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Abstract

A new barycentric spectral domain decomposition methods algorithm for solving partial
integro-differential models is described. The method is applied to European and butterfly call
option pricing problems under a class of infinite activity Lévy models . It is based on the
barycentric spectral domain decomposition methods, that allows the implementation of the
boundary conditions in an efficient way. After the approximation of the spatial derivatives,
we obtained the semi-discrete equations. The computation of these equations is performed
by using the barycentric spectral domain decomposition method. This is achieved with the
implementation of an exponential time integration scheme. Several numerical tests for the
pricing of European and butterfly options are given to illustrate the efficiency and accuracy
of this new algorithm. We also show that the option Greeks such as the Delta and Gamma
sensitivity measures are computed with no spurious oscillation.
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1 Introduction

Option pricing problems are often modelled by stochastic processes. The famous stochastic model
for the equilibrium condition between the expected return on the option, the expected return on the
stock and the risk-free interest rate is the celebrated Black-Scholes equation derived by Black and
Scholes in 1973 [5]. However, it is well known that constant volatility Black-Scholes model is not
consistent with market prices. Therefore, more general models for stochastic dynamics of the risky
assets have been developed. Among them we can mention, stochastic volatility models [19, 21],
models with deterministic local volatility functions [8, 14] and Lévy models [25, 29, 27, 15, 34],
including infinite activity Lévy models [15, 34]. Note that infinite activity Lévy models incorporate
jumps whose intensity is not a finite measure.

Option problems under jump and Lévy models [25, 27] models can be modelled by means
of Partial-integro Differential Equations (PIDEs). Due to inherent complexity in the modelling
equations, one can rarely find closed-form analytical solutions to these models, and therefore one
must resort to numerical methods. Briani et al. [6] used the fully explicit schemes, although
their approach required very restrictive conditions for stability. Cont and Volchkova [10] used
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implicit schemes to treat the differential part. The use of the Crank-Nicolson time stepping for
the Partial Differential Equation (PDE) portion and explicit evaluation of the convolution integral
term were tested by Tavella and Randall [38]. However, such an asymmetric treatment of PDE
and integral part introduces biases in the viscosity solution such that second order convergence is
not always achieved. d’Halluin et al. [12] employed the Crank-Nicolson scheme with Rannacher
time smoothing to solve the PIDE. They used a fixed point iterative procedure as the system
solver and obtained second order convergence. Tangman et al. [37] proposed an improved fourth
order spectral discontinuity inclusion method. To get around the non-smooth initial condition,
they clustered Chebyshev grid points at the discontinuous point and at boundaries. Pindza et al.
[33], suggested that to overcome the problem of discontinuity and differentiability in the payoff at
strike prices, the use of a grid refinement is one of the best tool to retain a satisfactory accuracy
of the spectral method to numerically solve option pricing problems. Ngounda et al. employed the
numerical inverse Laplace transform using the Bromwich contour integral approach to provide fast
and accurate results for pricing European options with jumps.

In recent years, pure jump Lévy processes of infinite activity that governs stock market returns
has been empirically and theoretically studied. These models are flexible enough to perfectly fit the
market financial data and to capture the excess kurtosis and skewness arising from the risk-neutral
distribution returns. The work done in [7] generalizes the VG model to the Carr, German, Madan
and Yor (CGMY) model. The model has a jump component which follows a dynamics that can
represent either finite or infinite activity of either finite or infinite variation. They also demonstrated
that a diffusion component is not needed if the infinity activity jump process has finite variation.
In the literature, finite difference schemes are mostly used for solving infinite activity Lévy PIDE
problems. Wang et al. [43] proposed implicit FD methods for the numerical solution of the CGMY
model. Almendral et al. [1] used FD methods to discretise the equation in space by the collocation
method and using explicit difference backward schemes focused on the case of infinite activity and
finite variation. Very recently, Fakharany et al. [15] developed an efficient finite difference scheme
for partial integro-differential models related to European and American option pricing problems
under a wide class of infinity Lévy models.

This paper proposes a study of a new barycentric spectral domain decomposition methods al-
gorithm for solving partial integro-differential equations (PIDE) related to European and butterfly
option pricing problems under a class of infinite activity Lévy models. The method is based on
barycentric spectral domain decomposition methods, which allow the implementation of the bound-
ary conditions in an efficient way. The system semi-discretised of ordinary differential equations,
obtained after approximation of the spatial derivatives using barycentric spectral domain decom-
position methods are solved, using an exponential time integration (ETI) scheme. Furthermore,
the paper provides several numerical tests which show the superiority of this method over the pop-
ular Crank–Nicolson method. Various numerical results for the pricing of European and butterfly
options are also given to illustrate the efficiency and accuracy of this new algorithm. We show that
the option Greeks such as the Delta and Gamma sensitivity measures are efficiently computed to
high accuracy.

The paper unfolds as follows. In Section 1, we provide a review of Lévy processes in finance
and various numerical approaches to pricing options on assets these processes. In Section 2, we
present some mathematical details of the fundamental approach we use to price European options
on infinite activity Lévy processes. In Section 3, we provide a quick review of domain decomposition
methods (other techniques such as barycentric spectral methods and finite difference methods are
reviewed in Appendix A). In Section 4, we show how the continuous PIDE of Section 2 must be
discretised using the domain decomposition methods of Section 3 resulting in a system of ordinary
differential equations. Next, we discuss the use of exponential time differencing schemes to solve
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the resulting system of ordinary differential equations. Section 5 provides numerical results to some
representative problems which illustrate the advantages of the new methods as compared to more
standard finite difference methods. The conclusions are provided in Section 6.

2 The jump-diffusion model

We assume an arbitrage-free market model with a single risky asset with price process {St}t∈[0,T ]

following an exponential Lévy model of the form

St = S0e
Xt , (2.1)

on the filtered probability space (Ω,F , {Ft}t∈[0,T ],P) where the Lévy process {Xt}t∈[0,T ] has dy-
namics given by

Xt =

(
µ− σ2

2
− δ
)
t+ σWt +

Nt∑
k=1

Yk. (2.2)

The jump process is represented by Jt =
∑Nt

k=1 Yk with {Nt}t∈[0,T ] denoting a Poisson process with
intensity λ > 0 and {Yk}k≥1 which are independent observations from a jump size variable Y .

Let consider V (S, t) be the option value with the underlying asset St and T be the time to
maturity. Under the equivalent risk neutral measure Q ∼ P, the asset price {St}t ∈ [0, T ] has the
form (2.1), where Xt is now given by Equation (2.2), the value for a European option with strike
price K is its discounted expected payoff

V (S, t) = e−r(T−t)EQ [Ψ(ST )|St = S] , (2.3)

where Ψ(ST ) is the payoff function. The value of a contingent claim V (S, t) on the underlying asset
S then solves the PIDE given by

Vt + LV (S, t) = 0, (S, t) ∈ R+ × (0, T ], (2.4)

where the operator L is defined as

LV (S, t) =
σ2

2
S2VSS+(r−q)SVS−rV +

∫ +∞

−∞
f(y)[V (Sey, t)−V (S, t)−S(ey−1)VS(S, t)]dy. (2.5)

The function f(y) is the Lévy density function given in Table 1. The boundary and the initial
conditions encode the difference between American and European style options as well as between
puts and calls, and other types of options.

For European vanilla call options, the initial and the boundary conditions are given by

V (S, 0) = max(S −K, 0), V (0, t) = 0, V (S, t) = Se−qt −Ke−rt, as S →∞. (2.6)

where K is the strike price.
A butterfly spread is a neutral strategy that has a combination of a bull spread and a bear spread.

It is a limited profit, limited risk options strategy. There are three strike prices (discontinuities)
involved in a butterfly spread and it can be constructed using calls or puts. The initial and boundary
conditions of butterfly spread options are expressed as

V (S, 0) = max(S −K1, 0)− 2 max(S −K2, 0) + max(S −K3, 0), V (0, t) = 0, V (S, t) = 0, (2.7)
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Model Lévy density function

KoBol f(y) = C−e−G|y|

|y|1+Y 1y<0 + C+e−M|y|

|y|1+Y 1y>0

Meixner f(y) = Ae−ay

y sinh(by)

GH process f(y) = eβy

|y|

(∫∞
0

e−
√

2ζ+α2|y|

π2ζ
(
J2
|λ|(δ

√
2ζ)+Y 2

|λ|(δ
√

2ζ)
)dζ + max(0, λ)e−α|y|

)

Table 1: Density functions for Lévy Processes

where S is the stock price K1, K2 and K3 are three distinct strike prices such that 0 < K1 <
K2 < K3, with K2 = (K1 + K3)/2. In the KoBoL model [7], singularities are observed in the
kernel of integration. This model is known as the Carr, German, Madan and Yor (CGMY) [7]
when the parameters are set to be C− = C+ = C > 0, G > 0,M > 0 and Y ∈ [0, 2). The
parameter C indicates the overall level of activity. The parameters G and M are the measures
depicting the skewness of the Lévy density such that G = M yields a symmetric distribution.
When choosing G 6= M this leads to skewed distributions. The parameter Y describes the fine
structure of the stochastic process. At Y = −1, the KoBoL model leads to a special case of Kou’s
double exponential model [15]. Furthermore, for Y = 0, we obtain the variance Gamma process.
In a case of Y ∈ (0, 1), infinite activity models with finite variation are obtained and in a case of
Y ∈ [1, 2], infinite activity models with infinite variation are depicted. There exist other singular
kernel of integration Lévy processes. Meanwhile, the hyperbolic and generalized hyperbolic (GH)
are used to obtain better estimation for the stock returns [47]. Here, the functions Jν(·) and Yν(·)
are the Bessel functions of first and second kind, respectively. The Meixner process was introduced
in 1998 to model cases in which the environment is changing stochastically over time. The Meixner
process was shown to be a reliable valuation for some indices such as Nikkei 225 [45, 46].

3 Domain decomposition

Challenges arise when we want to approximate a function with a jump discontinuity by using a high
order finite difference methods or spectral methods. In general, the jump locations of a function
and its derivatives are not explicitly known and computationally expensive methods have to be used
to detect the location of these jumps [18]. Meanwhile, the case of infinite activity Lévy models
option pricing problems, these discontinuities are located at strike prices and singularities of the
density functions. Therefore, spectral domain decomposition methods [28] can be used to recover
the accuracy at discontinuity points. Following [32, 28], the domain D = [a, b] can be broken into
M sub-domains

D1 = (x(0), x(1)),D2 = (x(1), x(2)), .....,DM = (x(M−1), x(M)),

with x(0) = a, x(M) = b. In general, D is covered by M sub-domains as

D =

M⋃
µ=1

Dµ, (3.8)

where each sub-domains has its own set of basis functions and expansion coefficients

u(µ)(x) =

Nµ∑
k=0

ũ
(µ)
k φ

(µ)
k (x), x ∈ Dµ, µ = 1, .......M. (3.9)
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The notation u(µ) represents the approximation in the µth domain, and the different sub-domains
Dµ can touch or overlap each other. For example, to solve a second order non-linear elliptic PDE
or system of equations

(Nu)(x) = 0, x ∈ D, (3.10)

in some domain D ⊂ Rd with boundary conditions

g(u)(x) = 0 x ∈ ∂D,

where N and d respectively denote the elliptic operator and mappings, the matching conditions
must be satisfied. Hence, each function u(µ), defined only on the single sub-domain Dµ, must fit
together to form a smooth solution of (3.10) over the full domain D. For infinite resolution, the
following conditions at the limit must hold [32]:

1. When two sub-domains, Dµ and Dν , touch each other (patching), on their intersection surface
the function and its derivative must be smooth, hence

uµ(x) = uν(x)
∂uµ

∂n (x) = −∂uν

∂n (x)
x ∈ ∂Dµ ∩ ∂Dν .

(3.11)

2. When two sub-domains, Dµ and Dν , overlap each other (overlapping), the functions u(µ) and
u(ν) must be identical in Dµ∩Dν . Since the solution of a PDE is unique, we must prove that,
at a boundary of the overlapping domain,

u(µ)(x) = u(ν)(x) x ∈ ∂(Dµ ∩ Dν). (3.12)

In this paper, we restrict ourself to the patching methods. The calculation of the integral part can
be estimated over multi-domains as follows∫

D
u(x)dx =

∫
⋃M
µ=1Dµ

u(ν)(x)dx =

M∑
ν=1

∫
Dν
u(ν)(x)dx

≈
M∑
ν=1

∫
Dν
p

(ν)
N (x)dx =

M∑
ν=1

∫
Dν

∑N
j=0

ω
(ν)
j

x−xj u
(ν)
j∑N

j=0

ω
(nu)
j

x−xj

dx =
M∑
ν=1

N∑
j=0

λ
(ν)
j u

(ν)
j . (3.13)

In the next section we discretise the PIDE (2.4) by means of spectral domain decomposition meth-
ods.

4 Discretisation of the PIDE

Let us begin this section by transforming the PIDE (2.4) into a simpler one. Since the kernel of the
integral in (2.4) presents a singularity at y = 0, a useful technique is to split the real line, for an
arbitrary small parameter ε > 0, into two regions Ω1 = [−ε, ε] and Ω2 = R\Ω1 (the complementary
set of Ω1 in the real line). The integral on Ω1 is replaced by a suitable coefficient in the diffusion
term of the differential part of (2.4) obtained by Taylor expansion of V (Sey, τ) about S, see [11, 9].
This coefficient depending on ε is a convergent integral and takes the form

σ̆2(ε) =

∫ ε

−ε
f(y)(ey − 1)2dy = ε

∫ 1

−1
f(εφ)(eεφ − 1)2dφ, −1 6 ε 6 1. (4.1)
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Letting τ = T − t, the resulting approximating PIDE from (2.4) is given by

∂C

∂τ
=
σ̂2

2
S2∂

2C

∂S2
+ (r − q − γ(ε))S

∂C

∂S
− (r + χ(ε))C +

∫
Ω2

f(y)C(Sey, τ)dy, (4.2)

where

σ̂2 = σ2 + σ̆2(ε), γ(ε) =

∫
Ω2

f(y)(ey − 1)dy, χ(ε) =

∫
Ω2

f(y)dy. (4.3)

The approximation of σ̆2 in (4.1) is evaluated using the Clenshaw-Curtis quadrature and it is given
by

σ̆2(ε) ≈ ε
N∑
k=1

λkf(εφk)(e
εφk − 1)2, (4.4)

where φk = cos
(
kπ
N

)
, and λk, k = 0, 1, 2, ...., N , are the Chebyshev-Gauss-Lobatto (CGL) nodes

and the Clenshaw-Curtis weights [17, 41], respectively. The improper integrals χ(ε) and γ(ε) in
(4.3) are approximated using the shifted Laguerre–Gauss quadrature [16]. Under consideration of
the change of variables η = −y− ε for y < 0 and η = y− ε for y > 0, the expressions χ(ε) and γ(ε)
have the following forms

χ(ε) =

∫ ∞
0

(f(−η − ε) + f(η + ε))dη ≈
N∑
k=1

λ̄kF (ηk, ε), (4.5)

and

γ(ε) =

∫ ∞
0

[f(−η − ε)(e−(η+ε) − 1) + f(η + ε)(eη+ε − 1)]dη ≈
N∑
k=1

λ̄kG(ηk, ε), (4.6)

where
F (η, ε) = eη(f(−η − ε) + f(η + ε)),

G(η, ε) = eη
(
f(−η − ε)(e−(η+ε) − 1) + f(η + ε)(eη+ε − 1)

)
.

Here ηk are the roots of the Laguerre polynomial LN (η) of degree N defined by

LN (η) =
eη

N !

dN

ηN
(
ηNe−η

)
, (4.7)

and the weights λ̄k, k = 1, 2, . . . N , are determined as in [16] by

λ̄k =
1

ηk
(
L′N (ηk)

)2 =
ηk

(N + 1)2 (LN+1(ηk))
2 . (4.8)

4.1 Discretisation of the PIDE on a single domain

We transform the PIDE (4.2) into a constant coefficient PIDE using the transformation S = Kex

and u(x, τ) = V (S, t). One obtains

uτ − Lu(x, τ) = 0, (x, τ) ∈ R× (0, T ] (4.9)

where

Lu(x, τ) =
1

2
σ̂2uxx +

(
r − q − 1

2
σ̂2 − γ(ε)

)
ux − (r + χ(ε))u+

∫
Ω2

u(x+ y, τ)f(y)dy (4.10)
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We define the numerical domain by D = [yM , ym]. The discretised version of (4.10) is given by

u̇ = Au + Ju + ζ(τ), (4.11)

where u = [u1, u2, . . . , uN ], A = 1
2 σ̂

2D2 +
(
r − q − 1

2 σ̂
2 − γ(ε)

)
D1 − (r + χ(ε))D0. D2 and D1 are

matrices with entries defined by (A.7) and D0 is the identity matrix. J and ζ are defined in (4.15)
and (4.16), respectively.
For the sake of convenience in the numerical treatment we rewrite the integral part of (4.9) as
follows

J =

∫
Ω2

u(x+ y, τ)f(y)dy =

∫ +∞

−∞
u(x+ y, τ)f̂(y)dy

=

∫
D
u(x, τ)f̂(y − x)dy +

∫
R\D

u(y, τ)f̂(y − x)dy, (4.12)

where

f̂(y) =

{
f(y), y ∈ Ω2,
0, y ∈ Ω1.

(4.13)

We use the Clenshaw-Curtis quadrature rule to compute the first integral over the interval [ym, yM ]
to obtain ∫ yM

ym

u(x, τ)f̂(y − x)dy =
1

2
(yM − ym)

∫ 1

−1
f̂(y − x)u(x, τ)dφ,

≈ 1

2
(yM − ym)

N∑
k=0

λkf̂(xk − xj)u(xk, τ)

= Ju(τ) (4.14)

where u = [u0, u1, . . . , uN ]T and J is a (N + 1)× (N + 1) matrix with entries

(Jjk)06j,k6N =
1

2
(yM − ym)

(
λkf̂(xk − xj)

)
06j,k6N

. (4.15)

Let gL(x, τ) and gR(x, τ) be the left and right boundary conditions of the PIDE (4.9). Therefore,
the second integral over R \ [ym, yM ] is approximated using the shifted Laguerre–Gauss quadrature
[16] under consideration of the change of variables η = −y + ym for y < ym and η = y + yM for
y > yM . This leads to

ζ(x, τ) =

∫ ym

−∞
gL(x, τ)f̂(y − x)dy +

∫ ∞
yM

gR(x, τ)f̂(y − x)dy,

= −
∫ ∞
−ym

gL(x, τ)f̂(y − x)dy +

∫ ∞
yM

gR(x, τ)f̂(y − x)dy,

= −
∫ ∞
−ym

gL(x, τ)f̂(−y − x)dy +

∫ ∞
yM

gR(x, τ)f̂(y − x)dy,

=

∫ ∞
0

gL(x, τ)f̂(η − ym − x)dη +

∫ ∞
0

gR(x, τ)f̂(η + yM − x)dη,

≈ gL(x, τ)

N∑
k=0

λ̄ke
ηk f̂(ηk − ym − x) + gR(x, τ)

N∑
k=0

λ̄ke
ηk f̂(ηk + yM − x). (4.16)

7



4.2 Discretisation of the PIDE on multi sub-domains

On each sub-domain Dν , the PIDE can be written as

u(ν)
τ = A(ν)u+ B(ν)u+ ζ(ν)(τ), ν = 1, 2, . . . ,M, (4.17)

where

A(ν)u =
1

2
σ̂2u(ν)

xx +

(
r − q − 1

2
σ̂2 − γ(ε)

)
u(ν)
x − (r + χ(ε))u(ν), (4.18)

B(ν)u =

∫
Dν
u(ν)(x, τ)f̂(y − x)dy, (4.19)

and

ζ(ν)(τ) =

∫
R\D

u(ν)(y, τ)f̂(y − x)dy. (4.20)

Next, we discretise the PIDE (4.9) in the numerical domain D = [xmin, xmax] by the means of the
spectral domain decomposition method described in Section 3. To this end, we divide the domain
D into M sub-domains such that

D =

M⋃
µ=1

Dµ. (4.21)

The discretised version of (4.17) is given by

u̇(ν) = A(ν)u(ν) + J (ν)u(ν) + ζ(ν), ν = 1, 2, . . . ,M, (4.22)

where
u(ν) = [u

(ν)
1 , u

(ν)
2 , . . . , u

(ν)
Nν

],

A(ν)u(ν) =
1

2
σ̂2u(ν)D

(ν)
2 +

(
r − q − 1

2
σ̂2 − γ(ε)

)
D

(ν)
1 u(ν) − (r + χ(ε))D

(ν)
0 u(ν), (4.23)

J (ν)u(ν) =
[
(Jij)1≤i,j≤Nν

]
u(ν), J

(ν)
ij = λ

(ν)
j f̂ (ν)(xi − xj), (4.24)

and I(ν)u = ζ(τ) which incorporates the boundary conditions. Letting Lν = Aν +Bν +I, Equation
(4.22) becomes

u̇(ν) = L(ν)u(ν) + ζ(ν)(τ). (4.25)

The solution on the whole domain D is given by

u̇ = Lu + ζ(τ), (4.26)

where

L =

 L(1)

. . .

L(M)

 , u =

 u(1)

...

u(M)

 , u(ν) =


u

(ν)
1
...

u
(ν)
Nν

 , ν = 1, 2, . . .M. (4.27)

Note that when two sub-domains Dν and Dν+1, touch each other, we apply the continuation
conditions of the form 

u(ν)(x)
∣∣
x=x

(ν)
Nν

= u(ν+1)(x)
∣∣
x=x

(ν+1)
1

∂u(ν)

∂x (x)
∣∣∣
x=x

(ν)
Nν

= ∂u(ν+1)

∂x (x)
∣∣∣
x=x

(ν+1)
1

. (4.28)

These last equations are reduced to ODEs when the boundary conditions of a call or put option are
imposed in each sub-domains. The obtain ODEs are solved by using Exponential time differencing
(ETD) schemes.
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4.3 Exponential time differencing schemes

We consider to solve the system of ODEs (4.26)

u′ = Lu+ b(t), u0 = u(0), (4.29)

where L is either a block dense diagonal matrix or a dense matrix depending on the number of
domain in consideration, using exponential time differencing methods.
Exponential time differencing (ETD) schemes are known as an alternative to implicit methods for
solving stiff systems of ODEs [35, 22, 36]. These methods rely on a fast and stable computation of
ϕ-functions

ϕ0(z) = ez, ϕj(z) =
1

(j − 1)!

∫ 1

0
e(1−θ)zθj−1dθ, j ≥ 0, (4.30)

i.e., functions of the form (ez − 1)/z. The computation of these functions depends significantly on
the structure and the range of eigenvalues of the linear operator and the dimensionality of the semi-
discretised PDE. Unfortunately, for spectral methods the linear parts have eigenvalues approaching
zero, which leads to complications in the computation of the coefficients. Saad [35], and Hochbruck
and Lubich [20] introduced Krylov methods to compute ϕ-functions. Kassam and Trefethen [22]
used Cauchy integral representation on a circle for a stable computation of ϕ-functions. Other
evaluations of exponential and related ϕ-matrix functions follow the idea of Schmelzer and Trefethen
[36]. This method is based on computing optimal rational approximations to the matrix functions
on the negative real axis using the Carathéodory-Fejér procedure [42],

The system of ODE (4.29) can be integrated explicitly on the interval [0 T ] to give

Y (T ) = eLTY (0) + eLT
∫ T

0
e−Ltb(t)dt. (4.31)

The following lemma provides the background for the time stepping procedure for the evaluation
of (4.31).

Lemma 4.1. ([30]) The solution of the non-autonomous linear initial value problem

u′ = Lu+

p−1∑
j=0

τ j

j!
bj+1, uτ0 = u0, (4.32)

has the solution

u(τ0 + h) = ϕ(hL)u0 +

p−1∑
j=0

j∑
`=0

τ j−`0

(j − `)!
h`+1ϕ`+1(hL)bj+1. (4.33)

The proof of the above lemma can be found in Nielsen and Wright [30]. The computation of the
matrix functions ϕ is obtained by means of the Krylov projection algorithm [30].

5 Numerical results

In this section, we numerically solve the PIDE discretised in Section 4. Two options are used to
compare the accuracy of the CGMY, Meixner and GH models on the financial PIDE. We refer as
Example 1, the case of European call options and as Example 2, the case of butterfly call options.

Example 1. We consider a European call option with K = 50, T = 0.5, r = 0.05, q = 0, σ =
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0.2, ε = 0.1, xmin = −3 and xmax = 1. The parameters K,T, r, q, σ respectively represent the strike
price, the time of maturation, the interest rate, the continuous dividend and the volatility of the
underlying asset price. The parameters for Lévy models used in this example and arbitrary cho-
sen for computation purpose and are given in Table 2. Next, we discretise the PIDE (4.9) in the

Model Parameters

GBM (Black-Scholes) K = 50, r = 0.05, σ = 0.2, q = 0 and T = 0.5.

CGMY C− = 0.3, C+ = 0.1, G = 15, M = 25 and Y = 20.

Meixner A = 15, a = −1.5 and b = 50.

GH α = 4, β = −3.2, δ = 1.4775 and λ = −3

Table 2: The parameters for Lévy models used in both examples.

numerical domain D = [xmin, xmax] by the means of the spectral domain decomposition method
described in Section 3 such that

D = D1 ∪ D2 ∪ D3 ∪ D4, (5.1)

where D1 = [xmin,−ε], D2 = [−ε, 0], D3 = [0, ε] and D4 = [ε, xmax]. The domain D is divided into
four sub-domains. Figure 1 (a) represents the matrix structure of L in Equation (4.26) using finite
difference and a naive spectral methods for spatial discretisation of the PIDE (4.9). Note that
the matrix in Figure 1 (a) in both finite difference and a naive spectral method discretisation. In
the case of FD methods, the matrix L is full due to the discretisation of the nonlocal part (4.19).
Figure 3 (b) and (c) represent the structure of the matrix L in Equation 4.26, obtained by means
of spectral domain decomposition methods where the continuity conditions (4.28) were applied.
These block diagonal matrices are preferred to full matrices in a sense that they reduce the number
of unknowns and the computational time in solving the linear system (4.29). It is important to note
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Figure 1: Spectral domain decomposition method matrix structures

that Figure 1(b) depicts the matrix representation in the case of European call options with four
sub-domains, while Figure 1(c) illustrates the case of butterfly spread options with six sub-domains.
Figure (2) represents numerical solutions of European call options and their Greeks (∆ = ∂V

∂S and
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Figure 2: Numerical valuation of European call options for the KoBoL, Meixner and GH model
with their Greeks for the parameters in Table 2.

Γ = ∂2V
∂S2 ) under KoBoL, Meixner and GH Lévy models. The Greeks measure the sensitivity of the

option value with respect to the variations in the asset price and the parameters associated with
the model [38]. In practice, accurate approximations to Greeks are needed for hedging purposes.
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Figure 3: Convergence of the SDDM and FDM for European vanilla call options for the parameters
in Table 2.

In order to show the superiority of the SDDM over the FDM, we perform some numerical
experiments on the case where Equation (2.2) is a geometric Brownian motion leading to a standard
Black-Scholes equation. To show the efficiency of the present method we report the the maximal
norm error ME = max |UAnalytical − UNumerical| between analytical solutions (available for the
Black-Scholes model) and numerical solutions. In Figure 3, we investigate the tradeoff between
computational time (CPU time) and the accuracy as the number of grid points (NT ) increases for
European call options. Clearly the SDDM is faster and more accurate than the FDM and achieves
spectral convergence as expected.

For the general PIDE (2.5), we report the accuracy of our numerical scheme by means of absolute
error AE = |UBenchmark −UNumerical| where UBenchmark and UNumerical represents the benchmark
solution computed with N = 150 (the number of grid points in each sub-domain) and the numerical
solution, respectively. Table 3 shows the benchmark solution values at S = {40, 50, 60} for different
Lévy models. We vary the number of grid points N and compute the absolute errors (AE) for each
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Lévy model. Table 4 represents all the computed AE values for each Lévy model with different
values of N and S. In all the cases, the number of grid points is chosen to be N = 100.

We observe a very rapid decrease of the AE as the number of grid points N increases. Note
that the approximations of order 10−4, 10−5, 10−7 and 10−10 in Table 4 are in general difficult to
attain with standard finite difference, finite element and finite volume methods.

Model S
40 50 60

KoBoL 0.2210443864 3.3785900783 11.3681462140
Meixner 1.3420365535 5.4934725848 12.7780678851
GH processes 0.3237597911 3.8485639686 11.9164490861

Table 3: The benchmark European call option values under Lévy processes with different values of
S and N = 150 for the parameters in Table 2.

SDDM FDM
S 40 50 60 40 50 60
N AE AE AE CPU AE AE AE CPU

10 1.15e−4 1.28e−4 1.35e−4 0.30 1.14e−2 5.72e−2 9.55e−3 0.61
KoBoL 15 1.23e−5 1.73e−5 1.45e−5 0.34 2.03e−3 1.55e−2 1.75e−3 0.72

20 2.75e−7 2.13e−7 2.34e−7 0.40 6.25e−4 4.09e−3 6.06e−4 0.87
25 3.33e−10 3.15e−10 3.24e−10 0.53 2.75e−4 1.91e−3 2.37e−4 1.32

10 2.12e−4 2.45e−4 2.35e−4 0.32 1.46e−2 4.35e−2 8.51e−3 0.65
Meixner 15 2.78e−5 2.65e−5 2.67e−5 0.35 2.66e−3 1.16e−2 2.13e−3 0.78

20 3.40e−7 3.23e−7 3.14e−7 0.41 6.45e−4 3.95e−3 5.45e−4 0.86
25 4.77e−10 4.65e−10 4.33e−10 0.55 2.35e−4 1.02e−3 2.14e−4 1.41

10 3.33e−4 3.29e−4 3.17e−4 0.65 1.45e−2 5.33e−2 7.13e−3 1.33
GH processes 15 4.55e−5 4.370e−5 4.14e−5 0.82 2.15e−3 1.04e−2 5.72e−2 1.61

20 5.14e−7 5.21e−7 5.14e−7 1.41 5.61e−4 4.02e−3 6.12e−4 2.94
25 7.11e−10 7.25e−10 7.33e−10 1.82 2.36e−4 1.21e−3 3.01e−4 3.51

Table 4: Absolute errors (AE) of the benchmark and the European call option apply to the KoBoL,
Meixner and GH processes models with different values of N and S for the parameters in Table 2.

Example 2. In this subsection, we investigate the performance of our proposed method for
valuing European butterfly options under Lévy models at the strike prices K1 = 40, K2 = 50 and
K3 = 60 using the parameters presented in Table 2 and in Example 1. In this particular case,
we need to divide the domain at five different points, namely three different strike prices (K1, K2

and K3), and at two singularities (−ε and ε) present in the kernel of the integral (4.13)). Figure
4 represents numerical solutions of European butterfly call options and their Greeks (∆ = ∂V

∂S and

Γ = ∂2V
∂S2 ) under the KoBoL, Meixner and GH Lévy models.

In Figure 5 we investigate the tradeoff between computational time and the accuracy as the
number of grid points increases for European vanilla butterfly call options. Clearly the SDDM is
faster and more accurate than the FDM and achieves spectral convergence as expected.
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Figure 4: Numerical valuation of European butterfly call options for the KoBoL, Meixner and GH
model with N = 16,K1 = 40,K2 = 50,K3 = 60 for the parameters in Table 2.
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Figure 5: Convergence of the SDDM and FDM for European vanilla butterfly call options for the
parameters in Table 2.

Model S
40 50 60

KoBoL 2.2845953002 4.6814621409 2.1592689295
Meixner 2.2689295039 3.7101827676 2.3159268929
GH processes 2.3942558746 4.2898172323 1.7989556135

Table 5: The benchmark values of the European butterfly call option values under Lévy processes
with different values of S and N = 100 for the parameters in Table 2.

Table 5 shows the benchmark prices of butterfly call options. Table 6 depicts the AE between
benchmark prices and numerical solutions of each model with different values of N and S. We
observe a very rapid convergence in the case of European butterfly spread option which has five
regions of singularity. Our approach allows a high resolution of grids around the strike prices K1,
K2 and K3, and at two singularities −ε and ε present in the kernel of the integral (4.13). Once
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SDDM FDM
S 40 50 60 40 50 60
N AE AE AE CPU AE AE AE CPU

07 1.88e−4 1.76e−4 1.76e−4 0.20 1.24e−2 5.81e−2 8.98e−3 0.62
KoBoL 10 1.45e−5 1.81e−5 1.71e−5 0.28 1.98e−3 1.63e−2 2.05e−3 0.73

13 2.91e−7 2.33e−7 2.25e−7 0.33 5.99e−4 4.29e−3 5.66e−4 0.87
16 3.72e−10 3.34e−10 3.81e−10 0.44 2.83e−4 2.11e−3 2.48e−4 1.41

07 2.45e−4 3.32e−4 3.22e−4 0.24 1.56e−2 4.28e−2 8.88e−3 0.63
Meixner 10 2.72e−5 2.75e−5 2.46e−5 0.24 1.99e−3 1.23e−2 2.34e−3 0.75

13 3.54e−7 3.28e−7 3.69e−7 0.34 6.25e−4 4.05e−3 5.32e−4 0.85
16 5.68e−10 5.55e−10 5.88e−10 0.42 2.44e−4 1.24e−3 2.51e−4 1.42

07 3.12e−4 3.02e−4 3.45e−4 0.51 1.25e−2 5.71e−2 6.97e−3 1.32
GH processes 10 5.51e−5 6.1e−5 5.92e−5 0.68 2.13e−3 1.21e−2 5.87e−2 1.63

13 7.11e−7 7.25e−7 7.33e−7 0.82 5.11e−4 4.14e−3 6.22e−4 2.91
16 8.25e−10 9.12e−10 9.23e−10 1.32 2.53e−4 1.31e−3 3.12e−4 3.48

Table 6: Absolute errors (AE) of the benchmark and the European call option apply to the KoBoL,
Meixner and GH processes models with different values of N and S for the parameters in Table 2.

again, we obtain approximations of order 10−4, 10−5, 10−7 and 10−10 in Table 6.

6 Conclusion

We have presented a spectral domain decomposition method coupled with the exponential time
integrator (4.31) for pricing European call and European butterfly call options for a class of infinite
activity Lévy models, including the KoBoL, Meixner and GH models. Our method produced fast
and very accurate results for Example 1 and 2 as compared to FDM. Furthermore the computed
Greeks were free of spurious oscillations. Currently, we are investigating our approach to solve
multi-asset Lévy models.
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Appendices

A Numerical interpolations and applications

In practice, we are often confronted with situations where only limited amount of data is
accessible and it is necessary to estimate values between two consecutive given data points. We
can construct new points between known data points by interpolation or smoothing techniques.
In finance, as only a finite set of securities are traded in financial markets, it is very important
to construct a sensible curve or surface from discrete observable quantities using interpolation
methods.
In this section, we review concept of interpolation, differentiation matrix and quadrature rule
in barycentric spectral method framework in one domain and multi-domains.

A.1 Spectral barycentric interpolation

The review done by [3] on the Lagrange interpolation and the barycentric formula shows the
importance of the discretization in space with spectral methods. At first, a polynomial uN (x)
is considered to be found among the vector space of all polynomials of degree N such that
uN (xj) = uj with j = 0, ....., N . The result can be written in Lagrange form as ([26])

uN (x) =
N∑
j=0

ujφj(x), φj =
N∏

k=0,k 6=j

x− xk
xj − xk

, (A.1)
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with Lagrange polynomial φj corresponding to the node xj having the property

φj(xk) =

{
1 when j = k
0 otherwise.

. (A.2)

The evaluation of (A.1) requires an O(N2) additions and multiplications. In addition the
presence of instability in the numerical computation is certain. Therefore, a modifications of
(A.1) is required to overcomes those disadvantages. Hence, Berrut and Trefethen [4] proposed
a more stable barycentric formula of (A.1) that allows the computation of uN (x) in O(N)
operations. The new formula is written as

uN (x) =

N∑
j=0

ujφj(x), φj =

ωj
x−xj∑N
j=0

ωj
x−xj

, ωj =
1∏

k 6=j(xj − xk)
, (A.3)

where w0, w1, . . . , wN are called barycentric weights.
It is a well known that an adequate choice of nodes contributes in a decisive manner to
improve the accuracy of the approximation and reduce the computational effort. In this paper,
a valuable selection is the well-known Chebyshev-Gauss-Lobatto (CGL) nodes xk = cos(kπN ),
k = 0, 1, 2, ...., N , [17, 41], which are not uniformly distributed but clustered near the endpoints.
The corresponding set of barycentric weights is w0 = c/2, wk = (−1)kc, k = 1, . . . , N − 1, and
wN = (−1)Nc/2 for some non-zero constant c [2]. Note that for every set of points {xk}, there
is a unique set of barycentric weights {wk}. More details are given in [4] to obtain (A.3).

A.2 Differentiation matrix

An important task in pseudo-spectral methods is to compute the derivatives u(p)(x) in terms
of the values of u(x) at the collocation points xk. A common, practical and efficient way is
the use of differentiation matrix which allows to perform the numerical differentiation in a
straightforward way in terms of matrix–vector products. For u(x) sufficiently smoothness and
p positive integer number, one can approximate the pth derivative of u(x) by

u
(p)
N (x) = D(p)u, (A.4)

where the entries of the p-order differentiation matrix D(p) are given by

d
(p)
jk = φ(p)(xj), j, k = 0, . . . , N. (A.5)

Welfert [44] proposed the following hybrid formula to compute the entries of the p-th order
differentiation matrix,

d
(p)
jk =


p

(xj − xk)

(
ωk
ωj
d

(p−1)
jj − d(p−1)

jk

)
if j 6= k,

−
N∑

i=0,i 6=k
d

(p)
ji , if j = k.

(A.6)
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In the above, the entries of the first and the second differentiation matrices D(1) and D(2) are
given as ([44]):

d
(1)
jk =


ωk

ωj(xj − xk)
if j 6= k,

−
N∑

i=0,i 6=j
d

(1)
ji if j = k,

, d
(2)
jk =


2d

(1)
jk

(
d

(1)
jj −

1

xj − xk

)
if j 6= k,

−
N∑

i=0,i 6=j
d

(2)
ji , if j = k,

(A.7)

where j, k = 0, 1, . . . , N . These differentiation matrices are more stable, with respect to round-
ing errors, than direct evaluation [44]. In view of the above setting, the rational collocation
interpolation (A.3) enjoys exponential convergence property as stated in the following theorem.

Theorem A.1. ([39]). Let u(x) be analytic in [-1, 1]. Then, there exists a constant ρ > 1
such that for any integer p ≥ 0 such that

max
x∈[−1,1]

∣∣∣u(p)(x)− u(p)
N (x)

∣∣∣ = O(ρ−N ). (A.8)

The constant ρ refers to the Bernstein ellipse Eρ in which u is analytically continuable. For
large regions in the complex plane in which u is analytical, the interpolation polynomials uN
has a faster convergence to u as N grows (and the same holds for the respective derivatives).

A.3 Spectral barycentric quadrature

Let u be a real function and N +1 the number of sampled points. The approximation or linear
quadrature rule I ≈

∑N
j=0 λjuj of the integral I =

∫ b
a u(x)dx can be achieved by two different

ways:

• non-uniform grids, e.g. Gauss or Clenshaw–Curtis quadrature;

• uniform or equispaced points, e.g. the Newton–Cotes, trapezoidal rule, Simpson or Boole.

In this article, we consider the Clenshaw–Curtis quadrature. We now show how the replacement
of polynomial by linear rational interpolation leads to quadrature formulas which allow arbi-
trarily large numbers of equispaced nodes. Clearly, every linear interpolation formula trivially
yields a linear quadrature rule. For a barycentric rational interpolant, we have:∫ b

a
u(x)dx =

∫ b

a
pN (x)dx =

∫ b

a

∑N
j=0

ωj
x−xj uj∑N

j=0
ωj
x−xj

dx =

N∑
j=0

λjuj , (A.9)

where

λj =

∫ b

a

wj
x−xj∑N
j=0

wj
x−xj

dx (A.10)

is the integral of the jth Lagrange fundamental rational function. There are two different ways
to compute (A.10):

• On one hand, one can use the direct rational quadrature. The technique consists of apply-
ing existing quadrature rules such as Gauss–Legendre or Clenshaw–Curtis [13, 40], which
are known to perfectly approximate the integrals in (A.10).

19



• On the other hand, we can apply the indirect rational quadrature. This may produce the
integral I =

∫ b
a u(x)dx through the solution of an ordinary differential equation, see e.g.

[23].

The Clenshaw-Curtis quadrature formula has the following convergence property.

Theorem A.2 ([13, 40]). Let f an analytic function in [−1, 1] and analytically continuable
with |f(z)| < M in the closed ellipse Eρ. The error in IN (f), the Clenshaw-Curtis quadrature
of degree N to I(f), will decay geometrically with the bound

|I − IN | ≤
64M

15(ρ2 − 1)(ρN−1 − ρ−(N−1))
, N ≥ 3 odd. (A.11)

In other words,
|I − IN | = O(ρ−N ). (A.12)

Proof. See [13].
The main advantage with the Clenshaw-Curtis quadrature rule is that its weights and nodes
can be computed efficiently via a fast Fourier transform (FFT) in only (O(N lnN)) operations.
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