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Combinatorial and Analytic properties of partition functions in AdS/LCFT

by Yannick MVONDO-SHE

Quantum field theory has over the years shown to be an enthralling subject of study
in both theoretical physics and mathematics, by reason of its description of nature
and of its beauty. A leitmotiv in this study is the role played by symmetry, which
pervades many areas of theoretical physics, be it gauge theories, relativity or string
theories to name a few.

Two dimensional conformal field theories are quantum field theories which pos-
sess infinite dimensional symmetry algebras, a property which renders them exactly
solvable. The mathematical structure of these theories is well under control, espe-
cially for the so called rational conformal field theories. Besides their applications
in statistical physics, they play an important role in string theory, via the AdS/CFT
correspondence. For about a quarter century, a generalization by the name of loga-
rithmic conformal field theory has been intensively studied by mathematicians and
physicists. On the physics side, a new type of holographic duality, the AdS3/LCFT2,
has been the object of ardent investigation.

The primary goal of this thesis is the study of the 1-loop partition function of the
critical topologically massive gravity, a theory conjectured to be dual to a logarithmic
conformal field theory through the AdS3/LCFT2 correspondence. In particular, a
better understanding of the combinatorics of the multi-log sector has been desired,
in order to give the partition function a more concrete interpretation from an LCFT
perspective.

This text begins with two chapters intended to present the theoretical founda-
tions. The third chapter deals with the combinatorial recasting of the partition func-
tion of topologically massive gravity using the so called Bell polynomials. While
studying combinatorial aspects of the partition function, it was found that Bell poly-
nomials are connected to the Plethystic Exponential. In our case, the relationship
is made explicit in chapter 4. Furthermore, as a mathematical excursion, we show
in chapter 5 that some algebraic properties arise in the partition function once dif-
ferential operators are defined. Finally, in chapter 6, we draw a conclusion on the
work done, and project ourselves towards future work in this exciting area of the
AdS3/LCFT2 correspondence.
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Introduction

The advent of conformal field theory is established in the seminal paper of Belavin,
Polyakov and Zamolodichikov [1]. In those days quantum field theories (QFTs) were
almost exclusively studied in a perturbative fashion. Yet, owing to the infinite di-
mensional symmetry algebra of conformal field theories in two dimensions, Belavin
et al were able to introduce a suitable non-perturbative description of scale invari-
ant (one-dimensional quantum or two dimensional classical) systems. The impact of
this new approach was tremendous in both physics and mathematics, and 2D (two
dimensional) CFT found many applications.

In physics, CFTs were first used in statistical mechanics and condensed matter
physics, as models for phase transitions of the second order at the critical point,
characterized by divergent correlation lengths of some physical quantities such as
magnetisation. A field theory describing such a model with fluctuations of typical
configurations on various length scales is said to be scale invariant or again con-
formally invariant, hence conformal field theory. Furthermore, at the critical point,
it was noticed that many seemingly disparate physical models could be described
by the same CFT. This principle called universality became a motivation to classify
CFTs into so called universality classes. Despite many ongoing efforts, this ambitious
program has only been achieved for rational CFTs, i.e theories characterized by a
parameter c called central charge for which in this case c < 1 [2, 3, 4].

Another field in which CFT has been of important use is string theory, arguably
the best candidate for a theory unifying all fundamental forces, and in particular
for a consistent theory of quantum gravity. The proposal brought by string theory
is to consider elementary particles as vibrational modes on strings that can interact
exclusively by splitting apart or joining together. As the strings evolve in time, they
map out a Riemann surface called the world-sheet, that is, a two-dimensional mani-
fold with a conformal structure. The relationship between CFT and string theory can
thus be identified by the fact that CFT lives on the world-sheet traced by the strings
in time evolution.

CFT and string theory have also greatly impacted the field of mathematics, and it
is not just by a fortunate stroke of serendipity that five of the twelve Field medalists
of the 1990s (Drinfel’d, Jones, Witten; Borcherds, Kontsevich) received the presti-
geous award based on works related to CFT. For instance, the mathematical study
of CFT has shed light on a mysterious connection between string theory, algebra and
number theory (or again between Lie theory, finite groups and automorphic forms)
through monstrous moonshine [5, 6, 7]. Furthermore, CFT is also connected to topo-
logical field theory on three manifolds [8].

Just three years into the discovery of CFT, V. Knizhnik— a first-class soviet the-
oretical physicist who unfortunately passed away at the young age of 25— noted
the appearance of logarithmic singularities in ghost systems, in contrast with the
usual occurrence of poles in ordinary CFT [9]. This phenomenon was observed
in subsequent works [10, 11, 12], but it was really twenty five years ago, with the
ground-breaking work of Victor Gurarie [13], that what is known today as logarith-
mic conformal field theory was established. Just like for ordinary CFT, LCFTs became
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an interesting object of study in mathematics and physics, and efforts to understand
these theories from a mathematical point of view as well as to relate them to other
fields of physics are eagerly pursued to this day. Applications in condensed matter
theory and statistical physics include the description of phase transitions in disor-
dered non-interacting electronic systems such as the transition between plateaus in
the integer quantum Hall effect [14, 15], critical geometrical models like polymers
[11, 16, 17, 18] and percolation [19, 20, 21, 22, 23, 24, 25, 26], or generally speaking,
critical systems with quenched disorder [27, 28, 29].

LCFTs also found interesting applications in string theory. Indeed, soon after
the discovery of the celebrated AdS/CFT correspondence [30], suggestions about an
AdS/LCFT duality arose [31, 32, 33, 34]. But just about ten years ago, a new type
of correspondence was proposed after observing that Jordan cells, the hallmark of
LCFTs appear on the gravity side [35] for a certain critical tuning of the coupling con-
stants [36] in topologically massive gravity (TMG) [37, 38]. Within this AdS3/LCFT2
correspondence proposal, the 1-loop partition function of critical cosmological topo-
logically massive gravity (CCTMG) was calculated in [39]. But up to now, the par-
tition function begs for a better understanding, in particular of the multi-particle
sector. Progress in studying the structure of the single- and multi-particle sectors
of the partition function would enable to make more concrete statements about the
correspondence, as well as its possible applications. This work is an effort to find
answers in that direction.

The structure of this manuscript is as follows. In the first chapter we give a
presentation of the basics of CFT and LCFT. Then we proceed in the second chapter
with a review of gravity in three dimensions and holography. The third chapter
has the main result of our work, i.e a recasting of the partition function of CCTMG
found in [39] in terms of combinatorial Bell polynomials. This allows for a systematic
treatment of the single- and multi-particle sectors. Along the way, while studying
the combinatorial properties of the partition function in terms of Bell polynomials, a
connection between the latter and the celebrated Plethystic Exponential was noted.
In the present case, a specific identification is derived in chapter 4. Next to that,
chapter 5 shows how upon an appropriate choice of differential operators acting on
the Bell polynomials, an sl(2) action appears within successive constituents of the
partition function. Lastly, in chapter 6, a conclusion is drawn and prospective lines
of research are given.
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Chapter 1

(Logarithmic) conformal field
theory

This chapter presents (logarithmic) conformal field theories. Before commencing, we
would like to plead the indulgence of the more technically inclined reader towards
this chapter as well as the next chapter, both primarily written to give an overview
of theories necessary for the following chapters. As such, chapter 1 and 2 are written
at the expense of mathematical rigor, and almost all proofs are omitted. In turn, we
hope that the reader will find some solace in the scores of introductory bodies of
literature mentioned throughout the text. These references should compensate the
interested reader for this choice and hopefully close all persisting gaps.

1.1 Conformal field theory

This section gives a brief introduction of conformal field theory. We refer to the ex-
cellent “big yellow book” [40] as well as [41], that are among the earliest textbooks
dedicated to the study of conformal field theory. A very readable and more recent
textbook on CFT with applications to string theory is [42]. For the reader interested
in a more mathematical approach to CFT, a good place to start is [43], and an in-
troductory textbook from an algebraic geometry perspective is [44]. There are also
loads of lecture notes in the literature, with among the first ones, the very nice notes
by Ginsparg [45].

With the ever increasing use of sophisticated mathematics over the past decades,
theoretical physicists have been trained in the knowledge that groups and symme-
tries go hand in hand. Indeed, whenever one encounters a symmetry, a group of
transformations is expected to play a role in the background. A revolution in the
past thirty years has been attributable to the presence of conformal symmetry in a
number of physical systems. In particular, a conformal transformation allows not
only for the rescaling of space, but also for the space to be twisted in such a way
that angles are preserved. In that setting, the invariance under scale transformation
is generalized under the name of conformal invariance. That being given, CFT really
begins with geometry, since it turns to account that a system is invariant under some
types of geometric transformations, the angle preserving ones.

In the next subsection we will introduce CFT in a fairly general way, i.e on curved
space in arbitrary dimension d. Thereafter, we will consider the theory in two di-
mensions, for which the space is conformally flat.
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1.1.1 Conformal theory in arbitrary dimensions

Conformal transformation and conformal group

Let the pair (M, g) consisting of a smooth manifold M of dimension d and a metric
tensor g be a pseudo-Riemannian manifold, where g assigns to each point m ∈M a
nondegenerate and symmetric bilinear form on the tangent space TmM

gm : TmM× TmM→ R. (1.1)

In local coordinates x1, x2, . . . , xd of the manifold M, the bilinear form gm on TmM

can be written

gm(X, Y) = gab(m)XaYb, (1.2)

where X and Y are vectors fields in the tangent space TmM denoted by

X = Xa∂a, Y = Yb∂b, (1.3)

and described with respect to the basis

∂a =
∂

∂xa
, a = 1, . . . ,d. (1.4)

The line element ds, or loosely speaking the distance associated with an infinites-
imal scale (the distance squared between two points with coordinates xa and xa +
dxa), can then be expressed as

ds2 = gab(x)dxadxb, (1.5)

Let now h be another metric on M. Then g and h are said to be conformally equiv-
alent if there exists a smooth scalar function called the conformal factor Ω : M → R+

such that g(x) = Ω2(x) h(x), where x is the set of local coordinates. This is defined as
an equivalence relation on M. The corresponding classes of equivalence are called
conformal structures on M, and the pair (M, g) is a conformal manifold.

The diffeomorphisms f : M → M in the category of conformal manifolds are
smooth maps that preserve the conformal structure of the manifolds. More specifi-
cally, they form the group Diff(M) such that any smooth function f ∈Diff(M) fulfills

f ∗g f (m) = Ω2gm, ∀m ∈M, (1.6)

where f ∗g f (m)(X, Y) = g f (m)( f∗X, f∗Y) is the pullback of g f (m) via f . The map f
is called a conformal transformation, and the set of conformal transformations on M

forms a group called the conformal group, and denoted Conf(M). In the special case
Ω = 1, Eq. (1.6) defines an isometry, and the group of isometries Iso(M) is said to be
a subgroup of Conf(M).

On a Riemannian manifold, the angle θ between two vectors X and Y of the
tangent space TmM can be expressed by
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θ =
gm(X, Y)√

gm(X, X)gm(Y, Y)
. (1.7)

Then, from Eq. (1.6), it can be shown that the angle is invariant under confor-
mal transformations. Therefore, as much as conformal transformations can locally
change the scale, they cannot change the shape of a manifold.

Things can be made more concrete by using components. Consider the change
of coordinate x 7→ x′(x), such that

dxa =
∂xa

∂x′c
dx′c. (1.8)

Such a coordinate tranformation keeps distance between two nearby points ds in-
variant. As a result one can write

ds2 = gab(x)
∂xa

∂x′c
∂xb

∂x′d
dx′cdx′d = g′cd(x′)dx′cdx′d. (1.9)

Therefore, under a change of coordinates, the metric transforms according to

g′cd(x′) = gab(x)
∂xa

∂x′c
∂xb

∂x′d
. (1.10)

As an example, let us consider the scale transformation xa 7→ x′a = λxa, for a real
number λ). Then the metric transforms like

g′cd(x′) = g′cd(λx) = Ω2(x)gab(x), (1.11)

such that

Ω(x) := e
w
2 , (1.12)

with w = −2 ln λ, and for which we can write g′cd(x′) = 1
λ2 gab(x). More generally,

the coordinate transformation g′m = Ω2gm is referred to as Weyl transformation.

Conformal Killing vector fields

Here, we look at conformal transformations infinitesimally, i.e we consider vector
fields whose infinitesimal displacement generates a conformal transformation.

Let us consider a vector field X that induces an infinitesimal displacement εX on
points m ∈M with coordinates xa. In the case where Ω(x) = 1, i.e the infinitesimal
displacement of the vector field generates an isometry, plugging the change of coor-
dinates given by the infinitesimal coordinate transformation x′a = xa + εXa(x) into
Eq. (1.11) yields

LXgab := Xe∂egab + geb∂aXe + gae∂bXe = 0, (1.13)
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where the operator LX is called the Lie derivative. Eq. (1.13) is defined as the Killing
equation, and any vector X satisfying it is a Killing vector field.

In the more general case Ω(x) 6= 0, introducing the Conformal Killing factor κ,
Ω2(x′) can be expanded as Ω2(x′) ' 1+ εκ(x′) = 1+ εκ(x) +O

(
ε2). The previous

equation becomes

LXgab := Xe∂egab + geb∂aXe + gae∂bXe = κgab. (1.14)

Eq. (1.14) is called the conformal Killing equation, and any vector X satisfying it is a
conformal Killing vector field.

A simplified and concrete picture of the above can be given by considering the
flat space Rp,q with p + q = d > 2 endowed with the flat metric tensor ηab. An
infinitesimal transformation x 7→ x′ = x + ε(x) +O

(
ε2) yields

ηcd (δ
c
a + ∂aεc) (δd

b + ∂bεd) +O(ε2) = Ω2(x)ηab. (1.15)

Working the left-hand side gives

ηab + ηab (∂aεb + ∂bεa) +O
(
ε2) = Ω2(x)ηab = ηab + κ(x)ηab. (1.16)

It is then easy to see that

(∂aεb + ∂bεa) = κ(x)ηab. (1.17)

Tracing with ηab leads to

2∂aεa = κ(x)d, (1.18)

or again

κ(x) =
2
d
(∂ · ε) . (1.19)

The final result is the conformal Killing equation

(∂aεb + ∂bεa) =
2
d
(∂ · ε) ηab. (1.20)

In a nutshell, a conformal Killing equation simply gives the condition for conformal
invariance. In the case d = 2, as we will see later, it leads to a system of two differ-
ential equations that can be solved exactly. Next we discuss the conformal algebra
and its generators in dimension d ≥ 3.

Conformal algebra

For d ≥ 3, by contracting the conformal Killing equation further, one gets
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TABLE 1.1: Generators of the conformal group in d > 2 dimensions

Parameter Transformation Generator

αa x′a = xa + αa Pa = i∂a
n x′a = (1 + n)xa D = −ixa∂a

mab x′a = xa + ma
bxb Lab = i (xa∂b − xb∂a)

βa x′a = xa + 2(x · β)xa − (x · x)βa Ka = −i
(
2xaxb∂b − (x · x)∂a

)

[−ηab�+ (d− 2)∂a∂b] (∂ · ε) = 0, (1.21)

or again

2∂a∂bεc =
2
d
(ηab∂c + ηca∂b + ηbc∂a) (∂ · ε) . (1.22)

From Eq. (1.21), the following ansatz can be made

(∂ · ε) = A + Baxa (1.23)

leading to

εa = αa + βabxb + γabcxaxb, (1.24)

with αa, βab, γabc as constants and γabc = γacb. Decomposing βab in a symmetric part
that is required by Eq. (1.21) to be proportional to the metric and an antisymmetric
part yields βab = n · ηab + mab, with mab as the antisymmetric part. Then, using Eq.
(1.22) and βa = d−1 · γc

ca, γabc can be recast such that the infinitesimal conformal
transformations take the general expression

x′a = xa + αa︸︷︷︸
Translation

+ n · xa︸ ︷︷ ︸
Dilatation

+ ma
bxb︸ ︷︷ ︸

Rotation

+ 2(x · β)xa − (x · x)βa︸ ︷︷ ︸
Special Conformal Transformation

. (1.25)

As indicated in the above equation, each parameter corresponds to a specific trans-
formation, whose generators are given in Table 1.1.

The commutation relations of the generators of conformal transformations can
easily be found, forming the conformal algebra.

Energy-momentum tensor and conserved currents

We close the review on conformal symmetry in dimension dwith a discussion about
the role of the energy-momentum tensor, and its relation to conserved currents.

Generally, a classical field theory of arbitrary dimension is defined by the action
S of a Lagrangian L, that encodes properties of the theory. In particular, the energy-
momentum tensor can be defined by varying the action with respect to the metric
tensor as
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Tab :=
1√
|g|

δS
δgab

, (1.26)

thus keeping track of the behaviour of the theory under infinitesimal transforma-
tions gab 7→ gab + δgab. Noether’s theorem states that if there is a continuous sym-
metry in a theory, then there is a current ja which is conserved. In other words, if
the Lagrangian of the theory is invariant under transformation xa 7→ xa + δxa, then
∂a ja = 0 is conserved.

In the case of a CFT in any dimension for which a Lagrangian may not be well
defined, the energy-momentum tensor can be described as a linear map from in-
finitesimal conformal transformations x 7→ x + ε(x) to a conformal current j, such
that

ja(ε) = Tabεb. (1.27)

From Noether’s theorem, the conformal current associated to the infinitesimal con-
formal transformation ε is conserved for ε(x) constant. It can be shown in that case
that Ta

a = 0, i.e that the energy momentum is traceless.

1.1.2 Conformal field theory in two dimensions

The geometric considerations of the previous subsection were on a pseudo-Riemannian
manifold (M, g) in arbitrary dimension d. As we shall see now, the dimension d=2
is quite special in many ways.

Conformal invariance in 2 dimensions

On two dimensional manifolds R1,1 or R2,0, a Weyl transformation of the flat metric
tensor in the form Ω(x)ηab is always possible using a general coordinate system.
Thanks to the Wick rotation, one can go from the Minkowski metric to the Euclidean
one.

Here, we consider the Euclidean plane with coordinate
(
z0, z1). For reasons of

symmetry, the condition (1.20) for invariance under infinitesimal conformal trans-
formations in two dimensions leads to the following two equations

∂0ε0 + ∂0ε0 = ∂0ε0 + ∂1ε1 (1.28a)
∂0ε1 + ∂1ε0 = 0, (1.28b)

for which the solution gives

∂0ε0 = +∂1ε1, ∂0ε1 = −∂1ε0, (1.29)

These are the well known Cauchy-Riemann differential equations of complex anal-
ysis. We can therefore exploit the power of complex analysis and introduce the fol-
lowing complex variables
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z = z0 + iz1, ε = ε0 + iε1, ∂z =
1
2
(∂0 − i∂1) , (1.30a)

z̄ = z0 − iz1, ε̄ = ε0 − iε1, ∂z̄ =
1
2
(∂0 + i∂1) . (1.30b)

A complex function that satisfies Eq. (1.29) is holomorphic (in an open set). Since
ε(z) is holomorphic, we can actually define a function f (z) = z + ε(z) such that the
metric tensor would transform under z 7→ f (z) as

ds2 = dzdz̄ 7→ ∂ f
∂z

∂ f̄
∂z̄

dzdz̄. (1.31)

From complex analysis, it is known that any holomorphic transformation on the
complex plane is conformal. The two dimensional conformal group is therefore the
set of all analytic maps whose composition of maps is the multiplication law of the
group.

From complex analysis, it is also known that any function z 7→ f (z) that is holo-
morphic on an open set can be expanded as a Laurent series f (z) = ∑n∈Z cnzn. This
implies that an infinite number of parameters is required to specify any element of
the group. In that sense, the local group in two dimensions is infinite dimensional.

Generators of conformal transformations, conformal group and conformal algebra

As we have just seen, every holomorphic or antiholomorphic function gives rise to a
conformal transformation on a given open set. This can also be applied to the mero-
morphic functions, and in such case, a Laurent series expansion of meromorphic
functions can be performed around say z = 0 giving

f (z) = z + ε(z) = z + ∑
n∈Z

εn

(
−zn+1

)
, (1.32)

f (z̄) = z̄ + ε̄(z̄) = z̄ + ∑
n∈Z

ε̄n

(
−z̄n+1

)
, (1.33)

with the infinitesimal parameters εn and ε̄n taken as constants. This corresponds to
the expansion of the transformation in a basis of infinitesimal generators

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄. (1.34)

Computing the commutators of the above generators yields two independent copies
of the classical conformal algebra, also known as the Witt algebra expressed as follows

[lm, ln] = (m− n)lm+n, (1.35a)[
l̄m, l̄n

]
= (m− n)l̄m+n, (1.35b)[

lm, l̄n
]
= 0. (1.35c)

We deduce that the algebra of infinitesimal conformal transformations in a two di-
mensional Euclidean space is infinite dimensional.
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The fact that the conformal algebra is infinite dimensional is only a local structure
of the conformal transformations, and does not guarantee a group structure. The
reason is that for the complex plane that is extended by the point at infinity forming
its stereographic projection, i.e the Riemann sphere S2 = C ∪ {∞}, not every local
transformation is globally well-defined. To get the (global) conformal group, one
has to perform a conformal compactification (of C to C ∪ {∞}), and find the set
of conformal transformations that are non-singular on that space. It turns out that
only the generators {l−1, l0, l1} (and {l̄−1, l̄0, l̄1}) are globally well defined. The global
conformal transformations induced by these generators can be classified as in the
follwoing table

Transformation Generator

Translation l−1, l̄−1
Dilatation l0 + l̄0
Rotation i (l0 − l̄0)

SCT l1, l̄1

TABLE 1.2: Generators of global conformal transformations in two
dimensions

The set of global conformal transformations above is known as projective confor-
mal transformations or again, the Möbius transformations. They are of the form

f (z) =
az + b
cz + d

, a, b, c, d ∈ C, ad− bc = 1. (1.36)

To be more specific, a, b, c, d are four complex variables, i.e 8 real variables. The
renormalization condition being one complex constraint, six variables remain, which
coincides precisely with the number of globally well-defined generators mentioned
above. Furthermore, the above transformations are invariant under (a, b, c, d) 7→
(−a,−b,−c,−d). As result of all the above restrictions, the global conformal group
of the Riemann sphere S2 = C∪ {∞} is the Möbius group PSL(2, C) = SL(2, C)/Z2.

The energy-momentum tensor

Applying the results found in the previous subsection to the two dimensional sce-
nario, the tracelessness of the energy-momentum tensor implies Tzz̄(z, z̄) = Tz̄z(z, z̄) =
0, and in addition ∂zTz̄z̄(z, z̄) = ∂z̄Tzz(z, z̄) = 0. The remaining components are the
purely holomorphic and the purely anti-holomorphic energy-momentum tensors

Tzz(z, z̄) = T(z), Tz̄z̄(z, z̄) = T̄(z̄) (1.37)

In this instance, the conformal current reads

jz = Tzzε(z), j̄z̄ = Tz̄z̄ε̄(z̄). (1.38)
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Primary, quasi-primary and secondary fields

Next we give some important definitions concerning the fields φ(z, z̄) of the theory.

A field φ(z, z̄) is said to be chiral if ∂z̄φ(z, z̄) = 0. Analogously, it is anti-chiral if
∂zφ(z, z̄) = 0.

A field φ(z, z̄) is said to have conformal dimension h, h̄ if under the scaling trans-
formation z 7→ λz (λ ∈ C) it transforms as

φ(z, z̄) 7→ λhλ̄h̄φ(λz, λ̄z̄). (1.39)

A field φ(z, z̄) is called primary field of conformal dimension (h, h̄) if under con-
formal transformations z 7→ f (z) it transforms as

φ(z, z̄) 7→
(

∂ f
∂z

)h (∂ f̄
∂z̄

)h̄

φ
(

f (z), f̄ (z̄)
)

. (1.40)

A field φ(z, z̄) is called quasi-primary field of conformal dimension (h, h̄) if Eq.
(1.40) holds only for global conformal transformations.

A field φ(z, z̄) is called secondary field if it does not transform as Eq. (1.40).

The conformal weights h and h̄ are real quantities. The sum ∆ = h + h̄ is also called
conformal dimension or again scaling dimension. The difference s = h − h̄ is usually
referred to as conformal spin.

Radial quantization

The quantization of a field φ(z, z̄) of conformal dimension (h, h̄) requires one to ex-
pand it first as

φ(z, z̄) = ∑
n,n̄∈Z

φn,n̄z−n−h z̄−n̄−h̄. (1.41)

Then the modes φ(z, z̄) with scaling dimension (n, n̄) are promoted to operators. This
approach can be motivated by considering the theory on a cylinder. Following this
consideration, the first step is to compactify the space coordinate by the identifica-
tion

w ∼ w + 2πi, w̄ ∼ w̄ + 2πi, (1.42a)

w = x0 + ix1, w̄ = x̄0 + ix̄1. (1.42b)

As a result of imposing these periodic boundary conditions, the momenta are quan-
tized, and the compactification prescribed prevents the appearance of infrared di-
vergences in the theory.

In order to continue exploiting the power of complex analysis, a conformal map-
ping from the cylinder back to the complex plane is possible using the trick

w 7→ z = ew = ex0
eix1

, (1.43)
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which describes the map from an infinite cylinder with coordinates x0 and x1 to the
complex plane with coordinates z. The infinite past in the Euclidean time coordinate
x0 = −∞ is mapped to z = 0, and the infinite future x0 = +∞ is mapped to the
infinite circle |z| = ∞ as illustrated in Fig. 1.1. Surfaces of equal time are mapped to
circles of constant radius.

FIGURE 1.1: Conformal map from the cylinder to the complex plane
[42]

Mapping the cylinder into the complex plane changes the quantum field theory
time ordered product to a radially ordered product, defined for two operators as follows

R (A(z)B(w)) =

{
A(z)B(w), if |z| > |w|
B(w)A(z), if |z| < |w| (1.44)

Operator Product Expansion

As mentioned earlier, Noether’s theorem states that to every symmetry in a given
theory, there is a corresponding conserved current ja(ε) = Tabεb with ∂a ja = 0. In its
most general form, the conserved charge is given as

Q =
∫

dd−1xj0(x, t), (1.45)

where d− 1 denotes the space dimensions over which the integral is taken. In the
two-dimensional theory under consideration, this simply gives

Q =
∫

dx1 j0, with x0=constant. (1.46)

From Field theory, the conserved charge is the generator of symmetry transforma-
tions for an operator A as

δA = [Q, A] . (1.47)

The change of coordinates (1.43) implies that x0=constant corresponds to |z|=constant.
Therefore, the conserved charge is calculated by considering the integral over space∫

dx1 as a contour integral

Q =
1

2πi

∮
[T(z)ε(z)dz + T̄(z̄)ε̄(z̄)dz̄] (1.48)
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The integration is by convention performed anti-clockwise, with the centre of the
circle as the origin of the complex plane. In turn, Eq. (1.48) allows the evaluation
of the infinitesimal conformal transformation of φ(z, z̄) generated by a conserved
charge Q. Combining Eq. (1.48) and δφ = [Q, φ] yields

δε,ε̄φ (w, w̄) =
1

2πi

∮
[T(z)ε(z), φ(w, w̄)] dz +

1
2πi

∮
[T̄(z̄)ε̄(z̄), φ(w, w̄)] dz̄. (1.49)

Using Cauchy’s theorem together with the radially ordered product, the commuta-
tor can be defined as the difference between contour integrals of the radially ordered
product around 0, as illustrated in Fig. 1.2.

FIGURE 1.2: Contour integral difference for radially ordered product
[42]

This gives

δε,ε̄φ(w, w̄) =
1

2πi

(∮
|z|>|w|

−
∮
|z|<|w|

)
(ε(z)R (T(z)φ(w, w̄)) dz) + anti-chiral

=
1

2πi

∮
w
(ε(z)R (T(z)φ(w, w̄)) dz) + anti-chiral. (1.50)

As a fundamental result

R (T(z)φ(w, w̄)) =
h

(z− w)2 φ(w, w̄) +
1

z− w
∂wφ(w, w̄) + . . . , (1.51)

where the ellipsis represents the remainder of the expansion in terms of non-singular
terms. Equation (1.51) defines an operator product expansion (OPE).

The central charge and the Virasoro algebra

Similarly to Eq. (1.51), it is possible to determine the OPE of the energy-momentum
tensor with itself by successively applying two conformal transformations. The re-
sult reads

T(z)T(w) =
c/2

(z− w)4 +
2

(z− w)2 T(w) +
1

z− w
∂T(w), (1.52a)

T̄(z̄)T̄(w̄) =
c̄/2

(z̄− w̄)4 +
2

(z̄− w̄)2 T̄(w̄) +
1

z̄− w̄
∂T̄(w̄). (1.52b)

The constants c and c̄ are called (holomorphic/antiholomorphic) central charges or
conformal anomaly. They are proportional to the Casimir energy, i.e to the change in
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the vacuum energy density resulting from the periodic boundary condition on the
cylinder.

A Laurent expansion series of the energy-momentum tensor can be performed
through the expressions

T(z) = ∑
n∈Z

z−n−2Ln, T̄(z̄) = ∑
n∈Z

z̄−n−2 L̄n, (1.53)

where the symbols Ln and L̄n can in turn be expressed as

Ln =
1

2πi

∮
zn+1T(z)dz, L̄n =

1
2πi

∮
z̄n+1T̄(z̄)dz̄. (1.54)

An important property of these modes is that their commutators satisfy an important
algebra called the Virasoro algebra, expressed as follows

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n + 1)(n− 1)δn+m,0 ∀n, m ∈ Z, (1.55a)

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n + 1)(n− 1)δn+m,0 ∀n, m ∈ Z, (1.55b)

[Ln, L̄m] = 0. (1.55c)

Correlation functions of primary fields

Vacuum expectation values of quasi-primaries are constrained by conformal sym-
metry. By exploiting the corresponding symmetry of correlation functions as well as
the transformation properties of quasi -primary fields, it is possible to determine the
structure of 2- and 3-point functions up to a constant.

Let us first take a look at the 2-point function which we will denote as G(2) (zi, z̄i),
and restrict ourselves to the holomorphic sector.

• The invariance under L−1 (translations) implies that G(2) (z1, z2) = G(2) (z1 − z2),

• the invariance under L0 (dilatations of the form f (z) = λz) implies that
G(2) (z1, z2) = λh1+h2 G(2) (λ(z1 − z2)),

• The invariance under L1 (special conformal transformations with z 7→ −z−1 )

implies that G(2) (z1, z2) =
G(2)(−z−1

1 +z−1
2 )

z2h1
1 z2h2

2

which leads to h1 = h2.

Treating the anti-holomorphic sector analogously, the SL(2, C) subgroup imposes
the v.e.v of the product of two primary fields to take the form

G(2) (zi, z̄i) = 〈φ(z1, z̄1)φ(z2, z̄2)〉 =
C12

z2h
12 z̄2h̄

12

for
{

h1 = h2 = h
h̄1 = h̄2 = h̄ , (1.56)

where C12 is a constant.
Similarly, taking zij = zi − zj, the 3-point function yields

G(3) (zi, z̄i) =
C123

zh123
12 zh231

23 zh312
13 z̄h̄123

12 z̄h̄231
23 z̄h̄312

13

for
{

hijk = hi + hj − hk
h̄ijk = h̄i + h̄j − h̄k

. (1.57)
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Just like C12, C123 is a constant. They are called structure constants of the theory.
The constraints imposed on n-point correlation functions can be understood as

follows. Assume one wants to construct scalar conformal invariants from distinct
points zi. So long as the Poincaré invariance only is considered, i.e translations, ro-
tations and boosts, the invariants are the distance |zij| = |zi − zj|. Adding scale
invariance requires more constraints on the structure of the above invariants, as dis-
tances are not scale invariant. This is translated by rather considering a ratio of two
distances, which clearly satisfies scale invariance. Then adding inversions means
adding more structure to the previously improved invariants. The simplest objects
that would satisfy conformal invariance are therefore

uijkl =
zijzkl

zikzjl
, ūijkl =

z̄ij z̄kl

z̄ik z̄jl
, (1.58a)

and

vijkl =
zijzkl

zilzjk
, v̄ijkl =

z̄ij z̄kl

z̄il z̄jk
, (1.58b)

also known as conformal ratios. In order to have well-defined non-zero conformal
ratios, one needs four distinct points. By deduction, the 2- and 3-point correlation
functions must be determined up to a constant. As for 4- and higher point functions,
they are determined up to an arbitrary function of conformal ratios. In the case of
the 4-point functions, we have

G(4) = f (u, ū, v, v̄) ∏
1≤i≤j≤4

z
h
3−hi−hj
ij z̄

h̄
3−h̄i−h̄j
ij with

{
h = ∑4

i=1 hi
h̄ = ∑4

i=1 h̄i
(1.59)

In general, there are n(n−3)
2 independent conformal ratios for the n-point function. In

the particular case of the 4-point functions, it amounts to two independent confor-
mal ratios.

Since the global symmetries employed are also present in higher dimensions,
identical results are valid in CFTs of dimension d > 2.

Conformal Ward identities

Ward identities are quantum manifestations of classical laws of conservation. Equa-
tions of classical symmetries such as ∂a ja = 0 do not hold at the quantum level in
general. This is because in classical theory, ∂a ja = 0 only holds on shell. In the quan-
tum case, the laws of conservation are formulated in terms of Ward identities, which
express n-point functions by way of inserting a divergence of a conserved current in
terms of (n− 1)-point correlation functions.

An expression of the primary fields φ1, . . . , φn can be obtained using the OPE
defined in Eq. (1.51). The result reads

〈T(w)φ(z1, z̄1) · · · φn(zn, z̄n)〉 =
n

∑
i=1

(
hi

(w− zi)2 +
1

w− zi
∂zi

)
〈φ(z1, z̄1) · · · φn(zn, z̄n)〉 .

(1.60)

Equation (1.60) is the conformal Ward identity for primary fields.
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Representation of the Virasoro algebra

Earlier on, it was mentioned that the holomorphic sector of the Virasoro algebra
decouples from the anti-holomorphic one. We therefore consider only the holomor-
phic Virasoro representation, bearing in mind that an anti-holomorphic counterpart
with identical formalism exists, and that the full representation can be recovered by
tensoring the two sectors.

The spectrum of the theory, i.e the space of states, can be decomposed into the
direct sum of an irreducible representation of the Virasoro algebra. A starting point
in looking at the structure of the representation, is the Virasoro mode L0. From
the identification of the radial coordinate as the time in the radial quantization for-
malism, and in analogy with the classical Witt algebra generator l0, the quantum
counterpart L0 can be considered as the chiral energy operator.

There exists a vector |h〉 that is an eigenstate of L0, with smallest eigenvalue h,
the conformal dimension of the vector. Then Ln |h〉 is also a L0 eigenvector as seen
in the following equation

L0Ln |h〉 = LnL0 |h〉+ [L0, Ln] |h〉 = (h− n)Ln |h〉 . (1.61)

Since h is the smallest eigenvalue, n > 0 implies that Ln |h〉 = 0 (otherwise, we
would have h− n as the smallest eigenvalue). Hence, another definition of primary
states, any state that satisfies Ln |h〉 = 0 is called a primary state.

From Eq. (1.61), we also see that states created by the action of Virasoro modes
Ln |h〉 with n < 0 can appear in the representation. They form the basis

{
k

∏
i=1

L−ni |h〉
}

0<n1≤···≤nk

, (1.62)

of a representation called a Verma module. Any state in that space is called a descen-
dant state, and has level N = ∑k

i=1 ni. The diagram below shows a basis of primary
and descendent states up to the level 3.

N = 0

N = 1

N = 2

N = 3

|h〉

L−1 |h〉

L−2 |h〉L2
−1 |h〉

L−3 |h〉L−1L−2 |h〉L3
−1 |h〉

FIGURE 1.3: Graphical representation of a Verma module

Note that the state L−2L−1 is not included, as L−2L−1 = L−1L−2 − L−3.
It is also possible to find descendant states that are also primary. Such states

are called null vectors or singular vectors. To describe these vectors, we introduce the
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notion of inner product on the space of states. Consider two vector states |φ1〉 and
|φ2〉 denoted as

|φ1〉 = L−i1 · · · L−im |h〉 (1.63a)
|φ2〉 = L−j1 · · · L−jn |h〉 . (1.63b)

Then, their inner product is defined as

〈φ1|φ2〉 = 〈h| Lim · · · Li1 L−j1 · · · L−jn |h〉 . (1.64)

For specific values of the central charge c and the conformal weight h, it is possible
to have

〈φ1|φ〉 = 0 ∀ |φ〉 ∈ Vc,h, (1.65)

Vc,h denoting the Verma module in which the vectors live. States that decouple from
all other states of the Verma module are called null vectors or singular vectors. A
Verma module containing null vectors is called reducible Verma module. Such a
module can be rendered irreducible by removing all null vectors. Only then an irre-
ducible representation of the Virasoro algebra is obtained.

Let us look for null vectors at the first two levels. Starting at level N = 1, a good
question to ask is whether L−1 |h〉 is a null vector. It is easy to understand that for
any n ≥ 2, the states Ln (L−1 |h〉) vanish as they have negative levels. Now, for n = 1

L1 (L−1 |h〉) = [L1, L−1] |h〉 = 2L0 |h〉 = 2h |h〉 , (1.66)

and we see that there is a null vector only if the conformal dimension of the primary
state |h〉 is h = 0.

At level N = 2, the most general form of the descendant of a primary state is

|φ〉 =
(
aL2
−1 + bL−2

)
|h〉 . (1.67)

In analogy with the discussion for the case N = 1, we have Ln≥3 |φ〉 = 0. Then,
computing L1 |φ〉 and L2 |φ〉 yields

L1 |φ〉 = [(4h + 2)a + 3b] L−1 |h〉 (1.68a)

L2 |φ〉 =
[

6ha + (4h +
1
2

c)b
]
|h〉 , (1.68b)

the constant c representing the central charge. Then, requiring that L1 |φ〉 and L2 |φ〉
vanish leads to a system of two linear equations for the two unknown (a, b) that
reads

{
(4h + 2)a + 3b = 0
6ha + (4h + c

2 )b = 0
, (1.69)
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and whose determinant is

D2(h) =
∣∣∣∣4h + 2 3

6h 4h + c
2

∣∣∣∣ = 4(2h + 1)2 + (c− 13)(2h + 1) + 9. (1.70)

Singular vectors at level N = 2 exist if D2(h) = 0, or again if

h =
1
16

[
5− c±

√
(c− 1)(c− 25)

]
. (1.71)

An important concept associated to null vectors is the one of unitarity. The inner
product mentioned above naturally leads to the notion of norm of a state in a Verma
module. The norm of a state |φ〉 is defined as

‖ |φ〉 ‖2 = 〈h| Lik · · · Li1 L−i1 · · · L−ik |h〉 . (1.72)

From Eq. (1.72), it is clear that null vectors have zero norm. However, besides the
presence of zero-norm states in a Verma module, states of negative norm can also
exist. A highest weight representation of the Virasoro algebra that contains no states
of negative norm is called a unitary representation. The Virasoro algebra can be used
to show that

‖L−n |h〉 ‖2 = 〈h| LnL−n |h〉 =
[

2nh +
1
12

cn(n2 − 1)
]
〈h|h〉 . (1.73)

From there, it can be inferred that all representations with central charge c < 0 are
non-unitary. The non-unitarity also holds for n = 1 and h < 0. A necessary condi-
tion for unitarity of representations is {c ≥ 0, h ≥ 0}.

Modular invariance and partition function

A generic upshot that applies to a large category of CFTs is that the crossing sym-
metry featured by the correlation functions together with the modular invariance of
the partition function on the torus suffices to render those theories well defined on
arbitrary Riemann surfaces. The consistent theory on the Riemann surface is then
invariant under the Fuchsian group (a discret subgroup of PSL(2,R)) corresponding
to the genus g of the Riemann surface.

The simplest Riemann surface is C, or open subsets of C. Previously, we consid-
ered theories on the simplest possible worldsheet, the cylinder, mapped by confor-
mal transformation to the complex plane. This was part of the process of conformal
compactification in order to have a consistent (radial) quantization of the theory.

There are two important examples of compactification of a Riemann surface. The
first one is the Riemann sphere S2 ⊂ R3, that can be conformally mapped to the ex-
tended complex plane C ∪ {∞}. The second example of a compact manifold where
all conformal transformations are defined as smooth non-singular maps enjoying a
group structure is the torus. In this case, the theory defined on a torus is de facto
invariant under the modular group Γ = PSL(2,Z), a subgroup of the more general
Fuchsian group, due to the periodic boundary conditions imposed.

A torus can be defined as the set
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T = C/L = {z|z ' z + nλ1 + mλ2} , (1.74)

with L as the torus lattice and λ1 and λ2 as two linear independent lattice vectors
on the complex plane represented by two complex numbers, called the periods of the
lattice. A torus is therefore a complex plane modulo a lattice. It can be constructed
by identification of opposite sides of parallelograms such as the one formed by the
points 0, λ1, λ1 + λ2, λ2 in the complex plane.

Defining the ratio of lattice vectors on the upper half-planeH as

τ =
λ1

λ2
∈ H ⊂ C, (1.75)

it turns out from the scale invariance of the theory that τ is the coordinate needed to
distinguish between inequivalent tori. With this notation λ1 and λ2 simply become
1 and τ on the complex plane and the torus’ identification on the plane is in terms of
the parallelogram with vertices 0, 1, τ + 1, τ, as illustrated in Fig 1.4.

FIGURE 1.4: The torus and its lattice [46]

A torus is invariant under two transformations of the lattice vectors. The first
one is the map τ 7→ τ + 1. Indeed, as illustrated in Fig. 1.5, the lattice vector 1 and
τ + 1 (Fig. 1.5 (b))is identical to the choice of lattice 1 and τ (Fig. 1.5 (a)).

FIGURE 1.5: Modular transformation T : τ 7→ τ + 1 [46]

The other discrete symmetry is a bit more involved. It basically consists of first
rotating vector τ into the real axis and doing a rescaling by the transformation τ 7→ 1

τ
(Fig. 1.6 (b)), and thereafter bringing the new τ vector in the upper half-plane by
taking - 1

τ (Fig. 1.6 (c)), as illustrated in Fig. 1.6.
The two symmetries generating the modular group Γ may be represented by

2× 2 matrices acting on the column vector
(

λ1
λ2

)
as
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FIGURE 1.6: Modular transformation S : τ 7→ − 1
τ [46]

T =

(
1 1
0 1

)
, (1.76)

and

S =

(
0 1
−1 0

)
, (1.77)

which respectively describe a translation and a reflection. In turn, the general mod-
ular transformation can be expressed as

M : τ 7→ aτ + b
cτ + d

, (1.78)

or again in matrix form

M =

(
a b
c d

)
, (1.79)

where a, b, c, d ∈ Z, ad− bc = 1 (which guarantees that M has an integer inverse, i.e
preserves area), and

(
a b
c d

)
∼ −

(
a b
c d

)
, (1.80)

as an overall sign in the numerator and denominator cancels. Hence, M ∈ PSL(2,Z).
Any change on a Riemann surface due to the action of the modular group leaves

the data coming from correlation functions invariant up to some multipliers that can
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be computed. This property of the n-point correlation functions is called modular
covariance. The zero-point functions, which are the characters of the theory are also
the building blocks of the partition function of the theory. They form representation
spaces of the modular group. When the representation is finite-dimensional, the
theory is called rational. In that case, the modular transformation properties of the
zero-point function are expressed as

χh

(
− 1

τ

)
= ∑

h′
Sh′

h χh′(τ), (1.81)

and

χh ( τ + 1) = ∑
h′

Th′
h χh′(τ), (1.82)

which are sums over finitely countable values of weights h′.
An advantage of choosing the torus as our Riemann surface for the theory is that,

the partition function is independent of the choice of lattice vector λ1 and λ2, i.e it is
modular invariant. The partition function can generally be defined as

Z = Tre−βH, (1.83)

where H stands for the Hamiltonian operator, represented by the Virasoro zero-
modes L0 + L̄0 in a CFT. It is important to mention that the torus is actually twisted
before being glued together, since in general the real partR(τ) 6= 0. Also, space and
time directions are usually represented on the real and imaginary axes, respectively.
The translation operator of the model along the lattice vector λ2 over a distance d is
then

e−
d
|λ2 |

HI(λ2)−iPR(λ2). (1.84)

Considering a cylinder of circumference D, we can write the generators along time
and space respectively

H =
2π

D

(
L0 + L̄0 −

c
12

)
(1.85)

and

P =
2π

D
(L0 − L̄0) . (1.86)

Identifying λ1 to D, and rescaling the lattice by a factor of 2π, the partition function
becomes

Z = Treπi[(τ−τ̄)(L0+L̄0− c
12 )+(τ+τ̄)(L0−L̄0)]

= Tre2πi[τ(L0− c
24 )−τ̄(L0− c

24 )]. (1.87)
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Then, using the expressions q = e2πiτ and q̄ = e2πiτ̄, the partition function takes the
more conventional form

Z (τ) = Tr
(

qL0− c
24 q̄L0− c

24

)
. (1.88)

Finally, due to conformal invariance the torus partition function can be expressed in
terms of bilinear combinations of characters of the representation of Virasoro alge-
bras as

Z (τ) = ∑
h,h̄

χh (q)Nh,h̄χ̄h̄ (q̄) (1.89)

with respective holomorphic and antiholomorphic highest weight h and h̄, and Nh,h̄
as integer coefficients.

Minimal models

We succinctly discuss a special subclass of rational CFTs, the so-called minimal mod-
els. Introduced by Belavin et al. in [1], these are models with central charge parametrized
by two coprime integers p > q as

cp,q = 1− 6(p− q)2

pq
. (1.90)

An interesting feature of minimal models is that only a finite number of primary
fields (with infinitely many descendants) appears in the theory. Furthermore, for the
given central charge, the allowed values that the conformal weights of the primary
fields can take are given by

hr,s =
(rq− sp)2 − (p− q)2

4pq
, (1.91)

where 1 ≤ r ≤ p− 1 and 1 ≤ s ≤ q− 1. They are determined by the Kac determinant

detMl = αl ∏
1≤r,s≤l

(h− hr,s(c))
p(l−rs) = 0, (1.92)

where p(l − rs) is the number of partitions of the positive integer l − rs, and αl is a
positive constant depending on h. Organizing the conformal weights hr,s on a grid,
we get what is known as the Kac table, which is symmetric in r 7→ q− r and s 7→ p− s.
The special case p = q + 1 describes a subset of the minimal model which is unitary,
i.e which do not contain any negative norm. In that case

cq = 1− 6
q(q + 1)

, q = 3, 4, 5, . . . (1.93)

such models are also called unitary discrete models.
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Minimal models are very important because they describe statistical models at
their critical points. A famous example is the one for which q = 3, and the corre-
sponding central charge is c4,3 = 1

2 . This is the so-called Ising model, the non-trivial
minimal model with smallest Kac table

1h=0 σh= 1
16

εh= 1
2

εh= 1
2

σh= 1
16

1h=0

where σ represents the lattice spin, and ε the interaction between two nearest neigh-
boring spins.

1.2 Logarithmic Conformal field theory

The presence of logarithmic divergences in the correlation functions of some sys-
tems in two dimensions was noticed a few years after the discovery of conformal
field theories [9]. Subsequently, several aspects of logarithmic conformal field the-
ory were observed in the literature [10, 11, 12], but it is really about a quarter century
ago that logarithmic conformal field theory established itself, through the work of
Gurarie [13].

In the next subsections, we first discuss the main features of LCFTs, and then give
two specific examples: the celebrated c = −2 model, and the c = 0 model which is
the model of interest for us.

1.2.1 Indecomposable structure and Jordan cells

The concept of LCFT introduced in [13] was based on the indecomposable represen-
tations that are present in the fusion of primary operators. In ordinary CFTs, the
primary operators forming irreducible representations of the Virasoro algebra and
their descendants make a complete set of operators, such that all others are express-
ible in terms of linear combinations of them. However, in the case of LCFTs the
computation of correlation functions reveals that in order to a have complete set of
operators, a new family of operators must be added. This induces the "logarithmic"
properties of LCFTs, featuring the appearance of a non-diagonal action and a Jordan
cell structure.

Considering two operators A(z) and B(z) of same conformal weight h, a non-
diagonal action of the Hamiltonian L0 can occur, generating a Jordan cell as follows

L0 |A〉 = h |A〉 (1.94a)
L0 |B〉 = h |B〉+ |A〉 (1.94b)

or equivalently

L0

(
|A〉
|B〉

)
=

(
h 0
1 h

)(
|A〉
|B〉

)
. (1.95)

Eq. (1.95) is an example of a non-diagonalizable Jordan cell. Such a structure can
arise in any arbitrary size, but for the sake of simplicity, we restrict ourselves to the
two by two cell as in Eq. (1.95). An n by n cell is also said to be of rank n− 1.

As we can see from the first line of Eqs. (1.94), |A〉 resembles a conventional pri-
mary state. However, from the second line, the action of L0 on |B〉 is slightly different
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as it includes |A〉. For reasons that will be made clear below, |B〉 was coined the log-
arithmic partner of |A〉. As a result of Eqs. (1.94), the Hamiltonian is not hermitian
since L†

0 6= L0. LCFTs are therefore non-unitary.

1.2.2 Logarithmic correlators

The two-point correlation functions of operators A(z) and B(z) can be calculated
using conformal invariance. Under an infinitesimal conformal transformation given
by z 7→ z + ε(z), the primary operator |A(z)〉 transforms as

δA(z) = ε(z)
∂A(z)

∂z
+ h

∂ε(z)
∂z

A(z). (1.96)

The operator |B(z)〉 transforms as

δB(z) = ε(z)
∂B(z)

∂z
+

∂ε(z)
∂z

(hB(z) + A(z)) . (1.97)

We recall the general result of ordinary CFT which is that the constraints imposed
on the two point correlation function of a primary operator O(z) by translation in-
variance (with ε(z) = ε = constant), dilatation (with with ε(z) = εz) and SCT (with
with ε(z) = εz2) fix the structure of the correlation function up to a constant K as

〈O(z1)O(z2)〉 =
K

(z1 − z2)
2h . (1.98)

In turn, when applied to the primary operator A(z), the differential equations satis-
fying the above correlation function can be expressed as [47]

(
∂

∂z1
+

∂

∂z2

)
〈A(z1)A(z2)〉 = 0 (translation), (1.99a)(

z1
∂

∂z1
+ z2

∂

∂z2
+ 2h

)
〈A(z1)A(z2)〉 = 0 (dilatation), (1.99b)(

z2
1

∂

∂z1
+ z2

2
∂

∂z2
+ 2h (z1 + z2)

)
〈A(z1)A(z2)〉 = 0 (SCT). (1.99c)

When it comes to the operator B(z), the differential equations satisfying the 2-point
correlation function are more involved, as we see now
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translation:(
∂

∂z1
+

∂

∂z2

)
〈A(z1)B(z2)〉 = 0, (1.100a)(

∂

∂z1
+

∂

∂z2

)
〈B(z1)A(z2)〉 = 0, (1.100b)(

∂

∂z1
+

∂

∂z2

)
〈B(z1)B(z2)〉 = 0, (1.100c)

dilatation :(
z1

∂

∂z1
+ z2

∂

∂z2
+ 2h

)
〈A(z1)B(z2)〉+ 〈A(z1)A(z2)〉 = 0, (1.100d)(

z1
∂

∂z1
+ z2

∂

∂z2
+ 2h

)
〈B(z1)A(z2)〉+ 〈A(z1)A(z2)〉 = 0, (1.100e)(

z1
∂

∂z1
+ z2

∂

∂z2
+ 2h

)
〈B(z1)B(z2)〉+ 〈A(z1)B(z2)〉+ 〈B(z1)A(z2)〉 = 0, (1.100f)

SCT:(
z2

1
∂

∂z1
+ z2

2
∂

∂z2
+ 2h (z1 + z2)

)
〈A(z1)B(z2)〉+ 2z2 〈A(z1)A(z2)〉 = 0, (1.100g)(

z2
1

∂

∂z1
+ z2

2
∂

∂z2
+ 2h (z1 + z2)

)
〈B(z1)A(z2)〉+ 2z1 〈A(z1)A(z2)〉 = 0, (1.100h)(

z2
1

∂

∂z1
+ z2

2
∂

∂z2
+ 2h (z1 + z2)

)
〈B(z1)B(z2)〉+ 2z1 〈A(z1)B(z2)〉+ 2z2 〈B(z1)A(z2)〉 = 0.

(1.100i)

These differential equations are uniquely solved for

〈A(z1)A(z2)〉 = 0, (1.101a)

〈A(z1)B(z2)〉 = 〈B(z1)A(z2)〉 =
K

(z1 − z2)
2h , (1.101b)

〈B(z1)B(z2)〉 = −2K
ln (z1 − z2)

(z1 − z2)
2h . (1.101c)

Eqs. (1.101) justifies the appellation "logarithmic partner" for the operator B(z).
Another way from which the logarithmic feature of the theory can be seen is

through consideration of the four-point function of a primary operator O(z). From
ordinary CFT, we recall that such a primary operator with conformal dimension h
has a four-point function that looks like

〈O(z1)O(z2)O(z3)O(z4)〉 =
1

(z1 − z3)
2h (z2 − z4)

2h F(x), (1.102)

with x as
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x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (1.103)

Then, if O(z) is in the Kac table, the function F(x) is known to satisfy a differential
equation whose solutions are singular for x = {0, 1, ∞}, and at those points, F(x)
behaves as a power law. In the case x → 0 for instance, F(x) ∼ xα and it can be
shown that the OPE of O(z) with itself looks like

O(z)O(0) ∼ zαC(0) + · · · , (1.104)

with C(0) as a primary operator with dimension δ = α + 2h.
However, in some cases, the differential equations may exhibit logarithmic sin-

gularities rather than the power laws at the specific points. Taking again the case
x → 0, this leads to F(x) ∼ xα ln x + · · · , which means

O(z)O(0) ∼ zα [A(0) ln z + B(0)] + · · · . (1.105)

Just as before, B(z) is the logarithmic partner of A(z).
Next we turn our attention to the logarithmic generalization of minimal models.

1.2.3 Logarithmic minimal models

In this subsection, we give a brief review of logarithmic extensions to minimal mod-
els previously discussed.

Logarithmic minimal models originate from the work of Kausch [48] who no-
ticed that it was possible to extend the Virasoro algebra by a multiplet of fields
at certain values of the central charge.These models can roughly be classified in
two categories. The first category consists of models in which the Virasoro alge-
bra is extended only by a series of singlet solutions. Under the notation LMp′,p,
these models have been studied from a lattice perspective in [49, 17, 23, 50, 51, 52].
Interesting works can also be found in [53, 24, 54, 55]. The second category, de-
noted asWLMp′,p has been studied more extensively than the former. In particular,
WLMp′,p models are rational not with respect to the Virasoro algebra, but with re-
spect to an enlarged symmetry algebra called the W-algebra. As lattice integrable
models, they have been studied in [56, 25, 57, 58, 59, 60, 61, 62, 63]. From a mathe-
matical physics perspective, these models were studied in [64, 65, 66, 67].

Virasoro representations

Logarithmic minimal models are defined for sets of coprime integers p, p′ such that
the central charge of these theories is

c = 1− 6
(p′ − p)2

pp′
. (1.106)

Depending on (groups of) authors, either p < p′ or p′ < p. Here we use the conven-
tion p < p′.
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These models involve an infinite number of Virasoro representations which close
under fusion, with an infinitely extended Kac table. In that setting, the conformal
weights are given by

hr,s =
(rp′ − sp)2 − (p′ − p)

4p′p
, r, s ∈ N. (1.107)

The Kac table admits a Z2 symmetry such that hr,s = hp−r,p′−s.
Although logarithmic minimal models admit an infinite number of representa-

tions in the Virasoro algebra, these representations can be rearranged into a finite
number of representations of a larger algebra, the W algebra.

W- irreducible representations

Under the extended W(p, p′) symmetry, the infinite number of Virasoro representa-
tions are reorganized into a finite number of W indecomposable representations that
close under fusion.

The Wp,p′ algebra is generated by the stress tensor T(z) and two Virasoro pri-
maries W+(z) and W−(z) of conformal dimension (2p − 1)(2p′ − 1) . This yields
2pp′ + 1

2 (p − 1)(p′ − 1) W-irreducible representations, where the 1
2 (p − 1)(p′ − 1)

contribution corresponds to the representations of rational minimal models.
Because of the fixed number of representations generated in the W-logarithmic

minimal models (WLM), they are called rational LCFTs, in contrast with the loga-
rithmic minimal models called irrational LCFTs. Next we proceed with the famous
example of the c = −2 model.

An example: the c = −2 model

The c = −2 model is the simplest of the series of logarithmic minimal models, with
(p′, p) = (1, 2). We follow the paper by Gurarie, as it is a key example of where an
operator was used to show that logarithmic terms cannot be avoided in the system.

Gurarie computed the four-point function of an operator denoted by µ, of con-
formal dimension h = − 1

8 , which takes the form

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)
1
4 (z2 − z4)

1
4 [x(1− x)]

1
4 F(x). (1.108)

F(x) is a holomorphic function of the anharmonic ratio x, that is determined using
the null vector condition

(
L−2 − 2L2

−1
)
|µ〉 = 0, (1.109)

which in conjunction the definition of mode expansion and normal ordering implies
that F(x) satisfies a second order differential equation given as

x(1− x)
d2F(x)

dx2 + (1− 2x)
dF(x)

dx
− 1

4
F(x) = 0. (1.110)

The differential equation (1.110) has two independent solutions
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F(x) = k1 J(x) + k2 J(1− x), (1.111)

where k1 and k2 are constants, J(x) is the hypergeometric function F
( 1

2 , 1
2 , 1; x

)
and

J(1− x) is the hypergeometric function F
( 1

2 , 1
2 , 1; 1− x

)
. An interesting feature of

these hypergeometric functions is that while J(x)|x=0 = 1 and it can be expanded
about x = 0 as a standard Taylor series, J(1− x) behaves as ln x as x → 0 [68]. The
logarithmic singularity sitting in the four-point function can therefore be made more
visible by rewriting the second solution as

J(1− x) = J(x) ln x + H(x), (1.112)

where, H(x) is a regular function in the vicinity of x = 0 [68].

1.2.4 c = 0 LCFTs

Over the past decades, the interest on theories with vanishing central charge has
considerably grown due to the fact that they play a prominent role in the under-
standing of statistical mechanics and condensed matter physics models. Applica-
tions of such models include the statistical properties of critical geometrical models
like self-avoiding walk (polymers) or percolation [11], and the critical properties of
non-interacting 2 + 1 dimensional (quenched ) disordered electronic systems [28,
69]. Other applications are in the area of high energy physics with for instance the
description of super-symmetric sigma models beyond the topological sector [70], or
with the AdS/CFT correspondence which will occupy us from the next chapter.

LCFTs with vanishing central charges were first encountered in the work of Rozan-
sky and Saleur [12], who studied a particular type of c = 0 theory with U(1, 1) su-
pergroup symmetry. In their study, they came across the same form of logarithmic
dependent four-point function as the ones discussed above. Their results and con-
clusions were confirmed by Gurarie [13], who later on with Ludwig in [27] and [29]
formalized the c = 0 theory, through a fundamental requirement that the theory
must possess a field other than the energy-momentum tensor T(z), whose holomor-
phic part denoted by t(z) has conformal weight 2. Furthermore, the requirement
is such that the action of the Virasoro mode L2 on this operator should give a non
vanishing constant. The argument given by Gurarie to explain the statement is that
a primary operator with non-zero two point function in any c 6= 0 CFT should have
an OPE with itself that looks like

O(z)O(0) = 1
z2h

(
1 +

2h
c

z2T(0) + · · ·
)

. (1.113)

Then, taking the limit c→ 0 in Eq. (1.113) would lead to a divergence of the term 2h
c

also called the c=0 catastrophe.
The origin of the term 2h

c can first be recalled from the fact that applying L2 on
both sides of Eq. (1.113) gives on the right side

2h
c

z2−2hL2T(0) = hz2−2h, (1.114)
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since L2T(0) = c
2 , while using the standard CFT result

[Ln,O(z)] = zn+1 ∂O(z)
∂z

+ h(n + 1)znO(z), (1.115)

and applying it with L2 on the left side of Eq. (1.113) gives

L2O(z)O(0) = [L2,O(z)]O(0) (1.116a)

=

[
z3 ∂

∂z
+ 3z2h

]
O(z)O(0) (1.116b)

'
[

z3 ∂

∂z
+ 3z2h

]
1

z2h = hz2−2h. (1.116c)

Hence the only way for both sides to agree in the same answer is for the specific
choice of the coefficient 2h

c . Then, to resolve the divergence conundrum, Gurarie
and Ludwig observed that the only way to make Eqs. (1.114) and (1.116) compatible
at c = 0 is to assume the existence of another dimension 2 operator t(z) such that
L2t(0) = b. The non-zero coeficient b now featuring in the following new OPE
expression

O(z)O(0) ' 1
z2h

(
1 +

h
b

z2t(0) + · · ·
)

, (1.117)

plays an important physical role. The operator t(z) also satisfies

Lnt(0) = 0, ∀n > 2, n = 1. (1.118)

As an example, one could consider the direct product of two CFTs with central
charges c1 = c and c2 = −c, so that the total central charge is zero. Having the oper-
ator t(z) as a quasiprimary field, i.e L2t(0) = b and L0t(0) = 2t(0), one could argue
that T = T1 + T2 and t = T1 − T2 and construct the OPE of the energy-momentum
tensor T(z) with the operator t. This gives

T(z)t(w) =
b

(z− w)4 +
2t(w)

(z− w)2 +
t′(w)

z− w
+ · · · , (1.119)

with b = c.
Alternatively, t(z) could be thought of as the logarithmic partner of the energy-

momentum tensor T(z). This eventuality could arise by considering the fact that for
c = 0, T(z) has a vanishing norm, i.e 〈T(z)T(w)〉 = 0. This is consistent with the set
of equations (1.101), and leads to the more general OPE expression

T(z)t(w) =
b

(z− w)4 +
2t(w) + T(w)

(z− w)2 +
t′(w)

z− w
+ · · · (1.120)

As a result, applying Eq. (1.101) gives
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〈T(z)T(w)〉 = 0, (1.121a)

〈T(z)t(w)〉 = 〈t(z)T(w)〉 = b

(z− w)4 , (1.121b)

〈t(z)t(w)〉 = −2b
ln (z− w)

(z− w)4 , (1.121c)

and shows how the logarithmic singularity arises in the two-point correlation
function.

As we have seen in this chapter, in contrast with its ordinary counterpart, loga-
rithmic conformal field theory at c = 0 turns out to be nontrivial due to the appear-
ance of t, the logarithmic partner of the energy momentum tensor T. Many issues
related to these logarithmic operators still need to be addressed in order to have a
better understanding of vanishing central charge LCFTs, and their various applica-
tions in condensed matter physics and string theory.

After reviewing the general features of CFT and LCFT, we will now take a look
at certain three dimensional gravity theories that have been proposed as possible
holographic duals of c = 0 logarithmic conformal field theories.
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Chapter 2

Gravity in three dimensions and
holography

The search for a consistent theory of gravity had been going on for a long time now.
Such a theory presents formidable challenges, technically and conceptually. On one
hand, at the technical level for instance, the non renormalizability of general rela-
tivity as a perturbative quantum field theory has for a long time been a hindrance
for progress in the field. On the other hand, the gauge invariance of observables in a
theory that is diffeomorphism invariant like general relativity has conceptually been
a difficult problem to solve.

The easiest way out when studying a particularly complicated system is to turn
to a toy model with similar conceptual features. Gravity in three dimensions is one
such toy model that has enabled theoretical physicists to investigate many aspects of
gravity that would otherwise be very difficult to fathom. For that reason, the study
of three dimensional gravity is originally motivated by the desire to understand its
four dimensional analog. Indeed, while the dynamics of 3d gravity is relatively
simpler than the 4d one in the sense that it has no propagating degrees of freedom
and the gauge constraints can be solved exactly, it still retains many properties of the
higher dimensional theories that to this day remain poorly understood.

An example of a not very well understood phenomenon in d = 4 gravity is the
black hole thermodynamics. Interestingly enough, 3d gravity admits black hole so-
lutions [71] with properties similar to the ones of 4d gravity, illustrated for instance
by the entropy that obeys the Bekenstein-Hawking area law. In particular, the black
hole solutions that 3d gravity admits requires the theory to have a negative cosmo-
logical constant [72]. This renders 3d gravity even more interesting in the context of
string theory, as it allows to make use of the AdS/CFT correspondence [30].

Many questions about quantum gravity can be addressed in terms of their well
understood 2d conformal field theory duals through the celebrated AdSd+1/CFTd
correspondence. However, in the specific dimensional case of AdS3/CFT2, it is ac-
knowledged to have been discovered long before the work of of Maldacena in [30].
Indeed, Brown and Henneaux showed in [73] that the symmetry algebra of asymp-
totically AdS3 spaces is generated by two copies of the Virasoro algebra with non-
zero central charges cL, cR, which as previously discussed is known as the algebra of
local conformal transformations in two dimensions.

In this chapter, after a quick introduction to gravity in 2 + 1 dimensions, we
give a brief review of the precursor of the AdS/CFT correspondence in the work of
Brown and Henneaux. Subsequently, we go through the basics of AdS3/CFT2 before
discussing the logarithmic AdS3/LCFT2 correspondence which motivates the work
done in this thesis.
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2.1 Gravity in 2 + 1 dimensions

Pure gravity in 2 + 1 dimensions is defined by the Einstein-Hilbert action [74]

S =
1

16πG

∫
M

d3x
√
−g(R− 2Λ) + C, (2.1)

with G as the 3d Newton constant, g ≡ det gab(a, b = 0, 1, 2) with a metric gab of
signature (−,+,+), R ≡ Rabgab as the curvature scalar, Rab as the Ricci tensor, and
the natural units setting h̄ = c = 1. M is a manifold in 3 dimensions, and Λ is the
cosmological constant that depending on whether its value is positive, negative or
null, describes locally de Sitter (dS), Anti-de-Sitter (AdS) or flat spacetimes. In the
case where the spacetime is Anti-de-Sitter, the cosmological constant is expressed in
terms of the AdS radius l as Λ = −1/l2. C represents a boundary term that enables
the action to have a well behaved action principle.

The (Einstein) equations of motion for the action (2.1) are

Rab −
1
2

gabR + Λgab = 0, (2.2)

which are diffeomorphism covariant.
A particular aspect of the solutions of the vacuum (Tab = 0) Einstein equations

in 3d is that they are locally de Sitter (dS), Anti-de-Sitter (AdS) or flat depending on
the sign of Λ as specified above. This can be checked by realizing that the Riemann
curvature tensor is totally determined by the Ricci tensor. Indeed, the number of
independent component of Ricci and Riemann tensors in d dimensions (for d > 2)
are

d(d+ 1)
2

, (2.3)

and

d(d− 1)
4

(
d(d− 1)

2
+ 1
)

, (2.4)

respectively. In 2 + 1 dimensions, this means that both tensors have 6 independent
components. Hence, using the symmetries of the Riemann tensor, the full curvature
tensor can be expressed in terms of Ricci tensor given by

Rabcd = gacRbd + gbdRac − gbcRad − gadRbc −
1
2

R(gacgbd − gadgbc). (2.5)

As a result, any solution of equations of motion (2.2) has constant curvature. Physi-
cally this means that 2+ 1 dimensional Einstein spacetime does not have local prop-
agating degrees of freedom, and that there are no gravitational waves in the theory.

At this stage, a fundamental question is how can a toy model without degrees of
freedom be used to study gravity theories in higher dimension? In the case of Λ < 0
it turns out that 2 + 1 dimensional gravity is not "empty", but admits black hole
solutions as shown by Bañados, Teitelboim and Zanelli in [71]. The BTZ black hole
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of mass M and angular momentum J is described, in Schwarzschild coordinates, by
the metric

ds2 = − (N(r))2 dt2 + (N(r))−2 dr2 + r2 (dφ + Nφ(r)dt
)2 , (2.6)

where the lapse and shift functions are expressed as

N(r) ≡
√
−8GM +

r2

l2 +
16G2 J2

r2 , Nφ(r) = −4GJ
r2 , (2.7)

with −∞ < t < +∞, 0 < r < +∞ and 0 < φ < 2π.
The BTZ solution (2.6) ensures that every point of the black hole has a neighbor-

hood isometric to AdS3.

2.2 Asymptotic symmetries in AdS3 spacetime

In this section we discuss asymptotically AdS spacetimes in the spirit of
Brown/Henneaux. For that, one needs to consider a set of metrics that tend to the
AdS3 metric. This amounts to a prescription of fall-off conditions on the metric com-
ponent at large distances, that is equivalent to imposing boundary conditions.

First consider a 3dmanifoldMwith the topology of a cylinder, parametrized by
the time coordinate x0 ≡ τ and the 2d space manifold parametrized by the coordi-
nates r and x1 ≡ ϕ such that ϕ ∼ ϕ + 2π. Then, introducing light cone coordinates
x± ≡ τ ± ϕ with ∂± = 1

2 (∂τ ± ∂ϕ), the boundary of the spacetime at (space) infinity
(r = ∞) is the cylinder of coordinates τ, ϕ as illustrated in Fig. 2.1.

FIGURE 2.1: ManifoldM with the topology of a cylinder [75]

Now that the boundary conditions of the spacetime have been specified, one can
look at the boundary conditions.

2.2.1 Boundary conditions

Using Fefferman-Graham coordinate system [76] with the following metric

ds2 =
l2

r2 dr2 + γij(r, xk)dxidxj, (2.8)
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where i = 0, 1 and

γij = r2g(0)ij (xk) +O(1) for r → ∞, (2.9)

asymptotically AdS3 can be defined in terms of metrics such as Eq. (2.8) for which
the boundary metric g(0)ij is

g(0)ij = −dx+dx−. (2.10)

These are called the Brown-Henneaux boundary conditions.
As was shown in [77], the most general solution of the Einstein equations with

Λ = −1/l2 and boundary conditions (2.8) and (2.10) is

ds2 =
l2

r2 dr2 −
(

rdx+ − l2

r2 L(x−)dx−
)(

rdx− − l2

r2 L̄(x+)dx+
)

, (2.11)

with L(x−) and L̄(x+) as two single-valued functions of the light-cone coordinates.
An important property of the 3d gravity action (2.1) is that it can be expressed

in terms of ordinary gauge fields [78, 79]. This property holds for any sign of the
cosmological constant and simplifies considerably the structure of the action and of
the equations of motion. More specifically, three-dimensional gravity is equivalent
to a Chern-Simons gauge theory. This being noted, it is possible to translate the
Brown-Henneaux boundary conditions in terms of the Chern-Simons formalism.

We start by a discussion on vielbeins and spin connections. Within the first-order,
or Palatini framework of general relativity, the usual metric gµν can be expressed in
terms of an object called vielbein and denoted by ea

µ as

gµν(x) = ea
µ(x)ηabeb

ν(x), (2.12)

where a can take the values {0, 1, 2}, and ηab is the metric of flat 3D Minkowski
spacetime. Eq. (2.12) can be interpreted as a tensor transformation under change of
coordinates described by a non-singular matrix ea

µ, with inverse eµ
a (x) such that

ea
µeµ

b = δa
b , and eµ

a ea
ν = δ

µ
ν . (2.13)

The vielbein can be used to define a basis in the space of differential forms. From the
one-form ea ≡ ea

µdxµ and the Levi-Civita components εabc, one obtains

εµνρ ≡ e−1εabcεa
µεb

νεc
ρ, (2.14a)

εµνρ ≡ eεabcε
µ
a εν

bε
ρ
c , (2.14b)

where e = det(ea
µ). A covariant derivative is often expressed as D = ∂ + Γ, where

the first term on the right-hand side stands for a normal derivative, and the sec-
ond term on the right-hand side is the affine connection. In the tetrad formalism,
the one-forms ωab = ωab

µ dxµ, with ωab = −ωba, play the role of the connections.
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They are useful in constructing objects that transform as vectors under local Lorentz
transformation. One such object is the torsion 2-form of the connection expressed as

Ta ≡ dea + ωa
b ∧ eb, (2.15)

that transforms as

Ta → Λ−1a
bTb, (2.16)

with Λ ∈ SO(2, 1) if the term ωa
b whose components ωab

µ are the spin connections,
transforms as

ωa
b → Λ−1a

cdΛc
b + Λ−1a

cωc
dΛd

b. (2.17)

Eq. (2.15) is called the first Cartan structure equation. Now specifying to the metric in
Eq. (2.11), a choice of dreibein ea that satisfies ds2 = ηabεaεb is the following

e0 = − r√
2

dx− +
l2
√

2r
L̄(x+)dx+, (2.18a)

e1 = − r√
2

dx+ +
l2
√

2r
L̄(x−)dx−, (2.18b)

e2 =
l
r

dr. (2.18c)

For such a choice, one recovers ds2 = 2ε0ε1 +
(
ε2)2, and the first Cartan structure

equation (2.15) fixes the associated spin connections

ω0 = − r√
2

dx− +
l√
2r

L̄(x+)dx+, (2.19a)

ω1 = − r√
2

dx+ +
l√
2r

L̄(x−)dx−, (2.19b)

ω2 = 0. (2.19c)

The corresponding Chern-Simons flat connections

A =

(
ωa +

ea

l

)
ja, Ā =

(
ωa − ea

l

)
ja (2.20)

with ja as the generators can then be expressed as follows

A =

( dr
2r

l
r L̄(x+)dx+

r
l dx+ − dr

2r

)
, Ā =

(
− dr

2r
r
l dx−

l
r L(x−)dx− dr

2r .

)
(2.21)

One can factorize out the r-dependence of the gauge fields. This yields the reduced
connections
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a =

(
0 l L̄(x+)dx+

dx+
l 0

)
, ā =

(
0 dx−

l
lL(x−)dx− 0.

)
(2.22)

Finally, from the off-shell reduced gauge connections expressions a = aa
µ jadxµ and

ā = āa
µ jadxµ, the following boundary conditions can be derived

{
a− = ā+ = 0,
a+ =

√
2

l j1 + 0j2 +
√

2lL(x+)j0, ā− =
√

2l L̄(x−)j1 + 0j2 +
√

2
l j0

. (2.23)

Here, {j0, j1, j2} is the set of sl(2,R) generators identified by

j0 =
1√
2

(
0 1
0 0

)
, j1 =

1√
2

(
0 0
1 0

)
, j2 =

1
2

(
1 0
0 −1

)
. (2.24)

2.2.2 Asymptotic symmetries

The asymptotic symmetries can be identified to the following set of gauge transfor-
mations

δa = dλ + [a, λ] , δā = dλ̄ +
[
ā, λ̄
]

(2.25)

that preserve the asymptotic behaviour of the off-shell reduced gauge connections,
i.e Eq. (2.23). Given that λ = λa ja and λ̄ = λ̄a j̄a, these gauge parameters can be
rewritten as

λ = l2
(

Lλ1 − 1
2

∂2
+λ1

)
j0 + λ1 j1 −

l√
2

∂+λ1 j2, (2.26a)

λ̄ = λ̄0 j0 + l2
(

L̄λ̄0 − 1
2

∂2
−λ̄0

)
j1 +

l√
2

∂−λ0 j2, (2.26b)

with λ1, λ̄0 as functions of x+ and x− respectively. Then, writing Y ≡ lλ1/
√

2 and
Ȳ ≡ lλ̄0/

√
2, it is found that

δL = Y∂+L + 2L∂+Y− 1
2

∂3
+Y, (2.27a)

δL̄ = Ȳ∂− L̄ + 2L̄∂−Ȳ− 1
2

∂3
−Ȳ. (2.27b)

Within the Chern-Simons formalism, the variation of the canonical generators asso-
ciated to the asymptotic symmetries spanned by λ gives [80, 81]

δQ[λ] = − k
2π

∫ 2π

0
(λ, δa+) dϕ, δQ̄[λ̄] = − k

2π

∫ 2π

0

(
λ̄, δa−

)
dϕ. (2.28)

These equations can be directly integrated to give
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QY = − k
2π

∫ 2π

0
YLdϕ, Q̄Ȳ = − k

2π

∫ 2π

0
ȲL̄dϕ. (2.29)

Then, using the Poisson brackets δY1 QY2 = {QY2 , QY1}, the algebra of canonical gen-
erators can be worked out from Eqs. (2.27). Defining the generators

Lm ≡
k

2π

∫ 2π

0
eimφLdϕ, L̄m ≡

k
2π

∫ 2π

0
eimφ L̄dϕ, (2.30)

one arrives at

i {Lm, Ln} = (m− n)Lm+n +
c

12
m3δm+n,0, (2.31a)

i {Lm, L̄n} = 0, (2.31b)

i {L̄m, L̄n} = (m− n)L̄m+n +
c̄

12
m3δm+n,0, (2.31c)

with central charges given by

c = c̄ = 6k =
3l
2G

. (2.32)

The algebra in Eqs. (2.31) from purely classical considerations first appeared in the
seminal paper of Brown and Henneaux [73], for that reason is considered as a pre-
cursor of the AdS3/CFT2 correspondence.

2.3 AdS3/CFT2 in a nutshell

The Brown-Henneaux results of the previous subsection have been generalized to
other 3d gravity theories that are asymptotically AdS3. Here, we just review how
such constructions work in a general way. For simplicity, we set the AdS radius l to
unity (l = 1).

After identifying the bulk theory, one needs to impose suitable boundary condi-
tions for all fields, i.e locally asymptotically AdS boundary conditions. To start with,
one can consider a metric in global AdS with expression

ds2 = dr2 − (cosh rdt)2 + (sinh rdϕ)2 , (2.33)

where r is the radial coordinate on the AdS cylinder, so that the asymptotic boundary
of the cylinder is reached in the limit r → ∞. The asymptotic expansion of Eq. (2.33)
can be written as

ds2 = dr2 + γijdxidxj, with γij = γ
(0)
ij e2r +O

(
e2r)

ij , (2.34)

with xi as boundary coordinates (such as the light cone ones x± = t ± ϕ), γ
(0)
ij as

the boundary metric and O
(
e2r) as terms diverging less rapidly than the leading

terms, finite terms and vanishing terms at r → ∞. In the case of Einstein gravity, the
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subleading terms reduce to the Feffermann-Graham expansion, corresponding to the
Brown-Henneaux boundary conditions. Replacing the Brown-Henneaux conditions
by subleading terms that grow polynomially in r leads to the appearance of log-
partners of gravitons in critical cosmological topologically massive gravity.

Next, in analogy with the Brown-Henneaux formalism, canonical generators of
gauge transformation must be determined. The variation of the canonical generators
associated to their corresponding asymptotic symmetries takes the form

δQ [λ] =
∮

dx
√
|σ|λL(g, π, δg, δπ), (2.35)

with σ as the induced volume-element at the asymptotic boundary circle, such that
the canonical boundary charge Q are integrable (finite and conserved in time).

After that, one can finally proceed to derive the (classical) asymptotic symmetry
algebra and its central charges. For that, one first observes that from Eq. (2.35),
the fields can be integrated. Then, by exploiting the Poisson brackets δλ2 Q [λ1] =
{Q [λ1] , Q [λ2]}, the algebra of the canonical generators can be computed, using the
standard result δλL = 2λL′ + λ′L + k

π λ′′′ and the Fourier decompositions L =

∑n Lne−inx+ , L̄ = ∑n L̄ne−inx− . The result is the Virasoro algebra with c = c̄ = 6k =
3l
2G . Once all the above steps have been executed, the dual CFT can be constrained,
and the AdS3/CFT2 correspondence can be verified.

Two routes can be taken to check the consistency of the the AdS3/CFT2 corre-
spondence. The first one is by computing the two- and three- point correlation func-
tions of the stress tensor on the gravity side and to relate them to the CFT counter-
parts using the standard AdS/CFT dictionary [82]. For instance,

〈
ψL/RψL/R

〉
CFT
∼

δ2Γgrav

δψL/R
NN δψL/R

NN

, (2.36)

with on the left-hand side of Eq. (2.36), the two point correlation function between
two (anti-) holomorphic flux components of the stress-energy tensor, and on the
right-hand side the second variation of the holographically renormalized on-shell
action Γgrav with respect to non-normalizable left-(right-)moving solutions ψL/R

NN of
the linearized EOM on the AdS background (2.33).

The other way is by comparing the partition functions. Indeed, for the corre-
spondence to hold, the Euclidean CFT partition function on the torus must be on
par with the Euclidean quantum gravity partition function on the filled AdS torus.
Taking q ≡ eiτ as the modular parameter with τ = θ + iβ (θ being the the angular
momentum and β the inverse temperature or also the periodicity in Euclidean time),
on the gravity side, the partition function reads

Zgrav(q, q̄) = e−hΓ(0)+Γ(1)+ 1
k Γ(2)+···. (2.37)

k is the inverse Newton constant, Γ(0) the classical on-shell action, and Γ(1), Γ(2), · · ·
the one-, two-, and higher loop contributions that can be calculated using heat-kernel
techniques [83]. Up to the one-loop contribution, the quantum gravity partition
function yields
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Zgrav(q, q̄) = |q|−
k
2

∞

∏
n=2

1

|1− qn|2
. (2.38)

This expression is to be compared with the CFT partition function that counts the
Virasoro descendants of the vacuum, which for the central charge c of the CFT takes
the form

Zgrav(q, q̄) = Tr
{

qL0 q̄L̄0
}
= |q|−

c
12

∞

∏
n=2

1

|1− qn|2
, (2.39)

given that h = h̄ = − c
24 = − k

4 (since from the Brown-Henneaux analysis c = 6k).

2.4 AdS3/LCFT2 correspondence

We now turn to the logarithmic extension of the AdS3/CFT2 correspondence. A few
years after the discovery of LCFT, an AdS3/LCFT2 correspondence was proposed,
suggesting the identification of a higher derivative action for a scalar field on an
AdS background to a singleton dipole [32] (see also [33, 34]). Those types of corre-
spondence are different from the one recently proposed by Grumiller et al [35, 84],
in which the energy-momentum tensor can only acquire a log partner if there are at
least two spin-2 modes with degenerate weights.

The action of TMG is expressed as [38, 37]

ΓTMG =
1

16πGN

∫
M

d3x
[√
−g
(

R +
2
l2

)
+

1
2µ

ελµνΓσ
λρ

(
∂µΓρ

νσ +
2
3

Γρ
µτΓτ

νσ

)]
+

1
8πGN

∫
∂M

d2x
√
−γ

[
K− 1

l
+

1
4µ

(
KαβKαβ −

1
2

K2
)]

,

(2.40)

with two dimensionless combinations of coupling constants, l
GN

and µl, where µ is
the Chern-Simons coupling constant and K the extrinsic curvature. TMG admits a
local physical degree of freedom, the massive graviton, for any non-singular value of
the coupling constant. Applying the previously outlined Brown-Henneaux analysis
on TMG leads to two copies of the Virasoro algebra with central charges

c =
3l

2GN

(
1− 1

µl

)
, c̄ =

3l
2GN

(
1 +

1
µl

)
. (2.41)

At the critical tuning µl = 1, the left central charge vanishes and TMG is called
critical topologically massive gravity.

Following Witten’s proposal in 2007 to find a CFT dual to Einstein gravity [85],
the Einstein graviton 1-loop partition function was calculated in [86]. However, dis-
crepancies were found in the results. In particular, the left- and right-moving con-
tributions did not factorise, therefore clashing with the proposal of [85]. Soon after,
Li, Song and Strominger [36] showed that the situation can be improved if one re-
places Einstein gravity by chiral gravity, which can be viewed as the special case of
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topologically massive gravity at the critical tuning µl = 1, and which is asymptot-
ically defined with Brown-Henneaux boundary conditions. A particular feature of
the theory was that one of the two central charges vanishes. This gave an indica-
tion that the partition function could factorise. However, a controversial feature of
the chiral gravity conjecture was the absence of massive graviton excitation. Carlip,
Deser, Waldron and Wise found in [87] that local excitations exist even at the critical
point. These contradictory results stirred up an intense debate [35, 88, 89, 90, 91, 92,
84, 93]. This was eventually resolved and we will say a few words about that in a
moment.

In transverse gauge, the linearized EOM

∇µ

(
ψµν − gµνψλ

λ

)
= 0, (2.42)

for the graviton excitations ψµν around the AdS background takes the form [36]

(
DLDRD(µ)ψ

)
µν

= 0, (2.43)

where appear the mutually commuting first order differential operators

D(L/R) = D(µ)
∣∣∣
µ=± 1

l

(2.44)

and

(D) β
α = ε

γβ
α ∇γ + µδ

β
α . (2.45)

Eq. (2.43) implies that all linearized solutions in transverse gauge are traceless.
Modes ψM

αβ that are annihilated by operators like D(µ) can possess different prop-
erties such as regularity or normalizability. In light cone coordinates, this means
that

ψM
αβ = e−ihx+−ih̄x−Fαβ(r), (2.46)

with h and h̄ sl(2) weights. More precisely, the six Killing vectors are the Virasoro
modes {L−1, L0, L1} and {L̄−1, L̄0, L̄1}, such that for any value of µ, the Virasoro zero
mode generators defined as L0 = i∂+, L̄0 = i∂− act on the fields as [36]

L0ψM = hψM, L̄0ψM = h̄ψM, (2.47)

and the {L1, L̄1}modes act on the fields as

L1ψM = L̄1ψM = 0. (2.48)

Note that Eq. (2.48) is only true for gravitational modes corresponding to primaries,
and not generically. Depending on the sign of µ, the sl(2) weights of the primaries
take the values
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(h, h̄) =


(

3
2 +

µl
2 ,− 1

2 +
µl
2

)
for µ > 0,(

− 1
2 −

µl
2 , 3

2 −
µl
2

)
for µ < 0.

(2.49)

In each case, the difference of weight is
∣∣h− h̄

∣∣ = 2, as is the case for a graviton
excitation. This means that the primaries ψL and ψR respectively annihilated by
DL and DR have weights (2, 0) and (0, 2). They correspond to the L−2 and L̄−2
descendants of the vacuum on the CFT side. At the critical tuning, the operators DL

andD(µ) degenerate with each other, just as the weights of the primaries ψL and ψM.
In particular, the fact that the left moving boundary graviton ψL and the massive

graviton degenerate implies that there is a logarithmic mode such that

(
DLDLψlog

)
µν

= 0,
(
DLψlog

)
µν

∝ ψL
µν. (2.50)

The degeneracy of the two vectors suggests the emergence of a generalized eigenvec-
tor, and the appearance of a Jordan cell in critical topological massive gravity. Such
a structure is the hallmark of logarithmic conformal field theories, and its occurence
in TMG at the critical point is at the origin of this recently proposed AdS3/LCFT2
correspondence. The logarithmic partner of the massive graviton can be expressed
as

ψ
log
αβ = −2(it + ln cosh r)ψL

αβ. (2.51)

For the Hamiltonian H = L0 + L̄0 = i∂t, the result is the Jordan structure

H
(

ψlog

ψL

)
=

(
2 2
0 2

)(
ψlog

ψL

)
, (2.52)

while the angular momentum operator J = L0 − L̄0 = i∂ϕ yields a diagonal matrix
as

J
(

ψlog

ψL

)
=

(
2 0
0 2

)(
ψlog

ψL

)
. (2.53)

Among the conclusive tests in favor of the correspondence is the computation of
the conformal Ward identities on the gravity side, with a precise match between the
two-point correlation functions calculated by Skenderis, Taylor and van Rees in [94]
and previously known results from LCFT. The match was confirmed in [95] where in
addition, three-point correlation functions were calculated again with precise agree-
ments with long known results from LCFT.

Another interesting check was performed by calculating the one-loop partition
function of TMG at the critical point in [39]. The result was given as

ZTMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄ . (2.54)
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It was rewritten in the following form

ZTMG(q, q̄) =
∞

∏
n=2

1

|1− q|2

(
1 +

q2

|1− q|2

)
+ ∑

h,h̄

Nh,h̄qhq̄h̄
∞

∏
n=1

1

|1− q|2
, (2.55)

in order to be compared to the LCFT partition function

ZLCFT(q, q̄) =
∞

∏
n=2

1

|1− q|2

(
1 +

q2

|1− q|2

)
+ · · · (2.56)

Following [39], we briefly explain the motivation to rewrite Eq. (2.54) into Eq. (2.55).
We start recalling that in critical TMG, the holomorphic central charge vanishes (cL =
0), while the antiholomorphic central charge is c̄ = cR = 3l/GN . The holomorphic
energy-momentum tensor T(z) possesses a logarithmic partner t(z), such that

L0t = 2t + T, L0T = 2T, L1t = L1T = 0. (2.57)

Then, from the fact that the two-point correlation function 〈T(z)t(w)〉 = bL/(z−w)4

is non-zero, and the relations T = L−2Ω and L2T = 0, Ω being the ground state
vacuum of the LCFT, one gets

L2t = bLΩ, bL = −cR = − 3l
GN

. (2.58)

Besides, T and t are annihilated by all positive L̄n modes, as well as by all modes
Ln∀n ≥ 3. Lastly, for the LCFT to be locally consistent, L0 − L̄0 must be diagonaliz-
able, and therefore

L̄0t = T. (2.59)

The above properties can be summarized in the following drawing

•

• •

Ω

T t(L0 − 2), L̄0

L−2 L2

The contribution of the above states to the partition function is evaluated by first
considering the descendants of the vacuum. From the above diagram, clearly they
are not affected by the presence of t. Therefore one obtains
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ZΩ =
∞

∏
n=2

1
|1− qn|2 . (2.60)

The states that remain are descendants of t that are not already descendants of Ω.
They can be expressed as [39]

Zt = q2
∞

∏
n=1

1
|1− qn|2 , (2.61)

where the term q2 accounts from the fact that t has eigenvalue (2, 0) under the diag-
onal part of (L0, L̄0). The result is the partition function of the Virasoro descendants
given by

Z0
LCFT = ZΩ + Zt =

∞

∏
n=2

1
|1− qn|2

(
1 +

q2

|1− q|2

)
. (2.62)

The term in brackets in the above equation can be written as a sum

(
1 +

q2

|1− q|2

)
= 1 +

∞

∑
m=2

∞

∑̄
m=0

qmq̄m̄, (2.63)

and compared to the double product of Eq. (2.54). The result is that the double prod-
uct is a sum generating single- and multi-particle representations of the logarithmic
t-excitations as

∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄ = 1 +

∞

∑
m=2

∞

∑̄
m=0

qmq̄m̄ + multiparticle. (2.64)

Eventually, the fact that ZTMG was able to be rewritten as Eq. (2.55), confirmed on
one hand that there was a match between ZTMG and ZLCFT up to single-particle, and
on the other hand that a consistent description of the counting of states in the multi-
particle sector was found, as the coefficients Nh,h̄ gave non-negative integers. How-
ever, despite the perfect agreements found on the two sides of the correspondence,
a better understanding of the LCFT partition function is still lacking.

This work initiates a program to learn more about the dual CFT of critical TMG
from the partition function. As such, we first undertake the task to show that the
partition function can be rewritten in a way that systematically accounts for single-
and multi-log excitations. Along the way, we also find that the partition function
can also be expressed in terms of the so called Plethsytic Exponential. Given the ex-
tensive work done on the Plethystic Exponential, this interesting relationship allows
one to envision a further study of the theory through the properties of the Plethys-
tic Exponential. As a by-product, using an appropriate set of differential ladder
operators, we also derive new ladder and sl(2) actions between the multi-particle
components of the partition function, showing from the Bell polynomial expansions
how it applies to the Plethystic Exponential, in the case under consideration.
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Chapter 3

Combinatorial properties of the
partition function of critical TMG

In this chapter, we proceed with the main result of the thesis, the expression of the
partition function of critical TMG in terms of Bell polynomials.

3.1 Multipartite generating functions

Following the theory developed in [96], we show how multipartite generating func-
tions can be written in terms of Bell polynomials, also known as Faà di Bruno for-
mula as we will see below.

For any multipartite (or m-partite) numbers~k = (k1, k2, . . . , km), i.e any ordered
m-tuple of non negative integers not all zeros, let N(z;m)(~k) = Nm(z; k1, k2, . . . , km) be
the number of partitions of~k, i.e the number of distinct representations of (k1, k2, . . . , km)

as a sums of multipartite numbers. The generating functions of N(z;m)(~k) can be de-
fined as [96]

G(z; X) = ∏
~k≥0

1

1− zxk1
1 xk2

2 · · · x
km
m

= ∑
~k≥0

N(z;m)(~k)xk1
1 xk2

2 · · · x
km
m . (3.1)

It follows that

log G(z; X) = −∑
~k≥0

log
(

1− zxk1
1 xk2

2 · · · x
km
m

)
(3.2a)

= ∑
~k≥0

∞

∑
n=1

zn

n
xnk1

1 xnk2
2 · · · x

nkm
m (3.2b)

=
∞

∑
n=1

zn

n
1

1− xn
1

1
1− xn

2
, · · · 1

1− xn
m

(3.2c)

=
∞

∑
n=1

zn

n

m

∏
j=1

1
1− xn

j
(3.2d)

=
∞

∑
n=1

zn

n!
(n− 1)!

m

∏
j=1

1
1− xn

j
. (3.2e)

Introducing the quantity gm(n) such that
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gm(n) = (n− 1)!
m

∏
j=1

1
1− xn

j
= (n− 1)! ∑

(k1,...,km)≥0

(
xk1

1 xk2
2 · · · x

km
m

)n
, (3.3)

we can write

log G(z; X) =
∞

∑
n=1

zn

n!
gm(n), (3.4)

and finally

∑
~k≥0

N(z;m)(~k)xk1
1 xk2

2 · · · x
km
m = exp

(
∞

∑
n=1

zn

n!
gm(n)

)
. (3.5)

As we will see later (Eq. (3.21)) in our specialization, gm(n) will become g2(n) (be-
cause of the two variables m and m̄), and we will just denote the quantity by gn.

3.1.1 Faà di Bruno formula: a combinatorial argument

Bell polynomials are intimately connected to the Faà di Bruno formula. The for-
mer were defined in 1934 by E.T. Bell in [97], but their name is due to Riordan [98]
who studied the Faà di Bruno formula ([99], [100]) that suggests expressing the n-th
derivative of a composite function f ◦ g in terms of the derivatives of f and g [101].

Consider two functions f and g such that f , g : R → R that admits n deriva-
tives. The Faà di Bruno formula enumerates the terms in the expansion of the n-th
derivative

dn

dxn f (g(x)) = ( f ◦ g)(n) (x). (3.6)

The computation of the derivative can be done using on one hand the chain rule for
derivation of a composition of functions, and on the other hand the rule for products
for deriving the product of functions, where the result is a sum of monomials.

The calculation of the n-th derivative applies both rules many times, and up to
third order, can be summarized in the beautiful tree of derivatives in Fig. 3.1.

In summary, the derivative is always the sum of several monomials of shape

a f (k) (g(x)) g′(x)b1 · · · g(j)(x)bj , (3.7)

with the proper integer coefficients a, k, j, b1, · · · , bj. Because the Faà di Bruno for-
mula enumerates such monomials, it can be considered from a combinatorial per-
spective. For that, we first introduce the Bell polynomials, which are very useful in
the study of set partitions. The partition {1} can be associated to the monomial x1.
The set {1} has only one partition, so one can define the term B1,1(x1) = x1. The
set {1,2} has two partitions {1,2} and {1},{2}, the former with one block and the latter
with two blocks. In this case, we can associate to these sets the monomials x2 and x2

1
respectively, such that B2,1(x1, x2) = x2 and B2,2(x1) = x2

1.
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( f ◦ g)′′′(x) =
(

f ′′ (g(x)) g′(x)2)′ + ( f ′ (g(x)) g′′(x))′

= ( f ′′ (g(x)))′ g′(x)2 +2 f ′′ (g(x)) g′(x)g′′(x) + ( f ′ (g(x)))′ g′′(x) + f ′ (g(x)) g′′′(x)

= f ′′′ (g(x)) g′(x)g′(x)2 +2 f ′′ (g(x)) g′(x)g′′(x) + f ′′ (g(x)) g′(x)g′′(x) + f ′ (g(x)) g′′′(x)

= f ′′′ (g(x)) g′(x)g′(x)2 +3 f ′′ (g(x)) g′(x)g′′(x) + f ′ (g(x)) g′′′(x)

Product Chain

FIGURE 3.1: Tree of derivatives

The set {1,2,3} has five partitions. Three partitions with two blocks, namely
{1,2},{3}, {1,3},{2}, and {1,2},{3} are associated with the monomial x1x2 such that B3,2(x1, x2) =
3x1x2. One partition with three blocks, i.e {1},{2},{3} is associated with x1 such that
B3,3(x1) = x3

1. The other partition is {1,2,3} associated to x3, for which B3,1(x1, x2, x3) =
x3. The general rule is given by

Bn,k(x1, x2, . . . , xn−k+1) =
1
k! ∑

j1+···+jk=n,ji≥1

(
n

j1, . . . , jk

)
xj1 · · · xjk , (3.8)

with

(
n

j1, . . . , jk

)
=

n!
j1!j2! · · · jk!

, (3.9)

and B0,0(x1) = 1. What this means is that the sum is over set partitions of {1, 2, . . . , n}
with block sizes j1, . . . , jk with the factor 1/k! making the correction for the multiple
counting in the sum. The number of variables necessary is n− k + 1 as no block can
take more than n− k + 1 elements. The terms Bn,k in Eq. (3.8) are called partial Bell
polynomials. The polynomial considered by E.T. Bell [97] are

Yn = Yn(x1, x2, . . . , xn) =
n

∑
k=0

Bn,k(x1, x2, . . . , xn−k+1). (3.10)

Eq. (3.10) is known as the complete Bell polynomial. At level three for instance,
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Y3 = Y3(x1, x2, x3) = B3,1 + B3,2 + B3,3 = x3 + 3x1x2 + x3
1. (3.11)

In a similar way, one can associate set partitions to derivatives of composite func-
tions. {1} will be associated to f ′ (g(x)) · g′(x) for instance. At the next level, the
partitions of {1,2} and {1},{2} correspond to f ′ (g(x)) g′′(x) and f ′′ (g(x)) g′(x)2 re-
spectively, and so on. So, we see that to each partition of {1, 2, . . . , n} with k blocks
corresponds a term dn f (g(x)) /dxn, with the factor f (k) (g(x)), where the block sizes
determine its other factors (the derivatives of g).

The result of all this is the set partition version of the Faà di Bruno formula given
by

dn

dxn f (g(x)) = ∑ f (k) (g(x))
(

g′(x)
)b1
(

g′′(x)
)b2 · · · (gn(x))bn , (3.12)

where the sum is over all partitions of {1, 2, . . . , n}, and for each partition, k is its
number of blocks and bi is the number of block with exactly i elements. An immedi-
ate corollary of this is the Bell polynomial version of the Faà di Bruno formula that
takes the form

dn

dxn f (g(x)) =
n

∑
k=0

f (k) (g(x)) Bn,k

(
g′(x), g′′(x), · · · , gn−k+1(x)

)
. (3.13)

It turns out that the study of n-th derivative of a composite function simply reduces
to the study of Bell polynomials. These polynomials find applications in combina-
torics, number theory, analysis, probability, algebra, etc . . .. We will limit ourselves
to their application in multipartite partition problems. [96].

3.1.2 Bell polynomials

Useful recurrence relations for the Bell polynomials Yn(g1, g2, . . . , gn) and their gen-
erating function G(z) have the form [96]

Yn+1(g1, g2, . . . , gn+1) =
n

∑
k=0

(
n
k

)
Yn−k(g1, g2, . . . , gn−k)gk+1, (3.14)

and

G(z) =
∞

∑
n=0

Ynzn

n!
⇒ logG(z) =

∞

∑
n=0

gnzn

n!
. (3.15)

The term gn in Eq. (3.15) expresses the monomials g1, g2, . . . , gn that constitute the
complete Bell polynomials Yn(g1, g2, . . . , gn). Those were labelled x1, x2, . . . , xn in the
general discussion leading to Eq. (3.10).

From Eq. (3.15), one obtains the following explicit expression for the Bell poly-
nomials
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Yn(g1, g2, . . . , gn) = ∑
~k`n

n!
k1! · · · kn!

n

∏
j=1

(
gj

j!

)k j

. (3.16)

We refer the reader to Appendix A for a discussion on the partition notation and the
meaning of~k ` n.

3.1.3 Specialization

We apply the results of the previous subsections to show that ZTMG can be rewritten
as (exponential) generating function of Bell polynomials. We start by rewriting eq.
(2.55) as

ZTMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

∞

∏
m=0

∞

∏̄
m=0

1
1− q2qmq̄m̄ , (3.17)

and we see that we have just specialized z to be q2. Then, if we write

ZTMG = A(q, q̄)B(q, q̄), (3.18)

with

A(q, q̄) =
∞

∏
n=2

1
|1− qn|2 ; B(q, q̄) =

∞

∏
m=0

∞

∏̄
m=0

1
1− q2qmq̄m̄ , (3.19)

and we focus on B(q, q̄), it follows that

logB(q, q̄) = − ∑
m≥0,m̄≥0

log
(
1− q2qmqm̄) (3.20a)

= − ∑
m≥0,m̄≥0

(
−

∞

∑
n=1

(q2)n

n
qnmq̄nm̄

)
(3.20b)

= ∑
m≥0,m̄≥0

∞

∑
n=1

q2n

n
qnmq̄nm̄ (3.20c)

=
∞

∑
n=1

q2n

n

(
∑

m≥0,m̄≥0
qnmq̄nm̄

)
(3.20d)

=
∞

∑
n=1

q2n

n!

[
(n− 1)! ∑

m≥0,m̄≥0
qnmq̄nm̄

]
. (3.20e)

Now, if we write

gn = (n− 1)! ∑
m≥0,m̄≥0

qnmq̄nm̄, (3.21)

it is easy to see that logB(q, q̄) becomes
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logB(q, q̄) =
∞

∑
n=1

q2n

n!
gn. (3.22)

Hence, in the present case, Eq. (3.21) gives the monomials of the complete Bell poly-
nomials Yn. According to Eq. (3.15), for the expression of gn given in Eq. (3.21), we
have the corresponding expression in terms of the complete Bell polynomials Yn

B(q, q̄) =
∞

∑
n=0

Yn

n!
q2n. (3.23)

Finally, we have

ZTMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

∞

∑
n=0

(
∑
~k`n

n!
k1! · · · kn!

( g1

1!

)k1
· · ·
( gn

n!

)kn

)
q2n. (3.24)

Let us see how this works. If we focus on B(q, q̄), and referring to Appendix A, we
can write

B(q, q̄) =
1
0!

Y0
(
q2)0

+
1
1!

Y1
(
q2)1

+
1
2!

Y2
(
q2)2

+
1
3!

Y3
(
q2)3

+ . . . (3.25a)

= 1 + Y1
(
q2)+ 1

2!
Y2
(
q2)2

+
1
3!

Y3
(
q2)3

+ . . . , (3.25b)

with [98]

Y1 = g1 = ∑
m≥0

∑̄
m≥0

qmq̄m̄, (3.26a)

Y2 = g2
1 + g2 (3.26b)

=

(
∑

m≥0
∑̄

m≥0
qmq̄m̄

)2

+ ∑
m≥0

∑̄
m≥0

q2mq̄2m̄ (3.26c)

= ∑
m≥0

∑̄
m≥0

(m + 1)(m̄ + 1)qmq̄m̄ + ∑
m≥0

∑̄
m≥0

q2mq̄2m̄, (3.26d)

Y3 = g3
1 + 3g1g2 + g3 (3.26e)

=

(
∑

m≥0
∑̄

m≥0
qmq̄m̄

)3

+ 3

(
∑

m≥0
∑̄

m≥0
qmq̄m̄

)(
∑

m≥0
∑̄

m≥0
q2mq̄2m̄

)
(3.26f)

+ 2 ∑
m≥0

∑̄
m≥0

q3mq̄3m̄,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Then, we get the following expression for ZTMG

ZTMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

[
1 +

g1

1!
q2 +

g2
1 + g2

2!
(
q2)2

+
g3

1 + 3g1g2 + g3

3!
(
q2)3

+ · · ·
]

.

(3.27)



3.1. Multipartite generating functions 51

A straightforward calculation of the above equation allows us to verify that the co-
efficients of the different representations match the ones in [39].

3.1.4 Bell polynomial expansion as a multi-particle generating function

In this section we would like to give an interpretation of the combinatorial results
obtained. In particular, we would like to suggest that in the expansion B(q, q̄), while
the terms (q2)n represent single particle and multiparticle highest weights (of states
t and t⊗n t respectively), the terms Yn for n ≥ 1 are in fact character representations
of descendants of single particles t when n = 1, and of multiparticles t⊗n t for n ≥ 2.

We start by recalling the well known identity for geometric sums

∞

∑
n=0

qn =
1

1− q
. (3.28)

From the above equation, it is easy to see that

gn = (n− 1)! ∑
m≥0,m̄≥0

qnmq̄nm̄ (3.29a)

= (n− 1)!

(
∞

∑
m=0

(qn)m

)(
∞

∑̄
m=0

(q̄n)m̄

)
(3.29b)

= (n− 1)!
(

1
1− qn

)(
1

1− q̄n

)
(3.29c)

= (n− 1)!
1

|1− qn|2 (3.29d)

This allows us to rewrite Equation (3.27) up to third order in the expansion of
(
q2)

as

ZLCFT(q, q̄) =
∞

∏
n=2

1
|1− qn|2

{
1 +

(
q2)1

|1− q|2 +
1
2!

[(
1

|1− q|2

)2

+
1

|1− q2|2

] (
q2)2

+
1
3!

[(
1

|1− q|2

)3

+ 3
1

|1− q|2
1

|1− q2|2 +
2

|1− q3|2

] (
q2)3

+ · · ·
}

(3.30)

One can immediately see that the first two terms in the above expansion are identical
to the ones in [39]. Besides, it is known that [102]

j

∏
i=1

1
1− qi (3.31)

is also the partition function of j bosonic one-dimensional harmonic oscillators. Hence,
one can think of B(q, q̄) as a character generating function of single particles when
n = 1 and multiparticles when n ≥ 2.
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3.2 Counting of the single particle states

We start by rewritting ZTMG as

ZTMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2 (3.32a)

+
∞

∏
n=2

1
|1− qn|2

[
g1

1!
q2 +

g2
1 + g2

2!
(
q2)2

+
g3

1 + 3g1g2 + g3

3!
(
q2)3

+ · · ·
]

= A(q, q̄) +A(q, q̄) · C(q, q̄), (3.32b)

where

C(q, q̄) =
g1

1!
q2 +

g2
1 + g2

2!
(
q2)2

+
g3

1 + 3g1g2 + g3

3!
(
q2)3

+ · · · (3.33)

From the expansion C(q, q̄), it is possible to write down an explicit counting of the
single- and multi-particle states. For now, we restrict ourselves to the single particle
sector of the expansion of C(q, q̄), leaving the multi-particle sector for the next sec-
tion. The single particle sector can be expressed in orders of conformal dimension
(h + h̄) as

Y1q2 = g1q2 = q2 (3.34a)

+ (q3 + q2q̄1) (3.34b)

+ (q4 + q3q̄1 + q2q̄2) (3.34c)

+ (q5 + q4q̄1 + q3q̄2 + q2q̄2) (3.34d)

+ (q6 + q5q̄1 + q4q̄2 + q3q̄3 + q2q̄4) (3.34e)
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.34f)

The above expansion can be identified as the following tower of states, again orga-
nized in levels of conformal dimension

|t〉
L−1 |t〉 L̄−1 |t〉

L2
−1 |t〉 L−1 L̄−1 |t〉 L̄2

−1 |t〉
L3
−1 |t〉 L2

−1 L̄−1 |t〉 L−1 L̄2
−1 |t〉 L̄3

−1 |t〉
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

This is in perfect agreement with the results that already are in the literature, as it
was found in [35] that descendants of the logarithmic partner are obtained by acting
with Ln

−1 L̄m
−1, n, m ≥ 0.

3.3 Construction of the multi-particle states

Here, we would like to show how the multi-particle states are constructed from the
coefficients obtained by the Bell polynomial generating function. Before taking care
of the specific 2-particle case, we first briefly introduce the notion of Hopf algebras.
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3.3.1 Hopf algebras

Let A be an associative complex algebra with unit element 1. Then, for all a, b ∈ A
and all complex numbers z, the following maps can be defined

(i) Multiplication map: f (a⊗ b) = ab,

(ii) Unitality map: g(z) = z1,

(iii) Identical map: id(a) = a.

Using linear extensions, the following algebra morphisms can be written

f : A⊗A 7→ A, g : C 7→ A, id:A → A. (3.35)

The above canonical morphisms of the algebra A have the following properties

(A) Associativity: f ( f ⊗ id) = f (id⊗ f ),

(U) Unitality: f (g⊗ id) = f (id⊗ g) = id.

This can be proved quite easily. Relation (A) follows from the associative law a(bc) =
(ab)c for all a, b, c ∈ A. Actually

f (id⊗ f )(a⊗ b⊗ c) = f (a⊗ f (b⊗ c)) = f (a⊗ bc) = a(bc). (3.36)

Similarly f ( f ⊗ id)(a⊗ b⊗ c) = (ab)c, which proves (A). Relation (U) follows from

f (g⊗ id)(1⊗ a) = f (g(1)⊗ a) = f (1⊗ a) = 1a = a (3.37)

Similarly, f (id⊗ g)(a⊗ 1) = a1 = a. Relation (U) is then proved if we identify a⊗ 1
and 1⊗ a with a. This corresponds to the isomorphisms A⊗C = A = C⊗A.

The relations (A) and (U) can be dualized by replacing the symbols f and g by ∆
and ε respectively, and by commuting the factors. The resulting dual relations read

(CA) Coassociativity: (id⊗ ∆)∆ = (∆⊗ id)∆,

(CU) Counitality: (id⊗ ε)∆ = (ε⊗ id)∆ = id.

Let us consider an associative unital complex algebra A. This algebra is called com-
plex bialgebra iff there exist two algebra morphisms

(i) ∆ : A → A⊗A (coproduct),

(ii) ε : A → C (counit),

satisfying the relations (CA) and (CU). The complex bialgebra is called a Hopf alge-
bra iff there exists a linear map S : A → A such that

f (S⊗ id)∆ = f (id⊗ S)∆ = gε. (3.38)
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It is a standard procedure to make use of the so-called Sweedler notation when it
comes to carrying out concrete computations. For all a ∈ A, the coproduct ∆a is con-
tained in the tensor productA⊗A. Therefore, there are elements a1, . . . , an, b1, . . . bn
such that

∆a =
n

∑
k=1

ak ⊗ bk. (3.39)

Using Sweedler notation, one can write Eq. (3.39) as

∆a = ∑
a

a(1) ⊗ a(2). (3.40)

For all a, b ∈ A, one can further write

∆a∆b = ∆(ab), ∆1 = 1⊗ 1. (3.41)

We close this subsection by making the distinction between two coproducts. When
A is a Lie algebra type, the coproduct of the Hopf algebra reads

∆a = a⊗ 1 + 1⊗ a, (3.42)

and is often called a primitive coproduct. When A is a group algebra, the coproduct
of the Hopf algebra reads

∆a = a⊗ a, (3.43)

and is usually called a group-like coproduct.

3.3.2 Constrution of 2-particles states

We first consider the 2-particle highest weight state |t〉 ⊗ |t〉, and its descendants.
The counting of these states is in C(q, q̄) (Eq. 3.33) as

g2
1 + g2

2!
(
q2)2

. (3.44)

This gives the following counting organization in levels of conformal dimension

1
2!

Y2
(
q2)2

=
g2

1 + g2

2!
(
q2)2

= q4 (3.45a)

+ (q5 + q4q̄1) (3.45b)

+ (2q6 + 2q5q̄1 + 2q4q̄2) (3.45c)

+ (2q7 + 3q6q̄1 + 3q5q̄2 + 2q4q̄3) (3.45d)
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.45e)
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We now want to show how the corresponding states built upon |t〉 ⊗ |t〉 are con-
structed. In what follows, we will see that the standard use of primitive coproducts
expected to construct the multi-particle states does not work. In order to obtain the
correct construction of the states, we have to use a special type of coproducts called
half-coproducts. Such objects are typical of Hopf algebroids and quantum groupoids
[103, 104], which are generalizations of Hopf algebras. They are defined as

∆L(x) = x⊗ 1; ∆R(x) = 1⊗ x, (3.46)

where ∆L(x) is the left co-product, and ∆R(x) is the right co-product. Starting from
the lowest descendant levels, we first consider the only state counted by q5. It could
be constructed using the left half coproduct as

∆L(L−1)(|t〉 ⊗ |t〉) = (L−1 ⊗ 1)(|t〉 ⊗ |t〉) = L−1 |t〉 ⊗ |t〉 , (3.47)

or using the right half coproduct as

∆R(L−1)(|t〉 ⊗ |t〉) = (1⊗ L−1)(|t〉 ⊗ |t〉) = |t〉 ⊗ L−1 |t〉 , (3.48)

since the tensor product is between indistinguishable particles. In order to preserve
the symmetrization of identical particles, we write the state as

(
∆L(L−1) + ∆R(L−1)

2

)
(|t〉 ⊗ |t〉) = L−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L−1 |t〉

2
. (3.49)

In the same way, the state counted by q4q̄1 looks like

(
∆L(L̄−1) + ∆R(L̄−1)

2

)
(|t〉 ⊗ |t〉) = L̄−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L̄−1 |t〉

2
. (3.50)

We now move to the two states counted by q5q̄1. The multiplication of coproducts
for ∆(L−1 L̄−1) gives many options

∆L(L−1)∆L(L̄−1) = (L−1 ⊗ 1)(L̄−1 ⊗ 1) = L−1 L̄−1 ⊗ 1 (3.51a)

∆R(L−1)∆R(L̄−1) = (1⊗ L−1)(1⊗ L̄−1) = 1⊗ L−1 L̄−1 (3.51b)

∆L(L−1)∆R(L̄−1) = (L−1 ⊗ 1)(1⊗ L̄−1) = L−1 ⊗ L̄−1 (3.51c)

∆L(L̄−1)∆R(L−1) = (L̄−1 ⊗ 1)(1⊗ L−1) = L̄−1 ⊗ L−1. (3.51d)

Clearly from the possible combinations, with respect to symmetrization of iden-
tical particles, the two states are

(
∆L(L−1 L̄−1) + ∆R(L−1 L̄−1)

2

)
(|t〉 ⊗ |t〉) =

L−1 L̄−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L−1 L̄−1 |t〉
2

, (3.52)

and
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(
∆L(L−1)∆R(L̄−1) + ∆L(L̄−1)∆R(L−1)

2

)
(|t〉 ⊗ |t〉) =

L−1 |t〉 ⊗ L̄−1 |t〉+ L̄−1 |t〉 ⊗ L−1 |t〉
2

. (3.53)

Looking at the last example, we can see that the classical structure of a Lie (primitive)
coproduct ∆(x) = x⊗ 1 + 1⊗ x would spoil the counting for x = L1 or x = L−1, as
the expression of ∆(L−1 L̄−1) is different from the one obtained above (basically the
four coproducts in Eqs. (3.51)) would give us one state instead of the two obtained).
Another example is the two states counted by q6q̄0. In analogy with the above expo-
sition, one of the states is

(
∆L(L2

−1) + ∆R(L2
−1)

2

)
(|t〉 ⊗ |t〉) =

L2
−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L2

−1 |t〉
2

. (3.54)

The other state is L−1 |t〉 ⊗ L−1 |t〉, which requires the need of the grouplike coprod-
uct. A list of states constructed in the same way up to counting multiplicity for the
2- and 3-particle states of the LCFT dual to CCTMG, and for the 2-particle states of
the LCFT dual to CCNMG appears in Appendices B, C and D respectively.

3.4 Full log-spectrum in holographic LCFT

In this section, we consider the full spectrum of logarithmic states, i.e the states cre-
ated from combinations involving modes L−n with n ≥ 1. At the level of the parti-
tion function, this means multiplying the prefactor

∞

∏
n=2

q2

|1− qn|2 , (3.55)

into the expansion C(q, q̄).

3.4.1 Single particle sector

As far as the single particle sector is concerned, from the sub-partition function given
as

∞

∏
n=1

q2

|1− q|2 , (3.56)

all holomorphic, anti-holomorphic and mixed descendant states appear trivially.

3.4.2 Multi particle sector

When it comes to multi particle states, one could ask whether the formalism exposed
in section 3.3 holds. This turns not to be the case, and such modes can only work in
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a classical Lie algebra scenario with a coproduct of the type ∆(x) = x ⊗ 1 + 1⊗ x,
according to the counting of the partition function. In the case of 2-particles

∞

∏
n=2

q2

|1− qn|2

[
1
2!

Y2
(
q2)2

]
=

∞

∏
n=2

q2

|1− qn|2

[
g2

1 + g2

2!
(
q2)2

]
(3.57a)

= q4 (3.57b)

+ (q5 + q4q̄1) (3.57c)

+ (3q6 + 2q5q̄1 + 3q4q̄2) (3.57d)

+ (4q7 + 4q6q̄1 + 4q5q̄2 + 4q4q̄3) (3.57e)
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.57f)

If we consider the four 2-particle states counted by q7q̄0, the first three states are

(
∆L(L3

−1) + ∆R(L3
−1)

2

)
(|t〉 ⊗ |t〉) =

L3
−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L3

−1 |t〉
2

, (3.58)

(
∆L(L2

−1)∆
R(L−1) + ∆L(L−1)∆R(L2

−1)

2

)
(|t〉 ⊗ |t〉) =

L2
−1 |t〉 ⊗ L−1 |t〉+ L−1 |t〉 ⊗ L2

−1 |t〉
2

, (3.59)

and using the classical primitive like element

∆L−3(|t〉 ⊗ |t〉) =
1
2
(L−3 ⊗ 1 + 1⊗ L−3) (|t〉 ⊗ |t〉) (3.60a)

=
1
2
(L−3 |t〉 ⊗ |t〉+ |t〉 ⊗ L−3 |t〉). (3.60b)

Then, the fourth state being a combination of L−1 and L−2 modes, the result is

(∆L−2)(∆L−1)(|t〉 ⊗ |t〉) =
1
2
(L−2 |t〉 ⊗ |t〉+ |t〉 ⊗ L−2 |t〉)×

1
2
(L−1 |t〉 ⊗ |t〉+ |t〉 ⊗ L−1 |t〉) =

L−1L−2 |t〉 ⊗ |t〉+ L−1 |t〉 ⊗ L−2 |t〉+ L−2 |t〉 ⊗ L−1 |t〉+ |t〉 ⊗ L−1L−2 |t〉
4

.

(3.61)

Similarly, when considering the space of states outside C(q, q̄), there is one more
state counted by q4q̄2 than the two states constructed in section 5, which is

L−1 L̄−2 |t〉 ⊗ |t〉+ L−1 |t〉 ⊗ L̄−2 |t〉+ L̄−2 |t〉 ⊗ L−1 |t〉+ |t〉 ⊗ L−1 L̄−2 |t〉
4

. (3.62)

The same prescription can be applied to n-particles.
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3.5 Generalization to new massive and higher spin topolog-
ical critical massive gravities

In this section, we generalize the above results to New Massive Gravity and Topo-
logically Massive Spin-3 Gravity at the critical point.

3.5.1 Partition function of Critical New Massive Gravity

New Massive Gravity (NMG) is a recently discovered three-dimensional theory of
gravity that propagates massive positive-energy spin 2 modes of helicities ±2 in a
Minkowski vacuum [105, 106]. Thanks to properties such as super-renormalizability
[107], it has been regarded as a promising candidate for a fully consistent three-
dimensional theory of quantum gravity with massive gravitons.

At the critical point, while TMG has a logarithmic behaviour on the left-hand
sector, in NMG, both left-hand and right-hand sectors are logarithmic. Furthermore,
in the case of NMG, cL = cR = 0 and bL = bR = −12l

GN
.

The partition function of NMG at the critical point was obtained in [39], and
given the form

ZNMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄

∞

∏
l=0

∞

∏̄
l=2

1
1− ql q̄l̄

(3.63)

It was then compared to the partition function of the dual LCFT, with the following
single-particle match

Z(0)NMGLCFT(q, q̄) = ZΩ + Zt (3.64a)

=
∞

∏
n=2

1
|1− qn|2

(
1 +

q2 + q̄2

|1− q|2

)
. (3.64b)

Following the derivation obtained for ZTMG in the previous section, in the case of
ZNMG, we have

ZNMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

∞

∏
m=0

∞

∏̄
m=0

1
1− q2qmq̄m̄

∞

∏
l=0

∞

∏̄
l=0

1
1− q̄2ql q̄l̄

(3.65a)

= A(q, q̄) · B(q, q̄) · B̄(q, q̄). (3.65b)

Using the Bell polynomial prescription, Eq. (3.65) can be expressed as

ZNMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

(
∞

∑
j=0

Yj

j!
(
q2)j

)(
∞

∑
k=0

Yk

k!
(
q̄2)k

)
. (3.66)

The equation above can be rewritten in a binomial-type form as

ZNMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

[
∞

∑
k=0

k

∑
j=0

(
Yj

j!

)(
Yk−j

(k− j)!

)
(q2)j(q̄2)k−j

]
. (3.67)
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3.5.2 Partition function of Critical Topologically Massive Spin-3 Gravity

In [108], topologically massive gravity was generalized to higher spins, with a spe-
cial attention given to spin-3, and in [109], the 1-loop partition function for topolog-
ically massive higher spin gravity (TMHSG) for arbitrary spin was calculated, and
given the closed form

Z(s)
TMHSG =

N

∏
s=2

[
∞

∏
n=s

1
|1− qn|2

∞

∏
m=0

∞

∏̄
m=0

1
1− qmq̄m̄

]
×

 N

∏
s=3

s−1

∏
t=2

∞

∏
p=r(s,t)

∞

∏
p̄=k(s,t)

1
1− qpq̄ p̄

 ,

(3.68)

with

k(s, m) =
s(s− 1)− (s−m + 1)(s−m− 1)

2(s−m)
, r(s, m) = k(s, m) + s−m. (3.69)

In deriving the above expression, the contribution to the full partition function from
an arbitrary spin-s field at the chiral point was found to be

Z(s) =
∞

∏
n=s

1
|1− qn|2

∞

∏
m=0

∞

∏̄
m=0

1
1− qmq̄m̄

s−1

∏
t=2

∞

∏
p=r(s,t)

∞

∏
p̄=k(s,t)

1
1− qpq̄ p̄ . (3.70)

In the case of a spin-3 field added, the partition function then takes the form

Z(3)
TMHSG(q, q̄) =

∞

∏
n=2

1
|1− qn|2

∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄

×
[

∞

∏
n=3

1
|1− qn|2

∞

∏
l=3

∞

∏̄
l=0

1
1− ql q̄l̄

∞

∏
k=4

∞

∏̄
k=3

1
1− qk q̄k̄

]
.

(3.71)

Before writing the expression of Z(3)
TMHSG in terms of Bell polynomials, we first note

that quite interestingly, starting from an expression coming from gravity on the left-
hand side, one has an expression that features W-algebra characters on the right-
hand side. Indeed

Z(3)
TMHSG(q, q̄) =

{
∞

∏
n=2

1
|1− qn|2

∞

∏
n=3

1
|1− qn|2

}
∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄

×
[

∞

∏
l=3

∞

∏̄
l=0

1
1− ql q̄l̄

∞

∏
k=4

∞

∏̄
k=3

1
1− qk q̄k̄

]
(3.72a)

= χ0(W3)× χ̄0(W3)
∞

∏
m=2

∞

∏̄
m=0

1
1− qmq̄m̄

×
[

∞

∏
l=3

∞

∏̄
l=0

1
1− ql q̄l̄

∞

∏
k=4

∞

∏̄
k=3

1
1− qk q̄k̄

]
, (3.72b)
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where χ0(W3) and χ̄0(W3) are the holomorphic and antiholomorphic vacuum char-
acters of the W3-algebra.
In terms of Bell polynomial expansions, the above partition function then reads

Z(3)
TMHSG(q, q̄) = χ0(W3)× χ̄0(W3)

(
∞

∑
j=0

Yj

j!
(
q2)j

)

×
(

∞

∑
k=0

Yk

k!
(
q3)k

)(
∞

∑
l=0

Yl

l!

(
q4q̄3

)l
)

. (3.73)

The interpretation and counting of the states leading to the first and second square
brackets in the above expression is very similar to that discussed for TMG: the n-
th term in the first bracket corresponds to states built upon t⊗n t, the n-th term in
the second bracket corresponds to n-particle states of w, the logarithmic partner of
W , while the mixed terms will be counted similarly to the NMG case above. The
counting that leads to the third bracket is less clear, and as mentioned in [109] this
term arises from the trace part of the spin-3 field.

In conclusion to this chapter, we have shown that the Bell polynomial recasting
of the partition function is applicable not only to TMG, but to many other critical
gravities. In the next chapter, we show that the Bell polynomials expansion can be
rewritten as the Plethystic Exponential.
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Chapter 4

Connections to the Plethystic
Exponential

In this chapter, We would like to draw a parallel between our work and results com-
ing from the Plethystic Program initiated in [102] and [110]. Before we make the con-
nection explicit, we first briefly discuss what plethysm means, and how it relates to
the Bell polynomials.

4.1 Plethysm of exponential functions

The term plethysm originates from the work of Littlewood in 1936 [111] who intro-
duced it as an operation. Also called substitution or composition, plethysm has been
widely used in combinatorics, group theory or invariant theory, and has played a
fundamental role in physics when one applies the theory of group representation
[112, 113, 114]. Considering the operation of composition for symmetric functions,
if one takes f and g to be symmetric functions, the plethysm of f and g is denoted
f [g] or f ◦ g.

As an application of plethysm, it can be shown that B (q, q̄) is a composition of
functions. Indeed, let us consider a function g such that

g (q) =
∞

∑
n=1

gn

n!
qn, (4.1)

and the exponential function

h(q) = exp{q}. (4.2)

Then the composition f = h ◦ g yields

f (q) = exp

{
∞

∑
n=1

gn

n!
qn

}
. (4.3)
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Up to order 3, the exponential function can be expanded in the following way

f (q) = e(g1q+ 1
2 g2q2+ 1

6 g3q3+··· ) (4.4a)

= e(g1q) · e(
1
2 g2q2) · e(

1
6 g3q3) · · · (4.4b)

=

(
1 + g1q +

1
2

g2
1q2 +

1
6

g3
1q3 + · · ·

)(
1 +

1
2

g2q2 + · · ·
)(

1 +
1
6

g3q3 + · · ·
)
· · ·

= 1 + g1q +
1
2
(

g2 + g2
1
)

q2 +
1
6
(

g3 + 3g1g2 + g3
1
)

q3 + · · · (4.4c)

If now we take gn = (n− 1)! 1
|1−q|2 , it is easy to see that f (q, q̄) = B (q, q̄). This shows

the relationship between the plethysm of exponential functions and Bell polynomi-
als.

4.2 Plethystic exponential and Bell polynomials

A method of counting operators from generating functions was proposed in [102].
An essential ingredient in that program was the so-called Plethystic Exponential, used
to get the generating function of multi-trace operators from the generating func-
tion of single-trace operators at large N. Under the name of Plethystic Program, this
method of counting found many applications (see for instance [115] [116] [117] [118]
[119] [120] [121] [122] and references therein).

In particular, we recall the bosonic Plethystic function [123]

∞

∏
n=0

1
(1− νqn)an

= PEB [G1(q)] ≡ exp

(
∞

∑
k=1

νk

k
G1

(
qk
))

=
∞

∑
N=0

νNGN(q), (4.5)

with

G1(q) =
∞

∑
n=0

anqn, (4.6)

where the integer an indicates the number of operators with dimension n. The rela-
tion between Eqs. (4.5) and (4.6) can be explained following [102] as follows. Let

G1(q) =
∞

∑
n=0

anqn (4.7)

be a Taylor expansion, where an is the number of independent variables q of degree
n. By definition [102]

PEB [G1(q)] := exp

(
∞

∑
k=1

G1
(
qk)− G1 (0)

k

)
. (4.8)
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By series-expansion, it yields

PEB [G1(q)] = exp

(
∞

∑
n=0

an

∞

∑
k=0

qnk

k
− a0

∞

∑
k=0

1
k

)
(4.9a)

= exp

(
−

∞

∑
n=0

an log (1− qn)− a0

∞

∑
k=0

1
k

)
(4.9b)

= exp

(
−

∞

∑
n=1

an log (1− qn)

)
(4.9c)

=
1

∏∞
n=1 (1− qn)an

. (4.9d)

In addition, introducing one more variable ν to be inserted into the summand such
that upon expansion, the power of ν counts the number of single-trace functions,
one recovers Eq. (4.5).

As explained in [123], the above function takes a certain function G1(q) and gen-
erates new partition functions GN(q) counting all possible N times symmetric prod-
ucts of the constitutents of g1(q), implementing in this way the bosonic statistics.
Depending on what is being counted, the variable ν is sometimes referred to as root
coordinates, fugacities or monomials in weight [120].

In [102], it is mentioned that the Plethystic Exponential in one variable q can be
generalized by considering a set of variables qi, such that

∞

∏
p1,...,pm

1(
1− νqp1

1 · · · q
pm
m
)ap1,...,pm

= PEB [G1 (q1, . . . , qm)] (4.10a)

≡ exp

(
∞

∑
k=1

νk

k
G1

(
qk

1, . . . , qk
m

))
(4.10b)

=
∞

∑
N=0

νNGN(q1, . . . , qm), (4.10c)

with:

G1(q1, . . . , qm) =
∞

∑
p1,...,pm=0

ap1,...,pm qp1
1 · · · q

pm
m . (4.11)

We want to show that in the case of two variables, our results would be the same
using the Plethystic Exponential prescription. Starting with the following special-
ization

ap1,p2 = 1 (4.12a)
q1 = q (4.12b)
q2 = q̄ (4.12c)
p1 = m (4.12d)
p2 = m̄ (4.12e)

ν = q2, (4.12f)
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we immediately recover the double product B (q, q̄). In our case, the term ν is spe-
cialized to be a monomial in weight. Then, taking:

G1(q, q̄) =
∞

∑
m≥0,m̄≥0

qmq̄m̄, (4.13)

The plethystic exponential of G1(q, q̄) is then

PEB [G1(q, q̄)] = exp

(
∞

∑
k=1

(
q2)k

k
G1

(
qk, q̄k

))
(4.14)

Expanding the exponential in the RHS gives a series in powers of q2:

B (q, q̄) = PEB [G1(q, q̄)] (4.15a)

= 1 + G1(q, q̄)
(
q2)+ G2

1(q, q̄) + G1
(
q2, q̄2)

2
(
q2)2

(4.15b)

+
G3

1(q, q̄) + 3G1(q, q̄)G1
(
q2, q̄2)+ 2G1

(
q3, q̄3)

6
(
q2)3

(4.15c)

+
G4

1(q, q̄) + 6G2
1(q, q̄)G1

(
q2, q̄2)+ 3G2

1

(
q2, q̄2)+ 8G1(q, q̄)G1

(
q3, q̄3)+ 6G1

(
q4, q̄4)

24
(
q2)4

+ · · · (4.15d)

Finally, it is easy to see that the coefficients of
(
q2)N are equal to the Bell polynomials

at each order, by using the identification:

(k− 1)!G1

(
qk, q̄k

)
= gk (q, q̄) . (4.16)

From the above derivation, the Plethystic Program ascertains us that we have re-
organized ZLCFT in a way that clearly shows the single particle and multi particle
Hilbert spaces of t.

We close this chapter by mentioning that the similarity between our method and
the one of the Plethystic Program is quite normal since as we have seen, the Bell poly-
nomials expansion is a result of plethysm associated with multipartite exponential
generating functions. In the next section, we will see that using Bell polynomials
allows to uncover hidden symmetry actions.
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Chapter 5

Ladder operators and sl(2) action in
the partition function of critical
TMG

In this chapter, we wish to uncover some hidden structure in the sub partition func-
tion B (q, q̄) of ZTMG, in terms of algebraic (ladder) operators acting on the Bell poly-
nomials and on the Plethystic exponential. As we shall see, these ladder operators
are the building blocks of of an sl2 algebra that acts on characters of B (q, q̄).

Before starting, we would like to give a motivation for the construction of the lad-
der operators. For that, we recall the Fock space, which comes from particle physics
as the state space for a system of variable number of elementary particles.

Fock spaces were designed as a framework to construct many-particle states.
They typically represent the state space of an indefinite number of identical parti-
cles (an electron gas, photons, etc...). These particles can be classified in two types,
bosons and fermions, and their Fock spaces look quite different. Fermionic Fock
spaces are naturally representations of a Clifford algebra, where the generators cor-
respond to adding or removing a particle in a given energy state. In a similar way,
bosonic Fock space is naturally a representation of a Weyl algebra. We will be inter-
ested on the bosonic Fock space.

In generally, a Fock space is considered on a Hilbert space, but in the simplest
case and for the purpose of our discussion, the bosonic vector space is obtained by
considering a complex vector space C. Then, the bosonic Fock space as a vector
space is essentially a space of polynomials of infinitely many variables. A typical
basis can be constructed using Schur symmetric functions. In our case, we consider
a space of Bell polynomials Yn of infinitely many variables {g1, g2, · · · , gn}.

The reason why Fock space is of interest to many people is that several impor-
tant algebras act naturally on it. In the present case of the bosonic Fock space, we
construct a combinatorial model of ladder operators that play the role of annihilation
and creation operators identical to the model of creation and annihilation of particles
in a field. We first show that these operators generate a Heisenberg-Weyl algebra that
acts on the Bell polynomials, and that they are building blocks for generators of an
sl(2) action on the polynomials. Through the correspondence established between
Bell polynomials and the plethystic exponential we show that the same applies to
the latter.
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5.1 Creation-annihilation operators acting on Bell polynomi-
als

While studying ZTMG, it was found that some ladder operators acting on Bell poly-
nomials can be constructed. From these operators, generators of an sl(2) algebra
can be built, and act on characters of B (q, q̄). In what follows,we will show how
ladder operators are constructed and how the sl(2) action appears. For that, we will
introduce the monomiality principle, which is a useful tool for studying properties of
special polynomials, such as the Bell polynomial.

5.1.1 Monomiality principle

The idea of monomiality is rooted in the early 1940s, when J.F. Steffensen, in a pa-
per [124] that only recently received attention, suggested the concept of poweroid.
A resurgence of the theory arose in the work of G. Dattoli et al, who systematically
made use of the principle [125] [126]. In essence, all polynomial families, in particu-
lar special polynomials, are identical as it suffices to transform a basic set of monomi-
als using suitable (derivative and multiplication) operators to obtain the polynomials.
This result, theoretically proved in [127] and [128], is closely related to the theory of
Umbral Calculus [129] (coined by Sylvester), since the exponent, for instance in the
monomial xn, transforms into its "shadow" in the polynomial pn(x).

Definition and general properties

Since the advent of Quantum Mechanics, the nilpotent algebra with generators P̂
and M̂ satisfying the commutation relations

[P̂, M̂] = 1, [P̂, 1] = [M̂, 1] = 0, (5.1)

has been widely used to deal with problems associated with canonical quantization.
Since then, this algebra called Heisenberg-Weyl algebra has enjoyed applications in
many areas ranging from quantum optics [126] to string theory for some discrete
models in two-dimensional theories [130], as well as (applied with the monomiality
principle), in combinatorial physics [131] [132]. As we will see, the generators of the
Heisenberg-Weyl algebra can be realized in various ways.
The monomiality principle is based on the fact that a given family of polynomials
of order n denoted pn(x), can be viewed as quasi-monomial under the action of two
operators P̂ and M̂, called "derivative" and "multiplicative" operators respectively, if
it satisfies the recurrence relations

M̂pn(x) = pn+1(x) (5.2a)

P̂pn(x) = npn−1(x) (5.2b)
pn(0) = 1. (5.2c)

These operators can immediately be seen as raising and lowering operators acting
on pn(x). As a by-product of Eqs. (5.2), the eigenproperty of operator M̂P̂ appears
as
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M̂P̂pn(x) = npn(x). (5.3)

It is interesting to note that the operators P̂ and M̂ satisfy the commutation relation

[P̂, M̂] = P̂M̂− M̂P̂ = 1, (5.4)

hence displaying a Weyl algebra structure.

5.1.2 Multivariate Bell polynomials: a special case

We now define an operator X̂ 1 as

X̂ = g1 +
∞

∑
i=1

gi+1
∂

∂gi
. (5.5)

This operator acts as a multiplication operator on the Bell polynomials in n variables
denoted in the previous section as Y(g1, g2, . . . , gn). For Yn = Y(g1, g2, . . . , gn), we
therefore have

X̂Yn = Yn+1. (5.6)

We then define a second operator D̂ as

D̂ =
∂

∂g1
, (5.7)

that acts as derivative operator on Yn

D̂Yn = nYn−1. (5.8)

Finally, the operator X̂D̂ acts on Yn as

X̂D̂Yn = nYn. (5.9)

It is straightforward to verify that the operators X̂ and D̂ are generators of the
Heisenberg-Weyl algebra. We will next show that these operators generate a sl(2)
algebra.

5.2 sl2 action on the Bell polynomials

Following [134], we write the following definition

Definition 5.2.1 Denote the basis for a standard sl2 algebra, K, by {f,e,h}, satisfying

[ f , e] = h, [h, e] = 2e, [h, f ] = −2 f . (5.10)

1This operator appears in [133]
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We write K = {f,e,h}.

The following Lemma is well-known [134]

Lemma 5.2.2 Given a Heisenberg-Weyl algebra, setting

f =
1
2

X̂2, h = X̂D̂ +
1
2

, e =
1
2

D̂2 (5.11)

yields a standard sl2 algebra.

From there, we write the following proposition.

Proposition 5.2.3 Let Y be a representation of sl2, with generators

f =
1
2

X̂2, h = X̂D̂ +
1
2

, e =
1
2

D̂2,

and Yn the multivariate Bell polynomials. If Yn ∈ Y , then

eYn =
1
2

n(n− 1)Yn−2, (5.12a)

f Yn =
1
2

Yn+2, (5.12b)

hYn =

(
n +

1
2

)
Yn. (5.12c)

One can easily verify that the sl2 generators { f , e, h} act on the Bell polynomials

[e, f ]Yn = (e f − f e)Yn (5.13a)

= e
(

1
2

Yn+2

)
− f

(
1
2

n(n− 1)
)

Yn−2 (5.13b)

=
1
4
[(n + 2)(n + 1)− n(n− 1)]Yn (5.13c)

=

(
n +

1
2

)
Yn (5.13d)

= hYn. (5.13e)

Similarly

[h, f ]Yn = (h f − f h)Yn (5.14a)

= h
(

1
2

Yn+2

)
− f

(
n +

1
2

)
Yn (5.14b)

=
1
2

(
n +

5
2

)
Yn+2 −

1
2

(
n +

1
2

)
Yn+2 (5.14c)

= 2
(

1
2

Yn+2

)
(5.14d)

= 2 f Yn, (5.14e)
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and

[e, h]Yn = (eh− he)Yn

= e
[(

n +
1
2

)
Yn

]
− h

[
1
2

n(n− 1)Yn−2

]
(5.15a)

=

(
n +

1
2

)
n(n− 1)

1
2

Yn−2 −
1
2

n(n− 1)
(

n− 2 +
1
2

)
(5.15b)

= 2
(

1
2

n(n− 1)Yn−2

)
(5.15c)

= 2eYn. (5.15d)

Pictorially, we have the following two figures
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· · ·
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FIGURE 5.1: Ladder operators acting on Y (n odd)
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FIGURE 5.2: Ladder operators acting on Y (n even)

5.3 sl(2) action in the Plethystic Exponential

In this section, we show how from the construction of new operators satisfying the
Heisenberg-Weyl algebra, a hidden sl(2) algebra can be obtained in successive terms
of the Plethystic Exponential expansion of PEB [G1(q, q̄)].

We start by establishing some notation conventions, writing the Plethystic Expo-
nential expansion as
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PEB [G1(q, q̄)] = PE(1)
(
q2)1

+
1
2!

PE(2)
(
q2)2

+
1
3!

PE(3)
(
q2)3

+ . . . , (5.16)

with

PE(1) = G1(q, q̄), (5.17a)

PE(2) = G2
1(q, q̄) + G1

(
q2, q̄2) , (5.17b)

PE(3) = G3
1(q, q̄) + 3G1(q, q̄)G1

(
q2, q̄2)+ 2G1

(
q3, q̄3) , (5.17c)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.17d)

For the sake of clarity, we also write G1
(
qk, q̄k) = G1,k.

Now, introducing the operator X̂ as

X̂ = G1,1 +
∞

∑
j=1

jG1,j+1
∂

∂G1,j
, (5.18)

it is easy to see that it acts as a multiplication operator on PE(k) such that

X̂kPE(k) = PE(k+1). (5.19)

We then define the operator D̂ as

D̂ =
∂

∂G1,1
, (5.20)

that acts as derivative operator on PE(k)

D̂PE(k) = kPE(k−1), (5.21)

and finally, the operator X̂ D̂ that acts on PE(k) as

X̂ D̂PE(k) = kPE(k). (5.22)

From there, the following set of generators

f =
1
2
X̂ 2, h = X̂ D̂ +

1
2

, e =
1
2
D̂2 (5.23)

satisfy a sl2 algebra on G1,k.
The actions on PE(k) can be represented in the quiver diagrams below.



5.3. sl(2) action in the Plethystic Exponential 71

PE(1)

h

PE(2)

h

PE(3)

h

PE(4)

h

PE(5)

h

PE(6)

h

· · ·
X̂ X̂ X̂ X̂ X̂

D̂ D̂ D̂ D̂ D̂

f1 f1 f1

e1e1e1

FIGURE 5.3: Ladder operators acting on PE(k) (k odd)
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FIGURE 5.4: Ladder operators acting on PE(k) (n even)

Interpretation

As mentioned above, and confirmed through the Plethystic Program, the space of
multi-trace representations in B (q, q̄) obtained using Bell polynomials is simply the
Fock space of a symmetrized tensor product of single-trace representations [123].
We therefore interpret the above actions as coming from operators acting between
Fock space characters. The characters of single and multi particles are all related via
the action of ladder (multiplication and derivative) operators.
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Conclusion

The AdS3/LCFT2 correspondence is an interesting duality that deserves more atten-
tion. Indeed, many checks are still lacking in order to have a more concrete picture
of the conjecture. In this thesis, we decided to investigate it from the point of view
of the dual partition functions. Indeed, since the seminal results of [39] for critical
TMG and NMG, the higher-spin generalization of [109] as well as the subsequent
works [135] and [136], little progress has been made in relating partition functions
of critical massive gravities to the one of their LCFT duals. This is in great part due
to the lack of understanding of the multiparticle sector.

Through this work, we make a step further in that understanding by explicitly
showing how ZTMG can be beautifully recast in a compact form using Bell polyno-
mials. These polynomials allow us to express at once character representations of
single and multi particles. As such, the check formulated in [137] in terms of the
combinatorics of the multi particle sector finds a positive answer.

In addition to the Bell polynomial reformulation of the partition functions of criti-
cal massive gravities, a precise relationship between the generating function of those
polynomials and the Plethystic Exponential with appropriate specialization was de-
rived. This fact is interesting given the amount of work available in the literature
when it comes to the Plethystic Exponential. This will allow interesting studies of
the logarithmic sector of the theory from algebraic geometry and group theory per-
spectives, such as the study of the moduli space of the logarithmic states and their
associated orbits.

Another result derived as a mathematical excursion is the construction of differ-
ential operators that act as ladder operators on the n-th components of the partition
function. As a result, further operators were constructed, displaying a hidden sl(2)
action within the n-th components of the partition function.

An intriguing result is that the counting needs to be performed in a two-step
process, with the combinatorics of the L−1 and L̄−1 action on the multiparticle sector
being non-standard in that it doesn’t arise from the usual Lie-algebraic coproduct
∆X = X ⊗ 1 + 1 ⊗ X. The implications of these combinatorial arguments on the
nature of the logarithmic sector merit even more scrutiny. Indeed, in retrospect,
looking at the output of this thesis and the unilateral direction taken for many years,
it is the opinion of the author that a lot of time was spent in forcefully trying to
make a direct connection between the results obtained and results on logarithmic
conformal field theory already existing in the literature. A different approach was
taken toward the end of the author’s doctoral years. Indeed, the choice was made to
look at an interpretation of the combinatorial results discussed in this thesis without
partiality towards LCFTs. It turns out from this angle that many things can be said,
and a good outlook can be given.

Further work is ongoing to show that the partition function of critical TMG re-
veals the appearance of an orbifold sector in the theory. Indeed, it is well known that
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the cycle index of the symmetric group can be expressed in terms of Bell polynomi-
als. The work done in this thesis immediately shows that what is being counted on
the logarithmic sector is states invariant under action of the symmetric group. In
fact, from the work of [138], there is a strong evidence that the sub-partition function
of the logarithmic sector is the partition function of the untwisted part of a symmet-
ric orbifold model.

Symmetric orbifold models have already been discussed in the physics litera-
ture as groupoids, with a certain Hopf algebra structure [139]. The half-coproducts
that give the correct counting of the logarithmic sector are basic quantum groupoid
objects. Quantum groupoids and Hopf algebroids are generalizations of Hopf alge-
bras. In particular, a class of quantum groupoid called Weak C∗ Hopf Algebras were
introduced by Gabriella Böhm and K. Szlachányi in [103]. In that paper the authors
mention that the simplest example for such a weak Hopf algebra can be found in
studying the Quasiquantum groups related to orbifold models constructed by Dijk-
graaf, Pasquier and Roche in [140]. This is further evidence towards the presence of
an orbifold structure in critical TMG, and its dual LCFT.

Another direction of great interest related to the previous one, is to study the
modular properties of the partition function. From the results expected above, one
would expect a mock modular form that would need completion in order to recover
"nice(r)" modular properties.

Lastly, it would be interesting to borrow the ideas in [141, 142, 143, 144], and
extend them to recent findings. In fact, the realization that the partition functions of
critical massive gravities could be recast in terms of Bell polynomials comes directly
from [141, 142]. In these papers, it is shown that multipartite generating functions
can be expressed in terms of Bell polynomials, which in turn appear in certain parti-
tion functions. These partition functions recast into infinite products eventually lead
to the construction of quantum group invariants, as well as knot and link invariants.
It would therefore be interesting to see whether our Bell polynomial log-partition
function finds a use in the construction of topological invariants.
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Appendix A

Bell Polynomials

This appendix is intended to give a succinct explanation of the Bell polynomials
formula, with a focus on the partition notation~k ` n.
In the expression

Yn(g1, g2, . . . , gn) = ∑
~k`n

n!
k1! · · · kn!

( g1

1!

)k1
( g2

2!

)k2
· · ·
( gn

n!

)kn
, (A.1)

we define~k ` n as

~k ` n = {~k = (k1, k2, . . . , kn) | k1 + 2k2 + 3k3 + · · ·+ nkn = n}. (A.2)

Let us see how this works up to order 3 in n. We actually start at order 2, since order
0 by convention gives Y0 = 1, and order 1 trivially gives Y1 = g1.
At order 2, we have two options: {k1, k2} = {2, 0} or {k1, k2} = {0, 1}. Clearly, in
the first case we have 2 = 2 + 2(0), and in the second case, 2 = 0 + 2(1). This gives:

Y2(g1, g2) =
2!

2!0!

( g1

1!

)2 ( g2

2!

)0
+

2!
0!1!

( g1

1!

)0 ( g2

2!

)1
(A.3a)

= g2
1 + g2. (A.3b)

At order 3, we have three options: {k1, k2, k3} = {3, 0, 0}, {k1, k2, k3} = {1, 1, 0} and
{k1, k2, k3} = {0, 0, 1}.This gives

Y3(g1, g2, g3) =
3!

3!0!0!

( g1

1!

)3 ( g2

2!

)0 ( g3

3!

)0
+

3!
1!1!0!

( g1

1!

)1 ( g2

2!

)1 ( g3

3!

)0

+
3!

0!0!1!

( g1

1!

)0 ( g2

2!

)0 ( g3

3!

)1
(A.4a)

= g3
1 + 3g1g2 + g3. (A.4b)

A list of Bell polynomials up to order 10 can be found in [133] for instance.
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Appendix B

Low-lying 2-particle states of LCFT
dual to CCTMG

In this appendix, we would like to list more low-lying descendant states of the log-
excitations constructed in the case of 2-particle states of LCFT dual to CCTMG. For
that, we consider the highest weight state |t〉 ⊗ |t〉, and its descendants counted in
Eq. (3.45).

q4: |t〉 ⊗ |t〉

q5: L−1|t〉⊗|t〉+|t〉⊗L−1|t〉
2

q4q̄1: L̄−1|t〉⊗|t〉+|t〉⊗L̄−1|t〉
2

q6: L2
−1|t〉⊗|t〉+|t〉⊗L2

−1|t〉
2

L−1 |t〉 ⊗ L−1 |t〉
L−2|t〉⊗L−2|t〉

2

q5q̄1: L−1 L̄−1|t〉⊗|t〉+|t〉⊗L−1 L̄−1|t〉
2

L−1|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L−1|t〉
2

q4q̄2: L̄−1 L̄−1|t〉⊗|t〉+|t〉⊗L̄−1 L̄−1|t〉
2

L̄−1 |t〉 ⊗ L̄−1 |t〉
L̄−2|t〉⊗|t〉+|t〉⊗L̄−2|t〉

2

q7: L3
−1|t〉⊗|t〉+|t〉⊗L3

−1|t〉
2

L2
−1|t〉⊗L−1|t〉+L−1|t〉⊗L2

−1|t〉
2

L−3|t〉⊗|t〉+|t〉⊗L−3|t〉
2

L−1L−2|t〉⊗|t〉+L−1|t〉⊗L−2|t〉+L−2|t〉⊗L−1|t〉+|t〉⊗L−1L−2|t〉
4
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q6q̄1: L2
−1 L̄−1|t〉⊗|t〉+|t〉⊗L2

−1 L̄−1|t〉
2

L2
−1|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L2

−1|t〉
2

L−1 L̄−1|t〉⊗L−1|t〉+L−1|t〉⊗L−1 L̄−1|t〉
2

L−2 L̄−1|t〉⊗|t〉+L−2|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L−2|t〉+|t〉⊗L−2 L̄−1|t〉
4

q5q̄2: L−1 L̄2
−1|t〉⊗|t〉+|t〉⊗L−1 L̄2

−1|t〉
2

L−1 L̄−1|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L−1 L̄−1|t〉
2

L̄2
−1|t〉⊗L−1|t〉+L−1|t〉⊗L̄2

−1|t〉
2

L−1 L̄−2|t〉⊗|t〉+L−1|t〉⊗L̄−2|t〉+L̄−2|t〉⊗L−1|t〉+|t〉⊗L−1 L̄−2|t〉
4

q4q̄3: L̄3
−1|t〉⊗|t〉+|t〉⊗L̄3

−1|t〉
2

L̄2
−1|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L̄2

−1|t〉
2

L̄−3|t〉⊗|t〉+|t〉⊗L̄−3|t〉
2

L̄−2 L̄−1|t〉⊗|t〉+L̄−2|t〉⊗L̄−1|t〉+L̄−1|t〉⊗L̄−2|t〉+|t〉⊗L̄−1 L̄−2|t〉
4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Appendix C

Low-lying 3-particle states of LCFT
dual to CCTMG

In the same way, we consider the 3-particle highest weight state |t〉 ⊗ |t〉 ⊗ |t〉, and
its descendants whose counting is given in the expansion C(q, q̄) of Eq. (3.33) as

g3
1 + 3g1g2 + g3

3!
(
q2)3

. (C.1)

The counting organization in terms of conformal dimension looks like

∞

∏
n=2

q2

|1− qn|2

[
1
3!

Y3
(
q2)3

]
=

∞

∏
n=2

q2

|1− qn|2

[
g3

1 + 3g1g2 + g3

3!
(
q2)3

]
(C.2a)

= q6 (C.2b)

+ (q7 + q6q̄1) (C.2c)

+ (3q8 + 2q7q̄1 + 3q6q̄2) (C.2d)
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · , (C.2e)

and the corresponding states built upon |t〉 ⊗ |t〉 ⊗ |t〉 are listed as

q6: |t〉 ⊗ |t〉 ⊗ |t〉

q7: L−1|t〉⊗|t〉⊗|t〉+|t〉⊗L−1|t〉⊗|t〉+|t〉⊗|t〉⊗L−1|t〉
3

q6q̄1: L̄−1|t〉⊗|t〉⊗|t〉+|t〉⊗L̄−1|t〉⊗|t〉+|t〉⊗|t〉⊗L̄−1|t〉
3

q8: L−1L−1|t〉⊗|t〉⊗|t〉+|t〉⊗L−1L−1|t〉⊗|t〉+|t〉⊗|t〉⊗L−1L−1|t〉
3

L−1|t〉⊗L−1|t〉⊗|t〉+L−1|t〉⊗|t〉⊗L−1|t〉+|t〉⊗L−1|t〉⊗L−1|t〉
3

L−2|t〉⊗|t〉⊗|t〉+|t〉⊗L−2|t〉⊗|t〉+|t〉⊗|t〉⊗L−2|t〉
3

q7q̄1: L−1 L̄−1|t〉⊗|t〉⊗|t〉+|t〉⊗L−1 L̄−1|t〉⊗|t〉+|t〉⊗|t〉⊗L−1 L̄−1|t〉
3

L−1|t〉⊗L̄−1|t〉⊗|t〉+L−1|t〉⊗|t〉⊗L̄−1|t〉+L−1|t〉⊗L̄−1|t〉⊗|t〉
3

q6q̄2: L̄−1 L̄−1|t〉⊗|t〉⊗|t〉+|t〉⊗L̄−1 L̄−1|t〉⊗|t〉+|t〉⊗|t〉⊗L̄−1 L̄−1|t〉
3

L̄−1|t〉⊗LL̄−1|t〉⊗|t〉+L̄−1|t〉⊗|t〉⊗L̄−1|t〉+|t〉⊗L̄−1|t〉⊗L̄−1|t〉
3

L̄−2|t〉⊗|t〉⊗|t〉+|t〉⊗L̄−2|t〉⊗|t〉+|t〉⊗|t〉⊗L̄−2|t〉
3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Appendix D

Low-lying 2-particle states of LCFT
dual to CCNMG

In this appendix, we would like to show how the descendant states of the log-
excitations are formed in the case of CCNMG (critical cosmological new massive
gravity). The focus is on the lowest level of the multi particle sector.

The partition function for CCNMG was found in terms of Bell polynomials as

ZNMG(q, q̄) =
∞

∏
n=2

1
|1− qn|2

[
∞

∑
k=0

k

∑
j=0

(
Yj

j!

)(
Yk−j

(k− j)!

)
(q2)j(q̄2)k−j

]
(D.1a)

=
∞

∏
n=2

1
|1− qn|2D(q, q̄), (D.1b)

where the terms in the square bracket can be expanded in the following way

D(q, q̄) = 1 (D.2a)

+
Y1

1!
(
q2)+ Y1

1!
(
q̄2) (D.2b)

+
Y2

2!
(
q2)2

+
Y1

1!
Y1

1!
(
q2) (q̄2)+ Y2

2!
(
q̄2)2

(D.2c)

+
Y3

3!
(
q2)3

+
Y2

2!
Y1

1!
(
q2)2 (

q̄2)+ Y1

1!
Y2

2!
(
q2) (q̄2)2

+
Y3

3!
(
q̄2)3

(D.2d)

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (D.2e)

The single particle sector is composed of the holomorphic part Y1
1!

(
q2), and the anti-

holomorphic sector Y1
1!

(
q̄2). The states formed in the holomorphic sector were con-

structed above in the case of CCTMG. The states of the anti-holomorphic sector can
be constructed analogously. The multiparticle starts with the lowest level of order
2. The states in Y2

2!

(
q2)2 were constructed above, and here again, the states counted

by Y2
2!

(
q̄2)2 can be constructed identically. We now show how one can construct the

tower of states counted by Y1
1!

Y1
1!

(
q2) (q̄2).
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Y1

1!
Y1

1!
(
q2) (q̄2) = q2q̄2

+ 2q3q̄2 + 2q2q̄3

+ 3q4q̄2 + 4q3q̄3 + 3q2q̄4

+ 4q5q̄2 + 6q4q̄3 + 6q3q̄4 + 4q2q̄5

+ 5q6q̄2 + 8q5q̄3 + 9q4q̄4 + 8q3q̄5 + 5q2q̄6

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Some of the corresponding lower level states are

q2q̄2: |t〉 ⊗ |t̄〉

q3q̄2: L−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L−1 |t̄〉
q2q̄3: L̄−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L̄−1 |t̄〉

q4q̄2: L−1L−1 |t〉 ⊗ |t̄〉 ; L−1 |t〉 ⊗ L−1 |t̄〉 ; |t〉 ⊗ L−1L−1 |t̄〉
q3q̄3: L−1 L̄−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L−1 L̄−1 |t̄〉 ;

L−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L−1 |t̄〉
q2q̄4: L̄−1 L̄−1 |t〉 ⊗ |t̄〉 ; L̄−1 |t〉 ⊗ L̄−1 |t̄〉 ; |t〉 ⊗ L̄−1 L̄−1 |t̄〉

q5q̄2: L3
−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L3

−1 |t̄〉 ;
L2
−1L−1 |t〉 ⊗ L−1 |t̄〉 ; L−1 |t〉 ⊗ L2

−1 |t̄〉
q4q̄3: L2

−1 L̄−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L2
−1 L̄−1 |t̄〉

L2
−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L2

−1 |t̄〉 ;
L−1 L̄−1 |t〉 ⊗ L−1 |t̄〉 ; L−1 |t〉 ⊗ L−1 L̄−1 |t̄〉 ;

q3q̄4: L−1 L̄2
−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L−1 L̄2

−1 |t̄〉 ;
L−1 |t〉 ⊗ L̄2

−1 |t̄〉 ; L̄2
−1 |t〉 ⊗ L−1 |t̄〉 ;

L−1 L̄−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L−1 L̄−1 |t̄〉
q2q̄5: L̄3

−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L̄3
−1 |t̄〉 ;

L̄2
−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L̄2

−1 |t̄〉

q6q̄2: L4
−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L4

−1 |t̄〉 ;
L3
−1 |t〉 ⊗ L−1 |t̄〉 ; L−1 |t〉 ⊗ L3

−1 |t̄〉 ; L2
−1 |t〉 ⊗ L2

−1 |t̄〉
q5q̄3: L3

−1 L̄−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L3
−1 L̄−1 |t̄〉 ;

L3
−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L3

−1 |t̄〉 ;
L2
−1 L̄−1 |t〉 ⊗ L−1 |t̄〉 ; L−1 |t〉 ⊗ L2

−1 L̄−1 |t̄〉 ;
L−1 L̄−1 |t〉 ⊗ L2

−1 |t̄〉 ; L2
−1 |t〉 ⊗ L−1 L̄−1 |t̄〉

q4q̄4: L2
−1 L̄2

−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L2
−1 L̄2

−1 |t̄〉 ;
L2
−1 |t〉 ⊗ L̄2

−1 |t̄〉 ; L̄2
−1 |t〉 ⊗ L2

−1 |t̄〉 ;
L−1 L̄2

−1 |t〉 ⊗ L−1 |t̄〉 ; L−1 |t〉 ⊗ L−1 L̄2
−1 |t̄〉 ;

L2
−1 L̄−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L2

−1 L̄−1 |t̄〉 ; L−1 L̄−1 |t〉 ⊗ L−1 L̄−1 |t̄〉
q3q̄5: L−1 L̄3

−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L−1 L̄3
−1 |t̄〉 ;

L−1 |t〉 ⊗ L̄3
−1 |t̄〉 ; L̄3

−1 |t〉 ⊗ L−1 |t̄〉 ;
L−1 L̄2

−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L−1 L̄2
−1 |t̄〉 ;

L−1 L̄−1 |t〉 L̄2
−1 ⊗ |t̄〉 ; L̄2

−1 |t〉 ⊗ L−1 L̄−1 |t̄〉
q2q̄6: L̄4

−1 |t〉 ⊗ |t̄〉 ; |t〉 ⊗ L̄4
−1 |t̄〉 ;

L̄3
−1 |t〉 ⊗ L̄−1 |t̄〉 ; L̄−1 |t〉 ⊗ L̄3

−1 |t̄〉 ; L̄2
−1 |t〉 ⊗ L̄2

−1 |t̄〉 ;
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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