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Abstract

Blade Tip Timing (BTT) has been in existence for many decades as an attractive vibration based
condition monitoring technique for turbomachine blades. The technique is non-intrusive and online
monitoring is possible. For these reasons, BTT may be regarded as a feasible technique to track
the condition of turbomachine blades, thus preventing unexpected and catastrophic failures. The
processing of BTT data to find the associated vibration characteristics is however non-trivial. In
addition, these vibration characteristics are difficult to validate, therefore resulting in great uncertainty
of the reliability of BTT techniques. This article therefore proposes a hybrid approach comprising a
stochastic Finite Element Model (FEM) based modal analysis and Bayesian Linear Regression (BLR)
based BTT technique. The use of this stochastic hybrid approach is demonstrated for the identification
and classification of turbomachine blade damage. For the purposes of this demonstration, discrete
damage is incrementally introduced to a simplified test blade of an experimental rotor setup. The
damage identification and classification processes are further used to determine whether a damage
threshold has been reached, therefore providing sufficient evidence to schedule a turbomachine outage.
It is shown that the proposed stochastic hybrid approach may offer many short- and long-term benefits
for practical implementation.
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1. Introduction

Industry is increasingly confronted by ageing turbines prone to unexpected and catastrophic failure.
This raises questions with respect to safety and optimal outage planning [1] and increases the need
for enhanced Remaining Useful Life (RUL) estimation [2, 3]. Turbomachine blades, generally low
pressure steam turbine blades [4], undergo multiple and severe excitations during normal operation.
This commonly leads to reduced fatigue life, the risk of crack formation and ultimately an increased
risk of failure. The most dangerous excitation frequencies should ideally be avoided during operation.
However, this is not always possible as the turbine rotational speed is ramped up through blade
resonant frequencies [5]. Conventional turbomachine blade monitoring techniques include metallurgical
assessments or the application of strain gauges. These approaches are nevertheless far from ideal as
they are largely intrusive and result in undesirable downtime [6].
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Blade Tip Timing (BTT) is presently considered the most promising technique for blade monitoring,
mainly due to its non-intrusive nature and potential for online application [5]. Furthermore, the use
of BTT makes it possible to measure the vibrational state of each blade on a particular row of a
rotating disk. This is achieved by using a set of proximity probes placed circumferentially around the
casing which sense when a blade passes. The direct application of BT'T for vibration monitoring has
existed since the 1970s. Yet, this technology is still maturing [5, 7|. Despite being considered promising,
scepticism surrounding this method persists. The authors of [8] speculate that unless a BTT technique
is made simple and reliable to implement, power plants will not find it attractive to invest in upgrading
for safe operation of turbomachines. The following requirements are therefore a prerequisite for BTT
techniques to appeal to industry:

1. Simple implementation of testing equipment and post-processing methodologies.
2. Proven reliability in terms of accuracy, robustness and generality of BTT algorithm.

The purpose of this research is to advance the state of the art in BTT technology into a stochastic
hybrid approach. The proposed approach uses the outputs of a recently developed BTT technique
based on Bayesian Linear Regression (BLR), introduced in [9], and a stochastic FEM based modal
analysis. In this approach the FEM based modal analysis supplements the BTT results and the
stochastic nature of this approach quantifies the uncertainty of the blade condition. This stands in
stark contrast to the vast majority of current BTT research where purely data-driven approaches are
used, most of them being deterministic in nature. It should be emphasised that the novelty of the
research paper lies in the implementation of the proposed stochastic hybrid BTT approach used for the
identification and classification of turbomachine blade damage. The detailed overview of the particular
BTT algorithm based on BLR, or BTT for that matter, is therefore not provided. This paper rather
intends to highlight the many advantages of adopting a hybrid stochastic BTT approach in an attempt
to overcome foreseeable uncertainty in using a purely BTT driven approach for turbomachine blade
condition monitoring. In doing so, the many long- and short-term benefits of adopting this hybrid
approach as a condition based monitoring technique are discussed.

2. Proposed methodology

Diamond et al. [9] highlight that there is no consensus in published literature as to which BTT data
processing method attains the greatest reliability. The reason is partly due to the difficulty associated
with turbomachine blade vibration measurements and more so the validation of these measurements.
The research of [9] compares three different BTT algorithms on simulated blade vibration data for
a number of different cases. This allows the accuracy of each algorithm to be determined under
different circumstances. However, the accuracy of practical BTT results may be difficult to determine
without prior knowledge of the blade behaviour under different operating conditions. A hybrid approach
consisting of a BTT analysis and a stochastic Finite Element Analysis (FEA) is therefore proposed
here. Figure 1 outlines the proposed hybrid approach. The application of this hybrid approach aims
to alleviate the disadvantages of an individual analysis type while conserving its advantages [2]. The
following remarks highlight the advantages of the proposed hybrid methodology:

1. The FEA establishes a baseline for comparison before any BTT tests are performed.

2. The FEA makes it possible to project expected blade conditions, which may not be available from
the BTT measurements for quite some time. The use of a FEA therefore enables a predetermined
turbomachine blade damage threshold to be established, based on an acceptable severity of damage.

3. The BTT analysis accounts for real blade behaviour and aspects not considered using the FEA.



4. Combining the individual approaches may ultimately result in a higher prediction accuracy with
regards to the turbomachine blade condition.

Figure 1 indicates that the results from the hybrid approach will be used for two analyses, namely:

1. Damage identification: The relative change in the natural frequency of the blade is tracked in
order to identify and infer the degree of blade damage.

2. Damage classification: The natural frequency and amplitude derived from the BTT results are
clustered using predetermined mean values as initial cluster centres. The clustering of these values
enable the severity of the blade damage to be classified.

Figure 1 indicates that a blade damage threshold will be established for the aforementioned damage
identification and classification analyses. If this threshold is met the operation of the turbomachine
should be stopped and relevant maintenance operations should commence. Furthermore, the BTT
analysis will be repeated continuously until this threshold is reached. Importantly, the measured BTT
data is archived to form a database of the individual blade conditions. The archived data is important
in the sense that it establishes a reference condition for the damage identification and classification of
the BTT data. The proposed methodology shown in Figure 1 was tested on a laboratory setup and is
discussed in detail in the remainder of the article.
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3. BTT analysis

3.1. Background and basic principles

The fundamental principles behind BTT are relatively straightforward; the measured Time-of-Arrival
(ToA) information of the blades passing a proximity probe is analysed to indicate the vibrational state
of each blade. The ToA of a non-vibrating blade is completely dependent on the angular velocity of the
shaft. However, a vibrating blade arrives either earlier or later than expected at the proximity probe.
This physically translates into the vibrating blade leading or lagging at the proximity probe. The blade
tip displacement may be calculated from the change in Angle of Arrival (AAoA) of a vibrating blade
which is derived by using a Once Per Revolution (OPR) pulse as a shaft reference position [9].
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Figure 2: Basic BTT principles.

Figure 2 illustrates the basic BT'T principles in terms of what is physically measured using the proximity
probe (left) and how these measurements are represented as a ToA (right). BTT may therefore be
considered as a three-step process [5]:

1. Acquiring the ToA of the individual blades at each proximity probe.
2. Deriving the blade tip displacements from the AAoA.

3. Analysing this data and extracting the desired results.

3.2. BTT algorithm

Extracting the blade vibration from AAoA is a non-trivial task. This is due to the measured signals
being aliased or sub-sampled, therefore inhibiting conventional signal processing. Many BTT algorithms
have been developed to overcome these difficulties and are divided into two main categories [5, 9]:

1. Indirect methods: The maximum amplitude and corresponding frequency at resonance is determined
during transient operating conditions. Only one or two proximity probes are required.

2. Direct methods: The maximum amplitude at each measured rotational speed is determined during
steady state operating conditions. At least four proximity probes are normally used.

This article considers a recently developed direct BTT method based on statistical infererence. This
technique employs BLR and is attractive for use in practical applications for a number of reasons [9].
Firstly, the amplitude and phase may be determined at each measured rotational speed.



This results in a detailed picture of these parameters and their changes over the operating domain.
Secondly, the processed data considers the whole range of inferential solutions, therefore resulting in a
stochastic solution. Lastly, the stochastic nature of the processed data allows one to establish confidence
intervals for the amplitude and phase. This allows noise tolerant behaviour for this technique.

3.3. Fxperimental investigation

The experimental investigation generated practical data for the use in the hybrid approach. More so, the
experimental investigation tested the ability of the BLR based BTT technique to provide the relevant
information for the blade damage identification and classification outcomes. In order to do so, incremental
blade damage was introduced to selected blades and synchronous blade vibrations were induced in the
experimental investigation. Synchronous blade vibrations occur as an Engine Order (EO) of the shaft
rotational speed and is generally a result of the fluid-flow path being obstructed by a multiplicity of
structural components [10]. This category of blade vibration is notoriously difficult to measure, mainly
due to the similar tip displacements being measured for each revolution, therefore resulting in the
redundancy of multi-revolution measurements. The details of the experimental investigation follows.

Ezxperimental setup

The experimental setup broadly consisted of the following: rotor assembly, excitation mechanism,
sensors, an acquisition system and a signal generation system. LabVIEW 2015, with associated National
Instruments voltage output card, were used to generate signals controlling the motor speed. For a sanity
check, the sensitivity of the chosen BTT technique to sampling frequency was investigated by using two
independent Data Acquisition Devices (DAQs). The OROS OR35 DAQ with NVGate software had a
sampling frequency limitation 65.536 kHz for the required number of input channels. The HBM Genesis
High Speed DAQ, with Perception software, had a much higher sampling frequency at 1 MHz as well as
a higher resolution. Figure 3 highlights the main components of the experimental setup.

(a) Rotor assembly. (b) Casing with proximity probes.

Figure 3: Experimental setup.



The components of the experimental setup, with reference to the labels in Figure 3, are as follows:
a. Compressed air supply nozzles for blade excitation (top and bottom of casing).

b. Bladed assembly comprising 5 aluminium 6082 T6 simplified blades. The blades have a root-to-tip
length of 132mm, a width of 40mm and are 2mm thick (as indicated in Figure 4).

c. Central blade hub with slip ring mounting holes (for strain gauge wiring). The strain gauges were
used for the initial sanity check of the BTT results of the damaged blade.

d. Rotor casing with 4 irregularly spaced eddy current probes. The irregular spacing of these eddy
current probes was informed by the recommendations made in [9].

e. Shaft connected to a motor with variable speed control.

Ezperimental methodology

Figure 1 highlights that the results from the chosen BTT technique are used to identify and classify
blade damage. In order to do so, the BTT technique based on BLR was first tested in terms of detecting
a noticeable change in the natural frequency of a blade. Discrete damage was introduced to a single
blade as part of a preliminary test. Distinct differences were noticed between the healthy blades and
the damaged blade with regards to the resultant amplitude, phase characteristics and derived natural
frequency. The details of the post-processing procedure used to derive these vibrational characteristics
are presented in Section 3.4. As expected, the natural frequency proved to decrease as the increased
damage reduced the blade stiffness. Subsequent to this, a more controlled experimental procedure was
followed to test the proposed hybrid approach with regards to identifying and classifying blade damage.
The following experimental procedure was followed for the BTT analysis of the hybrid approach:

1. The rotor assembly blades were numbered to keep a record of the blade specific results. Figure 5a
gives an example of the measured voltage pulses at the four proximity probes. Figure 5a also shows
the extracted ToAs at a chosen trigger level, as a result of linear interpolation. The raw proximity
probe signals indicate that a specific blade was slightly longer than the others. This blade was
used as a reference blade and referred to as blade 1. Blade 2 was selected as the test-blade.

2. An initial modal analysis was performed using a FEA to determine where the maximum stress
concentration occurs for the first bending mode (only the first bending mode was considered for
this investigation). Figure 4a shows that the maximum stress concentration for the first bending
mode occurs directly and slightly above the blade fillet. The discrete damage was therefore
introduced in this region, due to crack formation as a consequence of fatigue commonly occurring
in maximum stress concentration regions [11, Chapter 6].

3. The size of the incremental damage introduced to blade 2 corresponded to the values shown in
Table 1. The relative crack sizes were computed as a percentage of the total width (40mm) of the
blade. The small size of the discrete damage aimed to test the ability of the BTT technique to
track small changes in the natural frequency of the blade due to the introduced damage.

4. The shaft speed was ramped up from 1195 RPM to 1330 RPM and down again in order to pass
through the blade resonant frequencies. The resonant frequencies across the motor operational
speed range were predetermined from a Campbell diagram generated by a simple FEM modal
analysis. This FEM modal analysis does not form part of the proposed hybrid approach outlined
in Figure 1. The strain gauges shown in Figure 4b were also used as an initial sanity check of
the blade natural frequencies which were extracted using a Fast Fourier Transform (FFT) of the
recorded time-voltage signal. The compressed air supply (begind the top and bottom of the rotor)
excited the first mode of vibration of the blades during rotation.



5. The experimental BTT tests were repeated 6 times for each of the damage increments shown
in Table 1 (72 tests in total). The repetitive nature of the experiments aimed to determine the
robustness of the chosen BTT technique. In order to control the comparison of the extracted
blade phase results between tests, it was important to synchronise all the measured proximity
probe signals with respect to a certain shaft encoder pulse. This synchronisation enabled all the
proximity probe signals for all the tests to start on the same pulse. Figure 5b shows that blade 1
at probe 1 was used for this synchronisation. The sensitivity of the BTT measurement accuracy
to data acquisition sampling frequency was investigated by performing 3 tests per DAQ for the
particular damage increment.

6. The ToAs were extracted from the raw voltage shaft encoder and proximity probe signals at a
chosen trigger level. Figure 5a gives an example of the extracted proximity probe signal ToAs for
the various blades. The extracted ToAs were then used directly in the BTT post-processing to
derive the amplitude, phase and associated blade natural frequencies (discussed in Section 3.4).

In summary a few important aspects with regards to the experiment are highlighted as follows. Discrete
damage was introduced incrementally from an originally healthy state, with the most severely damaged
blade shown in Figure 4b. The introduction of incremental damage aimed to test the ability of the
proposed hybrid approach with regards to the damage identification and classification processes. These
processes require the derivation of the blade vibrational characteristics; i.e. amplitude, phase and
associated natural frequencies. The derivation of these characteristics follows in Section 3.4. The
incremental change in the size of the introduced damage was kept small. This aimed to test the ability
of the proposed BTT approach to track small changes in the natural frequency of the blade as the size
of the discrete damage was increased. The strain gauges along with an FFT were merely used as an
indicator of what level of damage would result in a desired change in the blade natural frequency, as
well as a sanity check of the natural frequencies derived from the BTT data. Furthermore, it should be
reiterated that the initial FEM modal analysis does not form part of the proposed hybrid approach.
The initial FEM modal analysis essentially highlighted where the maximum stress concentration would
be for the first bending mode of vibration as well as the associated natural frequency to choose the
relevant shaft speed profile.

The introduced incremental damage lengths are shown in Table 1 below. The damage severity classifica-
tions in this table are discussed as part of the damage classification procedure in Section 5.2. Images of
the test blade (blade 2) and the raw voltage signals follow in Figures 4 and 5 respectively.

Table 1: Incremental discrete damage introduced to blade 2.

Damage Increment | Crack Size (mm) | Damage Severity Classification
0
0.90
1.11
1.28
1.58
1.81
3.11
3.87 Mid-severity (Range of damage II)
5.60
6.97
8.30 Severe (Range of damage III)
8.61

Non-severe (Range of damage 1)

—_ =
Sl oo ok wo e

_
[\




Blade tip

[43

e

Damage introduced

Highest stress
concentration regions

Front view Isometric View

(a) Highest stress concentration region check (mode 1).  (b) Test blade with maximum incremental damage.

Figure 4: Test blade.
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3.4. Post-processing

The raw voltage signals for the proximity probes and shaft encoder are converted to ToA values. The
shaft encoder ToAs are used to derive the shaft speed. The blade tip displacements are derived from
the per revolution AAoA values, for each blade and at a specific proximity probe. Figure 6 illustrates
the derived blade tip displacement at specific shaft speeds. Peaks in the tip displacement clearly occur
at two time instants. These peaks are localised and are used to derive the vibration characteristics of
a specific blade. The blade specific proximity probe data is then combined to statistically infer the
vibration characteristics using a BLR technique. An illustration of the tip displacements of a single
blade at a proximity probe is given in Figure 6.
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Figure 6: Tip displacement compared to the rotational shaft speed.

The BTT technique based on BLR assumes a Single Degree-of-Freedom (SDoF') model for the blade
vibration. Equation 1 shows the formulation of this model for the blade tip displacement (z), at a
specific time (¢), Engine Order (EO) and angular frequency (w):

x;i(t) = Aj - cos(w - t;) + B; - sin(w - t;) + C; (1)
where w = FEO -Q (2)

BLR is specifically used to infer the values of the constants A, B and C' as probabilistic quantities.
Importantly, the values in Equation 1 are solved for each revolution (indicated by the subscript i) at
a corresponding shaft speed (). Equation 2 shows that the correct estimation of the EO is critical
in order to infer the true vibration characteristics. The BTT method incorporating BLR relies on a
probabilistic approach to determine the EOs, whereby a range of EOs are provided to the algorithm.
The probability, along with the associated variance, of each supplied EO to fit the blade tip displacement
measurements are then computed. The EO with the highest probability is chosen for further use in the
BLR processing. Figure 7 shows an example of the solution for Equation 1 (with the standard deviation
from the mean solution also shown). This figure corresponds to a short time increment of the localised
resonance seen in Figure 6. In Figure 7 the resultant fitted curves for the blade tip displacement have
discontinuities. These discontinuities are indicative of the BLR being performed for each revolution.
Figure 7 shows that the superimposed tip deflection measurements result in aliasing which is present in
the measured BTT data.
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Figure 7: Localised resonant tip displacement.

An advantage of the BLR BTT method is that equidistant probe spacing is not required. In fact, it
is mentioned in [9] that BLR for this particular problem works best when the proximity probes are
irregularly spaced. Equation 3 again highlights that the inferred SDoF equation parameter set, x, is
solved for each revolution, ¢. This parameter set forms part of a multivariate normal distribution with
associated mean, p;, and covariance matrix, 3;, as shown by Equation 3. The results of Equation 3 are
used to derive the amplitude and phase. The major advantage of using the BLR BTT method is that
uncertainty is incorporated in the derivation of the SDoF model parameters. This allows the amplitude
and phase values to be determined stochastically rather than deterministically, as required by the hybrid
approach outlined in Figure 1.

A; 1A, YAA;, 2YAB; XAc
x;i=| B M = | W, ;= | XA, XBB, 2BC; (3)
Ci He; Ycoa, XeB; Xcc

Figure 8 summarises the procedure used to calculate the resultant stochastic amplitude and phase
values. Again, this was done for each shaft revolution of the localised resonance. The amplitude and
phase values were calculated using Equations 4 and 5 respectively [12]. Figure 8 also emphasises that
the BLR solution set has an associated normal distribution for each of the parameters. Using these
normal distributions in a Monte-Carlo Simulation enabled the amplitude and phase results to also
have an associated normal distribution. This was done by using 10000 random samples for A and B
associated with the respective multivariate normal distribution. These random values were substituded
in Equations 4 and 5 to find a range of possible solutions for the amplitude (/Al) and phase (¢). In
essence, the Monte-Carlo analysis is a tool for combining a number of distributions [13], thus enabling
the amplitude and phase results to be stochastic rather than deterministic. This allows the uncertainty
of these results to be quantified with associated confidence intervals.

Ai=\/4} + B (4)

i = arctan(iﬁ) (5)
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Figure 8: Monte-Carlo Simulation overview.

Referring back to Figure 1, the desired outcomes are to track changes in the blade natural frequencies
and classify blade damage by means of clustering. These outcomes will in essence culminate in a decision
whether a damage threshold is reached. Figure 8 shows the next step in doing so is to determine the
associated natural frequency of the blade by means of feature extraction. The mean amplitude and phase
values were considered for the feature extraction, however, confidence intervals of these values were
also established in order to get a sense of associated uncertainty. The mean values over the localised
resonant frequency range were grouped together for the particular blade damage increments previously
discussed. The extracted features were as follows:

1. The maximum amplitude and associated frequency as indicated by Equation 6. Henceforth, this
frequency is referred to as the natural frequency derived from the amplitude.

fn, = f(9) where 9= max A, (6)

2. The mid-point of the 180° change in phase angle and associated frequency as indicated by Equation
7. This natural frequency is specifically calculated at the midpoint between the lower frequency (f;)
and upper frequency (f,) where a 180° change in phase angle is located over the entire localised
resonance domain. This is typically characterised by a sudden shift in the phase from -90° to
+90° (or —% to +7% in radians). Henceforth, this frequency is referred to as the natural frequency
derived from the phase.

fnqg = f(0) where p= w subject to A¢ > (7)
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Furthermore, the feature extraction may be achieved using two approaches. Firstly, the features may be
extracted for each of the individual signals of a particular test case. As a result the individual natural
frequencies corresponding to the amplitude and phase may be found for each test case. The second
approach involves combining the mean amplitude and phase signals for a number of the same tests. The
feature extraction is then performed on the combined signals. This approach may be more beneficial in

industry where the archiving of BTT results is essential.

Figure 9 highlights the BTT results of a preliminary investigation whereby 30 of the same BTT
measurements were taken of the undamaged blade. This investigation aims to demonstrate what may
be expected from a single BTT measurement. Figure 9 is a Multivariate Probability Density Function
(PDF) of the test blade natural frequencies extracted from the BTT amplitude results. The univariate
results of this investigation are summarised in Table 2. The results from Figure 9 and Table 2 indicate
that uncertainty exists for the individual measurements. Inevitably, this needs to be accounted for.
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Figure 9: Scatter plot of BTT amplitude and natural frequency results for blade 2 (preliminary investigation).

Table 2: Amplitude and natural frequency results (from a univariate analysis of these parameters).

Value Amplitude (A) | Natural Frequency (f»)
Mean 435 126.88
Standard Deviation 26.513 0.289

Figure 10 shows the strain gauge FFT results for blade 2 in bending mode 1. The use of strain gauges
in this preliminary investigation was merely a sanity check of the extracted natural frequency of the
BTT results. The mean natural frequency of the BTT results shown in Table 2 is very close to what is
shown for the strain gauge in Figure 10. It is clear that performing a number of the same tests and
extracting the features does help to establish a more confident indication of the natural frequencies.
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Strain Gauge FFT Results (Blade 2, Resonance 1)
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Figure 10: Strain gauge FFT results for blade 2 in bending mode 1 (preliminary investigation).

It is clear that the uncertainty of the BTT measurements needs to be accounted for during the blade
damage identification (relative natural frequency tracking) and damage classification (clustering). The
proposed hybrid approach aims to account for the uncertainty of the BT'T measurements by incorporating
a stochastic FEM modal analysis to project expected natural frequencies associated with a certain
discrete damage increment. This is discussed in detail in Section 4. Furthermore, the stochastic nature
of the BTT and FEM analyses enables confidence intervals to be established around the extracted mean
values, thus identifying measurements with greater uncertainty.

4. FEM modal analysis

4.1. Background

A three-dimensional (3D) FEM modal analysis was performed to determine the likely blade resonances
at the particular operational speeds. The authors of [14] performed a similar FEA; specifically on a
low-pressure turbine bladed disk model to estimate the blade natural frequencies and mode shapes.
In this study centrifugal loads were accounted for by applying angular velocities to all the elements.
Thermal loads were accounted for by varying the associated material properties. The temperature
dependence of the material properties, for Young’s modulus and density, is indicated in Equations 8 and
9 respectively. The mathematical relationship for the dependence of the natural frequency on these
material properties is shown in Equation 10 [14]. For this particular study, the FEM modal analysis
results aim to supplement the BTT results, therefore establishing the basis of a hybrid approach.
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The use of a commercial Blade Vibration Monitoring System (BVMS) on the final stage of the low-
pressure steam turbine is outlined in [15]. This report mentions that BTT methods employed by
commercial BVMSs offer a viable approach for managing risks associated with turbine blade vibrations.
Importantly, it is noted that although the use of BVMS offers a continuous monitoring capability of the
blades, many of the effects of the blade vibration risks may only be noticed over long-term monitoring.
For this reason it is suggested that the blade modelling that is critical for the interpretation of the
BVMS (or BTT) results needs to be performed using FEA.

4.2. Analysis principles

For the current investigation the FEM modal analysis aims to establish a reference of expected natural
frequencies, corresponding to the specific operating conditions outlined in the experimental investigation
(Section 3.3). The commercial software, MSC Marc Mentat 2016, was used to perform the FEA. The
Lanczos modal solution method was specifically used to compute the desired natural frequencies and
amplitudes for the simplified blade model. Figure 1 highlights that a stochastic rather than deterministic
FEM modal analysis should be performed to model uncertainty. The discrete damage modelled in the
FEA was introduced in 12 incremental stages, which correspond to the damage of the experimental
test blade. The discrete crack sizes and locations were, in essence, replicas of what was introduced
experimentally (as shown in Table 1). However, slight variations in the angle and size (length, width
and height) were introduced to the various increments. This was done to account for small inaccuracies
of the true crack measurements. Furthermore, the slight variations aimed to account for uncertainties
that would inevitably be present if the exact location of the damage was assumed. The damage was
merely introduced at this location as it was shown that this is where a natural crack would most likely
form (refer to Figure 4a). Blade stiffening was accounted for by applying an angular velocity to the
model. The reference material properties corresponded to what was reported by the manufacturers of
the blades for Aluminium 6082 T6 at room temperature. Slight variations in the material properties
and centrifugal load were introduced to the model to further account for uncertainty.

4.8. Modelling

This section describes the main components of the FEA modelling, namely: the geometry, mesh, material
properties and applied boundary conditions. Figure 11 describes how the five-bladed rotor experimental
setup was simplified in the FEM environment.

Protective casing Applied angular velocity
S\haft connected to motor / with probes about the origin

Damage area

Shaft rotation ‘ Fixed displacement boundary condition

z | Bladed rotor assembly | ’ Simplified model for FEM

Figure 11: Overview of the simplified FEM model.
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Geometry and Mesh

Only a single blade was considered for the solid 3D FEA. The generated mesh consisted of at least
89885 elements for the most basic geometry. Local mesh refinement was applied around the discrete
crack for the damaged blades. Ten-noded tetrahedral elements (full-integration, type 127) were used for
all the analyses. The discrete crack was introduced in the damage area shown in Figure 11. The first
increment corresponds to the healthy blade and the twelfth increment to the most severe damage. As a
result, the FEA results were grouped according to the damage increments. The reference discrete cracks
were introduced to the blade parallel to the z-axis. For all the damage increment groups, the angle of
the applied crack was varied by approximately 10° and the sizes of the cracks around 12% to model
uncertainties in measurements. Samples of these parameters were randomly selected from a uniform
distribution within this 10° and 12% variation range. For consistency, the same variations were applied
for each successive damage increment of the FEA.

Material

The reference material properties at room temperature for Aluminium 6082 T6 are shown in Table
3. The temperature in the laboratory where the experiments were conducted was monitored. It was
reported that a more or less consistent ambient temperature (room temperature) was maintained due to
the air-conditioning. Uncertainty was, however, incorporated into the FEA by varying the material
properties within 12% of the reference values. Again, samples of these parameters were randomly
selected from a uniform distribution within the specified variation range. Inevitably, a number of
analyses were conducted for each damage increment, therefore resulting in a stochastic rather than
deterministic modal analysis.

Table 3: Aluminium 6082 T6 material properties at room temperature.

Temperature | Density | Elastic modulus | Poisson’s ratio

T(C) | p(%) | E(GPa) v
22 2710 71 0.33

Boundary conditions

The applied boundary conditions were representative of the blade attachment to the hub, therefore
displacements were constrained at the contact points. Furthermore, the blade stiffening was accounted
for by applying a structural centrifugal load to the model. This was done by applying an angular velocity
to all the elements. The angular velocities were varied according to the shaft speed range shown in
Figure 6 for all the increments. The reference axis for the centrifugal load corresponds to the origin
depicted in Figure 11.

4.4. Post-processing

The natural frequency and mode shapes of the first 3 modes were subsequently computed. Figure 12
gives sample contour band plots of these modes for the undamaged and most severely damaged blades
using the reference model properties. Modes 1 and 3 clearly correspond to bending mode shapes. Mode
2 corresponds to a torsional mode shape. The changes in natural frequencies between these extremes are
approximately 4Hz, 19.9Hz and 9.2Hz for modes 1, 2 and 3 respectively. Interestingly, all the undamaged
blades have a fairly symmetrical displacement contour band pattern. However, for the most severely
introduced damage, only mode 1 shows contour band patterns which remain fairly symmetrical.
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Mode 3 shows a completely different contour band pattern, with the maximum displacement changing
from the centre of the blade to the upper-left tip. It is clear that the blade exhibits increased twist as
the discrete damage is increased on a single side. However, for the purposes of this investigation only
mode 1 was considered. This corresponds to what is suggested by [16] in terms of which mode has the
greatest contribution to fatigue blade damage.
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Figure 12: Mode shapes indicating the displacement contour bands.

The FEA was implemented in such a way that it was possible to conduct an investigation similar to
what was done experimentally for the BTT testing. Each damage increment in the FEM modal analysis
also consisted of six independent tests. For each of these tests, the model parameters (discrete crack
geometry, material properties, centrifugal load) were varied according to what was presented in Section
4.3. The variation of these model parameters resulted in a variation of the natural frequencies obtained
for each test within a particular damage increment group. This further enabled a mean, with associated
confidence intervals around the mean, of the natural frequencies to be found for each damage increment.
Advantageously, this process enabled the uncertainties of the various parameters in the FEA model to
be quantified, therefore being more representative of what might be expected from the BTT analysis.

5. Results and discussion

This section presents the results obtained for the BTT and FEA methodologies. More importantly, the
use of these results in the hybrid approach shown in Figure 1 is discussed. Ultimately, the goal is to
determine whether the practical BTT results are indicative of a damage threshold being reached. Figure
1 indicates that damage identification (relative natural frequency tracking) and damage classification
(clustering) procedures are employed to determine if this threshold is reached.
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The remainder of this section therefore presents and discusses the results from the damage identification
(Section 5.1) and damage classification (Section 5.2) procedures. The following points should be noted
before these procedures are discussed in detail:

e Incremental discrete cracks were physically introduced to a test blade (blade 2) in the rotor
setup. The changes in sizes of these discrete cracks were not constant amongst the various
incremental steps. The cracks were measured for each incremental step and these measurements
were subsequently replicated in the geometry for the FEM modal analysis.

e Repetitive BTT tests were performed for each damage increment. Half of the measurements used
the OROS DAQ (65.536 kHz) and the other half used the Genesis DAQ (1 MHz) to determine
the sensitivity of the BLR BTT technique to the sampling frequency.

e Feature extraction was performed on the processed BTT amplitude and phase results to determine
the natural frequencies for the various tests. Only the natural frequencies corresponding to the
first bending mode are considered.

e The FEA replicated the experimental tests and modal analyses were performed stochastically by
varying a number of parameters. The natural frequencies corresponding to the first bending mode
were recorded.

5.1. Damage identification

For this particular application damage identification involves: tracking the relative change in the natural
frequency of the blade to identify and infer the degree of discrete blade damage. The change in natural
frequency from a reference state (in this case an undamaged state) is quantified. The aim is to determine
whether a blade damage threshold has been reached. Figure 1 shows that this decision is made using the
outputs of the proposed stochastic hybrid approach and consequently results in a decision of whether a
turbomachine outage should be scheduled. The challenge is that the discrete crack sizes of the blades are
not known while online BTT measurements are made. It is also impractical to schedule a turbomachine
outage and to inspect the individual blades, unless there is sufficient evidence that suggests that a
certain blade has reached a critical level of damage; i.e. a damage threshold. It is therefore essential to
infer the degree of blade damage from the processed BTT results. This section presents the damage
identification process by discussing two procedures, namely:

e Procedure 1 is purely used to demonstrate the relative natural frequency tracking results of the
BTT and FEM modal analyses. In doing so, the ability of the proposed hybrid approach to track
small changes in the blade natural frequency, due to the changes in the size of the discrete blade
damage, is demonstrated.

e Procedure 2 is a sensible approach used to identify and infer the degree of discrete blade damage
based on a probabilistic blade damage threshold criterion.

5.1.1. Procedure 1

The results in this subsection do not demonstrate the proposed damage identification process, but
rather demonstrates the ability of the proposed stochastic hybrid approach to track small changes in the
natural frequencies of the test blades. The BTT results and FEM modal analysis results are therefore
directly compared to one another in this subsection. As stated in Section 2, the relative change in the
natural frequency of the test blade (blade 2) was tracked for changes in the size of the discrete blade
damage (corresponding to the values in Table 1).
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Figure 13 shows the change in the natural frequency at the various discrete crack sizes as determined from
the amplitude and phase results. The 95% confidence intervals indicate that there is a reasonable amount
of uncertainty for the BTT phase results of the healthy blade. In contrast, the greatest uncertainty of
the BTT amplitude results occurs close to the greatest damage increment. The mean natural frequencies
of the amplitude results decrease monotonically as the crack size increases. The mean of the amplitude
results exhibit a decrease in the natural frequency of smaller than 0.2Hz between damage increments
2 and 3 for example, therefore demonstrating the ability of this stochastic approach to track small
changes in the natural frequency while incorporating uncertainty. Both the amplitude and phase results,
however, exhibit a number of humps in the mean natural frequencies. These humps may be indicative
of areas of greater uncertainty. When comparing the results from the individual measurements it is
unclear whether the OROS or Genesis DAQ performed better. There is a reasonable amount of scatter
in both sets of results and outliers occurred for both DAQs.
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Figure 13: BTT natural frequency results for the amplitude and phase (blade 2).

Figure 14 compares the natural frequencies determined from the FEA and BTT methodologies. The
relative error between the mean natural frequency results at the various damage increments are also
compared. The following is deduced from Figure 14:

e The mean BTT amplitude and phase results indicate a maximum relative error of just under 0.4%
for the natural frequency. In essence, the mean results are a very close match. The confidence
intervals around the means of these result sets vary somewhat. This suggests that these result
sets might work well in tandem; i.e. the phase results may give a more confident answer when
there is greater uncertainty for the same set of amplitude results and vice versa.

e The FEM results, similar to the BTT phase results, indicate the greatest degree of uncertainty
for the natural frequency of the undamaged blade. The confidence interval remains more or less
uniform around the mean results thereafter.

e The relative error plots indicate that the FEM and BTT amplitude results are more consistently a
closer match, with a maximum relative error of approximately 0.95%. The FEM natural frequencies
also decrease monotonically, as would be expected for greater blade damage. The BTT phase
results perform better for the largest damage increments when compared to the FEM results.

e The FEM results give a reasonably good projection of what may be expected in terms of the
natural frequencies at the various damage increments.
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Figure 14: Comparison of the natural frequency at the damage increments (blade 2).

It is more sensible to track the change in the natural frequencies as a relative change, hence the term:
relative natural frequency tracking. The implementation of the relative natural frequency tracking aims
to give a more general indication of the blade condition, thus enabling a better basis of comparison
between the various result-sets. The reference condition for this investigation is the natural frequency
of the undamaged blade. Figure 15 shows the relative change in the natural frequency at the various
discrete crack sizes. The relative discrete crack sizes are indicative of the fraction of the total width of
the blade that is damaged. The calculation of the relative change in natural frequency (Afy,) from the
original natural frequency (fy,) to the current natural frequency (fy,) is shown in Equation 11:

Afp, = Fno = i 109 (11)

fro

Figure 15 compares this relative change in the natural frequency of the test blade for the various
approaches. The fitted curves through the mean data-points give an indication of relationship between
the relative change in the natural frequency and the relative discrete crack size of the blade. However,
these fitted curves do not intend to generalise this relationship. A number of different polynomials
were tested to determine the best fit without resulting in over-fitting. Fitting a quadratic curve
resulted in a lower Root-Mean-Square Error (RMSE) compared to a linear. Fitting a cubic polynomial
resulted in over-fitting. Consequently, a quadratic polynomial was selected. Figure 15 shows that up to
approximately 5% the relative FEM and BTT amplitude results are a close match. The fitted curve
for the phase results follows a similar path to that of the FEM results, but exhibits a slight offset.
Figure 15, however, shows that beyond 5% relative change in discrete crack size the mean BTT and
FEM results start to diverge. Furthermore, at the largest damage increments for this investigation, the
95% confidence intervals of the BTT results no longer intersect the corresponding confidence intervals
of the FEM results. This divergence needs to be accounted for in the damage identification process.
This may possibly be achieved by being more conservative during the damage identification process; i.e.
being more conservative when deciding whether a blade damage threshold has been reached. Another
possibility is to perform model updating in the FEM modal analysis. However, this would require an
inspection of the actual turbomachine blades to incorporate more complex aspects in the FEM modal
analysis. More suggestions are presented in Section 5.1.2 alongside the demonstration of the damage
identification process.

19



Relative Change in Natural Frequency Fitted Curves

-e-FEM Results o Raw-data FEM
1 r -=-Amplitude Results 04 o-Raw-data Amplitude
\\ -A-Phase Results A-Raw-data Phase
0.5 - A —Fitted-data FEM
VA 0.5 —Fitted-data Amplitude
| e —Fitted-data Phase
04
05 -y
-1.5 1

'
—
[

'
[
T
:
=
<
m
=
[¢)=3
m
H
n
]

Relative change, A fn; (%)
Relative change, Afn; (%)

|
[

'
o
o

2.5+

'
w
T
|

I I I I -3 I I I I
0 5 10 15 20 0 5 10 15 20

Relative discrete crack size (%) Relative discrete crack size (%)

Figure 15: Comparison of the relative change in natural frequency at the damage increments (blade 2).

Section 3.4 discusses the possibility of combining the various BTT mean amplitude and phase signals at
the respective frequencies. This differs to the preceding relative natural frequency tracking results in
the sense that; once the complete range of amplitude and phase signals were combined or averaged, only
then the associated natural frequencies are extracted. Figure 16 shows these combined mean amplitude
and phase signals for the six corresponding tests at each damage increment. The features (represented
by Equations 6 and 7) were extracted from the combined results and the associated natural frequencies,
as shown in Figure 16, were found. The trace of the natural frequency indicates a decrease in the derived
natural frequencies as the discrete damage increases. The derived natural frequency values using this
approach tend to be slightly higher than the preceding approach where the natural frequencies were
independently calculated.
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Figure 16: Demonstration of the archiving of the BT'T signals for all the damage increments (blade 2).
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This approach demonstrates the capabilities of using periodic BTT measurements to construct an archive
of data over time. This would enable relative changes in the vibrational states of the blades to be tracked
after similar signals are grouped together. For example, if a number of successive BTT measurements
do not indicate a noticeable change in the derived natural frequencies, then these measurements may
be grouped together and combined in this archiving scheme. The combined results shown in Figure
16 merely demonstrated the further potential of the BTT technique incorporating BLR. It is a major
advantage of this BTT technique that the possibility exists to plot the entire range of amplitude and
phase results over the local resonance domain; with the further possibility of establishing confidence
intervals around the means of these results.

The results from both the relative natural tracking approaches indicate that very small changes in the
natural frequency may be tracked. In some instances, relative changes of less than 0.2Hz were reported
for the test blade due to small changes in the discrete damage size. The FEM modal analysis results
provided a basis of comparison for the small relative changes in the natural frequency associated with a
particular damage increment. This suggests that the proposed hybrid approach incorporating relative
natural frequency tracking may be utilised for relatively small damage identification.

5.1.2. Procedure 2

This subsection demonstrates how the relative natural frequency tracking results may be used to identify
and infer the degree of discrete blade damage based on a predetermined blade damage threshold criterion.
Consequently, this section demonstrates the use of a blade damage identification procedure (based on a
stochastic hybrid approach) used to determine whether a turbomachine outage should be scheduled.

It should be emphasised that Procedure 2 assumes that the actual discrete damage sizes of the blades
are not known. Procedure 2 therefore relies on the tracking of the relative changes of the derived natural
frequency BTT results to infer the degree of discrete blade damage. The FEM modal analysis facilitates
the estimation of expected blade conditions (relative change in natural frequency) corresponding to a
particular discrete damage size that is deemed critical. This set of FEM modal analysis results may
then be used to establish a damage threshold. The aim of the damage identification procedure is to
determine whether there is sufficient evidence from the stochastic hybrid approach to suggest that this
damage threshold has been reached, thus resulting in a turbomachine outage.

Figure 17 shows two iterations of the proposed identification procedure. Only the BTT relative natural
frequency tracking results are plotted (based on the amplitude and phase results). The BTT relative
natural frequency results in Figure 17 correspond to the BTT results in Figure 15. Very important to
note is that the BTT relative natural frequency results are no longer plotted against the relative discrete
crack size in Figure 17. These results are now simply plotted according to the BTT test number; in
industry this could be a date or time. Also note that the FEA relative natural frequency results are not
used directly. Instead, a predetermined damage threshold is established using the FEM modal analysis
results. The following steps describe the proposed damage identification procedure:

1. Define a level of discrete blade damage that would justify a turbomachine outage / inspection. In
Figure 17 this is indicated by Level 1. This level corresponds to increment 5 of the FEA results
or 1.58mm of discrete blade damage (3.95% relative discrete crack size). This level is arbitrarily
chosen for the purposes of the damage identification demonstration. In practice, the principles
of fracture mechanics and / or fatigue analysis can be used to define the Level 1 blade damage
threshold.

2. The FEM modal analysis was performed stochastically at this discrete crack size in order to
quantify uncertainty. It is therefore essential to record the mean (p,,, ) and standard deviation
(0ppa, ) of the FEM results corresponding to this damage increment (Level 1).
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3. A new variable, d4amage, is defined as shown in Equation 12. This variable represents the difference
between the relative change in the natural frequency of the BTT results (for a particular batch of
tests) and the relative change in natural frequency of the FEM results at a particular discrete
damage size (represented by Level 1 in Figure 17).

5damage = AanTT - AfﬂFEM (K) (12)

In Equation 12, K denotes the predetermined crack size of the FEM modal analysis. It is very
important to note that d44mage is N0t a deterministic value, but rather a normal probability
distribution. The reason being that both Af, .., and Af,,. ., (K) have associated normal
distributions, summarised as follows:

A frprr ~ N(/‘LBTT?O-ZTT> (13)

AanEM (K> ~ N(/’LFEM7U?JEM) (14)

The associated normal probability distribution of dgamage is the difference between the independent
normal distributions of the BTT results (Equation 13) and FEM results (Equation 14). The
formulation of the normal probability distribution of dgamage is shown in Equation 15:

2 2
5damage ~ N(/J“BTT ~ Hrpmr Oprr + UFEM) (15)

4. The calculation of the mean and variance of gamage (as shown in Equation 15) requires that a
number of repetitive BT'T tests are performed. Repetitive tests essentially enable the mean, ..,
and standard deviation, o, of a certain batch of BTT tests to be determined.

5. The probability, P(ddgamage < 0), is determined for a particular batch of BTT tests and chosen
A frppn (Level 1 in this case). This probability is found from the Cumulative Distribution Function
(CDF) of ddamage, With associated mean and variance as shown in Equation 15. P(64gmage < 0)
is the probability that the relative change in the natural frequency derived from the BTT
measurements (A f,,,.,.) equals or exceeds the permissible relative change in the natural frequency
derived from the FEM analysis (A fn ., (K)).

6. The damage threshold (Xg) is based on a selected probability, P(dgamage < 0) > Xg. It is up to
the user to decide what an acceptable probability is to justify a turbomachine outage. Repetitive
BTT tests are conducted in intervals until this probability value (damage threshold) is reached.
Once this damage threshold is reached a turbomachine outage will be scheduled and the necessary
inspections of the damaged blade will commence. If necessary, this blade may be replaced if the
damage on the blade is deemed critical. It is important to note that the damage threshold (Xg)
may be selected as a conservative value. The choice of the value of the damage threshold may
differ depending on the particular application of this procedure; it is entirely up to the user to

decide what this value should be.

7. Steps 1 - 6 is repeated after every inspection or maintenance operation, until a blade needs to be
replaced. After each inspection a new damage level, based on the FEM results will be prescribed
to determine a new blade damage threshold.
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Figure 17 demonstrates two iterations of the damage identification process. In this figure, Level 1
corresponds to a relative discrete crack size of 3.95% (1.58mm) and Level 2 corresponds to a relative
discrete crack size of 9.675% (3.87mm). These levels were arbitrarily chosen and are merely used to
demonstrate the damage identification process.
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Figure 17: Damage identification results (blade 2).

Table 4 shows the derived probability, P(ddgamage < 0), for each batch of the BTT tests. In Table 4,
Papmp and Pppgse refers to the probabilities based on the BTT amplitude and phase results respectively.
The following points summarise the outputs of the damage identification process for Group II:

e The first damage threshold is defined as X4, = P(0damage, < 0) > 0.5 and relates to Level 1. This
damage threshold implies that a turbomachine outage will be scheduled if there is a probability
greater than 50% that Af, ., exceeds Afy,, .., (KLevel,). Based on the results in Figure 17 and
Table 4, inspection 1 is performed after batch 5 of the BTT testing. According to Figure 15, the
actual discrete blade damage is also 1.58mm (3.95% relative discrete crack size).

e After the first inspection a new reference position is established. The second damage threshold is
defined as Xg4;, = P(8damage, < 0) > 0.4 and relates to Level 2. This damage threshold is chosen
to be more conservative due to inspection 1 indicating that the blade is already damaged (close to
4%) and the fact that Level 2 corresponds to approximately 10% discrete blade damage. It is
advised to be more conservative with increasing blade damage. Based on the results in Figure 17
and Table 4, inspection 2 is performed after batch 9 of the BTT testing. According to Figures
14 and 15, the actual discrete blade damage is 5.6mm (14% relative discrete crack size) at this
batch of BTT results. Level 2, however, represents 3.87mm of discrete blade damage in the FEA.
Inspection 2 therefore proves that the FEM modal analysis and BTT relative natural frequency
tracking results diverged for this discrete damage size. In practice, model updating would need to
be performed in the FEA to correct this divergence.

e Table 4 shows that the probabilities, P(dgamage, < 0), for batch 10 - 12 are greater than 0.5. These
values were merely computed for interest-sake. These probabilities imply that the mean of the
relative natural frequencies of the BTT results have crossed-over the mean of Level 2. Figure 17
shows that this is indeed the case. For batch 12 the probabilities are very close to 1, due to fact
that the 95% confidence intervals of the BTT results and Level 2 no longer cross-over.
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Table 4: Probabilities, P(ddamage < 0), for the BTT relative natural frequencies based on the amplitude and phase results
(blade 2).

BTT Test | Pamp, Pprhase; | Pamp, PPhase,
0.0458  0.2162
0.2597  0.1350
0.3665  0.1930
0.4326  0.0292
0.5485 0.0719 Inspection 1

0.0579  0.0032
0.1922  0.0234
0.1569  0.0362
0.4035 0.3939 Inspection 2

0.8501  0.6555
0.9734  0.9948
0.9987  0.9977
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5.2. Damage classification

The damage identification approach presented in Section 5.1 relies on repetitive or frequent measurements
to be available. The damage classification approach, however, aims to facilitate the use of a single
set of BTT measurements to determine the blade condition. For this scenario the mean of repetitive
BTT measurements (corresponding to a particular discrete damage interval) would not be established,
therefore requiring much confidence to be placed on a single measurement. The proposed damaged
classification approach is based on the clustering of the BTT natural frequency and amplitude values.
The clustering of these derived vibrational characteristics enable the severity of the blade damage to be
classified. Many clustering techniques exist, with each technique ranging in complexity and functionality
[1]. The proposed clustering technique for the hybrid approach shown in Figure 1 is K-means clustering.
K-means clustering is a mature and popular technique whereby observations with the nearest mean are
assigned to a certain cluster of data-points [17]. This physically translates into vibrational characteristics
of a blade, from a specific BTT measurement, being assigned to an existing cluster of vibrational
characteristics with the nearest mean. The aim of this K-means clustering approach is to classify the
severity of the blade damage according to which group the vibrational characteristics of a particular
BTT measurement are assigned to. Consequently, the severity of the blade damage may be determined
from these clusters. The following points summarise this process:

e The vibrational characteristics (amplitude and associated natural frequencies) of a certain blade
are extracted from the BTT measurements and used further in the clustering process.

e The clustering of the natural frequency and amplitude results using predetermined mean values
is proposed. The predetermined mean values correspond to the natural frequency results from
the FEM modal analysis, particularly for the first bending mode. Importantly, the amplitudes of
vibration were not computed during the FEM modal analysis. A Computational Fluid Dynamics
analysis would be required to simulate the fluid-flow interaction on the the blades used during
experimentation. From this CFD analysis an indication of the amplitudes of blade vibration could
be determined. This CFD analysis was not performed for the following reasons:

— The proposed hybrid approach aims to meet the requirement of a simple implementation.

— Further investigations of the K-means clustering implementation used in this research showed
that it would be sensible to assign zero amplitude values to these initial clusters.
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e It was decided to partition the data into three initial clusters (k mean clusters, hence the name
K-means clustering). These initial clusters correspond to the assigned zero amplitude values and
predetermined mean natural frequencies from the FEA. The partitioning of the data corresponds
to the discrete damage increments shown in Table 1. Each partition was classified according to
severity of the blade damage it represented, thus indicating the non-severe damage increments,
mid-severity damage increments and most severe damage increments respectively (also indicated in
Table 1). It is important to note that these partitions were not enforced on the BTT data before
the K-means clustering commenced. However, after the clustering was completed the individual
natural frequency points (shown in Figure 13) and associated amplitudes were used to determine
the accuracy of the final classification into the various ranges of damage.

e The initial cluster centres correspond to the zero amplitude values and the mean natural frequency
values of the FEA results partitioned using the aforementioned scheme. This resulted in three
amplitude and natural frequency combinations / locations used as a starting point of the centroids.
These initial cluster centres thus enabled individual BT'T measurements to be classified to the
closest partition.

e It is important to scale the BTT amplitude and natural frequency data for the use in the K-means
clustering; i.e. normalise the data so that the values of both the amplitudes and natural frequencies
ranged between 0 and 1. This normalisation was done according to the minimum (assigned to 0)
and maximum (assigned to 1) of these data-points. The initial cluster centroids (FEM natural
frequency data) was also scaled using this scheme. The amplitudes of the initial cluster centroids
were already zero and therefore did not require scaling. This was an important step before the
K-means clustering commenced as it ensured that neither of these values (amplitude or natural
frequency) dominated the Euclidean distance formulation.

e The point-to-cluster-centroid distances are computed for all of the individual BTT points. The
BTT points are essentially treated as a black-box, with no indication of which damage increment
the points belong to. The overall averages of the points in the clusters are calculated and new
centroid locations are allocated. As a result the BTT points are classified into the associated
group of most likely Range of Damage (RoD) that the amplitude and natural frequency would be
representative of. In Figure 18 RoD I, RoD II and RoD III represent the new averaged clusters
for the undamaged, middle damage and greatest damage increments respectively. The incorrectly
classified BTT points along with the corrected classification group are also shown in Figure 18.

The results of the K-means clustering implementation as part of the damage identification process are
shown in Figure 18. In Figure 18 RoD I, RoD II and RoD III represent the new averaged clusters for
the non-severe, mid-severity and severe damage increments respectively. The incorrectly classified BTT
points are also shown in Figure 18; the correct classification for these incorrectly classified points are
indicated by a Roman Numeral above the marker. These corrections were possible due to the fact that
the actual BTT measurements were available before the classification commenced. In practise, these
corrections may rely on the results from the damage identification procedure, where a certain discrete
crack size is inferred. The following points should be noted regarding the accuracy of the K-means
clustering implementation:

e The the overall classification accuracy is 78% (56 out of the 72 points were correctly classified)
according to the imposed partitions of the damage increments shown in Table 1.

e If only the RoD III (severe classification) is considered as important for determining whether
a damage threshold has been reached, then this classification accuracy would be 94% accurate
(4 out of the 72 points were incorrectly classified for this particular partition). This specific
partition would put a greater emphasis on RoD III, therefore grouping RoD I and RoD II together.
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It is, however, a great concern when an actual RoD III (severe) point is classified as a RoD I
(non-severe) point. This, however, only occurred for a single data-point.

e When considering the damage increments or RoDs independently, the following is reported for the
resultant K-means clustering accuracy for this implementation:

— RoD I: Only 26 out of the 36 possible points are correctly classified, therefore resulting in a
72% accuracy when this RoD is considered independently.

— RoD II and RoD III: For both these RoDs, only 15 out of the 18 possible points are correctly
classified, therefore resulting in a 83% accuracy when these RoD are considered independently.

It should be reiterated that an incorrect classification of an actual RoD III point would be regarded as
critical, especially when a data-point from this RoD is assigned to RoD I. It is hypothesised that the
accuracy of the classifications may improve if additional features, resulting in more definitive cluster
locations, are implemented. It is recommended for future iterations of the proposed clustering approach
to consider additional features. The consideration of additional features may be possible when a more
complex CFD fluid-flow interaction analysis for a particular blade is implemented. The phase information
could possibly be incorporated along with the natural frequencies associated with this phase information.
Additional features do not necessarily imply greater accuracy. If these additional features do not result
in more definitive cluster locations, the accuracy of the final prediction may decrease drastically.

K-Means Clustering Results
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Figure 18: Illustration of the K-means clustering results.
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For practical applications, it is proposed that the K-means clustering implementation should supplement
the hybrid approach outlined in Figure 1. The clustering of the BTT results to predetermined centres
would allow the blade damage to be classified according to k-partitions imposed on the data. The
damage threshold may be chosen based on these damage classifications. The following outcomes are
possible for this proposed blade damage classification strategy:

1. The derived amplitude and natural frequency results are classified as non-severe (RoD I). This
could potentially signify that the blade is still in good condition. As indicated in Figure 18,
numerous points were incorrectly classified as RoD I. This may be a concern, especially if a RoD
11T point is incorrectly assigned to RoD 1.

2. If these values are classified as mid-severity damage (RoD II) then this would give an indication
that the condition of the blade is potentially deteriorating.

3. Lastly, if these values are classified as severe damage (RoD IIT) then this would indicate that the
blade damage is immense, therefore signifying a damage threshold being reached and resulting in
a turbomachine outage being scheduled.

6. Conclusion

Industry is increasingly confronted by ageing turbomachines prone to unexpected and catastrophic failure.
This raises questions with regards to the safety and optimal outage planning of these turbomachines.
The consulted literature highlighted that BTT is a promising technique to monitor and provide an early
warning of critical turbomachine blade conditions. BTT offers the ability to monitor all the blades
in a stage of a turbomachine while also being a non-intrusive and non-contact approach. There is no
consensus in published literature as to which BTT algorithm attains the highest accuracy, partly due to
the difficulty associated with validating these results. The purpose of this paper is therefore to advance
the state of the art in BTT technology into a stochastic hybrid approach, used for the identification
and classification of turbomachine blade damage. This stands in stark contrast to the vast majority of
current BTT research where purely data-driven approaches are used, most of them being deterministic
in nature. This hybrid approach uses the outputs of a recently developed BTT technique based on BLR
and a stochastic FEM modal analysis. The hybrid implementation aims to provide a simple solution to
alleviate the disadvantages of the individual analysis types while conserving the advantages.

An experimental rotor setup was used during the BTT investigations, therefore providing experimental
data for the use in the proposed hybrid approach. In doing so, discrete damage was incrementally
introduced to a test blade, thus facilitating the testing of the damage identification and classification
approaches. The damage identification procedure is based on the probability that the relative change
in the natural frequency of the BTT results is as large as what the FEM modal analysis (at a chosen
discrete damage size) projected it to be. This probabilistic damage identification procedure demonstrated
the ability of to infer the degree of blade damage. The damage classification approach facilitates the
use of a single set of BTT measurements to determine the blade condition. In an attempt to meet
the requirement of a simple implementation, K-means clustering is used to classify the derived BTT
amplitude and natural frequency values. The predetermined FEM natural frequency results are used to
initiate clusters and cluster centroids. The clustering of the derived BTT vibrational characteristics
to the nearest cluster centroid enable the severity of the blade damage to be classified. The damage
classification results, however, showed that there is the possibility of incorrectly classifying a severely
damaged blade as non-severely damaged. This scenario could potentially have serious implications
in practice. Future research should therefore investigate the performance of a number of different
classification algorithms.
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Furthermore, the proposed hybrid approach should ideally be tested on an actual turbomacine exposed to
practical working conditions. This would provide a more convincing conclusion regarding the applicability
of the proposed hybrid approach for the use in industry. Overall, it may be concluded that the use of a
stochastic hybrid approach for blade condition monitoring has many advantages. The main advantage
is that uncertainty is considered throughout the approach. For example, this enabled a probabilistic
indication of the blade condition to be established for the damage identification. Furthermore, the
fusion of the results from the various analyses consistently provided a more confident indication of the
condition of the test blade, resulting in supporting evidence of whether a practical maintenance decision
should be made.
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