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Abstract

The long term properties, like coexistence and extinction, are usually determined by the
demographics of the competing species or other competitive advantages. In this dissertation
we consider the effect of conspecific support on the coexistence of species. We show that,
even if the competing species have the same demographics and interaction, their coexistence
can be destabilized by sufficient level of conspecific support. When considering large number
of species the conspecific support destabilizes the coexistance equilibrium, thus producing a
pattern of extinction and varied levels of existence. Up-scaling the model to continuous space
variable leads to a model of pattern formation via local self-activation and lateral inhibition.



Chapter 1

Introduction

1.1 General Overview

Competition among living organisms in an ecosystem is inevitable. We are all familiar with
competition for we face it every day in our lives. Competition is a biological interaction of
living organisms of either the same or different species in which one of them is affected. This
occurs when there is a high demand of resources by the organisms than what the environment
can actually supply. The term resource may include water, food, a space to grow, shelter, etc.
If a particular resource is not enough and hence, it limits the size of the population, then we
call it a limiting resource. Competition as a result of limiting resource was first described by
Darwin [2] in his famous book published in 1859, “The origin of species by means of natural
selection”. He described competition for a limiting resource as a “struggle for existence and
survival of fittest”[23]. There are different types of competitions. They can be classified
into two general concepts, intra-specific competition, which is shown in Figure 1.1 (a)-(b),
and inter-specific competition shown, Figure 1.1 (c)-(d). Intra-specific competition occurs
within the population with the same characteristics whereas inter-specific competition occurs
between populations with the different characteristics. It should be mentioned that intra-
specific competition is stronger at high population density because individuals of the same
species require identical resource and this can result in a process called self-thinning.
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1.1. GENERAL OVERVIEW

(a) intra-specific competition in plants (b) intra-specific competition in animals

(c) Inter-specific competition (d) inter-specific competition in animals
Figure 1.1: Classification of competitions

Furthermore, competition has different forms. The competition that happens when a number
of species share the resource which is limited whereby one species affects the other negatively
is called exploitation. This form of competition is also known as scramble competition.
In addition, when one species physically excludes another species from using a particular
resource is referred to as interference competition. Overgrowth competition occurs mainly in
plants when one species physically grows on top of another species and as result, limit the
other species to access the resource. An example is the brown algae commonly known as
Lobophora which overgrows on healthy reefs thereby which, in most cases, drive the corals of
Lobophora into extinction. Density-dependent growth is a self-regulatory form of competition
that limits the population size in nature. This happens either by slowing down the growth of
the population when a population increases or reduces a decrease in population size when it
is too low. This can be illustrated by two or more predators competing for a common prey.
An increase in preys causes an increase in predators to control the population. On the other
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CHAPTER 1. INTRODUCTION
hand, a decrease in preys population leads to a decrease in predators population.

Several ecologists have shown the impacts of competition by means of experiments. One of
the notable experiments was carried out by a Russian ecologist, G.F Gause in 1934 [39]. He
grew Paramecium aurelia and P. caudatum on the same territory competing for the same
resource. He observed that one of the species did not survive and it was driven to extinction.
In his “Principle of competitive exclusion”, he concluded that the two species sharing the
same resource cannot coexist [36]. Gause’s principle of competitive exclusion was supported
by Grover, Levins and Schreiber and his colleagues [42, 77, 79]. However, 33 years later,
Robert and Levins [72] showed that species coexistence is possible if species have a different
niche in a natural setting. In most cases, the outcome of the competition is determined by
the dynamics of competing species. If on the one hand, one species is competitive superior,
then the other species will eventually be driven to extinction. On the other hand, if both
species have the same competitive powers, the result of the competition depends on their
initial conditions. Further, if both species compete weakly, both species coexist in the same
environment indefinitely. The concept of weak competition, which will be defined precisely
later essentially means that the growth of one species limits its own further growth more than
it limits the growth of the other.

1.2 Modelling Competition

The consequence of Gause’s experiment discussed in the preceding section ignited the interest
of many researchers from different fields such as biology, epidemiology, mathematics, etc.
Since then, different mathematical models have been formulated trying to model coexistence
of two or more species sharing a common resource. Most of these models are based on a
famous classical model pioneered by Alfred J. Lotka and Vito Volterra commonly known as
Lotka-volterra model [36]. This model makes use of the competition coefficient to determine
the effect of each species on the other. The general Lotka-Volterra model takes the following
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1.2. MODELLING COMPETITION
form [35]:

dvi
dt

= rivi
ki

(ki − vi −
∑
i 6=j

αijvi), i = 1, . . . , n, (1.2.1)

where n is the number of species, vi is the species density/population size of ith species, ri
is the intrinsic growth rate, αij is a coefficient representing the effect of species j on species
i and ki is the carrying capacity for species i. Equation (1.2.1) has many applications in epi-
demiological modelling. For example, Ayala, et.al [35] used this form of a model to determine
the conditions which can allow species in a competition to coexist. It is noteworthy that in
the above model, if αij is non-negative, it means that we have a competitive interaction and if
αij is negative, the interaction is described as mutualism or predation, accordingly as αji < 0

or αji > 0.
Furthermore, the model has extensively been used to describe a long-term dynamics of two or
more species. The analysis of the model shows that coexistence of competing species is only
possible if intra-specific competition is stronger than inter-specific competition. Competition
in nature is assumably more complicated than we may think it is. Thus, the question, “is it
reasonable to use the Lotka-Volterra model in the modelling of species coexistence in nature”?
In answer to the raised question, Michael [35] among others designed the experiment to test
the validity of the Lotka-Volterra model. Using experimental data, the author proved that
the model is indeed valid and can reliably depict competition in a natural setting. Building
on this work, Mark and his colleagues in [53] used (1.2.1) to study population invasiveness.
In their model, they were able to derive the conditions that can explicitly slow or stop the
spread of invading species from invading the territory of its counterpart. This study was a
breakthrough to agriculturalists in pests control.
Recall a common hypothesis in the study of competitive models stated earlier, that is, in
order for competing species to coexist, intra-specific competition should be stronger than
inter-specific competition. However, there are several examples in literature that show the
coexistence of both a weaker and a stronger species. One of many examples is presented by
Amarasekare [8]. Moreover, following the given principle of competitive exclusion presented
in the previous section, Hutchinson [49], proposed that fluctuating environmental conditions
could lead to species coexistence and avoidance of species exclusion. His argument was that
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CHAPTER 1. INTRODUCTION
fluctuating the environmental conditions such as regularly changing the location of resource
frequently enough can alter the species ability of dominance which can result in extinction
avoidance. Supported by Chesson and Warner [20, 13] although later, Chesson and Huntly
stated that this might depend on the histories of competing species and on a relationship be-
tween environment and competition [13, 19]. It was shown in [14] that species in a fluctuating
environment can coexist and that coexistence is facilitated by trade-offs in species’ ability to
manoeuvre under different environmental conditions.

In prospect of studying species competition and coexistence, the major concern of many
ecologists and epidemiologists is whether there is a maximum number of species that can
coexist indefinitely. Well, this concern has been addressed in the literature such as [22, 59, 72].
The authors have discussed the conditions that can give rise to the coexistence of multi-
species. For example, a very recent article [56], considers the coexistence of multi-species
of competitive systems with a crowding effect. The authors showed that it is possible for
multi-species to coexist under the stated condition.

1.3 Competitive Systems and Pattern Formation

The study of the processes that generate spatial patterns in ecological systems has a long ex-
tensive history. Researchers have sought to explain pattern formation by connecting observed
patterns to ecological processes. As a result, most of them have turned to the competitive
systems as the cornerstone of the study of pattern formation [65, 82, 84]. In view of this,
different mathematical models have been proposed in the quest to explain the phenomenon
behind pattern formation [86]. Therefore, to get a better understanding of the underlying pro-
cesses and mechanisms that generate patterns, some researchers have modified Lotka-Volterra
model to come up with models that generate patterns that are identical to biological non-
random patterns. Nevertheless, it is still unclear whether such theoretical models can really
predict biological patterns because of the complex nature of some of the patterns. There are
several known factors that influence pattern formation in nature that many researchers neglect
such as environmental factors [11, 64, 69, 76]. However, it is explained in [87] that some of
these factors have less influence, hence, can be neglected. For example, Werner, Franck and
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1.4. SPECIES PERSISTENCE
Nicholas [87] are among other researchers who have explored the subject extensively. One of
the fundamental result that they discovered is that in the absence of environmental factors,
competition (intra-specific and inter-specific) alone is capable of generating regular patterns.
They concluded that spatial pattern formation depends merely on the type of interactions
species have and the strength of their dispersal. Nevertheless, they admitted the fact that
co-occurrence analysis alone cannot explain the underlying mechanisms that generates the
patterns in nature. Moreover, it is now widely accepted that competition is one of the major
mechanisms underlying pattern formation and distribution of biodiversity. For example, it has
been demonstrated by Jia, G, et al that plants in a community compete for light more than
any other growth need such as soil nutrients [43] and this affects the plant distribution.

The pattern formation in both the discrete and the continuous model represents the mechanism
given in the “Theory of Biological Pattern” by Gierer and Meinhardt [3]. However, it is not
represented via systems of partial differential equations as considered by Allen Turing in 1952
in his paper, “The chemical basis of morphogenesis” [9] and also used by Gierer and Meinhardt
[3, 29].

1.4 Species Persistence

Numerous theoretical studies have modelled species’ coexistence via persistence [26, 27, 50,
52, 89]. Researchers use the term persistence [89] to mean the long-term survival of species.
The question (that this study also seeks to address) of whether multi-species in a competition
obeying differential equations can persist indefinitely remains crucial in theoretical ecology.
While there have been a number of models proposed to model persistence of multi-species,
the major concern is how to obtain suitable conditions that guarantee indefinite species per-
sistence. Often times, researchers have used a classical method of local stability analysis
which can fairly be worked out to explain the asymptotic behaviour of competing species
while others have gone further by using global stability analysis which has proved to be more
difficult, except in cases where there are more constraint assumptions. In this dissertation, we
will employ local stability analysis, especially when considering a system in three dimensions
to explain the long-term behaviour of populations. We will use the concept of persistence in
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CHAPTER 1. INTRODUCTION
doing so. There are various definitions of persistence [79]. However, in this dissertation, we
adopt the one outlined by Hutson [89] because it has the following properties:

(i) persistence must be global. This means that the criteria used should be independent of
initial values of the system. This is important in ensuring that even for any trajectory
starting close to an asymptotically stable coexistent equilibrium should remain close to
the equilibrium even under a sudden change in the population. In other words, the
population should not move (for whatever reason) into a basin of attraction of stable
extinction equilibria.

(ii) The presence of stable limit cycle should not be ignored: persistent species are mostly
associated with cyclic behaviour provided the cycle remains away from the boundary. In
fact, even those situations associated with strange attractors [79] should be considered
as long as the attractor lies at a distance away from the boundary.

(iii) The trajectory should not remain close to the boundary for all positive time. If it could,
then there is a possibility of some species going to extinct (e.g due to epidemic or
randomness in the environment). If that occurs, then we cannot consider such a system
to model persistence.

With regards to the third property, Hutson [89] admitted that its formulation is somewhat
vague. Thus a question of preciseness of persistence merits further attention. One possible
view for persistence is that there should be a constant ε > 0 such that once the trajectory of
the system enters the region separated by ε from the boundary it should remain in that region
for all time. We provide mathematical definitions of persistence in Section 2.4.1.

1.5 Conspecific Support

Conspecific support is when individuals of one species support their own, but not the other
species. It is a common survival strategy used by living organisms. It is typically local and is
manifested differently for different species, e.g. biofilms of bacteria, packs of dogs, herds of
grazers, patches of grass in arid areas, patches of forest in savanna, etc. The basic mechanisms
for conspecific support are joint defence, joint acquisition and retention of resources, better
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1.6. RESEARCH QUESTIONS
mating opportunities, etc. The conspecific support usually results in the so called Alee Effect
- positive correlation between the per capita growth rate and the population density when the
population density is sufficiently small [68]. When conspecific support is essential for survival
at low population density, we have a strong Allee Effect, characterised by the existence of
minimum survival level, below which the species goes extinct.

1.6 Research Questions

This dissertation seeks to address the following questions;

(i) What is the importance of conspecific support and what impact does it have on the per-
sistence/coexistence equilibrium of two competing species (under qualified competition)
and of n competing species?

(ii) what conditions guarantee uniform persistence of a model of 3 competing species as well
as a model of n competing species?

(iii) what effect does conspecific support have on destabilising the coexistence of species and
on pattern formation in discrete and continuous space models?

1.7 Aims and Objectives of this Dissertation

Aims: In this dissertation, we aim to formulate a mathematical model for modelling n species
in a competition for a resource. Furthermore, will extend this model to include the term
that represents conspecific support. Additionally, we aim to find mechanisms through which
patterns are formed in ecosystems taking into account the competition for resources/space.
The analyses of the respective models is expected to provide conditions for coexistence of
species as well as the generations of patterns.

The Objectives of this dissertation are as follows:

(i) to show the importance of conspecific support for competing species or sub-population
groups. More precisely, we want to determine the impact of conspecific support on the
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CHAPTER 1. INTRODUCTION
persistent/coexistent equilibrium in the case of two competing species as well as on n
competing species.

(ii) to determine the conditions for uniform persistence of a model of 3 competing species
and the model of n competing species.

(iii) to determine the effect of conspecific support on both discrete and continuous space
models.

In order to address the first objective, we use the standard stability analysis technique to
determine the linear stability of the boundary equilibria in R2

+ (for the case of two competing
species) and computer simulations using matlab software (for the case of n competing species).
For the second objective, we will use uniform persistence theory to determine the conditions
for persistence of n species. Finally, we address the third objective by using a mathematical
representation of the Gierer-Meinhardt theory of pattern formation via local self-activation
and lateral inhibition [3, 29]. The obtained model is already discussed in [71, 70]. This will be
achieved by using non-local integral operator. It is interesting to establish a link with discrete
space models with conspecific support.

1.8 Organisation of the Dissertation

This dissertation has five chapters. In Chapter 2, we provide some basic mathematical prin-
ciples used for analysis and proving theorems. In Chapter 3, we present the two dimensional
model of competing species and discuss the conditions for coexistence of species. We will later
consider the model that incorporates conspecific support and examine dynamics of the model
on the stable qualified equilibrium. In Chapter 4, we present a model of Kolmogorov type.
Here, we discuss the conditions that allow 3 competing species to persist uniformly. Addition-
ally, we present a main theorem which shows that species uniformly persist. We analyse the
impact of conspecific support and show that it may destabilise the coexistence of the species.
Furthermore, we present numerical simulations obtained by using matlab software to observe
the patterns formed due to competition. The last section of Chapter 4 deals with up-scaling
of the discrete model to continuous space variable. We will observe some similarities and
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1.8. ORGANISATION OF THE DISSERTATION
differences between these two models by comparing the patterns formed. The dissertation is
concluded by Chapter 5, gives a summary of what is represented in Chapters 2 through to 4.
The future work is presented in this chapter too.
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Chapter 2

Mathematical Tools

2.1 Mathematical Preliminaries

In this chapter, we provide some relevant definitions, concepts and mathematical theories
used in the model formation and proof of results in the succeeding sections. Throughout this
chapter, we denote by Rn, for any n ∈ N, the Euclidean space of dimension n.

Differential equations are relations involving derivatives of functions. If the function depends
on a single variable only, it is said to be an ordinary differential equation, abbreviated as
ODE, otherwise, it is called a partial differential equations, abbreviated as PDE. A system
of differential equations is said to be autonomous if the right-hand side does not explicitly
depend on time.

2.1.1 Equilibria of linear and non-linear autonomous system

Consider autonomous system of ordinary differential equations in the general form,

ẋ = f(x), (2.1.1)

where x = x(t) ∈ Rn denotes a vector-valued function of t ∈ R. We assume that f ∈
C(Rn,Rn) and the initial condition is given at t = 0. The over dot in (2.1.1) represents
differentiation with respect to time t and can also be written as dx

dt
. Equation (2.1.1) is an

example of an autonomous system of the ordinary differential equations and the function f(x)

is referred to as a vector field. A solution of Equation (2.1.1) is a continuously differentiable
function x : I −→ Rn satisfying (2.1.1), where I is the time interval of existence of the
solution. The interval I is called a maximum interval of existence of a solution x(t) if this
solution cannot be extended beyond I. Note that we may also refer to x(t, x0) as a trajectory
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2.1. MATHEMATICAL PRELIMINARIES
or phase curve through the point x0 at t = 0. The space of dependent variables x1, x2, . . . , xn

in system (2.1.1) is called the phase space.
Definition 1. [85] An orbit through a point x0 in the phase space E ⊂ Rn of (2.1.1), denoted
by O(x0), is a set of points in E that lie on a trajectory passing through x0 . That is

O(x0) = {x(t) ∈ Rn : x(t0) = x0, t ∈ R}.

Definition 2. [33] A flow φ(t, x), denoted (φt(x)), is a one parameter, differentiable mapping
φt : Rn −→ Rn, such that

(i) φ0(x) = x, and

(ii) for all t and s ∈ R, φt ◦ φs ≡ φt+s.

Thus, the vector field f(x) in (2.1.1) is said to generate a flow φ : Rn −→ Rn, which
transforms an initial state x0 into some state x(t) ∈ Rn at time t ∈ R, that is

φt(x0) = x(t).

The function f(x) is said to be locally Lipschitz on an open set E if for every point z ∈ E,
there is a neighbourhood N such that f is Lipschitz on N . That is, there exists KN ∈ R

such that

|f(x)− f(y)| ≤ KN |x− y| for x, y ∈ N. (2.1.2)

The function f(x) is said to be globally Lipschitz or simply Lipschitz on E if (2.1.2) holds
with a constant K which is independent of z and N .
Theorem 1 (Fundamental Existence-Uniqueness Theorem [33, 46]). Let E ⊂ Rn be an open

subset of real Euclidean space, let f : E −→ Rn be locally Lipschitz at a point x ∈ E. Then,

for any x0 ∈ E, there exists a real interval I containing 0 such that (2.1.1) has a unique

solution x = x(t) which is defined on I and x(0) = x0.

Theorem 1 above implies that the solution of (2.1.1) can be found in an open interval I
containing 0 when f(x) is locally Lipschitz at a point x0. The solution typically exists over
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CHAPTER 2. MATHEMATICAL TOOLS
a larger interval since the estimated interval I is not optimal. The largest such interval is
known as the maximal interval of existence. This maximal interval of existence is the largest
interval of time containing t0 for which the solution, x(t), of (2.1.1) exists.
Theorem 2 (Maximal Interval of Existence [46]). Let E ⊂ Rn be an open subset of real

Euclidean space and f : E −→ Rn be locally Lipschitz. Then there is a maximal, open

interval I = (a, b) containing 0 such that (2.1.1) has a unique solution, x = x(t) satisfying

x(0) = x0.

It is worth noting that the existence of solutions as provided by Theorem 1 and Theorem 2
does not imply existence for t ∈ [0,+∞) or t ∈ (−∞,+∞). Such existence of solutions of
(2.1.1) is covered by the concept of dynamical system. Generally speaking, dynamical system
is an evolution rule that defines a trajectory as function of time on a set of states.
Definition 3. [78] System (2.1.1) defines a (positive) dynamical system on a subset E ⊂ Rn

if, for every x0 ∈ E, there exists a unique solution of (2.1.1) defined for all t ∈ R+ satisfying
x(0) = x0 and remaining in E for for all t ∈ R+.
Theorem 3. [85] Let f : Rn −→ Rn be globally Lipschitz on Rn. Then there exists a unique

solution x = x(t) to (2.1.1) for all t ∈ R. Hence (2.1.1) defines a dynamical system on Rn.

Theorem 4 (Existence and uniqueness for locally Lipschitz). Let f : Rn −→ Rn be Lipschitz

on a neighbourhood N of E, where E is bounded. If it may be shown that for any z ∈ E,

the solution x(t) of (2.1.1) satisfies x(t) ∈ E for each t ≥ 0 such that the solution exists,

then (2.1.1) defines a dynamical system on E [78].

Remark. It follows from Theorem 4 that to show the existence of solution for infinite time, it
is enough to show that the solution is bounded on its maximal interval of existence.
Definition 4. [85] An equilibrium (fixed) point of system (2.1.1) is a point x = x̄(t) ∈ Rn

satisfying the condition,

f(x̄(t)) = 0.

Certainly, the constant function x(t) ≡ x̄(t), t ∈ R is a solution of (2.1.1) and by uniqueness
of solution, no other solution curve intersects it. If U is the state space of some biological
systems with dynamics described by (2.1.1), then x̄ is an equilibrium state if when the system
starts at x̄ it always stays at x̄.
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Theorem 5 (Gronwall Lemma). [78] Let x(t) satisfy

dx

dt
≤ px+ q, x(0) = x0,

for constants p, q. Then for t ≥ 0,

x(t) ≤ eptx0 + q

p
(ept − 1), p 6= 0

and

x(t) ≤ x0 + qt, p = 0.

2.1.2 Eigenvalues and eigenvectors

Consider an n× n matrix given by

A =



a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

aan1 an2 . . . ann



which can also be represented as A = [aij].
Definition 5. [60] A vector v is an eigenvector of an n×n matrix A if v is a non-zero solution
to the system of linear equations

(A− λI)v = 0.

The number (real or complex) λ is called an eigenvalue of A, and v is an eigenvector associated
to λ. Using the invertibility criterion, it follows that λ is an eigenvalue of A if and only if λ
is a root of the characteristic equation

det(A− λI) = 0. (2.1.3)
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2.1.3 Stability of Solutions

Generally speaking, an equilibrium point x̄(t) of system (2.1.1) is said to be stable if all
solutions starting close to this equilibrium x̄(t) at a given time stay close to x̄(t) for all times.
We say it is asymptotically stable if it is stable and in addition, all solutions starting close to
x̄(t) tend to x̄(t) as t −→∞. Below, we provide formal definitions.
Definition 6. Let x̄(t) ∈ Rn be an equilibrium point of a dynamical system on E defined by
(2.1.1). Then x̄(t) is said to be

(i) stable if for any ε > 0, there exists δ = δ(ε) > 0 such that

if ||x̄(0)− y(0)|| < δ, then ||x̄(t)− y(t)|| < ε, for all t > 0;

(ii) unstable if (i) above does not hold;

(iii) attractive if there exists ε > 0 such that

||x̄(t)− y(t)|| −→ 0 as t −→∞ for all ||x̄(0)− y(0)|| < ε.

small enough.

(iv) asymptotically stable if x̄(t) is stable and attractive. If an equilibrium point x̄(t) of
(2.1.1) is asymptotically stable, then the set of all initial points x0 such that

lim
t−→∞

x(t, x0) = x̄(t),

is called a basin of attraction.

(v) globally attractive on E if (iii) holds for any x0 ∈ E, that is, the basin of attraction of
x̄(t) is E and

(vi) globally asymptotically stable on E if (iv)–(v) hold.
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2.1.4 Classification of the origin in two dimensional-system

In the case of a two-dimensional linear system, the origin can be classified as: node, spiral,

saddle or center. The classification largely depends on the nature of eigenvalues, that is,
whether eigenvalues are [78]:

• real or complex,

• real with positive or negative sign, and

• complex with positive or negative real parts

• Node: we say the origin is a node if all eigenvalues are real and have the same sign.
A node is stable if both eigenvalues are negative and unstable if both eigenvalues are
positive. A node is called degenerate if both eigenvalues are real and equal. The
degenerate node is known as proper if two linearly independent eigenvectors correspond
to the double eigenvalue. However, the degenerate node is known as improper if only
one eigenvector corresponds to the double eigenvalue.

• Saddle: the origin is called a saddle if both eigenvalues are real and have opposite
signs. A saddle is unstable always.

• Spiral: we say the origin is a spiral or focus if both eigenvalues are complex and have
non-zero real part. A focus is said to be stable if the real part is negative and unstable
otherwise.

• Center: the origin is said to be a center if both eigenvalues are complex and the real
part is zero. If this is the case, then every orbit is periodic. The center is stable though
not asymptotically stable.
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2.1.5 Hartman-Grobman Theorem

Definition 7. The Jacobian matrix of a function f : Rn −→ Rn of x ∈ Rn is the matrix of
point

Df(x) =



∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)

... . . . ...

∂fn
∂x1

(x) . . . ∂fn
∂xn

(x)


(2.1.4)

of partial derivatives evaluated at x.

In the setting of model (3.1.1)-(3.1.2), matrix (2.1.4) illustrates the impact of the size of each
species on the growth rate of itself and the other species.
Definition 8. [85] Let x = x̄ be an equlibrium point of (2.1.1). Then x̄ is called hyperbolic
if Df(x̄) has no eigenvalues with zero real part. An equilibrium point that is not hyperbolic
is called nonhyperbolic.

Let X1 and X2 be any two topological spaces.
Definition 9. [33] A function f : X1 −→ X2 is homeomorphism if it is continuous and
bijective with a continuous inverse.
Definition 10. [33] A function g : X1 −→ X2 is a C1 diffeomorphism if it is invertible and
both h and its inverse h−1 are C1 maps.

Consider two functions f1 : Rn −→ Rn and f2 : Rn −→ Rn.
Definition 11. [33] f1 and f2 are said to be conjugate if there exists a homeomorphism
h : Rn −→ Rn such that f2 ◦ g = g ◦ f1, which can also be written as f2(g(x)) = g(f1(x)),
x ∈ Rn.
Proposition 1. If f1 and f2 are Cr conjugate, then the orbits of f1 maps to the orbits of f2

under g.

Proposition 2. If f1 and f2 are Cr conjugate, r ≥ 1, and x0 is an equilibrium of f1, then

the eigenvalues of Df1(x0) = Df2(g(x0)).

Theorem 6 (Hartman and Grobman). [85] Consider a Cr(r > 1) vector field f and the
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system

ẋ = f(x), x ∈ Rn (2.1.5)

with f defined on an open subset of Rn. Suppose that system (2.1.5) has hyperbolic equi-

librium point x = x̄ and Df(x̄) has no eigenvalues on the imaginary axis. Consider the

associated linear ODE system

ε̇ = Df(x̄)ε, ε ∈ Rn. (2.1.6)

Then the flow generated by (2.1.5) is C0 conjugate to the flow generated by the linearised

system (2.1.6) in a neighbourhood of the equilibrium point of x̄.

The application of Hartman-Grobman theorem is that an orbit structure close to a hyperbolic
equilibrium point and the orbit structure given by the associated linearised dynamical systems
around the origin are the same. Hence, the stability properties of the of the equilibrium x̄ of
(2.1.1) are the same as the stability property of the origin for (2.1.6).
Theorem 7. If all of eigenvalues of (2.1.4) evaluated at equilibrium x = x̄ have negative

real parts, then, the equilibrium solution x = x̄ of the non linear vector field (2.1.1) is

asymptotically stable [6, 36]. Otherwise, x̄ is unstable.

Below, we discuss Routh-Hurwitz criterion which gives the necessary and sufficient condi-
tions for the roots of polynomials to have negative real parts.
Theorem 8 (Routh-Hurwitz criterion [55]). Let (2.1.3) be the characteristic equation of

(2.1.4). Then we obtain the following polynomial for λ of degree k:

P (λ) = λk + a1λ
k−1 + . . .+ ak−1λ+ ak, ai ∈ R, i = 1, . . . , k. (2.1.7)
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Construct the Hurwitz k matrices using the coefficients ai of (2.1.7) as follows:

H1 := (a1), H2 : =

 a 1

a3 a2

 , H3 :=



a1 1 0

a3 a2 a1

a5 a4 a3


, and

Hk : =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0

... ... ... ... · · · ...

0 0 0 0 · · · ak



(2.1.8)

where aj = 0 if j > k. The roots of (2.1.7) have negative real parts if and only if the
determinant of all the matrices in (2.1.8) are positive, that is,

det(Hj) > 0, j = 1, . . . , k.

For the case when k = 2, the Routh-Hurwitz criterion simplifies to a1 > 0 and a1a2 > 0.
Observe that a3 = 0 in H2. This is equivalently to a1 > 0 and a2 > 0 and these conditions
correspond to those stated in Theorem 2.1.4. Table 2.1 below provides a summary for Routh-
Hurwitz criterion.
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Table 2.1: Routh-Hurwitz Criterion

k Coefficients Signs Additional Conditions

2 a1 > 0, a2 > 0 −

3 a1 > 0, a2 > 0, a3 > 0 a1a2 > a3

4 a1 > 0, a2 > 0, a3 > 0, a4 > 0 a1a2a3 > a2
3 + a2

1a4

5 a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 > a2
3 + a2

1a4,
a5 > 0 (a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4) > a5(a1a2 − a3)2 + a1a

2
5

For the roots of a Polynomial (2.1.7) to have negative real parts, all its coefficients must
strictly be positive.

2.2 ω-Limit Sets, Invariant Sets and Absorbing Sets

One of the fundamental objectives of the dynamical systems theory is to predict the asymptotic
behaviour of the solutions of the system. In order to make such predictions meaningfully, we
need to determine the invariant sets or ω−limit sets and the basins of attraction of the
system. Our prediction of the future behaaviour of the solution of the system depends with
initial states depends largely on the nature of the ω−limits and their basins of attraction.

Generally, epidemiological models monitor populations (living organisms) such as humans, an-
imals, cells, vectors and many more whose population sizes are always nonnnegative. There-
fore, such models aught to be considered in the regions where the nonnegativity property is
preserved.

Let φ be the flow defined for (2.1.1).
Definition 12. [85] A point x0 ∈ Rn is called

i) an ω-limit point of x ∈ Rn, if there exists a sequence {tn}, tn −→∞ such that,

φ(tn, x) −→ x0.
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ii) an α-limit point of x ∈ Rn, if there exists a sequence {tn}, tn −→ −∞ such that,

φ(tn, x) −→ x0.

Definition 13. [85] The set of all ω-limit points of a flow is called ω-limit set, while the set
of all α-limit points of a flow is called the α-limit set.
Definition 14 (Invariant set). [81] Let φ be the flow of (2.1.1). A set M is said to be an
invariant set with respect to the autonomous ordinary differential equation (2.1.1) if,

x(0) ∈M −→ x(t) ∈M, ∀t ∈ R.

Definition 14 means that if any trajectory begins in M , it remains in M for all time. If we
consider non-negative time, that is, t ≥ 0 in Definition 14, then M is said to be positively
invariant. Particularly, solutions in a positively invariant set remain there for all positive time.
Definition 15. [12] System (2.1.1) has an absorbing set A if for every bounded set U ⊂ Rn,
there exists a time T (U) such that if x(0) ∈ U then

t ≥ T (U) =⇒ x(t) ∈ A.

Definition 15 implies that all orbits of the system are eventually absorbed by A.
Theorem 9 (LaSalle’s Invariance Principle [46]). Suppose U is a Lypunov function on an

open set E ⊂ Rn. Let

S = {x ∈ Ē : U̇ = 0},

where Ē is the closure of E and let M be the largest invariant set of (2.1.1) in S. If γ+(x0)

is a bounded orbit of (2.1.1) which lies in E, then the ω−limit set of γ+ belongs to M ; that

is,

x(t, x0) −→M as t −→∞.

Corollary 1. [46] If U(x) −→ ∞ as |x| −→ ∞ and U ≤ 0 on Rn, then every solution x(t)
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of (2.1.1) is bounded and approaches the largest invariant set M of (2.1.1) in the set S. In

particular, if M = {x̄}, then the equilibrium point x̄ is globally-asymptotically stable.

2.3 Periodic Solutions and Limit Cycles

One of the fundamental parts in the analysis of models of differential equations is the descrip-
tion of behaviour of solutions near the equilibrium point, discussed in Section 2.1.5. Although
linearisation is an important tool, it has limitations. For example, it can only give us informa-
tion about the behaviour of solutions close to an equilibrium point. In this Section, we study
different types of invariant sets, namely periodic orbits.
Definition 16. [24] A closed orbit O, is said to be a limit cycle if O is subset of Lα(x) or
Lω(x) for some x that does not lie in O, where x is a point in the phase portrait of a flow
φt, Lα(x) and Lω(x) are α−limit set and ω−limit set respectively.

We can observe from Definition 16 that we do not require the trajectories to approach the
limit cycle from both sides as it is the case with Example 3.8.1 of [24]. The limit cycle in the
above mentioned example has the property that the trajectory of all points, x (where |x| 6= 0

or 1) are attracted to it as time increases [24].

Note that, while it is true that every attracting set is a limit set, the converse is false. Note
further that a closed orbit around a center is not a limit cycle since it contains limit points of
points itself only.

Below we provide a criterion that shows that there cannot be a periodic orbit in a particular
region. Such results are fundamental in situations where we know that there is an asymptoti-
cally stable equilibrium and we want to make a conclusion that all solutions tend to it. Let S
be a simple connected region and let P (x1, x2) and Q(x1, x2) be continuously differentiable
in the closure of S. Here, a simply connected region is a region of the plane without holes in
it. This follows from Green’s Theorem [24].
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Consider a system [36]

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2).
(2.3.1)

Theorem 10. Suppose that

∂f1

∂x1
(x) + ∂f2

∂x2
(x)

is either strictly positive or strictly negative in a simply connected region S. Then there is no

periodic orbit of (2.3.1) in S.
Theorem 11. Let β(x1, x2) be continuously differentiable and suppose that

∂

∂x1
(β(x1, x2)f1(x1, x2)) + ∂

∂x2
(β(x1, x2)f2(x1, x2))

is either strictly positive or strictly negative in a simply connected region S. Then, there is

no periodic orbit of (2.3.1) in S [36].

Theorem 12. Let

∂f1

∂x1
(x) < 0, ∂f2

∂x2
(x) < 0

for x1 > 0, x2 > 0. Then, there is no periodic orbit of the system (2.3.1) in the interior of

R2
+ [36].

2.4 Persistence and Stable Coexistence

A basic and a paramount concern in the study of population dynamics is the long term coexis-
tence of the interacting populations involved. Mathematically, this corresponds to persistence
of the populations. The concept of persistence has played a major role in analysis of mathe-
matical models. As a result, many definitions have been developed in the quest of analysing
and understanding asymptotic behaviour of such models.

The question of whether or not competing species will persist, that is, remain away from
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the extinction, is crucial in theoretical ecology. One way of addressing this question is by
formulating a mathematical model and by means of a persistence function of the form

ρ : X −→ R+.

Here, we provide various forms of definitions of persistence and coexistence and the relationship
between these two concepts that will help us describe the long-term behaviour of competing
species in question.

2.4.1 Concepts of Persistence

Let X be any non-empty set and let ρ : X −→ R+.
Definition 17. [34] A semi flow Φ : T ×X −→ X is known as a:

i) weakly ρ−persistent on X if for every x ∈ X

lim sup
t−→∞

ρ(Φ(t, x)) > 0, ∀x ∈ X, ρ(x) > 0,

ii) strongly ρ−persistent on X if for every x ∈ X

lim inf
t−→∞

ρ(Φ(t, x)) > 0, ∀x ∈ X, ρ(x) > 0,

iii) uniformly weakly ρ−persistent on X if for every x ∈ X

lim sup
t−→∞

ρ(Φ(t, x)) > ε, ∀x ∈ X, ρ(x) > 0,

iv) uniformly (strongly) ρ−persistent if there exists ε > 0 such that

lim inf
t−→∞

ρ(Φ(t, x)) > ε, ∀x ∈ X, ρ(x) > 0.

Definition 18. [34] A semi flow Φ : T ×X −→ X is known as
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i ρ−dissipative if there exists r > 0 such that

lim sup
t−→∞

ρ(Φ(t, x)) < r, ∀x ∈ X,

ii weakly ρ−dissipative if there exists r > 0 such that

lim inf
t−→∞

ρ(Φ(t, x)) < r, ∀x ∈ X and

iii ρ−permanent, if Φ is both uniformly ρ−persistent and ρ−dissipative.
Note. Uniform persistence implies weak uniform persistence, which in turn, implies weak per-

sistence. Uniform persistence implies persistence, which implies weak persistence. If the flow

is dissipative, then, weakly uniform persistence implies uniform persistence, that is, uniform

persistence and weakly uniform persistence are equivalent. However, persistence does not

imply uniform persistence and weak persistence does not imply persistence.

The definitions that follow provides the relationship that exists between persistence and co-
existence of species.

2.4.2 Stable Coexistence

Definition 19. The species of the model (2.1.1) are said to coexist if the respective flow is
ρ−permanent with the persistence function

ρ(x1, . . . , xn) = min{x1, . . . , xn}, (2.4.1)

or equivalently, there exist ε > 0 and r > 0 such that if xi(0) > 0, i = 1, . . . , n then

ε < lim inf
t→∞

xi(t) < lim sup
t→∞

xi(t) < r, i = 1, . . . , n.

It is easy to see that if the species in (2.1.1) coexist in terms of Definition 17, then the n−
dimensional interval [ε, r] is a compact absorbing set of the flow defined by (2.1.1). This type
of coexistence is also called stable coexistence [1]. Below is the precise definition of the stable
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coexistence.
Definition 20 (Stable coexistence). There exists a compact positively invariant set M <

interior(Rn
+) which is stable and attracting with basin of attraction interior(Rn

+).

In the sequel, we consider the concepts of persistence and permanence only with the persis-
tence function ρ given in (2.4.1). Hence, ρ will not be explicitly mentioned.

2.5 Qualified and Unqualified Competition

The two species are in a competition when an increase in the size of one species decreases the
growth rate of all other species. Competition can either be qualified (or weak) or unqualified.
Definition 21. The competition is called qualified if the impact of the increase of the popu-
lation size of one species impacts negatively on its own growth rate stronger than it impacts
on the growth rate of the species it competes with.

The converse of Definition 21 is called unqualified competition.
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Chapter 3

Models of two Competing Species and

Conspecific Support

In competitive system, the long term dynamics, e.g coexistence, extinction, are usually deter-
mined by the demographics of the competing species as well as the effect of their interaction
on each one. In this chapter, we consider the effect of conspecific support on the coexistence
of species.

3.1 A general system of two competing species

Consider a general system of two competing species of Kolmogorov-type [62]

dx

dt
= xg1(x, y), (3.1.1)

dy

dt
= yg2(x, y), (3.1.2)

where g1 and g2 are smooth real functions defined on R2
+. Our main interest is in the

coexistence or the extinction of any of the species.
Assumptions. Every population in the absence of the other has a unique positive stable

equilibrium. More precisely, the functions g1 and g2 are such that

(i) g1(0, 0) > 0, g2(0, 0) > 0,

(ii) g1 and g2 are decreasing in both x and in y and are unbounded below.
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Clearly, each of the equations

g1(x, 0) = 0,

g2(0, y) = 0

has a unique solution. We denote them by p and q, respectively. Then,

(i) g1(x, 0) > 0, x ∈ (0, p),

(ii) g1(x, 0) < 0, x > p,

(iii) g2(0, y) > 0, y ∈ (q, 0),

(iv) g2(0, y) < 0, y > q.

It is easy to see that under assumptions (3.1)–(3.1), the equation

dx

dt
= xg1(x, 0) (3.1.3)

defines a one dimensional dynamical system on x ∈ [0,+∞), with the equilibrium

x = p (3.1.4)

being globally asymptotically stable (GAS) on (0,+∞). Similarly,

dy

dt
= yg2(0, y) (3.1.5)

defines a one dimensional dynamical system on y ∈ [0,+∞), with the equilibrium

y = q (3.1.6)

being GAS on (0,+∞).
Remark. Further, the functions can be considered as limiting growth due to limited resources
because g1 is decreasing in x and g2 is decreasing in y.
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SUPPORT
3.2 Basic Properties of the Model

In this section, we explore some of the basic dynamical properties of system (3.1.1)–(3.1.2).

3.2.1 Existence, Positivity and Boundedness of the solution

Theorem 13. The solutions x(t) and y(t) for system (3.1.1)–(3.1.2) with non-negative initial

conditions exist for all t ≥ 0 and it is unique. Furthermore, system (3.1.1)–(3.1.2) defines a
dynamical system on R2

+.

Proof. Let
(
x(t), y(t)

)
be the solution of system (3.1.1) and (3.1.2) with (x(0), y(0)) =

(x0, y0) ∈ R2
+. One can easily see that each of the right hand side of (3.1.1)–(3.1.2) exists and

is continuous, by Theorem 2 and Theorem 4, the solution to the initial value problem (3.1.1)–
(3.1.2) exists and it is locally unique. Moreover, the fact that g1 and g2 have continuous
derivatives on R2

+ implies uniqueness and local existence of solution of (3.1.1)–(3.1.2) initiated
at (x0, y0) ∈ R2

+ by Theorem 4. Considering the remark to Theorem 4, it is enough to show
that the solution is bounded in its maximal interval of existence.

It is easy to see that the solution of (3.1.1)–(3.1.2) is non-negative. One way of showing this
directly is by integrating

1
x

dx

dt
= g1(x, y),

which yields

x(t) = x0 exp
(∫ t

0
g1(x(s), y(s))ds

)
≥ 0.

In order to prove that the solution is bounded above, we make use of equations (3.1.3) and
(3.1.5). Let x̂(t) be the solution of (3.1.3) with x(0) = x0 and let ŷ(t) be the solution of
(3.1.5) with y(0) = y0. Due to assumption (3.1)–(3.1), we have

x̂(t) ≤ max{x0, p}. (3.2.1)
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Similarly, for the solution ŷ(t), we have

ŷ(t) ≤ max{y0, q}. (3.2.2)

Using (3.2.1)–(3.2.2) and assumption (3.1), we have

dx

dt
= xg1(x, y) ≤ xg1(x, 0),

dy

dt
= yg2(x, y) ≤ yg2(0, y).

Hence,

x(t) ≤ x̂(t) and y(t) ≤ ŷ(t), t ≥ 0.

As a consequence, all solutions of the model with initial conditions in R2
+ remains in R2

+.
Therefore, by Theorem 4 and Corollary 2.1.1, the solution exists for all t ∈ [0,+∞). Thus,
the system (3.1.1) and (3.1.2) defines a dynamical system on R2

+.

Theorem 13 implies that system (3.1.1)–(3.1.2) is well-posed epidemiologically and mathe-
matically in R2

+ [48], hence, it is sufficient to study qualitatively the dynamics of this system.
The Jacobian of the right hand side of (3.1.1)–(3.1.2) is

J(x, y) =


g1(x, y) + x ∂

∂x
g1(x, y) x ∂

∂y
g1(x, y)

y ∂
∂x
g2(x, y) g2(x, y) + y ∂

∂y
g2(x, y)

 . (3.2.3)

It is easy to investigate the stability properties of the equilibria (0, 0), (p, 0), (0, q).

Indeed, at (0, 0), we have

J(0, 0) =

g1(0, 0) 0

0 g2(0, 0)

 . (3.2.4)

Hence, (0, 0) is a repelling node.
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At (p, 0), we have

J(p, 0) =

p ∂
∂x
g1(p, 0) p ∂

∂y
g1(p, 0)

0 g2(p, 0)

 (3.2.5)

Since p ∂
∂x
g1(p, 0) is negative, stability of (p, 0) depends on g2(p, 0). We may have either

attractive node if g2(p, 0) < 0 or saddle point if g2(p, 0) > 0. Similarly, one can consider
(0, q).

The next theorem shows that when (p, 0) and (0, q) are both saddle points, we have uniform
strong persistence of both species.
Theorem 14. If g1 and g2 are such that g1(0, q) > 0 and g2(p, 0) > 0, then the dynamical

system defined in (3.1.1)–(3.1.2) is permanent.

Proof. To prove the statement of the theorem, we will show that there exists ε such that the
set Ωε = [ε, p + ε] × [ε, q + ε] is absorbing. Indeed, if such ε exists, it is easy to see that
Definition 21 holds. Hence, we have permanence of both species. We will prove the existence
of ε with the stated property in three steps.

Step 1: For every ε > 0, the set [0, p + ε] × [0, q + ε] is absorbing. Let (x0, y0) ∈ R2
+. The

statement trivially holds when x0 = 0, y0 = 0. Let x0 > 0, y0 > 0. Denote by x̂ and ŷ the
solutions of (3.1.3) with x(0) = x0 and the solutions of (3.1.5) with y(0) = y0 respectively.
Due to (3.1)–(3.1), we have

lim
t→∞

x̂ = p, lim
t→∞

ŷ = q. (3.2.6)

Using equations

dx

dt
= xg1(x, y) ≤ xg1(x, 0),

dy

dt
= yg2(x, y) ≤ yg2(0, y)

31



3.2. BASIC PROPERTIES OF THE MODEL
we have

x(t) ≤ x̂(t),

y(t) ≤ ŷ(t).

Taking into account (3.2.6) we obtain that there exists t̄ such that x(t) < p+ ε, y(t) < q+ ε

for t > t̄. Hence, [0, p+ ε]× [0, q + ε] is absorbing.

Step 2: There exists ε such that Ωε = [ε, p + ε] × [ε, q + ε] is positively invariant. Let
η1 = min

y∈[ε,q+ε]
g1(0, y) = g1(0, q). By the assumption in the theorem, it is clear that η1 > 0.

Since [0]×[0, q] is compact, there exists ε1 > 0 such that g1(x, y) > η1

2 for y ∈ [0, q+ε1], x ∈

[0, ε1]. Similarly, there exists ε2 > 0 such that g2(x, y) > η2

2 for x ∈ [0, p + ε2], y ∈ [0, ε2],
where η2 = min

x∈[ε,p+ε]
g2(x, 0) = g2(p, 0). Let ε = min{ε1, ε2}. Consider the vector field of

(3.1.1)–(3.1.2) on the line x = ε. The dot product of the normal vector is


xg1(x, y)

yg2(x, y)

 ·
−1

0


 = −xg1(x, y) < −η1

2 ε < 0 for y ∈ (ε, q + ε). (3.2.7)

Considering the dot product of the normal vector on the line y = ε, x ∈ (ε, p+ ε), we have


xg1(x, y)

yg2(x, y)

 ·
 0

−1


 = −yg2(x, y) < −η2

2 ε < 0. (3.2.8)

The inequalities (3.2.7)–(3.2.8) and step 1 imply that Ωε is positively invariant.

Step 3: The set Ωε, for ε as defined in step 2, is an absorbing set. Taking into account step
1, it is enough to consider (x0, y0) ∈ (0, ε) × (0, q + ε) and (x0, y0) ∈ (0, p + ε) × (0, ε).
Let x0 ∈ (0, ε) and y0 ∈ (0, q + ε). If x0 < ε, we have dx

dt
= xg1(x, y) > x

η1

2 . Then, the
solution of (3.1.1) is such that x(t) > x0e

η
2 t. Therefore, there exists t > 0 such that x(t) > ε.

Similarly, if y0 < ε, we have that y(t) > ε for some t > 0. This together with step 2 proves
that Ωε is absorbing. This completes the proof of the theorem.
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3.3 The system with linear per capita growth rate

In this section, we consider the specific model with linear per capita growth rate of two
competing species. Our interest is whether or not the system of two competing species is
permanent when we have a qualified competition. The system of two competing species is
represented [36] as

dx

dt
= x(1− ax− by), (3.3.1)

dy

dt
= y(1− cx− dy), (3.3.2)

where a, b, c, and d are positive constants. Equivalently, (4.5.4)–(4.5.5) can be expressed as

dx

dt
= xg1(x, y),

dy

dt
= yg2(x, y),

where

g1(x, y) = 1− ax− by,

g2(x, y) = 1− cx− dy.

One can observe that this is also a Lotka-Voltera system (1.2.1) in two dimensions. In this
setting, qualified or weak competition as discussed in Section 21 means

a > c, b < d. (3.3.3)

System (3.3.1)–(3.3.2), has the following equilibria;

(0, 0),
(

1
a
, 0
)
,

(
0, 1
d

)
, (x∗, y∗),

where x∗ = d− b
ad− bc

, y∗ = a− c
ad− bc

.
Theorem 15. Under the assumption of qualified competition given in (3.3.3), system (3.3.1)–
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(3.3.2) is permanent and the endemic equilibrium (x∗, y∗) is GAS on (0,+∞)× (0,+∞).

Proof. The permanence is easy to obtain by using Theorem 14. Indeed, (3.3.1)–(3.3.2) is
of the form (3.1.1)–(3.1.2) with g1(x, y) = 1 − ax − by, g2(x, y) = 1 − cx − dy. Then, it
is enough to observe that g1(0, q) > 0 and g2(p, 0) > 0, where p = 1

a
and q = 1

d
. Indeed,

g1(0, q) = 1− b
d
> 0 due to Definition 21. Similarly, g2(p, 0) = 1− c

a
> 0 due to Definition

21.

Taking into account the uniform persistence, all solutions tend to (x∗, y∗) as it is the only
equilibrium in the interior of R2

+. By step 2 of the proof of Theorem 14, all solutions are
eventually absorbed in the compact set [0, p+ ε]× [0, q+ ε] for an ε > 0. Hence, by Poincaré-
Bendixson theorem, every orbit tends to either an equilibrium or a limit cycle. We show that
there are no periodic orbits by using the Dulac’s criterion. Indeed, we have

∂

∂x

(
1− ax− by

y

)
+ ∂

∂y

(
1− cx− dy

x

)
= −a

y
− d

x
< 0.

Thus, by [36, Theorem 4.8, Theorem 4.9, p. 154], the system has no periodic solutions.
This means that every solution tends to an equilibrium. Therefore, since (x∗, y∗) is the only
stable equilibrium, by [55, Section 3.5], (x∗, y∗) is globally asymptotically stable. Hence, the
theorem is proved.

We show by an example that under qualified competition, system (3.3.1)–(3.3.2) has a stable
equilibrium in the interior of R2

+. Taking a = 14
5 , b = 9

5 , c = 8
5 , d = 13

5 , (3.3.1)–(3.3.2)
becomes

dx

dt
=x
(

1− 14
5 x−

9
5y
)
,

dy

dt
=y
(

1− 8
5x−

13
5 y

)
.

(3.3.4)

The equilibrium equations are

0 =x
(

1− 14
5 x−

9
5y
)
,

0 =y
(

1− 8
5x−

13
5 y

)
.
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This leads to the equilibria;

(0, 0),
(

5
14 , 0

)
,

(
0, 5

13

)
,

(
2
11 ,

3
11

)
.

The Jacobian matrix for system (3.3.4) is


1− 2

5x−
9
5y −9

5x

−8
5y 1− 8

5x−
26
5 y

 .

The Jacobian matrix computed at (0, 0) is

1 0

0 1

 ,

so that by Theorem 7, (0, 0) is clearly unstable. The Jacobian matrix evaluated at ( 5
14 , 0) is


−1 − 9

14

0 3
7

 .

Since we have a lower triangular matrix, the following are the eigenvalues; λ1 = −1, λ2 = 3
7 .

Since the eigenvalues have opposite signs, by Theorem 7, ( 5
14 , 0) is unstable. For (0, 5

13), one
can easily compute the following eigenvalues; λ1 = 4

13 , λ2 = −1. Similarly, since eigenvalues
have opposite signs, by Theorem 7 this equilibrium is unstable too. Next, we determine the
linear stability of endemic equilibrium. The Jacobian matrix computed at

(
2
11 ,

3
11

)
is


−27

55 −
18
55

−24
55 −

39
55

 ,
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and the associated eigenvalues are;

λ1 = 3(2
√

13− 11)
55 , λ2 = −3(2

√
13 + 11)
55 .

Since all eigenvalues are negative, then we conclude by Theorem 7 that the coexistent equi-
librium is stable. Figure 3.1 illustrates the numerical simulation for system (3.3.4). Observe
that all trajectories in R2

+ converge to this coexistent equilibrium which means this equilibrium
is globally asymptotically stable, [36].

Figure 3.1: A typical trajectories

It is easy to show that if the competition is unqualified, the system (3.3.1)–(3.3.2) will not
persist.

3.4 Model of two competing species with Conspecific

Support

We model the conspecific support multiplying the per capita growth rate by a linear factor.
We exclude from this operation the density independent mortality rate, which reflects the
maximum life-span of the species and is independent of condition or support. In this way we
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obtain from (3.1.1)–(3.1.2) the following system

dx

dt
= x(1 + β1x)(g1(x, y) + µ1)− µ1x, (3.4.1)

dy

dt
= y(1 + β2y)(g2(x, y) + µ2)− µ2y, (3.4.2)

where β1, β2 are coefficients in the respective linear factors and µ1, µ2 are the density inde-
pendent death rates of the two species. For β1 = β2 = 0 the system (3.4.1)–(3.4.2) is exactly
(3.1.1)–(3.1.2). For positive values of β1 and/or β2 the model (3.4.1)–(3.4.2) is of the same
form as (3.1.1)–(3.1.2) with right-hand side

dx

dt
= xg̃1(x, y),

dy

dt
= yg̃2(x, y),

where

g̃1(x, y) = (1 + β1x)g1(x, y) + µ1β1x, (3.4.3)

g̃2(x, y) = (1 + β2y)g2(x, y) + µ2β2y. (3.4.4)

Note. The fact that system (3.4.1)–(3.4.2) is of the same form as (3.1.1)–(3.1.2), the

introduction of the parameters β and µ does not affect the dynamics of system (3.4.1)–
(3.5.2). It can be shown that the solution of system (3.4.1)–(3.4.2) preserves existence and

uniqueness properties and that it is bounded for all time.

It is easy to see that if β1 is sufficiently large then for small population the per-capita growth
rate of the first species increases as x increases. This is the so called Alee Effect. More
precisely, due to the specific form chosen for representing the conspecific support, we have a
weak Alee Effect, since there is no additional positive equilibrium generated by the conspecific
support. Similar argument holds for the second species. Let us note that in the strong Alee
Effect we have an unstable positive equilibrium referred to as a minimum survival density. We
show that a type of conspecific support resulting only in weak Alee Effect may destabilize the
co-existence of the species. Indeed, g̃1(x, 0) has a root p̃(β1, µ1) > p.
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We show the existence of a root of g̃1(x, 0) by taking y = 0 in (3.4.3), which yields

g̃1(x, 0) = (1 + β1x)g1(x, 0) + β1µ1x = (1 + β1x)ψ(x),

where

ψ(x) := g1(x, 0) + µ1

(
1− 1

1 + β1x

)
. (3.4.5)

The function ψ has the following properties;

(a) lim
x→∞

ψ(x) = −∞,

(b) ψ(p) > 0. We can see this when we set x = p in (3.4.5) to have

ψ(p) = µ1

(
1− 1

1 + β1p

)
> 0, as g1(p, 0) = 0.

Thus, there exists p̃(β1, µ1) > p such that ψ changes sign from positive to negative at p̃.
Equivalently, g̃1(x, 0) changes sign from positive to negative at p̃. Similarly, there exists
q̃(β2, µ2) > q such that g̃2(0, y) changes sign from positive to negative at p̃ = q̃. Then, if g2

is unbounded below and p̃(β1, µ1) is sufficiently large, we have

g̃2(p̃, 0) = g2(p̃, 0) < 0. (3.4.6)

It is easy to see that the Jacobian of (3.4.3)–(3.4.4) at (p̃, 0) is

J(p̃, 0) =


p̃ ∂
∂x
g̃1(p̃, 0) p̃ ∂

∂y
g̃1(p̃, 0)

0 g̃2(p̃, 0)

 .

Since g1(x, 0) is decreasing on x, we have ∂

∂x
g̃1(p̃, 0) < 0. Then g̃2(p̃, 0) < 0 implies that

(p̃, 0) is stable and attractive, that is, the second species does not uniformly persist. Similarly,
it is possible through the conspecific support to have an attractive equilibrium (0, q̃) implying
that the first species does not uniformly persist. Hence, the system is not persistent.
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Remark. If a roof p̃(β1, µ1) of (3.4.5) with the properties (3.4.6) exists, then it is not necessar-
ily unique. Nevertheless, the existence of such a root is sufficient to imply uniform persistence
of the second species.

3.5 Destabilising the Qualified Competition Equilibrium

In this section, we consider an example of a system of two competing species with conspecific
support where the qualified competition equilibrium is destabilised. The model (3.4.1)–(3.4.2)
in the case of model (3.3.1)–(3.3.2) has the form

dx

dt
=x(1 + βx)(1 + µ− ax− by)− µx, (3.5.1)

dy

dt
=y(1 + βy)(1 + µ− cx− dy)− µy (3.5.2)

where a, b, c and d are positive constants. Clearly, system (3.5.1)–(3.5.2) is a particular case
of (3.4.1)–(3.4.2). Just like system (3.1.1)–(3.1.2), the above system has four equilibria. We
will determine and discuss the nature of each equilibrium.

The equilibrium p̃ of the first species in the absence of the second is the positive root of

(1 + βx)(1 + µ− ax)− µ = 0 (3.5.3)

or equivalently,

aβx2 − (µβ + β − a)x− 1 = 0.

Hence,

p̃ = 1
2aβ (µβ + β − a) +

√
(µβ + β − a)2 + 4aβ.
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Considering µ fixed, we have p̃ as a function of β in the form

p̃(β) = µ+ 1
2a − 1

2β +

√√√√(µ+ 1
2a − 1

2β

)2

+ 1
aβ
. (3.5.4)

Similarly, the positive equilibrium of the second species in the absence of the first is

q̃(β) = µ+ 1
2d − 1

2β +

√√√√(µ+ 1
2d − 1

2β

)2

+ 1
dβ
.

Thus, for system (4.5.4)–(4.5.5) we have the following boundary equilibria;

(0, 0), (p̃(β), 0), (0, q̃(β)).

Lemma 1. Properties of p̃(β)

(i) p̃(β) is an increasing function of β, and

(ii) lim
β→∞

p̃(β) = µ+ 1
a

>
1
a
.

Proof. (i) To show that p̃(β) is an increasing function, consider the derivative of p̃(β) wrt
β, that is,

dp̃

dβ
= 1

2β2 +
2
(
µ+1
2a −

1
2β

)(
1

2β2

)
− 1

aβ2

2
√(

µ+1
2a −

1
2β

)2
+ 1

aβ

,

= 1
2β2 + 1

β2

(
µ+1
2a −

1
2β

)
− 1

a

2
√(

µ+1
2a −

1
2β

)2
+ 1

aβ

,

= 1
2β2

1 +

(
µ−1
2a −

1
2β

)
− 1

a

2
√(

µ−1
2a −

1
2β

)2
+ 1

a2

.
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If µ+ 1
2a − 1

2β > 0, then dp̃

dβ
> 0. Let µ+ 1

2a − 1
2β < 0. Then

dp̃

dβ
= 1

2β2

1 +
µ−1
2a −

1
2β

2
√(

µ−1
2a −

1
2β

)2
+ µ

4a2

,

>
1

2β2

1 +
µ−1
2a −

1
2β

2
√(

µ−1
2a −

1
2β

)2

,

= 1
2β2

1 +
µ−1
2a −

1
2β

2
∣∣∣µ−1

2a −
1

2β

∣∣∣
,

= 1
2β2

(
1 +

(
− 1

2
))

> 0

Thus, p̃(β) is increasing.

(ii)

lim
β−→∞

p̃(β) = lim
β−→∞

(
µ+ 1

2a − 1
2β +

√√√√(µ+ 1
2a − 1

2β

)2

+ 1
aβ

)
,

= µ+ 1
2a +

√√√√(µ+ 1
2a

)2

= µ+ 1
a

From Equation (3.5.2), we have

g̃2(p̃, 0) = 1− cp̃ −−−→
β→∞

1− c(µ+ 1)
a

= c

a

(
a

c
− 1− µ

)
. (3.5.5)

Therefore, µ > a

c
− 1 is a necessary condition for (p̃, 0) becoming attractive.

Theorem 16. If µ > a

c
− 1 > 0, there exists βcrit such that for the model (3.5.1)–(3.5.2),

we have g̃2(p̃(β), 0) < 0 and g̃1(0, q̃(β)) < 0 for β > βcrit.

Proof. Let µ > a

c
− 1 > 0, be fixed. Taking into account Lemma 1 (i.e p̃(β) is an increasing
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function), we have

lim
β−→∞

p̃(β) = 1
a

= p, lim
β−→0

p̃(β) = µ+ 1
a

.

Taking in account (3.5.5), the function

g̃2
(
p̃(β), 0

)
= 1− cp̃(β),

considered as a function of β, decreases from 1− c

a
> 0 to c

a

(
a

c
− 1− µ

)
< 0. Therefore,

there exists β(1)
crit ∈ (0,+∞) such that g̃2(p̃(β(1)

crit), 0) = 0 and g̃2(p̃(β), 0) < 0 for β >

β
(1)
crit. Similarly, there exists β(2)

crit such that g̃1(0, q̃(β)) < 0 for β > β
(2)
crit. Then βcrit =

max{β(1)
crit, β

(2)
crit} is the threshold value of β required in the statement of the theorem.

Typical set of trajectories when β > βcrit is presented on Figure 3.2 with the parameter values
presented in Table 3.1

Table 3.1: Parameter values

a b c d β µ

2.1 1 2 1.1 5 0.5
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Figure 3.2: Typical trajectories of the solutions of (3.5.1)–(3.5.2) for β > βcrit

Corollary 2. If β > βcrit, the system (3.5.1)–(3.5.2) is not permanent.

In terms of Definition 19, Corollary 2 implies that the species modelled in (3.5.1)–(3.5.2) do
not persist.
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Chapter 4

Model of n Competing Species

4.1 Introduction and Model Formulation

In this chapter, we show that the destabilization of coexistence due to conspecific support in
the case of two species may lead to pattern formation in the case of many species. We consider
n species, arranged in the order of their indexes, where every species interact competitively
with its two neighbours. To avoid the influence of other factors, we consider that all species
have the same vital dynamics. In fact, we can also consider them as groups of the same
species, e.g. packs of dogs, prides of lions, patches of grass. Then a model with linear per
capita growth rate can be written in the form;

ẋi = xi(k − αxi − xi−1 − xi+1), i = 1, . . . , n, (4.1.1)

where xi is the size of the ith species/population of group, α represents the impact of the
size/density of the ith species on its own the per capita growth rate and k is the carrying
capacity. As usual, in the search for pattern formation, we use periodic boundary condition,
that is,

x0 = xn and xn+1 = x1.

System (4.1.1) can also be written as

ẋi = xigi(xi), i = 1, . . . , n, (4.1.2)

where gi is the per capita growth rate of individual species. System (4.1.2) is sometimes
known as Kolmogorov system [66, 67]. Kolmogorov systems generally model situations where
the per capita growth rate of individual species solely depends on the density vector x of
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the population. The factor xi in system (4.1.2) plays a major role, that is, ensuring that no
species increases spontaneously.

4.2 Basic Properties of the System

In this section, we explore the basic properties of autonomous system of differential equations
(4.1.1).

4.2.1 Existence, Uniqueness and Boundedness of Solutions

In order for system (4.1.1) to be meaningful biologically and consistent with non-negative
initial populations, all state variables should remain non-negative and bounded all time.
Theorem 17. The solution xi(t) for system (4.1.1) with non-negative initial conditions exists

for all time (t ≥ 0) and it is unique.

Proof. Let xi(t) be the solution for system (4.1.1) with xi(0) = xi0 ∈ Rn
+. It is easy to see

that the right hand side of system (4.1.1) is continuously differentiable in a neighbourhood
of Rn

+. Therefore, by existence and uniqueness theorem, the solution xi(t) of the initial value
problem (4.1.1) locally exists and is unique in its maximal of existence [Theorem 2, Theorem
4].

Next, we show that the solution xi(t) satisfying xi(0) ≥ 0 satisfies xi(t) ≥ 0 for all t ∈ R+.
Further, we show that the solution is bounded in the future time and hence, is defined for all
t ∈ R+.

Recall that (4.1.1) can be written as (4.1.2). Then using integration factor technique, we
have

d

dt

(
exp

(
−
∫ t

0
gi(x(s))ds

)
xi(t)

)
= 0,
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which yields

xi(t) = exp
(∫ t

0
gi(x(s))ds

)
xi(0). (4.2.1)

From (4.2.1), we observe that if xi(0) = 0 then for all t, xi(t) = 0. Further, if xi(0) > 0

then xi(t) > 0 for all t. Thus,

xi(t) = exp
(∫ t

0
gi(s)ds

)
≥ 0.

This shows that the solution xi(t) of (4.1.1) is non-negative for all t ≥ 0, hence it is bounded
below by 0.

Furthermore, from (4.1.1), we have

dxi
dt

= xi(k − αxi − xi−1 − xi+1),

≤ αxi
(k
α
− xi

)
,

= kxi
(
1− xi

k/α

)
.

(4.2.2)

Therefore, we have

xi(t) ≤
k/α

1 + k/α−xi(0)
xi(0) e−kt

,

≤ max
{
k

α
, x

i(0)

}
,

which shows that xi(t) is bounded above. Therefore, since xi(t) is bounded below and above,
it is bounded.

Theorem 18. System (4.1.1) defines a dynamical system in a biologically feasible region

given by

Ω = {x ∈ Rn
+ : 0 ≤ xi ≤

k

α
, i = 1, . . . , n}. (4.2.3)
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Proof. It is clear from (4.2.2) that

if, xi(0) ≤ k

α
then, xi(t) ≤

k

α
.

Then, taking into account that xi(0) ≥ 0, we obtain that
[
0, k

α

]
is positively invariant and

attractive interval for xi. Therefore,

Ω =
[
0, k
α

]
×
[
0, k
α

]
× . . .×

[
0, k
α

]

is positively invariant and attractive set for (4.1.1). Consequently, all solutions of (4.1.1)
initiated in Ω remain in Ω for all t ≥ 0. This shows that system (4.1.1) defines a dynamical
system in Ω.

Theorem 18 shows that in order to determine the asymptotic properties of the solutions of
(4.1.1) including the persistence of each species, it is enough to consider (4.1.1) on the set
Ω.

4.3 Persistence/Permanence of Species

In this section, we consider the coexistence of species, that is, the permanence of the system
(4.1.1). Since the system has a compact global attractor Ω, then it is dissipative. Hence,
permanence/uniformly persistence. We first construct a system of (4.1.1) in three dimensions
and show uniform persistence by analysing the linear stability of the boundary equilibria. We
give a necessary condition under which the three species uniformly persist. Furthermore,
we prove our main theorem which shows that n species persist and provide the sufficient
conditions under which it is possible. We conclude the section by backing our proof with
numerical simulations.
Theorem 19. Consider system (4.1.1) in R3

+. If α > 1, then all 3 species uniformly persist.

If α < 1, then one or more of the species goes extinct at least for some initial positive values

x(0).

47



4.3. PERSISTENCE/PERMANENCE OF SPECIES
Proof. For n = 3, system (4.1.1) can be written as a system of three differential equations:

ẋ1 = x1(k − αx1 − x3 − x2),

ẋ2 = x2(k − αx2 − x1 − x3),

ẋ3 = x3(k − αx3 − x2 − x1).

(4.3.1)

At equilibrium, (4.3.1) becomes,

x1(k − αx1 − x3 − x2) = 0,

x2(k − αx2 − x1 − x3) = 0,

x3(k − αx3 − x2 − x1) = 0.

On the boundary where x3 = 0, we have

x1(k − αx1 − x2) = 0,

x2(k − αx2 − x1) = 0.

The solutions are:


x1 = 0, x2 = 0,

x1 = 0, x2 = k
α
,

x2 = 0, x1 = k
α
,

x1 = x2 = k
α+1 .

The following are equilibria for system (4.3.1) involving the situation when all species are
absent (trivial equilibrium) and only one species is present (extinction equilibrium);

(0, 0, 0), (k/α, 0, 0), (0, k/α, 0), (0, 0, k/α).
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The Jacobian matrix for system (4.3.1), denoted by J(x1, x2, x3) is,



k − 2αx1 − x3 − x2 − x1 − x1

−x2 k − 2αx2 − x1 − x3 −x2

−x3 −x3 k − 2αx3 − x2 − x1


.

The Jacobian matrix evaluated at trivial equilibrium (0, 0, 0) is,



k 0 0

0 k 0

0 0 k


.

It follows that the eigenvalues are;

λ1 = λ2 = λ3 = k > 0.

Since all eigenvalues have a positive real part, by Theorem 7, the equilibrium (0, 0, 0) is
unstable and repelling node. Further, for (k/α, 0, 0) we have

J(k/α, 0, 0) =



−k − k/α − k/α

0 k(α−1)
α

0

0 0 k(α−1)
α


.

Since we have a lower triangular matrix, it follows that the eigenvalues are;

λ1 = −k < 0, λ2 = k(α− 1)
α

, λ3 = k(α− 1)
α

.

Observe that if α < 1, then by Theorem 7, (k/α, 0, 0) is a stable node since all the eigenvalues
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are real and are negative. Therefore, species x2 and x3 will go to extinct for some initial values
x(0). However, if α > 1, equilibrium (k/α, 0, 0) is a saddle point, and hence is unstable since
λ2, λ3 > 0. This means that (k/α, 0, 0) repels towards the interior of R3

+. Similarly, the
Jacobian matrix evaluated at (0, k/α, 0) is



k(α−1)
α

0 0

−k/α − k − k/α

0 0 k(α−1)
α


,

and we obtain the following eigenvalues;

λ1 = k(α− 1)
α

, λ2 = −k < 0, λ3 = k(α− 1)
α

.

It follows from Theorem 7 that equilibrium (0, k/α, 0) is a stable node if α < 1 since all
eigenvalues have real parts with a negative sign. This means that for some initial values x(0),
species x1 and x3 will go to extinct. However, if α > 1, equilibrium (0, k/α, 0) is a saddle
point, and hence unstable since λ1, λ3 > 0. Thus, (0, k/α, 0) repels towards the interior of
R3

+. By symmetry, it follows that the corresponding equilibrium (0, 0, k/α) is asymptotically
stable for α < 1 and unstable for α > 1.

Next, we determine the behaviour of solutions when all species are present, that is, coexistent
equilibrium that we denote by

C =
(

k

α + 2 ,
k

α + 2 ,
k

α + 2

)
.
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The Jacobian matrix evaluated at C is



− ak
a+2 − k

a+2 − k
a+2

− k
a+2 − ak

a+2 − k
a+2

− k
a+2 − k

a+2 − ak
a+2


,

and the corresponding eigenvalues are;

λ1 = −(α + 2)
α + 2 , λ2 = (1− α)k

α + 2 , λ3 = (1− α)k
α + 2 .

Indeed, when α < 1, the eigenvalues λ2 and λ3 have positive real parts. Therefore, by
Theorem 7, C is unstable node. However, observe that if α > 1, C is asymptotically stable by
Theorem 7. This means that for α > 1, all solutions initiated at x(0) close to the extinction
equilibria will eventually tend to C. This completes the proof.

It should be noted that at α = 1, we expect to have a bifurcation. However, we have not
explored it in this research.
Corollary 3. In a coordinate face, the equilibria in two dimension interchange between at-

tractors and saddles. In addition, viewing the interior equilibria in the two dimensional plane,

one would see that the number of saddles is less than or equal to the number of attractors.

Below we give a geometry for system (4.3.1) in three dimension which can give rise to per-
sistence especially the cases when there are not less than one interior equilibrium. Let h be
the number of coordinate planes which contain the interior equilibrium. In this case, we have
0 ≤ h ≤ 3. We assume that the interior equilibria repel side-by-side towards the plane. We
denote the interior equilibria by Ein and the boundary equilibrium by Ebn where n is a plane
where that particular equilibrium lies.

Case 1 : h = 1. If we have only one equilibrium in the interior of the plane, then Corollary 3
implies that this equilibrium is an attractor. We let this equilibrium be in x2−x3 plane. Then
equilibrium Eb1 must repel in at least one direction and in this case, it repels towards x2-
direction. Equilibrium Eb3 can either repel or attract in the x1-direction. Figure 4.1 illustrates
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this dynamics.

Figure 4.1: The case when we have one interior equilibrium in the plane which is attracting

Case 2 : h = 2. In this case, we can either have one or two attracting equilibria and a saddle
point according to Corollary 3. We can have either both interior equilibria are attracting or
only one is attracting. Consider first that both equilibria are attracting and are lying in x2−x3

and x3 − x1 planes. Note that Eb1 can either attract or repel towards x2. Similarly, x2 can
either repel or attract towards x1. This is illustrated in Figure 4.2a. For the second case, one
of the two interior equilibria is a saddle. Let the attracting equilibrium be in x2 − x3 plane
and the saddle equilibrium be in x3 − x1 plane. This is illustrated in Figure 4.2b below.

(a) When we have two equilibria Ei2 and Ei3 which
are both attractors

(b) When we have two interior equilibria, one is a
saddle Ei3 and another one is an attractor Ei2

Figure 4.2: The case when there are two interior equilibria

Case 3 :h = 3. Corollary 3 tells us that we can have two or three attractors and one saddle
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point in order to have persistence. Just like we observed above, we have two situations. In
the first one, all three interior equilibria are attracting while in the second one, one of the
interior equilibria is a saddle. These two situations are shown in Figure 4.3a and Figure 4.3b
respectively.

(a) The case when there are three interior equilib-
ria and all of them are attractors

(b) The case when there are three interior equilib-
ria where only one is a saddle point

Figure 4.3: The case when there are three interior equilibria

Special Case : h = 0. When there are no equilibria in the interior, Corollary 3 implies that in
order to have a strong persistence, we must have at least a one dimensional manifold which
is not stable. This behaviour is shown in Figure 4.4.

Figure 4.4: The case when we do not have any interior equilibrium in the plane

It is worthy to note that Corollary 3 applies also to n-dimensional system.
Theorem 20. If α > 2, then all n species uniformly persist.
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Proof. In Theorem 18, we proved that the system (4.1.1) defines the dynamical system in
a biologically feasible region given by Ω =

[
0, k

α

]n
and that it is positively invariant and

attractive. On Ω, we have for every i ∈ {1, 2, . . . , n}, the following inequality;

ẋi = xi(k − αxi − xi−1 − xi+1)

≥ xi

(
k − αxi −

k

α
− k

α

)

= xi

(
k(α− 2)

α
− αxi

)

= αxi

(
k(α− 2)

α2 − xi
)
. (4.3.2)

Let x(t) be a solution of system (4.1.1) with x(0) > 0. Consider the equation

θ̇ = αθ

(
k(α− 2)

α
− θ

)
. (4.3.3)

Let i ∈ {1, 2, . . . , n} and let θ be the solution of (4.3.3) with initial condition

θ(0) = xi(0) > 0.

Taking into account inequality (4.3.2), we have

xi(t) ≥ θ(t) −−−→
t→∞

k(α− 2)
α2 .

Therefore,

lim inf
t→∞

xi(t) ≥
k(α− 2)

α2 > 0, i = 1, . . . , n. (4.3.4)

Then, the statement of the theorem follows from Definition 17. This means that all trajectories
of system (4.1.1) initiated in Rn

+ are eventually uniformly bounded away from the boundary
of Rn

+ when α > 2.

Remark. The implication of Theorem 19 and Theorem 20 is that the solution (population)
of the system (4.1.1) does not tend to a boundary equilibrium as t −→ ∞. Biologically, this
means that all species persist.
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Further, for a three dimensional system, α > 1 is a necessary condition for strongly uniformly
persistence. The following numerical simulations show that α > 2 is also a necessary condition
for at least n = 4. Note that α > 2 implies that the species size/density has a stronger
negative impact on its own growth rate than on the growth rate of the neighbouring species.

4.3.1 Numerical Simulations

We begin the numerical simulations by considering system (4.1.1) in three dimensions. Figure
4.5a shows a long-term dynamics of 3 species when α = 0.30 with the carrying capacity
k = 3. Observe that not all species survive. Some fail to copy with the competition and
eventually are driven to extinction by the other competitors. On the other hand, Figure 4.5b
shows that all species with different initial values survive the competition and converge to
a stable coexistent equilibrium in the interior of of R3

+. (Note that the extra curve on the

simulations is due to noise.)

(a) No persistence of species when α < 1 (b) Persistence of species occur when α > 1
Figure 4.5: The case when there are three species

The dynamics of the species where n = 4 change. Indeed, α < 2 does not satisfy the condition
for persistence. Instead, α > 2 does. Figure 4.6a illustrates for the case when α = 1.50 and
Figure 4.6b shows the simulations when α = 2.50. Similarly, Figure 4.7a and Figure 4.7b
show that persistence holds when α > 2.
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(a) No persistence of species when α = 1.50 (b) Persistence of species occur when α = 2.50
Figure 4.6: The dynamics of species when n = 4

(a) No persistence of species when α < 2 (b) Persistence of species occur when α > 2
Figure 4.7: The dynamics of species when n = 5

Below we increase the number of species to 50 and observe that the behaviour of solution
is the same as when n = 4, that is, persistence occurs only when α > 2. This is shown in
Figure 4.8.
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(a) No persistence of species when α = 0.20 (b) Persistence of species occur when α = 2.50
Figure 4.8: The dynamics of species when n = 50

4.4 Model of n Competing Species with Conspecific Sup-

port

A distinctive epidemiological questions such as persistence/extinction of competing species
are formulated as an extension of system (4.1.1) to include conspecific support. Including
conspecific support for each species or population group similar to (3.4.1)–(3.4.2) and (3.5.1)–
(3.5.2) we obtain the following system

ẋi = xi(1 + βxi)(k + µ− αxi − xi−i − xi+1)− µxi, i = 1. . . . , n, xn+1 = x1, (4.4.1)

where β > 0 is a conspecific support parameter, and µ > 0 is the density independent death
rate.

4.5 Basic Properties and Persistence of the System

This section aims to explore the properties of system (4.4.1) that will enable us examine and
explain the effect of conspecific support on the asymptotic properties of competing species.
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4.5.1 Existence, Uniqueness and Boundedness of Solutions

Theorem 21. The solution xi(t) for system (4.4.1) with non-negative initial conditions exists

for all time (t ≥ 0) and it is unique.

Proof. The theorem is proved using a similar argument presented in proving Theorem 17
above.

Theorem 22. The system (4.4.1) is a dynamical system in the biologically-feasible region

defined by

Ωµ = {x ∈ Rn
+ : 0 ≤ xi ≤

k + µ

α
, i = 1, . . . , n}. (4.5.1)

Proof. From (4.4.1), we have,

dxi
dt
≤ xi(1 + βxi)(k + µ− αxi),

= xiα(1 + βxi)
(
k + µ

α
− xi

)
.

(4.5.2)

Considering the above inequality (4.5.2), it is clear that if

xi(0) ≤ k + µ

α
then, xi(t) ≤

k + µ

α
.

Taking into account that the solution xi(t) of (4.4.1) is non-negative, we obtain that
[
0, k + µ

α

]
is positively invariant and attractive interval for xi. Thus,

Ωµ =
[
0, k + µ

α

]n

is positively invariant and attractive set for (4.4.1). As a consequence, all the solutions of
(4.4.1) initiated in Ωµ remain in Ωµ for all t ≥ 0. Hence, the theorem is proved.

Therefore, we consider the dynamics of system (4.4.1) in Ωµ defined above.
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4.5.2 Non-persistence of n species and Pattern Formation

In this section, we prove one of the main theorem that shows that model (4.4.1) has a stable
boundary equilibria and n species will not persist. Furthermore, we will observe that the
interaction of n species results in formulation of patterns.
Theorem 23. Let α > 2. If µ > (α − 2)k, there exists βcrit such that for β > βcrit the

system (4.4.1) has attractive boundary equilibria.

Proof. We will give the proof in the case when n is even. The proof when n is odd is slightly
more technically complicated but uses essentially the same argument.

Let

ϕ(θ) = (1 + βθ)(k + µ− αθ)− µ.

It is easy to see that ϕ has a unique positive root, which we denote by θ∗. Clearly,

ϕ′(θ∗) < 0. (4.5.3)

Further, we have
ϕ
(k

2
)

=
(
1 + β

k

2
)(
µ− (α− 2)k2

)
− µ.

Taking into account the inequality given for µ, ϕ(k2 ) is linear increasing function of β. There-
fore, there exists βcrit such that

β > βcrit =⇒ ϕ
(k

2
)
> 0. (4.5.4)

Further, one can observe that since ϕ is a quadratic function of θ, (4.5.4) implies that

β > βcrit =⇒ θ∗ >
k

2 . (4.5.5)

We will show that for β > βcrit the system has an attractive boundary equilibrium.
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Let β > βcrit and let us consider the equilibrium

x∗ = (θ∗, 0, θ∗, 0, θ∗, ..., θ∗, 0).

Every even row of the Jacobian of the right hand side of (4.4.1) at x∗ contains a single
nonzero entry, which is at the diagonal and is equal to k − 2θ∗. Therefore, the Jacobian has
n

2 eigenvalues equal to k − 2θ∗, which due to (4.5.5) are negative. After these rows and
respective columns are removed, the remaining submatrix is diagonal with diagonal values
equal to θ∗ϕ′(θ∗). Therefore, the remaining n2 eigenvalues are all equal to θ∗ϕ′(θ∗), which is
negative due to (4.5.3). Hence, the equilibrium x∗ is stable and attractive.

Theorem 23 shows that at least for β > βcrit there is no uniform persistence of all species.
This property opens the possibility for emergence of patterns involving extinction of some
species as shown in the following section.

4.6 Numerical Simulations and Discussions

We present numerical simulations of system (4.4.1). The numerical simulations were imple-
mented with the following values of the parameters presented in Table 4.1.

Table 4.1: Parameter values

n α µ β k

100 2.1 0.5 5 3

In every figure we have time diagram (above) and a “space” diagram (below). In every figure
the time diagram indicates that the equilibrium for each species is obtained. Further, it indi-
cates that the obtained equilibrium of the model is stable with respect to small perturbations,
e.g. at least of the size of the round-off error. The “space” diagram represents the sizes of
each species that the obtained equilibrium in a bar-chart, where the species are arranged in
the order of their indexes. The initial condition is a random vector, every coordinate uniformly
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distributed in [0.01, 1.01]. We note that different pattern are obtained in different runs. Three
pattern are given on Figures 4.9–4.11.

Pattern 1

Figure 4.9: Pattern 1 of n competing species with conspecific support. Regular sequence of
persistence and extinction as given in x∗.
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Pattern 2

Figure 4.10: Pattern 2 of n competing species with conspecific support.
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Pattern 3

Figure 4.11: Pattern 3 of n competing species with conspecific support.

Observe that the immediate neighbour of a surviving species experience competitive exclusion
(extinction), thus forming a persistence-extinction pattern over a range of n species. This
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is a similar case discussed before when we have unqualified competition. Observe further,
especially in Figures 4.10–4.11 that a random self-organised pattern of coexisting species
emerges which remains stable. This stable cluster of species persist with a density lower than
the rest.

It is noteworthy that pattern formation can be caused by a small perturbation in the en-
vironment over time between activator (A) and depletion (D) [57]. The depleting factor
is the carrying capacity. Thus the pattern formation in competitive system is caused by
species/population using its resource and that for its immediate neighbours thereby driving
them to extinction. Figure 4.12 shows examples of natural pattern formation ranging from
algae (lower plants) to a bush tiger (higher animals). Observe that these patterns are similar
to the ones presented in Figures 4.9–4.11.

(a) Zebra (source:https://www.google.com) (b) Tiger Bush (https://www.shutterstock.com)

(c) Succulent-Karoo of North Western Cape, SA
(https://www.google.com)

(d) The Algae Anabaena under a microscope
(https://www.google.com)

Figure 4.12: Pattern formation in nature
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4.7 Up-scaling from Discrete to Continuous Model

4.7.1 Introduction

In this section, we propose a model of the activation-inhibitor mechanism of pattern formation
by using nonlocal integral operators. This approach was first used by Lefever and Lejeune
[71] in the modelling of dynamics of vegetation patterns. It turns out that the short range of
the activation and the long range of the inhibition can be adequately represented by means
of the supports of the kernels of the respective integrals. An advantage of using the nonlocal
operator model from the point of view of its theoretical and numerical analysis is that it does
not require the solution to be smooth with respect to the spatial variable.

Gierer and Meinhard [29] showed that, irrespective of the level of complexity of the system,
patterns are formed via the coupling of self-activation with lateral inhibition. Therefore, it
is imperative to attempt to understand this mechanism using simple systems. In this sense,
the algae Anabaena in Figure (4.12d) serves as an example. This is because it is a single
celled organism. However, the individual algae attach to form chains or filaments. Most of
the cells are vegetative (propagation achieved by asexual means), focused on photosynthesis.
It is estimated that in every 7-10 vegetative cells, a cell differentiates and becomes a nitrogen
fixating cell called heterocyst. This simple one-dimension pattern is crucial because it spa-
tially separates two incompatible processes: the oxygen-evolving photosynthesis (in vegetative
cells) and oxygen-sensitive nitrogen fixation (in heterocysts) [21]. The control of the pattern
formation is attributed to a peptide, which is produced and released by cells differentiating
as heterocysts [31]. The biology of the heterocyst has been studied intensely with varied ap-
proaches [7]. However, many processes and genetic mechanisms are not yet well understood
[45]. Theoretical and mathematical models have been developed using different tools, e.g.
cellular automata [32].

4.7.2 Model Formulation

In most general terms we consider the spatial distribution over a domain Ω ⊆ Rn of a
substance, species or utility, which we denote by U. Let u(t, x) denote the spatial density of
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U at time t and a space location x is a continuous variable in a real interval Ω. The forces
of self-activation and the lateral inhibition of U are considered to be nonlocal in the sense
that their values at given time t and space point x depends not only on the value of u at
(t, x), but on the values of u at time t at all points of the spatial domain Ω or at least of a
neighbourhood of x.

For large n the vector (u1(t), u2(t), ..., un(t)) is often modelled as a function u(t, x). Further,
we can assume interaction not only with the immediate neighbours, but with their neighbours
and beyond. Then the analogy of the growth limiting factor in (4.4.1) is an integral of the
form

I(u; t, x) =
∫

Ω
κ2(k + µ− αu(t, y))dy,

where the support and the shape of the kernel κ2 determines the span and type of interaction.
Similarly, the growth with conspecific support factor in the case of a continuous variable x is
modelled as

A(u; t, x) =
∫

Ω
κ1(y − x)u(t, y)(1 + βu(t, y))dy,

where the support and shape of κ1 determines the span and type of conspecific support for
growth. We may assume that κ1 and κ2 are normalized so that

∫
Ω
κ1(x)dx =

∫
Ω
κ2(x)dx = 1. (4.7.1)

For simplicity we also assume that they have compact support. Naturally, the supp(κ1) is
expected to be much smaller than supp(κ2).

The upscaling of the model (4.4.1) to continuous space variable is of the general form

∂u(t, x)
∂t

∝ A(u; t, x)× I(u; t, x)− µu(t, x). (4.7.2)

Further, we need to take into account that the growth limiting factor I(u; t, x) could be
negative, while u(t, x) = 0 and u(t, x) is nonnegative over Ω. Hence, with a modification to
exclude the possibility of obtaining negative values the model is
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∂u(t, x)
∂t

=


rA(u; t, x)×I(u; t, x)−µu(t, x) if u(t, x)>0,

max {rA(u; t, x)×I(u; t, x)−µu(t, x), 0} otherwise,
(4.7.3)

where r is a positive constant.

The model (4.7.2) was first introduced in [71] to model patterns in tiger bush. The model
(4.7.3) was used in [70] for modeling the algae Anabaena. It is quite interesting that these
models can be linked to models like (4.4.1) of competing species with conspecific support
and, in fact, can be derived through upscaling of (4.4.1) from discrete to continuous space
variable.

4.7.3 Pattern Formation for the Continuous Model

Let L1 be the size of the neighbourhood for providing self-support and let L2 denote the
size of the neighbourhood for lateral inhibition. The space independent case obtained when
L1 → 0 and L2 → 0, the model is reduced to a well known cubic growth equation

ut = λu(1 + βu)(1− u)

with non-negative equilibria u = 0 and u = 1. The standard linear stability analysis shows
that 0 is unstable and 1 is stable. The stability of these spatially homogeneous equilibria is
not preserved. For positive values of L1, L2 and D = L2/L1 sufficiently large, the spatially
homogeneous equilibrium is unstable and thus the stable patterns are formed.
In order to carry out numerical simulations of the dynamics of a continuous model, we first
provide explicit form of the kernels κ1 and κ2. We consider κ1 and κ2 in the following form,
which is consistent with the properties discussed in the above section:

κ1(x) =

 (L1 − x)L−2
1 if |x| ≤ L1

0 if |x| > L1

, κ2(x) =

 (L2 − x)L−2
2 if |x| ≤ L2

0 if |x| > L2

,

where L1 and L2 are positive reals such that L1 < L2. The simulations are run until a stable
pattern occurs. Note that for the simulations in Figures 4.14 and 4.13 we use the same values
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of the parameters as for the simulation on Figures 4.9–4.11. Figures 4.14, 4.15 and 4.16 are
obtained for D = 5, D = 8 and D = 12.5 respectively. The pattern is very similar to the
one in Figure 4.9. For smaller ratio L2 : L1 we obtained wave-like patterns not involving any
local extinction as shown in Figure 4.13. The frequencies of the pulses is determined by the
value of D. As D increases the pulses get more spaced as shown in Figure 4.13-4.16.

Figure 4.13: Stable pattern obtained for L1 = 1 and L2 = 3.

Figure 4.14: Stable pattern obtained for L1 = 0.8 and L2 = 4.
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Figure 4.15: Stable pattern obtained for L1 = 2 and L2 = 16.

Figure 4.16: Stable pattern obtained for L1 = 2 and L2 = 25.

We need to remark that these patterns are formed essentially through the Gierer-Meinhard [3]
mechanism of self-activation, represented by the operator A, and lateral inhibition, represented
by the operator I. Typically, this mechanism is represented mathematically via a system of
reaction diffusion equations satisfying the Turing instability condition [9, 29]. Here we show,
among other things, that different mathematical representations of the Gierer-Meinhard theory
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4.7. UP-SCALING FROM DISCRETE TO CONTINUOUS MODEL
of pattern formation are possible. It is widely accepted that the Turing mechanism for systems
of reaction-diffusion equations is appropriate way for modelling pattern formation, [9]. In fact,
it seems that it is widely believed that it is the only way, particularly given that Gierer and
Meinhardt derived independently the same model to represent their theory of biological pattern
formation, [30].

70



Chapter 5

Conclusion and Future Work

In this dissertation, we presented an extensive mathematical study of Lotka-Voterra compe-
tition models of the dynamics of population groups. In the first part of our study (Chapter
3), we presented the models of two competing species and demonstrated how introducing
conspecific support affects the dynamics of the competition. In the last part of our study
(Chapter 4), we have considered the model of n competing species and determined the future
outcome of the interaction. Furthermore, we have proposed the model of the activation-
inhibition mechanism of pattern formation by up-scaling the discrete model to the continuous
model using nonlocal integral operators.

In Chapter 3, a general model of two competing species was presented and the model was
rigorously analysed to ensure that it provides a realistic representation of the population
dynamics. We observed that if g1(0, q) and g2(p, 0) are both positive, then the system is
permanent, that is, the two species in the competition coexist. In the same chapter, we
presented the system with linear per capita growth rate to illustrate the result obtained for
the general model. In a counter distinction from the Gause’s principle of competitive exclusion,
we observe that two competing species coexist under the assumption of qualified competition.

In Section 3.4, we show how conspecific support can destabilise the coexistence of competing
species. The conspecific support is modelled through multiplying the per capita growth rate,
excluding density independent death rate, by a linear factor of the form (1 + βx) with β > 0.
We observe that in the model with conspecific support, the per capita growth rate is positively
correlated with the density of population size, when it is small. Hence, the conspeific support
gives rise to Alee Effect. We note that there is an increasing biological evidence that the Alee
Effect is more likely to occur due to conspecific support [38, 68]. The specific form chosen here
to represent the conspecific support leads to a Weak Alee Effect, since there is no additional
positive equilibrium generated by the system due to the conspecific support. We discuss

71



the general mechanism of destabilising the permanence of the system or equivalently the
coexistence of the species. In Section 3.5, we consider conspecific support in the specific case
discussed in Section 3.3. We prove that under an assumption about the density independent
death rate, there exists a threshold value βcrit such that for β > βcrit, the system is not
permanent or equivalently species do not coexist.

In Chapter 4, we extended the general model introduced in Chapter 3 from two dimensions
to n dimensions. While Chapter 3 basically provides the effect of conspecific support on the
coexistence of two competing species, the focus of Chapter 4 is two fold:

(i) to determine the conditions for uniform persistence of the model of three competing
species as well as the model of n competing species, and

(ii) to determine the effect of conspecific support on coexistence . of all species and on the
formulation of patterns of persistence and extinction.

For the first objective, investigating such condition that can allow species to coexist plays a
vital role in the conservation ecology/biology for guiding management actions. This is because
such information would allow ecologists/biologists to make predictions about the vulnerability
of species to extinction even before they decline, thereby improving the chances of species
to survive [40]. In order to achieve this objective, the model was rigorously analysed to get
the insight of the asymptotic behaviour of the solutions when we have three species in the
competition. The usual linear stability criterion of the boundary equilibria was used. We
observe that all the boundary equilibria repel towards the interior of the R3

+ if α > 1, and
the model has an attractive boundary equilibria if α < 1. Thus, we conclude that α > 1 is a
necessary condition for uniform persistence/permanence of three competing species since all
solutions of the model are bounded away from the equilibrium in an infinite period of time.
Further analysis of the model was carried out and it was shown, however, that when species are
more than three, α > 2 is the necessary condition for uniform persistence/permanence. This
behaviour of the model is illustrated by numerical simulations presented in Section 4.6. The
most interesting result is proved in Theorem 20 of Section 4.3, where it has been shown that n
species uniformly persist in an infinite time regardless of the intensity of the competition. This
result is essentially similar to what other researchers have been able to prove (the possibility
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of multi-species persistence) [5, 13, 16] although there models focus on different aspects.

In Section 4.4, the model of n competing species with conspecific support has been presented
as an extension of the model of n competing species in order to address the second objective
of this chapter. The question of whether or not the introduction of conspecific support in the
system, as observed in Section 3.5, would change the dynamics of the system is discussed. No
doubt, we observe that conspecific support has a similar impact on both two and n competing
species. This is demonstrated in Theorem 23 where it has been proved that if α > 2, there
exists a threshold condition βcrit on the model parameter such that if β > βcrit, the model of
n species with conspecific support is not permanent or equivalently, some of the species go
extinct.

Despite the fact that conspecific support destabilises the coexistence of species for both two
and n species, it has an additional important effect on n species in competition. The theory
of pattern formation is widely used to study various critical transitions which take place in
biological systems, as well as in ecological systems that are believed to generate patterns [10].
Here, we show that due to conspecific support, the existence-extinction pattern will emerge.
More precisely the emergence of these patterns is attributed to competition coupled with
conspecific support resulting in extinction of some species. The factor behind the extinction
of some of the species is due the depletion of carrying capacity as a result of species using
its own resource and that for the immediate neighbours. Since the inhibition is depletion
of resources, this model of pattern formation is more appropriately referred to as activation-
depletion rather than activation-inhibition.

In Section 4.7, we have proposed the continuous model by up-scaling the discrete model
presented in Section 4.1 to model of continuous space variables. This model was first used in
[71] in the modelling of dynamics of the patterns in tiger bush given in Figure 4.12b as well
as vegetation patterns such as the one presented in Figure 4.12d. We find it interesting that
this approach can be derived from up-scaling or analogy with the discrete model in Section
3.4. In this approach, the short range of the activation and the long range of the inhibition
are modelled by the support of the kernels of the integrals as shown explicitly in (4.7.2). We
demonstrate numerically that if the ratio of the size of the neighbourhood for providing self-
support over the size of the neighbourhood for providing lateral inhibition is sufficiently large,
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the spatially homogeneous equilibrium is unstable and the stable patterns are generated. The
patterns observed in this setting are similar to those presented in Section 4.6.

The research presented in this dissertation seems to have raised more questions than it has
answered. There are several lines of research arising from this work which should be pursued.
For instance, there has been quite substantial recent development of the theory of equations
involving non-local operators. However, there is no theory as yet on pattern formation in such
equations. Here we presented mainly numerical investigation on the pattern appearing when
varying the support of the respective kernels. The empirical investigation on the possible
patterns and conditions under which they occur will help to acquire a broader understanding
of the subject. Therefore, our future work aims at addressing the theoretical analysis of this
pattern formation mechanism.
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