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Summary

Despite the increase in agricultural crop yield over the last century, the world’s
food supply is in grave danger, as an estimated 16% of global yield is lost to
various pathogens annually. As a result, mathematical epidemiology is regularly
used to study the mechanisms of transmission, and to determine possible control
strategies. A basic analysis of the SEIR model with linear diffusion on the infective
compartment published in Gilligan (1995) is carried out first. When the
population size is constant the temporal model admits a disease free equilibrium,
which is asymptotically stable when R0 ≤ 1, and locally asymptotically stable
when R0 > 1, as well as a locally asymptotically stable endemic equilibrium which
only exists when R0 > 1. Numerical investigations confirm the existence of
travelling wave solutions. Next an SEIR model with non-linear diffusion on the
infective compartment is investigated numerically. The behaviour of the two
models is consistent, although non-linear diffusion with a small diffusion constant
results in travelling waves with significantly lower speed.

The host-pathogen model was developed to circumvent the underlying issues of
placing a diffusion operator directly onto the infective compartment. This model
consists of susceptible and infected hosts, and free and attached pathogen.
Although R0 < 1 for all parameter values, the model admits either only the
pathogen free equilibrium PFE, or the PFE and two endemic equilibria. The
PFE is always locally asymptotically stable and the global asymptotic stability is
proven using two methods: the application of LaSalle’s Invariance Principle, and
the construction of a monotone system that approximates the model from above.
These methods lead to two sets of sufficient conditions for the global stability of
the PFE. The parameter values satisfying these conditions have some overlap.
However there are values that satisfy one set and not the other.

Although the stability properties of the endemic equilibria have not been proven,
numerical simulations indicate that the equilibrium with the higher level for free
pathogen is asymptotically stable on R4

+, and the other is unstable, with the
possibility of being a saddle point. Conditions for the persistence of the pathogen,
and thus the infection, were derived. A local sensitivity analysis is completed, and
from this possible control methods have been suggested.

The model was extended to include a spatial component, by the addition of
diffusion on the free pathogen sub-population. This inclusion did not result in
solutions deviating from the behaviour that had been proven for the temporal
model. Indeed, under the conditions for persistence, solutions initiated at the level
of the stable endemic equilibrium result in a travelling infection front that joins
this equilibrium to the PFE. The wave speed was calculated for diffusion
constants µ ∈ [10−7, 10−1], and an equation of the form c(µ) = aµb was fitted to
data. The obtained value of b, namely b = 0.4189 is close to the expected value of
0.5 as for FKPP equations.
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1 Introduction

1.1 Background on Soil-Borne Pathogens

Although agricultural crop yield has increased over the last century, the global
food supply is experiencing tremendous pressure from climate change and ever
increasing demand. Another major concern is the impact of pathogen since an
estimated 16% of the global crop yield is lost to various pathogens annually [10],
[62], [90]. Consequently there has been an increase in research of botanical
pathogens and the resulting diseases, with foliar pathogens being the focus of the
majority of published work. One important difference between foliar and soil-borne
pathogens is the environment wherein each occurs. Foliar pathogens have to
contend with external factors such as wind, radiation and varying temperatures.
However, the soil environment dampens the effects of such factors, although the
inherent opacity of soil poses a number of challenges of its own. Added to these
are challenges relating to capturing the direct and indirect influence of the
environment on processes such as survival, dispersal and germination of pathogens,
tissue growth, spatial distribution and susceptibility of hosts [73]. Each of these
challenges needs to be thoroughly understood before they can be overcome, which
indicates the need for a better understanding of the soil as an environment.

Soil is a dynamic environment, made up of biotic and abiotic components. The
biotic component consists of microbes and micro-organisms, which can exhibit
mutualistic or antagonistic behaviour. Mutualistic microbes generally occur in the
rhizosphere which is the “the portion of the soil that forms the complex habitat of
plant roots, the composition of which is altered by root activity” [39]. Examples of
mutualistic relationships are Rhizobium and members of the pea family and
certain Azospirillum species, associated with cereal grasses. These bacteria convert
free nitrogen into ammonia, which the host uses for development. The rhizosphere
is also where plant exudates act as messengers that initiate certain interactions
between roots and a large number of soil-organisms [39]. Unfortunately these
exudates are often used by pathogens to identify and locate suitable hosts.

The abiotic soil component consists of all non-living factors such as the soil
matrix, water, and even temperature. The soil matrix is the solid component of
soil and consists mainly of particles of differing sizes, and “usually contains
considerable void space since soil particles are irregular in size and shape” [73]. A
larger structure does exist, which results from the collection of individual particles
into larger units. Clay particles play a role in the formation of these aggregates, as
do fungal mycelium, and the mucilaginous materials that plant roots and soil
micro-organisms secrete [73]. The larger spaces between aggregates are where
water and air infiltration [73], as well as root growth occur [26]. Although roots
are also capable of pushing soil particles aside [73] this ability is limited and root
growth will decrease abruptly if faced with sufficient resistance within the matrix
[26], [100], [110].

The biotic and abiotic soil components, and the interactions between them



Figure 1.1: The initiation of a disease is dependent on the soil, pathogen and host,
and the interactions between them.

influence a pathogens ability to survive in the soil. Soil with a negative impact on
a pathogen or its ability to cause disease is said to be suppressive; and can either
be generally suppressive, or suppressive to a particular pathogen. Examples of
pathogens for which suppressive soils have been found are given in [61],[86], [102],
[107], [125]. A pathogen in a suppressive soil either does not persist at all, persists
but does not cause disease, or persists and the resulting disease does little to no
damage [20]. One would expect that generally suppressive soils therefore be ideal
for agricultural crops, and although suppressiveness can be induced by the
introduction of certain microbes, the transition from laboratory to field
experiments leaves something to be desired [81]. This is largely due to the survival
and activity of the ‘alien’ microbe not being as expected.

In a patch of non-suppressive soil two things are needed for a disease to take hold:
a pathogen, and a suitable susceptible host. Soil-borne pathogens can be bacteria,
fungi, viruses or nematodes, most of which can survive in the soil in the absence of
hosts for some time. This survival can be active or passive, with passive survival
achieved by the creation of resting structures, which can lie dormant for various
lengths of time before germinating in favourable conditions or in the presence of
certain host exudates [59]. The exudates, which are nutrients and microbiological
compounds, follow decreasing gradients from the root surface to the soil, and so
the influence of the root diminishes with distance [59]. When some pathogens
detect exudates of a host, they travel along the gradient to reach the host.
However, mycelially-spread fungi, motile spores of fungi, bacteria and nematodes
experience undirected movement, which is effectively random. [21].

Once a pathogen comes into contact with a suitable host, entry occurs either via
natural openings or specially created structures [39]. If the host plant is immune
to the disease minute necrotic flecks appear, as a result of rapid cell death in the
vicinity of the invading pathogen [109]. Otherwise, and in favourable conditions,
entry leads to infection which is followed by colonization of the host as the
pathogen advances.

Infected plants display four main symptoms namely hyperplasia, hypertrophy,
hypoplasia, or necrosis [109]. The interaction of symptoms could delay a proper
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diagnoses, which increases the impact a pathogen has on the crop. For example,
permanent wilt suggests that the up-take and transport of water has been
disturbed, although no information regarding the cause or site of the disturbance
is revealed. A blockage in the vascular system could be the cause, or general
destruction of root tissue. However, it could also be a consequence of excessive
water loss due to increased transpiration. Cabbage rot is another example;
although the physical symptoms are hypertrophy and hyperplasia of root tissue,
the first visible symptom is wilting of the aerial component of the plant [71].

1.2 Historical Background: Modelling Soil-Borne
Pathogens

Deterministic epidemiological modelling seems to have started in the 20th century,
although Daniel Bernoulli formulated and solved a non-linear differential equation
model for smallpox in 1760 [12]. In 1906, in an attempt to understand the
recurrence of measles epidemics, Hamer constructed and analysed a discrete time
model [42]. This model might have been the first to assume that the number of
new cases per unit time depends on the product of the densities of the susecptibles
and infectives [44]. Five years later, Ross [97] developed a system of differential
equations that highlighted the host-vector nature of malaria to investigate the
incidence and control of the disease. Following this, other deterministic
epidemiological models were developed and published [4],[27], [28]. A crucial
threshold result requiring the density of susceptibles to exceed a critical value in
order for an epidemic to occur was also obtained [4], [60], [82].

Literature reviews show the rapid growth of mathematical epidemiology starting in
the middle of the 20th century [11], [17], [27], [28], [29], [43], [45], [46], [126].
Although compartmental models were originally applied to human diseases, they
can and have been extended to livestock and wildlife diseases, as well as botanical
epidemics. A robust theoretical framework for the analysis and control of botanical
epidemics has emerged ([34], [35], [77]), developed from pioneering work by van der
Plank [116], [117], Waggoner [121], Zadoks [127], [128], Leonard [67], Madden [74]
and others.

Although host demographics were often not included in early models ([14], [31],
[32],[116]) they are now a feature in most contemporary models ([34] [35], [57],
[76], [77]). The inclusion of host dynamics is especially important when the mean
duration of a host generation is sufficiently short to have an impact on the
outcome of the epidemic [22]. The simplest method of incorporating host growth is
to include an exponential function for the net increase rate of the susceptible
hosts. While unlimited growth is avoided by density-dependent pathogen-induced
host mortality, in the absence of the pathogen biological plausibility collapses.
This can be avoided by considering ‘natural’ host mortality and the growth-decay
parameter values can be chosen in such a way that the host population size
remains constant. This greatly simplifies the analysis of the model. However,
bounded growth functions offer more realism. Two commonly used examples are
the monomolecular function which introduces a simple upper bound on host
growth, ([32], [37], [55], [75], [106], [114]) and the logistic function which allows for
non-linear feedback in the net birth rate of the host ([6], [7], [8], [34], [37], [40],
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[41], [94], [95], [112], [123], [124]).

Host roots growing in soils that are highly structured may grow through the
channels of old roots [118]. This almost guarantees that new roots come into
contact with a high density of pathogen propagules. Along with this, the spread or
dispersal of inoculum is itself important to the possible establishment of infection.
The extensive porous structure of the soil matrix restricts the dispersion of
soil-borne pathogens to such as extent that it is best described as an ‘impact filter’
[73]. This is presumably overcome by the motility of the pathogen, helping to
navigate the soil environment [73]. Linear diffusion has been used to model random
undirected movement, with the movement of bacteria ([89], [101]), fungus ([24]) as
well as that of nematodes ([30]) having been considered. However, porous or
fractal diffusion have also been suggested as more suitable for representing highly
structured networks of pores and voids in the soil environment ([30], [70]), although
it is possible that such improvements do not lead to any observable differences in
model predications, at least for biologically plausible parameter ranges [47].

Gilligan [33] presented an SEIR model with linear diffusion on the infectious
subpopulation for the study of soil-borne pathogens, although no biological
motivation for this was found during the literature review. This paper presents a
refinement of this model by using nonlinear diffusion terms in a host-pathogen
model, avoiding the issues that arise from placing a diffusion operator directly onto
the infective compartment. The organisation of the thesis is as follows. Chapter 2
introduces the necessary mathematical concepts used in the proceeding analysis of
models. In Chapter 3 we discuss Gilligan’s model [33] and investigate the effects of
changing the diffusion constant. In Chapter 4 we amend the diffusion operator to
reflect the assumption that the soil environment is a porous medium. Chapter 5
introduces the temporal host-pathogen model, and, along with the basic properties
of the model, presents numerical investigations on the asymptotic behaviour of
solutions. We extend the temporal model to include a spatial movement of a
sub-population of the pathogen in Chapter 6, and investigate whether this change
affects the behaviour of solutions.
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2 Theoretical Preliminaries

2.1 Mathematical Preliminaries

2.1.1 Dynamical Systems

We recall some preliminary theorems and definitions that will be used throughout
the paper. Let x(t) ∈ Rn denote a vector valued function of t ∈ R. Consider the
problem:

ẋ = f(x) (2.1)

where we assume f ∈ C1(Rn)

Definition 2.1. Let φt : I → Rn be a continuously differentiable function that
satisfies (2.1). Then φt is said to be a solution of the system, and the solution
starting at the point x0 ∈ I ⊂ R is denoted by φt(x0). /

Definition 2.2. A subset D ⊂ Rn is said to be positively invariant if

∀x0 ∈ D =⇒ φt(x0) ∈ D t ≥ 0.

Definition 2.3. Equation (2.1), along with an initial condition, are said to define
a dynamical system on a subset E ⊆ Rn if, for every x0 ∈ E, there exists a unique
solution of (2.1) which is defined for all t ∈ [0,∞) and remaining in E for all
t ∈ [0,∞). /

Definition 2.4. A dynamical system on Rn is said to be dissipative if there is a
bounded, positively invariant set B with the property that, for any bounded set
E ⊆ Rn, there exists t∗ = t∗(B,E) ≥ 0 such that if x0 ∈ E then φt(x0) ∈ B for all
t > t∗. The set B is called an absorbing set. /

Definition 2.5. If a solution φt(x) is defined for all t ≥ 0, the positive orbit
through the point x is defined as γ+(x) = {φt(x) : t ≥ 0}.
Remark 2.1. If system (2.1) is dissipative, then all forward orbits have compact
closure in D.

Definition 2.6. A point x∗ ∈ Rn such that f(x∗) = 0 is called an equilibrium
point or steady state of (2.1). /

Definition 2.7. An equilibrium point x∗ of the dynamical system (2.1) is said to
be stable if, for any ε > 0, there exists δ = δ(ε) > 0 such that if x0 ∈ B(x∗, ε) for
all t ≥ 0. If, in addition, ‖φt(x0)− x∗‖ → 0 as t→∞ for all ‖x0 − x∗‖ is
sufficiently small, then the steady state is said to be asymptotically stable. A
steady stable which is not stable is said to be unstable. /

Theorem 2.1. A steady state x∗ of a dynamical system (2.1) is globally
asymptotically stable if and only if every neighbourhood centered at the steady
state is an absorbing set.

Definition 2.8. Let Jf denote the Jacobian matrix of a function f : Rn → Rn
which is defined as

Jf =


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fp
∂xn

 .

Furthermore, the Jacobian can be evaluated at a point u, in which case it is
denoted Jf (u).
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Theorem 2.2. The Fundamental Existence-Uniqueness Theorem [96]
Let E be an open subset of Rn containing x0, and assume that f ∈ C1(E). Then
there exists a t∗ such that the initial value problem has a unique solution φt(x0) on
the interval [−t∗, t∗].

Definition 2.9. An a priori bound is an estimate for the size of a solution of a
differential equation or its derivative.

The Latin term translates to ‘from before’, which refers to the fact that the bound
is derived before the solution is known to exist.

Theorem 2.3. [49] If the solution φt(x0) of (2.1) has an a priori bound A, then
the solution exists for all t ∈ R.

Theorem 2.4. Bony-Brezis Theorem [48]
Let D be closed subset of a C2 manifold M and let f be a vector field on M
which is Lipschitz continuous. The following conditions are equivalent:

• Any integral curve of f starting in D remains in D.

• The inner product of f and v is non-positive for any exterior normal vector v
at a point m in D. That is, (f(m), v) ≤ 0.

Theorem 2.5. Gronwall Lemma [108]
Let z(t) satisfy

dz

dt
≤ az + b, z(0) = z0,

for constants a, b. Then, for t ≥ 0

z(t) ≤ eatz0 +
b

a
(eat − 1), a 6= 0

and
z(t) ≤ z0 + bt, a = 0.

2.1.2 Matrices and their properties

We present the following definitions for an n× n matrix A.

Definition 2.10. The scalar ξ is said to be an eigenvalue of A if there is a
non-zero vector u ∈ Rn such that Au = ξu. The vector u is then the eigenvector
corresponding to ξ. The characteristic polynomial of A is det(A− ξIn) = 0, and
the eigenvalues are the roots of this equation.

Definition 2.11. The set of all eigenvalues of A is denoted σ(A), and the stability
modulus of A is defined by s(A) = max{Re(λ) : λ ∈ σ(A)}.

Definition 2.12. The matrix A is said to be Metzler if all the off-diagonal entries
are non-negative. That is, if aij ≥ 0 for all i 6= j.

Definition 2.13. A matrix is reducible if and only if it can be placed into block
upper-triangular form by simultaneous row/column permutations. A square
matrix that is not reducible is said to be irreducible.
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2.1.3 Theory of Monotone Systems

Definition 2.14. Let <r denote any one of the relations <,≤ or �. System (2.1)
defines a monotone dynamical system on an ordered metric space D if, for any
initial conditions satisfying x0 <r y0 the solutions satisfy φt(x0) <r φt(y0).

Definition 2.15. System 2.1 is a cooperative system if ∂fi
∂xj
≥ 0 for i 6= j, x ∈ D.

If f is differentiable, then the system 2.1 is cooperative if and only if the Jacobian
matrix Jf is Metzler for each x ∈ D.

Theorem 2.6. [69] Let f be a C1 vector field in Rn defined on a convex subset
D ⊂ Rn. Then system (2.1) is monotone if and only if it is cooperative.

Theorem 2.7. [1] Let a, b ∈ D such that a < b, [a,b] ⊆ D and f(b) ≤ 0 ≤ f(a).
Then (2.1) defines a (positive) dynamical system on [a,b]. Moreover, if [a,b]
contains a unique equilibrium p then p is globally asymptotically stable on [a,b].

Theorem 2.8. [104] Let system (2.1) be cooperative in D and let x0 be an
equilibrium. Suppose that the stability modulus of Jf (x0) is positive, that is
s(Jf (x0)) > 0 and there is an eigenvector v � 0 such that Jf (x0)v = sv. Also,
assume that for some ε > 0, γ+(xr) has a compact closure in D for each
xr ≡ x0 + rv, r ∈ (0, ε]. Then there exists ε0 ∈ (0, ε], and e ∈ E such that for each
r ∈ (0, ε], the solution φt(xr) has the following properties:

1. xr � φt(xr)� φs(xr)� e, 0 < t < s.

2. d
dt
φt(xr)� 0, t > 0.

3. φt(xr)→ e, t→∞.

If, in addition, Jf (x0) is irreducible, then there exists y satisfying x0 � y � e such
that d

dt
φt(y)� 0 for all t ∈ R, φt(y)→ e as t→∞ and

4 φt(y)→ x0 as t→ −∞. Furthermore, φt(y) approaches x0 tangent to the
eigenvector v.

Example: The Ross model (Part 1)

One example of a monotone system is the well-known Ross model which can
be found in [98] amongst others.

ẋ = ab1my(1− x)− γx
ẏ = ab2(1− y)x− µy

(2.2)

The set D = {(x, y) ∈ R2
+| 0 ≤ x, y ≤ 1} can be shown to be positively

invariant with respect to system (2.2), and the Jacobian is

Jf (x, y) =

(
−(ab1my + γ) ab1m(1− x)
ab2(1− y) −(ab2x+ µ)

)
.

Thus, since all the off-diagonal entries are non-negative, Jf (x, y) is Metzler on
D. Therefore system (2.2) is cooperative.
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Example: The Ross model (Part 2)

Clearly 0 is an equilibrium of system (2.2). The global asymptotic stability
of this disease free equilibrium can easily be proven using the properties of
monotone systems, namely Theorem 2.7. Based on the definition of D we
take a = 0, and b = (1, 1)T . Then,

f(0) = 0 and f(b) = −
(
γ
µ

)
< 0.

Since 0 is the unique equilibrium in [0,b] when ma2b1b2
µγ

< 1, it is globally

asymptotically stable on D ≡ [0,b].

2.1.4 Local Stability Theorems for Non-Linear Systems

The main result of this subsection shows that the non-linear system

ẋ = f(x) (2.3)

has the same qualitative structure near a hyperbolic equilibrium point x∗ as the
linear system

ẋ = Ax, (2.4)

where A = Jf (x
∗). This allows us to circumvent the difficulties that arise when

using definition 2.7 to prove the stability properties of system (2.3).

Definition 2.16. An equilibrium point x∗ of (2.1) is said to be hyperbolic if all
the eigenvalues of Jf (x

∗) have non-zero real parts.

Theorem 2.9. Hartman-Grobman
Let E be an open subset of Rn containing the origin, let f ∈ C1(E), and let φt be
the flow of the non-linear system (2.1). Suppose f(x∗) = 0 and that A = Jf (x

∗)
has no eigenvalue with zero real part. Then there exists a homeomorphism H of an
open set U containing the origin onto an open set V containing the origin such
that for each x0 ∈ U , there is an open interval I∗ ⊂ R containing the origin such
that for all x0 ∈ U and t ∈ I∗

H ◦ φt(x0) = eAtH(x0);

that is, H maps trajectories of system (2.3) near a hyperbolic equilibrium onto
trajectories of system (2.4) near the zero equilibrium and preserves the
parameterization by time.

Due to the above theorem it is sufficient to analyse Jf (x
∗) in order to determine

the stability properties of the hyperbolic equilibrium x∗ of system (2.3).

Theorem 2.10. Let x∗ be an equilibrium point of the system (2.3) with f
continuously differentiable. Then, x∗ is asymptotically stable if and only if
s(Jf (x

∗)) < 0 and unstable if and only if s(Jf (x
∗)) > 0.

Note that Theorem 2.10 does not allow for the case when there are zero
eigenvalues.
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2.1.5 Lyapunov Theory and LaSalle’s Invariance Principle

Theorem 2.11. Lyapunov Theorem
Let x∗ ∈ D ⊂ Rn be an equilibrium point for system (2.1). Let V : D → R be a
continuously differentiable function such that

1. V (x∗) = 0 and V (x) > 0 ∀x ∈ D\{x∗}, and

2. dV
dt

= V̇ (x) ≤ 0 ∀x ∈ D

then x∗ is stable. If, in addition

V̇ (x) < 0 ∀x ∈ D\{x∗},

then x∗ is asymptotically stable.

Theorem 2.12. LaSalle’s Invariance Principle [65]
Let Ω ⊂ D be a compact set that is positively invariant with respect to
system (2.1). Let V : D → R be a continuously differentiable function such that
V̇ (x) ≤ 0 in Ω. Let E denote the set of all points in Ω such that V̇ (x) = 0 . Let M
be the largest invariant set in E. Then every solution starting in Ω approaches M
as t→∞.

Example: The Ross model (Part 3)

The basic reproduction number of model (2.2) is R0 := ma2b1b2
µγ

. This quantity
indicates the number of new infectious cases caused by a single infective indi-
vidual in a population that is wholly susceptible. If R0 < 1 the model admits
only the disease free equilibrium DFE, which is asymptotically stable on D.
If R0 > 1 the model admits an endemic equilibrium in addition to the DFE.

Theorem (2.7) is only applicable to monotone systems, which not all models
are. We present an alternative proof, using Theorem (2.11), of the asymptotic
stability of DFE in the case R0 < 1, which does not require models to be
monotone. Consider the function

V (x, y) = (ab2 + µ)x+ (ab1m+ γ)y.

Clearly V (DFE) = 0, and V (x, y) > 0 ∀x ∈ D\{0}, hence V (x, y) is a
Lyapunov function. The time derivative of V (x, y) is

V̇ = (ab2 + µ)ẋ+ (ab1m+ γ)ẏ

= (ab2 + µ)(ab1my(1− x)− γx) + (ab1m+ γ)(ab2(1− y)x− µy)

= ((ab2 + µ)ab1m− (ab1m+ γ)µ)y + ((ab1m+ γ)ab2 − (ab2 + µ)γ)x

− 2a2b1b2mxy − a(b1mµ+ b2γ)xy

= γµ(R0 − 1)y + γµ(R0 − 1)x− 2a2b1b2mxy − a(b1mµ+ b2γ)xy

< 0 if R0 < 1.

Thus DFE is asymptotically stable on D by Theorem (2.11).
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2.1.6 Theory of Algebraic Equations

We recall some results regarding the roots of algebraic equations, with the aim of
obtaining methods to determine how many roots of an equation are contained in a
specific interval. This will assist us in subsequent subsections. Consider the
algebraic equation with real coefficients:

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, a0 6= 0 (2.5)

Theorem 2.13. Descartes’ Rule of Sign
The number of positive real roots of the equation (2.5) is either equal to the
number of sign changes in the sequence a0, a1,. . . ,an of coefficients, where
vanishing terms are disregarded, or it is less than this by a positive even integer.

A similar theorem for negative roots can be obtained by applying Theorem 2.13 to
p(−x). Although Theorem 2.13 is helpful in determining the number of possible
positive roots equation (2.5) has, it is sometimes necessary to determine the exact
number of roots in a specific interval without explicitly solving the equation. One
method of doing so is Sturm’s method, is explained in detail in [9], while other
methods are also presented in [63].

Proposition 2.1. The Sturm chain, P , of equation (2.5) is a sequence of
functions and is constructed as follows:

· p0(x) = p(x)

· p1(x) = p′(x)

· pi(x) = −rem(pi−2(x), pi−1(x)) where rem(pi−2(x), pi−1(x)) is the remainder
after polynomial long division has been used to divide pi−2(x) by pi−1(x),
and 2 ≤ i ≤ n.

Note that the number of functions in P is always n+ 1, where n is the degree of
equation (2.5).

Theorem 2.14. Sturm’s Method
Given a real algebraic equation 2.5 without repeated roots, let σ(x) be the number
of sign changes in the Sturm chain P , once vanishing terms have been disregarded.
The number of real roots of equation (2.5) located in the interval of real numbers
(a, b) is equal to σ(a)− σ(b).

If p(x) has repeated roots, pn(x) will not be a constant and σ(a)− σ(b) is the
number of real roots in the interval (a, b), where each repeated root is counted only
once.
It is often helpful to know under which conditions an equation will have roots that
are negative or have negative real part. These conditions can be found using the
Routh-Hurwitz criteria.
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Theorem 2.15. The Routh Hurwitz Criteria Given the polynomial with real,
constant coefficients

p(ξ) = ξn + a1ξ
n−1 + · · ·+ an−1ξ + an,

define the n Hurwitz matrices using the coefficients ai of the characteristic
polynomial:

H1 = (a1), H2 =

(
a1 1
a3 a2

)
, H3 =

a1 1 0
a3 a2 a1

a5 a4 a3

 ,

and

Hn =


a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an


where aj = 0 if j > n. All of the roots of the polynomial p(ξ) are negative or have
negative real part if and only if the determinants of all Hurwitz matrices are
positive:

detHj > 0, j = 1, 2, . . . , n.

Corollary 2.1. For polynomials of degree n = 2, 3, 4 the Routh Hurwitz criteria
are:

n = 2 : a1 > 0 and a2 > 0

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4.
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2.2 Epidemiological Preliminaries

2.2.1 The Basic Reproduction Number, R0

The basic reproduction number is defined as the number of secondary infections a
single infectious individual causes in a completely susceptible population, and is
denoted by R0 [115]. In many deterministic epidemiological models an infection
invades only when R0 > 1, thus the quantity is considered an important threshold.
The threshold can be calculated heuristically, or by using the next generation
matrix approach outlined in [15] which is based on [115].

In this method the population under consideration is divided into n+m
compartments, with n infection and m infection-free compartments. Let the
sub-populations in each of these compartments be denoted by x ∈ Rn and y ∈ Rm
respectively, and let Fi denote the rate of appearance of new infections in infection
compartment i, and Vi denote the rate of transfer of individuals out of infection
compartment i by disease progression or recovery. The model can then be written
as

dxi
dt

= Fi(x, y)− Vi(x, y), i = 1, 2, ..., n

dyj
dt

= gj(x, y) j = 1, 2, ...,m.

The function gj(x, y) governs the change in the jth disease free compartment and
includes the terms for any population dynamics that have been included in the
formulation of the model, such as growth or decay.

The decomposition of the dynamics of the model into F and V may not be unique,
and the various decompositions correspond to different epidemiological
interpretations of the model. However, since R0 is interpreted epidemiologically
and not mathematically, there are “incorrect” decompositions, however all the
possible R0 quantities have the same behaviour towards 1 [115]. In other words, if
one interpretations R0 is greater than one, all the different interpretations will be
greater than one. We make the following assumptions regarding F and V :

1. Fi(0, y) = 0 and Vi(0, y) = 0 ∀ y ≥ 0, for i = 1, 2, ..., , n

2. The disease free system has a unique asymptotically stable equilibrium
(0, y0).

3. Fi(x, y) ≥ 0 for all non-negative x and y.

4. Vi(x, y) ≤ 0 when xi = 0.

5.
n∑
i=1

Vi(x, y) ≥ 0 for all non-negative x and y.

By guaranteeing a disease free invariant set, the first assumption ensures that all
new infections are secondary infections arising from infected individuals. Thus any
solution with no infected individuals at some point in time will be infection free for
all time. Assumption 2 ensures that the disease free equilibrium is also an
equilibrium of the full system. The third assumption guarantees that Fi(x, y) is
non-negative, since it represents the new infections. Vi(x, y) denotes a net outflow
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from compartment i, and thus must indicate inflow only when the compartment is

empty; while
n∑
i=1

Vi(x, y) represents the total outflow from all infective

compartments and this can not be negative.

Let F and V be the Jacobian matrices, with respect to x, of F and V . That is,
F = [∂Fi

∂xj
] and V = [∂Vi

∂xj
]. As explained in [15] the (i, j) entry of the matrix F is the

rate at which secondary infections are produced in compartment i by an index case
in compartment j. The (i, j) entry of the matrix V−1 can be interpreted as the
expected time an individual initially introduced into infection compartment j
spends in infection compartment i. The (i, j) entry of the product FV−1 is the
expected number of secondary infections in the ith compartment produced by an
individual originally introduced into compartment j. The matrix FV−1 is called
the next generation matrix of the model.

Definition 2.17. The basic reproduction number R0

R0 is the spectral radius of the next generation matrix in a fully susceptible
population. i.e.

R0 = ρ
(
FV−1(0, y0)

)
The eigenvalue associated with R0 can be interpreted as the distribution of
infected individuals, throughout the population, that produces the greatest number
of secondary infections per generation. It is a threshold quantity: in general if
R0 > 1 the disease persists in the population but if R0 < 1 the disease dies out.
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3 Model of Soil Infections using Linear Diffusion

3.1 Introduction

In 1989 Murray published a model for the rabies epidemic that was affecting
England‘s fox population at the time. Rabies drastically changes the behaviour of
infected wildlife, resulting in infected foxes, which are normally fiercely territorial,
randomly roaming areas of up to 200 km2 a year [87]. To model this
disease-induced physical movement, Murray included a linear diffusion operator on
the infected compartment, which accurately showed a travelling disease front
across England. Citing Murray‘s model as inspiration, Gilligan (1995) published
an SEIR model which included linear diffusion on the infected compartment. This
model was applied to a plant population experiencing disease, and various disease
fronts were observed in numerical simulations. Although the traditional
interpretation of diffusion – that of undirected random physical movement – makes
sense in certain contexts, such as Murray‘s rabies model, it does not hold up to
scrutiny in the context of botanical populations. Instead, we interpret the diffusion
as the growth of roots or an increase in root density in the compartment on which
the operator acts. The placement of the diffusion operator indicates some kind of
disease-induced root growth, which might seem counter-intuitive. One example of
precisely such an infection is caused by Gaeumannomyces graminis var. tritici [8].

The model from [33] is:

∂S

∂t
= bN − dS − βSI

∂E

∂t
= βSI − (d+ α)E − σE

∂I

∂t
= σE − (d+ α)I − γI + µ∆I

∂R

∂t
= γI − (d+ α)R

(3.1)

S(x, 0) ≥ 0, E(x, 0) ≥ 0,

I(x, 0) ≥ 0, R(x, 0) ≥ 0

∂I

∂x
(−L, t) =

∂I

∂x
(L, t) = 0

(3.2)

It is assumed that the population’s growth is exponential and at a rate of b, and
both natural and disease induced mortality occur, at rates d and α respectively.
The contact rate β, while σ is the rate of passage through the latent compartment,
and γ is the recovery rate.
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3.2 Analysis of the Temporal Model

We briefly look at the temporal model based on model (3.1), in order to determine
the equilibria and their stability properties. This model is:

dS

dt
= bN − dS − βSI

dE

dt
= βSI − (d+ α)E − σE

dI

dt
= σE − (d+ α)I − γI

dR

dt
= γI − (d+ α)R

(3.3)

By adding the four equations we arrive at a differential equation that governs the
entire population:

dN

dt
= bN − dN − α(E + I +R)

= rN − α(N − S).
(3.4)

We see that, when α = 0, the total population increases exponentially when
r := b− d > 0, and decreases exponentially when r < 0. Equation (3.4) is in
equilibrium only when r = 0 and α = 0. In this case the equilibrium is
N∗ = N0 = N(0). For the rest of this chapter we assume α = 0.

Since dN
dt

= 0 we have R(t) = N0 − S(t)− E(t)− I(t), which allows the decoupling
of the fourth equation from model (3.3).

dS

dt
= bN0 − dS − βSI

dE

dt
= βSI − (d+ σ)E

dI

dt
= σE − (d+ γ)I.

(3.5)

Figure 3.1: Flow chart of the SEIR model.
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3.2.1 Basic Reproductive Number

The quantity R0 is defined as the number of new infections a single infective
causes in a completely susceptible population [115]. This is relatively easy to
determine for a model with a small number of infection compartments. In unit
time the average infective makes βN contacts, all of which are with susceptibles,
however, since N is assumed to be constant we have that N(t) = N0 for all t ≥ 0.
The mean infective period is 1

(d+γ)
, while the average latency period is 1

(d+σ)
, and

only the fraction σ
(d+σ)

survives the latency period. Hence,

R0 =
σβN0

(d+ γ)(d+ σ)
. (3.6)

An alternative approach to calculate R0 is that of the next generation method as
described in [15], [115], and listed in section 2.2.1. Model (3.3) has two infection
compartments, E and I, and can be decomposed into F and V as

F =

(
βSI

0

)
and V =

(
(d+ σ)E

(d+ γ)I − σE

)
.

The Jacobian matrices of F and V computed to be

F =

(
0 βS

0 0

)
and V =

(
d+ σ 0
−σ d+ γ

)
.

Next we calculate V−1:

V−1 =

(
1

d+σ 0
σ

(d+γ)(d+σ)
1

d+γ

)
.

The disease free equilibrium of model (3.3) is DFE = (S,E, I, R) = (N0, 0, 0, 0).
The product FV−1, evaluated at DFE is the next generation matrix, namely

FV−1(DFE) =

(
σβN0

(d+γ)(d+σ)
βN0

d+γ

0 0

)
.

Since FV−1(DFE) is bidiagonal matrix, the eigenvalues are merely the entries on
the main diagonal. Thus,

R0 =
σβN0

(d+ γ)(d+ σ)
.
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3.2.2 The Existence of Equilibria

The equilibria are the solutions of the equations obtained by setting the right hand
side of system (3.5) equal to zero. That is,

bN0 − dS∗ − βS∗I∗ = 0,

βS∗I∗ − (d+ σ)E∗ = 0,

σE∗ − (d+ γ)I∗ = 0.

. (3.7)

The last equation gives the relationship between E∗ and I∗, namely

E∗ =

(
d+ γ

σ

)
I∗,

and substituting this into the second equation of (3.7) yields

βS∗I∗ − (d+ σ)
(d+ γ)

σ
I∗ = 0,

=⇒ S∗ =
(d+ σ)(d+ γ)

βσ
or I∗ = 0.

The case I∗ = 0 results in the disease free equilibrium
DFE = (S∗, E∗, I∗) = (N0, 0, 0). From the expression S∗ = (d+σ)(d+γ)

βσ
and the first

equation in (3.7) we obtain

bN0 −
d(d+ σ)(d+ γ)

βσ
− β (d+ σ)(d+ γ)

βσ
I = 0,

=⇒ I =
βσbN0 − d(d+ σ)(d+ γ)

βσ
× σ

(d+ σ)(d+ γ)
,

∴ I∗ =
βσbN0 − d(d+ σ)(d+ γ)

β(d+ σ)(d+ γ)
.

This is biologically feasible if and only if

βσbN0 − d(d+ σ)(d+ γ) ≥ 0 ⇐⇒ R0 ≥ 1.

Finally we find E∗ to be

E∗ =
d+ γ

σ
I∗

=
(d+ γ)

σ

βσbN0 − d(d+ σ)(d+ γ)

β(d+ σ)(d+ γ)
.

The endemic equilibrium of model (3.5) is therefore

E1 = (S∗, E∗, I∗) =

(
(d+ σ)(d+ γ)

βσ
,
d+ γ

σ
I∗,

βσbN0 − d(d+ σ)(d+ γ)

β(d+ σ)(d+ γ)

)
=

(
N0

R0

,
d(d+ γ)

βσ
(R0 − 1),

d

β
(R0 − 1)

)
.
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3.2.3 Analysis of the Equilibria

We present a brief local stability analysis of the DFE and EE1. The Jacobian
matrix of model (3.3) is

Jf =

−d− βI 0 −βS
βI −(d+ σ) βS
0 σ −(d+ γ)


which, at the DFE is

Jf (DFE) =

−d 0 −βN0

0 −(d+ σ + α) βN0

0 σ −(d+ γ)

 .

The characteristic polynomial of Jf (DFE) is

q2(ξ) = −(d+ ξ)[(ξ2 + (2d+ σ + γ)ξ + (d+ σ)(d+ γ)− σβN0] = −(d+ ξ)q∗2(ξ).

Clearly ξ = −d is a root of q2(ξ) = 0. Consider

q∗2(ξ) = ξ2 + (2d+ σ + γ)ξ + (d+ σ)(d+ γ)− σβN0

=
1

σβN0

(
σβN0ξ

2 + σβN0(2d+ σ + γ)ξ +
1−R0

R0

)
.

Since q∗2(ξ) is quadratic the turning point occurs at

ξ =
−(2d+ σ + γ)

2
< 0,

and, if
1

σβN0

(
1−R0

R0

)
> 0 ⇐⇒ R0 < 1,

all roots of q∗2(ξ) = 0 will be negative or have negative real part. Thus, the DFE is
locally asymptotically stable when R0 < 1. However, if R0 > 1 the roots of
q∗2(ξ) = 0 have different signs and DFE is unstable.

The Jacobian matrix of system (3.5) at EE1 has characteristic equation

q3(ξ) =− ξ3 − (3d+ σ + γ + βI∗)ξ2 − [(d+ γ)(d+ σ) + (2d+ σ + γ)(d+ βI∗)− σβS∗]ξ
− [(d+ γ)(d+ σ)(d+ βI∗)− σβdS∗].

After the simple transformation q∗3(ξ) = −q3(ξ) we define

a1 = 3d+ σ + γ + βI∗,

a2 = (d+ γ)(d+ σ) + (2d+ σ + γ)(d+ βI∗)− σβS∗, and

a3 = (d+ γ)(d+ σ)(d+ βI∗)− σβdS∗.

Theorem 2.1 on page 2.1 guarantees that the roots of q∗3(ξ) will be negative or have
negative real parts if and only if a1 > 0, a3 > 0, and a1a2 ≥ a3.
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Clearly a1 ≥ 0, so we focus on the other two conditions.

a3 =(d+ γ)(d+ σ)(d+ βI∗)− σβdI∗

=d(d+ γ)(d+ σ)R0 −
σβdN0

R0

=
σβdN0

R0

(R0 − 1) > 0 since E1 only exists when (R0 − 1) > 0.

We simplify a2 slightly before considering the third condition:

a2 =(d+ γ)(d+ σ) + (2d+ σ + γ)(d+ βI∗)− σβS∗

=d(2d+ σ + γ)R0

Now we consider the third condition, a1a2 > a3 ⇐⇒ a1a2 − a3 > 0.

a1a2 − a3 =d(3d+ σ + γ + βI∗)(2d+ σ + γ)R0 −
(
σβdN0

R0

(R0 − 1)

)
=d(2d+ σ + γ + dR0)(2d+ σ + γ)R0 − d(d+ γ)(d+ σ)(R0 − 1)

+ d2γR2
0 − d3R0 − d2σR0 − d2γR0 − σγdR0 + d3 + (σ + γ)d2 + σγd

=3d2R0 + 3d2σR0 + dσ2R0 + dσγR0 + 3d2γR0 + dγ2R0 + 2d3R0

+ d2(σ + γ)R0 + d3 + (σ + γ)d2 + σγd

>0

From Theorem 2.1 we conclude that q∗3(ξ) has only negative roots, or roots with
negative real part. Thus q3(ξ) has only negative roots, or roots with negative real
part, and hence EE1 is locally asymptotically stable.

Martcheva (2015) proved that if R0 < 1, the PFE of models similar to (3.3) is
globally asymptotically stable, by using a Lyapunov function of the form

V = κ1

(
S −N0 −N0 ln

(
S

N0

))
+ κ2E + κ3I,

where κi are appropriately chosen constants. Since the endemic equilibrium is
unique and locally asymptotically stable when R0 > 1, it could also be globally
asymptotically stable. This has indeed been proven using a Lyapunov function of
the form

V (x) =
3∑
i=1

κi

(
xi − x∗i − x∗i ln

(
xi
x∗i

))
where κi is a properly chosen constant, xi is the population of the ith
compartment and x∗i is the equilibrium level of that compartment. The details of
these proofs can be found in [64], [79].
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3.3 Numerical Investigation of the Spatio-Temporal Model

We investigate model (3.1) numerically, and compare the simulations to those of
model (3.3).

If the temporal model exhibits minimal oscillations before converging to the
equilibrium - as it does for the parameter values in Table 3.1, the addition of
diffusion with a small diffusion constant results in a standing wave of infection
moving through the field. This is illustrated in Figures 3.3-3.4. However, if the
temporal model experiences significant oscillations before convergence the addition
of diffusion with a small diffusion constant leads to the existence of travelling
waves of infection through the field. Three waves of progressively smaller
amplitudes, but progressively longer wavelengths are visible in Figure 3.6.

Figure 3.2: The progression of the disease through the compartments S and I over
time.

Parameter Value Parameter Value
b 0.20 d 0.20
β 3.00 σ 0.90
γ 0.90 α 0.00

Table 3.1: Parameter values used in Figures 3.2 - 3.4.
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Figure 3.3: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 3.1, and µ = 5× 10−5 were used

Figure 3.4: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 3.1, and µ = 5× 10−3 were used
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Figure 3.5: The progression of the disease through the compartments S and I over
time. The parameter values contained in Table 3.2

Parameter Value Parameter Value
b 0.01 d 0.01
β 2.00 σ 0.85
γ 0.55 α 0.00

Table 3.2: Parameter values used in Figures 3.5 -3.7
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Figure 3.6: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 3.2, and µ = 5× 10−5 were used

Figure 3.7: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 3.2, and µ = 5× 10−3 were used.
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4 Model of Soil Infections with Soil as a Porous

Medium

4.1 Introduction

In an attempt to improve the realism of the model in section 3 we modify the
diffusion term. Instead of assuming random, undirected motion we consider the
spread as occurring through a porous medium. This is often used to model the
flow of water through soil, and has been suggested to model the motion of fungal
mycelium through the soil [70]. Interested readers are referred to [119] for more
information regarding this type of movement. The temporal model is identical to
model (3.3).

∂S

∂t
= bN − dS − βSI

∂E

∂t
= βSI − (d+ α)E − σE

∂I

∂t
= σE − (d+ α)I − γI + µ∆(I2)

∂R

∂t
= γI − (d+ α)R

(4.1)

S(x, 0) ≥ 0, E(x, 0) ≥ 0,

I(x, 0) ≥ 0, R(x, 0) ≥ 0

∂I

∂x
(−L, t) =

∂I

∂x
(L, t) = 0

(4.2)
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4.2 The Numerical Method

The term ∆I2 is discretized as

∆I2 ≈
In+1
i+1 I

n
i+1 − 2In+1

i Ini + In+1
i−1 I

n
i−1

h2
,

which leads an implicit numerical method that uses non-local approximations of
non-linear terms. Each compartment of model 4.1 is approximated by solving
systems of the form

Ankv
n+1
k = bnk where k ∈ {S,E, I, R} and n ∈ N (4.3)

The matrices for the susceptible and infective compartments at time n+ 1 depend
on the approximation of I at time n, and a total number of Ns time steps are
taken. Let id(Ns) denote the Ns×Ns identity matrix, then the specific matrices
and right hand sides are:

AnS = (1 + ∆t(d+ βvnI ))id(Ns)

bnS = vnS + ∆tbvnN

AnE = (1 + ∆t(d+ α + σ))id(Ns)

bnE = vnE + ∆tβvn+1
S vnI

AnR = (1 + ∆t(d+ α))id(Ns)

bnR = vnR + ∆tγvn+1
I

bnI = vnI + ∆tσvn+1
E

The elements of the coefficient matrix AI depend on non-local approximations and
are:

aj,j = 1 + ∆t(d+ α + γ) +
2∆tµ

h2
Inj

aj,j+1 = −∆tµ

h2
Inj+1

aj,j−1 = −∆tµ

h2
Inj−1

Take the boundary condition in 4.2 into account we assume I0 = I1, which results
in

a1,1 = 1 + ∆t(d+ α + γ) +
∆tµ

h2
In1

a1,2 = −∆tµ

h2
In2

Taking the boundary conditions into account on the right means assuming
INs+1 = INs, and so we obtain

aNs,Ns = 1 + ∆t(d+ α + γ) +
2∆tµ

h2
InNs

aNs,Ns−1 = −∆tµ

h2
InNs−1.
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4.3 Properties of the Numerical Method

Theorem 4.1. The numerical method above preserves the positivity of the model.
That is, if S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, and R0 ≥ 0 then Sn ≥ 0, En ≥ 0, In ≥ 0, and
Rn ≥ 0 for all n ∈ N.

Proof. Considering the structure of the right hand side of the system 4.3, the
statement of the theorem clearly holds if A−1

S ≥ 0,A−1
E ≥ 0, A−1

I ≥ 0 and A−1
R ≥ 0.

For AS, AE and AR these inequalities are valid since the matrices are diagonal
matrices with positive diagonal entries. It remains to be shown that A−1

I ≥ 0. We
note that the matrix AI has positive diagonal and nonpositive off-diagonal entries.
Using [Theorem 13.9, [83]] together with [Condition 13.10], for A−1

I ≥ 0 it is
enough to show that ATI is strictly diagonally dominant.
For ATI = (ai,j) with i ∈ 2, ..., Ns− 1, we have

Ns∑
i=1
i 6=j

|aij| =
∣∣∣∣−∆tµ

h2
Ini

∣∣∣∣+

∣∣∣∣−∆tµ

h2
Ini

∣∣∣∣
= 2

∆tµ

h2
Ini

< 1 + ∆t(d+ α + γ) + 2
∆tµ

h2
Inj = ai,i

In a similar way we see that the first and last diagonal entries are also dominant.
Indeed,

Ns∑
i=2

|ai1| =
∣∣∣∣−∆tµ

h2
In1

∣∣∣∣ < 1 + ∆t(d+ α + γ) +
∆tµ

h2
In1 = a1,1

Ns∑
i=Ns

|ai,Ns| =
∣∣∣∣−∆tµ

h2
InNs

∣∣∣∣ < 1 + ∆t(d+ α + γ) +
∆tµ

h2
InNs = aNs,Ns

Therefore, ATI is strictly diagonally dominant, which completes the proof of the
theorem.
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4.4 Numerical Investigation of the Spatio-Temporal Model

The scheme in the previous section was used to investigate the behaviour of
solutions of model 4.1. One important question to be answered is whether the
inclusion of diffusion through a porous system, rather than linear diffusion changes
the behaviour of the solutions significantly. To this end the parameter values in
Tables 4.1-4.2 were used, along with either µ = 5× 10−5 or µ = 5× 10−3.

The parameter values for which the temporal model exhibits minimal oscillations,
along with the smaller diffusion coefficient result in a standing wave that travels
through the field slowly, invading approximately a third of the field by t = 250
(Figure 4.1). Increasing the diffusion coefficient to µ = 5× 10−3 results in a wave
with greater wavelength that travels at significantly higher speed. In this case the
disease infects plants within approximately the first third of the field by t = 50,
and the entire field is infected by t = 150 (Figure 4.2).

As illustrated in Figure 4.3, increasing the diffusion coefficient has a similar effect
when the parameter values in Table 4.2 are used. If µ = 5× 10−5 the initial wave
of infection travels slowly, with successive waves reaching progressively and
significantly lower amplitudes. By t = 250 this disease has infected less than half
of the field. However, if µ = 5× 10−3 the wave has travelled to the centre of the
field by t = 50, and reaches the end of the field before t = 150! In this case spatial
homogeneity of the disease is almost complete by t = 250 (Figure 4.4).

Parameter Value Parameter Value
b 0.20 d 0.20
β 3.00 σ 0.90
γ 0.90 α 0.00

Table 4.1: Parameter values used in Figures 4.1 - 4.2.

Parameter Value Parameter Value
b 0.01 d 0.01
β 2.00 σ 0.85
γ 0.55 α 0.00

Table 4.2: Parameter values used in Figures 4.3 -4.4
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Figure 4.1: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 4.1, and µ = 5× 10−5 were used.

Figure 4.2: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 4.1, and µ = 5× 10−3 were used.
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Figure 4.3: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 4.2, and µ = 5× 10−5 were used.

Figure 4.4: Progression of the disease at t = 50, t = 150 and t = 250. The parameter
values contained in Table 4.2, and µ = 5× 10−3 were used.
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5 The Host-Pathogen Model

5.1 Introduction

Consider a population of susceptible host plants with a constant recruitment rate
Λ, and a pathogen present in the soil. Assume this pathogen is dependent on its
host for nutrients or energy, and as such has an expected off–host death rate δ per
time units. After coming into contact with a susceptible host it attaches at rate ρ,
and increases in density. The infested host has a limited carrying capacity for the
pathogen, which helps regulate the pathogenic increase. These attached pathogen
detach from their hosts and go in search of new hosts at a rate of σ per time unit.
The natural decay rate of the host is d per time unit, and infected hosts have an
addition decay rate of α per time unit. It is assumed that if there is a large initial
population of free pathogen, transmission depends solely on β and the level of
susceptible hosts present. This type of incidence is called saturation incidence.
Using a saturating infestation rate βF

M+F
is motivated by biological observations

that increasing the free pathogen beyond a certain level no longer increases
infestation proportionally. From a mathematical point of view, if only mass action
principle is applied e.g. βFS, then, since F can potentially be very large, S
decreases rapidly, which is unrealistic. For simplicity, the attachment rate is just
mass action principle, namely ρFS. However, the growth in the A compartment is
limited through the “carrying capacity” γI = γ(N − S). Since S cannot decrease
unrealistically quickly then A cannot increase unrealistically quickly. The model is
presented below.

dA

dt
= λA(γI − A)− σA+ ρFS

dF

dt
= −δF + σA− ρFS

dS

dt
= Λ− dS − βF

M + F
S

dI

dt
=

βF

M + F
S − (α + d)I

(5.1)

Figure 5.1: Flow chart of the host-pathogen model
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5.2 Existence, Uniqueness, Positiveness and Boundedness
of Solutions

In this section we prove some basic properties of model (5.1). The notation
x = (A,F, S, I)T allows for the model to be written as

ẋ = f(x) with f(x) =


λA(γI − A)− σA+ ρFS
−δF + σA− ρFS
Λ− dS − βF

M+F
S

βF
M+F

S − (α + d)I

 .

Theorem 5.1. For every x0 ∈ R4
+ there exists t∗ such that the system (5.1) has a

solution defined on [0, t∗] and satisfying x(0) = x0. Further, the solution is
non-negative on its entire interval of existence.

Proof. It is easy to see that the Jacobian of (5.1)

J(x) =


λγI − 2λA− σ ρS ρF λγA

σ −δ − ρS −ρF 0

0 − βMS
(M+F )2 −d− βF

M+F
0

0 βMS
(M+F )2

βF
M+F

−(α + d)


is continuous on an open set E containing R4

+. In fact, one can take
E = {x ∈ R4

+ : F > −M} ⊇ R4
+. It follows from Theorem 2.2 that there exists t∗

such that (5.1) has a solution on [−t∗, t∗] satisfying x(0) = x0. It remains to be
shown that φt(x0) ≥ 0 for t ≥ 0. For that purpose we apply Theorem 2.4 with
M = E and D = R4

+. The boundary of D consists of the positive sectors of the
coordinate planes, where the second bullet of Theorem 2.4 is easy to verify. For
example, on the plane A = 0, the exterior normal vector is v = (−1, 0, 0, 0)T and
we have

〈(f(0), F, S, I), v〉 = −ρFS ≤ 0

Then Theorem 2.4 implies that since the solution φt(x0) has been initiated at
x0 ∈ R4

+, it remains in R4
+ for positive time while it exists.

Theorem 5.2. The model (5.1) defines a dissipative dynamical system on R4
+.

Proof. In terms of definition 2.3 we need to show that for every x0 ∈ R4
+ the

system (5.1) has a solution on [0,∞) satisfying x(0) = x0. We obtain these results
by applying Theorem 2.3. Let φt(x0) be a solution of (5.1) initiated in R4

+. Recall
that φt(x0) ≥ 0 for t > 0 while the solution exists. Therefore the solution is
bounded below by 0. We obtain an upper bound as follows. The total host
population N = S + I satisfies

Ṅ = Λ− dN − αI ≤ Λ− dN

Then Theorem 2.5 yields

N(t) ≤ Λ

d
+

(
N0 −

Λ

d

)
e−dt
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Hence,

lim
t→∞

supN(t) ≤ Λ

d
, (5.2)

which is then also eventually an upper bound for both S and I.
Defining P = A+ I as the total pathogen population we find,

Ṗ = λA(γI − A)− δF
= λA(γI − A) + δA− δP
= −λA2 + (λγI + δ)A− δP

Now, using the fact that the first two terms describe a quadratic function, with

maximum value λ
4

(
γI + δ

λ

)2
, we obtain that

Ṗ ≤ λ

4

(
γI +

δ

λ

)2

− δP

≤ λ

4

(
γΛ

d
+
δ

λ

)2

− δP

= P̂ − δP

After application of Theorem 2.5 we obtain

P (t) ≤ P̂ + (P0 − P̂ )e−δt

Thus,
lim
t→∞

supP (t) ≤ P̂ , (5.3)

and A and F are bounded above. The solution φt(x0) is then bounded above by
K = (Λ

d
, Λ
d
, P̂ , P̂ )T , and therefore has an apriori bound. Using Theorem (2.3) we

conclude that φt(x0) can be extended to exist on [0,∞). According to definition 2.3
model (5.1), along with non-negative initial conditions define a dynamical system.

From above we have that for any x0 ∈ (0, K] the solution φt(x0) ∈ [0, K] ∀t > 0.
Thus model (5.1) is dissipative according to definition 2.4.

32



5.3 The Basic Reproduction Number R0

We now know that model (5.1) admits unique positive, bounded solutions, but this
tells us little about the disease being modelled. One relatively easy method to
glean information abut the infection progression is to calculate the threshold R0.
Called the basic reproduction number, R0 indicates how many infections are
caused by a single infectious individual in a wholly susceptible population.
Generally if R0 < 1 for a disease, contact with more than one infectious individual
is required before a susceptible is infected. However, if R0 > 1 the disease
generally persists and becomes endemic to the population. We use the next
generation matrix method to calculate R0, which is described in section 2.2.1, and
based on [15] and [115]. Assuming that the disease is only in progression in the A
and I compartments, and that F is an extension of A, model (5.1) can be
decomposed into three infection compartments (A,F, I) and one non-disease
compartment S. Let

• Fi(x) denote the rate of recruitment of new individuals in compartment i,
and

• Vi(x) denote the rate at which the infestation progression, and death
decrease the ith compartment.

Model 5.1 can then be written in the form

x′i = Fi(x)− Vi(x),

with i =1,2,3. As a consequence of the assumption that F is merely an extension
of A the vectors F and V are

F(x) =

λA(γI − A) + ρSF
0

βFS
M+F

 , and V(x) =

 σA
δF − σA+ ρFS

(α + d)I

 .

The Jacobian matrices of F and V , denoted by F and V respectively, at the
pathogen free equilibrium PFE : (A,F, S, I) = (0, 0, S∗0 , 0) with S∗0 6= 0, are
computed to be

F(PFE) =

0 ρS∗0 0
0 0 0

0
βS∗

0

M
0

 , and V(PFE) =

 σ 0 0
−σ δ + ρS∗0 0
0 0 (α + d)

 .

Following definition 2.17 the next generation matrix is the product of these
matrices, FV−1(PFE). That is,

FV−1(PFE) =
1

M(δ + ρS∗0)

ρMS∗0 ρMS∗0 0
0 0 0
βS∗0 βS∗0 0

 , which has

characteristic equation

p(ξ) = ξ2

(
ρS∗0

(δ + ρS∗0)
− ξ
)
.
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Thus

R0 =
ρS∗0

(δ + ρS∗0)
.

It is clear that R0 < 1 regardless of the expression of S∗0 , and the PFE is locally
asymptotically stable by the threshold theorem. However, interior equilibria of
system (5.1) could exist. We investigate this in the following subsection.
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5.4 The Equilibria of the Host Pathogen Model

5.4.1 The PFE, and Endemic Equilibria Equations

We set each equation in model (5.1) equal to zero,

λA(γI − A)− σA+ ρFS =0,

−δF + σA− ρFS =0,

Λ− dS − βF

M + F
S =0,

βF

M + F
S − (α + d)I =0.

(5.4)

From the second equation in (5.4) we obtain an expression for A:

A = σ−1(δ + ρS)F.

Similarly, the third equation in (5.4) gives an expression for I in terms of S:

βF

M + F
− (α + d)I = 0,

=⇒ I =
βFS

(α + d)(M + F )
.

The fourth equation in turns yields an expression for S in terms of F :

Λ−
(
d+

βF

M + F

)
S = 0,

=⇒ S =
Λ(M + F )

(d+ β)F + dM
.

This expression can be used to obtain an expression for I in terms of F .

I =
βF

(α + β)(M + F )
× Λ(M + F )

(d+ β)F + dM
,

=
ΛβF

(α + d)((d+ β)F + dM)

We substitute the expressions found above into the first equation in (5.4) to find
an equation in terms of F .

λA(γI − A)− σA+ ρSF = 0

λσ−1(δ + ρS)F (γI − A)− (δ + ρS)F + ρSF = 0

F [λσ−1(δ + ρS)(γI − A)− δ] = 0

Thus, either F = 0 or λσ−1(δ + ρS)(γI − A)− δ = 0. If F = 0 we have the
pathogen free equilibrium

PFE : (A,F, S, I) =

(
0, 0,

Λ

d
, 0

)
.
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Assuming F 6= 0, so that

λσ−1(δ + ρS)(γI − A)− δ = 0,

λσ−1(δ + ρS)γI − λσ−2(δ + ρS)2F − δ = 0.

After substituting the expressions for S,I and A we have:

λγσ−1

(
δ + ρ

Λ(M + F )

(d+ β)F + dM)

)
ΛβF

(α + d)((d+ β)F + dM)

−λσ−2

(
δ + ρ

Λ(M + F )

(d+ β)F + dM

)2

F − δ = 0

We multiple this equation by σ2(α + d)[(d+ β)F + dM ]2 to remove the
denominators, and obtain

λγσΛβF [δ((d+ β)F + dM) + ρΛ(M + F )]

− λ(α + d)[δ((d+ β)F + dM) + ρΛ(M + F )]2F

− δσ2(α + d)[(d+ β)F + dM ]2 = 0.

In order to simplify calculations we look at each of the three terms individually,
starting with the first term.

λγσΛβF [δ((d+ β)F + dM) + ρΛ(M + F )]

= λγσΛβ(δ(d+ β) + ρΛ)F 2 + λγσΛβ(δd+ ρΛ)MF.
(5.5)

The second term can be simplified as follows:

−λ(α + d)[δ((d+ β)F + dM) + ρΛ(M + F )]2F

=− λ(α + d)[F (δ(d+ β) + ρΛ) +M(δd+ ρΛ)]2F

=− λ(α + d)[δ(d+ β) + ρΛ]2F 3

− 2λ(α + d)[δ(d+ β) + ρΛ](δd+ ρΛ)MF 2

− λ(α + d)(δd+ ρΛ)2M2F.

(5.6)

The third term becomes

−δσ2(α + d)[(d+ β)F + dM ]2

=− δσ2(α + d)(d+ β)2F 2

− 2dδσ2(α + d)(d+ β)MF

− δσ2(α + d)d2M2.

(5.7)

We group the terms from expressions (5.5) - (5.7) to find the coefficients of our
cubic equations in F . The coefficient of F 3 is

−a1 := −λ(α + d)[δ(d+ β) + ρΛ]2 < 0.

The coefficient of F 2 is

a∗2 :=− 2λ(α + d)[δ(d+ β) + ρΛ](δd+ ρΛ)M

− δ(α + d)(d+ β)2σ2

+ λγΛσβ[δ(d+ β) + ρΛ],
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and the coefficient of F is

a∗3 :=λγσΛβ(δd+ ρΛ)M

− 2δ(α + d)(d+ β)dMσ2

− λ(α + d)(δd+ ρΛ)2M2.

The constant term of the equation is

−a4 := −δ(α + d)σ2d2M2 < 0.

The equation for F is then of the form

− a1F
3 + a∗2F

2 + a∗3F − a4 = 0 (5.8)

where the signs of a∗2 and a∗3 are unknown. The signs of these terms are crucial in
determining the number of positive real roots of equation (5.8), and by extension
the number of endemic equilibria of model (5.1). The following subsections define
the threshold quantities R∗1 and R∗2, and investigate under which conditions
positive roots of equation (5.8) exist.
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5.4.2 The Thresholds R∗1 and R∗2
As previously mentioned, the signs of terms a∗2 and a∗3 are two factors that
determine whether endemic equilibria exist for model (5.1). As a result, these
terms are used to define two threshold quantities, namely R∗1 and R∗2. Using the
definition of a∗2 we see that

a∗2 > 0 ⇐⇒ λγΛσβ(δ(d+ β) + ρΛ)

(α + d)[2λ(δ(d+ β) + ρΛ)(δd+ ρΛ)M + δ(d+ β)σ2]
> 1.

As a result we define R∗1 as

R∗1 :=
λγΛσβ(δ(d+ β) + ρΛ)

(α + d)[2λ(δ(d+ β) + ρΛ)(δd+ ρΛ)M + δ(d+ β)σ2]
. (5.9)

Then,
a∗2 > 0 ⇐⇒ R∗1 > 1,

a∗2 < 0 ⇐⇒ R∗1 < 1,

a∗2 = 0 ⇐⇒ R∗1 = 1.

Following this, we can write a∗2 as

a∗2 = sgn(R∗1 − 1)a2 where a2 ≥ 0.

The term a∗3 is used in the same manner to define R∗2. Using the definition of this
term we see that

a∗3 > 0 ⇐⇒ λγσΛβ(δd+ ρΛ)

(α + d)[2δ(d+ β)dσ2 + λ(δd+ ρΛ)2M ]
> 1.

Consequently we define R∗2 as

R∗2 :=
λγσΛβ(δd+ ρΛ)

(α + d)[2δ(d+ β)dσ2 + λ(δd+ ρΛ)2M ]
(5.10)

Then
a∗3 > 0 ⇐⇒ R∗2 > 1

a∗3 < 0 ⇐⇒ R∗2 < 1

a∗3 = 0 ⇐⇒ R∗2 = 1

This allows us to write

a∗3 = sgn(R∗2 − 1)a3, where a3 ≥ 0.

The threshold quantities R∗1 and R∗2 are used in the next sections to determine
conditions under which the model admits interior equilibria.
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5.4.3 The Influence of R∗1 and R∗2 on the Number of Real Roots

Following the notation of the last subsection we rewrite equation (5.8) as

− a1F
3 + sgn(R∗1 − 1)a2F

2 + sgn(R∗2 − 1)a3F − a4 = 0 (5.11)

Since the values of sgn(R∗1 − 1) and sgn(R∗2 − 1), influence the number of real
roots equation (5.11) has, we consider all permutations of the possibilities. We first
investigate the cases in which a2 and a3 are non-zero, followed by the cases that
arise when a2 = 0 or a3 = 0. Theorem 2.13 is used to eliminate any cases that do
not lead to positive real roots of equation (5.11), and thus do not yield endemic
equilibria of model (5.1).

Case I: sgn(R∗1 − 1) > 0, sgn(R∗2 − 1) > 0 ⇐⇒ R∗1 > 1,R∗2 > 1

There are 2 sign changes, and therefore either 2 or 0 positive real roots.
There is 1 sign change when −F is substituted, hence there is exactly 1
negative real root. Consequently there are possibly 2 positive real valued
roots of equation (5.11).

Case II: sgn(R∗1 − 1) > 0, sgn(R∗2 − 1) < 0 ⇐⇒ R∗1 > 1,R∗2 < 1

There are 2 sign changes, and therefore either 2 or 0 positive real roots.
There is 1 sign change when −F is substituted, hence there is exactly 1
negative real root. Consequently there are possibly 2 positive real valued
roots of equation (5.11).

Case III: sgn(R∗1 − 1) < 0, sgn(R∗2 − 1) > 0 ⇐⇒ R∗1 < 1,R∗2 > 1

There are 2 sign changes, and therefore either 2 or 0 positive real roots.
There is 1 sign change when −F is substituted, consequently there is exactly
1 negative real root. Accordingly there are possibly 2 positive real valued
roots of equation (5.11).

Case IV: sgn(R∗1 − 1) < 0, sgn(R∗2 − 1) < 0 ⇐⇒ R∗1 < 1,R∗2 < 1

In this case there are no sign changes, and hence no positive real roots.
Accordingly, in this case there are no endemic equilibria for model (5.1), and
we neglect this case for the remainder of the subsection.

Case V: a2 = 0 and a3 > 0

There are 2 sign changes, implying that there are either 0 or 2 positive real
roots of equation (5.11).

Case VI: a2 = 0 and a3 < 0

There are no sign changes, indicating that under these conditions
equation (5.11) has no positive real roots, and we neglect this case for the
remainder of the subsection.

Case VII: a2 > 0 and a3 = 0

There two sign changes, implying that there are either 0 or 2 positive real
roots for equation (5.11).
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Case VIII: a2 < 0 and a3 = 0

There are no sign changes, indicating that under these conditions
equation (5.11) has no positive real roots. We therefore neglect this case for
the remainder of the subsection.

Case IX: a2 = 0 and a3 = 0

In this case we obtain the explicit expression for the real valued root F ∗:

F ∗ = −
(
a4

a1

) 1
3

< 0

Hence there are no positive real valued solutions of the equation, and
therefore no endemic equilibria of model (5.1). We therefore neglect this case
for the remainder of the subsection.

We investigate cases I-III, V and VII more thoroughly in the next section. To do
this we use proposition 2.1 to construct the Sturm chain for equation (5.11), from
which we can determine exactly how many strictly positive roots exist.
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5.4.4 Conditions for Existence of Positive Roots

We construct the Sturm chain for equation 5.11 using proposition 2.1. Let
equation 5.11 be denoted by p(F ). Then the Sturm chain of p(F ) is the following
sequence of functions:

· p0(F ) = p(F )

· p1(F ) = p′(F )

· p2(F ) = −rem(p0(F ), p1(F ))

· p3(F ) = −rem(p1(F ), p2(F ))

Thus, for cases I-III the Sturm chain is

p0(F ) = −a1F
3 + sgn(R∗1 − 1)a2F

2 + sgn(R∗2 − 1)a3F − a4

p1(F ) = −3a1F
2 + 2sgn(R∗1 − 1)a2F + sgn(R∗2 − 1)a3,

p2(F ) = −2

3
b1F − b2

p3(F ) = −sgn(R∗2 − 1)a3 −
3sgn(R∗1 − 1)a2b2

b1

+
27a1b

2
2

4b2
1

Here

b1 :=
3sgn(R∗2 − 1)a1a3 + a2

2

3a1

and

b2 :=
sgn(R∗1 − 1)sgn(R∗2 − 1)a2a3 − 9a1a4

9a1

.

The signs of these terms are unknown, but depend on sgn(R∗1 − 1) and
sgn(R∗2 − 1). The Sturm chains for cases V and VII are constructed on pages 47
and 48 respectively.

Since we are only interested in roots of equation (5.11) that yield endemic
equilibria, we focus on strictly positive roots, and can use Sturm’s theorem to
determine the exact number of these roots for each of the cases. In doing so we
determine exactly how many endemic equilibria exist for model (5.1). The
computations are messy, and the summarized results can be found in Tables(5.1)
and (5.2) on page 49.
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Case I: sgn(R∗1 − 1) > 0, sgn(R∗2 − 1) > 0 ⇐⇒ R∗1 > 1,R∗2 > 1

In this case equation (5.11) becomes

−a1F
3 + a2F

2 + a∗3F − a4 = 0

Our constants b1 and b2 are then:

b1 =
a2

2 + 3a1a3

3a1

> 0

b2 =
a2a3 − 9a1a4

9a1

Subcase A: b2 > 0 ⇐⇒ a2a3 − 9a1a4 > 0

The signs of the Sturm sequence are:

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = a3 > 0 p1(∞) < 0

p2(0) = −b2 < 0 p2(∞) < 0

Let x = b2
b1
> 0, and consider p3:

p3 = −a3 − 3a2x+
27a1

4
x2

Hence we have

p3 > 0 ⇐⇒ b2

b1

>
2a2 + 2

√
b1

9a1

p3 < 0 ⇐⇒ 0 <
b2

b1

<
2a2 + 2

√
b1

9a1

If p3 > 0 the sign changes of the Sturm chains are:

pi(0) :− + − +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 2

Conclusion: equation (5.11) has 2 positive real valued roots under these conditions.
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However, if p3 < 0 the sign changes of the Sturm chains are:

pi(0) :− + − −
pi(∞) :− − − −
∴ σ(0)− σ(∞) = 2

Conclusion: equation (5.11) has exactly 2 positive real valued roots under these
conditions.

Subcase B: b2 < 0 ⇐⇒ a2a3 − 9a1a4 < 0

The signs of the Sturm sequence are then,

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = a3 > 0 p1(∞) < 0

p2(0) = −b2 > 0 p2(∞) < 0

In this case x = b2
b1
< 0, with p3 = −a3 − 3a2x+ 27a1

4
x2. Then,

p3 > 0 ⇐⇒ b2

b1

<
2a2 − 2

√
b1

9a1

< 0

p3 < 0 ⇐⇒ 2a2 − 2
√
b1

9a1

<
b2

b1

< 0

When p3 > 0 the sign changes of the Sturm chains are:

pi(0) :− + + +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 0

Conclusion: equation (5.11) has no positive real valued roots under these
conditions.

However, if p3 < 0 the sign changes of the Sturm chains are:

pi(0) :− + + −
pi(∞) :− − − −
∴ σ(0)− σ(∞) = 2

Conclusion: equation (5.11) has exactly 2 positive real valued roots in this subcase.
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Case II: sgn(R∗1 − 1) > 0, sgn(R∗2 − 1) < 0 ⇐⇒ R∗1 > 1,R∗2 < 1

In this case equation (5.11) becomes

−a1F
3 + a2F

2 − a3F − a4 = 0

Our constants b1 and b2 are then:

b1 =
a2

2 + 3a1a3

3a1

> 0

b2 = −a2a3 + 9a1a4

3a1

< 0

The signs of the Sturm sequence are then,

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = −a3 < 0 p1(∞) < 0

p2(0) = −b2 > 0 p2(∞) < 0

The fourth term in our Sturm sequence becomes:

p3 = a3 − 3a2
b2

b1

+
27a1

4

b2
2

b2
1

Then, since x = b2
b1
< 0 we have p3 > 0. The signs of the Sturm chains are:

pi(0) :− − + +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 0

Hence, there are no positive real roots of equation (5.11) in this case.
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Case III: sgn(R∗1 − 1) < 0, sgn(R∗2 − 1) > 0 ⇐⇒ R∗1 < 1,R∗2 > 1
In this case equation (5.11) becomes

−a1F
3 − a2F

2 + a3F − a4 = 0

Our constants b1 and b2 are then:

b1 =
a2

2 − 3a1a3

3a1

b2 = −a2a3 + 9a1a4

9a1

< 0

Subcase A: b1 > 0 The signs of the Sturm sequence are:

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = a3 > 0 p1(∞) < 0

p2(0) = −b2 > 0 p2(∞) < 0

Then x = b2
b1
< 0, and p3 becomes:

p3 = −a3 + 3a2x+
27a1

4
x2

where,

p3 > 0 ⇐⇒ b2

b1

<
−2a2 − 2

√
a2

2 + 3a1a3

9a1

< 0

p3 < 0 ⇐⇒ −2a2 − 2
√
a2

2 + 3a1a3

9a1

<
b2

b1

< 0

If p3 > 0 the sign changes of the Sturm chains are:

pi(0) :− + + +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 0

Conclusion: equation (5.11) has no positive real valued roots under these
conditions.

If p3 < 0 the sign changes of the Sturm chains are:

pi(0) :− + + −
pi(∞) :− − − −
∴ σ(0)− σ(∞) = 2

Conclusion: equation (5.11) has two positive real valued roots under these
conditions.
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Subcase B: b1 < 0 The signs of the Sturm sequence are:

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = a3 > 0 p1(∞) < 0

p2(0) = −b2 > 0 p2(∞) > 0

Then x = b2
b1
> 0, and p3 becomes:

p3 = −a3 + 3a2x+
27a1

4
x2

where,

p3 > 0 ⇐⇒ b2

b1

>
−2a2 + 2

√
a2

2 + 3a1a3

9a1

> 0

p3 < 0 ⇐⇒ 0 <
b2

b1

<
−2a2 + 2

√
a2

2 + 3a1a3

9a1

If p3 > 0 the sign changes of the Sturm chains are:

pi(0) :− + + +

pi(∞) :− − + +

∴ σ(0)− σ(∞) = 0

Conclusion: equation (5.11) has no positive real valued roots under these
conditions.

If p3 < 0 the sign changes of the Sturm chains are:

pi(0) :− + + −
pi(∞) :− − + −
∴ σ(0)− σ(∞) = 0

Conclusion: equation (5.11) has no positive real valued roots under these
conditions.
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Case V: a2 = 0 and a3 > 0 In this case equation (5.11) becomes

−a1F
3 + a3F − a4 = 0.

The Sturm chain is then

p0(F ) = −a1F
∗3 + a3F − a4

p1(F ) = −3a1F
2 + a3

p2(F ) = −2

3
a3F + a4

p3(F ) =
27a1a

2
4

4a2
3

− a3

Two sub-cases arise when we evaluate pi(0) and pi(∞):

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = a3 > 0 p1(∞) < 0

p2(0) = a4 > 0 p2(∞) < 0

Subcase A: p3,V (F ) < 0
The sign changes are:

pi(0) :− + + −
pi(∞) :− − − −
∴ σ(0)− σ(∞) = 2

Consequently, there are exactly two strictly positive roots for equation (5.11).
Subcase B: p3(F ) > 0

pi(0) :− + + +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 0

In this case there are no positive roots for equation (5.11)
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Case VII: a2 > 0 and a3 = 0

In this case the Sturm chain is:

p0(F ) = −a1F
3 + a2F

2 − a4

p1(F ) = −3a1F
2 + 2a2F

p2(F ) = −2a2
2

9a1

F + a4

p3,V II(F ) = −9a1

a2

+
243a2

4a
3
1

4a4
2

Two sub-cases arise after evaluation of pi(0) and pi(∞):

p0(0) = −a4 < 0 p0(∞) < 0

p1(0) = 0 p1(∞) < 0

p2(0) = a4 > 0 p2(∞) < 0

Subcase A: p3,V II(F ) < 0
pi(0) :− 0 + −
pi(∞) :− − − −
∴ σ(0)− σ(∞) = 2

Consequently, there are exactly two strictly positive roots for equation (5.11).
Subcase B: p3,V II(F ) > 0

pi(0) :− 0 + +

pi(∞) :− − − +

∴ σ(0)− σ(∞) = 0

From which we conclude there are no strictly positive roots for equation (5.11).

The preceding calculations are summarised in tables (5.1) and (5.2). We see that
under certain conditions model (5.1) admits two distinct endemic equilibria. We
denote the equilibrium with the lower F ∗ value by EE1, and the other by EE2.
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b1 < 0 b1 > 0

b2 < 0
Case I Case I & III:

0 positive roots p3 < 0 : 2 positive roots
p3 > 0 : 0 positive roots

Case II:
p3 > 0 : 0 positive roots

b2 > 0 N.A.
Case I:

p3 < 0 : 2 positive roots
p3 > 0 : 0 positive roots

Table 5.1: The number of positive real roots of equation (5.11) in cases I - III

a2 < 0 a2 = 0 a2 > 0
a3 < 0 No positive real roots No positive real roots No positive real roots

a3 = 0 No positive real roots No positive real roots
p3,k < 0: 2 positive roots
p3,k > 0: 0 positive roots

a3 > 0 No positive real roots
p3,k < 0: 2 positive roots

No positive real roots
p3,k > 0: 0 positive roots

Table 5.2: The number of positive real roots of equation (5.11) in cases k ∈ {V, VII}.
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5.5 The Stability Analysis of Equilibria

We determine the stability properties of the equilibria found in the previous
subsection, which is usually done by substituting the equilibria into the Jacobian
matrix of the model and determining the eigenvalues. However, since we do not
have explicit expressions for our endemic equilibria we analyse the characteristic
equation of the Jacobian, keeping the differences between these equilibria in mind.

Recall the Jacobian matrix of model (5.1)

Jf =


λγI − 2λA− σ ρS ρF λγA

σ −δ − ρS −ρF 0

0 − βMS
(M+F )2 −d− βF

M+F
0

0 βMS
(M+F )2

βF
M+F

−(α + d)


Theorem 5.3. The pathogen free equilibrium, PFE, is unconditionally locally
asymptotically stable.

Proof. We determine the characteristic equation q(ξ) by calculating
det(Jf (PFE)− ξI4) = 0. We obtain

q(ξ) = (α + d+ ξ)(d+ ξ)

(
ξ2 +

(
σ + δ +

ρΛ

d

)
ξ + σδ

)
,

Since all three coefficients in the quadratic factor are strictly positive, and applying
Corollary (2.1), q(ξ) has two complex conjugate roots with negative real parts.
This, along with the fact that the remaining eigenvalues are negative, leads to the
conclusion that the PFE is locally asymptotically stable by Theorem 2.10.

In all the numerical simulations of model (5.1) we observe two qualitatively
different cases and the transition (bifurcation) from one to the other. The first
case is when the model has two positive equilibria. As seen in Figure 5.2, one is
stable and attracting while the other is unstable (saddle point). Table 5.3 contains
the parameter values used for Figure 5.2. The solutions that are initiated below
EE1 converge to the PFE. Solutions φ1 and φ2 are initiated at EE1 with different
initial densities for the susceptible compartment, namely S0 = 2 and S0 = 20
respectively. These values are below and above the equilibrium value, and we
observe that φ1 converges to the PFE while φ2 increases and will eventually
converge to EE2. The unstable equilibrium is typically very close to the PFE, so
that the basin of attraction of the PFE is small. When there are no positive
equilibria we observe that the PFE is globally asymptotically stable on R4

+, see
Figure 5.6. We could not obtain a general result for these observed properties of
the positive equilibria, or alternatively the global asymptotic stability of the PFE.
However, we supply sufficient conditions for two practically important properties.
We use both LaSalle’s Invariance Principle and the theory of monotone systems to
derive two different sufficient conditions for the global asymptotic stability of the
PFE in Sections 5.5.2 and 5.6.1. Further, in Section 5.6.2 we show sufficient
conditions for persistence of the pathogen.
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Parameter Value Parameter Value
Λ 1.0000 λ 0.5000
γ 0.9000 β 5.0000
σ 0.4000 ρ 0.1000
δ 0.1000 M 100.000
α 0.0450 d 0.1000

Table 5.3: Parameter values used in Figures 5.2 and 5.3.

Figure 5.2: If solutions of model 5.1 are initiated ‘close’ to the PFE convergence
to this equilibrium occurs. Solutions that are initiated from the ‘smaller’ endemic
equilibrium converge to either the PFE or the ‘larger’ equilibrium, dependent on
the initial density of the susceptible compartment.
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Figure 5.3: Solutions that model the scenario of large free pathogen populations
invading wholly susceptible host populations converge to the second equilibrium.
The basin of attraction of the PFE therefore does not extend far in the direction of
the A(t) + F (t) axis. In fact, for the parameter values in Table 5.3 solutions with
F (0) ≥ 1.5 converge to the second endemic equilibrium.
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5.5.1 The long term behaviour of S(t) and I(t)

Conventional methods of stability analysis might not yield much information
about the behaviour of solutions near the endemic equilibria due to a lack of
explicit expressions. To formulate some idea of the long term behaviour of
solutions we turn our attention to the phase diagram of the host population in
model (5.1). In particular we calculate:

dI

dS
=

dI
dt
dS
dt

=
βFS
M+F

− (α + d)I

Λ− dS − βFS
M+F

=
βFS
M+F

− (α + d)(N − S)

Λ− dS − βFS
M+F

=
βFS
M+F

− d(N − S)

Λ− dS − βFS
M+F

− α(N − S)

Λ− dS − βFS
M+F

Now, assuming S(0) + I(0) = N(0) = Λ
d
, and since α ≥ 0, we have

dI

dS
=

βFS
M+F

− d(N − S)

−( βFS
M+F

+ dS − Λ)
− α(N − S)

Λ− dS − βFS
M+F

≤ −1− αI

Λ− dS − βFS
M+F

.

This explains the local near linearity shown in Figures 5.4 and 5.5. Figure 5.4
shows the trajectories for the host population of model (5.1) with α = 0.001, while
Figure 5.5 shows the trajectories for α = 0. Notice that solutions stay in the
neighbourhood of the initial condition for some time before increasing rapidly
towards an epidemic equilibrium. The value of α has some influence on both the
slope of the trajectories as well as the endemic equilibrium these trajectories
converge to.

Theorem 5.4. The solutions for the host population are eventually contained in
two intervals, in particular

lim
t→∞

S(t) ∈
[

Λ

d+ β
,
Λ

d

]
, and lim

t→∞
I(t) ∈

[
0,

βΛ

d(d+ β)

]

Proof. Clearly

Λ− (d+ β)S ≤ dS

dt
≤ Λ− dS.

After application of Theorem 2.5 this becomes

Λ

d+ β
+

(
S0 −

Λ

d+ β

)
e−(d+β)t ≤ S(t) ≤ Λ

d
+

(
S0 −

Λ

d

)
e−dt.

Taking the limit as t→∞ we obtain

Λ

d+ β
≤ lim

t→∞
S(t) ≤ Λ

d
.
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That is,

lim
t→∞

S(t) ∈
[

Λ

d+ β
,
Λ

d

]
.

Using this, and the fact that S and I have a negative relationship we find that

lim
t→∞

I(t) ∈
[
0,

βΛ

d(d+ β)

]
.

Figure 5.4: The phase diagram of the host population, with α 6= 0

5.5.2 Sufficient conditions for global asymptotic stability of PFE

We prove the global asymptotic stability of PFE using LaSalle’s Invariance
Principle (Theorem 2.12).

Theorem 5.5. The PFE of model (5.1) is globally asymptotically stable on
R+

4 \{0} if
γ(γλΛ + δd)2

4(α + d)d2
≤ 1 and

βΛ

δMd
≤ 1. (5.12)

Proof. We apply Theorem 2.12 to system (5.1) using the function
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Figure 5.5: The phase diagram of the host population, with α = 0

V (X) = A+ F + I with X = (A,F, S, I). We have

V̇ (X) = Ȧ+ Ḟ + İ

= λA(γI − A)− σA+ ρFS − δF + σA− ρFS +
βF

M + F
S − (α + d)I

= λA(γI − A)− δF +
βF

M + F
S − (α + d)I

= (λγA− (α + d)) I − λA2 +

(
βS

M + F
− δ
)
F

≤
(
λγ

(
λ(γλΛ + δd)2

4d2λ2

)
− (α + d)

)
I − λA2 +

(
βS

M
− δ
)
F.

From Theorem (5.1) we have

A ≤ λ(γλΛ + δd)2

4d2λ2
and S ≤ Λ

d

thus,

V̇ (X) ≤
(
λγ

(
λ(γλΛ + δd)2

4d2λ2

)
− (α + d)

)
I − λA2 +

(
βΛ

Md
− δ
)
F.

Then, given
γ(γλΛ + δd)2

4(α + d)d2
≤ 1 and

βΛ

δdM
≤ 1

we have
V̇ (X) ≤ 0 for all X ∈ R4

+.

The set E = {X ∈ R4
+ : V̇ (X) = 0} is the nonnegative part of the S−axis.

Therefore, the set M in Theorem 2.12 is M = {0,PFE}. Since 0 is unstable and
repelling, every solution initiated at a point other than zero converges to the
PFE.
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Figure 5.6: Solutions of model 5.1 clearly converge to the PFE, when the parameter
values satisfy condition 5.12. This is proven theoretically in Theorem 5.5. The
parameter values can be found in Table 5.4.

Figure 5.6 shows the global stability of the PFE, when the model parameters
satisfy the conditions of Theorem 5.7:

γ(γλΛ + δd)2

4(α + d)d2
= 0.3361 ≤ 1 and

βΛ

δdM
= 1.

The parameter values can be found in Table 5.4. Initial conditions with varying
levels of density for each compartment were chosen, although it is not biologically
possible for permutations containing I0 6= 0 and A0 = 0. For this reason no
solutions originate from the I axis. Note the sharp decline in pathogen density in
cases involving a high pathogen to infective density ratio.

Parameter Value Parameter Value
Λ 1.0000 λ 0.4000
γ 0.2000 β 1.0000
σ 0.0100 ρ 0.4000
δ 0.1000 M 100.000
α 0.0205 d 0.1000

Table 5.4: Parameter values used in Figures 5.6 and 5.7
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Figure 5.7: Enlargement of the [0, 1]×[0, 1] block of Figure 5.6, with the convergence
to the PFE clearly displayed.

5.6 Analysis via Monotone Systems

In the previous section we used LaSalle’s Invariance Principle to prove the stability
properties of PFE; as an alternative we discuss analysis via monotone systems.
We construct and analyse two systems, one which approximates the host pathogen
model from above and the other which approximates it from below. The so-called
‘upper’ system is constructed in such a way that this solution is always above the
solution of model (5.1), while the ‘lower’ system is constructed so that the solution
of the host pathogen model is always above the solution to this system. Analysis of
the ‘lower’ system also yields conditions for the persistence of the host and
pathogen populations.

5.6.1 Upper Approximation for the Host-Pathogen Model

The system that approximates model (5.1) from above is

dw

dt
= g(y) = g(A,F, I) =

λA(γI − A)− σA+ ρΛ
d
F

−δF + σA− ρΛ
β+d

F
βF
M+F

Λ
d
− (α + d)I

 (5.13)

with the following equilibrium expressions for A∗ and I∗:

I∗ =
Λ

d(α + d)

βF ∗

M + F ∗
, and

A∗ =
F ∗

σ

(
δ +

ρΛ

β + d

)
.
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Assuming F ∗ 6= 0, these expressions can be used to find a quadratic equation in F ∗:

−λ
σ2

(
δ +

ρΛ

β + d

)2

F ∗2+

(
−λM
σ2

(
δ +

ρΛ

β + d

)2

+
λγΛβ

σd(α + d)

(
δ +

ρΛ

β + d

)
−
(
δ − ρΛβ

d(β + d)

))
F ∗

−
(
δ − ρΛβ

d(β + d)

)
M = 0.

(5.14)
Equation (5.14) has no positive real roots under the following conditions:

1. Necessary and sufficient condition:

∆1 < 0,

where ∆1 is the determinant of equation (5.14). In this case equation 5.14
has no real roots.

2. Sufficient conditions, the coefficient of the second term and the constant
term are negative:

λγΛβ

σd(α + d)
<
λM

σ2

(
δ +

ρΛ

β + d

)
+

(
δd(β + d)− ρβΛ

δd(β + d) + ρdΛ

)
, and

−
(
δ − ρΛβ

d(β + d)

)
< 0

(5.15)

If the above is true, Theorem 2.13 ensures that no positive real roots exist
for equation 5.14

3. However, if ∆1 ≥ 0, and if the F ∗−value at which the maximum occurs is
non-positive, and the constant term is also non-positive, equation 5.14 will
have no positive roots.

Although these conditions ensure no positive equilibrium exists for system (5.13),
0 is clearly an equilibrium of the system. The Jacobian of this system is

Jg =

λγI − 2λA− σ ρΛ
d

λγA

σ −δ − ρΛ
β+d

0

0 βMΛ
d(M+F )2 −(α + d)

 ,

and,

Jg(0) =

−σ ρΛ
d

0

σ −δ − ρΛ
β+d

0

0 βΛ
dM

−(α + d)

 .

Then, all the eigenvalues of Jg(0) have negative real parts if

δ +
ρΛ

β + d
>
ρΛ

d
⇐⇒ δ >

ρβΛ

d(β + d)
.

Thus, if 0 is the only equilibrium, it is locally asymptotically stable.

Theorem 5.6. Under condition 1,2, or 3 system 5.13 has 0 as a globally
asymptotically stable equilibrium on R3

+.
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Proof. Consider the third equation of system (5.13).

dI

dt
=

βF

M + F

Λ

d
− (α + d)I

≤ βΛ

d
− (α + d)I,

thus I(t) ≤ max{I(0), βΛ
d(α+d)

}. Let n ≥ 0 and In ≥ n ≥ βΛ
d(α+d)

, then

βΛ

d
≤ (α + d)In and

dI

dt
< 0. (5.16)

Define Fn = σ

δ+ ρΛ
β+d

An, An = γIn and bn = (An, Fn, In)′. Then,

g1(bn) = λγIn(γIn − γIn)− σγIm +
ρΛ

d

σγ

δ + ρΛ
β+d

In

= γIn

(
−σ +

ρΛ

d

σ

δ + ρΛ
β+d

)

< 0 ⇐⇒ ρβΛ

d(d+ β)
< δ (condition (2)).

g2(bn) = −
(
δ +

ρΛ

d(d+ β)

)
σ

δ + ρΛ
β+d

An + σAn = 0

From (5.16) we have that g3(bn) < 0. So, g(bn) < 0. It follows from Theorem 2.7
that 0 is globally asymptotically stable on [0,bn] for any n > 0. Hence it is
globally asymptotically stable on R3

+.

Theorem 5.7. If condition (1),(2), or (3) hold then PFE is a globally asymptotic
equilibrium of the host-pathogen model (5.1).

Proof. Considering the equation for dS
dt

, the interval Λ
β+d
≤ S ≤ Λ

d
is a compact

attractor. By Theorem 2.12, we need to consider only S ∈
[

Λ
β+d

, Λ
d

]
. Let

(A(t), F (t), S(t), I(t)) be any solution of 5.1 such that S ∈
[

Λ
β+d

, Λ
d

]
. Denote

x(t) = (A(t), F (t), I(t)). Then, we can verify that

dx(t)

dt
≤ g(x(t)).

Denote by ŷ(t) the solution of 5.13 with ŷ(0) = x(0). Then, since g is
quasi-monotone, using [[122], Section 12.X] we obtain the inequality

≤ x(t) ≤ ŷ(t), t > 0.

Therefore,
lim
t→∞

x(t) = 0.

By implication,

lim
t→∞

S(t) =
Λ

d
.
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Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.9000 β 1.0000
σ 0.1882̇ ρ 0.2000
δ 0.8416̇ M 100.00
α 0.0100 d 0.2000

Table 5.5: Parameter values used in Figure 5.8

Theorem 5.7 is illustrated in Figure 5.8 on page 61. In order to maintain biological
feasibility initial conditions with A0 = 0 and I0 6= 0 were not used, instead small
values were chosen for A0. The parameter values can be found in Table 5.5, and we
verify that these do indeed satisfy condition (2):

2.1 The coefficient of the second term is negative:

λγΛβ

σd(α + d)
− λM

σ2

(
δ +

ρΛ

β + d

)
+

(
δd(β + d)− ρβΛ

δd(β + d) + ρdΛ

)
≈ −1.9126× 103 < 0

2.2 The constant term is also negative:

−
(
δ − ρΛβ

d(β + d)

)
= −0.0083̇ < 0

The values used in Figures 5.6 and 5.8 do not satisfy the other conditions.
However, there are values that do satisfy both conditions. This indicates that the
set of parameter values of one case is not completely contained in the set of the
other case although there is some overlap. In fact, the values in Table 5.6 satisfy
both conditions. This interesting occurrence indicates that if a specific set of
conditions is relatively simple to satisfy, we can focus on the controls indicated by
those conditions, rather than those suggested by the other case. It is easy to verify
that the values in Table 5.6 satisfy both conditions.

1. Both quantities in the conditions for asymptotic stability via LaSalle’s
Invariance Principle must be less than or equal to unity:

(a)
γ(γλΛ + δd)2

4(α + d)d2
≈ 0.1691 ≤ 1

(b)
βΛ

δdM
≈ 0.0594 ≤ 1

2. The parameter values satisfy condition 2 for global asymptotic stability of
the PFE via monotone systems:

2.1 The coefficient of the second term is negative:

λγΛβ

σd(α + d)
− λM

σ2

(
δ +

ρΛ

β + d

)
+

(
δd(β + d)− ρβΛ

δd(β + d) + ρdΛ

)
≈ −389.6021 < 0

2.2 The constant term is also negative:

−
(
δ − ρΛβ

d(β + d)

)
= −0.0083̇ < 0
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Figure 5.8: Solutions of model 5.1 clearly converge to the PFE, when the parameter
values satisfy either condition (1),(2) or (3). This illustrates Theorem 5.7. The
parameter values in Table 5.5 were used.

Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.1000 β 1.0000
σ 0.4235 ρ 0.2000
δ 0.8416̇ M 100.00
α 0.0100 d 0.2000

Table 5.6: Parameter values used in Figure 5.9
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Figure 5.9: Convergence to the PFE when the conditions for stability via LaSalle’s
Invariance Principle (condition (5.12) on page 54) and condition (2) are satisfied is
similar to convergence under only the conditions for stability via LaSalle’s Invariance
Principle. These parameter values can be found in Table 5.6.
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Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.4000 β 1.0000
σ 0.1000 ρ 0.2000
δ 0.2000 M 100.00
α 0.0100 d 0.2000

Table 5.7: Parameter values used in Figure 5.10

The conditions (5.12) on page 54 and the conditions (1)-(3) are sufficient but not
necessary for the global asymptotic stability of the PFE. Indeed, the parameter
values in Table 5.7 satisfy neither condition, yet result in extinction of the
pathogen and resultant infection. We verify that the conditions are not satisfied:

1. Both quantities in the conditions for asymptotic stability via LaSalle’s
Invariance Principle must be less than or equal to unity:

(a)
γ(γλΛ + δd)2

4(α + d)d2
= 1.219047619047618 � 1

(b)
βΛ

δdM
= 0.25 < 1

2. The conditions for asymptotic stability via monotone systems are not
satisfied by these parameter values either.

1.
∆1 ≈ 8.3914× 105 � 0 (5.17)

Condition (1) is not satisfied.

2.

λγΛβ

σd(α + d)
− λM

σ2

(
δ +

ρΛ

β + d

)
+

(
δd(β + d)− ρβΛ

δd(β + d) + ρdΛ

)
≈ −2.5017× 103 < 0

−
(
δ − ρΛβ

d(β + d)

)
= 0.6333̇ � 0

(5.18)
Thus condition (2) is not satisfied.

3. The discriminant is positive, the F ∗−value at which the maximum
occurs is approximately −48.6677 � 0, and the constant term is
0.6333̇ � 0. Thus condition (3) is not satisfied either.
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Figure 5.10: Convergence to the PFE can occur when neither the conditions for
stability via LaSalle’s Invariance Principle (equation (5.12) on page 54) nor those
derived via the constructed monotone system (conditions (1)-(3)) are satisfied.. This
illustrates that the conditions found above are sufficient but not necessary for PFE
to be globally asymptotically stable.
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5.6.2 Lower Approximation for the Host-Pathogen Model

The lower approximating system is

dz

dt
= h(y) = h(A,F, I) =

 λA(γI − A)− σA
−δF + σA− ρΛ

d
F

βF
M+F

Λ
β+d
− (α + d)I

 . (5.19)

Expressions for the equilibrium values for I∗ and A∗ can be found in terms of F ∗:

I∗ =
Λ

(β + d)(α + d)

βF ∗

M + F ∗
.

Setting the first equation in this system to zero gives

A∗ =
1

σ

(
δ +

ρΛ

d

)
F ∗

=⇒ A∗ =0 or I∗ =
λA∗ + σ

γλ
.

Observe that if A∗ = 0 then F ∗ = 0 and I∗ = 0. However, if I∗ = λA∗+σ
γλ

then F ∗

satisfies the following quadratic equation:

1

γσ

(
δ +

ρΛ

d

)
F ∗2 +

(
M

γσ

(
δ +

ρΛ

d

)
+

σ

γλ
− βΛ

(β + d)(α + d)

)
F ∗ +

Mσ

γλ
= 0.

(5.20)
If the parameters satisfy condition (5.21) then equation (5.20) has no positive real
roots.

M

γσ

(
δ +

ρΛ

d

)
+

σ

γλ
− βΛ

(β + d)(α + d)
> 0 (5.21)

On the other hand, equation (5.20) has two positive real roots if and only if

1.
∆2 > 0, (5.22)

where ∆2 is the determinant of equation (5.20),

2. and
M

γσ

(
δ +

ρΛ

d

)
+

σ

γλ
− βΛ

(β + d)(α + d)
< 0 (5.23)

In this case equation (5.20) has two positive roots, denoted F1 and F2 such that
0 < F1 < F2. The corresponding equilibria for system (5.19) are EL1 and EL2 .
The Jacobian matrix of system (5.19) is:

Jh =

λγI − 2λA− σ 0 λγA

σ −δ − ρΛ
d

0

0 βMΛ
(β+d)(M+F )2 −(α + d)

 .

It is easy to see that the equilibrium 0 is asymptotically stable, indeed the
eigenvalues of Jh(0), ξ1 = −σ, ξ2 = −

(
δ + ρΛ

d

)
and ξ3 = −(α + d) are all negative.

After using one of the equations for I∗ in the simplification we find that Jh(EL1 ) is:
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Jh(EL1 ) =

−λA∗ 0 λγA∗

σ −δ − ρΛ
d

0

0 βMΛ
(β+d)(M+F ∗)2 −(α + d)

 ,

which has the characteristic polynomial

q(ξ) = −ξ3 − ξ2

(
δ +

ρΛ

d
+ α + d+ λA∗

)
− ξ

(
(α + d)

(
δ +

ρΛ

d

)
+ λA∗

(
δ +

ρΛ

d
+ α + d

))
+

(
σλγβΛM

(β + d)(M + F1)2
− λ(α + d)(δd+ ρΛ)

d

)
A∗.

.

We observe that q(ξ) = 0 admits a single positive eigenvalue if and only if

(α + d)(δd+ ρΛ) <
σγβΛMd

(β + d)(M + F1)2
(5.24)

Theorem 5.8. If conditions (5.22) and (5.23), as well as condition (5.24) hold
then for any initial conditions (A0, F0, I0) ≥ EL1 the infection modelled by (5.1)
persists. More precisely, we have

lim
t→∞

(A(t), F (t), I(t)) ≥ EL2

Proof. System (5.19) defines a dissipative monotone system. When
conditions (5.22)-(5.23) are satisfied it admits two interior equilibria, denoted EL1
and EL2 , which satisfy F1 ≤ F2. The irreducible matrix Jh(EL1 ) has a single positive
eigenvalue if and only if condition (5.24) is satisfied, this eigenvalue has
corresponding eigenvector u, with u� 0. Applying Theorem 2.8 we conclude that
there exist solutions yr(t), originating from points yr = EL1 + ru where
r ∈ (0, ε], and ε > 0, such that yr(t)→ EL2 as t→∞.

Consider any solution (A(t), F (t), S(t), I(t)) of model (5.1), and denote
x̂(t) = (A(t), F (t), I(t)) such that dx̂

dt
≥ h(x̂). Let ŷ(t) be any solution of

system (5.19), which satisfies ŷ(0) = x̂(0). Then, since h is quasi-monotone, using
[[122], Section 12.X] we obtain the inequality

ŷ(t) ≤ x̂(t) ∀t > 0.

Therefore, under condition (5.24) we have

0 < EL2 = lim
t→∞

ŷ(t) ≤ lim
t→∞

inf x̂(t).

That is, the infection persists, at least at the level EL2 .

Theorem 5.8 is illustrated numerically by Figure 5.11 on page 67. The initial
conditions of the solutions in this figure were chosen specifically so that
(A0, F0, I0) ≥ EL1 . Clearly any solution initiated at or above the level of
EL1 ≈ (3.4733, 1.4638, 0.1849) persists at a non-zero level above EL2 for all time; and
in fact converges to an equilibrium of model (5.1), at least for the parameter values
in Table 5.8. We verify that the data in Table 5.8 satisfies conditions (5.22)-(5.24)
of Theorem 5.8.
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We have

1. ∆2 ≈ 0.0338 > 0, thus condition (5.22) is satisfied.

2.
M

γσ

(
δ +

ρΛ

d

)
+

σ

γλ
− βΛ

(β + d)(α + d)
≈ −0.3968 < 0,

thus condition (5.23) is satisfied.

3.

(α + d)(δd+ ρΛ) <
σγβΛMd

(β + d)(M + F1)2
≈ −8.4206 < 0,

where F1 ≈ 1.4638, and thus condition (5.24) is satisfied.

Parameter Value Parameter Value
Λ 0.9000 λ 1.0000
γ 23.52536 β 5.0000
σ 1.0000 ρ 0.9000
δ 0.9000 M 10.000
α 0.0010 d 0.5500

Table 5.8: Parameter values used in Figure 5.11.

Our numerical investigations of model (5.1) have revealed that in addition to the
PFE which is always locally attracting, there exists an equilibrium close the PFE

Figure 5.11: Illustration of persistence of the infection as proven in Theorem 5.8 on
page 66. Observe that solutions of model (5.1) originating at the level of EL1 remain
non-zero for all time.
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which is repelling, and an attracting equilibrium which is removed from the PFE.
Although we have not proven this mathematically, the important properties of the
model, namely extinction and persistence, have been proven under certain
conditions.
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5.7 Local Sensitivity Analysis: Finding possible methods
of control

As a result of the relative ease of obtaining results from epidemiological models,
mathematicians are frequently tasked with identifying which parameters should be
focussed on in order to decrease the impact a disease has. Often this is done by
investigating which parameters influence the stability properties of equilibria, or
even the number of equilibria the model admits.

Consider the case in which persistence of the pathogen occurs (see
Subsection 5.6.2). To save a field from infection certain control measures are
taken, and a specific method is applied only because it negatively affects the
progression of the infection. There is regularly more than option open to farmers,
and often a combination of controls is applied to a field.

This section investigates possible control methods in situations where the
host-pathogen model is applicable through a local sensitivity analysis of the
thresholds R∗1 and R∗2. By decreasing these thresholds below unity we ensure that
no endemic equilibria exist, and the infection will in theory be eradicated. A local
sensitivity analysis of a quantity is done by calculating the sensitivity index of that
quantity with respect to the parameters on which it depends.

Definition 5.1. The normalized forward sensitivity index of a quantity, Q, that
depends differentiably on a parameter, p, is defined as:

ΥQ
p :=

∂Q

∂p
· p
Q

/

We calculate the sensitivity indices of the threshold parameters R∗1 and R∗2, with
respect to all ten of our parameters. Most of the expressions for the indices are
complex, but can be found on page 72. These are evaluated at the parameter
values used in Section 5.6.2 and are summarised in Table 5.9. We see that β, d and
γ are important parameters for both thresholds, along with M for R∗1 and δ for

R∗2. Since Υ
R∗

1
β = 1.61430, a 10% increase in β leads to a 16.143% increase in R∗1.

Similarly, since Υ
R∗

2
d = −1.43638 an increase of 10% in d results in a decrease of

14.3638% in R∗2. All parameters influence at least threshold relatively well, except
α.

From Table 5.9 the following are possible control methods:

1. Lowering the constant recruitment rate, Λ, so that the pool of susceptible
hosts decreases to the level of the PFE, ensuring extinction of the infection.

2. By decreasing the amount of attached pathogen an infective root can
support, γ, the carrying capacity is reached sooner, and decay increases as
nutrients are depleted.

3. By decreasing the probability of transmission β the number of host-pathogen
contacts needed before infection occurs is increased, which effectively
increases the probability of death during the search for a new host.
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4. If the rate at which pathogen de-attach from hosts, σ, is decreased the
carrying capacity of the root is reached sooner, which in turn causes the
pathogen to die as a result of competition for nutrients.

5. Increasing the natural host death rate, d, causes the host population to
decrease, which in turn leads to more prolific decay of attached pathogen.

6. A counter intuitive result is that increasing the attachment rate, ρ, results in
a decrease of both thresholds. By increasing this rate, the carrying capacity
of the host is reached in less time, which results in an increase of the decay of
attached pathogen.

7. By increasing the decay rate of the free pathogen, δ, the pathogen has a
greater chance of dying before finding a new host.

8. Decreasing M leads to the maximum transmission rate being reached
quicker. This allows for high levels of infected plants, which results in higher
pathogen decay rates both on and off host.

The options that theoretically offer the largest impact, might not be feasible in
practise. This could lead to a combination of the ‘less’ effective strategies being
used. For example, the combination (3), (4), (6), (7) might be the most effective
cost wise, and control wise.

Parameter Value R∗1 R∗2
Λ 0.9000 +0.49690 +0.68212
λ 1.0000 +0, 15467 +0.44351
γ 23.52536 +1.00000 +1.00000
β 5.0000 +1.61430 +0.78024
σ 1.0000 +0.69066 +0.51214
ρ 0.9000 −0.50310 −0.31788
δ 0.9000 −0.34222 −0.80319
M 10.000 −0.84533 −0.07561
α 0.0010 −0.00181 −0.00181
d 0.5500 −1.33970 −1.43638

Table 5.9: Sensitivity indices of R∗1 and R∗2 to parameters for the host-pathogen
model, evaluated at the given parameter values
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The expressions for each sensitivity index are presented on the following pages,
although to simplify notation we define

f := δσ2(d+ β)2 + 2λM(δ(β + d) + ρΛ)(δd+ ρΛ) > 0 and

g := 2δ(d+ β)dσ2 + λ(δd+ ρΛ)2M > 0.

Recall that:

R∗1 =
λγσΛβ[δ(β + d) + ρΛ]

(α + d)[2λM [δ(β + d) + ρΛ](δd+ ρΛ) + δσ2(d+ β)2]

=
λγσΛβ[δ(β + d) + ρΛ]

(α + d)f

R∗2 =
λγσΛβ(δd+ ρΛ)

(α + d)[2δ(d+ β)dσ2 + λ(δd+ ρΛ)2M ]

=
λγσΛβ(δd+ ρΛ)

(α + d)g
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Υ
R∗

1
Λ =

∂R∗1
∂Λ
· Λ

R∗1
= 1 +

ρΛ

δ(β + d) + ρΛ
− 2ΛρλM [2(δd+ ρΛ) + δβ]

f

Υ
R∗

1
λ =

∂R∗1
∂λ
· λ
R∗1

=
δσ2(d+ β)2

f
> 0

ΥR
∗
1

γ =
∂R∗1
∂γ
· γ
R∗1

= 1

Υ
R∗

1
β =

∂R∗1
∂β
· β
R∗1

= 1 +
δβ

δ(β + d) + ρΛ
− 2βδ[λM(δd+ ρΛ) + σ2(d+ β)]

[δ(β + d) + ρΛ]f

ΥR
∗
1

σ =
∂R∗1
∂σ
· σ
R∗1

= 1− 2δσ2(d+ β)2

f

ΥR
∗
1

ρ =
∂R∗1
∂ρ
· ρ
R∗1

=
ρΛ

δ(β + d) + ρΛ
− 2ρΛλM(2(δd+ ρΛ) + δβ)

f

Υ
R∗

1
δ =

∂R∗1
∂δ
· δ
R∗1

=
δ(β + d)

δ(β + d) + ρΛ
− 2λMδ(2dδ(β + d) + ρΛ(β + 2d))

f
− δσ2(β + d)2

f

Υ
R∗

1
M =

∂R∗1
∂M

· M
R∗1

=
−2λM(δd+ ρΛ)(δ(β + d) + ρΛ)

f
≤ 0

ΥR
∗
1

α =
∂R∗1
∂α
· α
R∗1

=
−α

(α + d)
≤ 0

Υ
R∗

1
d =

∂R∗1
∂d
· d
R∗1

=
dδ

δ(β + d) + ρΛ
− d

(α + d)
− 2dδλM(2(δd+ ρΛ) + δβ) + 2dσ2(β + d)

f

Υ
R∗

2
Λ =

∂R∗2
∂Λ
· Λ

R∗2
= 1 +R0 −

2λMρΛ(δd+ ρΛ)

g

Υ
R∗

2
λ =

∂R∗2
∂λ
· λ
R∗2

=
2δ(d+ β)

g

ΥR
∗
2

γ =
∂R∗2
∂γ
· γ
R∗2

= 1

Υ
R∗

2
β =

∂R∗2
∂β
· β
R∗2

= 1− 2δdσ2β

g

ΥR
∗
2

σ =
∂R∗2
∂σ
· σ
R∗2

= 1− 4δdσ(d+ β)

g

ΥR
∗
2

ρ =
∂R∗2
∂ρ
· ρ
R∗2

= R0 −
2ρΛλM(δd+ ρΛ)

g

Υ
R∗

2
δ =

∂R∗2
∂δ
· δ
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=
δd

δd+ ρΛ
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g

Υ
R∗

2
M =

∂R∗2
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· M
R∗2

=
−λ(δd+ ρΛ)2

g
< 0

ΥR
∗
2

α =
∂R∗2
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· α
R∗2

=
−α

(α + d)
< 0

Υ
R∗

2
d =

∂R∗2
∂d
· d
R∗2

=
δd

(δd+ ρΛ)
− d

α + d
− 2δd(λM(δd+ ρΛ) + (d+ β)σ2)

g
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6 The Spatio-Temporal Host Pathogen Model

6.1 Introduction

The model in Section 5 looks only at the temporal progression of an infection, and
although this approach is acceptable under certain assumptions (such as a
pathogen entering an entire field in a uniform manner), the model can be modified
slightly to accommodate the spatial movement of pathogens through the field.

Diffusion has been used to model spatial spread in theoretical ecology since the
latter half of the twentieth century [47], [92], with its use for modelling fungal
growth being justified by the “observation that tip growth occurs to fill space and
to capture nutrients” [21]. Davidson (1998) also noted that fungal growth “is, in
the main, directed from areas of high hyphal density to areas of low hyphal
density”, and included diffusion in his model with the warning ‘that this flux
should not be viewed as the movement of existing biomass, but rather the
propensity of new biomass to grow away from high density areas’. We reiterate
this warning, and include diffusion to model the spatial growth of off-host
pathogen in search of new hosts, with µ denoting the diffusion constant.

∂A

∂t
= λA(γI − A)− σA+ ρFS

∂F

∂t
= −δF + σA− ρFS + µ∆F

∂S

∂t
= Λ− dS − βF

M + F
S

∂I

∂t
=

βF

M + F
S − (α + d)I

A(x, 0) ≥ 0, F (x, 0) ≥ 0,

S(x, 0) ≥ 0, I(x, 0) ≥ 0,

∂F

∂x
(−L, t) = 0 =

∂F

∂x
(L, t).

(6.1)

If the initial condition is spatially uniform, and taking the boundary conditions
into account, then the solution is also spatially uniform, reducing it to a solution of
the corresponding temporal system. The properties and long-term behaviour of
the temporal model have been theoretically proven in Section 5, and this chapter
devotes itself to numerical investigation of the behaviour of solutions of
system (6.1). Our interest is mainly in the practically relevant case where the
pathogen is introduced in one location, and studying the dynamics of its
propagation.
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6.2 Numerical Investigations

6.2.1 Under the conditions for asymptotic stability obtained by
application of LaSalle’s Invariance Principle

The parameter values given in Table 6.1 satisfy the conditions (5.12) which ensure
the PFE of the temporal model is globally asymptotically stable. The details are
given in Section 5.5.2. We investigate whether the solutions of the spatio-temporal
model behave in a similar fashion, using the diffusion constant µ = 0.01. Indeed,
although convergence occurs over a long time period, the addition of diffusion does
not result in observable change in the asymptotic properties of the steady state.

Figure 6.1: The spread of pathogen and disease through the field at different times,
using the parameter values that satisfy the conditions for stability of the PFE that
were obtained by the application of LaSalle’s Invariance Principle. It is assumed
that there is an initial population of free pathogen over a quarter of the field, not
yet having resulted in infection.

Parameter Value Parameter Value
Λ 1.0000 λ 0.4000
γ 0.2000 β 1.0000
σ 0.0100 ρ 0.4000
δ 0.1000 M 100.000
α 0.0205 d 0.1000

Table 6.1: Parameter values used in Figure 6.1
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6.2.2 Parameter values for global asymptotic stability of the PFE of
the temporal model via monotone systems

An alternative proof of global asymptotic stability of the PFE is via an upper
approximating monotone system, see Section 5.6.1. The parameter values in
Table 6.2 satisfy the conditions of this case, and addition of linear diffusion using
µ = 0.01 does not change the properties of the steady state. Indeed convergence
occurs by t = 100.

The same initial conditions were used for Figures 6.1- 6.2 and we observe that
although the initial disease progression occurs quicker in the second case, levels of
infected hosts decrease sooner as well. In Figure 6.1 I(−5, 10) ≈ 0.075 while
I(−5, 10) ≈ 0.055 in Figure 6.2. This suggests that the infection is more virulent
in this section, though it runs its course quicker than the infection in the previous
section.

Figure 6.2: The spread of pathogen and disease through the field at different times,
using the parameter values that satisfy the conditions for which the PFE has been
proved to be globally asymptotically stable via the study of monotone systems. The
values are given in Table 6.2 on page 76.

When the parameter values satisfy both sets conditions for global stability of the
PFE the progression is similar to that in Figure 6.2.
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Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.9000 β 1.0000
σ 0.1882̇ ρ 0.2000
δ 0.8416̇ M 100.00
α 0.0100 d 0.2000

Table 6.2: Parameter values used in figure 6.2

Figure 6.3: The parameter values in Table 6.3 satisfy the conditions for global
asymptotic stability found by the application of LaSalle’s Invariance Principle and
via monotone systems.

6.2.3 Parameter values for persistence of the infection

A monotone system, constructed to approximate the temporal host pathogen
model from below was proven to admit two interior equilibrium in Section 5.6.2,
denoted EL1 and EL2 , with FL

1 < FL
2 . Additional conditions were derived, under

which the pathogen persists. Indeed, it was found that solutions initiated at or
above EL1 and satisfying conditions (5.22)-(5.24) remain non-zero for all t ≥ 0.

The equilibrium, EL1 of the lower approximating system is:
EL1 ≈ (3.4733, 1.4638, 0.1849). The persistence of pathogen is illustrated in
Figure 6.5. In fact, solutions converge to EE2 (equilibrium of the host-pathogen
model with the largest F ∗ value), although the stability properties of EE1 and EE2

have not been proven. How does the inclusion of diffusion affect this phenomenon?
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Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.1000 β 1.0000
σ 0.4235 ρ 0.2000
δ 0.8416̇ M 100.00
α 0.0100 d 0.2000

Table 6.3: Parameter values used in Figure 6.3

Figure 6.4: The parameter values in Table 6.4 do not satisfy either condition for
asymptotic stability of the PFE, however convergence is obvious. This indicates
that the conditions found in section 5 are merely sufficient rather than necessary for
the asymptotic stability of the PFE.

Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.4000 β 1.0000
σ 0.1000 ρ 0.2000
δ 0.2000 M 100.00
α 0.0100 d 0.2000

Table 6.4: Parameter values used in Figure 6.4
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Solutions initiated at the level of EE2 at the boundary exhibit a travelling infection
front, the movement of which is driven by the increase in attached pathogen and
infested hosts by the diffusion of the free pathogen (Figure 6.5). This behaviour
suggests a possible control strategy: if the speed of the front can be sufficiently
decreased, a percentage of the field would be saved from disease.

To this end, we investigate the relationship between µ and the wave speed c. The
parameter values in Table 6.5 were again used, and a solution with (A0, F0, I0)
taking the value of EE2 on the left boundary was considered. The diffusion
constant µ was taken to be in the interval [10−7, 10−1], which results in
c ∈ (0, 4.5× 10−3]. An equation of the form c(µ) = aµb was fitted to the data in
Figure 6.6, and the fitting process reveals a ∈ (0.010770, 0.011) and
b ∈ (0.416, 0.4218) with 95% confidence. In fact, a = 0.01088 and b = 0.4189.
Literature indicates that the value of b should be higher, with Gilligan [33] and
Metz, Mollison and van den Bosch [85] finding the wave speed to be proportional
to the square root of the diffusion constant; that is c ∝ √µ. Although b < 0.5 the
equation fits the data well, and since SSE = 8.59× 10−6 its use in making
predictions would be justified. The coefficient of determination r2 = 0.9933
indicating that 99.33% of the variance of the data is explained by the equation.

Parameter Value Parameter Value
Λ 0.9000 λ 1.0000
γ 23.52536 β 5.0000
σ 1.0000 ρ 0.9000
δ 0.9000 M 10.000
α 0.0010 d 0.5500

Table 6.5: Parameter values used in Figure 6.5.
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Figure 6.5: When solutions of model 6.1 are initiated with pathogen and infectious
hosts at the level of EE2, on the left boundary, a field of completely susceptible hosts
will experience a travelling infection front. This front connects EE2 and the PFE.

6.3 Numerical Scheme

In order to solve model 6.1 numerically, we use forward-time and second order
central-space discretisations, subjected to Neumann boundary conditions. The
equations are:

An+1
i − Ani

∆t
= λAni

(
γIni − An+1

i

)
− σAn+1

i + ρF n+1
i Sni

F n+1
i − F n

i

∆t
= −δF n+1

i + σAn+1
i − ρF n+1

i Sni +D

(
F n
i+1 − 2F n

i + F n
i−1

(∆x)2

)
Sn+1
i − Sni

∆t
= Λ− dSn+1

i − βF n+1
i

M + F n+1
i

Sn+1
i

In+1
i − Ini

∆t
=

βF n+1
i

M + F n+1
i

Sn+1
i − (α + d)In+1

i

On the left and right boundary backwards and forwards discretizations are used to
properly take the boundary conditions into account. That is, at the left boundary

F n
0 − F n

−1

∆t
= 0 =⇒ F n

0 = F n
−1.

This in turn changes the diffusion operator on the boundary to

F n
1 − 2F n

0 + F n
−1

(∆x)2
=
F n

1 − F n
0

(∆x)2
.
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The right boundary is treated in a similar fashion.

For each time step these equations can be collected into a system of matrices,
namely

BXn+1 = CXn +D.

The matrices B and C must be rebuilt after every time step, although D remains
constant.

Figure 6.6: The speed of the infection front for different values of µ, for solutions
of model 6.1 initiated with levels of inoculum and disease at the level of EE2 on the
left boundary. The parameter values in Table 6.5 were used. Clearly the equation
c(µ) = 0.01088µ0.4189 fits the data well.
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7 Discussion and Future work

7.1 Discussion

The spread of disease in agricultural crops places immense strain on the global
crop yield which ensures that the study of botanical diseases is of vital importance.
The use of mathematical models improves our understanding of the underlying
mechanisms for certain biological phenomena and often reveal possible methods to
control disease.

By comparing the underlying assumptions of the model in chapter 3 with the
biological processes that occur, we found room for improvement. This model was
first published in Gilligan (1995) and is an SEIR model with linear diffusion on the
infective compartment. When the population size is constant the temporal model
admits the disease free equilibrium, which is globally asymptotically stable when
R0 ≤ 1, and locally asymptotically stable when R0 > 1, as well as a locally
asymptotically stable endemic equilibrium which only exists when R0 > 1 [79].
Gilligan’s model admits travelling wave solutions: minimal oscillations during
convergence to the endemic equilibrium in the temporal model result in a single
infection front travelling through the field. If, on the other hand, solutions of the
temporal model experience significant oscillations during convergence, a travelling
wave solution exists for the spatial-temporal model [33].

In an attempt to improve the realism of the model, an additional assumption was
made: that the soil environment is a porous medium. This assumption resulted in
replacing the linear diffusion in chapter 3 with a non-linear diffusion operator. It
was shown numerically that for large diffusion constants this change does not
significantly alter the asymptotic behaviour of solutions; however, for slow
diffusion the speed of the infection front decreases considerably.

The host-pathogen model was developed to avoid the underlying issues of placing a
diffusion operator directly onto the infective compartment in chapters 3 and 4 –
namely that plants generally do not experience physical movement. Instead we
considered a model of two populations, the host which could either be susceptible
or infective, and the pathogen which could be attached to a host or in search of a
new one. Although R0 < 1 for all parameter values, the model admits either only
the pathogen free equilibrium PFE, or the PFE and two endemic equilibria. The
PFE is always locally asymptotically stable and the global asymptotic stability
was proven using two methods: a Lyapunov function, and the construction of a
monotone system that approximates the model from above. These methods lead to
two sets of sufficient conditions for the global stability. The parameter values that
satisfy these conditions have some overlap, but there are values that satisfy only
one but not the other. This is a useful results, as it offers two possible sets of
control strategies for the eradication of the disease.

Although the stability properties of the endemic equilibria were not proven,
numerical simulations indicate that the equilibrium with the higher level for free
pathogen is asymptotically stable, and the other is unstable, with the possibility of
being a saddle point. It was proven that under certain conditions the pathogen
persists for all time.

81



The model was then extended to include a spatial component, by the addition of
diffusion on the free pathogen sub-population. This agrees with the behaviour of
pathogens such as fungi searching randomly for new hosts. This inclusion did not
result in solutions deviating from the behaviour that had been proven for the
temporal model. Indeed, under the conditions for persistence, solutions initiated at
the level of the stable endemic equilibrium result in a travelling infection front that
joins this equilibrium to the PFE. Thus, if effective control strategies are applied,
a fraction of the crop could be saved from disease. Some such control strategies
include (A) decreasing the probability of transmission β, which increases the
number of host-pathogen contacts needed before infection occurs. This effectively
increases the probability of death during the search for a new host. (B) Lowering
the rate at which pathogen detach from hosts, σ, ensures that the carrying
capacity of the root is reached sooner, which in turn causes the pathogen to die as
a result of competition for nutrients. (C) Although counter intuitive at first glance,
increasing the attachment rate results in the carrying capacity of the host being
reached in less time. This leads to an increase of the decay of attached pathogen.
(D) By decreasing M the maximum transmission rate is reached sooner, this
allows for a quicker infection, and the pathogenic carrying capacity of host roots to
be reached in less time. Suggested control strategies (B)-(D) all indirectly cause
the carrying capacity of infected roots to be reached sooner. While affecting γ
directly might not be feasible, the combination of (B)-(D) give an alternative.

7.2 Future work

In future the host-pathogen model could be extended to include two spatial
directions - in order to realistically approximate agricultural fields. This extension
could be used to properly investigate host spacing and the affect it has on the
propagation of infection, such as in [13], and [66]. Another interesting extension of
this research is to consider fields that use rotational farming, a common
agricultural practise that helps with disease control. Some pathogen are able to
form resting structures in the absence of hosts, or even to colonise sub-optimal
hosts, so modelling the availability of hosts as impulses should shed light on the
re-occurrence of infections.
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