
1 
 

The use of satellite-derived data and neural-network analysis to examine variation in maize 

yield under changing climate 

 

 

 

By 

ADISA Omolola Mayowa 

 

 

Submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

(Geoinformatics) 

 

 

 

 

 

In the Faculty of Natural & Agricultural Sciences 

University of Pretoria 

Pretoria 

 

June 2019 

 

 



2 
 

The use of satellite-derived data and neural-network analysis to examine variation in maize 

yield under changing climate 

 

Student  :   Adisa Omolola Mayowa (13387562) 

 

Supervisor  :  Dr Daniel Darkey 

SIGNATURE: …………………………… 

DATE: ……………………………………. 

Co-supervisor 1 :  Dr Joel Ondego Botai 

SIGNATURE: …………………………… 

DATE: ……………………………………. 

Co-supervisor 2 :  Prof Abubeker Hassen 

SIGNATURE: …………………………… 

DATE: ……………………………………. 

Co-supervisor 3 :  Dr Eyob Tesfamariam 

SIGNATURE: …………………………… 

DATE: ……………………………………. 

 

 

 

 

Department  :  Geography, Geoinformatics and Meteorology. 

Degree   :  PhD Geoinformatics 

 



3 
 

Declaration 

I, Adisa Omolola Mayowa declare that the thesis, which I hereby submit for the degree of PhD 

Geoinformatics at the University of Pretoria, is my own work and has not previously been 

submitted by me for a degree at this or any other tertiary institution. 

SIGNATURE: …………………………… 

DATE: ……………………………………. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Disclaimer and thesis structure 

This thesis adapts the publication style of writing. The seven chaptered study basically has four 

objectives and it is intended that all objectives as well as the literature review would be published. 

Consequently, three articles have been published in peer-reviewed journals. The three articles 

cover objective 1 (chapter 3), objective 2 (chapter 4) and objective 4 (chapter 6). The third 

objective is achieved in chapter 5. Chapter 5 has been peer-reviewed and accepted for publication 
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under review for publication in an international journal. Chapter 1, the general introduction to the 

study and chapter 7, provides the summary, conclusion and recommendation of the thesis. 

To this end, the content and style of presentation may vary or overlap between chapters in order 

to meet with the publication specific journal requirements. Figures in some chapters appear within 

the text, and in other chapters they have been added at the end of the chapters. 

Some of the publications have more than three authors, but this does not mean that work was done 

proportionately. Work in these publications is solely my effort and originally initiated by me as 
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Abstract 

Climate change and variability is foreseen to have direct and indirect effects on the existing 

agricultural production systems potentially threatening local, regional and/or global food security 

depending on the spatial scale of the change. The trend and level of impact caused by climate 

change and/or variability is region dependent and adaptive capacity. Climate change is projected 

to have more adverse impact in high vulnerability areas of sub-Saharan Africa. 

This study aimed to examine the variation in maize yield and develop a framework for predicting 

maize yield in response to climate change. To achieve this aim, this study has analyzed the impact 

of agro-climatic parameters on maize production across the major four maize producing provinces 

of South Africa. This study went further to investigate changes in the satellite derived phenological 

parameters and its relationship with maize production. In addition, the influence of drought (a 

derivative of climate change) on maize production was investigated. The study concluded by 

integrating all datasets used in each objective to develop an empirical predicting model using 

artificial neural network. Previous studies have quantified the impact of climatic variables on 

maize and at a small geographic area. Attempts to predict maize yield have been minimal and the 

use of artificial intelligence such as the artificial neural network has not been conducted. In this 

study, alternative sources of climatic and environmental data have been employed using remotely 

sensed data which offers possibilities of collecting continuous data over a large area (including 

remote areas) through the use of satellite. 

The analysis of agro-climatic variables (precipitation, potential evapotranspiration, minimum and 

maximum temperatures) spanning a period of 1986–2015, over the North West, Free State, 

Mpumalanga and KwaZulu-Natal (KZN) provinces, indicated that there is a negative trend in 

precipitation for North West and Free State provinces and positive trend in maximum temperature 

for all the provinces over the study period. Further more, the result showed that one or more  

different agro-climatic variables has more influence on maize across the provinces. 

Analysis of the phenological parameters of maize indicated that climate change and climate 

variability affect plant phenology largely during the vegetative and reproductive stages. NDVI 

values exhibited a decreasing trend across the maize producing provinces of South Africa. The 

results further demonstrate that the influences of climate variables on phenological parameters 

exhibit a strong space-time and common covariate dependence. Agro-climatic variables can 
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predict about 46% of the variability of phenology indicators and about 63% of the variability of 

yield indicators for the entire study area. 

The study also illustrated the spatial patterns of drought depicting drought severity, frequency, and 

intensity which has the potential to influence crop yield. The study found that maize yield is most 

sensitive to 3-month timescale coinciding with maize growing season (r = 0.59; p <0.05) affecting 

maize yield by up to 35% across the study area. 

In ensuring and fulfilling one of the seventeen sustainable development goals; to eradicate extreme 

poverty and hunger, the development of a system capable of monitoring and predicting crop yield 

becomes imperative. Machine learning tools such as the artificial neural network becomes handy 

and useful to provide a platform that is data intensive and robust to meet the requirements for an 

effective monitoring and predictive system for crop; particularly maize. The accuracy of the 

comparison between the actual and predicted maize yield is averaged at about 92% across the 

study area. The empirical model developed in this study can also be adopted to other grain crops 

such as Sorghum, wheat, soya beans etc.  
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Chapter 1  

GENERAL INTRODUCTION 

1.0. Introduction 

This chapter gives a brief introduction to the study. It starts by giving background of the subject 

matter ‘maize’ in relation of its relationship with climate and other derivatives such as changes in 

phenology and drought. This session went further to give a snap shot of maize production, globally, 

regionally, nationally and locally in South Africa. In addition, this chapter gives a preview to the 

major themes of the study. The major themes of this study aside maize are; climate, phenology 

(remote sensing), drought and prediction. These themes are further discussed in detail within each 

of the corresponding chapters. This thesis adopts the publication style of thesis writing. Each 

objectives of the research are presented in the format of an academic paper/publication. Hence, 

each objective forms a chapter and their methodologies were defined and explained therein. 

Additionally, this chapter, presents the research motivation, the research questions, aim and 

objectives of the study.  

1.1. Maize 

Maize called binomially as Zea mays L. is a member of the grass family called Poaceae. The 

Poaceae is a family of monocotyledonous flowering plants collectively known as grass. They 

include cereal grasses such as Oats, Rice, Sorghum, Wheat and maize (CFIA, 2014). Maize is a 

leafy stalk called an angiosperm, which implies that its seeds are enclosed inside shell (CFIA, 

2014). Maize is believed to have originated in Mexico in prehistoric times and serves as a staple 

food in Central and South America and parts of Africa and grown mostly for use as animal feed 

in Europe and the rest of North America (Verheye 2010).  

Maize can be grown on a great variety of soil types, however, the most suitable soil type for 

cultivating maize is a soil with a good effective depth, good texture and structure, good internal 

drainage, an optimal moisture regime, sufficient and balanced quantities of plant nutrients and 

chemical properties. Climatically, temperature ranges from 19 to 25 °C is ideal for the maize 

flowering. Temperature values of above 32 °C is harmful to the yield. A frost-free period between 

120 to 140 days is required to prevent loss of yield. Aside practice of intensive irrigation, an annual 

rainfall above 500 mm is required for maintaining adequate moisture. Water deficiency is usually 
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the most yield-limiting factor where efficient maize cultivation practices are applied. A yield of 

3152 kg ha-1 requires between 350 and 450 mm of rain per annum (Du Jean 2003). 

Maize either white or yellow is a staple food in many countries including Central and South 

America and Africa and Asia. Maize is an important part of American foods as corn starch. It is 

utilized in the form of grain, meal and green mealies. Processed maize is consumed as a snack 

(popcorn) and cereal. Industrially, maize is used by Millers for livestock feed. It is fed to livestock 

as hay or silage. Maize in South Africa is the most important grain crop, it is the staple food for 

most people in the country and the main grain for feed. However, it is expected that the ratio 

between animal feed and human consumption will change since the patterns in the demand by 

animal feed is changing and the growth in the middle-class population. According to Rosegrant et 

al., (2008), demand for maize in the developing world is predicted to double by 2050, also by 2025 

maize is predicted to ascend the position of the crop with the greatest production globally and in 

the developing countries of the world. Majority of the maize produced in South Africa is locally 

consumed, this add great importance to the domestic market in the industry. About 7 million tons 

is required for local consumption per year. Although maize is produced throughout the country, 

but Free State, Mpumalanga and North West produces over four-fifth of the total production 

making these Provinces the largest producers of maize in South Africa. Maize in the country is 

commonly rain-fed grown on dry land predominantly, planted between mid-October and mid-

December, with less than 10% produced under irrigation. Agronomists has been battling with the 

issue of how best to increase maize yields over the years (Cai et al., 2006). Although according to 

Wang 2000 and Xiao et al 2008 a combination of high-yield varieties with the best crop 

management practices would increase grain production. However, climate change as have its fair 

effect on maize yield. 

1.1.1. Maize and climate change 

Constant emissions of anthropogenic greenhouse gases have been agreed by scientists to continue 

to hasten climate change and its impact on agriculture globally (Den Elzen et al., 2010; IPCC 

2007). For several decades now, existence of global warming trends has been documented at most 

locations around the world, which is projected to increase in the future (Tao et al., 2006). And of 

recent climate change has topped the table of scientific problems and all communities throughout 

the world are equally concerned about it (Alexandrov et al., 2000). It is predicted by 
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Intergovernmental Panel on Climate Change (IPCC) 2000 that there is likely to be a warming of 

about 0.2oC in the next two decades. And as reported in the fourth report by the IPCC the average 

global temperature increased by about 0.74±0.18 ∘C annually during from 1906-2005 (IPCC 

2007). Furthermore, lots of studies highlighting these changes and variability have been carried 

out at different locations all over the world (Shobha et al., 2016; Guoyoug et al., 2017).  

The sector most vulnerable to climate changes, variability and extremes is the food systems and 

agricultural sector. Noticeable by the effect climate change has on crop production and the 

undoubtedly fact that a nation’s food security is highly dependent on climate variability (Liu et al., 

2010). Since these two systems are socio-economical important it is of paramount importance to 

assess the future effect of climate change on crop productivity (Bindi et al., 2011). Generally, 

climate change poses a negative threat on agricultural production particularly in the dry and hot 

areas (Gregory et al., 2005), except for some areas located above 55olatitude where it will have 

positive effects (Ewert et al., 2005). Of recent, scientific studies (Ummenhofer et al., 2014; 

Nadiezhda et al., 2017) has tended towards climate variability and impact of climate change on 

crop production and agriculture. 

Changing climate, that is elevated atmospheric CO2 concentrations, various rainfall patterns, and 

extreme temperature for example has been included among the important factors affecting crop 

yield. Chiotti and Johnston in 1995 speculated that climate change could have substantial impacts 

on agriculture in future and the possible impacts of this change on crops have been of utmost 

concern which many researchers (Tao et al., 2006; Yang et al., 2008) have evaluated extensively. 

In attempt to quantify the local impact of climate change, researchers are faced with challenges 

like the diversity of agricultural systems, the possible effect of global changes, and variations in 

the amount of CO2 available for photosynthesis. Also, climatic factors such as pressure, moisture, 

precipitation and temperature affect plant development, either in isolation or by interacting with 

other factors (Curforth et al., 2007). Furthermore, climate change has an adverse influence on the 

quality of the natural environment, the landscape, land-use, land suitable for food, crop yield and 

growing periods (Daccache et al., 2015).  

A better understanding of the relationship between crop yield and climate assist in increasing the 

flexibility of agricultural production systems to climate change. In this vein, several studies have 

been conducted, exploring how crop yield respond to climate conditions, with great emphasis on 
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extreme climate (Lesk et al., 2016; Lobell et al., 2014), inter-annual and decadal climate variability 

(Lobell et al., 2011a; Schlenker et al., 2009), climate co-variability (Leng et al., 2016), atmospheric 

CO2 concentration (Sakurai et al., 2009) and vapor pressure deficits (Ray et al., 2002). Extreme 

weather events like drought for instance have exhibited an increasing trend (Mazdiyasni et al., 

2015) resulting in crop production decrease (Lesk et al., 2016; Zipper et al., 2016). Output/result 

like these provide vital information for mitigation strategies, early warning, prediction system and 

drought monitoring designed to improve crop yield and resilience against droughts (Hao et al., 

2014; Aghakouchak et al., 2014). In the same manner, adaption measures like switching to an 

existing crop variety, development of new crop varieties, changes in crop growing pattern as well 

as shifting planting dates may shaping the severity and modulate the negative effect of climate on 

crop production and yield (Challinor et al., 2014; Cohn et al., 2016). It is expedient that farmers 

want to grow crops in lands with optimal nutrient and water storage conditions, this will result in 

consequent changes in the spatial pattern of the crop distribution (Guoyong et al., 2017). 

1.1.2. Maize and phenology 

Although maize has the capacity to adapt to both high temperature and dry environment, global 

warming still exert considerable negative impacts on maize yield in many regions of the world 

(Lobell and Field, 2007), thereby reducing global maize by about 4% from 1980 to 2008 (Lobell 

and Gourdji, 2012). Even though historical warming has helped improve maize yield in some 

regions (Chen et al., 2012), much more dramatic impacts are speculated on maize yield as well as 

food security under climate regimes in future: for instance by the end of this century it is expected 

that the growing season temperatures in the subtropics and tropics will supersede the most extreme 

temperatures recorded in the past century also the hottest seasons recorded  in the temperate 

regions will represent the future norm in a lot of regions of the world (Battishi et al., 2009). 

However, in different part of the world higher growing-season temperatures has been seen to be 

highly detrimental to maize yield and it equally aggravate food insecurity (Derying et al., 2014).  

One important component of farm management is the accurate monitoring of crop development 

pattern (that is the phenology and growth) as it allows the assessment of the most critical stages of 

growth during periods of favourable weather conditions (Vina et al., 2004). Phenological 

monitoring also helps to have a better understanding of crop growth processes and development. 

Additionally, phenological monitoring is important for proper understanding of intra-annual and 
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inter-annual variations of agroecosystems as well as improves yield prediction models. A number 

of dynamic simulation models have been developed that compute daily crop development and 

growth, also simulate dry matter production of the plants from emergence to its maturity and finally 

presenting an estimate of final yield (Sun, 2000). However, these models are not efficient when it 

comes to its application to non-optional growing conditions (like hail, damaging frost, drought, 

pests or disease infestation, among others). For these conditions, remote-sensing data can be used 

to calibrate the models and adjust for possible improvement (Clevers et al., 1994). 

Diverse disciplines have adopted the application of remotely sensed dataset (e.g., MODIS, 

Landsat, and SPOT), as it is readily available, decadal time spans and global coverage (Kerr and 

Ostrovsky, 2003). Satellite sensors have the capacity to capture numerous physiognomic 

characteristics of vegetation such as plant moisture content as well as photosynthetic activity using 

spectral radiance measurements (Tucker et al., 1985). Quite a lot of methods for converting 

radiance measurements into vegetation indices have been developed based on the band-ratioing of 

vegetation sensitivity in the visible (VIS) and the near-infrared (NIR) spectral bands. However, 

normalized difference vegetation index (NDVI) (Parplies et al., 2016) is the most widely used, 

owing to its ability to describe the crop phenology accurately, its readily available NDVI products 

(Sehgal et al., 2011), its simple calculation (Huete et al., 2002), and its sensitivity to soil conditions 

and atmospheric effects compared with other vegetation indexes which makes it useful for 

describing the vegetation growth process (Johnson et al., 2016). Furthermore, it has been used 

extensively for drought detection (Sruthi and Mohammed 2015), vegetation monitoring 

(Nurhussen 2016), crop yield assessment (Mariano et al., 2015) and phenological studies (Elodie 

et al., 2014). 

Additionally, maize phenology can be generally divided into two stages namely: the vegetative 

stage which is from emergence to tasseling according to the number of fully expanded leaves and 

the reproductive stage which is from sulking to physiological maturity according to degree of 

kernel development (Ritchie et al 1992). Several noticeable transitions of great importance to farm 

managers occurs within these stages some of which include: a) crop emergence that is the date of 

onset of photosynthetic activity (SOS); b) tasseling that is date when maximum leaf area is reached 

and maize tassels appear (POP); c) initiation of senescence that is date at which green leaf area 

evidently begins to decrease (EOS) (Cicchino et al., 2010). In the quest order to maximize yields 

the plant requires to optimize nutrients supply and maintain a favourable environmental conditions 
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(like precipitation, solar radiation, temperature, soil moisture) preceding every stage. When 

unfavourable conditions occur between the crop emergence time and when its leaf develops it 

limits the size of the leaves and eventually amount of photosynthetic biomass. However, when it 

occurs at the start of its reproductive cycle that is between tasseling and anthesis, there is the 

likelihood that the crop pollination will be impaired, and the number of fertilized kernels will be 

reduced (Severini et al., 2011). Further still, when an adverse condition occurs during the grain-

filling period that is between anthesis and physiologic maturity stage it led lead to reduction in the 

size of kernels that can be harvested. Obviously, awareness of the time of tasseling is not only 

important but it is also expedient to identify the stress-induced abnormalities that occurs during 

the rapid leaf expansion so as to device corrective measures. Also, early detection of the onset of 

senescence as a result of disease or water stress preceding the growth stage, is vital because it 

could directly influence yield. 

1.1.3. Maize and drought 

Water is required by all organism (of which maize is not an exception) in a stipulated quantity, 

treat is posed when there is deficit in the required amount. To determine water deficit in plant it is 

necessary to evaluate the optimal plant water requirement. Water requirement for maize production 

is not static throughout its growth stages, at its initial growth stage low amount of water is required 

then eventually reaches the peak at reproductive growth stage and decreases again during its 

terminal growth stage (Aslam et al., 2015). A single maize plant at the reproductive stage requires 

about 8-9mm of water per day. Water is required critically two weeks before and two weeks after 

pollination during maize production. This is because pollination is the stage at which the grain 

yield is determined. Also, soft dough formation and grain filling are extremely sensitive to water 

deficit, while physiological maturity and pre-tasseling are comparatively obtuse to water shortage. 

The implication of drought stress during the vegetative stage is that rate of growth reduces (Pannar 

2012). A total of about 450-600mm is required throughout the whole season and for every 

millimeter of water about 15.00kg of kernels is produced (Du Plessis 2003). From maize plant 

emerge up to its maturity stage about 250litres of water is consumed (Du Plessis 2003). 

Furthermore, any imbalance in the following traits disturb the plant water relation: water potential, 

relative water contents, stomatal resistance, transpiration rate, and leaf temperature as all these 

maintains the plant water relation (Anjum et al., 2011). The relative water contents is responsible 

for determining the status of metabolic activities of the tissue or cell. Also, the relative water 
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contents of the leaves are higher at the early leaf development and this tend to decline as the plant 

approaches maturity.  According to Siddique et al., (2001) there is a strong correlation is reported 

between water uptake, relative water contents and transpiration rate. Under drought stress, water 

potential and relative water contents is reduced, resulting in an increase in leaf temperature owing 

to the reduction in the transpirational cooling (Siddique et al., 2001). One can easily perceived that 

plant water status is reliant on stomatal activity (Anjum et al., 2011). 

One global climatic phenomenon that affect humanity in numerous ways is drought, it can lead to 

crop failures resulting from famine which causes food shortages leading to malnutrition and health 

issues that eventually leads to loss of life (Masih et al., 2014). Further still, it causes massive 

environmental damage and it is considered as the main cause of desertification, land degradation 

and aridity. According to the drought impact estimate from 1900-2013 by EM-DAT (2014), about 

642 drought events have been reported worldwide leaving about 12 million people dead and over 

2 billion been affected. Two critical environmental factors that regularly influence plants growth 

and development are temperature and water. Drought causes wide economic damage to agriculture 

(NCDC 2011), an effect that could increase with progress in global climate change (Keane et al., 

2009). The negative impact of drought on agricultural production is anticipated to likely aggravate 

in the future with an increase in frequency, erratic and intensity of this event (Sanderson et al., 

2011). To compound this problem, there as being continues decline in the fresh water and land 

used for agricultural use at an unmanageable rate (US CCSP 2008). As projected by UNEP GRID-

Arendal 2009 cropland could be reduced by 8% to 20% by 2050. Subsequently, agricultural 

production is bound to be faced with challenges of water deficit/limitation and unfavorable 

environmental conditions, emphasizing the essence for a comprehensive and fully incorporate 

approaches to sustain and improve agricultural productivity in the future (Delgado et al., 2011).  

 The vulnerability of maize plant to drought and heat cannot be overemphasis, according to FAO 

STAT 2006-2008 and Lobell et al 2011b an average of about 15% to 20% of the potential world 

maize production is lost to these stresses on a yearly basis. The overall loss is highly dependent on 

the stage of the plant when the stress occurs, the duration of the stress and the severity of the stress 

(Heiniger 2001). South Africa, being the major maize producer in Africa, is battling with one of 

the worst droughts ever recorded, this commence in early 2015 (CEC 2016). As recorded by the 

South African Weather Service, the year 2015 was the driest in South Africa since 1904. Ever 

since the year 1904, an average of 608 mm per annum of rainfall as been received in the nine 
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Province, but in 2015 an average of about 66% of the annual average (403 mm) was received in 

the country. Before this the lowest ever recorded was in the 1945 when about 437 mm per annual 

(72%) was received. The land available for maize production in South Africa as equally change 

over the years, for instance 10-year record average revealed that approximately 2.5 million ha of 

land is used for planting maize annually, out of which 1.5 million ha is used for white maize and 

the remaining 1.0 million ha is used for yellow maize (Grain SA 2016). Conversely, there is a 

slight difference in the 2015/16 production season (equivalent to 2016 calendar year), estimated 

area used for commercial maize production was about 1,947 million ha. This is a reduction of 

about 26.6% or 706,100 ha less than that of the previous season (2015) where an estimate of about 

2,653 ha of land was used for maize production. There was also variation in the maize production 

of that of 2015 which is estimated at 9,955 million tons compared to that of 2016 which is 

estimated at about 7,161 million tons 28.07% (2,794 million tons) less than the previous season 

2015, and 49.75% (7,089 million tons) less than that of 2014 planting season which was estimated 

at 14,250 million tons. These decreases are associated with severe drought conditions that occurred 

in the major maize producing areas of South Africa.  

1.1.4. Maize yield prediction 

One of the crucial goals of agricultural production is to achieve maximum crop yield at little or no 

cost. To attain the point whereby yield is increasing, and profit is made on the produce, it is 

important that problems associated with crop yield indicators are detected and managed early 

(Dahikar et al., 2014). With predictions crop managers could minimize losses resulting from 

unfavourable conditions. Predictions could also be used to maximize crop production when there 

is a likelihood for favourable growing conditions. It has been of great interest for agro-

meteorologists researcher to predict strategic plants crop yield such as rice, wheat, corn because 

they are of national and international economic importance. The need therefore arises for an 

accurate prediction mechanism using meteorological data. Presently, lots of yield prediction 

models exist, classified mainly into two groups namely: Crop Simulation Models example which 

include CERES (Jones and Kiniry, 1986) and Statistical models. However, of recent application 

Artificial Intelligence (AI) like Artificial Neural Networks (ANN), Genetic Algorithm and Fuzzy 

Systems has proven to be more competent in dissolving the problem. These application makes 

models more accurate and easier than the natural systems which is more complex requiring many 

inputs. 
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The complexity of factors affecting crop yields like weather, management and soil, makes it 

practically impossible to get a precise result by using traditional statistics. Years back researchers 

used process-based or empirical tools to investigate the causes of yield variability and detect the 

various yield-limitation factors within fields. However, ANN is an automatic learning tool which 

is an attractive substitute for processing the enormous dataset produced by precision farming 

production and research (Khairunniza-Bejo et al 2014). Also, with ANN yield losses due to yield 

limiting factors can be estimated. Furthermore, ANNs require no explicit mathematical equation 

and no limiting assumptions of linearity or normality contrast to the analytical approaches 

(MathWorks, 2005). Unlike the traditional physiology-based crop models, most of the intense 

computations take place during the training process in ANN. Its ability to provide solution to lots 

of problems linear system is incapable of resolving, makes ANN essential especially in originating 

and developing better invention for the society. For relative fast and rapid unknown input 

identification in a real-time environment, ANN is trained for a particular system (Keller et al., 

1994). Furthermore, ANN have been applied in a wide range of data processing applications like 

land use change/classification (Shock et al., 2002), land drainage engineering (Yang et al., 1997), 

crop evapotranspiration calculation (Odhiambo et al., 2001), predict yield for a new set of input 

conditions (Liu et al., 2001), and image recognition (Noh et al., 2004).  

The capability of ANN to predict, forecast and classify in biological science field has made it 

famous among many authors (Shearer et al., 2000; Kaul et al., 2005). Also compare to regression 

model an ANN model is more reliable and precise for crop yield prediction (Kaul et al., 2005). To 

capture the principle of significant associations, it is important that a well-trained ANN model 

comprise the main factors that quantify the essential variability related to crop production. A neural 

network like human nervous system processes information. Similar to human nervous system 

which comprise of interconnected neurons, an ANN consist of interconnected information 

processing units (Riedmiller et al., 1993). It is a model that uses an activation function through 

interconnected information processing units to convert input into output.  ANN first receives the 

raw input, processes it and then transfers the processed information to the hidden layers. The 

hidden layer further passes the information to the last layer, where the output is produced. ANN is 

quite adaptive in nature, it learns from the provided information (that is trains itself from available 

data), which is regarded as the known outcome which optimizes its weights for an improved 

prediction in a scenario with unknown outcome (Anastasiadis et al., 2005).  
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1.2.  Maize production 

1.2.1. Global maize production 

Asides rice and wheat, maize is the third largest crop produced globally. Although it is usually 

used and traded as a prominent feed crop, it is also an essential staple food.  Asides feed and food, 

maize is likewise used for manufacturing ethanol. It is one of the ancient human-domesticated 

plants. Its origin can be trace as far back as 7000 years ago, when it was just grown as a mere wild 

grass called teosinte in Central Mexico (Piperno et al., 2001). Eventually it was recognized has a 

major food crop, over time native Mesoamerican succeeded in improving the crop, by analytically 

selecting some varieties for their desired traits. This process gradually transforms teosinte to its 

present state known as maize, a name derived from “mahis” which means “source of life” by the 

Tanio people who have mastered the cultivation of the crop (Milazzo 1986). It is also referred to 

as corn in the United States, which is the world’s largest producer, exporter and consumer of maize. 

The important properties such as been an annual crop with high productivity and its geographic 

adaptive ability makes maize a globally cultivated crop. Maize has several hybrids with each of 

them having its own unique properties and kernel characteristics; the most famous ones are: dent 

(also known as field maize, used for livestock feeding, available in white and yellow species), flint 

(also known as Indian maize, produced mostly in South and Central America), and sweet (also 

known as green maize) (Nuss et al., 2010). 

Maize is classified based on its taste and colour, it is however broadly categorized into two groups 

namely white and yellow. The yellow maize constitutes majority of the whole maize production 

worldwide as well as the international trade (Ranum et al., 2014).  It is mostly produced in 

countries situated in the northern hemisphere where it is conventionally used for animal feed. 

White maize requires a more favourable climatic conditions for its production, it is grown in just 

a few countries among which are Mexico, southern Africa and in the United States. White maize 

is considered generally as food crop and it is more expensive than its yellow counterpart. The 

assumed rise in global maize consumption that was abated in 2008/09 has subsequently regained 

its momentum, with the increase in industrial usage which arguments the periodic irregular 

demand for animal feed (Economist Intelligence Unit (EIU) 2010).  Furthermore, EIU predicted 

an increase of about 805 million MT (Metric Tonnes) in global maize consumption in 2009/10, a 

rise of 3.4% from 2008/09. Assumption of ethanol production increases and an upswing demand 
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in feed for some countries, as lead to a further speculated increase of about 1.7% (818 million MT) 

in 2010/11. According to Table 1 below showing the world record of maize production from 1994 

to 2004 by FAO, the record revealed that China had the highest maize production in Asia, South 

Africa topped the list for Africa, it is Mexico for Central America, Brazil for South America, 

United State of America (USA) for North America and European Union consisting about 15 

countries for Europe. Over all the world’s largest maize producer is USA, and the developed 

countries contribute largely to global maize production. 
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Table 1-1: Maize Production (million tonnes) 
CONTINENT/COUNTRY 1997 1998 1999 2000 2001 2002 2003 2004 

ASIA 143.4 174.8 170.1 149.0 158.9 165.4 167.2 183.6 

China 104.6 133.2 128.3 106.2 114.3 121.4 115.9 130.3 

India 10.8 10.7 11.5 12.0 13.2 11.2 15.0 14.2 

Indonesia 8.8 10.2 9.2 9.7 9.3 9.6 10.9 11.2 

Iran 0.9 0.9 1.2 1.1 1.1 1.4 1.7 1.5 

Korea 1.0 1.8 1.2 1.0 1.5 1.7 1.7 1.7 

Kyrgystan 0.2 0.2 0.3 0.2 0.4 0.4 0.4 0.5 

Myanmar 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 

Nepal 1.3 1.4 1.3 1.4 1.5 1.5 1.6 1.6 

Pakistan 1.5 1.7 1.7 1.6 1.7 1.7 1.9 2.8 

Philippines 4.3 3.8 4.6 4.5 4.5 4.3 4.6 5.4 

Thailand 3.8 4.6 4.3 4.5 4.5 4.2 4.2 4.2 

Turkey 2.1 2.3 2.3 2.3 2.2 2.1 2.8 3.0 

Viet Nam 1.7 1.6 1.8 2.0 2.2 2.5 3.1 3.4 

AFRICA 41.3 41.0 42.1 44.8 41.0 42.4 45.0 45.0 

Egypt 5.8 6.3 6.1 6.5 6.8 6.4 6.5 6.7 

Ethiopia 2.3 2.8 2.7 3.3 2.8 2.8 2.7 2.4 

Kenya 2.2 2.4 2.3 2.2 2.8 2.4 2.7 2.6 

Malawi 1.5 1.8 2.5 2.5 1.6 1.6 2.0 1.7 

Mozambique 1.0 1.1 1.2 1.0 1.1 1.2 1.2 1.4 

Nigeria 5.3 5.9 5.5 4.1 4.6 4.9 5.2 5.6 

South Africa 10.1 7.7 8.0 11.4 7.8 10.1 9.7 9.7 

Tanzania 1.9 2.8 2.5 2.0 2.6 2.7 2.9 3.0 

CENTRAL AMERICA 20.4 21.3 20.8 20.8 23.4 22.6 24.2 25.0 

Mexico 17.7 18.5 17.7 17.6 20.1 19.3 20.7 21.7 

SOUTH AMERICA 58.2 55.1 51.4 55.8 64.9 57.7 71.6 65.6 

Argentina 15.5 19.4 13.5 16.8 15.4 14.7 15.0 15.0 

Brazil 36.2 30.2 32.0 32.3 42.0 35.9 48.3 41.8 

Chile 0.9 0.9 0.6 0.7 0.8 0.9 1.2 1.3 

Colombia 1.0 0.8 1.0 1.2 1.2 1.2 1.2 1.4 

Peru 0.8 0.9 1.1 1.2 1.3 1.3 1.4 1.2 

Venezuela 1.2 1.0 1.1 1.7 1.8 1.4 1.8 2.2 

NORTH AMERICA 241.0 256.8 248.7 258.7 249.9 236.8 265.9 308.7 

Canada 7.2 9.0 9.2 6.8 8.4 9.0 9.6 8.8 

United States of America 233.9 247.9 239.5 251.9 241.5 227.8 256.3 299.9 

EUROPE 81.3 66.5 72.6 62.8 76.1 75.5 69.5 96.4 
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European Union 1/ 39.4 36.4 37.1 38.3 41.0 40.5 33.7 54.9 

Romania 12.7 8.6 10.9 4.9 9.1 8.4 9.6 14.7 

Russian Federation 2.7 0.9 1.1 1.5 0.8 1.6 2.1 3.5 

Ukraine 5.3 2.3 1.7 3.8 3.5 3.1 6.9 8.9 

Yugoslavia Fed. Rep. 6.9 5.2 6.1 2.9 5.9 5.6 3.8 6.6 

OCEANIA 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6 

WORLD 586.3 616.0 606.3 592.5 614.7 601.0 643.9 725.0 

Developing Countries 252.2 283.4 275.1 257.9 279.1 276.5 296.7 307.7 

Developed Countries 334.2 332.5 331.2 335.6 335.6 324.5 347.2 417.2 

LIFDCs 2/ 168.0 200.4 196.7 174.1 183.9 189.0 192.6 208.7 

LDCs 3/ 15.4 17.2 18.5 18.5 18.1 18.3 20.7 20.2 

NFIDCs 3/ 13.4 13.9 13.9 15.0 16.0 14.9 16.0 17.3 

Source: FAO  

Note: Information as of November 2006. Data are compiled on a July/June basis. 

1/ Up to 2003/04 15-member countries, from 2004/05 25-member countries. 

2/ Low Income Food Deficit Countries (LIFDC) refer to food deficit countries with per caput income below the level used by the World 

Bank to determine eligibility for IDA assistance (i.e. US$1 415 in 2002). 

3/ The Least Developed Countries (LDC) and Net Food Importing Developing Countries (NIFDC) groups include a list of countries 

agreed by the World Trade Organization (WTO) to qualify as beneficiaries under the Marrakech Decision on the Possible Negative 

Effects of the Reform Programme on LDC and NFIDC. 
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1.2.2. Regional maize production 

Maize contribute about 36% of the total caloric consumed from cereals across southern Africa, it 

is the most vital basic food crop and cereal in the region. It is much noticeable among the rural, 

poorer population where it accounts for much greater percentages. Aside being consumed directly 

by human, it is equally an essential input for animal feed production as well as an intermediate 

product for industrial use as constituents of oil or other food products (Myers et al., 2012). This 

does not only make maize a crucial part of food security of the region, but it is also a dominant 

driver of the systems that support agriculture wholly, by providing the platform for efficient grain 

trade. In addition, it provides avenue for main market services such as supply, commodity 

exchanges, storage, equipment supply, extension and agricultural finance which are required for 

the provision of fabric of a commercial agricultural system. Maize produced in southern Africa is 

between 18-24 million tons on a yearly basis, of which 55% is from South Africa, subject to rainfall 

in the area (Grant et al., 2012). The total maize consumed in the region per annual is about 17 

million tons, most of the years southern Africa is a net surplus producer. Although several 

countries in this region are regularly in net deficit like Zambia, Botswana, Namibia, Mozambique 

and Angola while others usually have a stable surplus such as Malawi, Zambia and South Africa. 

The food surpluses/deficits within this region are often argument by long term storage as well as 

the regional and international trade.  

Majority of the maize produced and consumed in southern Africa are white. In all the region, only 

South Africa produces yellow maize in a substantial capacity and used predominantly for livestock 

feed. According to Corsino 2016 the trade flows within the region basically reveal high trade in 

white maize.  For the last 30 years growth in maize production in southern Africa was primarily 

due to increase in area cultivated for maize production. In this region maize production is highly 

dependent on rainfall (rain-fed maize production), leading to unstable output year by year. 

However, there is the speculation from Grant, Wolfaardt and Louw, (2012) that food consumption 

patterns in Africa are likely to have a dramatic change in the coming decades, this is associated to 

change in the consumption patterns of household within the region – triggered by the growing per 

capita income and increase in urbanization. Population growth as being identified as the major 

determinant of maize consumption in southern African development community (SADC) apart 

from South Africa (Grant et al., 2012). There is an expectation for maize consumption to remain 

fairly constant in future with an expected per annual growth rate of 0.51% between 2009/2010 to 



36 
 

2013/2014 production periods (Grant, et al., 2012). Maize production in southern Africa between 

2007 to 2011 (Table 2) revealed that South Africa is the largest producer in southern Africa and 

Malawi is the second largest maize producer and lowest production comes from Botswana. 

Table 1-2: Maize Production in southern Africa (thousand tonnes) 
Country 2007 2008 2009 2010 2011 

Angola 700 642 1,200 1,250 1,250 

Botswana 12 2 7 17 18 

Malawi 3,226 2,634 3,777 3,415 3,646 

Mozambique 1,380 1,534 1,710 1,932 1,880 

Namibia 61 60 60 60 60 

South Africa 6,947 7,339 13,164 12,567 13,421 

Zambia 1,425 1,366 1,446 1,889 2,800 

Zimbabwe 900 700 525 650 1000 

Regional totals 14,651 14,277 21,889 21,780 24,075 

Source: BMI USDA: Business Monitor International Country reports Southern Africa 

Agribusiness Report Q1 2012 (extracted from USDA Table 1, data from SAGIS and CEC) 

1.2.3. National maize production 

Maize is concerned of utmost importance in South Africa, it is the second major crop produced in 

the area next to sugar cane. Owing to its multiplier effects, the maize industry is essential to the 

economy benefiting both the employer and the foreign currency earner, since maize also used as 

raw material for manufactured products like medicine, processed food, paper, textiles, and paint. 

It is consumed mainly as second-cycle produce in the developed countries, like in form of eggs, 

dairy products and meat. However, it is consumed directly in the developing countries, serving as 

staple diet for about 200 million people. Although, Maize is produced throughout the country but 

under diverse environmental conditions. Free State, Mpumalanga and North West Provinces are 

the largest producers in the area, contributing about 83% of the total production in the country. 

Grain production in South Africa is divided into 36 regions. Region 1 to 9 comprise of the winter 

rainfall areas (i.e. Eastern Cape, Karoo and Western Cape), maize is not produced on a commercial 

scale in these regions. Region 10 is Griqualand West and region 11 is Vaalharts both in the North 

West. Furthermore, region 12 to 20 are all located in the North West Province. Regions 21 to 28 

contributed about 62% of the total maize production in South Africa during 2009/10 production 

season, they are located in the North West and Free State. Region 29 to 33 located within 

Mpumalanga which happens to be the second largest maize producing Province in the country. 

Region 34, 35 and 36 falls within Gauteng, Limpopo and KwaZulu-Natal respectively (DAFF, 

2012). 
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In South Africa around 8.0 million tons of maize are produced annually on land of about 3.1 

million ha, half of which is white maize human consumption. The maize industry in South Africa 

is divided into developing and commercial agriculture. There is an estimate of about 9,000 farmers 

involved in commercial maize farming employing about 150,000 farm workers while the number 

of farmers involved in developing agricultural are unknown. 98% of the maize produced in the 

country is produced by commercial agriculture while the rest 2% is produced by the developing 

agriculture. As reported by DAFF 2012, 40% of all the commercial maize in South Africa during 

the 2009/2010 season was from Free State Province. North West Province on the other hand 

contributed 22% closely followed by Mpumalanga Province which produced 21% and Northern 

Cape Province produced 5% of the entire commercial maize grown in the country. The 2013/14 

planting season recorded the highest maize production and yield per hectare in South Africa 

(Figure 1). Low production was record in 1991/92, 1994/95, 1997/98, 2000/01, 2005/06, and 

2015/16 these could be likely as a result of reduction of land available for maize production 

because several changes in area available for maize production occur during these periods, 

fluctuation in climatic variable, drought incidence, farm management practice etc. 

 
Figure 1-1: Total area planted, production and yield of maize in South Africa 

Source: Grain SA 
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1.2.4. Maize production in the four major maize producing province (Study area) 

In South Africa white maize is an indispensable food, it is used in form of whole grains, green 

mealies and meal and it is also processed into cereal and snack. Furthermore, it is of great use to 

the livestock industry, snack industry and millers. White maize as well as yellow maize can be 

used as livestock feed for silage or hay. The yellow maize significantly contributes to dairy 

products and red and white meats production. Maize is given different names in South Africa such 

as mafela, mmidi, mavhele, mielies, mmopo, umbila, umbona (DAFF, 2008). The producing areas 

in South Africa is shown in the Table 3 below: 

Table 1-3: Maize producing district of South Africa 

Province District 

North West Bojanala, Ngaka Modiri, Malema, Dr Ruth, Segomodi Mompati 

Mpumalanga Gert Sibande 

Free State Motheo, Lejweleputswa, Thabo Mofutsanyane, Northern Free State 

KwaZulu-Natal uMgungundlovu, UGu 

Gauteng Sedibeng, Metsweding, West Rand 

Northern Cape Kgalagadi, Frances Baard 

Source: DAFF 2008 

In South Africa about 90% of maize is produced under dry land condition while the remaining 

10% is produced under irrigated conditions (DAFF, 2015). Rain-fed grain cropping area of South 

Africa is divided into four major maize production regions in conjunction with their climatological 

characteristics. They are as follows: 

✓ The Cold Eastern Region (the Mpumalanga Highveld and eastern Free State) 

✓ The Warm Western Region (western parts of the Free State and most of the North West) 

✓ The Temperate Eastern Region (Gauteng and the central parts of the Free State) 

✓ The KwaZulu-Natal Region (the western/upland and central/midland parts of KZN) 

The major maize producing areas are located within these regions cutting across the western and 

central parts of North West, southern Gauteng, the central to south-western parts of Mpumalanga 

and the north-western part of Free State. Precipitation ranges between 550 and 650 mm in the west 

of these major maize growing areas. Precipitation is relatively unpredictable and has a great 

influence on crop production in the area. Even though the beginning and duration of the rainy 

season in this region limit the length of the growing season, the high heat units enable its suitability 

for crop production and the growth of white maize varieties. Furthermore, the central and eastern 



39 
 

parts of this area (that is Gauteng and Mpumalanga) receive more rainfall than the west, the mean 

annual rainfall in the area ranges between 650 and 850 mm. The result of low heat units in the area 

is a relatively short growing season which is quite suitable to produce yellow maize varieties.  

Maize production in South Africa is concentrated in Free State, North West, Mpumalanga and 

KwaZulu-Natal Provinces contributing about 34%, 32% 24%, and 3% respectively to the total 

maize production in the country. Majority of the maize produced in Mpumalanga (67%) are yellow 

maize while majority of those produced in North West as well as Free State are white maize. 

Yellow maize contributed 68% of the total maize production in Mpumalanga while the majority 

of maize produced in the Free State (54%) and especially the North West (72%) Province is white.  

1.3. Research problem, rationale and questions 

1.3.1. Research problem and rationale 

The usefulness of maize cannot be overemphasis, it has been named as the most important crop in 

South Africa, used for human consumption, industry purposes, it is also indispensably important 

in both the local and international market. On-going climate change will indisputably hamper 

agricultural output and contribution of the agricultural sector to South African’s gross domestic 

production (GDP) and food security, therefore potentially destabilizing the country with potential 

spread to the South African Development Community (SADC) region. This implies that, climate 

change’s influence on maize production in South Africa can no longer be underestimated, given 

the ultimate consequences of such impacts. Maize is not exempted from the vulnerability of 

climate change. A little change in climate can either increase or reduced its yield. Previous studies 

on the potential impact of climate change on field crop production in southern Africa indicated 

that different crops respond differently to the envisaged change in climate. (Schulze et al., 1993; 

Chipanshi et al. 2003; Fischer et al., 2005; Thornton et al. 2011). Schulze et al., (1993), developed 

an analysis tool to simulate primary productivity and crop yields under different climatic 

conditions in southern Africa. The results reported an overall increase in potential maize 

production that corresponds to an increased carbon dioxide and temperature conditions. Du Toit 

et al. (2001) assessed the vulnerability of maize production to climate change in South Africa and 

found that maize production in the country is characterized by high variations in crop yield that 

manifest from changes in seasonal precipitation. Gbetibouo and Hassan (2005) used a Ricardian 

model to assess the impacts of climate change on seven field crops (maize, wheat, sorghum, 
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sugarcane, groundnut, sunflower, and soybean) in South Africa. The authors reported that the 

production of field crops was sensitive to marginal changes in temperature than to changes in 

precipitation, whereby an increase in temperature positively affects the net revenue whereas a 

reduction in rainfall negatively affect the net revenue. Similar studies by Deressa et al. (2005) 

alluded that climate change has significant nonlinear impacts on the net revenue of sugarcane 

production in South Africa, with higher sensitivity to increasing temperature than precipitation. 

Maize is one of the rain-fed summer field crops grown in South Africa with a 3% annual increase 

in demand (Durand 2006). With the evident change in climate hence the need to study the effect 

that fluctuation in climate variables has on maize yield, determine the duration and time taken by 

plant canopy to be photosynthetically active, long-term trends in climate as well as short-term 

climatic variation. Hence, the spatio-temporal characterization of agro-climatic patterns across 

maize producing provinces to determine the most dominant climatic parameter influencing maize 

production will help farmers towards achieving proper climate adaptation and mitigation practices 

by farmers, in a bid to minimize the adverse effects of climate change on maize production. In 

addition, maize phenology is climate dependent. The estimation of variation in phenological which 

are induced by climate change can allow for more accurate predictions of the timing of planting 

crops and help improve managerial decisions, through the provision of phenological parameters 

(such as; start of season (SOS), end of season (EOS), length of the season (LOS), maximum NDVI 

during the season. It therefore become crucial to investigate the changes in the phenology metrics 

in relation to maize yield and the potential factors that stirred the changes across the maize 

producing Provinces of South Africa. The determination of length of growing period is therefore 

essential to determine the variability of maize phenology in response to climate. Also, important 

is the impact of extreme weather events such as droughts which as synonymous with climate 

change on maize production. Drought conditions pose serious challenge to the vegetative and 

reproductive stages of maize having the capacity to reduce potential maize yield by 25-50%. 

Therefore, effective monitoring of drought can provide an efficient drought early warning and 

predict maize production to have a foresight of future expected yield if farmers does the needful.  

1.3.2. Research questions 

Certainly, farmers habitually grow crop in lands with optimum water, nutrient storage conditions 

and climatic conditions, resulting in subsequent changes in crop yield. Hence, a vital question 

arises to how maize yield will respond to the historical changes in climate, phenology and climate 



41 
 

extremes such as drought? This further leads to other research questions such as: What are the 

major climatic drivers of changes in maize production across the maize producing Provinces? 

What is the optimum LOS and SOS for optimum yield? What drought condition is more critical 

to maize yield and at what geographical location and time? 

1.4. Aim and objectives 

1.4.1. Aim 

The overall aim of the study is to examine the variation in maize yield and develop a framework 

for predicting maize yield in response to climate change. 

1.4.2. Objectives 

The specific objectives of this study are to;  

1. Determine the impact of agro-climatic parameters on maize production. 

2. Determine the changes in the satellite derived phenological parameters and its relationship with 

maize production. 

3. Investigate the influence of drought on maize production. 

4. Predicting maize production using neutral-network analysis. 

Objective 1 is achieved with the first publication titled: Analysis of agro-climatic parameters and 

their influence on maize production in South Africa (Available online: 

https://link.springer.com/article/10.1007/s00704-017-2327-y). Objective 2 is achieved with the 

second publication titled: Variability of satellite derived phenological parameters across maize 

producing areas of South Africa (Available online: https://www.mdpi.com/2071-1050/10/9/3033 

manuscript ID number sustainability-280129). Objective 3 is achieved with the third paper titled: 

Analysis of drought conditions over major maize producing provinces of South Africa yield 

(accepted for publishing with Journal of Agricultural Meteorology). While objective 4 is achieved 

with the fourth paper titled: Application of artificial neural network for predicting maize 

production (Available online: https://www.mdpi.com/journal/Sustainability 2019, 11, 1145   

manuscript ID number sustainability-422883). Besides the publication for the four main 

objectives, the literature review of this study is currently under review with journal of Agricultural 

Research for publication. Therefore, a minimum of 5 publications are expected from this study. 

https://link.springer.com/article/10.1007/s00704-017-2327-y
https://www.mdpi.com/2071-1050/10/9/3033
https://www.mdpi.com/journal/Sustainability%202019,%2011,%201145
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1.5. Study area 

Figure 2 shows the location of the study area comprising of the major four maize producing 

provinces of South Africa. The provinces include Free State (FS), North West (NW), Mpumalanga 

(MP), and KwaZulu-Natal (KZN) located in the north-western and north-eastern part of South 

Africa between 22° E to 33° E and − 32° S to − 24° S longitude and latitude, respectively. The 

four provinces accounts for approximately 83% of the total maize production is South Africa. FS 

and NW provinces are the highest maize producers, contributing more than 60% of the total maize 

production in South Africa, followed by Mpumalanga (~24%) and KZN (less than 5%). 

Administratively, FS, NW and MP provinces are landlocked, sharing borders with the Gauteng 

province in the north, east and west respectively, the Northern Cape province in the west for both 

FS and NW.  

 

Figure 1-2: Location of the study area, showing the rainfall stations overlaid with SAWS district 

rainfall and elevation (m) 

FS share border with Lesotho and KZN in the east and the Eastern Cape province in the south 

while NW and MP share border with the Free State Province in the south, the Limpopo province 
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in the north east and north respectively and Botswana in the north for NW, Swaziland in the south-

east and Mozambique in the east for MP. On the other hand, KZN, shares border with the Indian 

Ocean to the east, Swaziland and MP province to the north, the FS province in the west, Lesotho 

in the south-west and the Eastern Cape Province in the south. The four provinces consist of 23 

district municipalities FS (5), MP (3), NW (4), KZN (11), 2 metropolitan municipality and 106 

local municipalities. Vast area of the province is predominantly rural with most of the people 

relying on agriculture for their livelihoods. Climatically, as classified by Koppen climate 

classification (Kottek et al., 2006), climate conditions within the study region range between cold, 

temperate, and subtropical conditions. Rainfall exhibit seasonal distribution, with all the four 

selected provinces receiving summer rainfall. Particularly, the NW and FS provinces receive total 

annual rainfall of less than 500 mm whereas Mpumalanga and KZN receive between 500 and 800 

mm. The annual mean maximum temperature for the four Provinces is 25 °C, while the annual 

mean potential evapotranspiration is 3.7 mm/day. Large-scale commercial forests, fruits, and 

vegetable farms dominate a large proportion of the farms across the provinces however with 

pockets of small-scale and subsistence livestock and rain-fed maize farming which play a crucial 

role in the improvement of livelihoods and food security in the provinces and are more susceptible 

to the impact of climate change due to low or lack of mitigation and adaptation capacity (DWAF 

2012). 

1.6. Data and Sources 

Summary of the datasets and their sources used in this study is given table 4. 

Table 1-4: Summary of all datasets and sources utilized in this research 
Data Source Time span 

Maize (production, land and yield) 
Department of Agriculture, Forestry and 

Fisheries South Africa 
1986-2017 

Gridded climate dataset (Precipitation, potential 

evapotranspiration, mean temperature, monthly 

average daily minimum temperature, monthly 

average daily maximum temperature) 

Climate Research Unit 1986-2017 

Normalised difference vegetation index (NDVI) 
MODIStsp: MODIS satellite data (United 

States Geological Survey) 
2000-2017 

Soil moisture European Space Agency 1986-2017 

1.7. Data analysis 

Following the publication style adopted for this research, each publication (objectives) has its data 

analysis section which are well captured there in. 
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1.8. Key concepts and conceptual framework 

The conceptual framework used for this study form the bases for the phases of the research and 

the overall outcome; the empirical maize yield predicting system. The framework, as shown in 

figure 3 consists of four major components: (1) The climatic variables, (2) phenological variables, 

(3) drought characteristics, and (4) maize yield. 

1. Climatic parameters such as solar radiation, air humidity, precipitation, temperature, potential 

evapotranspiration, and wind speed, often determine the global distribution and productivity of 

crops and livestock (Ajadi et al. 2011). Hence, climate change and variability are foreseen to have 

direct and indirect effects on the existing agricultural production systems. This potentially 

threatening local, regional and/or global food security (Ajadi et al. 2011), depending on the spatial 

scale of the change. The trend and level of impact due to climate change and/or variability is region 

dependent (Dastane 2013). The agro-climatic variables used in this study include (Precipitation, 

maximum and minimum temperatures, potential evapotranspiration and soil moisture). All the 

variables were acquired from gridded climate dataset, the Climate Research Unit Time-Series 

3.24.01 (CRU TS 3.24.01) while the soil moisture data was acquired from the European Space 

Agency. South African Weather Service’s (SAWS) weather station data are used to validate the 

results. 

2. Phenological: The estimation of variation in phenologically induced climate change and variability 

can allow for more accurate predictions of the timing of planting crops and help improve 

managerial decisions, through the provision of phenological parameters (such as; start of season 

(SOS), end of season (EOS), length of the season (LOS), maximum NDVI during the season). The 

phenological parameters will be derived from MODIS NDVI data (MOD13Q1). 

3. Drought: Water is an essential need for every organism in specific proportion. A shortage or a 

surplus in that particular proportion imposes stressful conditions on the maize (Zdenek, 2017). 

Water requirement for maize varies across the different growth stages. Drought conditions over 

the period of about three decades are characterized using the Standardized Precipitation Index 

(SPI: McKee et al 1993), and the Standardized Precipitation Evapotranspiration Index (SPEI: 

Vicente-Serrano et al., 2010) drought indices. 

4. Maize yield: Maize yield is calculated from the division of total production by area of cultivated 

acreage. 
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Figure 1-3: Conceptual framework diagram for the study 
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1.9. Summary 

This chapter gave a brief history of maize, the most suitable condition for its growth and its 

usefulness domestically, industrially and otherwise. This chapter went further to explain the effect 

of climate change on maize production, the importance of phenological monitoring on maize 

production and how remotely sensed dataset can help achieve this. Further still, the vulnerability of 

the crop to drought was discussed as well as the need for prediction of the crop. Then an overview 

of maize production was given globally, regionally, nationally and locally in South Africa. It also 

provided the research problem, rationale and research questions were enumerated which was 

answered in this research. The purpose of the study was pointed out alongside its objectives. 
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Chapter 2  

LITERATURE REVIEW 

The literature review in this study is centred on the keywords: climate, phenology, drought and 

prediction as applied to maize production in this study. This section thus, presents a review of the 

application of climate, phenology, and drought to understanding their relationships with maize 

production and the application of the elements for maize yield prediction. Hence, literature on 

climate, phenology and drought research that are not applied to maize production are not considered 

in this review. It is anticipated that this chapter will be published in a peer-reviewed journal in the 

near future. 

This chapter presents a review of the available literature and information on climate, phenology, 

droughts and application of artificial neural networks analysis to maize yield prediction. This 

chapter is intended to quantify the amount of work and to build a national perspective on the impact 

of the spatiotemporal variation of climate, phenology and drought on maize yield in South Africa. 

The data and information for this review are mainly collected from the peer-reviewed and published 

literature.  
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Abstract 

Climate change threatens crop production and hence raises concerns for food security in regions of 

high vulnerability, among which is the sub-Saharan Africa region. The potential significant impact 

of climate change on food security has led to a rise in the studies that assess its impact, particularly 

on agriculture. To investigate this assertion, a systematic review of existing peer-reviewed papers 

that focus on the assessment of the impact of climate change and variability and the associated 

drought conditions on maize phenology and yield as well as maize yield prediction under changing 

climate has been conducted.  This study used the ISI Web of Knowledge electronic database. The 

keywords used are [“climate change” or “phenology” or “drought”, or “prediction”] AND 

[“agriculture*” or “maize*”] AND [South Africa]. Articles were reviewed using the inclusion and 

exclusion criterion. A final total of 17, 5, 13 and 2 articles were reviewed for climate change, 

phenology, drought and prediction respectively. The articles were assessed according to the 

methodologies, which included process-based, statistical and mathematical as well as models. The 

results across the four components (climate change, phenology, drought and prediction) vary 

according to applied methods. The results suggest that process-based approach dominate the maize-

climate change, phenology, drought and prediction studies. About 53% of studies on climate change 

are model based, while 25% of the studies on maize with phenology and drought themes are based 

on the use of statistical analysis. Maize yield prediction studies are generally lacking and the 

literature on the use of machine learning tools for maize yield studies over South Africa is generally 

subtle. A limitation commonly reported in the existing literature is the lack of sufficient climate 

observation data at appropriate temporal and spatial scale to support climate change study. Satellite-

derived data offers a solution by providing data at the appropriate spatial and temporal scale. 

2.0. Introduction 

It is generally accepted that climate sensitive sectors such as agriculture, energy and water form an 

inextricable linkages (famously referred to the food-energy-water nexus) that ought to be 

understood from the “scholar-practitioner” viewpoint (a concept often advocated by the ecosystem 

services research, see for example Wasserman et al., 2009) in order to ensure water and food 

security, and sustainable agriculture and energy production as articulated by the United Nations. 

Maize is one of the most important cereal crops for human and animal diets and therefore plays a 

vital role in global food security. It is not a surprise that climate impacts and adaptation strategies 
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for maize production are increasingly becoming major areas of scientific interest. Admittedly, there 

has been a proliferation of scientific literature on the subject matter globally. Notwithstanding this 

scholarly enterprise, most reviews of the existing literature on maize production under changing 

climate has largely been focused elsewhere, yet, unacceptably subtle in Africa, a continent that is 

inadvertently threatened by food security and anaemic economies. This literature review focuses 

on the scholarly enterprise of maize production under changing the climate in South Africa. In 

particular, the review examines the central themes, approaches and key findings of the scholarly 

articles that delved on the impacts of climate change and variability and droughts on maize 

phenology and yield in South Africa. 

Climate is defined as the average weather condition of an area over a long period of time, varies 

globally from decade to decade naturally. On the other hand, climate change is measured by 

evaluating the patterns of disparity in temperature, precipitation, humidity, wind, atmospheric 

pressure, atmospheric particle count as well as other meteorological variables in a particular region 

over long periods of time. Evident from numerous scientific studies have shown that there has been 

an increase in the level of greenhouse gases (GHG) in the atmosphere (IPCC 2018). This increase 

is associated to the rise in the level of emissions because of human economic activities (such as the 

burning of fossil fuels like oil, coal, natural gas and the clearing of forests), motivated by the 

demand for energy, goods and services. Global warming, in turn, has led to exceptional changes in 

the climate system, translating into more extreme and intense weather events, as well as greater 

climate variability (IPCC 2018). These changes are noticeable in the average global temperature 

increases (record shows that the past decade have been the hottest so far), global average sea level 

rise, average rainfall pattern changes (some regions experience dryness like southern Africa and the 

Sahel while some other regions like the northern part of Europe experienced higher rainfall), 

increased in the heavy rainfall occurrence and hash weather events across large land expanse, with 

more intense and prolong droughts conditions (DEA 2011).  

Studies have shown that the African continent to be highly vulnerable to climate change, with 

greater vulnerability in the south of the Sahara (IPCC 2013; Christensen et al., 2007). The 

vulnerability to climate is dependent on economic, social and political factors which are in most 

sub-Saharan Africa regions in poor situations (Cooper et al., 2008). Additionally, Africa is 

vulnerable to climate change because of the existing burden of climate-related threats, such as the 

prevalence of infectious diseases (e.g. malaria) and food insecurity among others (Cooper et al., 
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2008; Brown 2009). Further, Africa is vulnerable to climatic hazards, as a result of over reliance on 

agriculture, pastoralism, and fishing resources for their livelihood activities (Maddison et al., 2006). 

For instance, it is projected that there will be an average increase in temperature of about 3-4 °C in 

Africa over the next century warming than the global annual mean (Boko et al., 2007). Warming is 

projected all over the regions of the continent, however, the rate of change and magnitude varies 

considerably. A decreased amount in rainfall is projected for the southern part of Africa and its 

western boundaries, particularly during the winter harvest months (du Plessis et al., 2017). In 

contrast, annual mean rainfall is projected to increase over East Africa, while there are uncertainties 

in projections for the Guinean Coast, Sahel and southern Sahara. In general, it is expected that there 

will be an increase in rainfall intensity and sporadic rain events such as floods and erosion across 

sub-Saharan Africa (Christensen et al., 2007). More specifically as predicted by climate models, 

the mean air temperature over South Africa will increase by approximately 2 °C over the next 

century (Jury 2013). This expected increase is quite detrimental to plants and animals as these 

species are more vulnerable, although human is also affected by these both directly and indirectly. 

Climate change impact on Agriculture has been acknowledged as a major area for research focus 

thanks to the marginal climatic conditions in many regions of sub-Saharan Africa, subsistence 

livelihoods, and constraint capacity for adaptation (Vogel and Reid 2005; IPCC, 2013). The 

prevalence of rain-fed agriculture in many of the sub-Saharan African regions leaves the 

Agricultural sector highly susceptible to rainfall variability (Cooper et al., 2008). Furthermore, 

majority of Africa’s farmers including those in South Africa are small-scale farmers who are 

generally underdeveloped with few financial resources, limited access to infrastructure, and poor 

access to information (Pereira 2017). As a way of coping with climate change, many of the farmers 

rely on the existence of generations of indigenous knowledge in determining crop type to be planted 

and when to plant (Ziervogel et al., 2014). Hence, as a coping mechanism, short growing crops 

such as maize, nuts, beans and melons are choice crops when limited rain is predicted (Rankoana 

2016). Nevertheless, it is believed that extreme climate conditions will have an impact on their 

agricultural production (Mpandeli 2005; Midgley et al., 2007). Therefore, in order to be able to 

substantiate the potential impact of climate change on Agriculture, with particular reference to 

maize crop, a literature review of existing body of knowledge is seen as the first step in providing 

a comprehensive and holistic insight to how climate change and variability and drought conditions 

affect maize yield across South Africa.  
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Therefore, the objective of this paper is to present a review of the available literature and 

information on climate and climate change, droughts with particular emphasis on the impacts on 

maize yield as well as the prediction of maize yield using an artificial neural network. This will 

help to typify and synthesize current knowledge on the problem, identify priorities for future 

research, and contribute to mitigation and adaptation initiatives. The important role that maize plays 

in South Africa as a staple food, as well as a major ingredient in animal feed, makes it indispensable. 

2.1. Methods 

A desktop systematic review of published peer-reviewed literature related to climate change, 

drought, phenology and prediction were conducted. A realist review approach developed by 

Pawson et al., 2005 was adopted. The methods build upon the methodology of the Cochrane 

systematic review, however, realist review seeks explanation, rather than empirical truth (Pawson 

et al., 2005). Defining keywords search was performed within the ISI Web of Knowledge electronic 

database. The “All fields” option was used. The keywords used are [“climate change” or 

“phenology” or “drought”, or “prediction”] AND [“agriculture*” or “maize*”] AND [South 

Africa]. Articles not published in English were excluded. There was no restriction on the years of 

publication. This was done in order to gather information on past and current scientific publications. 

In general, only published articles, reviews, and conferences were reviewed. The reference list of 

the retrieved literature was assessed in detail to gain additional articles that might not have been 

picked up during the search. However, only literature with a direct link to maize were retained 

based on the inclusion and exclusion criteria. Table 1 summarizes the inclusion and exclusion 

criteria used for this review. The use of the inclusion and exclusion criteria resulted in a total of 17, 

5, 13 and 2 articles for final reviews of climate change, phenology, drought and prediction 

respectively. For each reviews (i.e. climate change, phenology, drought and prediction + Maize) a 

table of guidelines was used. The tables indicate author(s) detail and year of publication, 

geographical location of study, dataset, methods and key findings. 

Although an effort was made to conduct a detailed review, there might be more existing research 

work that would have been omitted either not having a direct word that has been used in the search 

or the works are not published. Approaches and models used to assess the vulnerability of maize 

production to climate change, drought, phenology and prediction were comprehensively reviewed 

and discussed. Table 1 shows the criterion used in the selection of publications included in the 
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review and those excluded. Thus, the gaps in the existing knowledge are acknowledged and areas, 

where further research is required, are suggested in the review. 

Table 2-1: Criterion for selecting publications reviewed 
Included Excluded 

• Available in ISI Web of Knowledge • Unpublished thesis or dissertations 

• All years • Qualitative analyses or reports 

• Publications in English only • Publications in languages other than English 

• Articles, conferences • reviews 

• Direct relationship/application for maize • Agricultural studies but not focused on maize 

• Studies conducted in South Africa only • Global and regional studies with no focus on South 

Africa 

 • Adaptation, awareness, without climatic or 

environmental data analysis 

2.2. Results 

2.2.1. A review of climate change and maize production in South Africa 

Several studies have been carried out on the impact of climate change on maize yield/production in 

South Africa. This is in response to the projected high vulnerability of the region to climate change 

in order to assess and quantify the impact as well as to provide potential adaptation and mitigation 

measures and strategies. Table 2 provides a summary of the literature on climate change and maize 

production in South Africa. Table 2 indicates authors and year of publication, geographical location, 

dataset, methods and key findings.  

The study by Schulze et al., (1993) seems to be the pacesetter for the studies of climate change 

impact on maize in South Africa. The authors developed an analysis tool in order to simulate 

primary productivity and crop yields including maize for both present and the potential future 

climate conditions. They demarcated southern Africa into 712 relatively homogeneous climate 

zones, with each of them having specific climate, vegetation and soil response information. The 

study investigated the effects of increasing carbon dioxide concentrations and temperature. The 

results indicate that there was an increase in potential maize production with different intensity 

across geographic areas. As reported in Schulze et al., (1993) low crop yielding areas (that is, areas 

below 4 tonnes per hectare) increased with increase in carbon dioxide and temperature while they 

had less effect in high yielding areas (at least 8 tonnes per hectare). The study reported that there is 

a large dependence on crop yield and production on the intra-seasonal and inter-annual variation of 

rainfall. 
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Du Toit et al., (2001), investigated the effects of El Nino-Southern Oscillation on maize production 

in South Africa. In order to simulate the production practices that will minimize the effect of El 

Nino, they compared simulations with results of yield trials at four sites using the CERES-Maize 

simulation model with seasonal weather predictions and El Nino analogue years. The simulated and 

experimental trials comprised of five planting dates, three cultivars and three-plant populations. 

They reported that the effect of El Niño on national maize yields ranges from near average (2100 

kg ha−1 in 1976/77) to very low yields (875 kg ha−1 in 1991/92). They further indicated that the 

analogue year-technique is effective in determining the correct management options for predicted 

El Niño seasons. However, the authors concluded that the reliability of the results dependent on the 

correct selection of analogue years as well as the availability of quality climate data. 



64 
 

Table 2-2: Summary of literature reviewed on climate change and maize production in South Africa 
Authors and year of 

publication 
Dataset Methods Key findings 

Schulze et al., 1993 
Climate, soil and vegetation 

response information 

Agro-hydrological model 

and Geographic 

Information System 

Production and crop yield largely depend on the intra-

seasonal and inter-annual variation of rainfall 

Du Toit et al., 2001  
CERES-Maize crop 

simulation model 

The effect of El Niño on national maize yields ranges from 

near average (2100 kg ha−1 in 1976/77) to very low yields 

(875 kg ha−1 in 1991/92). 

Du Toit et al., 2002  
CERES-Maize crop 

simulation model 

Maize yields are strongly affected by seasonal changes in 

precipitation. 

Gbetibouo and Hassan, 2005 

Topography, vegetation, 

temperature, rainfall and soil, 

socio-economic variables 

Ricardian model 
Production of field crops was sensitive to marginal changes in 

temperature as compared to changes in precipitation 

Benhin, 2006 

Farm household crop farming 

data, climate data, major soil 

types, runoff, and adaptation 

related variables like irrigation, 

livestock ownership, access to 

output markets and access 

to the public and other extension 

services 

Ricardian model 

Climate variables, especially for precipitation, have a non-

linear relationship with crop net revenues in South Africa. 

vertisols and xerosols soil type may be harmful to crop 

farming and therefore aggravate the harmful effects of climate 

change, while others like acrisols and arenosols, may help 

reduce them. The runoff will also benefit crop farming, but 

harmful when in excess. 

Walker and Schulze, 2006  
CERES-Maize crop 

simulation model 

The future climate scenarios of ‘2 × CO2’ and ‘2 × CO2 + 

10%rain’ had the biggest positive effect on mean grain yield. 

And the biggest increase in losses of organic nitrogen was 

with the ‘2 × CO2 + 2 °C’ scenario where losses increased by 

up to 5%. 

Abraha and Savage 2006 

Daily and monthly total rainfall, 

daily and monthly minimum and 

maximum air temperatures, and 

solar radiant 

CropSyst simulation model 

Climate change scenario of increased carbon dioxide 

concentration, changes in mean air temperature influenced 

maize yields more than by precipitation 

Benhin, 2008 

Farm household surveys, long-

term climate data, major soils and 

runoffs. 

Ricardian model 
Crop net revenues are expected to fall by as much as 90% by 

2100 with small-scale farmers been most affected. 

Walker and Schulze, 2008  Simulation 

The western part of the Highveld is categorized by quite low 

mean annual precipitation (MAP); vastly variable yields, and 

while rainfall increases towards the east, inter-annual yield 

variability remains high 
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Authors and year of 

publication 
Dataset Methods Key findings 

Akpalu et al., 2008 
Precipitation, temperature, labor, 

fertilizer, seed, and irrigation 

Generalized Maximum 

Entropy (GME) estimator 

and Maximum Entropy 

Leuven 

Estimator (MELE) 

MELE fits the data better than the GME, also increased 

precipitation, increased temperature, and irrigation have a 

positive impact on yield. 

Blignaut et al., 2009 Rainfall 
econometric model 

Simulation 

The result indicate that between 1997 and 2006, the country 

has been about 2% warmer and 6% drier when compared to 

the 1970s. They further reported that for a 1% decrease in 

rainfall there is likely to be a 1.1% decrease in summer maize 

production and a 0.5% decrease in winter wheat 

Gbetibouo et al., 2010 

Farm organization, Literacy rate, 

HIV prevalence, Farm income, % 

people below poverty, Farm 

holding, % Agriculture GDP, 

Farm assets, Access to credit, and 

Infrastructure index 

Descriptive 

statistic/indicator approach 

Regions most exposed to climate change and variability do 

not always correspond with those undergoing high sensitivity 

or low adaptive capacity. Additionally, vulnerability to 

climate change and variability is basically linked to social and 

economic development. 

Moeletsi et al., 2011 Rainfall 
Descriptive 

statistic/indicator approach 

Cessation of rains occurs early during the El Niño and later in 

La Niña years over most parts of the study area. As a result, 

leading to a longer than normal duration of the rainy season in 

La Niña years and shorter than normal duration in El Niño 

years. High maize production is recorded in La Niña years and 

reduction in production is associated with El Niño years. 

Crespo et al., 2011 Downscaled climate scenarios AgroMetShell 

The results indicate that water satisfaction index will increase 

by about 5% in eastern South African.  The study lay the 

foundation to recommend efficient adaptation options to order 

to the negative impact expected in South Africa. 

Moeletsi and Walker 2012 Daily rainfall data 
Descriptive 

statistic/indicator approach 

Onset progresses from east to west whereas seasonal rainfall 

and rainy season duration increases from west to east 

Estes et al., 2013 Downscaled climate scenarios 
empirical and mechanistic 

modeling 

The empirical modeling approach projected a reduction of 

about 3.6% in maize yield and about 10% reduction in the 

potential maize growing area. 

Chiara et al., 2014 Averaged daily rainfall Generalised linear models 
the models are able to reproduce a range of agriculture-

relevant indices suitable for agricultural impact assessments 
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Du Toit et al., (2002), assessed the vulnerability of maize production to climate change and 

adaptation in South Africa using the CERES-Maize simulation model. The result shows that maize 

yields are strongly affected by seasonal changes in precipitation. The results of their simulations 

indicated that some areas of the country for example in the marginal western part may become 

unsuitable for maize production, while regions in the eastern part may remain unchanged or 

experience increase in production under the current management practices. 

In 2005, Gbetibouo and Hassan used Ricardian approach to measure the economic impact of 

climate change on major South African field crops (wheat, sugarcane, maize, soybean, groundnut, 

sunflower and sorghum) across 300 districts in South Africa. In their study, they analysed the 

future potential impact of additional climate change. By regressing the soil, farm net revenue on 

climate, as well as other socioeconomic variables they were able to capture the farmer-adaptive 

responses to climate variations. Their results specify that compared to precipitation changes, field 

crops production was more sensitive to marginal temperature changes. While the rise in 

temperature had a positive effect on the net revenue, rainfall reduction affected it negatively. Their 

findings also emphasized the importance of location and season when dealing with the change in 

climate, demonstrating the fact that there is the uneven spatial distribution of impact climate 

change and subsequently required adaptations across the different agro-ecological South African 

regions. Furthermore, the simulation results of climate change scenarios revealed numerous 

impacts that would prompt very distinctive shifts in farming patterns and practices in diverse 

regions. Among with are major shifts in growing seasons and crop calendars, interchanging 

between crops to the possibility of ample disappearance of some field crops from some region. 

Similarly, Benhin (2006) used the revised Ricardian model to assess the economic impact of the 

predicted adverse climate changes on the country’s crop farming and possible adaptation options. 

The data sets used by Benhin (2006) in his study included farm household crop farming, major 

soil type, districts runoff, long-term climate data, as well as adaptation information on variables 

like ownership livestock, irrigation, access to output market, public and other extension services 

from a number of districts in the country’s nine Province. The result revealed that the effect of 

climate change on irrigated farms and dryland farms are different, the effect is not much felt by 

irrigated farms owing to the fact that it does not solely depend on rainwater. Also, small-scale 

farms feel the effect more than the large-scale farms, but this also depends on whether the farm is 

irrigated or rain-fed. He discovered that as advantageous as irrigation farming might be if not 
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properly implemented it can aggravate the harmful effects of climate change. Furthermore, soil 

types like acrisols and arenosols reduce the harmful effect of climate change on crop production 

while others such as vertisols and xerosols are very harmful to crop farming. Temperature is 

disastrous to summer farming season but quite advantageous during the winter season. Benhin 

2006 predicted 90% fall in crop net revenue by the year 2100, if proper adaptations measure is not 

put in place, most severely affected will be small-scale farmers.   

Walker and Schulze in 2006 used the CERES-Maize crop model to assess the sustainability of 

smallholder rainfed maize production under different management and climate change scenarios 

for agro-ecosystems of Potshini village in KwaZulu-Natal. Their result revealed that the future 

climate scenarios of ‘2 × CO2’ and ‘2 × CO2 + 10% rain’ had the highest positive influence on 

mean maize yield. The scenarios lead to an increase of over 1000kg/ha of inorganic fertilizer and 

approximately 200 kg/ha with manure. The ‘+2 °C’ climate change scenario had the major negative 

effects on maize yield and there was a very large loss of organic nitrogen of about 5% with the ‘2 

× CO2 + 2 °C’ scenario. 

Abraha and Savage in 2006 investigated the potential impacts of climate change on the maize yield 

for the midlands of KwaZulu-Natal. They used ClimGen stochastic weather generator to generate 

the weather data comprising of daily and monthly total rainfall, daily and monthly minimum and 

maximum air temperatures, and solar radiant for the period 1971 to 2000 as an input into the 

CropSyst simulation model to simulate the potential of maize grain yield. They modified these 

weather data by plausible future climate changes under a normal planting date and dates 15 days 

earlier and 15 days later. According to Abraha and Savage (2006), there was no significant 

difference between the generated and observed weather data. From their findings, the simulated 

maize yield using the generated weather data had a significantly smaller variance than the 

simulated maize yield using the observed weather data. Additionally, Abraha and Savage (2006) 

reported that with climate change scenario of increased carbon dioxide concentration, changes in 

mean air temperature influenced maize yields more than by precipitation. They concluded that site 

specific analysis is more suitable for implementing mitigation measures as a result of the variations 

in maize planting date caused by climate change. 

The study reported in Benhin (2008) assessed the economic impact of expected adverse climate 

change on South Africa crop farming. The Benhin’s study used a revised Ricardian model and data 
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acquired from long-term climate, major soils types, runoffs and farm household surveys. From the 

mean annual estimation, it was determined that a 1% increase in temperature will lead to an 

increase of about US$ 80.00 in the net crop revenue whereas a 1mm/month fall in precipitation 

leads to a fall of about US$ 2.00, with notable impacts in seasonal differences. Across the different 

farming systems, significant spatial differences were also noted. With selected climate scenarios, 

it was predicted that there will be up to 90% fall in the crop net revenues by the year 2100, to be 

felt mostly by the small-scale farmers. Benhin’s study made recommendations to policymakers to 

fine-tune the policies and make them more focused on taking advantage of the relative benefits 

across seasons, spatially and farming systems, and thus making climate change beneficial instead 

of harmful. 

Walker and Schulze (2008) extended their previous study conducted in 2006 over the western 

Highveld using the CERES-Maize model to simulate nine plausible climate change scenarios over 

a 44-year period. The results revealed that there is relatively low mean annual precipitation and 

high variability in maize yields in the western part of the Highveld while rainfall increases towards 

the east. Walker and Schulze (2008) further indicate that variability in yields increased with an 

increase in temperature in the moist part of the study area while inter-annual variability in yield 

remained unchanged in the drier part of the study area with a reduced mean yield of about 30% 

over 44 seasons. They concluded that the rate of soil organic nitrogen increased with a simulated 

increase in temperature and doubling of CO2. 

Furthermore, Akpalu et al., (2008) used Maximum Entropy Leuven Estimator (MELE) and the 

Generalized Maximum Entropy (GME) estimator to investigate the impact of climate variability 

on maize yield in the Limpopo Basin of South Africa. Temperature and precipitation combined 

with traditional inputs variables like irrigation, seed, labor and fertilizer were used as proxies for 

climate variability. Akpalu et al., (2008) discovered that the MELE has a better data fit than the 

GME. Additionally, they reported that increased temperature, precipitation and irrigation have a 

positive impact on maize yield. Further still, according to the results from the MELE the impact 

of climate variability on maize yield could probably be negative in case the change leads to 

increased temperature and reduction in precipitation at the same rate and vice versa. In addition, 

although irrigation had a positive impact on yield then its elasticity coefficient was lower than 

precipitation, which can be interpreted to mean that the impact precipitation has on yield can only 

be partially mitigated by irrigation. 
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Blignaut et al., (2009) used a panel data econometric model to assess how changes in rainfall have 

been affecting maize and wheat production. According to Blignaut et al., (2009), between 1997 

and 2006, the country has been about 2% warmer and 6% drier when compared to the 1970s. In 

addition, Blignaut et al., (2009) that a 1% decrease in rainfall would most likely result to a 1.1% 

decrease in summer maize production and a 0.5% decrease in winter wheat. 

A study reported in Gbetibouo et al., (2010) used descriptive statistics to develop a vulnerability 

index and compared vulnerability indicators across the nine provinces of the country in order to 

identify the most vulnerable farming areas in South Africa. They identified nineteen socio-

economic and environmental indicators to reflect the three components of vulnerability: 

sensitivity, adaptive capacity and exposure. Their results revealed that the regions with the most 

exposure to climate change and variability do not always intersect with those experiencing high 

sensitivity or low adaptive capacity. Moreover, vulnerability to climate and variability is 

fundamentally connected with economic and social development. The Gauteng and Western Cape 

Provinces were found to be relatively low on the vulnerability index despite the fact that these 

provinces have high literacy rates, high levels of infrastructure development, and low shares of 

agriculture in total GDP. On the other hand, the highly vulnerable regions like KwaZulu-Natal, 

the Eastern Cape and Limpopo are characterized by high land degradation, densely populated rural 

areas, large numbers of small-scale farmers, and high dependency on rain-fed agriculture. 

The implications of El Niño-Southern Oscillation (ENSO) on rainfall characteristics with reference 

to maize production in the Free State Province of South Africa was examined by Moeletsi et al., 

(2011). The authors used rainfall data collected over 309 climate stations from 1950 to 2008 in 

Free State Province. The rainy season indices which include the onset of rains, cessation of rains, 

duration of the rainy season and seasonal rainfall total for each agricultural year were apportioned 

into El Niño and La Niña years. The results indicate no clear pattern for the onset of rains with 

some areas undergoing late onset and others early onset in both El Niño and La Niña years. The 

result further illustrated that the cessation of rains occurs early during the El Niño and later in La 

Niña years over most parts of the province. This eventually led to longer duration of the rainy 

season in La Niña years than the expected and shorter rains than normal duration in El Niño years. 

Also, a higher amount of cumulative rainfall is received in La Niña years while lower than normal 

rainfall is received in El Niño years seasonally. The author concluded that high maize production 

is recorded in La Niña years and reduction in production is associated with El Niño years. 
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Crespo et al., (2011) used the AgroMetShell crop model to investigate the impact of various 

sowing decisions on the water satisfaction index and consequently on maize yield over southern 

Africa. They ran the AgroMetShell model for 176 stations under different climate change scenarios 

downscaled from 6 General Circulation Models. The simulation was performed for a 20 year 

control period (present climate) from 1979-1999 and a 20 year future period from 2046-2065. The 

change in water satisfaction index between the present period and future period was compared 

over southern Africa. The influence of sowing decision on yield variation was computed. The 

results indicate that water satisfaction index will increase by about 5% in eastern South African.  

They reported that the result can lay the foundation to dev recommend efficient adaptation options 

to order to the negative impact expected in South Africa. 

Moeletsi and Walker in 2012 studied the characteristics of the rainy season in Free State Province 

of South Africa with reference to rain-fed maize production. Their study assessed rainy season 

duration, the onset of rains, cessation of rains and seasonal rainfall at various probability levels 

with daily rainfall data for 309 stations spanning from 1950 to 2008. They determined the onset of 

rains and cessation of rains using the 3 consecutive dekads (10-day periods) cumulative rainfall 

and 1 dekad cumulative rainfall respectively. Their findings revealed that over the Free State there 

was a large spatial variance for the onset of rains whereas there was a small variance for the 

cessation of rains. Also, onset progresses from east to west whereas seasonal rainfall and rainy 

season duration increase from west to east. Areas with low risk associated with rainy season 

characteristics highly suitable for maize production include eastern Motheo, the Fezile Dabi, the 

Thabo Mofutsanyane, eastern and northeastern Lejweleputswa districts. On the other hand, high-

risk areas with low production include the southern and western parts of the Province.   

In another study, conducted by Estes et al., (2013), used the empirical and mechanistic modeling 

approaches to project climate impacts on South African maize and wheat production in 2055 using 

18 downscaled climate scenarios. The study reported that the empirical modeling approach 

projected a reduction of about 3.6% in maize yield and about 10% reduction in the potential maize 

growing area. 

In 2014, Chiara and others conducted a study to determine growing season characteristics from 

averaged daily rainfall data from nine stations in the northeastern region of South Africa (Chiara 

et al., 2014). The generalised linear models were used for the study. The model was used to 
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evaluate the relationship between local rainfall variability to large-scale climate drivers. The 

results indicated that the models were able to reproduce a range of agriculture-relevant indices 

suitable for agricultural impact assessments. 

In summary, a total of 17 studies on climate change with a direct focus on maize in South Africa 

were reviewed using the inclusion and exclusion criteria to cut down from about 118 papers that 

we retrieved from the search. Studies based on the use of crop simulation models account for about 

53% of the studies 9 out of 17 (CERES-Maize; 23%, Ricardian; 18%, CropSyst; 6%, and 

AgroMetShell; 6%). See figure 1. The remaining 47% are shared among studies that used 

descriptive statistical analysis, empirical and mechanistic model, generalized linear model, 

maximum entropy Leuven estimator and the generalized maximum entropy estimator. Many of 

the studies which include the dominant CERES-Maize were conducted between 2001 and 2008.  

 

 

Figure 2-1: Percentage distribution of methodology used for climate change studies on maize 

production in South Africa 

Additionally, it has been reported that the use of structural models such as the CERES-Maize 

model is associated with high cost such that it is difficult to implement the model in poor and 

developing countries, leading to such countries relying on experiments conducted in developed 

countries that share similar climatic characteristics (Mendelsohn, 2000; Adams, 1989). Although 

the Ricardian approach provides an advantage over the CERES-Maize model by providing farmers 

with adaptation options, the model requires a large number of input data which are only recently 
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generated by the GEF/WB/CEEPA project (Dinar et al., 2008) with restrictions on the accessibility 

of the data. The review shows that the customized crop simulation models CERES-Maize, 

Ricardian, CropSyst and AgroMetShell were conducted earlier while recent studies show new 

methodologies. Hence, the review shows a shift from the use of customized models to descriptive 

statistical analysis and machine learning tools such as the empirical and mechanistic model and 

the generalized linear models. 

Further still, 59% of the studies on climate change and maize production in South Africa, used 

historical dataset, 23% used futuristic dataset while about 18% combined both dataset type for 

their analysis. Of which about 47% were model simulated, 24% were observed while the remaining 

29% were both model simulated and observation dataset. Also, only 12% of the studies made 

recommendations to policymakers while the remaining 88% made no recommendation 

whatsoever. Another limitation identified in the reviewed studies is the fact that none of the authors 

identified any research gap for further studies.  

Therefore, in overcoming the lack of adequate data at ideal temporal and spatial scale, Singles et 

al., (2010) in their review, recommended that information derived from technologies such as 

remote sensing and genomics should be considered and integrated into future modelling efforts. 

Additional, as a result of the cost implications for using customized models, machine learning 

tools such as Artificial Neural Networks (ANN) proves to be adequate as an alternative. 

2.2.2. A review of phenology and maize production in South Africa 

Phenology studies the seasons and cycles of natural phenomena controlled by both climatic and 

environmental factors (Maignan et al., 2008). It determines the duration and time taken by a plant 

canopy to be photosynthetically active and equally drives the annual uptake of carbon in an 

ecosystem (Jolly et al., 2004; Cleland et al., 2007). It also indicates long-term trends in climate as 

well as a short-term climatic variation as it is driven by precipitation, photoperiod and temperature 

(Hong et al., 2014). Climate change occurs at both the global and regional level and it significantly 

affects vegetation dynamics through the increasing global mean temperature and change in the 

precipitation regimes (IPCC 2007). Consequently, climate change affects plant phenology due to 

its influence on the flowering time and the other plant developmental stages (Kang et al., 2016). 

This section provides the review of existing studies on phenology as it relates to the understanding 
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of the relationship between maize production and climate change in South Africa. The summary 

of the literature reviewed in this section is shown in Table 3 below.  

Tadross et al, (2003) examined the inter-annual variability of the onset of the maize growing 

season over South Africa and Zimbabwe using rainfall data from Merged Analysis of Precipitation 

(CMAP) and the Computing Center for Water Research (CCWR). Tadross et al., (2003) study 

aimed at determining and estimating variability in the onset of the maize growing season in order 

to enhance adequate measures for the planting of rain-fed maize. The results reveal that during the 

period of 1979-1997, the onset of the growing season tends to occur later in the season with the 

two data sets showing the same mean, standard deviation and trend estimates of onsets over South 

Africa particularly in the Limpopo valley and in the coastal areas. Tadross et al., (2003) study 

further reveals that late or early onset of maize growing season is associated with the characteristics 

of rainfall over the subcontinent, indicating that increase in the frequency of intense rainfall over 

northeast Madagascar during the preceding August leads to early onset over Zimbabwe. Tadross 

et al., (2003) concluded that onset variability is partially forced by synoptic conditions, and the 

use of general circulation models successfully depends on their simulation of the regionally 

irregular component of the westerly circulation to approximate onset. 

Fanadzo et al., (2009) investigated the agronomic factors constraining maize grain productivity at 

the Zanyokwe irrigation scheme (ZIS), Eastern Cape, South Africa. The purpose of Fanadzo et al., 

(2009) study was focused on two main target, the first experiment comprise an evaluation of the 

relationship between cultivar (PAN6777 and DKC61-25), planting time (early: within the first 28 

days of beginning of season on 15 November or late: planting after 15 December), nitrogen (N) 

rate (60 and 250 kg N ha-1), and planting population (40 000 and 90 000 plants ha-1) on maize grain 

yield, and the second experiment compared the grain yields of new hybrids to commonly grown 

cultivars by farmers (they compared eight cultivars; of which two were popularly grown by ZIS 

farmers from the three maturity classes (early, medium and late)) from 2002 to 2004. When maize 

was planted early and fertilized at 250 kg N ha-1 higher yields were obtained notwithstanding of 

the cultivar. With an early growth at 90 000 plants ha-1 the short-season cultivar DKC61-25 had 

an optimal yield, at the same time PAN777 the long-season cultivar had better performance at 40 

000 plants ha-1. In general, planting time and N rate influences yield the most. Also from their 

findings, they concluded that the lack of viability of smallholder irrigation schemes in South Africa 

is resultantly linked to the unsuitable agronomic practices for irrigated crop production via farmers. 
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Fanadzo et al., (2009) recommended that more focused research targeted at addressing the 

problems of fertility, cultivar selection, planting time, and population management in ZIS. 

Vrieling et al., in 2013 calculated the length of growing period (LGP), its variability and trends 

using 30 years NDVI time series (that is GIMMS NDVI3g from 1981-2011) over Africa. Vrieling 

et al., (2013) employed a variable threshold method alongside with a searching algorithm to 

determine start-and end-of-season, from which a reliable estimate of LGP was obtained for sub-

humid, semi-arid and arid climates dependable through time and space. In semi-arid and arid high 

LGP variability was dominant, and this poses threat to crop production. Furthermore, from 

Vrieling et al., (2013) findings for parts of Tanzania, northern Mozambique and for the northern 

part of the Sahel there were significant negative trends, as well as in the short rains of eastern 

Kenya. Further still, in eastern Kenya, across western Africa and in southern Africa there were 

positive long rains trends. Vrieling et al., (2013) study provides useful information for farming 

systems mapping and an avenue for the effective study of climate variability and other drivers of 

change on crop suitability and vegetation. 

Akinnuoye-Adelabu and Modi in 2017 carried out a study on the influence of planting dates and 

harvesting stages on maize yield under rain-fed conditions, conducted on the research farm 

Pietermaritzburg at the University of KwaZulu-Natal, South Africa between 2014/15 and 2015/16. 

The planting dates consist of early (November), mid (December) and late planting dates (January), 

meanwhile, harvesting takes place at milk stage, dent stage and physiological maturity. From their 

findings variables of yield parameters and plant physiological growth is the major determinant of 

maize response to planting and harvesting stages. 2015/16 been a drier season experienced more 

obvious significant differences in physiological parameters and growth compared to the 2014/15 

season. At both seasons, early and mid-planting had a positive influence on measured parameters. 

Nevertheless, more favourable to maize growth and yield during the drier season was the mid 

planting date. The relationship between the harvesting stages and planting dates did influence grain 

yield, ear length, thousand seed weight and diameter significantly. Owning to the increment in the 

variability of climate, maize planted lately are on high risk of having lower yield regardless of its 

planting dates and there is a high probability of it not attaining the stage of physiological maturity. 

There was substantially high yield when maize was harvested at dent stage under early and mid-

planting dates. 
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Moeletsi in 2017 mapped the maize growing period over the Free State Province of South Africa: 

Heat Units Approach. He used the thermal index concept to determine the length of the growing 

season of the short season, medium season and the medium-late season varieties of maize crop for 

different planting dates (1st dekad of October to 1st dekad of January). Moeletsi’s results revealed 

high spatiotemporal variation in the median growing period for all three maize varieties. Moeletsi 

(2017) also discovered that there is a relatively short length of the growing period during October 

to early December for all three maize varieties having values less than 100,120 and 120 

respectively in some areas. Furthermore, in most of Free State, the duration of the sowing period 

increases exponentially from the 2nd dekad of November to 2nd dekad of December, depending 

on the crop variety and region. Moeletsi (2017) findings also show that long growing period is 

likely to align maize growing period with water shortages as well as dates of high frost risk.  

Therefore, to produce maize crop that grows and develop well, it is important to take into 

consideration the thermal time requirements of the cultivar in choosing the suitable planting date. 

Table 2-3: Summary of literature reviewed on phenology and maize production in South Africa 
Authors and 

year of 

publication 

Dataset Methods Key findings 

Tadross et al., 

2003 
Rainfall 

Descriptive 

statistical 

analysis 

The results reveal that during the period of 1979-1997, 

the onset of the growing season tends to occur later in 

the season with the two data sets showing the same 

statistical characteristics. Also late or early onset of 

maize growing season is associated with the 

characteristics of rainfall over the subcontinent 

Fanadzo and 

Chiduza 2009 

Maize cultivars 

(PAN6777 and 

DKC61-25), and 

maize grain yield 

Two on-farm 

trials 

When maize was planted early and fertilized at 250 kg 

Nha-1 higher yields were obtained notwithstanding of 

the cultivar. 

Vrieling et al., 

2013 
GIMMS NDVI3g 

Threshold 

method 

combined with a 

searching 

algorithm 

In semi-arid and arid high LGP variability was 

dominant, and this poses threat to crop production. 

Akinnuoye-

Adelabu and 

Modi 2017 

Rainfall Field trials 

Variables of yield parameters and plant physiological 

growth are the major determinant of maize response 

to planting and harvesting stages. 

Moeletsi 2017 Temperature data 
Heat Units 

Approach 

High spatiotemporal variation in the median growing 

period for all three maize varieties. 

In summary, out of the 25 papers review, only a total of 5 studies was found to have a direct link 

to phenology and maize conducted in South Africa. Furthermore, 4 out of the 5 studies relied on 

the use of climatic data (rainfall and temperature) (Table 3). The availability of climatic datasets 

for a long period of time and over a large area has been reported as a limitation for these studies 
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and hence, the studies were conducted over a small geographical landscape. With high climate 

variability in South Africa, (Kruger and Nxumalo, 2017), the transference of these studies to 

another region might be difficult. Many of the studies involve field trials which are cumbersome 

and expensive to perform. Remote sensing technology such as employed by Vrieling et al., (2013) 

provides alternatives to monitor changes in vegetation phenology induced by a climate with less 

cost implication and over a large spatial and temporal scale (Hong et al., 2014). 

2.2.3. A review of droughts and maize production in South Africa 

Drought is considered as a slow and creeping recurring natural phenomenon (Wilhite 2000), one 

of the most complex and damaging natural disaster, with its impacts cutting across different sectors 

of the economy, for example, agriculture, water, tourism, transport, energy, and ecosystem) (Yang 

et al., 2015). In particular, most rain-fed regions across the world suffer from drought-induced 

crop failure and water shortage problems (Grayson 2013; Zhang & Zhang 2016). In Africa, rain-

fed agriculture is viewed to be the most vulnerable sector to drought and its inherent impacts due 

to the aridity conditions (Wilhite 1992). Drought conditions in South Africa, particularly, has 

crippled major economic sectors, e.g. water resources and agriculture in and across different 

provinces (Botai et al., 2016; Botai et al., 2017). This section reports the overview of studies done 

in South Africa that relate to drought and maize production. Table 4 gives the summary of the 

reviewed studies. 

Al du Pisani (1987) used the CERES-MAIZE model as a potential tool for evaluating the effects 

of drought on the early stage of maize growing. Observed weather data of temperature and rainfall 

combined with median data was used to develop the model for predicting maize yield in response 

to drought conditions. The model was validated using yield data from various locations of different 

annual rainfall amount. The model was also evaluated for its sensitivity to planting dates and soil 

water parameters. The results of the model indicated a strong correlation between yield predictions 

using observed weather data combined with median data and a strong correlation between yield 

predictions using only observed weather data. 
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Table 2-4: Summary of literature reviewed on drought and maize production in South Africa 
Authors and year of 

publication 
Dataset Methods Key findings 

Al du Pisani 1987 

Maize yield, 

rainfall, 

temperature and 

median data 

CERES-MAIZE model 

The results of the model indicated a strong correlation between yield 

predictions using observed weather data combined with median data and a 

strong correlation between yield predictions using only observed weather 

data. 

Steynberg et al., 1989 
Maize yield, 

fertilizer 
pot experiment 

Maize yield response to drought stress. Variation in sensitivity was more 

evident in plants with deficient in the nutrient 

De Jager et al., 1998 
Southern 

oscillation index 
Spatial analysis (GIS) 

Maize yield forecasts, probabilities of non-exceedance and the demarcation 

of drought severity areas. 

Dube and Jury 2000 

Rainfall, 

temperature and 

NDVI 

Statistical analysis 

Drought in the study area have a 3 to 5-year cycle, the frequency and 

intensity of the drought have increased over the last three decades, extreme 

climatic events such as drought and floods account for about 50% of crop 

failure in KwaZulu-Natal and nearly 60% for the entire country. 

 

Mabhaudhi and Modi 

2010 

Landrace and 

hybrids maize 

Standard germination test and 

electrical conductivity 

Landraces may possibly have the similar viability as hybrids and a better 

tolerance to stress during early establishment of the crop 

Moeletsi et al., 2012 
Rainfall, 

temperature, maize 

Water Requirement Satisfaction 

Index (WRSI) 

Seasonal rainfall and the WRSI showed high interseasonal variability, 

while seasonal maize water requirements showed low variability 

Moeletsi et al., 2013 
climate and 

weather forecasts 
 

Prediction of drought index at different planting dates, and the onset of rains 

using climate and weather forecasts. 

Masupha et al., 2015 Daily rainfall Statistical analysis 

High probabilities of short dry spells regardless of the planting time across 

the study area. High risk of yield reduction was associated with plating after 

the first onset of rains, while it is less with planting after second and third 

onsets of rains. The best appropriate time for farmers to plant is between 

mid-November to mid-December in order to minimize the risk of yield loss 

and or reduction 

Mazvimbakupa et al., 

2015 

Landrace and 

hybrids maize 

Standard germination, electrical 

conductivity, and tetrazolium 

tests 

The study reported that landrace GQ2 performed similar to the hybrids, 

however, hybrids had a superior quality of seed compared to the landraces. 

Yield came out poorly under the controlled conditions for the two maize 

type. 

Masupha and Moeletsi 

2017 
Climate data  

Standardized precipitation 

evapotranspiration index 

There was at least one drought occurrence in every two growing seasons, 

there was no significant trends over the catchment but detected 1991/92 as 

the most extreme drought period over the period of study. The result further 

indicated that in the region of high and moderate rainfall, December is not 

ideal for the planting of a 120-day maturing maize as a result of extreme 

drought associated to the month and which coincides with the flowering to 
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Authors and year of 

publication 
Dataset Methods Key findings 

the grain-filling stage, while planting in October should be avoided in 

regions of low rainfall. 

Masupha and Moeletsi 

2018 

Precipitation, 

Potential 

Evapotranspiration 

(PET), soil 

Water Requirement Satisfaction 

Index (WRSI), Standardized 

Precipitation Evapotranspiration 

Index (SPEI) 

The study area experiences mild to moderate droughts, conditions are 

predicted to change to significantly drier conditions. 

Robert et al., 2018  CropSyst crop model 

The modified version of the CropSyst model predicted an increase of about 

30% for maize yield and showed a higher variability than the existing 

CropSyst version when forced with climate change projection scenarios, in 

addition to this there is an expected increase in drought severity and 

temperature increase at the horizons 2030 and 2050 whereby leading to 

decrease in maize yield.  

 

Robert et al., 2018 Maize cultivars Experimental plot 

Irrespective of the cultivar the effect of drought on grain yield was more 

noticeable beginning from the mid-vegetative to tasseling stages, the effect 

of flooding was more obvious for both cultivars at the early vegetative stage 

causing yield reductions.  
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Steynbery et al., in 1989 conducted a study on the sensitivity of maize to drought in relation to soil 

fertility and water stress at various growth stages. To determine drought sensitivity at differential 

soil fertilities, they grew the maize under controlled conditions in a pot experiment (four water 

stress treatments were applied). Steynbery et al., (1989) obtained soil from a fertilization trial field 

where soil fertility difference had been developed for about 45 years. The results indicate that 

maize yield response to stress as a result of the drought. Furthermore, maize deficient in Potassium, 

Nitrogen and Phosphorus seemingly had less tolerant to water stress conditions compared to the 

well fertilized plants. Agreeing with expectations, during the reproductive phase, plants were more 

drought sensitive than during the vegetative stage. Nevertheless, the variation in sensitivity was 

much more evident in plants with deficient in the nutrient. Steynbery et al., (1989) concluded that 

potassium, nitrogen and phosphorus played a crucial role in drought adaptation mechanisms for 

well-fertilized plants. 

De Jager et al., in 1998 developed a framework for forecasting the extent and severity of drought 

on maize in the Free State province of South Africa. Using the phase of the southern oscillation 

index, the system is able to map and qualify drought hazard in maize by running a maize crop 

growth models in GIS (geographic information system). The study area was mapped into 9800 

homogeneous natural resource zones. Maize yield forecasts were computed and were compared 

with long-term cumulative probability distribution functions of yield. Hence, probabilities of non-

exceedance of calculated and the demarcation of drought severity areas were done. Although the 

system is widely accepted and being used, the accuracy of the forecasted yield has not been 

performed. 

Dube and Jury in 2000 used long-term rainfall, temperature and satellite derived vegetation 

indices; the normalized difference vegetation index (NDVI) data to investigate climate variability 

over KwaZulu-Natal for about three decades.  The results indicate that drought in the study area 

has a 3 to 5-year cycle. Additionally, it is reported that the frequency and intensity of the drought 

have increased over the last three decades. The result further indicates that extreme climatic events 

such as drought and floods account for about 50% of crop failure in KwaZulu-Natal and nearly 

60% for the entire country. 

In 2010, Mabhaudhi and Modi explored the performance of local and hybrid maize at an early 

stage under two water stress regimes. The goal of the study was to make a comparison between 
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two local landraces (white (Land A) and dark red (Land B)) selections of maize and two hybrids 

(SC701 and SR52) prevalent among the KwaZulu-Natal small-scale farmers, in order to determine 

water stress tolerance and seed performance during seedling establishment. Mabhaudhi and Modi 

(2010) used electrical conductivity and standard germination test to assess the quality of seed under 

laboratory conditions. Mabhaudhi and Modi (2010) used pine bark at 25% and 75% field capacity 

(FC), respectively for a period of 21 days to perform seedling emergence in seedling trays. From 

their findings, all the seed types indicated high germination capability (>93%) with highly 

significant differences in all the varieties. Furthermore, Mabhaudhi and Modi (2010) discovered 

that in the two water stress regimes the hybrids varieties developed faster than the landrace 

varieties whereas the landraces did perform better than hybrids under stress situations. Mabhaudhi 

and Modi (2010) concluded their study indicating that there is the likelihood that landrace has 

similar viability as hybrids and a better tolerance to stress in the early stage of crop establishment. 

Moeletsi et al., (2012) used the Water Requirement Satisfaction Index (WRSI) at three different 

probability levels to quantify drought affecting rain-fed maize production in the Free State based 

on climate data from 227 weather stations. Results showed high spatial variability in the suitability 

of different areas: the southern and southwestern localities are unsuitable due to high drought 

incidences; the northern, central, and western regions are marginally suitable; the eastern, 

northern-eastern areas and a few patches in the northwest are highly suitable with relatively low 

drought severity. Moeletsi et al., (2012) indicated that proper choice of maize varieties to suit 

conditions at different localities is crucial. The Mann–Kendall test and coefficient of variation 

were further used to determine trends and temporal variability, respectively, in the WRSI, seasonal 

rainfall, and seasonal maize water requirements. Results of this analysis revealed no significant 

positive trends in the WRSI, no significant negative trends in seasonal rainfall, and no significant 

positive trends in maize water requirements, contradicting previous findings of increased drought 

severity. Seasonal rainfall and the WRSI showed high inter-seasonal variability, while seasonal 

maize water requirements showed low variability. In view of these observations, it is apparent that 

the realignment of management practices is an overdue prerequisite for sustainable maize 

production. 

Moeletsi et al., (2013) developed an agro-climatological risk tool for dryland maize production in 

the Free State Province of South Africa. The decision support tool comprises two major parts 

namely forecasting and climatological risk. The user is able to obtain drought stress risk for 100-
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day, 120-day and 140-day maize cultivars for planting windows beginning from October-January 

using the climatological risk component. Furtherly, the tool is capable of determining the best 

suitable planting dates based on the risk related to the climatology onset and cessation of both frost 

and rains. With the use of climate forecasts acquired from the national forecasting centers, drought 

index can be predicted at different planting dates providing valuable information for farmers 

required for planning towards the next season. The tool is equally capable of predicting the onset 

of rains using climate and weather forecasts.   

Masupha et al., (2015) investigated the occurrence of a dry spell in relation to maize growing 

season in the Luvuvhu River Catchment. Dry spells were categorized into three, namely, short, 

medium and long dry spells using daily rainfall data from 1945–2014 over 12 stations. Using the 

Spearman's rank correlation test to perform trend analysis on the frequency of dry spells per 

growing period the results indicated that, all the stations exhibit high probabilities of short dry 

spells regardless of the planting time. The result further indicates that the high risk of yield 

reduction was associated with planting after the first onset of rains, while it is less with plating 

after second and third onsets of rains. Masupha et al., (2015) concluded that it will be appropriate 

for farmers to plant between mid-November to mid-December in order to minimize the risk of 

yield loss and or reduction. 

Mazvimbakupa et al., (2015) conducted a study on the quality of seed and water use characteristics 

of maize landrace in comparison with some selected commercial hybrids. The purpose of their 

study was to evaluate seed quality alongside water use characteristics of two commercial hybrids 

(SC701 and PAN53) compared with two maize landraces (GQ1 and GQ2). Mazvimbakupa et al., 

(2015) used the tetrazolium, standard germination and electrical conductivity test to determine the 

quality of the seed in a controlled environment. The study reported that landrace GQ2 performed 

similar to the hybrids, however, hybrids had a superior quality of seed compared to the landraces. 

Mazvimbakupa et al., (2015) also discovered that yield came out poorly under the controlled 

conditions for the two-maize type. 

Masupha and Moeletsi in 2017 used climatic data from 7 weather stations from 1975 to 2014 to 

derive Standardized Precipitation Evapotranspiration Index (SPEI) in order to investigate drought 

frequency and severity analysis during the growing period of maize in the Luvuvhu River 

catchment area. Temporal variation of droughts was computed, and the Spearman's Rank 
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Correlation test was used to determine trends.  The results indicate that there was at least one 

drought occurrence in every two growing seasons. Masupha and Moeletsi (2017) reported that 

there were no significant trends over the catchment but detected 1991/92 as the most extreme 

drought period over the period of study. The result further indicated that in the region of high and 

moderate rainfall, December is not ideal for the planting of a 120-day maturing maize as a result 

of extreme drought associated to the month and which coincides with the flowering to the grain-

filling stage, while planting in October should be avoided in regions of low rainfall. 

Masupha and Moeletsi in 2017 analyzed the potential future droughts limiting maize production, 

in the Luvuvhu River catchment area of South Africa. They calculated the Water Requirement 

Satisfaction Index (WRSI) and the Standardized Precipitation Evapotranspiration Index (SPEI) in 

order to assess drought on a 120-day maturing maize crop spanning from 1980/81 to 2089/90. 

SPEI revealed that 40-54% of the agricultural seasons throughout the base period experienced mild 

drought conditions (SPEI 0 to -0.99), corresponding to a cessation of once in two seasons. 

Conversely, the results from WRSI evidently showed that station in the drier regions (that is areas 

with annual rainfall < 600 mm) of the catchment experienced mild drought (WRSI 70 -79) 

conforming to adequate crop performance every season. Masupha and Moeletsi (2017) result 

further revealed an overall mild to moderate droughts in the commencement of the near-future 

climate period (2020/21 to 2036/37) with SPEI values not diminishing below -1.5. However, the 

far-future climate period (2055/56 -2089/90) conditions are predicted to change to significantly 

drier conditions. Masupha and Moeletsi (2017) study made available information for farmers in 

the area as to how they can adequately prepare for the future agricultural season, and equally 

implement drought reduction strategies. 

Robert et al., (2018), modelled the impacts of extreme heat and drought on maize yield using an 

existing and modified version of CropSyst crop model. Robert et al., (2018) study was conducted 

over an experimental station where the models were calibrated and validated by using field data 

collected from 2004 to 2008. The results indicated a significant difference between the two 

versions of the model during extreme drought and heat events. The modified version of the 

CropSyst model predicted an increase of about 30% for maize yield and showed a higher 

variability than the existing CropSyst version when forced with climate change projection 

scenarios, in addition to this there is an expected increase in drought severity and temperature 

increase at the horizons 2030 and 2050 whereby leading to decrease in maize yield.  
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Robert et al., (2018), examined the response of maize yield to extreme events such as droughts 

and floods.  The study compared the growth, development, yield, yield components, and 

physiological responses of drought-tolerant PAN 413 and drought intolerant PAN 6Q-245 maize 

cultivars for a period of two years under flooding and drought conditions. Robert et al., (2018) 

reported that irrespective of the cultivar the effect of drought on grain yield was more noticeable 

beginning from the mid-vegetative to tasseling stages, with a difference of about 53-58% in the 

2015/2016 season and 34-42% in the 2016/2017 season from the control. In case of flooding for 

both cultivars, the effect was more obvious at the early vegetative stage having yield reductions 

oscillating between 26-30% in the 2015/2016 season and 15-21% in the 2016/2017 season. Robert 

et al., (2018) results also revealed that the two cultivars are susceptible to possible flooding events 

before the tasseling stage. Robert et al., (2018) recommended the development of maize cultivars 

by plant breeders that can tolerate numerous stress. 

In summary, the review indicates that although many studies have been undertaken in South Africa 

in response to drought occurrence, only a few of these studies have investigated the impacts of 

drought on maize. A total of 103 peer-reviewed published works on drought were reviewed. 

However, only 13 have direct application to maize production. Additionally, from the results of 

the review, the first set of published works were in 1987 and 1989. No other published work was 

picked up during the search until 1998 and 2000. With a number of studies on drought after the 

major drought periods of 1991/92, 1994/95, 2002/03 and subsequently leading to a spike in 

research, there was no significant number of researches on drought relating to maize production 

until 2010. The increase in drought-maize research is perceived to be due to increase frequency 

and evidence of the impact of drought on Agriculture and maize being a major staple food in the 

country. A total of 6 publications between 2015 till date; 2018 accounts for 46% of the total 

publication on drought-maize research; 2015(2), 2017(1) and 2018(3). Furthermore, while a few 

of the studies have adopted the use of existing crop models(2), others have explored drought 

indices such as the SPEI(2) and WRSI(2), geospatial technology(1) and other statistical approaches 

in providing solutions for a sustainable maize production under a climate change-induced drought 

conditions. Majority of the studies are field experimental based and conducted over a small area 

with the maize growing provinces, only 1 of the studies had considered data from several locations 

across the maize growing province. Hence, studies considering the overview of drought conditions 

and its impacts across the major maize growing provinces are lacking. The frequency, intensity 
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and duration of drought vary over South Africa (Rouault & Richard 2003) indicating that different 

mitigation and adaptation measures will be required. Therefore, studies on the impact of drought 

on maize yield across the maize producing regions of South Africa is imperative for adequate 

decision making towards sustainable food production and security.  

2.2.4. A review of artificial neural networks application to maize production in South Africa 

Maize yield prediction offers a platform for assessing, monitoring the performance of sown seeds. 

It also estimates its yields in response to all environmental and biological factors which includes 

farm management practices. The review of maize prediction in South Africa indicated that 

numerous crops yield estimated studies have been carried out using different approaches. For 

instance, Malherbe et al., (2014), used the seasonal forecasts of the SINTEX‐F coupled model 

estimate maize yield and streamflow over north‐eastern South Africa. Downscaled forecast for 

austral summer with a 1-month lead from a Global Coupled Model over a period of 28 years was 

used. The model serves as a starting point study for the development of a robust climate and 

environmental based model for estimating maize yield potential.  

Ngie and Ahmed in 2018 attempted to estimate maize yield using multispectral satellite data sets 

(SPOT 5) and the random forest algorithm. In their study, they used canopy reflectance acquired 

from a multispectral sensor to develop vegetation indices which served as input variables into an 

empirical pre-harvest maize yield prediction model in the northeastern section of Free State 

province, South Africa. Monitoring some fields in this region where maize is grown under rain-

fed conditions they were able to measure the grain harvested after 7-8 months. Prior to the grains 

harvested in July of 2014 a suitable medium resolution SPOT 5 images over the area was acquired 

in March and June, to estimate maize grain yields using the random forest algorithm predictive 

models and the March images. According to Ngie and Ahmed (2018) results from the two selected 

field, the regression analysis shows a good accuracy of high coefficient of determination values, 

low mean bias error and root mean squared error of prediction values for both fields. However, 

Ngie and Ahmed (2018) study’s limitation is that it is site-specific that is it does not cover the 

whole of South Africa. The use of remote sensing in this study offers the possibility of extending 

such work using phenological characteristics of maize growing fields. 

With just few studies on maize yield prediction, no study in South Africa has reported the use of 

the robust yet inexpensive advantage of machine learning systems such as the artificial neural 
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network (ANN). In ensuring that farmers particularly the rain-fed agricultural farmers adapts to 

climate change and avoid yield loss, there is a need for the development of a system that can be 

operationalized, easy to use and at a very cost-effective rate. The necessity for an intelligent system 

that can adequately predict crop yield has made ANN become a technology which offers a solution 

for the multifaceted problems in agricultural researches, particularly in the face of climate change 

(Alvarez 2009; Aditya et al., 2016). ANN can solve many complex problems that cannot be 

resolved by a linear system (Khairunniza-Bejo et al., 2014; Matsumura et al., 2015). Additionally, 

machine learning tools such as the ANN is a vital tool particularly for innovating and developing 

improved products for climate change vulnerable society (Khairunniza-Bejo et al., 2014). 

2.3. Conclusion 

Studies on maize production relating to climate change, drought, phenology and prediction in 

South Africa are reviewed.  The inclusion and exclusion criteria were used after searching through 

the ISI web of knowledge electronic database. All the articles reviewed suggest evidence of the 

negative impact of climate change and its associated derivatives such as drought on maize 

production. The review indicated a principal use of existing crop models such as CERES-Maize, 

AquaCrop, CropSyst, AgroMetShell and Ricardian models. The models are not locally designed 

but are customized and validated in most cases for their application over South Africa.  

Although, many of the reviewed literature has studied the relationship between maize yield and 

climatic variables, issues such as the inadequate input data at appropriate time and scale is a 

commonly reported limitation to many of the studies. In addition, the review of existing studies on 

climate-related studies on maize production indicated that only a few of the study has considered 

the influence of other agro-climatic variables such as such as potential evapotranspiration and soil 

moisture on maize. Furthermore, none of the existing studies has given a comparison of the effect 

of climate, phenology and drought over the major maize producing province of South Africa as 

many of the current studies were conducted over a small area of specific maize producing 

provinces. Consequently, there is no existing work indicating the principal climatic elements 

influencing maize production and to what degree across the maize producing areas. 

Studies have shown that the use of satellite derived data has the advantage of providing adequate 

data at ideal spatial and temporal resolutions for studies such as this. Climatic variables such as 
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rainfall, temperature and agro-meteorological variables such as potential evapotranspiration, soil 

moisture, NDVI can be derived from satellite data (Lee et al., 2010). This review reveals that 

despite the evident impact of climate change and other derivatives on maize production, there is 

no operationalized maize yield predicting system. The development of a predicting system is 

imperative to ensure food security for South Africa and mitigate its impact small-scale farmers 

and the rain-fed production system. 
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Abstract:  

This study analysed the variability of the agro-climatic parameters that impact maize production 

across different seasons in South Africa. To achieve this, four agro-climatic variables 

(precipitation, potential evapotranspiration, minimum and maximum temperatures) were 

considered for the period spanning 1986 – 2015, covering the North West, Free State, Mpumalanga 

and KwaZulu-Natal (KZN) provinces. Results illustrate that there is a negative trend in 

precipitation for North West and Free State provinces and positive trend in maximum temperature 

for all the provinces over the study period. Further more, the result showed that among other agro-

climatic parameters, minimum temperature had the most influence on maize production in North 

West, potential evapotranspiration (combination of the agro-climatic parameters), minimum and 

maximum temperature influenced maize production in KwaZulu-Natal while maximum 

temperature influenced maize production in Mpumalanga and Free State. In general, the agro-

climatic parameters were found to contribute 7.79 %, 21.85 %, 32.52 % and 44.39 % to variation 

in maize production during the study period in North West, Free State, Mpumalanga and KwaZulu-

Natal respectively. The variation in maize production amongst the provinces under investigation 

could most likely attributed to the variation in the size of the cultivated land among other factors 

including soil type and land tenure system. There were also difference in yield per hectare between 

the provinces; KwaZulu-Natal and Mpumalanga being located in the humid subtropical areas of 

South Africa had the highest yield per hectare 5.61 tons and 4.99 tons respectively while Free State 

and North West which are in the semi-arid region had the lowest yield per hectare 3.86 tons and 

3.03 tons respectively. Understanding the nature and interaction of the dominant agro-climatic 

parameters discussed in the present study as well as their impact on maize production will help 

farmers and agricultural policy makers to understand how climate change exerts its influence on 

maize production within the study area so as to better adapt to the major climate element that either 

increases or decreases maize production in their respective provinces. 

Keywords: Maize, production, yield, multivariate regression, climate variables 

3.0.  Introduction 

Change in climate has substantial impacts on human health, hydropower, food security, water 

resources and so on, at local and global scale (Magadza. 2000). Climatic parameters such as solar 

radiation, air humidity, precipitation, temperature, and wind speed, often determine the global 
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distribution and productivity of crops and livestock (Ajadi et al. 2011).  Hence, climate change 

and variability is foreseen to have direct and indirect effects on the existing agricultural production 

systems potentially threatening local, regional and/or global food security (Ajadi et al. 2011), 

depending on the spatial scale of the change. The trend and level of impact due to climate change 

and/or variability is region dependent (FAO 2013). In areas, where rainfall is the limiting factor 

for production, an increase in rainfall amount and distribution with little or no change in rainfall 

intensity and atmospheric temperature may increase crop yield. While excessive increase in 

rainfall intensity beyond the soil’s infiltration rate may lead to runoff losses and erosion (Hawkins 

1981) further negatively affecting agricultural production due to loss of the top fertile soil (Wenbin 

et al. 2015). Similarly, an increase in temporal rainfall amount beyond the soil’s capacity to retain 

water in the active root zone may lead to excessive nitrate leaching beyond the reach of the plant 

roots (Tesfamariam et al. 2015). Such excessive nitrate leaching beyond the crop root system leads 

to nitrogen deficiency (reduced crop production) and the leached nitrate may cause ground water 

contamination (Suresh et al. 2017). In contrast, a reduction in the amount and distribution of 

rainfall during the sensitive growth stages of crops has detrimental effects on crop yield 

(Tesfamariam et al. 2010). Similar to rain, a change in atmospheric temperature has its own impact 

on crop yield. For instance, an increase in temperature from 30 oC to ≥ 35 oC during the 

reproductive stage in most photoperiod sensitive crops will adversely affect the pollen viability, 

fertilization and consequently grain formation, hence lending to a decrease in productivity 

(Hatfield et al, 2008; 2011).   

 The impacts of climate change on crop production can no-longer be ignored as they have already 

become key areas of scientific concern (Yinhong et al. 2009). Such impacts are becoming 

increasingly significant in the arid and semi-arid areas, particularly in Africa, which comprises of 

66 % of the total land area, and harbouring approximately 200 million people (Molua et al. 2010). 

South Africa is a semi-arid country with about two-third of its land area receiving a mean annual 

rainfall of less than 500 mm (Durand 2006). More than a million people in South Africa are directly 

dependent on agriculture for their livelihood. Rainfall variability and high temperatures are 

currently the most significant elements of climate change in South Africa that are expected to have 

a severe impact on agriculture (Durand 2006, Botai et al. 2016). For instance, climate projection 

studies have indicated that the frequency of droughts is likely to increase spontaneously with a 

higher spatial variability in rainfall, consequently resulting in a negative effect on farm production 
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(IPCC 2007). Studies by Erasmus et al. (2000) on modelling future climate change in the Western 

Cape alluded that future climate change may lead to lower precipitation, implying that less water 

will be available for agriculture in the province and consequently leading to a negative effect on 

the farm economy. With an increase in mean temperature by 0.13 oC between 1960 and 2003 

(Kruger and Shongwe 2004), an expected further increase of 1.2 oC in 2020, 2.4 oC in 2050 also 

4.2 oC by the year 2080 and a projected rainfall decrease of about 5-10 percent in the next 50 years 

(Hewitson 1999; Durand 2006), South Africa is expected to have food insecurity soonest. 

Previous studies on the potential impact of climate change on field crop production in southern 

Africa indicated that different crops respond differently to the envisaged change in climate. 

(Schulze et al. 1993; Chipanshi et al. 2003; Fischer et al. 2005; Thornton et al. 2011). Schulze et 

al. (1993), developed an analysis tool to simulate primary productivity and crop yields under 

different climatic conditions in southern Africa. The results reported an overall increase in 

potential maize production that corresponds to an increased carbon dioxide and temperature 

conditions. Du Toit et al. (2001) assessed the vulnerability of maize production to climate change 

in South Africa and found that maize production in the country is characterized by high variations 

in crop yield that manifest from changes in seasonal precipitation. Gbetibouo and Hassan (2005) 

used a Ricardian model to assess the impacts of climate change on seven field crops (maize, wheat, 

sorghum, sugarcane, groundnut, sunflower and soybean) in South Africa. The authors reported 

that the production of field crops was sensitive to marginal changes in temperature than to changes 

in precipitation, whereby an increase in temperature positively affects the net revenue whereas a 

reduction in rainfall negatively affect the net revenue. Similar studies by Deressa et al. (2005) 

alluded that climate change has significant nonlinear impacts on the net revenue of sugarcane 

production in South Africa, with higher sensitivity to increasing temperature than precipitation. 

Maize is one of the rain-fed summer field crops grown in South Africa with a 3 % annual increase 

in demand (Durand 2006). In particular, maize production covers 58 % of the cropping area in 

southern Africa (Schulze et al. 1993), with South Africa producing 50 % of this main staple crop 

in the Southern African Development Community (SADC) region (Molua and Lambi 2006), hence 

making the country the major source of food in the region (FAO 2010). In addition, maize plays a 

crucial role in red-meat production by contributing up to 50 % of feedlot diet (Department of 

Agriculture, Forestry and Fisheries, 2015). Contributing about R9.4 billion per annum to the 

economy, it is conclusively acknowledged that maize production plays an essential role on the 
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South African economy in general and food security in particular. However, most (approximately 

60 %) of the maize is produced in the drier region of South Africa (Molua and Lambi 2006). The 

limiting factor to maize production in South Africa is water availability, whereby approximately 

60 % of this scarce resource are used for irrigation (James 2009). In particular, climate variability 

has a significant impact on maize production emanating from seasonal rainfall and temperature 

which are responsible for the shifting of the seasons. Such effects pose a potential threat to small 

scale farmers in South Africa as they are likely to face challenges of crop failures and reduced 

maize productivity which may consequently lead to hunger, malnutrition and spread of diseases 

(Wisdom et al. 2008; Jill et al. 2013).  

Generally, on-going climate change impacts will indisputably hamper agricultural output and 

contribution of the agricultural sector to South African’s Gross Domestic Production (GDP) and 

food security, and therefore potentially destabilizing not only the country but eventually the whole 

SADC region. This implies that, climate change influences on maize production in South Africa 

can no-longer be underestimated, given the ultimate consequences of such impacts. Despite 

numerous research studies on the impact of climate change on crop production in South Africa, 

most of these studies were models based (such as crop processing models, statistical models and 

econometric models). These models fail to determine the dominant weather variable(s) 

contributing to the change observed on maize production under different climate conditions. The 

aim of this study is to characterize the spatio-temporal agro-climatic patterns across the four South 

Africa maize producing provinces and to determine the most dominant climatic parameter 

influencing maize production in each of the provinces. Acknowledging that most of the climate 

variables are beyond the control of the farmers, this study seeks to contribute towards achieving 

proper climate adaptation practices by farmers, in a bid to minimize the adverse effects of climate 

change on maize production. To the best of our knowledge, this study is unique and rarely reported 

in the literature considering the study regions, the set of parameters selected and the analysis 

methodology adopted. 

3.1.  Study Area 

The study area covers Free State (FS), North West (NW), Mpumalanga (MP) and KwaZulu-Natal 

(KZN) provinces of South Africa, see Fig 1. The study area is located in the north-eastern part of 

South Africa between 22oE to 33oE and -32oS to -24oS longitude and latitude, respectively. The 
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four selected provinces are the largest producers of maize in the country, accounting for 

approximately 83% of the total production. The four regions can be further divided into the dry 

west and the wet east, whereby approximately 60 % of the maize produced is from the dry western 

areas the rest comes from the eastern areas. The Free State and North West provinces are the 

highest maize producers, contributing more than 60% of the total maize production in South 

Africa, followed by Mpumalanga (~24 %) and KZN (less than 5 %). South Africa’s climate 

conditions range from Mediterranean in the south-western corner of South Africa to temperate in 

the interior plateau and subtropical in the northeast, with small area in the northwest exhibiting a 

desert climate. According to Koppen climate classification (Kottek et al. 2006), shown in Table 1, 

climate conditions within the selected study region range between cold, temperate and subtropical 

conditions. Rainfall exhibit seasonal distribution, with all the four selected provinces receiving 

summer rainfall. In particular, the North West and Free State provinces receive total annual rainfall 

of less than 500 mm whereas Mpumalanga and KZN receive between 500 mm and 800 mm. The 

annual mean maximum temperature for the four provinces is 25 oC, while the annual mean 

potential evapotranspiration is 3.7 mm/day. 



100 
 

 

Figure 3-1: Map of seven Southern African countries with inset showing the provinces division 

Table 3-1: South African Koppen Climate Classification (Interpretation of Fig 1 legend) (Kottek 

et al. 2006). North West (NW), Mpumalanga (MP), KwaZulu-Natal (KZN) and Free State (FS) 

Provinces Description of the climate/ codes 
Annual Precipitation 

(mm) 

Annual Temperature oC 

Summer Winter 

NW 
Largely Semi-arid (BSwh, BSwk, Cwa & 

Cwb) 
250 - 500 17 - 31 3 - 21 

MP 
Largely Humid Subtropical (BSwh, 

Cwa, & Cwb) 
500 - 850 12 - 29 1 - 23 

KZN 
Largely Humid Subtropical (BSwh, Cfa, 

Cfb, Cwa, & Cwb) 
500 - 850 21 - 28 11 - 23 

FS Largely Semi-arid (BSwk, Cfb, & Cwb) 250 - 650 13 - 31 -2 - 16 

3.2. Data and Method 

3.2.1. Climate data 

This study analysed the latest updated gridded climate dataset, the Climate Research Unit Time-

Series 3.24.01 (CRU TS 3.24.01) for the period spanning 1986 – 2015. The CRU TS climate data 

are derived from monthly observations from more than 4000 meteorological stations distributed 

across the world’s land areas. The gridded CRU TS 3.24.01 product is freely available for science 

community on http://www.cru.uea.ac.uk or http://badc.nerc.ac.uk/data/cru. For more information 

http://www.cru.uea.ac.uk/
http://badc.nerc.ac.uk/data/cru
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on the construction of the CRU TS 3.24.01 product, the reader is referred to Harris et al. (2014). 

The climate variables included in the CRU TS 3.24.01 are the mean temperature, diurnal 

temperature range, precipitation, wet-day frequency, vapour pressure, and cloud cover. These 

climate variables were further used to arithmetically derive the monthly maximum and minimum 

temperature. For the purpose of this study, only four variables were analysed for the period 

spanning 1986 – 2015. These variables are precipitation (PRE), potential evapotranspiration (PET) 

(note* PET was calculated based on the Penman-Monteith formula (Howard Penman and John 

Monteith) using gridded daily mean temperature (TMP), monthly average daily minimum 

temperature (TMN), monthly average daily maximum temperature (TMX), vapour pressure (VAP) 

and cloud cover (CLD)) and monthly average daily maximum and minimum temperature, (TMX) 

and (TMN), respectively.  

3.2.2. Maize data 

Maize production data sets in tonnes (here after tons) for each selected province spanning from 

1986 to 2015 were obtained from the Abstract of Agricultural Statistics compiled by the 

Department of Agriculture, Forestry and Fisheries of South Africa. This abstract document 

contains important information on inter alia, field crops, horticulture, livestock, vital indicators 

and the contribution of primary agriculture to the South African economy. The analysed data are 

available on the department’s website, www.daff.gov.za. Additionally, total land area hectare (here 

after ha) cultivated for maize production in the provinces is only available from 2002 to 2015 and 

was acquired from Grain South Africa. Hence, total yield/ha was calculated (Production data in 

tons divide by Land cultivated in ha for 2002 to 2015). 

3.3. Methodology 

3.3.1. Spatial-temporal characteristics of agro-climatic parameters 

In this study, agro-climatic parameters, e.g. PRE, PET, TMX and TMN were analysed to 

understand the inherent spatio-temporal characteristics of each parameter. The statistical properties 

of the computed data series (that is PRE, PET, TMX, TMN, maize production and the average 

yield per hectare) were described based on the mean, standard deviation, and coefficient of 

variation as a measure of variability. This is presented in tabular format and boxplot. 
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3.3.2. Trends 

The processing of these agro-climatic parameters were performed by converting the monthly time 

series of climatic parameters into annual and seasonal data series across the four selected 

provinces. The monthly, annual and seasonal time series data were analysed to assess the trends 

of the agro-climatic parameters during 1986 – 2015. To compute the trends, the regional kendall 

test (rkt) package in R software was used, which helps to calculate the Mann-Kendall (MK) as 

well as the Seasonal and Regional Kendall Tests for trend (SKT and RKT) also the Theil-Sen’s 

slope. The three tests (MK, SKT and RKT) are usually used to test for monotonic trends (that is 

consistent increase or decrease trend over the years) in a time series data based on the kendall rank 

correlation. The RKT and SKT are intra-block tests in which test statistics are computed for each 

month or season (SKT) otherwise for each year (RKT) all combined in a single test (Marchetto et 

al. 2013). The two sided p-value from the result of this analysis is used to ascertain the significant 

difference in the monthly, seasonal and annual agro-climatic parameters as well as annual maize 

production. From the output we were able to determine which climatic parameter or maize 

production is statistically significant (p ≤ 0.05). In this method, the null hypothesis (H0), (rejected 

when p ≤ 0.05), is that there is no trend in the population from which the dataset is drawn. The 

alternative hypothesis (H1) is that there is a trend in the population. 

3.3.3. Seasonal variation 

In order to understand the impact of each agro-climatic parameter on maize production across 

different seasons, multiple coefficient of determination (r2) analysis was used. The r2 is a statistic 

that explains the amount of variance accounted for, in the relationship between two (or more) 

variables. Thus, given a paired of variables (𝑋𝑖, 𝑌𝑖), a linear model given in Equation (1) can be 

used to explain the relationship between the two variables, 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑒         Eq. 1 

where e is a mean zero error. The parameters of the linear model can be estimated using the least 

squares method and the estimated model can be denoted as per Equation (2), 

Ŷ = 𝜷0 + 𝜷1𝑋          Eq. (2) 

The sum of squared errors or residuals (SSE) and the total sum of squares (SST) in the Y are 

derived from Equation (3) and Equation (4), respectively 
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𝑆𝑆𝐸 = ∑ 𝑌𝑖
2 − 𝜷0 ∑ 𝑌𝑖 − 𝜷1 ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1       Eq. (3) 

and  

𝑆𝑆𝑇 = ∑ 𝑌𝑖
2 −

1

𝑛
(∑ 𝑌𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1        Eq. (4) 

The coefficient of multiple determination is given by Equation (5) 

𝑟2 =
𝑆𝑆𝑇−𝑆𝑆𝐸

𝑆𝑆𝑇
          Eq. (5) 

Equation (5) can also be expressed as a function of the sample cross-covariance as follows,  

𝑟2 =
𝑆𝑥𝑦

2

𝑆𝑥𝑥𝑆𝑦𝑦
=

(𝑋𝑌̅̅ ̅̅ −�̅��̅�)2

(𝑋2̅̅ ̅̅ −�̅�2)(𝑌2̅̅ ̅̅ −�̅�2)
        Eq. (6) 

where 𝑆𝑆𝐸 = 𝑛𝑆𝑦𝑦 − 𝑛
𝑆𝑥𝑦

2

𝑆𝑥𝑥
 and 𝑆𝑆𝑇 = 𝑛𝑆𝑦𝑦 

 Equation (6) corresponds to the square of the Pearson product moment correlation coefficient,  

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥√𝑆𝑦𝑦
=

∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛
𝑖=1

√∑ (𝑋𝑖−�̅�) ∑ (𝑌𝑖−�̅�)𝑛
𝑖=1

𝑛
𝑖=1

       Eq. (7) 

In this contribution, using the multiple coefficient of determination analysis given in Equation (6), 

we wish to characterize to which extent the agro-climatic variables (here represented by variable 

X) affect maize production in the four of the selected provinces in the same season. For this 

purpose, the selected seasons were December and January (DJ, also considered as the early phase), 

December, January and February (DJF, the middle phase), February and March (FM, the late 

phase) and November, December, January, February and March (NDJFM).  

3.3.4. Multivariate analysis 

Multivariate linear regression analysis of climatic variables (PRE, PET, TMN and TMX) and crop 

yield anomalies were calculated with the objective to describe the dependence of the maize 

production on the predictor variables (here selected as the agro-climatic variables). In particular, 

the multivariate regression analysis performed in this study can be explained by a linear model 

given in Equation (8). 

∆𝑌 = 휀 + (𝛼 × ∆𝑃𝑅𝐸) + (𝛽 × ∆𝑃𝐸𝑇) + (𝛾 × ∆𝑇𝑀𝑁) + (𝛿 × ∆𝑇𝑀𝑋)  Eq. (8) 
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where ΔY corresponds to the observed change in the yield as a result of precipitation, potential 

evapotranspiration and temperature (minimum and maximum) in the season as maize growth. In 

addition, ε is a constant and α, β, γ and δ are coefficients of the precipitation, potential 

evapotranspiration, minimum temperature and maximum temperature during the season, 

respectively. Furthermore, ΔPRE, ΔPET, ΔTMN and ΔTMX are the observed changes in 

precipitation potential evapotranspiration, minimum and maximum temperatures of the seasons, 

respectively, during 1986 – 2015.   

3.4. Results 

3.4.1. Spatial-temporal characteristics 

Table 2 provides a descriptive statistic of the mean value of maize production annually in tons 

(1986-2015), land area in ha (2002-2015), annual maize yield/ha (2002 to 2015) and the seasonal 

mean value (NDJFM) of selected agro-climatic parameters for four South African provinces 

spanning from 1986 to 2015. The maize production for Free State was the highest of all the four 

provinces with a mean production of about 3,365,400 tons (1986-2015) and a mean of about 

4,002,357 tons (2002-2015) from an area of about 1,036,000 ha. The annual average of maize yield 

for Free State province was 3.86 tons/ha (2002-2015). The province received an annual mean 

precipitation of 81.01 mm/month; mean potential evapotranspiration of 5.12 mm/day; and the 

minimum temperature and maximum temperature were 13.92 oC and 28.63 oC, respectively for 

NDJFM. North West had the second largest mean maize production of about 2,399,570 

tons/annum (1986-2015) and about 2,241,357 tons/annum (2002-2015) on a land area of about 

748,000 ha. The annual maize yield for North West was an average of 3.03 tons/ha (2002-2015). 

Between 1986 and 2015, North West province received an annual mean precipitation amount of 

74.84 mm/month; mean potential evapotranspiration of 5.25 mm/day; minimum temperature and 

maximum temperature of 16.36 oC and 30.72 oC respectively during NDJFM. In Mpumalanga 

province, the annual mean maize production was about 2,104,730 tons (1986-2015) and 2,400,857 

tons (2002-2015) on mean land area of about 484,000 ha. The province has an annual average of 

maize yield of 4.99 tons/ha making it the second largest province in maize yield/ha.  During the 

whole period under investigation, Mpumalanga recorded an annual mean precipitation of about 

130.42 mm/month; potential evapotranspiration of 3.81 mm/day; minimum temperature of about 

14.02 oC and maximum temperature of 25.25 oC during the NDJFM months. KwaZulu-Natal 
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recorded the lowest mean maize production of about 380,800 tons (1986-2015) and 463,429 tons 

(2002-2015) with an average land area of 82,000 ha (2002-2015). The province has the highest 

maize yield with an average of 5.61 tons/ha.  For the period understudy, KZN received a mean 

annual precipitation of 124.37 mm/month; potential evapotranspiration of 3.88 mm/day; minimum 

temperature of 15.88 oC and maximum temperature of 26.74 oC. 

Considering the  variation in maize production and the agro-climatic parameters from the mean 

values in table 2 (variance) and Fig 3 (box plot), maize in Free state had the highest level of 

variation with a variance of 1,476,903, followed by North West (715,721.7), Mpumalanga 

(283,016.8) and KwaZulu-Natal (10,408.8) recorded the lowest variation. Likewise, there is great 

difference in the maize yield value across the provinces (Fig 2).  

Agro-climatically, high variation in precipitation is noticed in Mpumalanga (864.89) when 

compared to the other three provinces (Table 2 and Fig 2). For potential evapotranspiration, North 

West and Free State experienced almost the same high level of variation (0.07 and 0.06 

respectively) within the provinces compared to the other two provinces. In the case of minimum 

temperature and maximum temperature Free State exhibited the highest variability compared to 

the other provinces.   

Furthermore, the precipitation values for Mpumalanga and KwaZulu-Natal were almost equal, this 

could be attributed to the fact that they are in the same climatic zone (Humid Subtropical). 

Similarly, North West and Free State provinces which have semi-arid climatic conditions exhibit 

same first order statistical moment. For instance, the potential evapotranspiration mean values of 

Mpumalanga and KwaZulu-Natal are similar and that of North West and Free State are similar as 

well. But minimum and maximum temperature values, the results are contrasting across the 

provinces. 

Table 3-2: Maize yield and selected agro-climatic parameters for four South Africa provinces. 

precipitation (PRE) mm/month; potential evapotranspiration (PET) mm/day; monthly average 

daily minimum temperature (TMN) oC; monthly average daily maximum temperature (TMX) oC 
Table 2a: North West  Table 2b: Mpumalanga 

Variable Mean STD Variance  Variable Mean STD Variance 

Maize Prod 2399.57 846 715721.7  Maize Prod 2104.73 532 283016.8 

PRE 74.84 18.93 308.32  PRE 130.42 29.41 864.89 

PET 5.25 0.27 0.07  PET 3.81 0.18 0.03 

TMN 16.36 0.52 0.27  TMN 14.02 0.42 0.18 

TMX 30.72 1.05 1.10  TMX 25.25 0.79 0.63 

Land 747.79 179.21 32116.49  Land 484.21 58.17 3384.18 
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Maize Yield 3.03 0.77 0.60  Maize Yield 4.99 0.95 0.91 

Table 2c: KwaZulu-Natal  Table 2d: Free State 

Variable Mean STD Variance  Variable Mean STD Variance 

Maize Prod 380.8 102 10408.8  Maize Prod 3365.4 1215.3 1476903 

PRE 124.37 23.83 567.84  PRE 81.01 19.40 376.22 

PET 3.88 0.17 0.03  PET 5.12 0.25 0.06 

TMN 15.88 0.40 0.16  TMN 13.92 0.65 0.43 

TMX 26.74 0.6 0.36  TMX 28.63 1.06 1.11 

Land 82.48 8.45 71.36  Land 1035.79 200.83 40333.26 

Maize Yield 5.61 0.61 0.37  Maize Yield 3.86 0.73 0.53 

 

 
Figure 3-2: Overall median properties of Potential evapotranspiration (mm/day), Precipitation 

(mm), Minimum temperature and Maximum temperature (oC) (1986-2015): Maize yield is 

compared for 2002-2015 

Shown in Fig 3 is the variation in maize production against cultivated land for maize from 2002-

2015. The figure depicts that there is a similar pattern noticed between maize production (tons) 

and amount of cultivated land (ha). Increase in cultivated acreage to depicts increase in production 

across all provinces and vice versa. This is to say that when more land is cultivated for maize 

production there is an increase in the maize production and when less portion of land is cultivated, 
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production tends to reduce. There is a strong positive correlation of 0.77 and 0.84 between maize 

production and cultivated land for maize in Free State and KZN respectively. While a moderate 

positive relationship (0.55) in North West and a weak positive relationship (0.33) in Mpumalanga 

exist between maize production and acreage. This similar variation in production and cultivated 

land can be held to be the same for previous years (1986-2001) in which cultivated land data is not 

available at provincial level. Hence, agro-climatic parameters can be said to be comparable with 

production data if land is held in constant variation with production. 

 
Figure 3-3: Variation in maize production and acreage (Plot of time series of maize production 

(tons) on left Y-axis (Red line) and time series of cultivated land for maize (h) (right Y-axis) 

(dashed Blue line) 2002-2015) 

3.4.2. Trend analysis 

For the 30-year study period, the monthly values (Fig 4a) shows that there is a negative trend in 

precipitation across the four provinces. Precipitation in North West decreased by 0.0018 

mm/month, Mpumalanga by 0.012 mm/month, KwaZulu-Natal by 0.0062 mm/month and in Free 

State by 0.0135 mm/month. On the other hand, there is positive trend in potential 

evapotranspiration in all the provinces, indicating that North West’s PET increased by 0.0009 
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mm/day, Mpumalanga and KwaZulu-Natal by 0.0004 mm/day and Free State by 0.0007 mm/day. 

Similarly, maximum temperature increased in North West by 0.0059 oC, Mpumalanga by 0.0032 

oC, KwaZulu-Natal by 0.0029 oC and Free State by 0.0046 oC. The minimum temperature 

exhibited different patterns in trends among the provinces:   it showed increasing trend in North 

West by 0.0006 oC, declining trend in Mpumalanga by 0.0004 oC and no change in KwaZulu-Natal 

and in Free State.   

On seasonal time scales, shown in Fig 4b, the result indicates a negative trend in the precipitation 

received in North West and Free State (decrease of 0.35 mm/month and 0.04 mm/month 

respectively) while precipitation for Mpumalanga and KwaZulu-Natal (increase of 0.38 

mm/month and 0.27 mm/month respectively) had a positive trend. On other hand, maximum 

temperature had a positive trend in all the provinces; North West increased by 0.054 oC, 

Mpumalanga by 0.036 oC, KwaZulu-Natal by 0.034 oC and Free State by 0.028 oC. Similarly, 

potential evapotranspiration had a positive trend for all the provinces where North West increased 

by 0.0113 mm/day, Mpumalanga by 0.004 mm/day, KwaZulu-Natal by 0.005 mm/day and Free 

State by 0.006 mm/day. Minimum temperature exhibited a different pattern in trends among the 

provinces: it showed an increase in TMN for North West, Mpumalanga and KwaZulu-Natal by 

0.01 oC, 0.0009oC and 0.0002 oC respectively while the minimum temperature for Free State 

decreased by 0.006 oC during the study period. 

Furthermore, as shown in Fig 4c, the annual values of precipitation decreased in all the provinces; 

North West by 0.255 mm/month, Mpumalanga by 0.192 mm/month, KwaZulu-Natal by 0.235 

mm/month and Free State by 0.341 mm/month. Maximum temperature increased over the years 

for all the provinces (North West by 0.064 oC, Mpumalanga by 0.04 oC, KwaZulu-Natal by 0.0375 

oC and Free State by 0.054 oC). Potential evapotranspiration had a positive trend in all the 

provinces. There was an increase of about 0.01 mm/day in North West, 0.006 mm/day in 

Mpumalanga, 0.0053 mm/day in KwaZulu-Natal and 0.0083 mm/day in Free State. In addition, 

annual minimum temperature values increased in North West and Free State by 0.0067 oC and 

0.01oC respectively and decreased by 0.0075 oC in Mpumalanga and 0.0011oC in KwaZulu-Natal. 



109 
 

 
Figure 3-4: Trends of Precipitation (mm/month), Potential evapotranspiration (mm/day), 

Minimum and Maximum Temperature (oC) (1986-2015) at (a) monthly, (b) seasonal (NDJFM), 

(c) annual time series and (d) annual maize production trend (tons/year) 

Moreover, the result of the analysis as shown in Fig 4d, indicates that there is a decreasing trend 

in annual maize production in North West by 22 tons/year. However, an increasing trend in annual 

maize production of about 30.87 tons/year, 8.57 tons/year and 87.88 tons/year are observed in 

Mpumalanga, KwaZulu-Natal and Free State respectively over the study period. 

Table 3 depicts the significant level of the agro-climatic parameters across different time scale for 

the 30 years of study. Based on the p-value in Table 3, for all the agro-climatic parameters there 

is no significant difference in the monthly values (since all the values are greater than 0.05) except 

for maximum temperature which has a notable difference in the parameters for all the provinces 

(North West 0.003, Mpumalanga 0.013, KwaZulu-Natal 0.018 and Free State 0.034). This means 

that the monthly values for all the agro-climatic parameters are similar except for maximum 

temperature whose values differs significantly. 
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Table 3-3: The significance of linear trends in agro-climatic parameters (Precipitation (PRE); 

Potential Evapotranspiration (PET); monthly average daily minimum temperature (TMN); 

monthly average daily maximum temperature (TMX)) across different time scales for South 

African provinces (North West (NW); Mpumalanga (MP); KwaZulu-Natal (KZN); Free State (FS) 

from 1986-2015) 

On the seasonal scale, maximum temperature for all the provinces exhibited significant difference 

(North West (0.01), Mpumalanga (0.04), and KwaZulu-Natal (0.01)) except for Free State (0.16) 

which had no notable difference. Potential evapotranspiration differed significantly only in North 

West (0.03) while the other provinces had no significant difference. Precipitation and minimum 

temperature in all the provinces had no notable difference during the rainy season. There was 

variation in the annual maize production values in all the provinces (Mpumalanga 0.005, 

KwaZulu-Natal 0.0001 and Free State 0.0057) for the period of study, except North West which 

had no substantial difference in its maize production. This means that the maize production values 

are not the same for the period of study expect for North West which had similar values. 

3.4.3. Seasonal Variability 

In this section we aim to determine the relationship between maize production and climatic 

variables across different seasons. The results for this analysis are summarized in Table 4. As 

shown in Table 4, there is a strong relationship between maize production and agro-climatic 

parameters in North West (approximately 4 % of variance in maize production can be explained 

Provinces Variables 
Monthly Seasonal (NDJFM) Annual 

p-value Sign. p-value Sign. p-value Sign. 

NW 

PRE 0.45 No 0.35 No 0.25 No 

PET 0.11 No 0.03 Yes 0.0002 Yes 

TMN 0.78 No 0.40 No 0.57 No 

TMX 0.003 Yes 0.01 Yes 0.00001 Yes 

Maize     0.37 No 

MP 

PRE 0.45 No 0.59 No 0.54 No 

PET 0.16 No 0.28 No 0.02 Yes 

TMN 0.80 No 0.96 No 0.32 No 

TMX 0.01 Yes 0.04 Yes 0.002 Yes 

Maize     0.005 Yes 

KZN 

PRE 0.78 No 0.52 No 0.41 No 

PET 0.16 No 0.17 No 0.02 Yes 

TMN 0.92 No 0.87 No 0.89 No 

TMX 0.02 Yes 0.01 Yes 0.001 Yes 

Maize     0.0001 Yes 

FS 

PRE 0.27 No 0.94 No 0.18 No 

PET 0.24 No 0.29 No 0.03 Yes 

TMN 0.97 No 0.63 No 0.51 No 

TMX 0.03 Yes 0.16 No 0.003 Yes 

Maize     0.0057 Yes 
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from potential evapotranspiration in the area, precipitation explains 1% while maximum 

temperature explains 0.72 % of the maize production) during December January (DJ) growing 

season.  

For February March season there was strong relationship between maize production and agro-

climatic parameters in Mpumalanga (approximately 17 % of potential evapotranspiration 

explained the variation in maize production in the area, precipitation explained 12 %, minimum 

temperature explained 2% and maximum temperature explained 24.7 % the variability in maize 

production).  

Similarly, in KwaZulu-Natal Potential evapotranspiration explained approximately 12 % of the 

variation of maize production in the province, precipitation explained 4 %, minimum temperature 

explained 3 % and maximum temperature explained 23 % of the variation of the maize production 

in the province. For Free State, potential evapotranspiration and precipitation explained 

approximately 9 % of the variability in maize production, minimum temperature explained 5 % 

and maximum temperature explained 19 % of the variability in maize production.  

Table 3-4: Influence of the Agro-climatic Parameters on Maize Yield across Seasons. Precipitation 

(PRE); Potential Evapotranspiration (PET); monthly average daily minimum temperature (TMN); 

monthly average daily maximum temperature (TMX); North West (NW); Mpumalanga (MP); 

KwaZulu-Natal (KZN); Free State (FS); December January (DJ); December January February 

(DJF); February March (FM); November December January February March (NDJFM) 

Variabl
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PET 4.4 5.6 3.7 
1.

0 
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3 
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4 
12.3 9 0.8 

14.

7 
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0 
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3.7 8.8 0.5 8 0.0 0.7 

TMN 0.2 0.5 2.8 
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2.2 0.5 0.7 1 

11.

5 
1.6 3.3 5.1 5.3 0.9 0.3 0.0 

TMX 0.7 
13.

3 
14.8 

2.

1 
0.2 20 19.5 

6.

5 
0.0 

24.

7 
23.2 

18.

6 
0.0 24 22 

12.

2 

3.4.4. Multivariate analysis 

In this study, a multivariate regression model was used to assess the impact of climate change 

based on seasonal PRE, PET, TMN and TMX variables on maize production where land is held in 

constant variation with production. In particular, the linear relationship developed in this analysis 

was to determine the maize production change due to changes in the four climate variables during 

1986 – 2015, using the seasonal values since maize is grown during this period in South Africa. 
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The relationships were derived based on Equation (8). The multivariate regression analysis results 

are summarized in Table 5. Based on the results presented in Table 5, the model is able to describe 

the predisposing factors for variations in the maize production ranging from 44.39 % (0.4439) in 

the KwaZulu-Natal province to only 7.79 % (0.0779) in North West. Additionally, the p-values 

indicate that the influence of climate on the production of maize is significant in potential 

evapotranspiration (0.04), minimum temperature (0.02) and maximum temperature (0.0005) for 

KwaZulu-Natal as well maximum temperature for Mpumalanga (0.02) as their p values are greater 

than the significant level (p ≥ 0.05).   

As shown in table 5, from 1986 to 2015 an estimated decrease in maize production of about 

1480.94 tons was observed for North West province when the values of PET, PRE, TMN and 

TMX are at their average (that is when PET is 5.25 mm/day, PRE is 74.84 mm/month, TMN is 

16.36 oC and TMX is 30.72 oC (Table 2)). However, one percent increase in potential 

evapotranspiration (which is the combination of the other parameter) lead to a decrease of about 

852.32 tons in maize production. One percent increase in precipitation (rainfall intensity) lead to 

decrease in maize production by 3.76 tons. Also, one percent increase in minimum temperature 

lead to an increase in maize production by 420.86 tons. Likewise, one percent increase in 

maximum temperature lead to an increase in maize production by 58.07 tons. However, the agro-

climatic parameters predicted 7.79 % of the maize production. 

For Mpumalanga province an estimated decreased in maize production for about 3535.36 tons was 

observed when the average of the four agro-climatic parameters are considered (that is when PET 

is 3.81 mm/day, PRE is 130.42 mm/month, TMN is 14.02 oC and TMX is 25.25 oC). One percent 

increase in potential evapotranspiration (combination of the other agro-climatic parameter) lead to 

a decrease of about 1751.44 tons of maize and also one percent increase in precipitation (rainfall 

intensity) lead to an increase in maize production by 0.56 tons. Furthermore, one percent increase 

in minimum temperature lead to a decrease of about 436.04 tons of maize and maximum 

temperature lead to an increase in maize production by 726.65 tons. In general, agro-climatic 

parameters only predicted about 32.52% of the maize production in the province (Table 5). 

Maize production in KwaZulu-Natal decreased by 2317.28 tons when the average of agro-climatic 

parameters (PET (3.88 mm/day), PRE (124.37 mm/month), TMN (15.88 oC) and TMX (26.74 oC)) 

are considered (Table 5). However, there is a decrease of 395.16 tons and 115.81 tons in maize 
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production when potential evapotranspiration (combination of the other parameters) and minimum 

temperature are increased by one percent respectively. On the other hand, one percent increase in 

precipitation and maximum temperature lead to increase of about 1.50 tons and 220.06 tons 

respectively in maize production. Agro-climatic parameters predicted 44.39 % of maize production 

in the province. 

Considering the average of the four agro-climatic parameters (PET (5.12 mm/day), PRE (81.01 

mm/month), TMN (13.92 oC), TMX (28.63 oC)), a decrease of about 14498.24 tons is observed in 

Free State (Table 5). One percent increase in potential evapotranspiration and minimum 

temperature lead to a decrease of about 1989.49 tons and 531.10 tons of maize production 

respectively. For precipitation and maximum temperature one percent increase lead to an increase 

of about 18.55 tons and 1185.38 tons in maize production respectively. However, the four agro-

climatic parameters only predicted 21.85 % of maize production for Free State. 

Overall, Table 5 depicts that, minimum temperature had the most influence on maize production 

for the study period in North West since it had the least p-value (0.32). Maximum temperature 

however had a notable influence on maize production in Mpumalanga (p < 0.05). For KwaZulu-

Natal, potential evapotranspiration, minimum temperature and maximum temperature are the most 

influencing parameters. The most influential agro-climatic parameter to maize production in Free 

State is maximum temperature as it had the lowest p-value. 

Table 3-5: Coefficients of the model. Precipitation (PRE) in mm/month; Potential 

Evapotranspiration (PET) in mm/day; monthly average daily minimum temperature (TMN) in oC; 

monthly average daily maximum temperature (TMX) in oC; Maize tons; KwaZulu-Natal (KZN) 

Province Crop Constant 
PET (p-

value) 

PRE (p-

value) 
TMN (p-value) 

TMX (p-

value) 
R2 

North West Maize -1517.41 
-852.32 

(0.58) 
-3.76 (0.77) 

420.86 

(0.32) 

58.07 

(0.89) 
7.79 

Mpumalanga Maize -3535.36 
-1751.44 

(0.17) 
0.56 (0.89) 

-436.04 

(0.12) 
726.65 (0.02) 32.52 

KZN Maize -2317.28 
-395.16 

(0.04) 
1.50 (0.06) 

-115.81 

(0.02) 

220.06 

(0.0005) 
44.39 

Free State Maize 
-

14498.24 
-1989 (0.40) 18.55(0.23) -531.10 (0.19) 

1185.38  

(0.06) 
21.85 

Regression models for predicting maize yield from a new set of the four agro-climatic parameters 

values from equation 8 and Table 5: 

NW: Y = -1517.41 + (-3.76*PRE) + (-852.32*PET) + (420.86*TMN) + (58.07*TMX) 

MP: Y = -3535.36 + (0.56*PRE) + (-1751.44*PET) + (-436.04*TMN) + (726.65*TMX) 
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KZN: Y = -2317.28 + (1.50*PRE) + (-395.16*PET) + (-115.81*TMN) + (220.06*TMX) 

FS: Y = -14498.24 + (18.55*PRE) + (-1989*PET) + (-531.10*TMN) + (1185.38*TMX) 

3.5. Discussion 

Maize is the most important grain crop grown in South Africa, despite the fact that South Africa 

is largely arid and semi-arid. However, the success in South Africa maize production depends on 

various factors, including weather and climate conditions. This study investigated the impact of 

PRE, PET, TMN and TMX climate variables on maize production in the North West, Free State, 

KwaZulu-Natal and Mpumalanga provinces, South Africa. The land cultivated for maize 

production during 2002-2015 was on average of about 1,036,000ha in Free State, 748,000ha in 

North West, 484,000ha in Mpumalanga and about 82,000ha in KwaZulu-Natal. Generally, the 

total provincial maize yield from KwaZulu-Natal was low, mainly due to the smaller land used for 

maize cultivation compared to the other provinces, most of the cultivated land in this province is 

under sugarcane production. Nonetheless, the maize yield per given unit land size was highest in 

KwaZulu-Natal due to favourable climate for maize production. On the other hand, the highest 

provincial maize yield was harvested from Free State due to the largest land used for the production 

of maize but the yield per unit area was the smallest among the provinces (Table 2).   

Areas in the same climatic zone had similar agro-climatic parameters, except for maximum 

temperature in North West for the study period (1986-2015) which is different from that of Free 

State even though they are both in the same climatic zone (Table 2 and Fig 2). A noticeable 

disparity in the variation of the agro-climatic parameters among all the provinces is evident. For 

instance precipitation in Mpumalanga varies more than the other provinces, while the North West 

exhibits the greatest variability in potential evapotranspiration and maximum temperature. And 

the minimum temperature in Free State varied more than the other provinces. In case of maize 

production there is dissimilarity in the variation pattern within and among the provinces. The high 

variation in precipitation (Table 2) which happen to be the most influencing agro-climatic 

parameter in North West (Table 5) coupled with the high fluctuation in maximum temperature 

which went as high as 35 oC for some months could have contributed to the reduction in maize 

yield (negative trend, Fig 4d).    

The recent drought that affected numerous sectors in the country is more evident across the study 

area, with most of these regions depicting a decrease in precipitation and an increase in potential 
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evapotranspiration and maximum temperature (Fig 4), which is detrimental to crop production. 

The increase in the annual potential evapotranspiration and maximum temperature value is notable 

in all the provinces. The increase in the monthly potential evapotranspiration is subtle while there 

was significant increase in the monthly maximum temperature for all the provinces. The seasonal 

values showed notable increase in the potential evapotranspiration of North West and maximum 

temperature for all the provinces except Free State which had no significant increase in the 

maximum temperature.  

From Table 4 the most significant season that impacts maize production differs from province to 

province. For instance, DJ favours maize production in North West province more than the other 

seasons. This could be attributed to the peak precipitation that is received during this season. This 

is also the planting season or germination stage when maize requires a warm and moist conditions 

for seedlings to emerge quickly (Jean 2003). For the other province (that is Mpumalanga, 

KwaZulu-Natal and Free State) however, FM months are more crucial to maize production. In 

order to enhance productivity farmers should regulate their planting time.  

It is however important to note that aside from the agro-climatic parameters other factors which 

influence maize production in the provinces include land available for production, farm 

management decisions, government decision, topography, soil type and so on. From the time series 

analysis of production plotted against cultivated land (Fig 3), it can be deduced that production 

increases with increasing cultivated or available land and vice versa. 

In North West and Free State provinces the agro-climatic parameters contribute about 7.79 % and 

21.85 % respectively to maize production whereas in Mpumalanga and KwaZulu-Natal, the agro-

climatic parameters contribute 32.52 % and 44.39 % of maize production. For North West, the 

minimum temperature has more influence on the maize production than the other agro-climatic 

parameters (Table 5), manipulating time of planting will help reduce the effect of minimum 

temperature on the maize production. In the case of Mpumalanga and Free State, maximum 

temperature has more influence on maize production than the other parameters. For KwaZulu-

Natal (humid-subtropical) PET which is the combination of the other agro-climatic parameters, 

minimum temperature and maximum temperature influences maize production. The use of 

conservation agriculture and high yielding maize varieties will benefit the farmers to increase 

maize production. In Free State province, the maximum temperature is found to influence maize 
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the most. Identifying drought tolerant maize varieties will improve adaptive capacity of the farmers 

in the province. We can conclude that maximum and minimum temperature influences maize 

production positively in all the provinces. But for KwaZulu-Natal more than one agro-climatic 

parameter influences maize production and the other two parameter (that is PET and TMN) which 

significantly influence maize production in the province had a negatively influence.    

3.6. Conclusions 

Many of the previous studies on the impact of climate change on crop production in South Africa 

have utilized methodologies such as crop processing, statistical and econometric models. Thus far, 

the body of literature focusing on determining a suite of agro-climatic parameters influencing 

maize production has largely remained in-exhaustive. This study contributes to this vital topic 

through investigating the most dominant climatic variables that influence maize yield in four 

provinces of South Africa. It is evident from this study that in the context of global change, increase 

in temperature leads to higher rate of evapotranspiration. On the other hand, decrease in 

precipitation leads to prolonged drought conditions which impact negatively on maize production. 

According to the South African Weather Service, there had been approximately 8 summer-rainfall 

seasons which had been 80 % less than normal in South Africa between July 1960 and June 2004. 

To combat this, farmers in Mpumalanga and KwaZulu-Natal could practise conservation 

agriculture whereby mechanical disturbance of soil is reduce and suitable variety of crops are 

grown. Furthermore, farmers in humid-subtropical areas of KwaZulu-Natal and Mpumalanga 

should get involved more in maize production since these areas favour maize yield per hectare 

more compared to the semi-arid areas (that is Free and North West). Additionally, identification 

of suitable maize varieties that tolerate frost for North West and drought and heat wave for Free 

State can be of great help. A limitation to this study is the non-availability of data on the cultivated 

land size covering the same time span of other data sets. This would have helped in making a time 

series comparison with maize yield and agro-climatic variables. However, the land data (2002-

2015) indicated that there is strong similarity between cultivated land and production. This can be 

taken to be true for the previous years where data was not available. Finally, further studies are 

recommended to investigate the influence of other non-climatic factors such as farmers’ decision-

making process, who may or not have been informed due to access to information on climate 

change among other factors. 
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Abstract:  

Changes in phenology can be used as a proxy to elucidate the short and long term trends in climate 

change and variability. Such phenological changes are driven by weather and climate as well as 

environmental and ecological factors. Climate change affects plant phenology largely during the 

vegetative and reproductive stages. The focus of the study was to investigate the changes in 

phenological parameters of maize as well as to assess their causal factors across the selected maize 

producing Provinces (viz: North West, Free State, Mpumalanga and KwaZulu-Natal) of South 

Africa. For this purpose, five phenological parameters i.e. the length of season (LOS), start of 

season (SOS), end of season (EOS), position of peak value (POP), and position of trough value 

(POT) derived from the MODIS NDVI data (MOD13Q1) were analysed. In addition, climatic 

variables (Potential Evapotranspiration (PET), Precipitation (PRE), Maximum (TMX) and 

Minimum (TMN) Temperatures spanning from 2000 to 2015 were also analysed. Based on the 

results, the maize producing Provinces considered exhibit a decreasing trend in NDVI values. The 

results further show that Mpumalanga and Free State Provinces have SOS and EOS in December 

and April respectively. In terms of the LOS, KwaZulu-Natal Province had the highest days (194) 

followed by Mpumalanga with 177 days  while North West and Free State Provinces had 149 and 

148 days respectively. Our results further demonstrate that the influences of climate variables on 

phenological parameters exhibit a strong space-time and common covariate dependence. For 

instance, TMN dominated in North West and Free State, PET and TMX are the main dominant 

factors in KwaZulu-Natal Province whereas PRE highly dominated in Mpumalanga. Furthermore, 

the result of the Partial Least Square Path Modeling (PLS-PM) analysis indicates that climatic 

variables predict about 46% of the variability of phenology indicators and about 63% of the 

variability of yield indicators for the entire study area. The goodness of fit index indicates that the 

model has a prediction power of 75% over the entire study area. This study contributes towards 

enhancing the knowledge of the dynamics in the phenological parameters and the results can assist 

farmers to make the necessary adjustment in order to have an optimal production and thereby 

enhance food security for both human and livestock. 

Keywords: Phenology; Maize; MODIS; NDVI; Climate; Variation  

 



123 
 

4.0. Introduction 

Phenology studies the seasons and cycle of natural phenomena controlled by both climatic and 

environmental factors [1]. It determines the duration and time taken by plant canopy to be 

photosynthetically active and equally drives the annual uptake of carbon in an ecosystem [2,3]. It 

also indicates long-term trends in climate as well as short-term climatic variation as it is driven by; 

precipitation, photoperiod and temperature [4]. Climate change occurs at both global and regional 

level and it significantly affects vegetation dynamics through the increasing global mean 

temperature and change in the precipitation regimes [5]. Consequently, climate change affects the 

plant phenology due to its influence on the flowering time and the other plant developmental stages 

[6]. The changes in vegetation phenology in the past decades, detected from both ground 

observation and satellite remote sensing phenological methods has drastically drawn the attention 

of scientific community to plant phenology [7,8]. 

Although first-hand phenology information are assessed with the ground observation phenological 

methods [9] but the major hitch of these methods, is that they are localized, lacking global 

coverage, covering limited number of species and highly labour intensive [10]. However, modern 

remote sensing techniques provides a promising option and new opportunities for phenological 

studies [11], since it allows the usage of global coverage data at various spatial and temporal scales, 

making it easy to study phenology and its drivers. Phenological products have been proven to be 

useful and it has been applied in many fields, like biomass monitoring [12,13], farm management 

[14,15], and climate change [16-20]. In the past two decades, the usage of satellite to determine 

the vegetation phenology has been an active area of research [8]. Evident in the numerous studies 

at local and global scales, arrays of algorithms and techniques that handle wide-ranging spatial 

resolution and temporally discontinuous satellite data have emerged [20]. Remotely sensed 

vegetation phenological metrics such as Vegetation Indexes (VIs) are derived from satellite time-

series data of vegetation parameters. The VIs are among the mostly used parameters and these 

comprise of the Enhanced Vegetation Index (EVI) [21-22] and the Normalized Difference 

Vegetation Index (NDVI) [23]. Some other vegetation indices that indicate the growing season 

changes explored in many studies include; Meris Terrestrial Chlorophyll Index (MTCI) [24], Wide 

Dynamic Range Vegetation Index (WDRVI) [25], Perpendicular Vegetation Index (PVI) [23] and 

Soil Adjusted Vegetation Index (SAVI) [26]. 
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NDVI is the measurement of vegetation greenness using the remote sensing technique, it is 

associated to the plant’s structural properties such as the green biomass [27] as well as the leaf 

area index [28] and also relates to properties of vegetation productivity that is the absorbed foliar 

nitrogen and the absorbed photosynthetic active radiation [29]. As reported by Reference [30], the 

physiological response of crops to environment conditions as well as their biophysical 

characteristics does change seasonally as vegetation grows. Information on the phenological stage 

of a crop is essential for understanding the seasonal exchange of ecosystem carbon dioxide (CO2), 

fertilizer management, evaluating crop productivity and irrigation scheduling. Maize is the focus 

of this study and it is a major livestock feed and stable food in South Africa. The reproductive 

stage which is from the sulking to physiological maturity (degree of kernel development) and the 

vegetative stage which is from emergence to tasselling (number of fully expanded leaves), requires 

optimal supply of nutrient under favourable environmental conditions (that is solar radiation, 

precipitation, soil moisture, temperature), for maximum yield [31,32]. Previous studies [33,34,35] 

have shown that sustainable development in Southern Africa is threatened by extreme conditions 

such as water availability (precipitation), rise in air temperature as well as shortening of the length 

of growing season. Also records show that agricultural production in 2015/16 as reduced by 1.6% 

compared to that of 2014/15 [34], also there is reduction in the field crop volume by 12.7%, 

resulting in reduction of winter crop production (canola and wheat), summer crops (sorghum and 

maize), sugar cane and oilseed crops (groundnuts and soya beans) [36]. 

The analysis of the variability of the phenological parameters induced by climate change and 

variability can allow for more accurate prediction of the timing of planting crops and help improve 

managerial decisions, through the provision of phenological parameters (such as; start of season 

(SOS), end of season (EOS), length of the season (LOS), maximum NDVI during the season. This 

study aims at investigating the changes in the phenology metrics in and the associated changes in 

maize yield and the potential causal factors across the four major producing Provinces of South 

Africa, namely North West (NW), Free State (FS), Mpumalanga (MP) and KwaZulu-Natal (KZN). 

The specific objectives of the study are, a) to calculate the temporal trends of thephenological 

parameters, b) to assess the possible association of the changes in phenological parameters with 

changes in maize yield, and c) to identify the most significant drivers of such phenological 

parameters-maize yield changes.  
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4.1. Materials and Method 

4.1.1. Study Area 

The study area covers the north-eastern part of South Africa between longitude 22oE to 33oE and 

latitude -32oS to -24oS. The region covers KwaZulu-Natal, Free State, Mpumalanga and North 

West Provinces, see Figure 1. These Provinces account for approximately 83% of the total maize 

production for South Africa. FS and NW Provinces together contribute to more than 60% of the 

total maize produced in the country, followed by MP (~24%) and KZN (less than 5%). Free State 

is about 1,300m above sea level and is characterized by a hot and arid climate. This Province is 

characterized by chilly winters (ranging from a cold 1oC to mild 17oC), plenty of sunshine (15oC 

to 32oC) and summer rains (500 mm-600 mm annually). Located in the northern part of the 

country, is the Vaal irrigated area which nourishes the small assortment of farming towns. In NW 

Province there is almost a year-round sunshine, with an average rainfall of 300 to 700 mm 

annually. The summer temperature ranges from 22oC to 34oC. The NW Province is characterized 

by dry, sunny days and chilly nights during winter (2oC to 20oC). The temperature in KZN ranges 

between 23oC to 33oC in summer (i.e. September - April), and 16oC to 25oC during winter. The 

Province is characterized by long, hot summers with average annual rainfall ranging between 500 

mm and 800 mm, and mild winters. Furthermore, the western part of MP Province is much colder 

during winter and hotter during summer than the other parts of the Province. The average annual 

temperature is about 19oC and rainfall is between 500 mm and 800 mm annually.  
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Figure 4-1: The Map of major maize producing Provinces of South Africa showing the Normalised 

Difference Vegetation Index (NDVI) for 51st week of the year 2016. NDVI values range from -1 to 

+1 indicating the response of vegetation to water availability. With high values tending towards 1 

meaning healthy vegetation and lower values meaning barren, built land and negative as water 

surface 

4.1.2. Materials 

A 16-day NDVI composite from MODIS (MOD13Q1) data on board the TERRA and AQUA 

satellites, with spatial resolution of 250 m, was acquired from Land Processes Distributed Active 

Archive Centre (LP DAAC) located at United States Geological Survey (USGS) Earth Resource 

Observation and Science (EROS) centre for the period of 2000 to 2015. This data is designed in 

such a way that a variety of information ranging from oceanic conditions to atmospheric and land 

conditions can be retrieved from it. MOD13Q1 is one of the 44 products (that is processed data) 

developed by the MODIS science team using a large number of spectral bands. 

Maize production data sets in tonnes (tons) for the major maize producing Provinces spanning 

from 2000 to 2015 were obtained from the Abstract of Agricultural Statistics compiled by the 

Department of Agriculture, Forestry and Fisheries of South Africa. This abstract document 
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contains important information on inter alia, field crops, horticulture, livestock, vital indicators, 

total land area in hectares (ha) cultivated for maize production and the contribution of primary 

agriculture to the South African economy. The analysed data are available on the department’s 

website, www.daff.gov.za.  

Gridded climate dataset, of the Climate Research Unit Time-Series 3.24.01 (CRU TS 3.24.01) 

spanning the period 1986–2015 was used in this study. The CRU TS climate data sets are derived 

from monthly observations from more than 4000 meteorological stations distributed across the 

world’s land areas. The gridded CRU TS 3.24.01 product is freely available for science community 

on http://www.cru.uea.ac.uk or http://badc.nerc.ac.uk/data/cru. For more information on the 

construction of the CRU TS 3.24.01 product, the reader is referred to Reference [37]. For the 

purpose of this study, four climatic variables i.e.,  precipitation (PRE), maximum and minimum 

temperature, (TMX) and (TMN) and potential evapotranspiration (PET) spanning the period of 

2000-2015 were analyzed. The PET was calculated based on the Penman-Monteith formula 

reported in [38]. 

4.1.3. Methods 

MODIStsp, a new “R” package that allows generation of time series of rasters automatically from 

Land Products data derived from MODIS satellite data was used to acquire the MODIS NDVI 

(MOD13Q1) data [39]. The NDVI was derived from spectral measurement of the MODIS sensor 

using Equation (1). 

𝐍𝐃𝐕𝐈 =
(𝐍𝐈𝐑−𝐑𝐞𝐝)

(𝐍𝐈𝐑+𝐑𝐞𝐝)
                  (1) 

In Equation (1), NIR represents the near-infrared regions while Red represents the spectral 

reflectance measurements required in the red (visible). The NDVI varies between -1.0 and +1.0. 

The MOD13Q1 data are provided every 16 days at 250-meter spatial resolution as a gridded level-

3 product in the Sinusoidal projection. The spatial extent was set by uploading the spatial file for 

South Africa so as to extract the data for South Africa and thereafter extract the NDVI data for the 

four major maize producing Provinces. A comprehensive procedure of downloading and extracting 

the MODIS data is described in Reference [39]. 

The output were processed using the greenbrown package in R software version 2.2 [40] to 

calculate the phenology metrics on time series from which the start of season (SOS), end of season 
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(EOS), length of season (LOS), position of peak (POP), position of trough (POT), spanning from 

2000 to 2015. The phenological parameters analysed in this study are summarised in the Table 1. 

Table 4-1: Description of the phenological parameters 
Phenological 

metrics 
Acronym Phenological Interpretation Description 

Start of Season SOS Beginning of measurable 

photosynthesis in the vegetation 

canopy 

Day of year identified as having a 

consistent upward trend in time series 

NDVI 

End of Season EOS End of measurable photosynthesis 

in the vegetation canopy 

Day of year identified at the end of a 

consistent downward trend in time series 

NDVI 

Length of Season  LOS Length of photosynthetic activity 

(the growing season) 

Number of days from the SOS and EOS 

Position of the Peak 

(maximum) 

POP Time of maximum photosynthesis 

in the canopy 

Day of year corresponding to the 

maximum NDVI in an annual time series 

Position of trough 

(minimum) 

POT Time of minimum photosynthesis 

in the canopy 

Day of year corresponding to the 

minimum NDVI in an annual time series 

The statistical characteristics of the NDVI and derived phenological parameters were calculated 

for the purpose of obtaining statistical description. The datasets were de-trended using the 

quadratic polynomial trend to remove fluctuations attributed to non-climatic factors. The Ordinary 

Least Square (OLS)-based MOSUM [41] test was used to detect the structural changes and the 

breakpoints in the time series of the datasets. Statistical significance was tested at 95% confidence 

limit.  

In this contribution, we posit that changes in maize yield is linked to the changes in phenological 

parameters which are driven mainly by climatic factors among other factors. To test this 

hypothesis, the Partial Least Square Path Modeling (PLS-PM) was used [42]. Hence, we developed 

a model that consist of three latent variables; Climate =𝐿𝑉1, Phenology =𝐿𝑉2 and Yield =𝐿𝑉3. Each 

latent variable is associated with at least 2 manifest variables TMN, TMX, PET and PRE for 

climate, SOS, EOS, LOS, POP and POT for phenology; and production and cultivated land for 

yield as shown in figure 2.  
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Figure 4-2: Path Diagram of the PLS model showing the inner model (Structural) between the 

three latent variables in dark grey oval shapes and the outer model (measurement) with their 

manifest variables 

The changes in the phenological variables can be considered as reflective indicators because they 

reflect the variation in climatic factors; considered as a formative indicator because they are 

thought to influence the quantity of Yield. Hence, 𝐿𝑉𝟐 and 𝐿𝑉3 are treated as reflective blocks 

expressed as 

𝑋2𝑘 = 𝜆2𝑘𝐿𝑉2 + 휀               𝑘 = 1,2,3   (2) 

𝑋3𝑘 = 𝜆3𝑘𝐿𝑉3 + 휀               𝑘 = 1,2,3   (3) 

and 𝐿𝑉1 as formative block.   𝐿𝑉1 = ∑ 𝜆𝑗𝑘𝑋1𝑘 + 휀 𝑘         𝑘 = 1,2,3   (4) 

where 𝜆𝑗𝑘 are loadings; and 휀 is the error terms accounting for the residuals 

Shown in figure 2 is the Path Diagram of the PLS model indicating the 2 sub-models; the inner 

and the outer model. The inner model has to do with the relationships between the latent variables 

and the outer model has to do with the relationships between each latent variable and its block of 

indicators. For the inner model, two equations were developed. The first is the one which 𝐿𝑉2 

depends on𝐿𝑉1: 
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𝐿𝑉2𝑗 = 𝛽𝑗𝑖𝐿𝑉1𝑖 + 휀𝑗     (5) 

The second inner relationship is the one which 𝐿𝑉3 depends on 𝐿𝑉1 and𝐿𝑉2:  

𝐿𝑉3𝑗 = 𝛽𝑗𝑖𝐿𝑉1𝑖 +  𝛽32𝑗𝑖𝐿𝑉2𝑖 + 휀𝑗   (6) 

where the subscript 𝒊 of 𝐿𝑉𝑖 refers to all the latent variables that are supposed to predict 𝐿𝑉𝑗. The 

coefficients 𝛽𝑗𝑖 are the path coefficients and they represent the “strength and direction” of the 

relations between the response 𝐿𝑉𝑗 and the predictors𝐿𝑉𝑖. 𝛽𝑜 is the intercept term, and 𝜺𝒋 is the 

error term accounting for the residuals. All variables were standardized. 

In order to assess the outer model, the unidimensionality function was used. In this regard, the 

Cronbach’s alpha, Dillon-Goldstein’s rho, as well as first eigenvalue of the indicators’ correlation 

matrix were computed. Additionally, the structural model was assessed by computing the R2 

determination coefficients, the redundancy index, and the Goodness-of-Fit (GoF). 

4.2. Results 

4.2.1. Summary statistics and trends in MODIS derived NDVI 

NDVI statistical characteristics results for the period spanning 2000-2015, are depicted in Table 

2. The highest maximum (0.71), minimum (0.35) and median (0.56) NDVI values were recorded 

in KZN Province while the lowest maximum (0.52), minimum (0.21) and median (0.31) NDVI 

values were recorded in the NW Province. The variation of NDVI values is high in FS (coefficient 

of variation; CV = 26.33), NW (CV = 25.93) and MP (CV = 25.55) Provinces and less in KZN 

(CV = 19.13). The trends of the NDVI time series (black), seasonally adjusted and fitted with the 

NDVI data (green) are illustrated in figure 2, while figure 3 depicts the spatial pattern of trends 

and p-values of the NDVI over the period of the study. 

Table 4-2: Statistical summary of Normalized Difference Vegetation Index (NDVI) values 

across the selected Provinces (2000-2015) and maize yield (tons/hectare) 
Province Variable Minimum Maximum Median Coefficient of 

Variation (CV) 

p-

value 

Trend 

Free State (FS) NDVI 0.212 0.56 0.32 26.33 0.01 -0.00 

Maize 

Yield 

2.80 5.20 3.95 19.01 0.38 0.04 

Mpumalanga 

(MP) 

NDVI 0.29 0.67 0.47 25.55 0.01 -0.00 

Maize 

Yield 

3.20 6.40 5.10 19.06 0.15 0.11 

NDVI 0.21 0.52 0.31 25.93 0.01 -0.00 
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North West 

(NW) 

Maize 

Yield 

1.80 4.40 3.10 25.52 0.47 0.05 

KwaZulu-Natal 

(KZN) 

NDVI 0.35 0.71 0.56 19.13 0.01 -0.00 

Maize 

Yield 

4.50 6.40 5.70 10.91 0.01 0.10 

Generally, negative trends that are statistically significant at α = 5% (p-value = 0.01) were detected 

in the monthly NDVI values in all the four Provinces. As shown in figure 3, there were breakpoints 

in the time series in the month of July 2009 in the FS Province, January 2004 in Mpumalanga 

Province and July 2008 and June 2012 in North West and KZN Provinces, respectively. 

 

Figure 4-3: Plot of time series of NDVI (black lines) with NDVI trends (blue lines) fitted with 

seasonally adjusted NDVI (green lines) across the four major maize producing Provinces; FS: 

Free State, MP: Mpumalanga, NW: North West and KZN: KwaZulu-Natal 

Positive trends (green) were detected in the north and central regions, towards the southern part of 

the study area consisting of district municipalities such as Nkangala, Gert Sibande in Mpumalanga 

Province, Fezile Dabi, Thabo Mofutsanyane and Lejweleptswa in Free State Province and in 

Umgungundlovu, Sisonke and Ugu in KwaZulu-Natal, see figure 4A. However, the observed 

trends are not statistically significant, see for instance figure 4B. On the other hand, negative trends 

in NDVI values were detected in the north-eastern parts of Ngaka Modiri Molema and north-
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western regions of Bojanala districts in the north-eastern parts of North West Province, north-

eastern parts of Ehlanzeni in Mpumalanga Province as well as in the central; north-eastern parts 

of KwaZulu-Natal Province. The negative trends are statistically significant are shown in figure 

4B. 

 

Figure 4-4: Spatial pattern of NDVI time series trends and p-value from 2000 to 2015 across 

major maize producing areas of South Africa 

4.2.2. Statistical moments of phenological parameters 

Figure 5 depicts the statistical characteristics of the phenological parameters across the study area. 

Based on the results, the SOS ranges between 260th and 359th day of the year, with a noticeable 

outlier in KZN. Over the 17-year period, the North West Province exhibited SOS median value of 

336 day of the year which falls in December and ends (EOS) on 120 day of the following year 

(April), while the LOS median value is approximately 166 days. The NDVI peak value (position 

of peak value (maximum) (POP)) was attained on the 38 day of the year (i.e., around February) 

while the NDVI trough value (position of trough value (minimum) (POT)) was attained on the 225 

day of the year, which is around August. The mean growing season NDVI (MGS) value for North 

West Province is 0.42. In Mpumalanga Province, the median SOS falls on 304 day of the year 

(corresponding to days in November), the median EOS is on 111 day of the following year (around 

April) while the median LOS is approximately at about 178 days. The peak NDVI value (POP) 

occurs around the 14th day of the year (around January) while the trough NDVI value (POT) is 
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determined to be around the 215th day of the year (around August). The MGS value for 

Mpumalanga Province is 0.58. The growing season for KwaZulu-Natal Province starts on around 

the 293rd day of the year (October), and ends on the 126 day of the following year (May). The LOS 

stretches for about 196 days. The maximum NDVI value is detected on the 19th day of the year 

(January) while the minimum NDVI value occurs around the 203rd day of the year (July). The 

MGS value for KwaZulu-Natal is 0.63. In Free State, the season starts (SOS) on the 319th day of 

the year, which is in November, and ends (EOS) on the 114th day of the following year (April), the 

LOS stretches for about 151 days. The MGS value for this area is 0.42. The maximum NDVI value 

was detected on the 35th day of the year (around February) while the minimum NDVI value was 

on the 193rd day of the year (July). 

 

Figure 4-5: Distribution of Phenological Parameters across the major maize producing areas 

(2000-2016); Start of Season (SOS), End of Season (EOS), Length of Season (LOS), Position of 

Peak Value (POP) and Position of Trough Value (POT); Free State (FS), KwaZulu-Natal (KZN), 

Mpumalanga (MP) and North West (NW) 
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The graphical illustration of the phenological parameters is shown in figure 6. From this figure, it 

is evident that the planting season starts (SOS) late in the North West and Free State Provinces as 

compared to the other two provinces. The growing season for the KwaZulu-Natal and North West 

Provinces ends late (that is higher EOS values) as compared to other areas. However, the 

KwaZulu-Natal and Mpumalanga Provinces experienced the longest growing season (higher LOS 

values). The North West and Free State Provinces exhibited the highest POP values while the 

North West and Mpumalanga Provinces showed the highest POT values. 

 

Figure 4-6: Time series of phenological parameters across major maize producing Provinces 

(2000-2015); (A) Start of Season (SOS), (B) End of Season (EOS), (C) Length of Season (LOS), 

(D) Position of Peak Value (POP) and (E) Position of Trough Value (POT); dashed red, dark blue, 

dashed yellow and dashed green lines represent Free State, Mpumalanga, North West and 

KwaZulu-Natal respectively 

Figure 7 depicts results for the computed coefficient of variation (CV). The CV results indicate 

that the POP exhibited the greatest variability while SOS and POT exhibited the least variability, 

in all the major maize producing Provinces of South Africa. However, the POP in KwaZulu-Natal 

and Mpumalanga varies more than the other two Province. The LOS in KwaZulu-Natal had the 

least variation compared to the rest of the Provinces. And POT in North West varied more than 

the other Provinces.  
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Figure 4-7: The coefficient of Variation (CV) among the Phenological Parameters (2000-2016); 

Start of Season (SOS) green, End of Season (EOS) red, Length of Season (LOS) orange, Position 

of Peak Value (POP) blue and Position of Trough Value (POT) black 

4.2.3. Trends in the phenological parameters from 2000 to 2015 

Shown in Figure 8 and Table 3 are the trend in the phenological parameters from 2000 to 2015 as 

well as the statistical significance of trends in the phenological parameters. Negative trends in the 

SOS were detected across the entire maize producing Provinces with exception to KwaZulu-Natal 

which depicted a positive trend. The SOS exhibited similar trend patterns across all but one (North 

West) Provinces. Furthermore, negative trends in EOS were observed across the study area, with 

exceptions to the North West Province which depicted a positive trend with no significant 

difference. The LOS exhibited a positive trend in all the Provinces except for KwaZulu-Natal 

Province, with no significant difference in the LOS for all the Provinces except for North West 

Province which increased significantly. The POT exhibited a positive trend in all but one 

(Mpumalanga) Province. On the other hand, POP in Free State and KwaZulu-Natal Provinces 

showed negative trend while POP in Mpumalanga and North West Provinces experienced positive 

trends. Trends in both POT and POP were found to be statistically insignificant across the 

Provinces. 
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Figure 4-8: Trend in Phenological parameters (2000-2015). Start of Season (SOS) green, End of 

Season (EOS) red, Length of Season (LOS) orange, Position of Peak Value (POP) blue and 

Position of Trough Value (POT) black 

Table 4-3: Statistical significance of trends in phenological parameter 
Provinces Variables p-value Significance Trend 

NW 

SOS 0.003 Yes -1.41 

EOS 0.68 No 0.17 

LOS 0.04 Yes 2.23 

POP 0.74 No 0.42 

POT 0.68 No 0.48 

MP 

SOS 1 No -0.042 

EOS 0.87 No -0.15 

LOS 1 No 0.083 

POP 0.15 No 1.08 

POT 0.34 No -0.44 

KZN 

SOS 0.71 No 0.3 

EOS 0.09 No -0.75 

LOS 0.71 No -0.58 

POP 0.48 No -0.15 

POT 0.93 No 0.18 

FS 

SOS 0.48 No -1.68 

EOS 0.32 No -0.83 

LOS 0.17 No 2.26 

POP 0.74 No -0.47 

POT 0.97 No 0.068 
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4.2.4. Association of changes in maize yield and changes in phenological parameters 

Considering the circle of correlations for Free State in Figure 9a, POT had the closest correlation 

with the maize yield. On the other hand, EOS, POP, LOS and SOS had a very strong correlation 

with each other, although LOS, POP and SOS were poorly represented in the plot while the other 

phenological parameter were well represented in the circle of correlations plot. This means that 

the LOS, SOS, EOS and POP for Free State had a very strong relationship. In the circle of 

correlations for KwaZulu-Natal (Figure 9b), POT also had the greatest influence on the maize 

yield for the area. However, there exist no correlation among the phenological parameters in the 

area. And EOS and POT were poorly represented in the plot while the other phenological 

parameters were well represented in the plot. For Mpumalanga Province (Figure 9c) POP and LOS 

had a very strong influence on the maize yield than the other phenological parameters. There is 

also a close relationship between LOS and POP, this means that these parameters influences each 

other, although POP has less influence as shown in Figure 9c. Maize yield in the North West 

Province is equally strongly influenced by POT according to the circle of correlations in Figure 

9d. The LOS and the EOS in this Province had a very close relationship suggesting that they 

influence each other. 
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Figure 4-9: Circles of correlation the phenological parameters and weighted parameter yield in 

(a) FS: Free State, (b) KZN: KwaZulu-Natal, (c) MP: Mpumalanga, and (d) NW: North West 

4.2.5. Impact of varying phenological parameters on maize yield  

In this study multivariate analysis model was used to assess the relationships among maize yield, 

phenological parameters and climatic parameters. The multivariate analysis results are 

summarized in Table 4. As shown in Table 4,  changes in phenological parameters can be 

associated to variations in the maize yield for the major maize producing areas ranging from 70% 

in Mpumalanga, 72% in KwaZulu-Natal, 76% in North West and 79% in Free State.  

According to Table 4 from 2000 to 2015, there was an estimated reduction in the maize yield in 

the North West Province of about 0.01 tons per hectare (t/ha) when the climatic parameters and 
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phenological parameters are held constant at their averages; that is when PET is 5.3 mm/day, PRE 

is 57 mm/month, TMN is 16 oC, TMX is 31 oC, SOS is on day 339, EOS is on day 117, LOS is 

149 days, POP is on day 35 and POT is on day 225. However minimal increase of about 1% in the 

mean value of PET, PRE, and TMN led to an increase of about 0.47, 0.02, 0.30 t/ha in maize yield 

respectively while, increase of about 1% in the mean value of TMX led to reduction of about 0.05 

t/ha in maize yield. On the other hand, at about 1% increase in the mean values of SOS, LOS, POP 

and POT there is decrease of about 1.44, 3.49, 1.39 0.89 t/ha of maize yield respectively; however, 

EOS increased maize yield by about 3.55 t/ha . In Mpumalanga Province, maize yield decreased 

by 0.003t/ha when the phenological parameters are at average values. Increase of about 1% above 

the average value in PRE (108 mm/month), TMX (25oC), SOS (day 309), and LOS (day 179) lead 

to a decrease of 0.39 t/ha, 0.35 t/ha, 1.56 t/ha, and 1.74t/ha in maize yield respectively. However, 

1% increase in the average values of PET, TMN, EOS, POP, and POT increased maize yield by 

0.46t/ha, 0.85t/ha, 0.28t/ha, 0.05t/ha and 0.01t/ha respectively. In KwaZulu-Natal Province, no 

change in maize yield per hectare was observed when average values of PET, PRE, TMN, TMX, 

SOS, EOS, LOS, POP and POT are held constant at 3.9 mm/day, 103 mm/month, 15 oC, 27oC, 

day 295, day 126, 194 days, day 20 and day 203 respectively. With a 1% increase in the mean 

values of PET, PRE, SOS, LOS and POT there is an increase of about 0.36 t/ha, 2.92 t/ha, 1.57 

t/ha, 1.19 t/ha and 0.82 t/ha in maize yield respectively. However, maize yield reduced by about 

0.26, 1.0, 1.24, 0.71 t/ha with 1% increase of the mean values of TMN, TMX, EOS and POP 

respectively. While in Free State, an increase of about 0.001 t/ha in the maize yield is estimated 

when the mean values of PET (5.2 mm/day), PRE (60 mm/month), TMN (13 oC), TMX (28 oC), 

SOS (day 329), EOS (day 112), LOS (148 days), POP (day 32) and POT (day 191) are held 

constant. Additionally, 1% increase in the average values of PRE, TMX, SOS, LOS, POP and POT 

lead to an increase of about 0.35 t/ha, 0.75 t/ha, 0.39 t/ha, 0.56 t/ha, 0.26 t/ha and 0.71 t/ha in maize 

yield respectively. While maize yield decreases by about 0.08 t/ha, 0.68 t/ha and 0.50 t/ha with 1% 

increase in the average values of PET, TMN and EOS.  

Table 4-4: Coefficients of the model. Start of Season (SOS), End of Season (EOS), Length of Season 

(LOS), Position of Peak Value (POP) and Position of Trough Value (POT) (2000-2015); KwaZulu-

Natal (KZN) 
Province Crop Constant PET PRE TMN TMX SOS EOS LOS POP POT R2 

North West Maize -0.01 0.47 0.02 0.30 -0.05 -

1.44 

3.55 -

3.49 

-

1.39 

-

0.89 

0.76 

Mpumalanga Maize -0.003 0.46 -

0.39 

0.85 -0.35 -

1.56 

0.28 -

1.74 

0.05 0.01 0.70 
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KZN Maize 0.00 0.36 2.92 -0.26 -1.00 1.57 -1.24 1.19 -

0.71 

0.82 0.72 

Free State Maize 0.001 -0.08 0.35 -0.68 0.75 0.39 -0.50 0.56 0.26 0.71 0.79 

The result of the multivariate analysis further indicates (figure 10), the relative importance of each 

phenological parameters. Positive values depict positive predictors while negative values show 

negative predictors. The EOS is the most influencing phenological parameter in both Free State 

and KwaZulu-Natal, however it is a negative influence. The SOS is the most influencing parameter 

in Mpumalanga and North West, though, it’s has a negative influence in Mpumalanga and positive 

influence in North West. The major positive phenological parameters linked to changes in maize 

yield are POT in Free State, SOS in both KwaZulu-Natal and North West, and POP in 

Mpumalanga. 

 

Figure 4-10: Normalised regression coefficient of maize yield predictors across the major maize 

producing Provinces of South Africa 

4.2.6. Drivers of phenological changes and maize yield 

The results of the PLS-PM model hinged on the hypothesis that changes in maize yield as a link 

to the changes in phenological parameters driven majorly by climatic factors among other factors. 

As shown in table 4, the result from the multivariate analysis indicate that TMN is the most 

significant driver of changes in the phenological parameters mostly influencing the POT in both 
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North West and Free State. In KZN, PET and TMX majorly drive the changes in phenology 

influencing EOS and SOS respectively while in Mpumalanga, PRE is detected as the major driver 

of phenological changes mostly influencing LOS. The reliability of the measurement of the 

relationship among the variables is given Cronbach’s alpha coefficient shown in table 5 [41]. An 

estimated alpha of 0.841 for climate, 0.674 for phenology and 0.796 for yield indicating how well 

the indicators measure their corresponding latent construct. 

Table 4-5: Unidimensionality metrics for the latent variables 

 Mode MVs C.alpha DG.rho eig.1st eig.2nd 

Climate A 4 0.841 0.907 2.928 1.058 

Phenology A 5 0.674 0.798 2.469 1.677 

Yield A 2 0.796 0.908 1.661 0.339 

Similarly, variance of the sum of variables in the indicators is given as 0.907, 0.798 and 0.908 for 

climate, phenology and yield respectively by the Dillon Goldstein’s rho [41]. The result of the 

PLS-PM further indicates that only the yield is unidimensional having first eigenvalue greater than 

1 and second eigenvalue less than one. This result is further illustrated in figure 11 showing the 

loadings of the block with all indicators in blue arrows without any in red. Furthermore, as 

indicated by the coefficients of determination, R2, shown in table 6; climate the independent latent 

variable is able to explain about 94% of variation in phenology and 99% of variation in yield.  
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Figure 4-11: Loadings of blocks (latent variables) and the indicators 

Table 4-6: Coefficients of determination R2 of the endogenous latent variables 
 Type R2 Block Communality Mean Redundancy AVE 

Climate Exogenous 0.000 0.721 0.000 0.521 

Phenology Endogenous 0.941 0.494 0.465 0.494 

Yield Endogenous 0.999 0.729 0.628 0.629 

The Mean Redundancy represents the percentage of the variance in the endogenous blocks 

(phenology and yield) that is predicted from the independent LV (climate) the exogenous variable. 

As shown in table 6, it implies that climate is able to predict about 46% of the variability of 

phenology indicators and about 63% of the variability of yield indicator. The prediction power of 

the model assessed by the Goodness of fit indicate that the model has a prediction power of 75%. 

4.3. Discussion 

Previous studies [43-45] have shown that changes in crop yields could be linked to changes in the 

climatic conditions during the growing season. Sensitivity of the crop to wet and dry conditions 

and non-climatic factors like management practices, fertilizers, new varieties are have also been 

reported to affect crop yield. 

Satellite-derived phenological parameters are frequently used to study the response of ecosystems 

to climate change. In this study, phenological parameters were derived from NDVI computed 
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values. Trends and significant trends of the parameters were computed from the NDVI values. It 

was the hypothesised that changes in maize yield as a link to the changes in phenological 

parameters driven majorly by climatic factors among other factors. The results suggest that all the 

major maize producing Provinces considered in the present study exhibit negative NDVI trends 

(“browning”). However, the spatial analysis plot of the NDVI at pixel level across the 

municipalities of the study area reveals that there are positive but statistically insignificant trends 

in the NDVI time series. On the other hand, the detected negative trends are observed to be 

statistically significant at 5% significant level. The observed NDVI temporal variations can be 

attributed to factors such as high rainfall variability [46], cooling spring temperature as well as 

lead to increasing water vapour pressure deficit [47]. Cooling spring temperature could be 

detrimental to maize yield as it causes various types of physiological damage (chilling injury) on 

the crop [48]. On the other hand, increasing water vapour deficit may dry up the soil thereby 

reducing the soil moisture content and eventually maize yield [49].  

One of the numerous effects resulting from inter-annual variability is breakpoints in NDVI time 

series. Inter-annual variability causes reduction in NDVI values (change in annual mean), 

prolonged growing season (as a result of longer warmer temperatures), and short-term patterns of 

the NDVI time series [41]. This is supported by the findings of this study. For instance, the LOS 

for all the years in which breakpoints were detected in the analysis indicated an increase in LOS 

(e.g. LOS in Mpumalanga increased from 142 days in 2003 to 186 days in 2004; in Free State it 

increased from 154 days in 2008 to 167 days in 2009; in North West it increased from 106 days in 

2007 to 147 days and in KwaZulu-Natal it increased from 188 days in 2011 to 223 days in 2012). 

Furthermore, the results from this study revealed that for the whole study period, Free State, 

Mpumalanga and North West Provinces exhibited a late start of season as well as short growing 

season (see for instance results in Figure 4). This might be the cause of the non-significant increase 

in maize yield for these Provinces. Additionally, the variation in the phenological parameters for 

all the Provinces is proxy for detecting climate change signals. The earlier arrival of planting 

season can be traced to the recent warming trends in the global climate [46]. This disruption can 

have numerous impacts on the ecosystem and human society.  

The trends in the phenological parameters is a pointer to the ongoing phenological changes which 

could be attributed to climate change. As reported by Reference [50], SOS variability is an 

important characteristic affecting crop production in semiarid areas. The results correspond with 
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the findings of Reference [51]. The declining trend in SOS might further lead to low maize 

production. Generally, climate change [46], land degradation and other human activities such as 

over-grazing and bush burning [52] are major factors causing changes in NDVI and phenology 

parameters. 

Previous studies have shown that increasing temperature during maize vegetative period leads to 

a decrease in the length of stage in growth [32]. In general, increased temperature led to lengthened 

growing seasons (LOS) for maize yield in KZN and MP. The year to year variations in trends 

observed in phenological parameters can be attributed to the fluctuations in the annual climatic 

factors. These fluctuations can be attributed to the various severe weather events such as droughts 

that have occurred in South Africa during the period of study. For instance, the breakpoints noticed 

in the time series coincides with drought years of 2002/2003, and 2012/2013 and hence could give 

an explanation for the declined trend in the maize yield during these periods. This inherent 

influence of climate variables causing changes in phenology have various consequences for plant 

physiological including maize [32]. The variation in the climatic variables influence on phenology 

and indirectly maize yield across the Provinces (76%, 70%, 72% and 79% in North West, 

Mpumalanga, KZN and Free State, respectively) might be due to the varying intensity in the use 

of irrigation, fertilizers and other farm managements. In addition, the prediction power of the 

model 75% as indicated from the GoF is acceptable and considered good [42].  

Phenological parameters are considered as one of the most essential information that small-scale 

farmers require in their preparations for planting [49]. As deduced from the results of this study, 

farmers are advised to consider the crucial phenological parameters before cultivating maize. That 

is, it is important for farmers in Free State and KwaZulu-Natal Provinces to consider the time of 

end of measurable photosynthesis in the canopy (EOS) before cultivating maize in the area while 

those in Mpumalanga and North West should consider the beginning of measurable photosynthesis 

in the vegetation (SOS). Therefore, as one of the ultimate goals of agricultural production is to 

achieve maximum crop yield at minimum cost. Early detection and management of problems that 

are associated with crop yield indicators can assist in improving yield and subsequently increasing 

profit [52]. Stability in the maize production acreage in Free State Province could help reduce the 

variation in the maize production for the Province and ultimately help improve the output. With 

Mpumalanga Province having the second largest yield per hectare, an increase in the acreage for 

the area will greatly improve the maize production for the area. Furthermore, despite the fact that 
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the acreage for maize production in the North West Province was usually more than that of 

Mpumalanga Province, maize produced in Mpumalanga was greater than that of North West 

Province in 2006, 2007, 2008, 2012, 2014 and 2015. This implies that Mpumalanga has the 

potential of increasing the maize production for South Africa if necessary facilities and 

infrastructures are provided. 

4.4. Conclusions 

The spatial-temporal phenological characteristics of the vegetation mimic the inherent vegetation 

responses to changes in environmental and climatic factors. Therefore, analysis of the phenological 

parameters for different types of vegetation in large areas helps to evaluate the impacts of climate 

change e.g., vulnerable ecosystems. At present, the phenology metrics that are derived from the 

time series of MODIS Normalized Difference Vegetation Index (NDVI) are recognized to provide 

an alternative methodology of crop condition monitoring compared to the expensive and time-

consuming manual system. These phenological parameters have important applications such as in 

irrigation management, nutrient management, health management, yield prediction and crop type 

mapping vital for ensuring the security of the food crop production. Additionally, interest in crop 

phenology has increased recently because of the effect its variation has on surface roughness and 

albedo, which eventually affects latent and sensible heat flux and fluctuation of water from the 

surface to the atmosphere. 

Every season, farmers are always faced with the risk of losing their crops and eventually losing 

their income. In order to achieve maximal output, it is imperative to consider the favourable 

climatic conditions for planting crop, since for instance maize farming depends on climatic factors 

(like rainfall, radiation and temperature). The determination of suitable climatic conditions 

(particularly knowing the optimum time to plant) can be done using the phenological parameters. 

Hence, this study investigated the relationship between climatic variables, phenological 

parameters and maize production in four Provinces of South Africa. As a means of properly 

managing the inevitable climate change impacts for a sustainable South Africa (an objective of 

National Climate Change Response Policy (NCCRP)), this study provides the phenological 

parameters for maize producing areas of South Africa that can be used for proper management of 

crop production. Results from this study illustrate inherent spatial-temporal characteristics of the 

MODIS NDVI derived phenology metrics. In addition, analysis of the phenological metrics to 
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assess the spatial and temporal crop yield variability across maize growing Provinces in South 

Africa show subtle associations largely due to insufficient intra-seasonal maize growth dynamics.  

In addition, with established evidence of climate change, reports have shown that frequency and 

intensity of extreme events with potentials to affect crop production might be on the increase, 

having more devastating impact on low coping capacity countries. Therefore, the need to mitigate 

against or adapt to climate change, through adequate cropping systems, improved crop cultivar 

among others is become imperative for farmers [53]. These results can be used as a benchmark by 

farmers to access information about climate change and variability and the associated impacts on 

maize production. This knowledge will help farmers to seek adaptation measures to ensure that 

seedlings are not lost for good crop yield. In addition, study such as this can be used as a tool to 

assess the vulnerability of agriculture/farms (particularly maize farms) to climate change which 

can help smallholder farmers to provide evidence to have access to insurance benefits and loans 

[54] Furthermore, reliable high-quality long-term remote sensing datasets, such as the MODIS 

NDVI dataset, are a crucial input for providing converging evidence on vegetation changes. While 

much is to be learned regarding the human dimension of adaptation, such evidence is highly needed 

to inform potential adaptation strategies for smallholder farmers in South Africa. A major 

limitation of this study is the lack of availability of maize data at higher scale i.e., at intra-season 

and at the farm level. If such data is available it could help to further establish the relationship 

between the phenological parameters and maize production at seasonal and farm level. Also, the 

inclusion of non-climatic data such as management practices (irrigation, fertilizers application, 

new improved seedlings, multi-cropping) could be vital in improving the PLS-PM model. 
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Abstract 

In this study, two commonly used drought indices; the Standardized Precipitation Index (SPI) and 

Standardized Precipitation Evapotranspiration Index (SPEI), were analyzed in order to understand 

the impacts of drought on maize yield over four main maize production provinces of South Africa. 

The drought was characterized using three Drought Monitoring Indicators (DMI) i.e., the Drought 

Duration (DD), Drought Severity (DS), and Consecutive Drought Months (CDM). The results 

indicate that maize yield is significantly affected by drought across the entire study area, although 

the impacts are localized. A comparison between the SPI and SPEI with maize yield suggests that 

the SPEI is more correlated and sensitive to maize yield than the SPI. The maize yield is 

particularly most sensitive to the 3-month SPEI. The 3-month accumulation period coincides with 

maize growing season (r = 0.59; p <0.05). The analyzed results illustrate that drought affects maize 

yield by up to 35% across the study area. Additionally, results depict inherent spatial patterns of 

DMIs demonstrating that there are differentiated drought impacts across the maize production 

areas. The results suggest that management strategies that allow for optimal water use within the 

first 1- and 3-month periods would be most effective for sustainable maize production within the 

study area. This research study contributes towards a deeper understanding of the characteristics 

of drought and their impacts on maize crop production. Such knowledge is important in e.g., the 

formulation of drought monitoring and prediction strategies including drought early warning 

systems. 

Keywords: Agriculture; Climate, Drought; Maize; Yield 

5.0.  Introduction 

Drought is considered as a slow and creeping recurring natural phenomenon (Wilhite, 2000). The 

effects of drought are manifested in many economic as well as social sectors.  In agricultural sector, 

drought is considered as one of the major cause that leads to crop yield failure, particularly in both 

rain-fed and irrigated agro-ecosystems (Grayson, 2013; Zhang and Zhang, 2016). Recently (2016 

– 2018), South Africa has experienced prolonged drought (Botai et al., 2016; 2017) that has 

affected both agricultural production and water resources, with the impacts already propagated 

into socio-economic. Due to persistent and widespread severe drought impacts in the country, 

robust emphasis on understanding the impacts this natural hazard as on key economic sectors is 

warranted. Research studies on drought issues include understanding drought characteristics, (e.g. 
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the onset, duration, intensity, magnitude, spatial extent, etc.). Such information is essentially 

important for better preparedness and proper management of key socio-economic sectors such as 

water and agriculture, which promote water quality and food security at regional as well as national 

level (Kurniasih and Impron, 2017). 

Drought indices such as the Palmer Drought Severity Index (PDSI) (Palmer, 1968), the Crop 

Moisture Index (CMI) (Palmer, 1968), the Soil Moisture Drought Index (SMDI) (Hollinger, et al., 

1993), the Standardized Precipitation Index (SPI) (McKee et al., 1993), the Standardized 

Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), the Effective 

Drought Index (EDI) (Byun and Wilhite, 1999), the Agricultural Reference Index for Drought 

(ARID) (Woli et al., 2013), and the Vegetation Health Index (VHI) (Dalezios et al., 2014) are 

widely used by various agencies and researchers as tools for drought assessment, monitoring, 

analysis and alert, with the aim being to derive effective early warning drought monitoring systems 

for detecting and responding to potential future drought risks. Most of these indices are selected 

based on various factors that include the nature of the hydro-climatology of the region, the type of 

drought considered, the purpose of the study and the available data (Morid et al., 2006).  

The SPI is the most commonly used drought index and well recommended by the World 

Meteorological Organization (Potop et al., 2012; Chen et al., 2013), as it is flexible in monitoring 

all the three types of drought (e.g. meteorological, agricultural, and hydrological). This index is 

primarily based on precipitation, whereas, its counterpart, the SPEI requires both precipitation and 

potential evapotranspiration information (PET), which is often computed from the minimum and 

maximum temperatures. Both the SPI and SPEI drought indices have the capability to detect and 

depict drought on a multi-temporal scales. In particular, the SPI and SPEI at 1-, 3-, and 6- 

accumulation months are often used to assess meteorological to agricultural drought impacts, 

whereas the 12 months and above (up to 24) are ideal for the hydrological socio-economic impacts, 

respectively (Morid et al., 2006; Potop et al., 2014).  

A number of research studies analyzing and monitoring drought cases based on the SPI and SPEI 

drought indices have being reported in the literature (e.g., Chen et al., 2016;  Botai et al., 2016; 

Meroni et al., 2017; Botai et al., 2017). Other studies have demonstrated the application of SPI or 

SPEI or a combination of both and other drought indices as tools for measuring and monitoring 

drought and its impacts on agricultural production (Ceglar et al., 2012; Mansouri et al., 2013; Dutta 
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et al., 2015; Chen et al., 2016; Zipper et al., 2016; Kurniasih and Impron, 2017). In South Africa, 

most of the research studies have focused on drought assessment and monitoring (e.g. Edossa et 

al., 2014; Rouault and Richard, 2003; Botai et al., 2016 and 2017) with no-direct link to a specific 

type of drought. The only study that related drought to agriculture was reported by Masupha and 

Moeletsi (2017), although the authors considered the SPEI-1, which often reflects short-term 

conditions of soil moisture and crop stress.  

The recent droughts (e.g. 2016 – 2018) that have affected at least five South African provinces 

have renewed the need for more research on the drought impacts and the need for effective 

planning to assist in mitigating feasible inherent effects of drought. Maize production is the most 

important grain crop in South Africa, accounting to approximately 46.2% of the gross value of 

field crops (DAFF, 2017). Drought persistence has the potential to create significant and 

devastating maize production challenges, leading to economic and financial difficulties for 

agricultural producers. To alleviate farm revenue losses and support government policy-makers on 

drought issues, there’s a need to qualitatively evaluate the impacts of drought on maize production. 

For this purpose, the aim of this study is to investigate the impacts and the characteristics of 

drought in major maize producing provinces of South Africa based on the SPI and SPEI 1-, 3-, 6- 

and 12-month timescales during the main crop growth stages of October to April. In particular, the 

specific objectives of the current study are defined as follows: 1) to characterize the drought 

conditions using monitoring indicators (i.e., the drought duration, severity and magnitude); and 2) 

to determine the most significant index and timescale for which marginal maize yield is sensitive 

to and 3) to describe the association of drought monitoring indicators to spatiotemporal contrast 

of maize production. 

5.1. Materials and methods 

5.1.1. Study area 

The study area includes the north-eastern part of South Africa between longitude 22oE to 33oE and 

latitude -32oS to -24oS. It covers the KwaZulu-Natal (KZN), Free State (FS), Mpumalanga (MP) 

and North West (NW) provinces (see Fig. 1). The FS, MP and NW provinces fall within regions 

that receive less than 600 mm of rainfall per year. In 2017 season, these provinces accounted for 

about 87% of the total maize produced in South Africa. In particular, MP province accounted for 

20%, while NW, FS, and KZN provinces accounted for 19%, 44% and 4% of total maize 
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production respectively. The FS and NW provinces contributed about 78% of the total white maize 

produced in 2017 while the FS and MP produced about 67% of the total yellow maize harvested. 

Most crops including maize are grown between October and March period. The FS province is 

characterized by chilly winters (ranging from a cold 1oC to mild 17oC), plenty of sunshine (15oC 

to 32oC) and summer rains (500 mm-600 mm annually). Located in the north-eastern part of the 

country, is the Vaal irrigated area which nourishes the small assortment of farming towns. In NW 

province there is almost a year-round sunshine, with an average rainfall of 300 to 600 mm annually. 

The summer temperature ranges from 22oC to 34oC. The NW province is characterized by dry, 

sunny days and chilly nights during winter (2oC to 20oC) season.  

 

Figure 5-1:Study area showing elevation, South African Weather Service climatic districts and 

centroids of the climatic districts in the proximity of stations with provincial borders 

superimposed. 

The temperature in KZN ranges between 23oC to 33oC in summer (December - February), and 

16oC to 25oC during winter (June-August). The province is characterized by long, hot summers 

with average annual rainfall ranging between 500 mm and 900 mm, and mild winters. Furthermore, 

the western part of the MP province is much colder during winter and hotter during summer than 
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the other parts of the province. The average annual temperature is about 19oC and rainfall is 

between 500 mm and 800 mm annually. The time series of total monthly precipitation, average 

monthly maximum (TMX), minimum (TMN) and mean (TMED) temperature, potential 

evapotranspiration (PET) and water deficit (BAL) over each province is given in Fig. 2. 

 

Figure 5-2: The time series of total monthly precipitation, average monthly maximum (TMX), 

minimum (TMN) and mean (TMED) temperature, potential evapotranspiration (PET) and water 

deficit (BAL) from 1990–2015 in A: Mpumalanga, B: Free State, C: North West and D: KwaZulu-

Natal provinces 

5.1.2. Materials 

Pre-processed gridded historical observations of daily precipitation, minimum and maximum 

temperature from 27 ground stations (6 in KZN, 4 in MP, 8 in NW and 9 in FS) (see Fig. 1) 

spanning from 1990 to 2015, over the study area, were acquired from the South African Weather 

Service (SAWS). The maize production data sets in tons from 1990 to 2015 were obtained from 

the Abstract of Agricultural Statistics compiled by the Department of Agriculture, Forestry, and 

Fisheries of South Africa. The abstract document contains important information on inter alia, 

field crops, horticulture, livestock, vital indicators and the total land area in hectares (ha) used for 

maize production among others. 
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5.1.3. Methods 

5.1.3.1. Analysis of drought by SPI and SPEI 

In this contribution, we investigated the characteristics of drought over the major maize producing 

provinces of South Africa using the SPI and SPEI at 1-, 3-, 6-, and 12-month timescales. The 

advantages of using SPI and SPEI are premised on the principle of parsimony and their ability to 

quantify the magnitude, duration, and extent of droughts independently of the local climatic 

conditions and less data intensive. Both the SPI and SPEI at 1-, 3-, 6- and 12-month timescales 

were computed using the SPEI package in R software (Beguería and Vicente-Serrano, 2013; 

Vicente-Serrano et al., 2015). The SPI is calculated by fitting a gamma distribution to a 

precipitation time series (McKee et al., 1993). On the other hand, to compute the SPEI, the 

computation of “climatic water balance”; the difference between precipitation and reference 

evapotranspiration (PRE– PET0), rather than precipitation (PRE) as the input in the case of SPI is 

required. Although, the Penman-Monteith (PM) method (Allen et al., 1998) has been adopted by 

the International Commission for Irrigation (ICID), the Food and Agriculture Organization of the 

United Nations (FAO), and the American Society of Civil Engineers (ASCE) as the standard 

procedure for computing PET, the Thornthwaite (1948) equation was adopted for this research. 

The Thornthwaite equation requires only mean daily temperature and latitude of the site rather 

than the extensive data requirement of the PM equation (Solar radiation, relative humidity, wind 

speed and temperature) which are in most case not routinely measured at many conventional 

meteorological stations and long-term records of these variables are lacking. In this study, drought 

was characterized based on the classification summarized in Table 1. A drought event begins when 

the SPI or SPEI reaches a value of -1.0 or less and ends when SPI or SPEI becomes positive. It 

has been determined that SPI or SPEI is in normal, moderate, severe and extreme drought condition 

at 65%, 10%, 5% and 2% of the time respectively. In this study, it is considered that all the negative 

values were related to dry conditions. Hence, drought duration (DD), is defined as the longest 

period of consecutive months with the values <0. On the other hand, consecutive drought month 

(CDM) also referred to as drought magnitude is defined as the sum of the index values while 

drought severity (DS) is defined as the number of months with values <0 during the maize growing 

period. 
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Table 5-1: SPI and SPEI categories of drought 
SPI/SPEI Moisture category Frequency (%) 

≥2.0 Extreme Wet 2 

1.50 to 1.99 Severe Wet 6 

1.49 to 1.00 Moderate Wet 10 

0.99 to -0.99 Normal 65 

-1.00 to -1.49 Moderate Drought 10 

-1.5 to - 1.99 Severe Drought 5 

≤-2.00 Extreme Drought 2 

5.1.3.2. Trend Analysis 

Trend analysis was performed to determine if there exists significant variation in the datasets over 

the period of study. The analysis was performed by using the rank-based Mann–Kendall (MK) 

trend test. Before the MK test was applied, the effect of autocorrelation of data series was firstly 

removed by applying the trend-free pre-whitening procedure (Yue et al., 2002). The magnitude of 

the trends was quantified using the Theil–Sen estimator. To compute the trends as well as the 

Theil–Sen estimator, the regional Kendall test (rkt) package in R software was used (Marchetto, 

2017). 

5.1.3.3. Statistical model fitting and spatial analysis 

Correlation analysis was used to assess the relationship between the SPI, SPEI and maize yield at 

different timescales. Since maize is grown in the summer period of the year, only the SPI and SPEI 

values, calculated from October (maize sowing) until April (maize ripening) have been used in the 

analysis for each of the four provinces. The estimate yield per unit area was derived by dividing 

total cultivated area by total production in each province. The slope, the adjusted coefficient of 

determination (R2), and the p-values were used to evaluate the relationship between the drought 

indices and maize yield. For each province, the best relationship was defined as the timing (i.e. the 

month of the growing season) and timescale (i.e. drought duration) combination with the highest 

adjusted R2 (Vicente-Serrano et al., 2012). Spatial distribution of SPI, SPEI, DD, DS, CDM, the 

coefficient of variation (CV), trend and p-values over each of the province were generated by 

interpolation from the point measuring stations using the inverse-distance-weighted (IDW) 

algorithm in ArcGIS desktop software (Rhee et al., 2008; Ali et al., 2011; Vasiliades and Loukas, 

2013; Chen et al., 2017). 
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5.2. Results 

5.2.1. Contrasts of maize yield across the study area 

Over the 26 years under investigation, a total of 216,767 million tons of maize was produced across 

the study area. The highest maize production was recorded in the FS province with about 90,019 

million tons (41.5%), followed by the NW with 60,838 million tons (28.1%), MP produced 55,823 

million tons (25.8%) and a total of 10,087 million tons (4.6%) was produced in KZN. The analysis 

revealed that all four provinces experienced a major decline in the production of maize during 

1991 and it’s significant at p-value = 0.003 (Fig. 3). On the other hand, higher maize production 

was recorded between 2012 and 2013 in KZN, MP (2012) and FS (2013). The NW province 

exhibited high maize production in 1993. As shown in Table 2, the highest, lowest and mean maize 

production in FS is given as 6,247 million, 0,850 million and 3,462 million tons respectively. In 

KZN the highest maize produced was about 0,599 million tons, lowest of about 0,237 million tons 

with a mean of 0,388 million tons while in MP the highest production was 3,005 million tons with 

lowest of about 1,092 million tons and mean 2,147 million tons. Similarly, the highest production 

in NW was 3,635 million tons, lowest of 0,404 million tons and mean of 2,340 million tons over 

the period of study. 

Table 5-2: Statistics of maize production million (tons) and coefficient of variation of maize yield 

across the four provinces 

Statistics/Province Free State 
KwaZulu-

Natal 
Mpumalanga North West 

Minimum 850 237 1092 404 

1st Quartile 2711 299 1766 1748 

Median 3326 372 2182 2571 

Mean 3462 388 2147 2340 

3rd Quartile 4300 487 2636 2867 

Maximum 6247 599 3005 3635 

CV (Yield) 0.305 0.265 0.316 0.348 
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Figure 5-3: Plot of time series of maize production (tons) on the left y-axis (red line) and time 

series of cultivated land for maize (ha) (right y-axis) (dashed blue line) from 1990–2015 in FS: 

Free State, KZN: KwaZulu-Natal, MP: Mpumalanga and NW: North West provinces 

5.2.2. Spatiotemporal variability of agrometeorological parameters and drought indices 

across the study area 

A declining trend was observed for precipitation during the critical period of maize phenology 

across all the provinces. The results revealed that 97% (26) of the stations had decreasing 

precipitation during the main maize growth stages (−1.6 to −28.5 mm·decade−1). About 15 out of 

27 stations exhibited a decreasing trend in rainfall amount (p < 0.05). Five of these stations (84, 

85, 90, 91 and 92) are located in NW, 4 (60, 71, 72 and 83) in FS, 3 (25, 30 and 40) in KZN and 2 

(33 and 62) in MP. The mean temperature increased by 0.14 ± 0.05 ◦C·decade−1 over the entire 

stations in the study area, during the maize growing period (October to April), with 97% of the 

stations showing significant warming trends (p < 0.05). On the other hand, the decline in PET is 

observed in over 95% of the stations during the main maize growing period (p < 0.05). Positive 

values of the water balance (BAL) are observed in the month of December and January, indicating 

that the two months receive the largest rainfall months and are relatively moist. 

The long-term spatially-averaged variation of the SPI and SPEI values 1-, 3-, 6- and 12-month 

periods across the main maize producing province are presented in Figs. 4, 5, 6 and 7. Only 

selected SPI and SPEI figures (for MP and FS) are presented here, the rest of the figures are 
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provided as supplementary files. Homogeneity test of the SPI and SPEI values revealed significant 

differences between the two indices particularly the SPI/SPEI calculated at 3- to 12-month 

timescales. The correlation between the SPI and SPEI varies significantly across the different 

series. In particular, there is high correlation between the SPI and SPEI series within similar 

timescales (e.g. SPI-1: SPEI-1 (0.97), SPI-3: SPEI-3 (0.83), SPI-6: SPEI-6 (0.77), SPI-12: SPEI-

12 (0.69)). 

As indicated from the averaged SPI and SPEI across each province (Figs. 4, 5, 6 and 7), notable 

years of droughts include 1991/92, 1994/95, 2002/03, 2004/05, 2006/07, 2008/09, 2009/10, 

2011/12 and 2014/15. Using the drought category in Table 1, 1991/92 and 2015/16 seasons are 

detected as the worst drought periods, reaching severe to extreme conditions. These drought 

epochs were generally reported to have negative impacts on livestock and crops (Vogel et al., 

2000). 

 
Figure 5-4: Drought indices quantified by the SPI at different timescales 1-, 3-, 6- and 12-month 

calculated using averages over the 4 stations in Mpumalanga province 
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Furthermore, the results indicate that there were moderate to extreme drought conditions during 

the maize growing period (October to April) across all the four provinces, but with inherent 

variation in the drought duration and severity. Moderate drought conditions dominated in MP, 

throughout the period. Severe drought occurred during 1991/92 and 2015/16, probably leading to 

widespread loss of livestock and summer agricultural production (Vogel et al., 2000). Furthermore, 

as shown by the 1-month drought period of the SPEI, moderate droughts are noticed with high 

frequency during the vegetative stage, considering planting dates as October across all the 

provinces. However, the moderate drought during the vegetative stage is more frequent in FS while 

NW province experiences more frequent extreme drought conditions (-1.00 to -1.49) during the 

vegetative stages, with a severe drought category in 1991/92 and 2014/15 (see supplementary file). 

On the other hand, the results depict severe drought conditions with high frequency and longer 

duration during the reproductive stages (3-month) in FS. The KZN province experienced moderate 

to severe drought in all the drought years identified, reaching an extreme drought condition 

category in 2015/16. 
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Figure 5-5: Drought indices quantified by the SPEI in different timescale 1-, 3-, 6- and 12-month 

calculated using the averages over the 4 stations in Mpumalanga province 
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Figure 5-6: Drought indices quantified by the SPI in different timescale 1-, 3-, 6- and 12-month 

calculated using averages over the 9 stations in Free State province 
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Figure 5-7: Drought indices quantified by the SPEI in different timescale 1-, 3-, 6- and 12-month 

using the averages over 9 stations in Free State province 

The major drought years were confirmed by the breakpoints (Fig. 8) detected in SPI and SPEI time 

series. The horizontal black and blue lines represent the values and the trends of the SPI and SPEI 

respectively, while the vertical tick dotted lines are the breakpoints (significant change points in 

the time series). In particular, based on the SPI analysis major droughts occurred in 1991/92, 

1994/95, 2004/05, 2006/07 and 2012/13. Based on the SPEI analysis, a major drought occurred in 

1992/93, 1996/97, 2002/03, 2005/06 and 2007/08. These results confirm findings reported in the 

previous studies (e.g. Vogel et al., 2000; Rouault and Richard, 2003), indicating that the indices 

are able to detect periods of significant droughts. 
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Figure 5-8: Breakpoints in SPI and SPEI time series showing the drought years which are 

detected with breakpoints in tick dotted lines 

5.2.3. Spatial variability of drought conditions across the study area 

In this study, drought conditions across the NW, FS, KZN and MP provinces were characterized 

based on DMIs such as DD, DS as well as CDM. Statistical parameters such as the mean, the 

coefficient of variation, and trends of the DMIs were derived from the SPI and SPEI time series. 

However, for easy readership, only the results for the SPI-3 and SPEI-3 which have higher 

correlations with maize yield as shown in Table 3 are given. The results for the DD, DS and CDM 

derived from the SPI-3 and SPEI 3-month are depicted in Fig. 9. As shown in Fig. 9, DD, mean 

values range between 4 and 6 months across the provinces. The mean of the DD is minimum 

towards the west-northern part of the NW province (SPI-3) and parts of the FS province (SPEI-3) 

and increases across the study region, reaching its maximum in regions of MP province (SPI-3) 

and FS (SPEI-3). 
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Figure 5-9: Spatial contrasts of the mean DMIs derived from SPI-3 (top) and SPEI-3 (bottom): 

Panel A corresponds to DD while B and C correspond to DS and CDM 

Additionally, the mean values in the DS are lowest in the central region of MP for both SPI-3 and 

SPEI-3 and maximum in the FS province. On the other hand, the mean CDM values range between 

2 and 4 months. Few parts of the MP province depict higher mean for SPI-3 while higher CDM 

mean is evident in the northern areas of FS province for SPEI-3. The results indicate that drought 

is more severe in both FS and NW provinces with longer duration in FS. While the drought 

conditions seem to be less severe in MP province, these conditions exhibit generally persistent 

characteristics across the province. Given that the SPI-3 and SPEI-3 values correspond to the 

reproductive stages of maize (averaged December-January) from silking to grain-filling from 61st 

to 90th day, these drought conditions will, therefore, have a huge negative impact on the overall 

maize production. Note that the study area comprises of the main maize producing areas. These 

severe and persistent drought conditions inherently threaten the economy and the food security of 

the country. 

The spatial contrasts of the CV results derived from the SPI-3 and SPEI-3 time series are illustrated 

in Fig. 10. Based on the SPI-3 analysis, the NW province depicts less variability in DD. Similar 
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results are observed for DD derived from the SPEI-3, although few regions in the FS depict 

maximum CV values (~40%). The CV values derived from the SPI-3 time series exhibit subtle 

variation mostly in KZN and highly dispersed in the FS province. For SPEI-3 analysis, the CV 

values in DS range between ~28% (mostly in KZN) and ~40% (mostly in FS and MP). Based on 

both the SPI-3 and SPEI-3 time series analysis, vast majority of the study area depicts variations 

of CV values in CDM, with maximum values of ~55% and ~54% for SPI-3 and SPEI-3, 

respectively. 

 
Figure 5-10: Spatial contrasts of the coefficient of variation (CV) of DMIs derived from SPI-3 

(top) and SPEI-3 (bottom): Panel A corresponds to DD while B and C correspond to DS and 

CDM 

The results of spatial-temporal trends in DD, DS and CDM, calculated from SPI- and SPEI- 3-

month timescales are depicted in Fig. 11 and their significance (p-values) shown in Fig. 12. Similar 

trend pattern in DD is observed for both SPI-3 and SPEI-3. In particular, the trends in DD range 

between -0.05 and 0.04 for the SPI-3 and -0.05 and 0.04 for the SPEI-3 time series. Subtle negative 

trends in the DD are observed mainly in the KZN province for both SPI-3 and SPEI-3. On the 

other hand, trivial positive trends are observed in the DS over large parts of the NW, FS, and some 

regions in the south-western parts of the MP province. As shown in Fig. 11, no detectable trends 
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in CDM are observed for both SPI-3 and SPEI-3 time series, across the study area, except for a 

small region in the NW province that depicts subtle negative trends with a minimum of -0.02 

month/year. Overall, the derived trends for the drought indicators across the selected timescales 

are mostly found to be statistically insignificant at 0.05. However, a fraction of trends in DS are 

found to be statistically significant in NW and KZN (see Fig. 11). 

 
Figure 5-11: Spatial contrasts of the trends of DMIs derived from SPI-3 (top) and SPEI-3 

(bottom): Panel A corresponds to DD while B and C correspond to DS and CDM 
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Figure 5-12: Spatial contrasts of the p-values of DMIs derived from SPI-3 (top) and SPEI-3 

(bottom): Panel A corresponds to DD while B and C correspond to DS and CDM 

5.2.4. Impacts of drought on the maize yield 

Table 3 shows the results of the correlation analysis between drought indices and maize yield 

across the provinces. The highest correlation was observed between the SPEI-3 and maize yield 

across all the provinces except for KZN where the SPI-3 has the highest correlation.  

Table 5-3: Correlation coefficients of the SPI and SPEI 1-, 3-, 6- and 12 months series (October 

to April), and the standardized maize yield in major four maize producing provinces of South 

Africa from 1990-2015 
SPI 

Province SPI-1 
p-

value 
SPI-3 

p-

value 
SPI-6 

p-

value 
SPI-12 

p-

value 

KZN 0.58 0.038 0.67 0.014 0.41 0.067 0.18 0.517 

MP 0.53 0.044 0.56 0.032 0.32 0.132 0.21 0.445 

FS 0.34 0.167 0.51 0.051 0.29 0.217 0.27 0.267 

NW 0.48 0.101 0.53 0.045 0.33 0.093 0.26 0.189 

SPEI 

Province SPEI-1 
p-

value 
SPEI-3 

p-

value 
SPEI-6 

p-

value 
SPEI-12 

p-

value 

KZN 0.43 0.081 0.47 0.049 0.39 0.053 0.20 0.523 

MP 0.52 0.049 0.58 0.041 0.42 0.062 0.22 0.334 

FS 0.60 0.041 0.62 0.035 0.56 0.047 0.31 0.114 

NW 0.59 0.026 0.69 0.011 0.53 0.058 0.32 0.105 
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The correlation results given in Table 3 suggest that SPEI-3 is the most sensitive drought indicator 

to maize yield having correlation (r = 0.69, 0.62, 0.58; p < 0.05 in NW, FS and MP respectively) 

and SPI-3 (r = 0.67, p < 0.05) in KZN. The results further indicate that the SPEI-3 is able to explain 

about 48%, 39% and 34% of maize yield variation in NW, FS, and MP respectively, while the SPI-

3 is able to explain about 45% of the variation in maize yield in KZN. The results suggest that the 

SPEI, which takes PET into account, can better estimate the impact of drought on maize yield in 

MP, FS, and NW while the SPI shows a better evaluation of the impact of drought on maize yield 

in KZN. These results are consistent with the findings of Zipper et al. (2016) and Kurniasih and 

Impron (2017) who reported that crops yield such as maize and soybean are most responsive to 

short-term (1–3 month) period. Similarly, Bachmair et al. (2018) reported that the SPI-3-month 

timescale was best suited for monitoring the effects of drought in agriculture and forestry. 

Furthermore, the results are also consistent with previous studies by Adisa et al. (2018) where 

result of the Partial Least Square Path Modeling (PLS-PM) analysis indicated that the impact of 

climatic elements on phenological parameters and indirectly on maize yield varies across the 

provinces with 70%, 72%, 76% and 79% in Mpumalanga, KwaZulu-Natal, North West and Free 

State, respectively. The SPI-3 and SPEI-3 correspond with the critical reproductive stages of maize 

growing season (December-January) during silking and grain-filling (Aslam et al., 2013). Drought 

occurrence during this stage could reduce the potential maize yield by up to 50% (Heiniger, 2001). 

5.3. Discussion 

For the effective policy support, social capital provision and adaptation of agricultural systems to 

climate change, it is essential to understand the impact of extreme climate conditions such as 

drought on agricultural production (Chen et al., 2014). In this study, two commonly used drought 

indices; SPI and SPEI were analyzed at different timescales of 1-, 3-, 6- and 12-month in order to 

determine their relationship with changes in maize yield. The results depict large spatial variations 

in drought impacts in term of its duration, frequency and severity and the trend, with drought 

associated with an average of 35% of the variation in maize yield. Drought at 3-month timescale 

(particularly, December – January, a critical reproductive stage of the growing season) tends to be 

the dominant driver of maize yield variability. The reproductive stages are the most sensitive stages 

of maize, hence the duration and severity of drought during this stage can reduce the potential 

maize yield by up to 50% (Adisa et al., 2018). The results confirm previous findings that drought 

at short timescales is more significant than longer timescale because the growth and performance 
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of crop are more sensitive to short-term weather events that alter soil moisture conditions rapidly 

and substantially (Wu et al., 2004). In this study, the SPI, a precipitation-based drought index, 

exhibits a lower correlation with maize yield across the provinces except in KZN. In addition, the 

SPEI estimates the drought-induced yield impact better than the SPI in warming weather 

conditions. The multi-scalar characteristics of SPEI enable it to identify different drought types 

and effects in the context of global warming (Ujeneza and Abiodun, 2015; Vicente-Serrano et al., 

2010).  

Furthermore, the variation in the duration, frequency, and severity of the SPI and SPEI indices can 

be explained by the variation in the climate characteristics across the provinces. As reported by 

the previous studies (e.g. Kruger and Nxumalo, 2017; Adisa et al., 2017; Botai et al., 2018), there 

is a large variation in the amount of rainfall received across the province. The north-eastern part 

of the country is often drier than the central, while the south-western part gets wetter. Furthermore, 

Kruger and Nxumalo (2017) reported that there is less amount of rainfall at the onset of rainfall, 

particularly in the FS province. Hence, drought conditions are more inherent in the northern (MP) 

and western-central (FS and NW) of the country. This could further explain the moderate drought 

observed in the FS province and extreme drought in the NW province during the vegetative stage.  

According to Das (2012), the intra-seasonal variability of rainfall could lead to a deficit in the 

uptake of the required amount of water by crops as a result of the reduction of moisture in the root 

zone. 

5.4. Conclusions 

This study analyzed the SPI and SPEI indices at 1-, 3-, 6- and 12-month timescales in order to 

characterize the variability of drought duration, severity and magnitude as well as to determine the 

index and time period that is more sensitive to maize yield fluctuations over the four major maize 

producing provinces of South Africa during the crop growing period. Upon analyzing the 

characteristics of the drought and their correlations to maize yield between 1990 and 2015, the 

following conclusions emerge from this study: 

- Both the SPI and SPEI have the capacity to described drought severity, duration and intensity in 

the study area. 

- Compared to other accumulation periods, SPEI-3 has the greatest influence on the variation in 

maize yield across the study area.  
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- Drought conditions epochs between 1990 and 2015 exhibit a clear spatial-temporal dependence 

structure which manifests in the overall marginal maize production.  

- Drought impacts on maize yield depend on drought magnitude and duration and on plant growth 

stages when droughts occur. Drought events during maize reproductive and vegetative stages cause 

the highest reduction in maize yield.  

- The reduced maize yield during the notable drought years (1991/92, 1994/95, 2002/03, 2004/05, 

2006/07, 2008/09, 2009/10, 2011/12 and 2014/15) could be attributed to the low rainfall amount 

during the growing season in some parts of the NW province.  

- There were persistent drought conditions occurring during the sensitive growing stages of maize 

in some parts of KZN and MP provinces.  

Overall, the present study contributes to the theoretical body of knowledge on droughts especially 

under changing climate. Results of this work could contribute towards the design of drought 

preparedness plans in a bid to manage future anticipated drought impacts in South Africa. One 

important area that the Agro-meteorology community need to carefully consider is whether the 

salient features of the Fourth Industrial Revolution have been harnessed at the appropriate level 

and pace given that the drought conditions and other weather and climate extremes are a threat to 

food security, the economies as well as the society. For further studies, the social aspect should be 

included so as to access the effect of drought on the economy of the farmers. Also, research of 

drought impact on maize production at farm level is highly recommended. The lack of the social 

aspect and data at the farm level are limitations but will be ideal for future studies in order to 

develop an effective climate mitigation and adaptation strategies. 
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Abstract: The use of crop modeling as a decision tool by farmers and other decision-makers in 

the agricultural sector to improve production efficiency has been on the increase. In this study, 

artificial neural network (ANN) models were used for predicting maize in the major maize 

producing provinces of South Africa. The maize production prediction and projection analysis 

were carried out using the following climate variables: precipitation (PRE), maximum temperature 

(TMX), minimum temperature (TMN), potential evapotranspiration (PET), soil moisture (SM) and 

land cultivated (Land) for maize. The analyzed datasets spanned from 1990 to 2017 and were 

divided into two segments with 80% used for model training and the remaining 20% for testing. 

The results indicated that PET, PRE, TMN, TMX, Land, and SM with two hidden neurons of 

vector (5,8) were the best combination to predict maize production in the Free State province, 

whereas the TMN, TMX, PET, PRE, SM and Land with vector (7,8) were the best combination 

for predicting maize in KwaZulu-Natal province. In addition, the TMN, SM and Land and TMN, 

TMX, SM and Land with vector (3,4) were the best combination for maize predicting in the North 

West and Mpumalanga provinces, respectively. The comparison between the actual and predicted 

maize production using the testing data indicated performance accuracy adjusted R2 of 0.75 for 

Free State, 0.67 for North West, 0.86 for Mpumalanga and 0.82 for KwaZulu-Natal. Furthermore, 

a decline in the projected maize production was observed across all the selected provinces (except 

the Free State province) from 2018 to 2019. Thus, the developed model can help to enhance the 

decision making process of the farmers and policymakers. 

Keywords: Maize; climate; prediction; artificial intelligence 

 

6.0. Introduction 

Agriculture is considered the most vulnerable sector to yearly climate change and variability, with 

the greatest impact on agricultural production [1]. Up to 30% yearly variations in the growing 

season of most commonly grown crops are attributed to meteorological conditions, including 

changes in precipitation and temperature variables [2,3]. Other factors known to affect crop yields 

include soil conditions [4], topography (elevation, slope, and aspect) [5], and socio-economic 

factors [6]. Crop modeling plays a significant role in agricultural production. Farmers and other 

decision makers in agriculture require precise crop yield prediction methods for better planning 

and decision-making [7]. In particular, crop yield predictions can assist farmers in deciding on 



184 
 

seasonal crop planning and scheduling [8], as well as determining the possible future outcome of 

an event. 

Yield prediction methods reported in literature include, regression, simulation, expert systems, and 

artificial neural network (ANN). Regression models have been widely used in various studies 

particularly for prediction purposes [9,10]. These could be attributed to the fact that they are easy 

to use and often produce reliable standard tests [11]. The use of regression models is sometimes 

limited, especially in complex cases like extreme data values and non-linear relationships. 

Furthermore, regression models might be inefficient because they do not always fulfill the 

regression assumptions for multiple co-linearity between the dependent and independent variables 

[12,13]. Diversity of interrelated factors influencing crop production makes describing their 

associations via conventional methods difficult [13].  

An advantage of the simulation method is its potential to specify relevant factors affecting yield. 

This allows researchers in different fields of interest to use the same sophisticated model based on 

physical relationships [14]. However, simulation requires considerable biophysical inputs that 

sometimes demand estimation instead of measurement. Also, in areas devoid of established sets 

of parameters, calibration could be quite time-consuming. In addition, expert systems are highly 

dependent on human expertise and sets of logical rules to characterize yield. However, these 

logical rules entail extensive communication with the experts and these rules are not readily 

automated and are highly subjectable and reliant on a certain set of input data [14]. 

The use of ANN often resolves the complex relations and strong nonlinearity between crop 

production and different interrelated predictor parameters. Such methods are easily automated, 

contain objective mathematical functions rather than subjective rules, display considerable 

accuracy for new conditions not denoted in the input data, do not involve pre-established physical 

relationships, and can be generated using readily available data. According to [15], the ANN are 

considered to be the best procedures for extracting information from imprecise and non-linear data. 

ANN techniques have turned out to be a very vital tool for a wide variety of applications across 

many disciplines, including crop production prediction. Thus, with varying levels of success, they 

have been used for maize yield prediction based on soil and weather data [16,17]. 

ANNs are computer programs designed to simulate just the way the human brain processes 

information. In other words, they are the digitized models of the human brain [18]. The ANN 
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models are characterized by an initiation function, which uses interrelated information processing 

units to transform input into output. Knowledge is acquired through neural networks by detecting 

relationships and patterns in data. Raw input data is received by the first layer of the neural network 

where it is processed and then transferred to the hidden layers. The hidden layer then passes the 

information to the last layer where the output is produced. ANNs are trained through experience 

with suitable learning exemplars in like manner to human but not from programming. They learn 

from given information, with an identified outcome that optimizes its weights for a better 

prediction in circumstances where there is an unknown outcome. 

Maize is considered to be the most important grain crop, a staple food for a large proportion of the 

population and a major input to animal feed in South Africa. In South Africa, maize is produced 

by both commercial and subsistence farmers and accounts for about 45% of the gross domestic 

product of the agricultural sector. About 8 million tons of maize grain is produced annually in the 

country under varying soil, terrain, and climatic conditions. Free State (FS), North West (NW), 

Mpumalanga (MP) and KwaZulu-Natal (KZN) are the major maize producing provinces in South 

Africa accounting for about 83% of the total national production. FS and NW provinces both 

contribute over 60%, followed by MP (~24%) and KZN (less than 5%) [19]. 

Furthermore, the Food and Agriculture Organization of the United Nations (FAO) has recently 

reported maize as the largest grain crop (in metric tons) produced in the world [20]. Therefore, in 

order to ensure food security for a rapidly growing population, in the face of climate variability, 

several studies have been conducted on maize ranging from climate influence on maize to yield 

predictions. To this end, numerous researchers across the globe have used ANNs to predict maize 

yield and have proven this method to be reliable. For instance, Maryland’s corn and soybean were 

predicted by developing a feed-forward back-propagation ANN model using the rainfall and soil 

properties [21]. Similarly, [14] predicted maize yield at three scales in east-central Indiana, USA, 

with local crop-stage weather and yield data spanning from 1901 to 1996 using a fully connected 

back-propagation ANN together with regression models. In addition, [22] developed a feed-

forward neural network to estimate the nonlinear relationship between soil parameters and crop 

yield. The results indicated a relatively high degree of accuracy for crop yield prediction. 

Furthermore, a study by [23] in eastern Ontario, Canada, evaluated the predicting power of ANN 

for corn and soybean yield using remotely sensed variables. The model was found to report an 

error level below 20% indicating the reliability of the model in predicting corn and soybean yield. 
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Using climate data and fertilizer as predictors, [24] predicted maize yield in Jilin, China. The 

authors reported a close similarity between the predicted yield and the observed yield. Despite 

proven reliability of the application of ANNs to maize yield production as shown in other 

countries, no study has been reported or published to have used these models for predicting maize 

yield in South Africa. Many of the existing studies have relied on the use of crop-based models 

which are in most cases expensive and data intensive. The aim of this study is to develop an 

artificial neural network for predicting maize yield in the major maize producing areas of South 

Africa (FS, NW, MP, and KZN). 

6.1. Materials and Methods 

6.1.1. Study Area 

The study area includes the north-eastern part of South Africa between longitude 22°E to 33°E 

and latitude –32°S to –24°S. It covers KZN, FS, MP, and NW provinces, see Figure 1. Agriculture 

dominates the FS landscape. This is attributed to the fact that the province is agro-ecologically 

located on a flat plain with approximately 5% slopes. It is about 1300 m above sea level, 

characterized by summer rainfall (500–600 mm annually), temperature ranging between 1 °C to 

mild 17 °C in winter and 15 °C to 32 °C in summer. As the FS has more than 30,000 farmers 

producing over 70% of the country’s grain, hence the province is referred to as the “Heart and 

Bread-Basket of the Country”.  
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Figure 6-1: Map showing the geographic location of the study area; inset: The South Africa 

national boundary showing the location of the major maize producing provinces. 

The NW province is considered to be an important contributor to the South Africa food basket 

with an estimated 43.9% of the province categorized as “arable” land. There are three distinct 

climatic regions which allow a wide variety of agricultural activity. The drier western region 

(hunting, cattle, and game farming), the central and southern parts (maize, wheat and cash crops) 

and the eastern and north-eastern region (variety of crops). The province is characterized by almost 

all year-round sunshine, rainfall ranges between 300 and 700 mm per annum, summer temperature 

ranging from 22 °C to 34 °C and winter temperature ranging from 2 °C to 34 °C. The MP province 

is rated as one of South Africa’s most important and productive agricultural regions. The province 

is characterized by rainfall of about 500 reaching up to 800 mm per annum with an average 

temperature of about 19 °C. In KZN the land area devoted to grain and seed production varies 

yearly according to the price of crops, demand and supply, and annual rainfall received. The 

province is characterized by long, hot summer with temperature ranging from 23 °C to 33 °C, 

winter temperature ranging from 16 °C to 25 °C, and an average annual rainfall of 500 to 800 mm 

[25].  
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6.1.2. Datasets 

The datasets used in this study are: the Normalized Difference Vegetation Index (NDVI), potential 

evapotranspiration (PET), precipitation (PRE), minimum temperature (TMN), maximum 

temperature (TMX), soil moisture (SM), size of land cultivated for maize production (Land) and 

maize production per province (P) as the dependent variable. The PET, PRE, TMN, and TMX 

datasets were acquired from the Climate Research Unit Time-Series 3.24.01 (CRU TS 3.24.01). 

These data were derived from monthly observations from over 4000 meteorological stations 

distributed across the world’s land areas. The gridded CRU TS 3.24.01 product is freely available 

for the science community on http://badc.nerc.ac.uk/data/cru or http://www.cru.uea.ac.uk. The 

reader is referred to [26] for more details on the construction of the CRU TS 3.24.01 product. The 

SM data was acquired from the European Space Agency (ESA), as part of their Climate Change 

Initiative (CCI) program. This product is a combination of both active and passive microwave 

sensors. It has a spatial resolution of 0.25 degrees, given in volumetric units (m3 m–3) and is 

provided in NetCDF-4 format. Maize production data sets per province in tons (tons), as well as 

the land area cultivated in hectares (ha) for maize production for the major maize-producing 

provinces were obtained from the abstract of agricultural statistics compiled by the Department of 

Agriculture, Forestry and Fisheries of South Africa (DAFF). This abstract document contains 

important information on inter alia, field crops, horticulture, livestock, vital indicators, total land 

area in hectares (ha) cultivated for maize production, and the contribution of primary agriculture 

to the South African economy. The data are available on the department’s website 

(www.daff.gov.za). All datasets are extracted monthly and are averaged from October to April 

(average maize growing period in South Africa). This was done to ensure the same data scale as 

the maize data which was collected yearly. All datasets span from 1990–2017. Summary of the 

input data is given in Table 1.  

Table 6-1: Summary of input data used for this study 
Data Names Abbreviation Sources 

Normalized Difference Vegetation Index NDVI MODIS (MOD13Q1) 

Potential Evapotranspiration PET Climate Research Unit 

Precipitation PRE Climate Research Unit 

Minimum Temperature TMN Climate Research Unit 

Maximum Temperature TMX Climate Research Unit 

Soil Moisture SM European Space Agency 

Size of land cultivated for maize production Land Department of Agriculture, Forestry and Fisheries 

http://badc.nerc.ac.uk/data/cru
http://www.cru.uea.ac.uk/
http://www.daff.gov.za/
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6.1.3. Data Analysis 

6.1.3.1. Artificial Neural Network 

In this study, the input variables include the PET, PRE, TMN, TMX, SM, and land cultivated for 

maize production. The mathematical model is presented in equation 1, where; y is the output, x1, 

x2 ……. xn represents the input variables, w1, w2 ……. wn represents the weights of the 

combination which generates the output, 𝜃(.) is the unit step function, 𝑤𝑖 are the weights related 

with the ith input and 𝜇 is the mean. 

𝑦 =  𝜃 ∑ 𝑤𝑖

𝑛

𝑗=1

 𝑥𝑖 −  𝜇 (1) 

The generalized weight 𝑤𝑖 is defined as the contribution of the 𝑖th covariate to the log-odds, and 

was introduced by [27]. The equation below represents the generalized weight: 

𝑤𝑖 =
𝜕log (

𝑜(𝑥)
1 − 𝑜(𝑥)

)

𝜕𝑥𝑖
 

(2) 

where the generalized weight shows the effect of the individual covariate 𝑥𝑖 and consequently has 

an analogous interpretation as the 𝑖th regression parameter in regression models, 𝑜(𝑥) is the 

predicted outcome probability by covariate vector and log-odds is the link function for the logistic 

regression model. Note that, the generalized weight depends on all other covariates. 

The analysis was performed using the neuralnet package in R software. The neuralnet uses the 

supervised learning algorithms which comprise a flexible function that trains multilayer perceptron 

to a particular data set [28]. A two layer back propagation network with sufficient hidden nodes 

that has been proven to be a universal approximator was adopted [22,27]. The data were scaled in 

order to nullify the ambiguous effect that a variable might have on the prediction variable due to 

its scale. Hence, the min-max normalization was used to transform the data into a common range, 

thereby removing the scaling effect from all the variables. Both the dependent variable (maize) 

and independent variables were partitioned into training and test datasets. The training data consist 

of the 80% of the data (1990 to 2011) while the test data is 20% of the data (2012 to 2017). The 

training data is the set of data from which the system learns from and testing data is used to validate 
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the model’s performance by comparing the predicted maize yield with the actual maize yield. In 

order to improve the performance of the neural network different combinations of the input 

variables (PET, PRE, TMN, TMX, SM, and Land) with a vector (hidden neuron); (indicating the 

number of hidden layers and hidden neurons in each layer) were used with an automated loop to 

change the vector (architecture) for each province. Hence, the best combination of variables and 

architecture for each province was selected using the percentage of accuracy. The best combination 

for each province was then used to predict maize production and was compared with the testing 

data (20%) left out from the machine learning process. The projection was made using the avNNet 

function in Caret package in R. The performance measures of the prediction were accessed using 

the adjusted R2. The projection for maize production for the years 2018 and 2019 was then 

performed. 

6.2. Results 

6.2.1. Optimizing Combinations of Variable Selection 

Owing to the fact that there is no standard method for the selection of variables in the neuron 

network, it is usually done by testing various variable combinations so as to arrive at the best 

combination for the model. In this case, as reported by [29], the major agro-climatic variable that 

influences maize yield varies across the maize producing areas of South Africa. According to the 

current study, the TMX is the major determinant in the FS and MP provinces, while the TMN is 

largely responsible for changes in maize yield in the NW province. Both the PET and TMN are 

found to be the major drivers of maize yield in KZN. These variables were selected as a baseline 

for the variable combination check, by holding them constant in all the combinations. Since six 

variables (i.e., PET, PRE, TMN, TMX, Land and SM) were used in the model, 12 combinations 

were created for each province except for KZN province, which had just 10 because two climatic 

variables largely determine its maize yield. Table 2 illustrate the combination of variables, the 

hidden neuron, overall error, and accuracy of the best three ranked combinations that best predict 

maize yield in each of the provinces. 
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Table 6-2: Top five architecture of hidden configurations from different variable combinations; with scores, rank and the root mean 

squared error (RMSE) (Scores refers to the accuracy level (%) of the combination with the hidden neuron and ranked 1 to 5 accordingly) 
Province Combination of Variables Hidden Neuron Scores Rank RMSE 

FS 

TMX, Land, SM 

8,9 76.64% 1 0.0383 

5,9 76.55% 2 0.0397 

5,7 76.28% 3 0.0381 

3,6 76.18% 4 0.0382 

7,8 76.13% 5 0.0393 

PET, PRE, TMN, TMX, Land, SM 

5,8 82.42% 1 0.0374 

6,7 82.41% 2 0.0472 

4,9 82.02% 3 0.0445 

6,8 82.01% 4 0.041 

3,8 81.43% 5 0.0399 

PRE, TMN, TMX, Land, SM 

2,6 82.46% 1 0.0347 

4,9 81.94% 2 0.0456 

4,5 80.80% 3 0.0457 

6,7 80.79% 4 0.0429 

8,9 79.19% 5 0.0483 

NW 

PRE,SM, TMN 

5,6 71.51% 1 0.014 

3,5 71.26% 2 0.0166 

5,6 70.16% 3 0.0202 

6,9 69.99% 4 0.0152 

7,9 69.10% 5 0.0158 

TMN, Land, SM 

3,4 73.74% 1 0.015 

2,5 72.33% 2 0.0179 

7,9 67.82% 3 0.0178 

3,6 67.77% 4 0.0172 

1,9 67.59% 5 0.0176 

TMN, SM 

2,8 69.22% 1 0.0142 

4,9 69.06% 2 0.0147 

8,9 67.52% 3 0.0152 

3,8 67.08% 4 0.0170 

3,5 67.99% 5 0.0161 

MP TMN, TMX, Land, SM 

3,4 93.79% 1 0.024 

3,5 91.02% 2 0.0267 

2,7 90.77% 3 0.0267 

6,9 90.73% 4 0.0271 

3,8 90.61% 5 0.0275 
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PET, PRE, TMN, TMX, Land 

7,9 92.02% 1 0.0243 

2,6 91.08% 2 0.0267 

4,9 90.64% 3 0.0273 

1,8 90.35% 4 0.0283 

1,4 89.99% 5 0.0262 

PET, TMX 

4,7 88.39% 1 0.0246 

2,7 88.16% 2 0.0247 

8,9 87.77% 3 0.0248 

1,8 87.53% 4 0.0250 

3,8 87.51% 5 0.0245 

KZN 

PET, PRE, TMN, TMX 

3,5 89.90% 1 0.0055 

4,6 89.66% 2 0.0055 

3,6 89.05% 3 0.0055 

3,9 88.95% 4 0.0055 

3,4 88.93% 5 0.0057 

PET, TMN, TMX, Land, SM 

1,8 61.23% 1 0.0036 

1,9 61.20% 2 0.0036 

1,3 60.94% 3 0.0036 

3,5 47.19% 4 0.0036 

4,7 45.59% 5 0.0036 

PET, PRE, TMN, TMX, Land, SM 

7,8 93.90% 1 0.0033 

4,7 92.15% 2 0.0037 

5,8 91.47% 3 0.0052 

4,5 90.64% 4 0.0055 

2,9 90.18% 5 0.0060 
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According to Table 2, in the FS province, the combination of TMX, Land and SM variables at 

different automated two hidden neurons with vector (8,9) ranked first within this group with 

76.64% accuracy and has a root mean squared error (RMSE) of 0.038. The combination of the 

PET, PRE, TMN, TMX, Land and SM using vector (5,8) resulted in an accuracy of 82.42% and 

RMSE of 0.037 and ranked first. On the other hand, an accuracy of 82.46% and RMSE of 0.035 

was achieved when PRE, TMN, TMX, Land and SM were combined using vector (2,6). Hence, 

the combination of variables PRE, TMN, TMX, Land and SM with vector (2,6) was chosen to 

model maize production for the FS province. For the NW province, the combination of only two 

variables TMN and SM using vector (2,8) gave an accuracy of 69.22% and had RMSE of 0.014. 

When PRE was added to TMN and SM but with vector (5,6) the accuracy improved to 71.51% 

with RMSE of 0.014. However, a higher accuracy of 73.74% with RMSE of 0.015 was attained 

with the variable combination of TMN, Land, and SM with vector (3,4). Considering the 

combination with the highest accuracy, a variable combination of TMN, Land and SM with vector 

(3,4) was selected for the model for the NW province. 

Furthermore, for MP province, the combination of variables PET and TMX using vector (4,7) gave 

an accuracy of 88.39% and RMSE of 0.025. The accuracy for a variable combination that better 

combined to predict maize yield improved to 92.02% when PET, PRE, TMN, TMX and Land were 

combined. The accuracy further improved to 93.79% with RMSE of 0.024 when variables TMN, 

TMX, Land and SM were combined using vector (3,4). Consequently, the combination of TMN, 

TMX, Land and SM with vector (3,4) were selected as the model for MP province. In the case of 

KZN, the combination of PET, TMN, TMX, Land, and SM with vector (1,8) produced an accuracy 

of 61.23% and RMSE of 0.0036. When the PET, PRE, TMN and TMX were combined with vector 

(3,5) an accuracy of 89.39% was achieved. However, the combination of PET, PRE, TMN, TMX, 

Land, and SM using vector (7,8) gave 93.90% accuracy and RMSE of 0.003 in predicting maize 

yield in KZN. Therefore, the combination of the PET, PRE, TMN, TMX, Land and SM variables 

with two hidden neurons of (7,8) was selected for the model for KZN province. 

6.2.2. Generalized Weight of the Variables (𝐰𝐢) 

Tables 3–6 show the generalized weight expressing the effect of each independent variable on the 

dependent variable in the combination. As shown in Table 3, PRE, TMX and Land have a positive 

linear effect on maize production for all the trained years in the FS province. This indicates a 
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favorable relationship between PRE, TMX, Land and maize production in the area with variance 

ranging from 0.01 to 0.42, 0.24 to 7.88 and 0.19 to 5.24 for PRE, TMX and Land, respectively. A 

negative effect is noticed between SM and maize production with variance ranging from –5.56 to 

–0.20, suggesting an unfavorable relationship between the two variables. Similarly, there exist 

both negative (40.91%) and positive (59.09%) effects between TMN and maize production for the 

trained year. The relationship was negative for years 1991, 1992, 1995, 2003, 2004, 2005, 2009, 

2010, and 2011 with its variance ranging from –5.56 to –0.20, suggesting an unfavorable 

relationship between the two variables in those corresponding years. 

Table 6-3: Generalized weight for the independent variable in Free State 
Year PRE TMX TMN Land SM 

1990 0.09 1.18 0.03 1.02 –0.99 

1991 0.09 0.88 –0.10 0.97 –0.88 

1992 0.04 0.35 –0.07 0.45 –0.40 

1993 0.01 0.28 0.04 0.19 –0.20 

1994 0.42 7.88 1.05 5.24 –5.56 

1995 0.05 0.52 –0.05 0.56 –0.52 

1996 0.02 1.87 0.61 0.58 –0.86 

1997 0.06 2.44 0.65 1.04 –1.32 

1998 0.05 0.75 0.03 0.62 –0.61 

1999 0.02 0.24 0.01 0.20 –0.20 

2000 0.12 1.53 0.01 1.37 –1.32 

2001 0.05 0.73 0.06 0.55 –0.56 

2002 0.07 1.37 0.18 0.91 –0.96 

2003 0.13 1.16 –0.14 1.32 –1.20 

2004 0.13 1.10 –0.20 1.37 –1.22 

2005 0.22 1.62 –0.39 2.18 -1.90 

2006 0.17 2.16 0.03 1.91 –1.86 

2007 0.04 0.59 0.04 0.47 –0.47 

2008 0.08 1.27 0.10 0.96 –0.98 

2009 0.04 0.37 –0.05 0.42 –0.38 

2010 0.13 1.20 –0.14 1.35 –1.23 

2011 0.07 0.76 –0.02 0.72 –0.69 

The generalized weight for the independent variables for the NW province is shown in Table 4. 

Both TMN and Land depict a positive linear effect on maize production in the province with 

variance ranging from 1.12 to 1.70 and 0.36 to 0.54, respectively. This suggests a favorable 

relationship between the two independent variables and maize production in the province. On the 

other hand, SM has a negative linear effect on maize production in the province with the variance 

ranging from -1.55 to -0.95. This implies an unfavorable relationship between the two variables.  
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Table 6-4: Generalized weight for the independent variable in North West 
Year TMN Land SM 

1990 1.12 0.37 –0.95 

1991 1.41 0.38 –1.29 

1992 1.52 0.39 –1.51 

1993 1.70 0.43 –1.52 

1994 1.43 0.39 –1.34 

1995 1.62 0.48 –1.55 

1996 1.66 0.42 –1.41 

1997 1.58 0.42 –1.38 

1998 1.59 0.43 –1.47 

1999 1.66 0.49 –1.35 

2000 1.59 0.49 –1.42 

2001 1.53 0.54 –1.43 

2002 1.36 0.36 –1.33 

2003 1.39 0.36 –1.36 

2004 1.41 0.37 –1.38 

2005 1.44 0.40 –1.34 

2006 1.47 0.41 –1.38 

2007 1.44 0.39 –1.38 

2008 1.26 0.39 –1.12 

2009 1.47 0.40 –1.42 

2010 1.41 0.40 –1.29 

2011 1.50 0.42 –1.40 

Table 5 depicts the generalized weight for the independent variables in MP province. The TMX 

depicts a positive linear effect on maize production in the province with its variance ranging from 

1.19 to 2.23. This implies that TMX has a favorable relationship with maize production. However, 

TMN, Land and SM display a negative linear effect on maize production with their variance 

ranging from –1.03 to –0.25, –0.20 to –0.01 and –54 to –0.38, respectively. Thus, these variables 

have an unfavorable relationship with maize production in the province. 

Table 6-5: Generalized weight for the independent variable in Mpumalanga 
Year TMX TMN Land SM 

1990 1.62 –0.44 –0.08 –0.45 

1991 1.67 –0.45 –0.08 –0.47 

1992 1.19 –0.25 –0.03 –0.40 

1993 1.73 –0.61 –0.11 –0.47 

1994 2.01 –0.76 –0.14 –0.51 

1995 1.71 –0.51 –0.09 –0.47 

1996 2.23 –0.92 –0.18 –0.54 

1997 1.98 –0.73 –0.14 –0.51 

1998 1.81 –0.56 –0.10 –0.50 

1999 2.11 –0.78 –0.15 –0.53 

2000 2.14 –1.03 –0.20 –0.50 

2001 1.70 –0.79 –0.15 –0.41 

2002 1.76 –0.59 –0.11 –0.47 

2003 1.29 –0.16 –0.01 –0.43 

2004 1.75 –0.52 –0.09 –0.49 

2005 1.55 –0.41 –0.07 –0.46 
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2006 1.97 –0.69 –0.12 –0.51 

2007 1.32 –0.26 –0.03 –0.43 

2008 1.51 –0.49 –0.09 –0.41 

2009 1.66 –0.44 –0.08 –0.48 

2010 1.58 –0.38 –0.06 –0.46 

2011 1.34 –0.50 –0.08 –0.38 

As depicted in Table 6, the PET and SM have a negative linear effect on maize production in KZN 

province with their variance ranging from –6.22 to –1.04 and –5.37 to –1.61, respectively. 

Therefore, these variables have an unfavorable relationship with maize production in the area. The 

following variables PRE, TMX, and Land display a positive linear effect on maize production in 

the province and their variances range from 0.42 to 1.06, 1.95 to 8.76 and 0.76 to 2.95, respectively. 

The case is different for TMN where 45.45% of this variable has a negative linear effect on maize 

production in the area as its variance ranges from –1.66 to –0.02. The remaining 54.55% has a 

positive linear effect on maize production in the province and its variance ranges from 0.13 to 

approximately 1.81. 

Table 6-6: Generalized weight for the independent variable in KwaZulu-Natal 
Year PET PRE TMX TMN Land SM 

1990 –1.69 0.63 2.93 –1.66 1.00 –2.97 

1991 –5.33 0.92 8.76 –0.56 2.95 –5.37 

1992 –1.78 0.59 3.00 0.31 1.31 –2.05 

1993 –1.17 0.55 2.08 0.18 0.95 –1.66 

1994 –5.02 1.06 8.00 0.91 2.92 –4.88 

1995 –2.69 0.64 4.57 –0.83 1.57 –3.26 

1996 –1.74 0.69 3.28 –0.29 1.35 –2.40 

1997 –2.28 0.71 4.01 0.26 1.58 –2.60 

1998 –2.03 0.69 3.60 0.37 1.49 –2.33 

1999 –3.18 0.76 5.06 0.54 1.99 –3.24 

2000 –6.22 0.59 8.49 1.81 2.41 –5.09 

2001 –3.80 0.68 5.82 1.00 1.90 –3.53 

2002 –1.33 0.50 2.28 –0.02 0.93 –1.81 

2003 –1.43 0.54 2.42 –0.09 0.99 –1.97 

2004 –1.25 0.55 2.13 –0.93 0.79 –2.26 

2005 –1.54 0.64 2.78 –0.07 1.22 –2.12 

2006 –1.63 0.59 2.90 0.28 1.22 –1.96 

2007 –1.33 0.42 2.01 0.26 0.76 –1.67 

2008 –1.47 0.55 2.48 –0.98 0.89 –2.43 

2009 –1.04 0.59 1.95 –0.32 0.87 –1.87 

2010 –1.21 0.62 2.33 0.13 1.14 –1.72 

2011 –1.35 0.51 2.43 0.20 1.13 –1.61 

6.2.3. Network Topology 

The training process results are illustrated in Figure 2A–D. The figure reflects the structure of the 

trained neural network for each province. The network topology conveys basic information such 
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as the trained synaptic weights, the number of steps needed for converge and the overall errors. 

For the purpose of this study, the threshold for the partial derivatives of the error function was set 

at 0.01. Each province has its own unique variable combinations as well as hidden neurons (see 

Table 2; i.e., the FS province has PRE, TMN, TMX Land and SM with hidden neuron c(2,6); NW 

province TMN, Land and SM with hidden neuron c(3,4); MP province TMN, TMX, Land, and 

SM with hidden neuron c(3,4); and KZN province PET, PRE, TMN, TMX, Land and SM with 

hidden neuron c(7,8). 

 
Figure 6-2: Neural network topology for the best combined variables for (A) FS: Free State, (B) 

NW: North West, (C) MP: Mpumalanga and (D) KZN: KwaZulu-Natal provinces 

Figure 2A shows that in the FS province, the training process needed 90 steps to achieve less error 

function (i.e., < threshold of 0.01). The process has an overall error of about 0.20. In the NW 

province, according to Figure 2B, the training process needed 66 steps until all absolute partial 

derivative of the error function were smaller than 0.01 with the process having an overall error of 

about 0.49. On the other hand, in MP province (Figure 2C), the training process needed 68 steps 

until all absolute partial derivatives of the error function were smaller than the default threshold of 

0.01 with the process having an overall error of about 0.45. In KZN (see Figure 2D) the training 
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process needed 78 steps until all absolute partial derivatives of the error function were smaller than 

0.01, and the overall error was 0.16. 

6.2.4. Maize Prediction and Validation 

Having trained the neural network with 80% of both the independent and dependent variables, and 

the best combinations with the hidden neuron selected, the prediction for maize production per 

province was made for the same time frame (2012–2017) of the testing data (20%). The predicted 

output was then compared with the reserved 20% that was not used for machine learning. The 

results are displayed in Tables 7–10. The accuracy level of the prediction varies for each province. 

For instance, the model for the FS province has an adjusted R2 of 0.75, and NW, MP and KZN 

provinces have an R2 of 0.67, 0.86 and 0.82, respectively.   

Table 6-7: Comparison between predicted and actual maize production for Free State (“000 

tons) 

Year 
Actual Maize 

Production 

Predicted Maize 

Production 

Difference (Predicted-

Actual) 
Deviation 

2012 4884.8 4254.24 –630.56 –0.13 

2013 6247.25 4146.92 –2100.33 –0.34 

2014 3945 3939.01 –5.99 –0.002 

2015 2213.5 2789.29 575.79 0.26 

2016 7330.5 3961.63 –3368.87 –0.46 

2017 5515.9 3844.02 –1671.88 –0.30 

As depicted in Table 7, the predicted maize production in the FS province deviated from the actual 

maize production by –0.13 (13%), –0.34 (34%), –0.002 (0.2%), –0.46 (46%) and –0.30 (30%) for 

years 2012, 2013, 2014, 2016, and 2017, respectively. The results suggest an under-prediction of 

maize production in the province. On the other hand, 2015 resulted in over-prediction (i.e., 0.26 

which is equivalent to 26%) of maize production.  

Table 6-8: Comparison between predicted and actual maize production for North West (“000 

tons) 

Year 
Actual Maize 

Production 

Predicted Maize 

Production 

Difference (Predicted-

Actual) 
Deviation 

2012 1613 1671.57 58.57 0.04 

2013 2898 1956.05 -941.95 -0.33 

2014 1490 1830.38 340.38 0.23 

2015 1141 1416.96 275.96 0.24 

2016 3135 1934.21 -1200.79 -0.38 

2017 2123.5 1841.02 -282.48 -0.13 

As shown in Table 8, the predicted maize production for the NW province deviated from the actual 

maize production by –0.33 (33%), –0.38 (38%), and –0.13 (13%) for 2013, 2016 and 2017 



199 
 

respectively, thus there was under-prediction of maize production. Contrasting this, maize 

production was over-predicted by 0.04 (4%), 0.23 (23%) and 0.24 (24%) in 2012, 2014 and 2015, 

respectively. 

Table 6-9: Comparison between predicted and actual maize production for Mpumalanga (“000” 

tons) 

Year 
Actual Maize 

Production 

Predicted Maize 

Production 

Difference (Predicted-

Actual) 
Deviation 

2012 3005 2721.47 –283.53 –0.09 

2013 2782.2 2552.24 –229.96 –0.08 

2014 2429.3 2192.19 –237.11 –0.10 

2015 2319 2308.74 –10.26 –0.004 

2016 3431 2761.67 –669.33 –0.20 

2017 2880 2670.98 –209.02 –0.07 

From Table 9, maize production is under-predicted for the MP province across the entire testing 

period by –0.09 (9%), –0.08 (12%), –0.10 (10%), –0.004 (0.4%), –0.20 (20%) and –0.07 (7%) for 

the years 2012, 2013, 2014, 2015, 2016, and 2017, respectively. 

Table 6-10: Comparison between predicted and actual maize production for KwaZulu-Natal 

(“000 tons) 

Year 
Actual Maize 

Production 
Predicted Maize Production Difference (Predicted-Actual) Deviation 

2012 599 520.82 –78.18 –0.13 

2013 559.1 541.99 –17.11 –0.03 

2014 507.5 476.63 –30.87 –0.06 

2015 522 468.26 –53.74 –0.10 

2016 735 572.21 –162.79 –0.22 

2017 682.5 615.61 –66.89 –0.10 

In KZN province according to the results presented in Table 10, maize production was under-

predicted by –0.13 (13%), –0.03 (3%), –0.06 (6%), –0.10 (10%), –0.22 (22%) and –0.10 (10%) in 

2012, 2013, 2014, 2015, 2016 and 2017, respectively. 

6.2.5. Maize Production Projection 

The results of the projected maize production performed with AvNNet() in Caret package across 

each province for the year 2018 and 2019 is shown in Figure 3A–D and Table 11. The results 

indicate that maize production will decrease across all the provinces (except FS) from the current 

year 2017 to 2018 and 2019. The FS depicts a 32% increase in maize production, i.e. from 2018 

(4651.03 tons) to 2019 (6146.33 tons). In Figure 3A–D, the dark gray shaded and light gray shaded 

area is the 80% and 95% prediction confidence interval, respectively. 
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Table 6-11: Projected maize production for FS: Free State, NW: North West, MP: Mpumalanga 

and KZN: KwaZulu-Natal for 2018 and 2019 using the best variable combinations for each 

province (“000 tons) 
Year FS NW MP KZN 

2018 4651.03 2403.94 2604.34 602.73 

2019 6146.33 2361.61 2335.61 572.74 

Difference 1495.3 –42.33 –268.73 –29.99 

Deviation 0.32 –0.02 –0.10 –0.05 

 
Figure 6-3: Projected maize production (tons) for (A) FS: Free State, (B) NW: North West, (C) 

MP: Mpumalanga and (D) KZN: KwaZulu-Natal provinces; with 80% confidence interval in dark 

grey and 95% confidence interval in light grey 

6.3. Discussion 

In this study, maize production in the FS, NW, MP and KZN provinces of South Africa was 

modeled based on the ANN approach. The analysis considered various variable combinations and 

ranked the accuracy of these combinations across the study area. The results indicated spatial 

dependence of different combinations in different provinces. For instance, the PRE, TMN, TMX, 

Land and SM with hidden neuron c(2,6) combination were ranked first in the FS province; TMN, 

Land and SM with hidden neuron c(3,4) in the NW province; TMN, TMX, Land, and SM with 

hidden neuron c(3,4) in MP and lastly, PET, PRE, TMN, TMX, Land and SM with hidden neuron 

c(7,8) ranked first in KZN. The three variables, i.e. TMN, Land and SM, seem to dominate in all 

first ranked levels across all the four provinces.  
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Maize production in the four selected provinces is highly affected by different agro-climatic 

parameters, as reported in [29]. In this study, we found that TMX is the main driver of change in 

maize yield in the FS and MP, whereas TMN has a dominant impact in the NW. The PET and 

TMN climate variables dominate in KZN, hence significantly affecting the maize yield in the 

province. The results indicate that the variables have a linear effect on maize production since their 

variance was very small. In addition, the influence of TMN on maize production varied in the NW, 

FS and KZN, having a positive linear effect. However, the TMN in MP exhibited a negative linear 

effect on maize production. The land has a positive linear effect on maize production across all the 

provinces except for MP where it has a negative linear effect. Similarly, SM exhibited a negative 

linear effect on maize production across all the provinces. The TMX displayed a positive linear 

effect on maize production in the FS, MP and KZN. PRE appeared in the variable combination of 

just two provinces (FS and KZN) and it has a positive linear effect on maize production in both of 

these provinces. 

The accuracy of the combined variables to predict maize production varied across the provinces. 

The accuracy was recorded in MP (93.79%) and KZN (93.90%). This accuracy suggests that the 

TMN, TMX, Land and SM are sufficient for modelling maize production in MP province while 

PET, PRE, TMN, TMX, Land and SM are ideal for the effective modelling of maize production 

in KZN. Nevertheless, these results do not extensively mean that other farm management practices 

such as fertilizer application, irrigation and choice of cultivar are not significant in achieving best 

output for maize production. They are thought to account for the deviations in the comparison 

between the actual and predicted maize production. On the other hand, despite the high accuracy 

of about 82.46% of the combined variables of PRE, TMN, TMX, Land and SM to predict maize 

production in the FS, a high deviation is noticed between the actual maize production and predicted 

production particularly in the year 2016 where maize is up by 46%. These results are in contrast 

with the deviation between actual and predicted maize production in the NW where the selected 

combination of TMN, Land and SM gave an accuracy of 73.74% but gave a smaller deviation 

between actual and predicted maize production. This could suggest that the FS province is more 

prone to the influence of other farm management practices. 

The projected maize production indicates that maize production is on the decline across all the 

provinces. This can be attributed to the future trend of changes in climatic variables as well as a 

projected increase in drought occurrences [29,30]. 
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6.4. Conclusions 

This study demonstrates the value of the artificial neural network in predicting maize yield across 

the four major maize producing provinces of South Africa. These results agree with the previous 

research findings [27]. The results indicate that different climatic variables and/or their 

combinations serve(s) as major drivers for maize production across the different provinces. The 

accuracy level of the prediction obtained between the actual and predicted maize production for 

each province as given by the adjusted R2 value, with 0.75 in the FS, 0.67 in the NW, 0.86 in MP 

and 0.82 in KZN. In this study, the adjusted R2 is used as a measure of future prediction of maize 

production.   

Although the predicted maize production is under-predicted, we conclude that it is better to under-

predict than over-predict. This is because an under-prediction will enhance the decision-making 

process of the farmers and/or the policymakers to put in place measures to ensure that loss of 

production is prevented or minimized, rather than be blinded by expectation of high production. 

In addition, all the predictions (under-predictions), particularly in MP and KZN, are within 10% 

of the actual maize production except for the year 2016, in which the production was 

approximately 20%. 

The decline in projected maize production can be attributed to the effects of climate change and 

variability; hence adequate adaptation and coping measures are needed for both commercial and 

small-scale farmers to prevent loss of production and aggravated famine. 

This research study is essential in South Africa, as food security is threatened by drought due to 

climate change and variability. The availability of historical and current agro-climatic data 

combined in a model could serve as a vital decision support system to cope and mitigate climate 

change. The model is developed to incorporate different farming scenarios such as the combination 

of agro-climatic parameters with different farming practices to predict maize yield. Hence, this 

tool can help farmers to make informed choices, which include mitigation and adaptation measures 

in order to maximize profit on crop production. Furthermore, the model will be operationalized 

and made available to relevant stakeholders and decision makers such as commercial and small-

scale farmers and the Department of Agriculture. 

This study can be improved to ensure its operability by incorporating other farm management 

practices such as fertilizer application that was not available/accessible during the period of 
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undertaking this research. However, the current status of this model can be validated by comparing 

the projected production of maize with the actual production at the end of the 2018 and 2019 

season. 
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Chapter 7  

SUMMARY AND CONCLUSIONS 

7.0. Summary of findings 

The influence of climate change and variability on agriculture is well documented and is projected 

to have more negative impact in sub-Saharan Africa where there is poor coping and adaptive 

capacity. The projected impact is foreseen to further cause a strain on food security for the rapidly 

growing population. For this study, maize a major important grain crop in South Africa, being both 

the main feed grain and the staple food for most of the South African population was used. Maize 

is dominantly produced in four provinces of South Africa, accounting for about 84% of the 

country’s total production. South Africa is classified as a semi-arid region and a particularly a-

water stressed country. With the evidence of climate change and variability in the amount of 

rainfall received, many sectors such as agriculture and water face a direct impact of the 

consequences. To this end, many studies have been conducted towards ensuring sustainability in 

food production and water utilities.  

This study through its literature review, found that climate change studies have been extensively 

conducted in South Africa, however, only a handful is related to maize production. Similarly, 

several studies on maize production have been performed using different methodologies but 

predominantly crop based models (see chapter 2: Literature review). Furthermore, it was found 

that many of the studies have relied on the use of climatic observation data which in most cases 

are inadequate due to poor spatial distribution of the stations, lengthy gaps in the data among 

others. In addition, the literature review found that, previous studies, have at best quantified the 

impact of climatic variables on maize and at a small geographic area. Attempts to predict maize 

yield have been minimal and the use of artificial intelligence such as the artificial neural network 

has not been conducted or reported in any publication. In this study, alternative sources of climatic 

and environmental data have been employed using remotely sensed data. Remote sensing defined 

as the acquisition of information from an object or phenomenon without physical contact with it 

offers possibilities of collecting continuous data over a large area (including remote areas) using 

satellite. 

Considering the above, this study aimed to examine the variation in maize yield and develop a 

framework for predicting maize yield in response to climate change. To achieve this aim, this study 
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has analyzed the impact of agro-climatic parameters on maize production across the major four 

maize producing provinces of South Africa. This study went further to investigate changes in the 

satellite derived phenological parameters and its relationship with maize production. In addition, 

the influence of drought (a derivative of climate change) on maize production was investigated. 

The study concluded by integrating all datasets used in each objective to develop an empirical 

predicting model using artificial neural network. 

The analysis of four agro-climatic variables (precipitation, potential evapotranspiration, minimum 

and maximum temperatures) spanning a period of 1986–2015, over the North West, Free State, 

Mpumalanga and KwaZulu-Natal (KZN) provinces, indicated that there is a negative trend in 

precipitation for North West and Free State provinces and positive trend in maximum temperature 

for all the provinces over the study period. Further more, the result showed that one or more  

different agro-climatic variables influence maize more across the province. For example, minimum 

temperature had the most influence on maize production in North West, potential 

evapotranspiration (combination of the agro-climatic parameters), minimum and maximum 

temperature influenced maize production in KwaZulu-Natal while maximum temperature 

influenced maize production in Mpumalanga and Free State. In general, the agro-climatic 

parameters were found to contribute 7.79 %, 21.85 %, 32.52 % and 44.39 % to variation in maize 

production during the study period in North West, Free State, Mpumalanga and KwaZulu-Natal 

respectively. The variation in maize production amongst the provinces under investigation could 

most likely attributed to the variation in the size of the cultivated land among other factors 

including soil type and land tenure system. There were also difference in yield per hectare between 

the provinces; KwaZulu-Natal and Mpumalanga being in the humid subtropical areas of South 

Africa had the highest yield per hectare 5.61 tons and 4.99 tons respectively while Free State and 

North West which are in the semi-arid region had the lowest yield per hectare 3.86 tons and 3.03 

tons respectively. Understanding the nature and interaction of the dominant agro-climatic 

parameters discussed in the present study as well as their impact on maize production will help 

farmers and agricultural policy makers to understand how climate change exerts its influence on 

maize production within the study area to better adapt to the major climate element that either 

increases or decreases maize production in their respective provinces (Chapter 3). 

Furthermore, changes in phenological parameters of maize as well as their causal factors across 

the selected maize producing provinces were investigated. Climate change and variability are 
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known to cause changes in crop phenology. The changes in phenology can be used as a proxy to 

elucidate the short- and long-term trends in climate change and variability. Climate change and or 

climate variability affects plant phenology largely during the vegetative and reproductive stages. 

Five phenological parameters i.e. the length of season (LOS), start of season (SOS), end of season 

(EOS), position of peak value (POP), and position of trough value (POT) derived from the MODIS 

NDVI data (MOD13Q1) were analysed. In addition, climatic variables (Potential 

Evapotranspiration (PET), Precipitation (PRE), Maximum (TMX) and Minimum (TMN) 

Temperatures spanning from 2000 to 2015 were also analysed. Based on the results, the maize 

producing provinces considered exhibit a decreasing trend in NDVI values. The results further 

show that Mpumalanga and Free State provinces have SOS and EOS in December and April 

respectively. In terms of the LOS, KwaZulu-Natal Province had the highest days (194) followed 

by Mpumalanga with 177 days  while North West and Free State provinces had 149 and 148 days 

respectively. The results further demonstrate that the influences of climate variables on 

phenological parameters exhibit a strong space-time and common covariate dependence. For 

instance, TMN dominated in North West and Free State, PET and TMX are the main dominant 

factors in KwaZulu-Natal province whereas PRE highly dominated in Mpumalanga. Furthermore, 

the result of the Partial Least Square Path Modeling (PLS-PM) analysis indicates that climatic 

variables predict about 46% of the variability of phenology indicators and about 63% of the 

variability of yield indicators for the entire study area. The goodness of fit index indicates that the 

model has a prediction power of 75% over the entire study area. This study contributes towards 

enhancing the knowledge of the dynamics in the phenological parameters and the results can assist 

farmers to make the necessary adjustment in order to have an optimal production and thereby 

enhance food security for both human and livestock (Chapter 4). 

In addition, the understanding of how climate extremes such as drought influences crop yield are 

critical in ensuring future global food security. Therefore, two commonly used drought indices; 

the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration 

Index (SPEI) were assessed to understand the impacts of drought on maize yield over four main 

maize production provinces of South Africa. The drought was characterized based on three 

Drought Monitoring Indicators (DMI) i.e., Drought Duration (DD), Drought Severity (DS), and 

Consecutive Drought Months (CDM). The results indicate that maize yield is significantly affected 

by drought across the entire study area, although the impacts are localized. A comparison between 
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the two SPI and SPEI suggests that the SPEI is more correlated and more sensitive to maize yield 

than its counterpart. The yield is most sensitive to 3-month timescale coinciding with maize 

growing season (r = 0.59; p <0.05). Based on the results, drought affects maize yield by up to 35% 

across the study area. This study illustrates the spatial patterns of drought showing locations with 

drought severity, frequency, and intensity which has the potential to influence crop yield. The 

result suggests that management strategies that allow for optimal water use within the first 1- and 

3-month will be most effective for sustainable maize production within the study area. This study 

provides bases for the implementation of an early warning system that focuses on drought impact 

on crop yield (Chapter 5). 

In ensuring and fulfilling one of the seventeen sustainable development goals; to eradicate extreme 

poverty and hunger, the development of a system capable of monitoring and predicting crop yield 

becomes imperative (FAO, 2016). The use of crop-based models are known to be expensive to 

implement and calibration intensive due to the fact that many of the models are developed to suite 

the climate of the origin. Machine learning tools such as the artificial neural network becomes 

handy and useful to providing a platform that is data intensive and robust to meet the requirements 

for an effective monitoring and predictive system for crop; particularly maize. This study 

developed an artificial neural network to predict maize in the major maize producing provinces of 

South Africa. Maize production prediction and projection was made using different mostly suitable 

combinations of climate variables that include precipitation (PRE), maximum temperature (TMX), 

minimum temperature (TMN), potential evapotranspiration (PET), soil moisture (SM) and land 

cultivated (Land) for maize. The result indicated that the variable combination of PET, PRE, TMN, 

TMX, Land, SM with two hidden neurons of vector (5,8) was the best combination to predict 

maize production in FS, the combination of TMN, TMX, PET, PRE, SM and Land with vector 

(7,8) resulted as the best combination for predicting maize in KZN while the combinations of 

TMN, SM and Land; TMN, TMX, SM and Land with vector (3,4) gave the best maize predicting 

combinations for NW and MP respectively. The comparison between the actual and predicted 

maize production using the testing data indicated performance accuracy adjusted R2 of 0.75 for 

FS, 0.67 for NW, 0.86 for MP and 0.82 for KZN. Furthermore, the result suggested a decline in 

the projected maize production across the entire province from 2018 to 2019 except for FS with 

an increasing projection. The result is suggestive of the projected changes in climate and its 
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derivatives such as drought. The developed model can help to enhance decision making process 

of the farmers and policymakers (Chapter 6). 

In conclusion, this research contributes to this vital topic through investigating the most dominant 

climatic variables that influence maize yield in four provinces of South Africa. It is evident from 

this study that in the context of global change, increase in temperature leads to higher rate of 

evapotranspiration. On the other hand, decrease in precipitation leads to prolonged drought 

conditions which impact negatively on maize production. Furthermore, analysis of the 

phenological parameters for different types of vegetation in large areas helps to evaluate the 

impacts of climate change e.g., vulnerable ecosystems. At present, the phenology metrics that are 

derived from the time series of MODIS Normalized Difference Vegetation Index (NDVI) are 

recognized to provide an alternative methodology of crop condition monitoring compared to the 

expensive and time-consuming manual system. These phenological parameters have important 

applications such as in irrigation management, nutrient management, health management, yield 

prediction and crop type mapping vital for ensuring the security of the food crop production. 

Similarly, drought impacts on maize yield depend on drought magnitude and duration and on plant 

growth stages when droughts occur. Drought events during maize reproductive and vegetative 

stages cause the highest reduction in maize yield. The reduced maize yield during the notable 

drought years (1991/92, 1994/95, 2002/03, 2004/05, 2006/07, 2008/09, 2009/10, 2011/12 and 

2014/15) could be attributed to the low rainfall amount during the growing season in some parts 

of NW. Persistent moderate drought conditions occurred during the sensitive growing stages of 

maize in some parts KZN and MP provinces. Consequently, farmers are always faced with the risk 

of losing their crops and eventually losing their income at every planting season. To reduce yield 

loss or failure, the following points can be considered; 

• Farmers in Mpumalanga and KwaZulu-Natal could practise conservation agriculture whereby 

mechanical disturbance of soil is reduce and suitable variety of crops are grown. 

• Farmers in humid-subtropical areas of KwaZulu-Natal and Mpumalanga should get involved more 

in maize production since these areas favour maize yield per hectare more compared to the semi-

arid areas (that is Free and North West).  

• Identification of suitable maize varieties that tolerate frost for North West and drought and heat 

wave for Free State can be of great help. 
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7.1. Scientific contribution of this study 

All objectives of this research as well as the literature review are intended to be published in peer-

reviewed journal hence the choice of the publication style of thesis writing. This will ensure that 

the scientific community particularly climate and agriculture research have access to recent 

findings and further contribute to knowledge. In addition, study such as this can be used as a tool 

to assess the vulnerability of agriculture/farms (particularly maize farms) to climate change which 

can help smallholder farmers to provide evidence to have access to insurance benefits and loans. 

Furthermore, reliable high-quality long-term remote sensing datasets, such as the MODIS NDVI 

dataset, are a crucial input for providing converging evidence on vegetation changes. While much 

is to be learned regarding the human dimension of adaptation, such evidence is highly needed to 

inform potential adaptation strategies for smallholder farmers in South Africa. 

7.2. The potential contribution of this work to food security 

With established evidence of climate change, reports have shown variations in climatic parameters 

as well as increase in the frequency and intensity of extreme climate events. These changes have 

potentials to affect crop production with more devastating impact on low coping capacity countries 

such as South Africa. The potential implication of this research is that by developing a crop 

monitoring and predicting model, adequate farm management practices can be selected. The 

empirical model developed in this research can also be adapted to other grain crops such as 

Sorghum, wheat, soya beans etc. The developed model will be made available to both small-scale 

and commercial farmers and the Department of Agriculture for adequate policy planning. 

7.3. Limitations of the study 

This study amidst of its good outputs is not free from limitations. A major limitation of this 

research is the lack of availability of maize data at higher scale i.e., at intra-season and at the farm 

level. If such data is available it could help to further establish the relationship between the agro-

climatic, phenological parameters and maize production at seasonal and farm level. Also, worthy 

of mentioning is the inaccessibility to or lack of adequate farm management data such as fertilizer, 

irrigation data. 
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7.4. Future research direction 

The developed model will be integrated into a climate change model to simulate future maize yield 

outlook using different climate change scenarios.  
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SUPPLEMENTARY FILES 

Chapter 5 

 

 

Figure 5-13: Drought indices quantified by the SPI in different timescale 1-, 3-, 6- and 12-month 

calculated using averages over the 4 stations in North West province. 
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Figure 5-14: Drought indices quantified by the SPEI in different timescale 1-, 3-, 6- and 12-

month calculated using averages over the 4 stations in North West province. 
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Figure 5-15: Drought indices quantified by the SPI in different timescale 1-, 3-, 6- and 12-month 

calculated using averages over the 4 stations in KwaZulu-Natal province. 
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Figure 5-16: Drought indices quantified by the SPEI in different timescale 1-, 3-, 6- and 12-

month calculated using averages over the 4 stations in KwaZulu-Natal province. 
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Figure 5-17: Spatial contrasts of the mean DMIs derived from SPI-1 (top) and SPEI-1 (bottom): 

Panel A corresponds to DD while B and C correspond to DS and CDM. 
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Figure 5-18: Spatial contrasts of the coefficient of variation (CV) of DMIs derived from SPI-1 

(top) and SPEI-1 (bottom): Panel A corresponds to DD while B and C correspond to DS and CDM. 
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Figure 5-19: Spatial contrasts of the trends of DMIs derived from SPI-1 (top) and SPEI-1 (bottom): 

Panel A corresponds to DD while B and C correspond to DS and CDM. 

 

 


