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Abstract

In this paper, the finite-time synchronization problem of complex dynamic

networks with time delay is studied via aperiodically intermittent control. By

compared with the existed results concerning aperiodically intermittent control,

some new results are obtained to guarantee the synchronization of networks in

a finite time. Especially, a new lemma is proposed to reduce the convergence

time. In addition, based on aperiodically intermittent control scheme, the essen-

tial condition ensuring finite-time synchronization of dynamic networks is also

obtained, and the convergence time is closely related to the topological structure
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of networks and the maximum ratio of the rest width to the aperiodic time span.

Finally, a numerical example is provided to verify the validness of the proposed

theoretical results.

Keywords: Complex networks; finite-time synchronization; time-delay; aperi-

odically intermittent control.

1. Introduction

Complex dynamic networks consist of a large number of nodes and edges inter-

connecting these nodes. Complex networks exist everywhere in real world from

science and engineering to society [1–4], such as neural networks, World Wide

Web, ecosystems, social networks, etc. Among collective dynamic behaviors, the

synchronization problem of complex dynamic networks has drawn widespread at-

tention. This is because it can explain many natural phenomena very well and

has potential applications in various fields. In view of this, the synchronization

problem of complex networks has been extensively studied. To better solve the

synchronization problem of complex networks, lots of effective control schemes

have been proposed, for instance, adaptive control [5], sliding control [6], impul-

sive control [7] and intermittent control [8], etc.

The existed control approaches can be mainly divided into continuous con-

trol and discontinuous control. The former one, such as adaptive control and

sliding control, has been widely studied and many interesting results have been

derived [9–11]. While the latter one, especially impulsive control and intermittent

control, has become a hot research topic in different engineering fields, such as

manufacturing [12] and secure communication [13], since it is more practical and

easier to be implemented.
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It is worth noting that intermittent control scheme is studied by decomposing

a control time span as a control interval and a rest interval, while impulsive control

is only activated at some isolated instants, intermittent control is activated during

certain nonzero control intervals and off during other rest intervals. By employing

the intermittent control schemes, many researches have been done on the expo-

nential or asymptotical synchronization of complex dynamic networks [14–16],

and some excellent results have been obtained. In [14], exponential synchroniza-

tion of Cohen-Grossberg neural networks via periodically intermittent control

was studied. In [15], the stabilization and synchronization of chaotic systems via

intermittent control were taken into account. Exponential p-synchronization of

non-autonomous Cohen-Grossberg neural networks with reaction-diffusion terms

via periodically intermittent control was investigated in [16]. Obviously, the ref-

erences [14–16] studied that the synchronization problems of complex networks

were realized in a infinite time via intermittent control. However, to better show

the superiority of convergence time, it is worth studying the finite-time synchro-

nization problems of dynamic complex networks via intermittent control.

Recently, the periodically intermittent control strategy, which is composed

of fixed control width and fixed rest width in a period, has drawn much at-

tention [17–19]. However, the requirements of periodically intermittent control

are quite restrict as the control strategy, and periodically intermittent control

could not explain many aperiodic natural phenomena very well. For example,

the generation of wind power is typically aperiodically intermittent. The con-

trol operation of aperiodically intermittent control [20, 21] is activated in some

uncertain control widths among their own uncertain time spans. Next, we give

an elaboration about the aperiodically intermittent control strategy (see Fig. 1):

for any time span [tm, tm+1), t0 = 0, m = 0, 1, 2, . . . , [tm, sm) and [sm, tm+1)
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are the mth work time and the mth rest time, respectively, where tm and sm

denote the start time and the end time of the mth control, tm+1 denotes the end

time of the mth rest. Note that the intermittent control type becomes a periodic

one, when tm+1 − tm ≡ T and sm − tm ≡ δ, where T, δ are positive constants,

t0 = 0, m = 0, 1, 2, . . .. Hence, compared with periodically intermittent control,

the aperiodically intermittent control can be better applied in practice. Thus, it

is necessary to study synchronization problems under aperiodically intermittent

control.

For all the above proposed intermittent control, the trajectories of the dy-

namic error systems can reach synchronization over the infinite horizon. However,

synchronization needs to be realized in a finite time in the practical engineering

process. The finite time technique [22–24] is desirable and widely applied due to

its prediction of convergence time. Combining the finite time technique, periodi-

cally intermittent control has been widely used to realize finite-time synchroniza-

tion for complex dynamic networks [25–29]. Yang et al. [25] investigated finite-

time synchronization of neural networks with discrete and distributed delays via

periodically intermittent memory feedback control. Jing et al. [26] studied the

problem of finite-time lag synchronization of delayed neural networks via period-

ically intermittent control. Mei et al. [27] studied finite-time synchronization of

drive-response systems via periodically intermittent adaptive control. Zhang et

al. [28] studied global finite-time synchronization of different dimensional chaotic

systems and further investigated this issue in [29]. As is known to all, there are

many excellent results about using periodically intermittent control to achieve

finite-time synchronization of complex networks. Therefore, it is worth to study

that using aperiodically intermittent control is to achieve finite-time synchroniza-

tion of complex networks.
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For the aperiodically intermittent control, authors in [30] investigated the

aperiodically intermittent control of linearly coupled networks with delays. The

synchronization problem of complex networks via aperiodically intermittent pin-

ning control was studied in [31]. It can be seen that both the reference [30]

and [31] used aperiodically intermittent control as the control strategy to achieve

synchronization of complex networks over the infinite time. Later, based on the

finite time technique, the authors in [32] studied finite-time synchronization prob-

lem of complex networks via the aperiodically intermittent control. However, we

give a more general lemma in this paper than that in [32]. The main difficulty of

this article is how to prove the new lemma strictly with mathematical methods.

Meanwhile, a new parameter added in the new lemma can be adjusted to make

the convergence time shorter. That is to see, the more general lemma provided

in this paper has the advantage of shortening the convergence time. Thus, it is

valuable and meaningful to further study the finite-time synchronization problem

of complex dynamic networks via aperiodically intermittent control.

The contributions of this paper mainly include four parts. Firstly, the main

results in this paper about finite-time synchronization problem are obtained based

on the famous finite-time stability theory. Meanwhile, compared with [32], we

added a new parameter in a new lemma to better reflect superiority in convergence

time. Secondly, the controller used in our paper to achieve finite-time synchro-

nization is simpler and easier to be implemented in the field of engineering than

that used in [32]. Thirdly, the control method of finite-time synchronization is

aperiodically intermittent control, which is more practical and valuable compared

with periodic intermittent control schemes. Lastly, a new lemma for obtaining

the main results in this paper is rigorous proven with mathematical methods.

This paper is organized as follows. In Section 2, some useful assumptions,
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lemmas and definitions are given. In Section 3, finite-time synchronization of

delayed complex dynamic networks is studied via an aperiodically intermittent

feedback controller. In Section 4, a numerical example is given to verify the

validness of the proposed theoretical schemes here. Conclusions are finally drawn

in Section 5.

Notation: Let Rn denote the n-dimensional Euclidean space and Rn×m de-

note the set of n×m real matrix. For x (t) =
(
xT

1 (t), xT
2 (t), . . . , xT

N(t)
)T ∈ RnN ,

‖x‖ = (
nN∑
i=1

x2
i )

1
2 . λmax(A) represents the largest eigenvalue of square matrix

A. ⊗ stands for the notation of Kronecker product. The initial conditions of

network (1) and (15) are assumed to be x(s) = φ(s), y(s) = ϕ(s), respectively,

where s ∈ [−τ, 0], φ(s), ϕ(s) ∈ C([−τ, 0], RnN).

2. Preliminaries

In this paper, we consider a class of delayed complex networks each consisting of

N nonlinearly coupled identical nodes, with each being an n-dimensional dynamic

system, respectively.

The drive networks with time delays are characterized by

ẋi = fi(t, xi, xi(t− τ)) +
N∑

j=1

bijhj(xj) +
N∑

j=1

cijgj(xj(t− τ)), i = 1, 2, . . . , N, (1)

or in a compact form

ẋ = f(t, x, x(t− τ)) + (B ⊗ In)h(x) + (C ⊗ In)g(x(t− τ)), (2)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn are the state vectors of the

ith node, x (t) =
(
xT

1 (t), xT
2 (t), . . . , xT

N(t)
)T ∈ RnN denotes the state vector,
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f(t, x, x(t − τ)) = (fT
1 (t, x1, x1(t − τ)), fT

2 (t, x2, x2(t − τ)), . . . , fT
N(t, xN , xN(t −

τ)))T : R × RnN × RnN → RnN is a smooth nonlinear function, τ is the time

delay. h(x) = (hT
1 , hT

2 , . . . , hT
N)T ∈ RnN and g(x) = (gT

1 , gT
2 , . . . , gT

N)T ∈ RnN

are the inner connecting functions in each node. While B, C ∈ RN×N are the

weight configuration matrices. If there is a connection from node i to node

j (j 6= i), then the coupling bij 6= 0, cij 6= 0; otherwise, bij = cij = 0 (j = i) and

bii = −∑N
j=1,j 6=i bij, cii = −∑N

j=1,j 6=i cij. Here, the configuration matrices are

assumed not to be symmetric or irreducible.

Throughout this paper, we have the following assumptions, lemmas and defi-

nitions.

Assumption 1. For the vector valued function f (t, x (t) , x (t− τ)), assume that

there exist positive constants ε > 0, ν > 0 such that f satisfies the semi-Lipschitz

condition

(y (t)− x(t))T (f (t, y (t) , y (t− τ))− f (t, x (t) , x (t− τ)))

≤ ε(y (t)− x(t))T (y (t)− x(t))

+ ν(y (t− τ)− x(t− τ))T (y (t− τ)− x(t− τ)) ,

for all x, y ∈ RnN and t ≥ 0.

Assumption 2. Functions h(·) and g(·) are Lipshitz, that is, there exist non-

negative constants lh, lg for all x, y ∈ RnN such that

‖h(x)− h(y)‖ ≤ lh ‖x− y‖ , ‖g(x)− g(y)‖ ≤ lg ‖x− y‖ .

Assumption 3. Let 0 < ρ < 1 and λ > 0, then there exists a continuous
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function w : [0,∞) → [0,∞) with w(0) ≥ 0, for any 0 ≤ u ≤ t, such that

w(t)− w(u) ≤ −λ

∫ t

u

(w(s))ρds.

Assumption 4. [30] For the aperiodically intermittent control strategy, there

exist two positive scalars 0 < θ < ω < +∞ , such that, for m = 0, 1, 2, . . .,

inf
m

(sm − tm) = θ,

sup
m

(tm+1 − tm) = ω.
(3)

Definition 1. The drive network (1) and the response network (15) are said to

be finite-time synchronized if there exists a constant T ∗ > 0 such that

lim
t→T ∗

‖e(t)‖ = lim
t→T ∗

‖y(t)− x(t)‖ = 0,

and

‖e(t)‖ = 0 if t > T ∗,

where e(t) is the error system of the drive network (1) and the response network

(15) with initial conditions φ and ϕ, respectively.

Definition 2. [30] For the aperiodically intermittent control, define

Ψ = lim sup
m→∞

tm+1 − sm

tm+1 − tm
. (4)

Obviously, 0 ≤ Ψ < 1, when Ψ = 0, the aperiodically intermittent control

becomes continuous control.

Lemma 1. [30] If Assumption 4 holds, then Ψ ≤ 1− θ
ω
.
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Lemma 2. [30] For any m = 0, 1, 2, . . . , we denote

Ψ(t) =
t− sm

t− tm
, t ∈ [sm, tm+1). (5)

Then, Ψ(t) is a strictly increasing function and Ψ(t) ≤ tm+1−sm

tm+1−tm
.

Lemma 3. [23] For x1, x2, . . . , xN ∈ Rn and 0 < q < 2, the following inequality

holds:

‖x1‖q + ‖x2‖q + · · ·+ ‖xN‖q ≥ (‖x1‖2 + ‖x2‖2 + · · ·+ ‖xN‖2)q/2. (6)

Lemma 4. [32] If Y and Z are real matrices with appropriate dimensions, then

there exists a positive constant ς > 0 such that

YTZ + ZTY ≤ ςYTY +
1

ς
ZTZ.

Lemma 5. [24] Assume that a continuous, positive-definite function V (t) on

a neighborhood Ũ ∈ RnN of the origin, and satisfy the following differential

inequality

V̇ (x(t)) ≤ −βV η(x(t))− γV (x(t)), ∀x(t) ∈ Ũ\{0}, (7)

where η ∈ (0, 1) and β, γ > 0 are constants. Then, for any given x(t0), V (t)

satisfies the following inequality:

V 1−η(x(t)) exp{γ(1− η)x(t)} ≤ V 1−η(x(t0)) exp{γ(1− η)x(t0)}
+β

γ
[exp{γ(1− η)x(t0)} − exp{γ(1− η)x(t)}],

t0 ≤ t ≤ ts,

(8)
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and

V (x(t)) ≡ 0, ∀ t ≥ ts,

with ts given by ts ≤ ln (1+ γ
β

V 1−η(0))

γ(1−η)
, for t0 = 0.

Lemma 6. Suppose that function V (t) is continuous and non-negative when

t ∈ [0, +∞) and satisfies the following conditions:





V̇ (t) ≤ −αV η(t)− p1V (t), tm ≤ t < sm,

V̇ (t) ≤ p2V (t), sm ≤ t < tm+1, m = 0, 1, 2, . . . ,
(9)

where α, p1, p2 > 0, 0 < η < 1. If there exists Ψ ∈ (0, 1) such that

p1 − (p1 + p2)Ψ > 0, (10)

where Ψ is defined in Definition 2. Then, we have

V 1−η(t) exp{(1− η)p1t} ≤ exp
{
(1− η)(p1 + p2)Ψt

}(
V 1−η(0) +

α

p1

− α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)Ψt

})
,

0 ≤ t ≤ T ∗,

where the settling time T ∗ is given by

T ∗ ≤ ln(1 + p1

α
V 1−η(0))

(1− η)
(
p1 − (p1 + p2)Ψ

) . (11)

Proof: Take M0 = V 1−η(0) + α
p1

and W (t) = exp{(1− η)p1t}V 1−η(t), for t ≥ 0.

Let Q(t) = W (t)−M0 + α
p1

exp{(1− η)p1t}. It is easy to see that

Q(t) = 0, for t = 0. (12)
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In the following, we will prove that

Q(t) ≤ 0, for t ∈ [0, s0). (13)

For ∀t ∈ [0, s0), we have

Q̇(t) =(1− η)V −η(t)V̇ (t) exp{(1− η)p1t}+ p1(1− η) exp{(1− η)p1t}

V 1−η(t) + α(1− η) exp{(1− η)p1t}

≤(1− η)V −η(t) exp{(1− η)p1t}
(− αV η(t) + p1V (t)

)
+ p1(1− η)

exp{(1− η)p1t}V 1−η(t) + α(1− η) exp{(1− η)p1t}

=0.

Hence, Q(t) ≤ Q(0) = 0, for t ∈ [0, s0).

Let W1(t) = exp{(1− η)p1t} exp{−(1− η)(p1 + p2)(t− s0)}V 1−η(t), Q1(t) =

W1(t)−M0 + α
p1

exp{(1− η)p1t} exp{−(1− η)(p1 + p2)(t− s0)}. Next, we prove

that for t ∈ [s0, t1),

Q1(t) ≤ 0. (14)

For ∀t ∈ [s0, t1), we can obtain

Q̇1(t) =Ẇ1(t) +
α

p1

(−(1− η)p2) exp{(1− η)p1s0} exp{−(1− η)p2(t− s0)}

=− (1− η)p2 exp{(1− η)p1s0} exp{−(1− η)p2(t− s0)}V 1−η(t)

+ exp{(1− η)p1s0} exp{−(1− η)p2(t− s0)}(1− η)V −η(t)V̇ (t)

+
α

p1

(−(1− η)p2) exp{(1− η)p1s0} exp{−(1− η)p2(t− s0)}

≤ − α

p1

((1− η)p2) exp{(1− η)p1s0} exp{−(1− η)p2(t− s0)}

≤0.
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Hence, Q1(t) ≤ Q1(s0) = Q(s0) ≤ 0.

Together with Q1(t) ≤ 0, for t ∈ [s0, t1), we can obtain

W (t) ≤ exp{(1− η)(p1 + p2)(t− s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t− s0)}
)

≤ exp{(1− η)(p1 + p2)(t1 − s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t1 − s0)}
)
.

Note that Q(t) ≤ 0, for t ∈ [0, s0), we have

W (t) ≤M0 − α

p1

exp{(1− η)p1t}

≤ exp{(1− η)(p1 + p2)(t1 − s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t1 − s0)}
)
.

So,

W (t) ≤ exp{(1− η)(p1 + p2)(t1 − s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t1 − s0)}
)
,

for t ∈ [0, t1).

Similarly, we can prove that for t ∈ [t1, s1),

W (t) ≤ exp{(1− η)(p1 + p2)(t1 − s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t1 − s0)}
)
.
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Suppose

Q2 =W (t)− exp{(1− η)(p1 + p2)(t1 − s0)}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)(t1 − s0)}
)
.

It is easy to prove that Q2 ≤ 0, ∀t ∈ [t1, s1).

For any t ∈ [s1, t2), by taking W2(t) = W1(t) exp{−(1 − η)(p1 + p2)(t1 −
s0)} exp{−(1 − η)(p1 + p2)(t − s1)} and Q3(t) = W2(t) − M0 + α

p1
exp{(1 −

η)p1t} exp{−(1 − η)(p1 + p2)(t1 − s0)} exp{−(1 − η)(p1 + p2)(t − s1)}, we can

verify Q3(t) ≤ Q3(s1) ≤ 0 similar to the proof of (14).

Therefore,

W2(t) ≤M0 − α

p1

exp{(1− η)p1t} exp{−(1− η)(p1 + p2)(t1 − s0)}

exp{−(1− η)(p1 + p2)(t− s1)},

and,

W (t) ≤ exp{(1− η)(p1 + p2)(t1 − s0)} exp{(1− η)(p1 + p2)(t− s1)}
(
M0

− α

p1

exp{(1− η)p1t} exp{−(1− η)(p1 + p2)(t1 − s0)}

exp{−(1− η)(p1 + p2)(t− s1)}
)

≤ exp{(1− η)(p1 + p2)[(t1 − s0) + (t− s1)]}
(
M0 − α

p1

exp{(1− η)p1t} exp{−(1− η)(p1 + p2)[(t1 − s0) + (t− s1)]}
)
.

By induction, for any integer m, we can deduce the following estimation of

W (t) for any t.

For tm ≤ t < sm, we have
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W (t) ≤ exp
{
(1− η)(p1 + p2)

m∑

k=1

(tk − sk−1)
}(

M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)

m∑

k=1

(tk − sk−1)
})

,

and for sm ≤ t < tm+1, we have

W (t) ≤ exp
{
(1− η)(p1 + p2)

m∑

k=1

[(tk − sk−1) + (t− sm)]
}(

M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)

m∑

k=1

[(tk − sk−1) + (t− sm)]
})

.

For tm ≤ t < sm, we have

W (t) ≤ exp
{
(1− η)(p1 + p2)

m∑

k=1

(tk − sk−1)
}(

M0 − α

p1

exp{(1− η)p1t}

exp
{− (1− η)(p1 + p2)

m∑

k=1

(tk − sk−1)
})

= exp
{
(1− η)(p1 + p2)

m∑

k=1

tk − sk−1

tk − tk−1

(tk − tk−1)
}(

M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)

m∑

k=1

tk − sk−1

tk − tk−1

(tk − tk−1)
})

≤ exp
{
(1− η)(p1 + p2)Ψ

m∑

k=1

(tk − tk−1)
}(

M0 − α

p1

exp{p1(1− η)t}

exp
{− (1− η)(p1 + p2)Ψ

m∑

k=1

(tk − tk−1)
})

= exp{(1− η)(p1 + p2)Ψtm}
(
M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)Ψtm}
)

≤ exp{(1− η)(p1 + p2)Ψt}(M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)Ψt}).
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For sm ≤ t < tm+1, we have

W (t) ≤ exp
{
(1− η)(p1 + p2)

m∑

k=1

[(tk − sk−1) + (t− sm)]
}(

M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)

m∑

k=1

[(tk − sk−1) + (t− sm)]
})

= exp
{
(1− η)(p1 + p2)

m∑

k=1

(tk − sk−1

tk − tk−1

(tk − tk−1) +
t− sm

t− tm
(t− tm)

)}

(
M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)

m∑

k=1

[tk − sk−1

tk − tk−1

(tk

− tk−1) +
t− sm

t− tm
(t− tm)

]})

≤ exp
{
(1− η)(p1 + p2)

m∑

k=1

[tk − sk−1

tk − tk−1

(tk − tk−1) +
tm+1 − sm

tm+1 − tm
(t− tm)

]}

(
M0 − α

p1

exp{(1− η)p1t} exp
{− (1− η)(p1 + p2)Ψ

m∑

k=1

(
(tk − tk−1)

+ (t− tm)
)})

= exp{(1− η)(p1 + p2)Ψt}(M0 − α

p1

exp{(1− η)p1t} exp{−(1− η)(p1

+ p2)Ψt}).

From the definition of W (t), we can obtain

V 1−η(t) exp{(1− η)p1t} ≤ exp{(1− η)(p1 + p2)Ψt}(M0 − α

p1

exp{(1− η)p1t}

exp{−(1− η)(p1 + p2)Ψt}).

With Lemma 5, the settling time T ∗ can be obtained in the following form

V 1−η(0) + α
p1

= α
p1

exp{(1− η)p1T
∗} exp{−(1− η)(p1 + p2)ΨT ∗}.

From (10), one can obtain that

T ∗ =
ln(1 + p1

α
V 1−η(0))

(1− η)
(
p1 − (p1 + p2)Ψ

) .
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The proof is completed here.

Remark 1. Firstly, it should be noted that Lemma 6 plays an important role in

the following theorem, which guarantees the complex networks to achieve finite-

time synchronization via the proposed aperiodically intermittent control. Sec-

ondly, the difference between the study in this paper and that in [32] is the defined

Lyapunov functions in all the control widths, which are V̇ (t) ≤ −αV η(t), tm ≤
t < sm in Lemma 5 of [32] and V̇ (t) ≤ −αV η(t) − p1V (t), tm ≤ t < sm in

Lemma 6 of this paper. Therefore, Lemma 6 in this paper is more general. More-

over, from mathematical expression of the convergence time (11), it is easy to

see that the new added parameter p1 helps to shorten the convergence time (see

Remark 2), the situation of which meets the needs of the actual situation and is

of more actual significance.

Next, a proposition will be given as follows.

Proposition 1. Suppose that function H(ε1, ε2) =
ln

(
1+

ε1
α

V
1−µ

2 (0)
)

1−µ
2

(
ε1−(ε1+ε2)Ψ

) is a continu-

ous differential one with positive constants 0 < µ < 1, α > 0, 0 < Ψ < 1, V (0) >

0 and ε1, ε2 ∈ (0, +∞), ε1 − (ε1 + ε2)Ψ > 0. Then ∂H
∂ε1

< 0, ∂H
∂ε2

> 0.

Proof. Calculating the derivative of H(ε1, ε2) with ε1, we have

∂H

∂ε1

=

1

1+
ε1
α

V
1−µ

2 (0)

1
α
V

1−µ
2 (0)(1−µ

2
)
(
ε1 − (ε1 + ε2)Ψ

)

(
1−µ

2

(
ε1 − (ε1 + ε2)Ψ

))2

− ln(1 + ε1
α
V

1−µ
2 (0))(1−µ

2
)(1−Ψ)(

1−µ
2

(
ε1 − (ε1 + ε2)Ψ

))2 .
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Denote

F (ε1, ε2) =
1

1 + ε1
α
V

1−µ
2 (0)

1

α
V

1−µ
2 (0)(

1− µ

2
)
(
ε1 − (ε1 + ε2)Ψ

)

− ln(1 +
ε1

α
V

1−µ
2 (0))(

1− µ

2
)(1−Ψ).

Since F (0, 0) = 0, the derivative of F (ε1, ε2) with respect to ε1 is given as

follows:
∂F

∂ε1

=
− 1

α2 (
1−µ

2
)V 1−µ(0)

(
ε1 − (ε1 + ε2)Ψ

)
(
1 + ε1

α
V

1−µ
2 (0)

)2 < 0.

Therefore, ∂H
∂ε1

< 0.

By differentiating the H(ε1, ε2) with ε2, we get

∂H

∂ε2

=
Ψ ln(1 + ε1

α
V

1−µ
2 (0))

1−µ
2

(
ε1 − (ε1 + ε2)Ψ

)2 > 0.

This completes the proposition.

3. Finite-time synchronization of delayed complex networks

In this section, we will address finite-time synchronization problem with ape-

riodically intermittent control technique and finite-time stability theory. Then,

an aperiodically intermittent controller is proposed to realize finite-time synchro-

nization for the delayed complex networks.

The response networks can be written in a compact form:

ẏ = f(t, y, y(t− τ)) + (B ⊗ In)h(y) + (C ⊗ In)g(y(t− τ)) + u(t), (15)

where y ∈ RnN and u ∈ RnN is the aperiodically intermittent controller.
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Define the synchronization error of (2) and (15) as e(t) = y(t) − x(t), then,

we have

ė(t) = ẏ(t)− ẋ(t)

= f(t, y, y(t− τ))− f(t, x, x(t− τ)) + (B ⊗ In)h(y)− (B ⊗ In)h(x)

+ (C ⊗ In)g(y(t− τ))− (C ⊗ In)g(x(t− τ)) + u(t),

(16)

where e(t) = (eT
1 (t), eT

2 (t), . . . , eT
N(t))T .

The aperiodically intermittent controller is defined as follows:

u(t) =




−ξe− k̄sign(e)|e|µ, tm ≤ t < sm,

0, sm ≤ t < tm+1,
(17)

where ξ > 0 and k̄ > 0 are tunable parameters, µ ∈ [0, 1) is a real num-

ber, and sign(e) = diag{diag(sign(e1)), diag(sign(e2)), . . . , diag(sign(eN))}, |e| =

(|e1|T , |e2|T , . . . , |eN |T )T .

Our main results are given below.

Theorem 1: Suppose that Assumptions 1-4 hold, if there exist positive constants

p1, p2, ε, ν, k1, k2, s1, s2, ξ, λ, lh and lg satisfying the following conditions:

(i) p1 + 2ε + s1λmax(BT B ⊗ In) + s2λmax(CT C ⊗ In) + s1
−1lh + k1 exp{p1τ} −

k2

λ
− 2ξ = 0, and 2ν + s2

−1lg − k1 + k2

λ
= 0,

(ii) 2ε+s1λmax(BT B⊗In)+s2λmax(CT C⊗In)+s1
−1lh +k1 exp{p1τ}−p2 = 0,

and 2ν + s2
−1lg − k1 = 0,

(iii) p1 − (p1 + p2)Ψ > 0,

where Ψ ∈ (0, 1) is defined in Definition 2. Then, the dynamic networks (2) and

(15) with aperiodically intermittent controllers (17) will be synchronized in finite

time
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t ≤ ln(1 + p1

α
V

1−µ
2 (0))

1−µ
2

(
p1 − (p1 + p2)Ψ

) = T ∗, (18)

where V (0) = eT (0)e(0) + k1 exp{p1τ}
∫ 0

−τ
exp{p1(s)}eT (s)e(s)ds, e(0) is the ini-

tial condition of e(t).

Proof. Construct the function

V (t) = V1(t) + V2(t), (19)

where V1(t) = eT (t)e(t) and V2(t) = k1 exp{p1τ}
∫ t

t−τ
exp{p1(s− t)}eT (s)e(s)ds.

Next, the derivative of V (t) along the trajectory of (16) can be derived in the

following two different cases.

Case 1: When tm ≤ t < sm, for m = 0, 1, 2, . . . ,

V̇1(t) = −p1V1(t) + p1e
T (t)e(t) + e(t)T ė(t) + ė(t)T e(t), (20)

V̇2(t) = −p1V2(t) + k1 exp{p1τ}
(
e(t)T e(t)− exp{−p1τ}e(t− τ)T e(t− τ)

)
.

(21)

Based on (20), (21) and Assumption 1, it is easy to obtain

V̇ (t) = −p1V (t) + p1e
T (t)e(t) + e(t)T ė(t) + ė(t)T e(t) + k1 exp{p1τ}e(t)T e(t)

− k1e(t− τ)T e(t− τ)

= −p1V1(t) + p1e
T (t)e(t) + e(t)T (

f(t, y, y(t− τ))− f(t, x, x(t− τ))

+ (B ⊗ In)h(y)− (B ⊗ In)h(x) + (C ⊗ In)g(y(t− τ))

− (C ⊗ In)g(x(t− τ))− ξe− k̄sign(e)|e|µ) +
(
f(t, y, y(t− τ))
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− f(t, x, x(t− τ)) + (B ⊗ In)h(y)− (B ⊗ In)h(x) + (C ⊗ In)g(y(t− τ))

− (C ⊗ In)g(x(t− τ))− ξe− k̄sign(e)|e|µ)T
e(t)

+ k1 exp{p1τ}e(t)T e(t)− k1e(t− τ)T e(t− τ)

≤ −p1V1(t) + p1e
T (t)e(t) + 2εe(t)T e(t) + 2νe(t− τ)T e(t− τ)

+ e(t)T (
(B ⊗ In)h(y)− (B ⊗ In)h(x) + (C ⊗ In)g(y(t− τ))

− (C ⊗ In)g(x(t− τ))− ξe− k̄sign(e)|e|µ) +
(
(B ⊗ In)h(y)

− (B ⊗ In)h(x) + (C ⊗ In)g(y(t− τ))− (C ⊗ In)g(x(t− τ))− ξe

− k̄sign(e)|e|µ)T
e(t) + k1 exp{p1τ}e(t)T e(t)− k1e(t− τ)T e(t− τ).

(22)

By using Lemma 4 and Assumption 2, we have

e(t)T ((B ⊗ In)h(y)− (B ⊗ In)h(x))

+ ((B ⊗ In)h(y)− (B ⊗ In)h(x))T e(t)

≤ s1e(t)
T (BT B ⊗ IT

n In)e(t)

+ s1
−1(h(y)− h(x))T (h(y)− h(x))

≤ s1e(t)
T (BT B ⊗ In)e(t) + s1

−1lhe(t)
T e(t),

(23)

e(t)T ((C ⊗ In)g(y)− (C ⊗ In)g(x− τ))

+ ((C ⊗ In)g(y)− (C ⊗ In)g(x− τ))T e(t)

≤ s2e(t)
T (CT C ⊗ IT

n In)e(t)

+ s2
−1(g(y)− g(x− τ))T (g(y)− g(x− τ))

≤ s2e(t)
T (CT C ⊗ In)e(t) + s2

−1lge(t− τ)T e(t− τ).

(24)

In addition, we have
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−k̄e(t)T sign(e)|e|µ − k̄(sign(e)|e|µ)T e(t) = −2k̄|e(t)|T |e|µ ≤ −2k̄
(
e(t)T e(t)

) 1+µ
2

.

(25)

With Assumption 3 and Lemma 3, we have

k2

λ

(
eT (t)e(t)− eT (t− τ)e(t− τ)

)

≤ −k2

∫ t

t−τ

(
eT (s)e(s)

) 1+µ
2 ds

≤ −k2

( ∫ t

t−τ

eT (s)e(s)ds
) 1+µ

2
.

(26)

Therefore, substituting (23)-(26) into (22), we have

V̇ (t) ≤ −p1V (t) + p1e
T (t)e(t) + 2εe(t)T e(t) + 2νe(t− τ)T e(t− τ)

+ s1e(t)
T (BT B ⊗ In)e(t) + s1

−1lhe(t)
T e(t)

+ s2e(t)
T (CT C ⊗ In)e(t) + s2

−1lge(t− τ)T e(t− τ)− 2ξeT (t)e(t)

− 2k̄
(
e(t)T e(t)

) 1+µ
2

+ k1 exp{p1τ}e(t)T e(t)− k1e(t− τ)T e(t− τ)

− k2

λ
(eT (t)e(t)− eT (t− τ)e(t− τ))− k2

( ∫ t

t−τ

eT (s)e(s)ds
) 1+µ

2

= −p1V (t) + eT (t)
(
p1 + 2ε + s1λmax(BT B ⊗ In) + s2λmax(CT C ⊗ In)

+ s1
−1lh + k1 exp{p1τ} − k2

λ
− 2ξ

)
e(t) + eT (t− τ)

(
2ν + s2

−1lg − k1

+
k2

λ

)
e(t− τ)− 2k̄

(
e(t)T e(t)

) 1+µ
2 − k2

( ∫ t

t−τ

eT (s)e(s)ds
) 1+µ

2
.
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According to condition (i), we have

V̇ (t) ≤− p1V (t)− 2k̄
(
e(t)T e(t)

) 1+µ
2 − k2

( ∫ t

t−τ

eT (s)e(s)ds
) 1+µ

2

=− p1V (t)− 2k̄
(
e(t)T e(t)

) 1+µ
2

− k2

(
k1 exp{p1τ}

)− 1+µ
2

(
k1 exp{p1τ}

∫ t

t−τ

eT (s)e(s)ds
) 1+µ

2

≤− p1V (t)− αV (t)
1+µ

2 ,

where α = min
{

2k̄, k2

(
k1 exp{p1τ}

)− 1+µ
2

}
.

Case 2: When sm ≤ t < tm+1, for m = 0, 1, 2, . . ., it is easy to obtain that

V̇ (t) ≤ −p1V (t) + (p1 + p2)V1(t)− p2e
T (t)e(t) + 2εe(t)T e(t)

+ s1e(t)
T (BT B ⊗ In)e(t) + s1

−1lhe(t)
T e(t) + s2e(t)

T (CT C ⊗ In)e(t)

+ 2νe(t− τ)T e(t− τ) + s2
−1lge(t− τ)T e(t− τ)

+ k1 exp{p1τ}e(t)T e(t)− k1e(t− τ)T e(t− τ)

≤ −p1V (t) + (p1 + p2)V (t)− p2e
T (t)e(t) + 2εe(t)T e(t)

+ s1e(t)
T (BT B ⊗ In)e(t) + s1

−1lhe(t)
T e(t) + s2e(t)

T (CT C ⊗ In)e(t)

+ 2νe(t− τ)T e(t− τ) + s2
−1lge(t− τ)T e(t− τ)

+ k1 exp{p1τ}e(t)T e(t)− k1e(t− τ)T e(t− τ)

= p2V (t) + eT (t)
(
2ε + s1λmax(BT B ⊗ In) + s2λmax(CT C ⊗ In) + s1

−1lh

+ k1 exp{p1τ} − p2

)
e(t) + eT (t− τ)

(
2ν + s2

−1lg − k1

)
e(t− τ)

≤ p2V (t).
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Let 1+µ
2

= η. Therefore, we have





V̇ (t) ≤ −αV η(t)− p1V (t), tm ≤ t < sm,

V̇ (t) ≤ p2V (t), sm ≤ t < tm+1.
(27)

By Lemma 6, V (t) converges to zero in a finite time T ∗, where

T ∗ =
ln(1 + p1

α
V

1−µ
2 (0))

1−µ
2

(
p1 − (p1 + p2)Ψ

) .

Remark 2: From (18), it is obvious that the aperiodically intermittent control

constant Ψ, the constant α, the index constant µ and the parameters p1, p2

play an important role in the process of finite-timely synchronizing the error sys-

tem (16), and the parameters Ψ, α, µ, p1, p2 are the decision variables of the

convergence time. The role of the parameters µ, α has the similarity in aperiod-

ically intermittent control as those in periodically intermittent control discussed

in [24], and it is easy to find that a smaller value of Ψ implies a shorter con-

vergence. Moreover, in this paper, we will focus on the effects of the decision

variables p1, p2 on the convergence time. Denote T (p1, p2) =
ln(1+

p1
α

V
1−µ

2 (0))

1−µ
2

(
p1−(p1+p2)Ψ

) ,

we can prove that ∂T
∂p1

< 0, ∂T
∂p2

> 0 with proposition 1. That is to say, function

T (p1, p2) is the strictly monotone decreasing function for the variable p1, while

function T (p1, p2) is the strictly monotone increasing function for the variable p2.

Hence, a lager value of p1 will imply a faster convergence speed; a lager value of

p2 will imply a slower convergence.

Remark 3: The authors in [30] studied the synchronization problem for linearly

coupled networks by aperiodically intermittent controllers. And later they also

make great progress in the aspect of synchronization problem based on the aperi-

odically intermittent controllers [31, 33–35], and some excellent results have been



24

obtained [36–38]. Based on finite-time stability theorem, we employ the same

type of aperiodically intermittent control principle in this paper to ensure the

dynamic networks achieving synchronization in a finite time, and the concrete

value of convergence time is expressed in (11). As we all know that convergence

time is important in practice. Thus, it is very valuable to investigate finite-time

synchronization of complex dynamic networks via aperiodically intermittent con-

trol.

Remark 4: In practice, the periodically intermittent control is rare, and a gen-

eral aperiodically intermittent control technique is more economic and has better

application value. The framework of the control strategy studied in this paper

is shown in Fig. 1. However, a more general type of aperiodically intermittent

control is shown in Fig. 2.
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Fig. 1 Sketch map of an aperiodically intermittent control strategy.
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Fig. 2 Sketch map of another type of aperiodically intermittent control strategy.

Obviously, Fig. 2 shows the ith time span [ti, ti+1) is composed of control time

span [si, ki) and rest time [ti, si) and [ki, ti+1), where t0 = 0, i = 0, 1, 2, . . ..

Especially, this type becomes the one discussed in this paper when si − ti = 0.

The applicable scope of Fig. 2 is more extensive and pragmatic than that of
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Fig. 1. When employing the new control strategy, the most difficult thing need

to be dealt with is how to strictly prove a lemma as the proof of Lemma 6 in this

paper. Hence, this is an open problem and will be further studied in our future

work.

4. Numerical simulations

In this section, we give an example to demonstrate the effectiveness of the

proposed results in this paper.

The complex networks are described as follows:

ẋi(t) =fi(t, xi(t), xi(t− τ)) +
4∑

j=1

bijhj(xj(t)) +
4∑

j=1

cijgj(xj(t− τ)) + ui(t),

i = 1, 2, 3, 4,

where

fi(t, xi(t), xi(t− τ)) =




−a a 0

b −1 0

0 0 −c







xi1(t)

xi2(t)

xi3(t)




+




0

xi1(t− τ)− xi1(t)xi3(t)

xi1(t)xi2(t)




,

h(x(t)) = sin(x(t)), g(x(t− τ)) = 0.5x(t) cos(x(t− τ)),
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B =




−3 2 1 0

0 −2 0 2

2 0 −3 1

1 0 1 −2




, C =




−3 3 0 0

3 −4 0 1

1 1 −2 0

0 2 2 −4




.

The parameters are selected as a = 10, b = 30, c = 8/3, B and C are coupling

matrices and the time delay is set to τ = 0.05s. The initial values are given as:

x(0) = (3 + i, 5 + 2i, 7 + 2i)T , y(0) = (−2 + 7i,−5 + 6i,−7 + 8i)T (i = 1, . . . , 4).

The chaotic attractor of the Lorenz system ẋi(t) = fi(t, xi(t), xi(t − τ)) is

shown in Fig. 3. In the following simulation, the design parameters in (17) are

selected as ξ = 4, k̄ = 15, µ = 1/2. It is also easy to verify that Assumption 1

holds with ε = 42.406 and ν = 0.5. The control period tm+1 − tm (m ≥ 0) is

randomly generated between 0.3s and 0.5s, and the ratio of the control width

sm − tm is randomly generated between 0.3 and 0.7, the trajectories of system

errors are illustrated with an aperiodically intermittent controller (17) in Figs. 4-

6.
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Fig. 3 The chaotic attractor of the delayed Lorenz system.
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Fig. 4 Trajectories of the synchronization errors ei1 (1 ≤ i ≤ 4) with control parameters ξ = 4, k̄ = 15,

µ = 1/2.
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Fig. 5 Trajectories of the synchronization errors ei2 (1 ≤ i ≤ 4) with control parameters ξ = 4, k̄ = 15,

µ = 1/2.
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Fig. 6 Trajectories of the synchronization errors ei3 (1 ≤ i ≤ 4) with control parameters ξ = 4, k̄ = 15,

µ = 1/2.

In order to highlight the advantage of this article in shorting the convergence

time, all parameters are set to fixed values, except that parameter ξ in the con-

troller (17) is set to 15, which is different from the previous one ξ = 4. The

trajectories of system errors with an aperiodically intermittent controller (17)

are shown in Figs. 7-9.
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Fig. 7 Trajectories of the synchronization errors ei1 (1 ≤ i ≤ 4) with control parameters ξ = 15, k̄ = 15,

µ = 1/2.
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Fig. 8 Trajectories of the synchronization errors ei2 (1 ≤ i ≤ 4) with control parameters ξ = 15, k̄ = 15,

µ = 1/2.
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Fig. 9 Trajectories of the synchronization errors ei3 (1 ≤ i ≤ 4) with control parameters ξ = 15, k̄ = 15,

µ = 1/2.

Remark 5: Comparing Figs.7-9 to Figs. 4-6, it can be seen that the conver-

gence times become shorter with bigger ξ. While from the given convergence

time T (p1, p2) =
ln(1+

p1
α

V
1−µ

2 (0))

1−µ
2

(
p1−(p1+p2)Ψ

) , we know that the convergence time decreases

with the increase of parameter p1. So what is the relationship between the two

parameters p1 and ξ? From the condition (i) of Theorem 1, it is easy to see

that the two parameters are positively related. Therefore, in order to shorten the
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convergence time by the parameter p1, we only need to adjust the parameter ξ

in the controller (17) to a larger value.

5. Conclusions

In this paper, the finite-time synchronization problem of between delayed

complex dynamic networks is studied via aperiodically intermittent control. By

giving a more general Lemma 6 in this paper, we give rigorous proof process

to ensure the synchronization of delayed dynamic networks within a finite time.

Moreover, by constructing a piecewise Lyapunov function and applying aperi-

odically intermittent controller technique, some sufficient conditions are derived,

and the convergence time has been expressed in a concrete value, which can be

adjusted by some decision parameters. Finally, an example is provided to verify

the effectiveness of the proposed results.
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