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A B S T R A C T

A number of potentially ultra-hard materials are examined using ab-initio methods. Compound phases of varying
lattice stoichiometry in the B-C-N-O quaternary system, in the forms, C8−xBx (x= 1, 2, 3, 4), C7−xBNx (x= 1, 2,
3) and C6−xBNOx (x= 1, 2) are proposed as possible ultra-hard materials with useful applications. Cell struc-
tures and elastic properties are studied, systematic trends are established. It was determined that C7B and C6BN
were mechanically and dynamically stable compounds with potential ultra-hard characteristics, C6BN being the
harder of the two. Since diamond is experimentally well understood as an ultra-hard material, we use it as a
standard for comparing our results.

Introduction

Most researchers define ultra-hard or super-hard materials as those
having Vickers hardness greater than 4000 kg/mm2, which is about 40
GPa [1]. Vickers hardness in kilograms per square millimetre (kg/mm2)
can be converted to SI units (GPa) by multiplying with the standard
gravity (9.80665) to get the hardness in MPa and then divided by 1000
to get GPa. A lot of theoretical and experimental work has been devoted
to the search for new ultra-hard materials [1-3].

The hardest naturally occurring material known is diamond. Its
Vicker hardness, depending on the chosen crystal face indented and
type of diamond, varies from 70 to 140 GPa [4]. The material know to
be the second hardest from diamond is boron nitride in the cubic phase
(cBN), with a hardness of between 30 and 45 GPa [5] on the Vickers
scale. Naturally occurring cBN was discovered relatively recently [6].

Ultra-hard materials generally satisfy the three conditions that, the
bond lengths should be short, there should be covalent bonding to a
high degree and the bond or electronic density should be high [3]. The
hardness of diamond is attributed to its localized electrons in covalent
bonds formed by sp3 bonded carbon atoms with two interpenetrating
face-centred cubic lattices shifted by a/4 of the lattice parameter,
a= 0.357 nm, along each cubic axis hence forming short bonds of
length, =d a3

4 . Ultra-hard materials can be distinguished into a
number of classes including the already synthesized and hypothetical
phases [4]. In one class of the ultra-hard materials, we have covalent
and partially ionic covalent compounds such as oxides formed by

elements from the second and third periods of the periodic table. Stable
lattices with short covalent bonds are formed by these materials [4]. In
this class we have materials like corundum, which is a crystalline form
of aluminium oxide (Al2O3). Sapphire and ruby are two primary gem
varieties of corundum with some transition metal impurities present.
Stishovite is also in this class, it is the high pressure phase of SiO2 which
is very rare on the Earth's surface but is the predominant form of silicon
dioxide in the lower mantle. Al and Si are both in period 3 of the
periodic table while O is in period 2. Another class consists of covalent
compounds including various crystalline and disordered carbon mod-
ifications. An example is C60 molecules packed together in the dense
bulk solid-state form called fullerite [4]. A common feature in all classes
of ultra-hard materials is that they include at least one of the four
elements, carbon, boron, oxygen and nitrogen [7–9]. Our present work
is based on the study of the compound phases in the B-C-N-O qua-
ternary system, as a class of materials.

The value of the bulk modulus of diamond is, B= 443 GPa and that
of its shear modulus is, G= 535 GPa [10]; for cubic boron nitride,
B= 367 GPa and G= 405 GPa [11]. While there is no one-to-one cor-
respondence between bulk or shear modulus with hardness, there is a
trend that the larger the bulk and shear moduli the higher the hardness.
Diamond has the largest known values of bulk modulus, shear modulus
and hardness. The shear modulus was found to be a better predictor of
hardness than bulk modulus, using a compilation of experimental data
obtained from different materials [12]. Materials like metals do not
follow this trend. This is as a result of their low shear strength [13] due
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to the ‘lubrication’ effect of free electrons between atomic planes. Ma-
terials with a value of the bulk modulus exceeding 250 GPa are ex-
pected to have ultra-hard characteristics [14]. Clerc [15] proposed the
electronic factors that determine high bulk moduli in diamond-like
materials. In such materials, hardness is known to scale well with the
bulk and shear modulus. In our work we start with a diamond-like base
structure to predict bulk and other elastic moduli with the aim of
identifying novel ultra-hard materials.

The advent of density functional theory (DFT) and ab-initio pseudo-
potentials has allowed ground state structural and electronic properties
calculations as well as predictions of the stability of structural phases in
materials. The exchange-correlation energy functional used in this work
is the generalized gradient approximation (GGA) [16].

There have been studies reported on the B-C system [17–20], the B-
O system [21], B-C-O system [22], B-N-O system [23] and the B-C-N
system [24]. We make an extension of this research work by studying
structures of varying lattice stoichiometry in the B-C-N-O system in the
forms, C8−xBx (x= 1, 2, 3, 4), C7−xBNx (x= 1, 2, 3) and C6−xBNOx

(x= 1, 2). The materials were initially simulated in a diamond-like
super cell of eight atoms. A relaxation operation was carried out on
each of the unit cell structures to allow the atomic positions to self-
adjust according to the inter-atomic forces until an equilibrium atomic
structure of the system was achieved. Ground-state crystal structures
and various moduli of elasticity are examined; systematic trends are
established.

                           (a)                                                                 (b)

                            (c)                                                                (d)
Fig. 1. Unrelaxed unit cell crystal structures of, (a) C7B, (b) C3B (or C6B2), (c) C5B3 and (d) CB (or C4B4).

Table 1
Independent stiffness constants, cij and compliances, sij for C8−xBx materials where x= 0, 1, 2, 3, 4.

Material Crystal
structure

Stiffness matrix elements, cij (GPa) and compliance elements, sij (×10−5/GPa)

c11

s11

c12

s12

c13

s13

c14

s14

c22

s22

c23

s23

c33

s33

c44

s44

c55

s55

c66

s66

Diamond Cubic F
(fcc)

1059
95

118
−10

559
179

C7B Cubic I
(bcc)

730
158

215
36

473
212

C3B Rhombohedral I 619
199

205
−58

184
−42

−66.1
−47

619
199

613
88

364
291

C5B3 Orthorhombic 470
397

265
−162

269
−162

513
276

137
11

522
272

277
361

357
280

357
280

CB Orthorhombic 542
216

188
−56

145
−44

608
191

146
−38

523
214

320
313

315
317

316
317
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Computational details

Plane-wave pseudo-potential total energy and electronic structure
calculations and simulations were performed using the Quantum
Espresso [25] package, based on the density functional theory [26]. The
generalized gradient approximation (GGA) [16] was used for the

electronic exchange-correlation interactions. In all the calculations, the
plane-wave cut-off energy used was 50 Ry and the k-point mesh Bril-
louin zone sampling was 6 × 6 × 6 Monkhorst Pack [27]. This allowed
for a total energy convergence of within one thousandth of an electron-
volt per atom.

We consider a unit cell of eight atoms in the diamond lattice
structure with B, C, N or O atoms at the lattice points. Both cell para-
meter and atomic position geometry were optimized using Quantum
Espresso [25]. This was done by carrying out a relaxation operation to
allow the atomic positions to self-adjust according to the inter-atomic
forces thereby achieving equilibrium atomic structures. The equili-
brium configurations were then used as reference systems for applying
a theoretical strain and observing the associated changes in the total
energy. In this way, graphs of the total energy against the imposed
strain had minimum positions at the points of zero strain. The Elastic
software package [28] was used to calculate second order elastic con-
stants (SOECs) based on the numerical differentiation of the total en-
ergy with respect to the associated strain. The stiffness constants, cij

which are components of the stiffness tensor in Voigt notation, were
then obtained using,

=
=

c
V

E1 ,ij
i j0

2

0 (1)

where η is the Lagrangian strain and the equilibrium volume is V0. The
components of the stiffness tensor are the proportionality constants
connecting the stress tensor components, τij to the strain tensor com-
ponents, ηij. The tensor equation which defines the components, cij of

Table 2
Effective isotropic Voigt, Reuss and Hill bulk moduli, B, shear moduli, G, Young
moduli, E and Poisson ratio, ν.

Material Crystal
structure

BV and GV
(GPa)

BR and GR
(GPa)

BH, GH
and E
(GPa)

ν

Diamond Cubic F
(fcc)

BV = 432
GV = 523

BR = 432
GR = 520

BH = 432
GH = 522
EH = 1115

νH = 0.07

C7B Cubic I
(bcc)

BV = 386
GV = 387

BR = 386
GR = 354

BH = 386
GH = 370
EH = 842

νH = 0.14

C3B Rhombohedral I BV = 333
GV = 272

BR = 333
GR = 242

BH = 333
GH = 257
EH = 613

νH = 0.19

C5B3 Orthorhombic BV = 316
GV = 254

BR = 314
GR = 192

BH = 315
GH = 223
EH = 542

νH = 0.21

CB Orthorhombic BV = 292
GV = 270

BR = 290
GR = 255

BH = 291
GH = 262
EH = 605

νH = 0.15

(a)                                                              (b)

                                       (c)
Fig. 2. Unrelaxed crystal structures of, (a) C6BN, (b) C5BN2 and (c) C4BN3.
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the stiffness tensor can be inverted to give the components, sij of the
compliance tensor which express the proportionality of ηij to τij rather
than τij to ηij. The effective values of the isotropic shear modulus, G,
bulk modulus, B, Young modulus, E and the Poisson ratio, ν, were
calculated using the stiffness constants, cij and compliances, sij. The
bulk modulus was obtained from the ratio of the applied isostatic stress
to the fractional volumetric change of the cells. The shear modulus was
the calculated resistance to shear stress. The Young modulus related the
stress to the resulting strain in the same direction while the Poison ratio
related the lateral strain to the axial strain.

There are three widely used averaging approaches for obtaining the
isotropic elastic constants. The Voigt [29] approach assumes a uniform
strain while the Reuss [30] procedure is valid for uniform stress. The
Hill [31] averaging procedure considers the Reuss and Voigt values as
the lowest and upper most predicted values respectively.

Bulk and shear moduli in the Voigt approach are given by:

= + + + + +B c c c c c c1
9

[( ) 2( )]V 11 22 33 12 13 23 (2)

and

= + + + + + + +G c c c c c c c c c1
15

[( ) ( ) 3( )]V 11 22 33 12 13 23 44 55 66 (3)

respectively, while for the Reuss procedure the corresponding expres-
sions are:

= + + + + +B s s s s s s[( ) 2( )]R 11 22 33 12 13 23
1 (4)

and

= + + + + + +G s s s s s s s s s15[4( ) ( ) 3( )]R 11 22 33 12 13 23 44 55 66
1 (5)

Hill-averaged bulk and shear moduli were determined using:

= +G G G1
2

( )H V R (6)

and

= +B B B1
2

( )H V R (7)

Hill-averaged Young moduli, EH, and Poisson ratios, νH, were respec-
tively obtained from the expressions:

=
+

E B G
B G
9

3H
H H

H H (8)

and

= B G
B G

3 2
2(3 )H

H H

H H (9)

In all the crystal structures, except the monoclinic structures, the Hill-
averaged values were used as our final results. In the monoclinic
structures, obtaining the Reuss shear modulus, GR was problematic

Table 3
Independent stiffness constants, cij and compliances, sij for C7−xBNx materials where x= 1, 2, 3.

Material Crystal
structure

Stiffness matrix elements, cij (GPa) and compliance elements, sij (1/GPa)

c11

s11

c12

s12

c13

s13

c14

s14

c16

s16

c22

s22

c23

s23

c26

s26

c33

s36

c36

s33

c44

s44

c45

s45

c55

s55

c66

s66

C6BN Rhombohedral I 946
108

118
−12

111
−11

−0.5 946
108

975
105

499
200

C5BN2 Monoclinic 770
139

168
−16

148
−9

101
−33

744
240

910
298

115
81

740
−231

−4.4
−91

398
255

45
−30

379
268

378
248

C4BN3 Orthorhombic 687
173

156
−32

244
−57

595
183

142
−28

662
178

101
987

367
272

101
987

Table 4
Effective isotropic Voigt, Reuss and Hill bulk moduli, B, shear moduli, G, Young
moduli, E and Poisson ratio, ν.

Material Crystal
structure

BV and GV
(GPa)

BR and GR
(GPa)

BH, GH
and E
(GPa)

ν

C6BN Rhombohedral I BV = 394
GV = 451

BR = 394
GR = 448

BH = 394
GH = 449
EH = 977

νH = 0.09

C5BN2 Monoclinic BV = 523
GV = 299

BR = 461 BH = 492
EV = 754

νV = 0.26

C4BN3 Orthorhombic BV = 336
GV = 208

BR = 332
GR = 161

BH = 334
GH = 184
EH = 466

νH = 0.27

 (a)                                                                (b)
Fig. 3. Unrelaxed crystal structures of, (a) C5BNO and (b) C4BNO2.
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hence the corresponding Young modulus, ER and Poisson ratio, νR,
which are derivatives of GR, could not be determined. In these cases the
Voigt rather than the Hill-averaged values were used as the final results.

Results

Diamond and carbon-boride materials were initially simulated in a
diamond-like super cell of eight atoms using the formula,

=xC B , where 0, 1, 2, 3, 4.x x8 (10)

The value, x= 0 represents diamond which was used as a standard for
comparing other possible ultra-hard materials. Crystal structure dia-
grams were constructed for all the materials, before a relaxation process
was carried out, using the crystalline structure visualization and ana-
lyzer software package, Xcrysden [32]. Unrelaxed unit cells of C7B, C3B
(or C6B2), C5B3 and CB (or C4B4) as simulated by Xcrysden are shown in
Fig. 1.

The formula in the form, C8-xBx for a particular value of x is ob-
tainable from the unit cell diagrams in Fig. 1, considering that the
atoms at the corners and faces contribute 1/8 and 1/2 of their volume
to the cell, respectively. A relaxation operation was carried out on each
of the unit cell structures using Quantum Espresso. In this way the
atomic positions were allowed to self-adjust according to the intera-
tomic forces until equilibrium of the system was eventually achieved.
The Elastic software package [28] was then used to obtain the elastic
constants for all the materials. The results are shown in Table 1. The
isotropic symmetries of the various second-order elastic constant

matrices cause several components to be dependent, for example there
is diagonal symmetry in all cases, i.e., c12 = c21, etc. There are several
other types of inter-dependencies like, c11 = c22 and c66 = (c11 − c12)/
2, which are characteristic of the rhombohedral I structure. Table 1
only lists the independent elastic constants. It should be noted that the
compliance elastic constants were calculated independently of the
stiffness constants.

The effective isotropic Voigt, Reuss and Hill values of B, G, E and ν
were obtained from the stiffness constants, cij and compliances, sij. The
results are shown in Table 2.

Nitrogen was then added to the carbon-boride simulated materials
using the formula,

=xC BN , where 1, 2, 3.x x7 (11)

Simulated unrelaxed unit cells of C6BN, C5BN2, and C4BN3 are shown in
Fig. 2.

The systems were then relaxed using Quantum Espresso to obtain
equilibrium. The Elastic software package was used to calculate second
order elastic constants. In the monoclinic structure, obtaining the Reuss
shear modulus, GR was problematic hence the corresponding Young
modulus, ER and Poisson ratio, νR, which are derivatives of GR, could
not be determined. In this case the Voigt rather than the Hill-averaged
values were used as the final results as shown in Table 3.

The effective isotropic values of B, G, E and ν were obtained from
the stiffness constants and compliances in Table 3, the results are shown
in Table 4.

Oxygen was added to the carbon-boron-nitride simulated materials
using the formula,

=xC BNO , where 1, 2.x x6 (12)

Unrelaxed unit cells of C5BNO and C4BNO2 as simulated by Xcrysden
are shown in Fig. 3.

The Elastic software package was used, after the system was relaxed
using Quantum Espresso, to obtain the elastic constants shown in
Table 5.

The effective isotropic bulk, shear, Young moduli and Poisson ratio
obtained from the stiffness constants and compliances in Table 5 are
shown in Table 6.

Both structures in Table 6 are monoclinic and the presented values
of B, G, E and ν are the Voigt values.

The total equilibrium energies per unit cell obtained after the re-
laxation process on all the materials studied are presented in Table 7.
C4BNO2 has the lowest total energy, the other materials are listed below
C4BNO2 in Table 7 in their order of increasing equilibrium energy.

Discussion

The variation of the bulk moduli as a function of the values of x in
C8−xBx, C7−xBNx, and C6−xBNOx materials is represented graphically
in Fig. 4.

It is seen in Fig. 4(a) that in the C8-xBx materials the bulk modulus
reduces with increasing boron concentration. The trend in the C7-xBNx

materials was not a monotonic reduction with increase in x. We see a
jump in the value of the bulk modulus, in Table 3 and Fig. 4(b),

Table 5
Independent stiffness constants, cij and compliances, sij for C6−xBNOx materials where x= 1, 2.

Material Crystal
structure

Stiffness matrix elements, cij (GPa) and compliance elements, sij (1/GPa)

c11

s11

c12

s12

c13

s13

c16

s16

c22

s22

c23

s23

c26

s26

c33

s33

c36

s36

c44

s44

c45

s46

c55

s55

c66

s66

C5BNO Monoclinic 608
175

185
−2

155
−36

30
−15

709
−379

817
437

107
114

707
−353

9
−132

350
286

−1.4
1

325
308

322
278

C4BNO2 Monoclinic 505
231

107
32

190
−98

20
−56

632
406

379
−269

137
−421

557
385

24
251

119
859

−29
75

328
311

119
1287

Table 6
Effective isotropic Voigt, Reuss and Hill bulk moduli, B, shear moduli, G, Young
moduli, E and Poisson ratio, ν.

Material Crystal
structure

BV and GV
(GPa)

BR
(GPa)

BH, GH
and E
(GPa)

ν

C5BNO Monoclinic BV = 482
GV = 257

BR = 416 BH = 449
EV = 655

νV = 0.27

C4BNO2 Monoclinic BV = 338
GV = 181

BR = 284 BH = 311
EV = 461

νV = 0.27

Table 7
Total equilibrium energies per unit cell for the materials studied.

Material Total Equilibrium
Energy (Ry)

1 C4BNO2 −135
2 C5BNO −115
3 C4BN3 −111
4 C5BN2 −103
5 C6BN −94
6 Diamond −91
7 C7B −86
8 C3B −81
9 C5B3 −75
10 CB −70
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associated with the phase change from rhombohedral I to monoclinic in
C6BN and C5BN2 respectively. The changes in the shear moduli with
variations in lattice stoichiometry are presented in Fig. 5.

Fig. 5(a) shows that there is a graphical minimum in the shear
modulus at x= 3 (C5B3) in the C8-xBx materials. In the other materials
the shear modulus is seen to decrease with increasing values of x. The
variations in the Young moduli with changes in lattice stoichiometry
are shown in Fig. 6.

As was the case with the shear modulus, we see in Fig. 6(a) that
there is a graphical minimum in the Young moduli at x= 3 (C5B3) in
the C8−xBx materials. In the other materials the Young modulus de-
creases with increasing values of x. The changes in the Poisson ratio
with variations in lattice stoichiometry are presented in Fig. 7.

Fig. 7(a) shows that there is a graphical maximum at x= 3 (C5B3) in
the C8-xBx materials. The Poisson ratio decreased with increasing values
of x in the C7-xBNx materials but remains constant in the C6-xBNOx

materials.
Table 8 lists the effective isotropic elastic moduli in their decreasing

order of magnitude for all materials studied. This table compares the
bulk, shear and Young moduli in order to identify the hardest new

materials predicted. Materials with a value of the bulk modulus ex-
ceeding 250 GPa are expected to have ultra-hard characteristics [14].
The bulk modulus results shown in Table 8 indicate that all the com-
pounds studied could potentially have ultra-characteristics. We shall
now discuss the stability of these compounds.

When discussing phase stability, it is important to distinguish be-
tween energetic, mechanical and dynamical stability. Energetic stability
is related to the Gibbs free energy, G, which predicts the relative sta-
bility of compound phases such that the one with the lowest value of G
is the most stable one. The Gibbs free energy directly depends on the
value of the internal energy, U. The total equilibrium internal energies
per unit cell obtained after the relaxation process on all the materials
studied are presented in Table 7. The energies in Table 7 are low and it
is very likely that the energies required to separate the constituent
atoms in the compounds (cohesive or formation energies) are negative,
implying energetic stability.

In order to have mechanical stability the elastic constants have to
satisfy the Born-Huang conditions [33]. These conditions give simpli-
fied equivalents of the generic requirements for the elastic stability of
some high-symmetry crystal classes like the cubic system. Mouhat and

Fig. 4. Graphs for the trend in bulk moduli in, (a) C8−xBx, (b) C7−xBNx, and (c) C6−xBNOx materials.
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Coudert [34] extended this work to include both necessary and suffi-
cient conditions for crystal systems with lower symmetry and larger
numbers of independent elastic constants. These are the conditions that
we adopted in this work.

A general necessary but not sufficient Born stability condition noted
by Fedorov [35] is that all diagonal elements should be positive

>C i( 0, )ii . An examination of all the diagonal elements in Tables 1, 3
and 5 shows that all the compounds studied satisfy this condition.

Another necessary general Born stability condition is,

<C C C i j( ) , .ij ii jj
2 (13)

An examination of the elastic constants in Tables 1, 3 and 5 also shows
that all the compounds studied satisfy the condition in Eq. (13), except
in the two cases of C5BNO for which =C 66748923

2 whereas
=C C 50126322 33 and C5BN2 for which =C 82810023

2 whereas
=C C 55056022 33 . In both of these cases, >C C C( )23

2
22 33, therefore

C5BNO and C5BN2 are not mechanically stable.
The compounds which satisfied the two necessary conditions for

mechanical stability were further tested to see if their elastic constants
satisfy the sufficient conditions for their respective lattice classes.

The sufficient Born stability conditions for the cubic system, which
only has three independent elastic constants, are:

> + >C C C C0; 2 0.11 12 11 12 (14)

Using the results shown in Table 1 we see that elastic constants for C7B,
which has a body-centered cubic bravais lattice, satisfy the sufficient
Born stability conditions given in Eq. (14). This compound is therefore
mechanically stable. Table 1 also shows that the same applies to dia-
mond, as expected, which has a face-centered bravais lattice.

According to Mouhat and Coudert [34] the sufficient Born criteria
for the rhombohedral I class, which has 6 independent elastic constants,
are:

>
< +

<

C C
C C C C

C C C C

| |;
( );

( ).

11 12

13
2 1

2 33 11 12

14
2 1

2 44 11 12 (15)

The elastic constants for C3B and C6BN, as presented in Tables 1 and 3
respectively, show that the sufficient Born criteria for these two
rhombohedral I compounds, as given in Equation (15), are satisfied.

Fig. 5. Graphs for the trend in shear moduli in, (a) C8−xBx, (b) C7−xBNx, and (c) C6−xBNOx materials.
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These two compounds are therefore mechanically stable. It should be
pointed out that Tables 1 and 3 show 7 elastic constants for these two
compounds as would be the case in rhombohedral II structures. How-
ever, this is because our software calculated and presented C11 and C22

independently while in fact they are always equal, leaving only 6 actual
independent constants. The rhombohedral II class has C15 as an addi-
tional independent elastic constant.

The sufficient Born criterion for an orthorhombic system [34], with
9 independent elastic constants, is:

+ >C C C C C C C C C C C C2 0.11 22 33 12 13 23 11 23
2

22 13
2

33 12
2 (16)

Using the results shown in Tables 1 and 3, we find that the elastic
constants for CB, C5B3 and C4BN3, which have orthorhombic bravais
lattices, satisfy the sufficient Born stability condition given by Eq. (16).
These three compounds are therefore mechanically stable.

As demonstrated earlier, of the three monoclinic compounds stu-
died, viz, C5BN2, C5BNO and C4BNO2 only C4BNO2 satisfied the ne-
cessary Born condition given by Equation (14). The monoclinic crystal
system has 13 independent elastic constants. The sufficient Born criteria
for such low-symmetry crystals are complex [34] and will not be dis-
cussed here.

Looking at the bulk, shear and Young modulus values for all the
mechanically stable compounds shown in Table 8, none has a higher
value of any of the three elastic moduli than diamond; C5BN2 and
C5BNO, although predicted as having a higher bulk modulus, have been
shown to be mechanically unstable. Interestingly, C6BN is second to
diamond in all the three types of elastic moduli. It is therefore clear that
C6BN is likely to be the hardest of all the mechanically stable com-
pounds studied apart from diamond. The compounds that were iden-
tified as being mechanically stable were further tested for dynamical
stability. Dynamical stability considers the complete vibrational spec-
trum of a material: a material is dynamically stable when no imaginary
or negative phonon frequencies exist. The Quantum Espresso [25] im-
plementation of Density-Functional Perturbation Theory can be used to
calculate phonon frequencies of compounds at a chosen reciprocal
lattice vector of the respective Brillouin zones. Our compounds had
different lattice structures and hence differently shaped Brillouin zones.
The results of our phonon calculations at the center of the Brillouin
zones (gamma) are presented in Table 9. This table shows that C7B and
C6BN have no negative phonon frequencies, the few relatively low
frequencies are probably indicative of acoustic mode vibrations while
the higher frequencies belong to the optical mode, these materials are

Fig. 6. Graphs for the trend in Young moduli in, (a) C8−xBx, (b) C7−xBNx, and (c) C6−xBNOx materials.
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dynamically stable. Diamond, which was used as a standard for com-
parison, is also found to be dynamically stable, as expected.

Conclusion

Nine compound phases in the forms, C8−xBx (x= 1, 2, 3, 4),
C7−xBNx (x= 1, 2, 3) and C6−xBNOx (x= 1, 2) have been studied as

possible ultra-hard materials. On the basis of the bulk modulus results
shown in Table 8, all the compounds studied were potentially ultra-
hard; their respective values of the bulk modulus exceeding 250 GPa as
is expected in ultra-hard materials [14]. However, it was found that
C5BNO and C5BN2 were not mechanically stable. It was further de-
termined that of all the mechanically stable compounds only C7B and
C6BN were also dynamically stable. C6BN is expected to be the harder of
the two based on the results shown in Table 8.

Our results were compared with available results obtained by other
researchers using different simulation methods. Nkambule et al. [18]
used simulations of molecular dynamics using Tersoff potentials [36] to
study some elastic properties of materials in the C-B system with the
form, CxB (x= 1, 3, 5, 7). Optimization of the structural geometry and
elastic constants were obtained using the GULP package [37]. The
materials CB and C7B were studied in both the molecular dynamics
work and our present GGA work. Table 10 compares our results to those
of Nkambule et al. In the table, we label the method using molecular
dynamics simulation by Nkambule et al. [18] as Tersoff while our
method is labeled as GGA. Table 10 shows that there is a general
agreement, to within a reasonable simulation error, between the results
of the two methods, with a few exceptions.

An area of future study is the investigation of possible ultra-hard

Fig. 7. Graphs for the trend in the Poisson ratio in, (a) C8−xBx, (b) C7−xBNx, and (c) C6−xBNOx materials.

Table 8
Comparison of bulk, shear and Young moduli for all materials studied.

Material and bulk
modulus, B (GPa)

Material and shear
modulus, G (GPa)

Material and Young
modulus, E (GPa)

1 C5BN2 492 Diamond 522 Diamond 1115
2 C5BNO 449 C6BN 449 C6BN 977
3 Diamond 432 C7B 370 C7B 842
4 C6BN 394 C5BN2 299 C5BN2 754
5 C7B 386 CB 262 C5BNO 655
6 C4BN3 334 C5BNO 257 C3B 613
7 C3B 333 C3B 257 CB 605
8 C5B3 315 C5B3 223 C5B3 542
9 C4BNO2 311 C4BN3 184 C4BN3 467
10 CB 291 C4BNO2 181 C4BNO2 461
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materials in the B-C-N-O system other than those in the forms, C8−xBx
(x= 1, 2, 3, 4), C7−xBNx (x= 1, 2, 3) and C6−xBNOx (x= 1, 2).
Fig. 5(a) and 6(a) show a graphical minimum in the G and Y moduli at
x= 3 (C5B3) for the C8−xBx materials, this indicates that a much higher
boron concentration, i.e. with x > 4, could substantially increase the
hardness of these materials. The work of Nkambule et al. [18] on the C-
B system focused on higher carbon rather than boron concentration, i.e.
CxB (x= 1, 3, 5, 7).
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Table 9
Results of phonon calculations, at Γ of the Brillouin zones, for the compounds.

Frequency number Diamond
(cm−1)

C7B
(cm−1)

C3B
(cm−1)

C6BN
(cm−1)

CB
(cm−1)

C5B3

(cm−1)
C4BN3

(cm−1)
C4BNO2

(cm−1)

1 260 179 −−136 73 −83 −120 −101 −84
2 260 179 77 73 −47 −43 −71 −12
3 260 179 112 170 48 61 −47 76
4 824 672 590 712 306 375 412 260
5 824 672 610 712 314 426 454 433
6 824 672 611 735 443 455 562 520
7 824 750 616 772 498 535 581 547
8 824 750 677 774 580 611 701 615
9 824 750 715 774 596 629 721 692
10 1088 779 720 832 619 673 742 697
11 1088 779 808 832 619 687 774 772
12 1088 779 808 970 690 769 784 814
13 1088 978 932 1028 699 776 785 841
14 1088 978 955 1071 708 786 789 892
15 1088 978 963 1071 733 831 922 950
16 1220 1013 1018 1123 821 891 928 960
17 1220 1013 1021 1124 831 900 943 1017
18 1220 1013 1028 1124 880 925 976 1045
19 1220 1061 1043 1200 892 987 1027 1063
20 1220 1061 1052 1200 974 993 1031 1118
21 1220 1102 1079 1207 1151 1065 1085 1124
22 1315 1102 1088 1254 1152 1069 1097 1198
23 1315 1102 1097 1261 1176 1075 1226 1221
24 1315 1112 1099 1261 1187 1075 1376 1262

Table 10
Comparison of results for CB and C7B obtained by Nkambule et al. [18] using
molecular dynamics simulation (Tersoff) to our GGA results.

Material Method B (GPa) G (GPa) E (GPa) ν

CB Tersoff 262 238 494 0.46
GGA 291 262 605 0.15

C7B Tersoff 382 492 910 0.10
GGA 386 370 842 0.14

Diamond Tersoff 426 579 1056 0.08
GGA 432 522 1115 0.07
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