchronous averages are presented.

It is difficult to compare the performance of the novel and the original signals from figures

and therefore performance metrics are used. In this section, an illustration is given of the

calculation of the performance metrics introduced in Section 5.4.2.2.

The calculation of the quality metrics used in Section 5.4 are presented in Figure A.16.

The Quality Measure (QM) of the Squared Envelope Spectrum (SES) is calculated with

Equation (5.23) where the average component of the fault frequency components shown in

Figure A.16 is denoted by SESdamaged. The SES of the noise floor is calculated by calculating

the median of the SES in the frequency range shown in Figure A.16, with the identified fault

frequency components ignored.

The QM of the synchronous average is calculated with Equation (5.24). The healthy and

Page A24



B: Signal of damaged portion

A and C: Signal of healthy portion

A

B

C

Amplitudes of damage components 

Estimated noise floor
Average amplitude of the damage components

Figure A.16: A supplementary figure to illustrate how the quality of the synchronous average
and of the squared envelope spectrum is calculated.

damaged portions are known beforehand as shown in Figure A.16. Therefore, the power of

the healthy and damaged portions shown in Figure A.16 can easily be calculated and is used

in Equation (5.24).
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Appendix B

Phenomenological gearbox model informa-

tion

The casing vibration signal of the phenomenological gearbox model comprises the following

components

xc(t) = xb(t) + xdgd(t) + xgmc(t) + xn(t), (B.1)

where xc(t) is the casing or measured vibration signal, xb(t) is the bearing vibration signal in-

duced by damage, xdgd(t) is the distributed (or random) gear component, xgmc(t) is the gear

mesh component or deterministic gear component, and xn is the broadband noise component.

The phenomenological gearbox model is used in a few investigations, where each investiga-

tion used different parameters. In this appendix, the different parameters are summarised

separately for each investigation.

B.1 Model used in Section 3.3

The single degree-of-freedom impulse response function, used to relate the raw vibration

component at the source and the measured response, is described by the natural frequency

of the system and the damping ratio. The natural frequency and the damping ratio are given

in Table B.1 for this investigation.

The relative power of the signal component i with respect to the noise component is

calculated with

SNRi = 20 log


√

(1/T )
∫ T

0 xi(t) · xi(t)dt√
(1/T )

∫ T
0 xn(t) · xn(t)dt

 , (B.2)

and used to quantify the magnitude of the different components with respect to the noise.
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Table B.1: The parameters of the impulse response function, defined in Equation (3.11), are
given for the different signal components used in Section 3.3.1.

Component fn Hz ζ

Gear mesh component 2000 0.05
Distributed gear damage com-
ponent

3500 0.05

Outer race bearing damage 5000 0.05

The results are presented in Table B.2 for the different fault severities.

Table B.2: The ratio of the power of the signal components to the power of the noise signals,
used in Section 3.3.1, is calculated with Equation (B.2) for the different Fault Severities (FS).
Abbreviations: Gear Mesh Component (GMC), Distributed Gear Damage (DGD), Bearing
(B).

FS Casing GMC DGD B

0.0 10.2777 9.47 -1.0045 -inf
1.0 10.2903 9.4707 -1.0052 -15.749
2.0 10.3245 9.4732 -0.9806 -9.7349
4.0 10.4478 9.4668 -1.0055 -3.7025

B.2 Model used in Section 4.3.1

The impulse response function parameters and the ratio of the power of the signal compo-

nents and the noise components are given in Table B.3 and Table B.4, respectively, for the

implementation in Section 4.3.

Table B.3: The parameters of the impulse response function are given for the different signal
components used in Section 4.3.

Component fn Hz ζ

Gear mesh component 2500 0.05
Distributed gear damage com-
ponent

1500 0.05

Outer race bearing damage 6000 0.05
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Table B.4: The ratio of the power of the signal components to the power of the noise signals,
used in Section 4.3, is calculated with Equation (B.2) for the different Fault Severities (FS).

FS B FS G Casing GMC DGD B

0.0 0.0 1.9436 -2.4888 -inf -inf
1.0 0.0 2.0307 -2.4503 -inf -15.964
2.0 0.0 2.221 -2.4715 -inf -9.8811
0.0 1.0 3.309 -2.4011 -2.436 -inf
1.0 1.0 3.3216 -2.5261 -2.5057 -15.9222
2.0 1.0 3.4974 -2.4689 -2.4428 -9.8773
0.0 2.0 5.8157 -2.4573 3.5268 -inf
1.0 2.0 5.8417 -2.4496 3.5042 -15.8276
2.0 2.0 5.8488 -2.5884 3.4262 -10.118

B.3 Model used in Section A.2.2

The impulse response function parameters are given in Table B.5 and the ratio of the power

of the signal components to the power of the noise component is given in Table B.6 for the

investigation performed in Section A.2.2.

Table B.5: The parameters of the impulse response function are given for the different signal
components used in Section A.2.2.

Component fn Hz ζ

Gear mesh component 5000 0.05
Distributed gear damage com-
ponent

2500 0.05

Outer race bearing damage 1500 0.05

Table B.6: The ratio of the power of the signal components to the power of the noise signals,
used in Section A.2.2, is calculated with Equation (B.2) for the different Fault Severities (FS).

FS Casing GMC DGD B

0 11.5775 11.2462 -12.3859 -inf
2 11.5662 11.2274 -12.4057 -21.2925
4 11.5611 11.2176 -12.4039 -15.3211
8 11.5985 11.225 -12.3522 -9.1889
12 11.6495 11.2368 -12.3244 -5.6542
16 11.7226 11.2379 -12.3859 -3.2184
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B.4 Model used in Section A.2.3

The impulse response function parameters and the power of the signal components and the

noise components are given in Table B.7 and Table B.8 for the investigation performed in

Section A.2.3.

Table B.7: The parameters of the impulse response function are given for the different signal
components used in Section A.2.3.

Component fn Hz ζ

Gear mesh component 4000 0.05
Distributed gear damage com-
ponent

1500 0.05

Outer race bearing damage 2200 0.05

Table B.8: The ratio of the power of the signal components to the power of the noise signals,
used in Section A.2.3, is calculated with Equation (B.2) for the different Fault Severities (FS).

FS Casing GMC DGD B

0 4.6341 2.8064 -inf -inf
2 4.627 2.7968 -inf -21.9809
4 4.6545 2.79 -inf -15.9372
6 4.6982 2.779 -inf -12.4778
8 4.7943 2.8086 -inf -9.9174
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