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Abstract In this paper, we consider a discrete-time Geo/G/1 queue controlled by the combination
of the N and D policies(called ND-policy). In this system, when there are N waiting customers or
the service time backlog of all waiting customers exceeds a given threshold D, whichever emerges
first, the idle server immediately resumes its service. Under this policy, since the service times of
the customers arriving during the idle period, conditioned on the number of these customers, are
dependent, and stochastically different from the service times of the customers arriving during the
busy period, the customers in the system are classified into two types. Based on this classification,
we first derive the probability generating functions(PGFs) and means of the queue length, idle and
busy periods, service time backlog, waiting time and sojourn time, where the busy period is first
studied in the discrete-time queues involving the D-policy. Next, by analyzing some results and
flaws in the work of Gu et al.(2016), we theoretically show the discrepancies that could arise if
the conditional dependency of the service times of the customers arriving during the idle period is
ignored. Finally, the numerical examples are provided to study the effects of different parameters
on the mean queue length. Through an energy consumption optimization problem in wireless sensor
networks, the application of our queueing model in the real world is illustrated, and the flaws that
resulted from the results by Gu et al.(2016) are numerically revealed.

Keywords ND-policy · Queue length · Service time backlog · Busy period · Energy consumption
optimization

Mathematics Subject Classification (2000) 60K25 · 68M20 · 90B22

1 Introduction

Since Yadin and Naor (1963) introduced the N-policy in queueing models, there have been abundant 
literature on the N-policy queueing systems. For the continuous-time N-policy queues, Tadj and 
Choudhury (2005) gave an excellent survey. For the discrete-time N-policy queues, Moreno (2007, 
2008), Wang and Ke (2009), Hernández-Dı́az and Moreno (2009), and references therein, presented 
eminent works. In these papers, based on different N-policy assumptions, they obtained queueing 
performance measures for the Geo/G/1 queues, and analyzed the optimal operating N-policy at a 
minimum operating cost of the queueing system. In 2012, in order to explore queue size distribution 
at different time epochs for the Geo/G/1 queue, Luo et al. (2012) considered the N-policy, and 
Wei et al. (2012) researched the N-policy with variable arrival rate. Recently, Lee and Yang (2013) 
investigated an N-policy Geo/G/1 queue with disasters. They analyzed the effect of the N-policy on 
the power consumption in a wireless sensor network(WSN). For the discrete-time GI/Geo/1 queue 
with the N-policy, Lim et al. (2013) presented the distributions of queue length and sojourn time, 
and obtained an optimal N value that minimizes the cost of the system.

http://www.editorialmanager.com/orij/viewRCResults.aspx?pdf=1&docID=1589&rev=1&fileID=21793&msid={4DFCBC7E-3C27-4A31-B36E-AB3F695AF1C5}
http://www.editorialmanager.com/orij/viewRCResults.aspx?pdf=1&docID=1589&rev=1&fileID=21793&msid={4DFCBC7E-3C27-4A31-B36E-AB3F695AF1C5}
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Relative to the N-policy, which governs the startup of server by the number of queued customers
in the queueing buffer, the D-policy triggers the idle server to start its service when the service time
backlog of all queued customers is greater than some given threshold D. For the continuous-time
D-policy queues, one can see Balachandran (1973), Balachandran and Tijms (1975), Tijms (1976),
Boxma (1976), Dshalalow (1998), Artalejo (2001), Agarwal and Dshalalow (2005), Lee et al. (2006),
and references therein. Among them, Boxma (1976) theoretically proved that if the operating cost
of the queueing system is composed of set-up and backlog holding costs, then the D-policy is better
than the N-policy, even if the service time is arbitrarily distributed. Later, in 2011 Artalejo (2001)
certified that the N-policy may be superior over the D-policy when the operating cost contains the
holding cost of customers. Dshalalow (1998), Agarwal and Dshalalow (2005), and Lee et al. (2006)
studied the queue size distribution of the queueing systems. For the discrete-time D-policy queues,
the only two works were carried out by Lee et al. (2011, 2012). Under this policy, they dealt with the
discrete-time Geo/G/1 and MAP/G/1 queues, respectively. Furthermore, they presented a united
framework, theoretically and analytically, for the discrete-time queues with the D-policy.

From the literature review on the N- and D-policy queues, we find that most of the studies dealt
with a pure N-policy or D-policy. But it is obvious that a pure N-policy or D-policy is insufficient
with regards to the optimal operating cost of the queueing system. This is because the N-policy will
result in large waiting cost of the first queued customer if the number of arrivals is much less than
N. For the D-policy, if the service time backlog of all waiting customers is less than, or equal to a
very large threshold D, the D-policy may cause a substantial number of customers to accumulate in
the buffer. From the viewpoint of minimum operating cost of queueing system, the above two cases
will bring an extremely high holding cost. Therefore, the combination of N and D policies, can make
full use of the respective superiority of the N- and D-policy. It has much greater flexibility than the
single N and D policies for control and application of the queueing system.

For the ND-policy continuous-time M/G/1 queues, Gakis et al. (1995) dealt with the distributions
of the busy and idle periods. Rhee (1997) obtained the mean busy period by a pseudo probability
density function method. Dshalalow (1996) studied the distribution of queue size in a batch arrival
queueing system. Subsequently, Lee and Seo (2008) and Lee et al. (2010) examined the M/G/1 and
MAP/G/1 queues under the dyadic Min(N,D)-policy. They analyzed the performance measures of
two queueing systems. Recently, for the ND-policy discrete-time Geo/G/1 queue, Gu et al. (2016)
obtained the recursive formula for calculating the steady-state queue length distribution at an ar-
bitrary time epoch n+, and the stochastic decomposition of the steady-state queue length. As an
extension research of Gu et al.(2016), under the condition that the input rate changes according to
the server state, Lan and Tang (2016) also explored the queue length distribution at different time
epochs and its stochastic decomposition. In the above two published papers, since the service times
of the customers who arrive during server idle period are assumed to be independent of each other,
the genuine D-policy is not actually implemented (for details see Remarks 2 and 4 in this paper).
As far as known to the authors, no other papers on the discrete-time queues with the N-policy and
genuine D-policy are available. This motivates us to study this kind of ND-policy discrete-time queue
and its practical applications in the real world.

The aim of this paper is threefold. First of all, for the queueing model proposed by Gu et al.(2016), 
we present a steady-state analysis of system performance measures in the sense of the N and genuine 
D policies(called ND-policy). The analytical method is based on the classification of the customers 
arriving during the idle and busy periods. Except for the queue length PGF, we also derive the PGFs 
of idle and busy periods, service time backlog, waiting time, and sojourn time, in which the busy period 
is first studied in the discrete-time Geo/G/1 type queues involving the D-policy, and its analytical 
method is applicable for the continuous-time M/G/1 type and discrete-time Geo/G/1 type queues 
involving the D-policy. Then, by analyzing some results and flaws in the work of Gu et al.(2016), we 
theoretically show that if the conditional dependency of service times of the customers arriving during 
the idle period is overlooked, some discrepancies will emerge. Finally, using an energy consumption 
optimization problem in WSN, we numerically illustrate the practical application of our model, and 
also reveal the irrationality and flaws caused by the results of Gu et al.(2016).

This paper is organized as follows. Sect. 2 presents the model description and preliminaries. In
Sects. 3-8 we conduct a steady-state analysis of queueing performance measures. We deal with the
PGFs of the queue length and service time backlog at the start of the busy period, and the PGFs of
the idle and busy periods. By classifying the customers into two types, we study the PGFs of steady-
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state queue length, service time backlog, waiting time and sojourn time. In Sect.9, the numerical
experiments are offered to analyze the effects of traffic intensity, arrival rate and the thresholds N
and D on the mean queue length. An application in the energy consumption minimum of a WSN, is
numerically presented. Conclusions are finally drawn in Sect. 10.

2 The model description and preliminaries

We consider a discrete-time Geo/G/1 queue controlled by the N and D policies. The time axis is
divided into intervals of equal length(called slots) and all the arrivals and departures only occur at
the slot boundaries. The time axis is marked by t = 0, 1, 2, · · · . In our queueing model, we adopt a late
arrival system with delayed access (LAS-DA). That is to say, a potential customer arrives in (t−, t),
and a potential departure happens in (t, t+), where t− represents the instant immediately before t,
and t+ represents the instant immediately after t. If an arrival occurs in (t−, t) and encounters the
idle server, then its service starts in (t, t+). More details and related concepts on the LAS-DA can
be found in Hunter (1983).

Inter-arrival times of customers, τi, i = 1, 2, · · · , are independent and identically distributed(i.i.d.)
random variables, and follow a geometric distribution: Pr{τi = k} = p(1 − p)k−1, 0 < p < 1, k ≥ 1.
The service times {Sn, n ≥ 1} are i.i.d. random variables, with the probability mass function(PMF)
s(x) = Pr{Sn = x}, x = 1, 2, · · · , (s(0) = 0) and the PGF S(z) =

∑∞
x=1 s(x)zx, |z| < 1. Let the

mean service time E[S] be finite and the second moment E[S2] < ∞. The service order obeys the
first-come-first-served (FCFS) discipline. When the system is empty, the server enters its idle period.
During the idle period, once there are N customers in the system or the sum of the service times of
all waiting customers exceeds a given threshold D, whichever comes first, the server will resume its
service(ND-policy). This triggers the start of a new busy period. When there are no customers in
the system, the busy period terminates and the idle period starts. We assume the inter-arrival and
service times are mutually independent.

For later analysis, we introduce the following notations to be used in this paper.
x̄ = 1− x, 0 < x < 1: complementary value for real number x,∑j
k=i = 0, if i > j: the sum is equal to zero if the subscript i exceeds the superscript j,

Cjk, 0 ≤ j ≤ k: Cjk = k!
j!(k−j)! ,

X(z) =
∑
i z
iPr{X = i}: PGF of random variable X,

E[X]: mean of random variable X,

S(k)(x) = Pr {S1 + S2 + · · ·+ Sk ≤ x} , 1 ≤ k ≤ x: distribution function of the k-fold convolution
of service time with itself (S(0)(x) = 1, x ≥ 0, S(k)(x) = 0, k > x ≥ 1),

s(k)(x) = Pr {S1 + S2 + · · ·+ Sk = x} , 1 ≤ k ≤ x: PMF of the k-fold convolution of service time
with itself (s(1)(x) = s(x), s(k)(x) = 0, k > x ≥ 1).

Also, we denote by BN,D the length of a busy period, which is the time interval between the time 
when the idle server starts its service and the time when the customers in the system are served 
exhaustively. The length of an idle period, denoted by IN,D, is the length of time that starts at the 
end of a busy period and terminates at the start of next busy period. The length of a busy cycle 
period, denoted by CN,D, is defined as the time length between two sequential time points at which 
the customers are served exhaustedly. Clearly, the sum of the busy period and next idle period forms 
a busy cycle period.

Finally, our study is conducted under the stability condition, i.e. traffic intensity ρ = pE[S] < 1.

Remark 1 In our model, if N = 1 or D = 0, then the queue under consideration becomes a classical
Geo/G/1 queue. If D+1 < N , then our system only operates the D-policy because it takes at least N
time slots to accumulate N customers in the queue. Thus, we only study the case of 1 ≤ N ≤ D+ 1.
Obviously, if D →∞, then our model becomes the N-policy Geo/G/1 queue; if N = D+ 1, then our
model reduces to the D-policy Geo/G/1 queue.

Remark 2 From the model description, we know that for the customers who arrive during a busy 
period (denoted BCs), their service times are independent of each other. For the customers who 
arrive during an idle period (denoted ICs, and their number is denoted as QN,D), their service 
times {S1, S2, · · · , SQN,D } are conditionally dependent, given QN,D. That is to say, once the value
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of QN,D is given, {S1, S2, ..., SQN,D |QN,D} are dependent. In fact, under the condition that QN,D =

k, k = 1, 2, · · · , N , at the start of the busy period, if the D-policy is operated, then
∑k−1
i=1 Si ≤ D <∑k

i=1 Si, k = 1, 2, · · · , N − 1; If the N-policy is operated, then
∑N−1
i=1 Si ≤ D,

∑N
i=1 Si ≤ D + 1 or∑N

i=1 Si > D+ 1. These inequalities show the property of conditional dependence mentioned above.
So the ICs’ service times are stochastically different from the BCs’ service times. This property,
which is different from the cases with the N-, T- and NT-policy, does not meet the condition of the
well-known decomposition property (see Fuhrmann and Cooper (1985) and Shanthikumar, (1988)).
Thus, the PGF of the steady-state queue length cannot be derived by the well-known decomposition
relation in queueing theory. Also, due to the above property, the PGF of the busy period cannot
directly be derived by the Galton-Watson branching process approach(an effective method to analyze
the busy period in some controllable queues, such as the N-, T-, and NT-policy Geo/G/1 queues
etc.) which requires the independence of the service times.

3 The queue length and service time backlog at the start of a busy period

To analyze the PGFs of the idle and busy periods, queue length, service time backlog, waiting time 
and sojourn time, it is important to obtain the distributions of the queue length and service time 
backlog upon the beginning of a busy period.

3.1 The queue length at the start of a busy period

Let QN,D denote the queue length at the start of a busy period under the ND-policy. Note that
QN,D = k, k = 1, 2, · · · , N − 1, means that the D-policy is implemented and the cumulative service

time of the first k customers exceeds D for the first time, that is,
∑k−1
i=1 Si ≤ D <

∑k
i=1 Si. On the

other hand, QN,D = N indicates that the busy period begins under the N-policy. This means that

the service time backlog of the first N-1 customers is not greater than D, that is,
∑N−1
i=1 Si ≤ D.

Thus, the distribution of QN,D is

Pr{QN,D = k} =

{
S(k−1)(D)− S(k)(D), k = 1, 2, · · · , N − 1,
S(N−1)(D), k = N,

(1)

which leads to

QN,D(z) =

N∑
k=1

Pr{QN,D = k}zk = z − (1− z)
N−1∑
k=1

zkS(k)(D), |z| < 1. (2)

From (2), we obtain the first and second moments of QN,D as

E[QN,D] =
d[QN,D(z)]

dz
|z=1= 1 +

N−1∑
k=1

S(k)(D), (3)

E[QN,D(QN,D − 1)] =
d2[QN,D(z)]

dz2
|z=1= 2

N−1∑
k=1

kS(k)(D). (4)

3.2 The service time backlog at the start of a busy period

Let ΦN,D denote the service time backlog at the starting point of a busy period. When ΦN,D = x, x =
D+ 1, D+ 2, · · · , two cases may occur: (a) there is only a customer at the beginning point of a busy
period and its service time x exceeds D; (b) the service time backlog of the first k(1 ≤ k ≤ N − 1)
customers is n, n = k, k+ 1, · · · , D, and D is exceeded by the service time of the (k+ 1)th customer.
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When ΦN,D = x, x = N,N + 1, · · · , D, then the N-policy is operated and the sum of the service
times of N waiting customers is equal to x. So the distribution of ΦN,D is

Pr{ΦN,D = x} =

s(x) +
N−1∑
k=1

D∑
n=k

s(k)(n)s(x− n), x = D + 1, D + 2, · · · ,

s(N)(x), x = N,N + 1, · · · , D.
(5)

Using (5) it is easy to show that

ΦN,D(z) =

D∑
x=N

zxs(N)(x) +

∞∑
x=D+1

zxs(x) +

N−1∑
k=1

∞∑
x=D+1

zx
D∑
n=k

s(k)(n)s(x− n), (6)

where the third term on the right of (6) can be written as

N−1∑
k=1

∞∑
x=D+1

zx
D∑
n=k

s(k)(n)s(x− n)

=
N−1∑
k=1

∞∑
x=D+1

zx

[
x∑

n=k

s(k)(n)s(x− n)−
x∑

n=D+1

s(k)(n)s(x− n)

]

=
N−1∑
k=1

∞∑
x=D+1

zxs(k+1)(x)−
N−1∑
k=1

∞∑
n=D+1

zn
∞∑
x=n

zx−ns(k)(n)s(x− n)

=

N−1∑
k=1

∞∑
x=D+1

zxs(k+1)(x)− S(z)

N−1∑
k=1

∞∑
n=D+1

zns(k)(n). (7)

Substituting (7) into (6) gives

ΦN,D(z) =
D∑

x=N

zxs(N)(x) +
N−1∑
k=0

∞∑
x=D+1

zxs(k+1)(x)− S(z)
N−1∑
k=1

∞∑
n=D+1

zns(k)(n)

=
∞∑
x=N

zxs(N)(x) + (1− S(z))
N−1∑
k=1

∞∑
x=D+1

zxs(k)(x)

= SN (z) + (1− S(z))

N−1∑
k=1

[
Sk(z)−

D∑
x=k

zxs(k)(x)

]

= S(z)− (1− S(z))
N−1∑
k=1

D∑
x=k

zxs(k)(x). (8)

Finally, from (8), the first and second moments of ΦN,D are respectively given by

E[ΦN,D] = E[S]
N−1∑
k=0

S(k)(D), (9)

E[ΦN,D(ΦN,D − 1)] = E[S(S − 1)]

N−1∑
k=0

S(k)(D) + 2E[S]

N−1∑
k=1

D∑
n=k

ns(k)(n). (10)
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4 The idle period, busy period and busy cycle period

4.1 The idle period

According to the ND-policy, if the D-policy becomes effective, then we can get the length of the idle
period as IN,D = τ1 + τ2 + · · ·+ τn, n = 1, 2, · · · , N − 1, where the sum of n customers’ service times
exceeds D for the first time, that is, S1 + S2 + · · ·+ Sn−1 ≤ D < S1 + S2 + · · ·+ Sn. If the N-policy
becomes effective, then the length of the idle period is expressed as IN,D = τ1 + τ2 + · · ·+ τN , N ≥ 1,
where S1 + S2 + · · ·+ SN−1 ≤ D. Thus, for k ≥ 1, the probability mass function (PMF) of IN,D is
given by

Pr{IN,D = k} =

N−1∑
n=1

Pr

{
n∑
i=1

τi = k

}
Pr

{
n−1∑
i=1

Si ≤ D <

n∑
i=1

Si

}

+ Pr

{
N∑
i=1

τi = k

}
Pr

{
N−1∑
i=1

Si ≤ D

}

=

N−1∑
n=1

Pr

{
n∑
i=1

τi = k

}
Pr{QN,D = n}+ Pr

{
N∑
i=1

τi = k

}
Pr{QN,D = N}, (11)

which leads to the PGF of the idle period as

IN,D(z) =
N−1∑
n=1

[τ(z)]nPr {QN,D = n}+ [τ(z)]NPr {QN,D = N} = QN,D(τ(z)), |z| < 1, (12)

and the mean length of the idle period as

E[IN,D] =
d

dz
IN,D(z) |z=1=

1

p

[
1 +

N−1∑
k=1

S(k)(D)

]
, (13)

where τ(z) = pz
1−p̄z is the PGF of inter-arrival time τi, i ≥ 1.

4.2 The busy period and busy cycle period

In our queueing system, since the service times of the customers arriving during the idle period are no 
longer independent of each other, which is different from the cases in the Geo/G/1 type queues with 
the N, T, and NT policies, the PGF of the busy period cannot directly be derived by using the Galton-
Watson branching process approach(an effective method to analyze the busy period when the service 
times of the customers are i.i.d. random variables).

Let Γγ be the number of customers left behind by the last departing IC during a busy period, and 
Bγ be the length of the remaining busy period initiating with Γγ customers, then the length of the busy 
period, BN,D, can be expressed as

BN,D = ΦN,D +Bγ . (14)

Note that Bγ can exactly be viewed as the length of the busy period initiating with Γγ customers
in the classical Geo/G/1 queue. Thus, from the FCFS service discipline and the Galton-Watson

branching process approach, Bγ = B1 + B2 + · · · + BΓγ , where Bi, i ≥ 1 are i.i.d. and represent the 
length of the busy period initiating with one customer in the classical Geo/G/1 queue, with the PGF

B(z) = S(p̄z + pzB(z)) and mean E[B] = E[S]
1−ρ .

Under the condition that ΦN,D and Γγ are known, we have

E[zBN,D |ΦN,D = i, Γγ = j] = ziE[zB1+B2+···+Bj ] = zi[B(z)]j , j ≥ 0, i ≥ j, (15)
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So by the total mean formula and (15), the PGF of BN,D, denoted by BN,D(z), is

BN,D(z) =

∞∑
j=0

∞∑
i=j

E[zBN,D |ΦN,D = i, Γγ = j]Pr{ΦN,D = i, Γγ = j}

=

∞∑
i=0

ziPr{ΦN,D = i}
i∑

j=0

[B(z)]jCji p
j p̄i−j

= ΦN,D(p̄z + pzB(z)), (16)

which yields the mean length of the busy period

E[BN,D] =
ρ

p(1− ρ)

[
1 +

N−1∑
k=1

S(k)(D)

]
, (17)

and the mean length of the busy cycle period

E[CN,D] = E[IN,D] + E[BN,D] =
1

p(1− ρ)

[
1 +

N−1∑
k=1

S(k)(D)

]
. (18)

Remark 3

1. To the best of our knowledge, this paper is a first study that analyzes the busy period in the 
discrete-time Geo/G/1 type queues controlled by service time backlog. For the busy period of the 
continuous-time M/G/1 type queues controlled by service time backlog, Gakis et al. (1995) used 
complex probability density function analysis, and Rhee (1997) adopted the pseudo probability 
density function method. Here we apply a completely different approach from the methods of 
Gakis et al. (1995) and Rhee (1997). Since our approach focuses on the concrete queue behavior 
resulting from the D-policy, and utilizes the Galton-Watson branching process, the derivation is 
simple and concise. From our analysis, this method is applicable for the derivation of the busy 
period in the M/G/1 type and Geo/G/1 type queues controlled by service time backlog.

2. From (13), (17) and (18), we easily find that the idle probability of the server is
E[IN,D]
E[CN,D] = 1− ρ,

and the busy probability of the server is
E[BN,D]
E[CN,D] = ρ.

5 The steady-state queue length at an arbitrary epoch t+

5.1 The PGF of the steady-state queue length at an arbitrary epoch t+

As an analog of the PASTA (Poisson arrivals see time averages) property in the continuous-time 
M/G/1 type queues, there exists a BASTA (Bernoulli arrivals see time averages) or GASTA (Geo-
metric arrivals see time averages) property in the discrete-time Geo/G/1 type queues. According to
this property, the steady-state queue length PGFs LN,D(z), L˜N,D(z) and π(z) at an arbitrary epoch t
+, at an arrival epoch, and at a departure epoch under the ND-policy are all equal. That is

LN,D(z) = L̃N,D(z) = π(z), |z| < 1. (19)

Therefore, in order to obtain the PGF LN,D(z), we only need to get the steady-state queue length 
PGF π(z) at an arbitrary departure epoch.

In our queueing system, since the service times of the customers who arrive during the idle
period, are stochastically different from the service times of the customers who arrive during the
busy period, we categorize the customers into two types to obtain π(z). For the convenience of
analysis, the customer who arrives during the idle period is denoted as “IC” and the customer who
arrives during the busy period is expressed as “BC”.
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Let pIC and pBC represent the probabilities that an arbitrary customer is an IC and a BC,

respectively, then we get pIC =
E[QN,D]
pE[CN,D] = 1− ρ, and pBC = 1− pIC = ρ. So, when conditioning on

the customer type, we have

π(z) = pICπIC(z) + pBCπBC(z), (20)

where πIC(z) is the steady-state queue length PGF at an arbitrary IC’s departure epoch, and πBC(z)
is the steady-state queue length PGF at an arbitrary BC’s departure epoch.
• The derivation of πBC(z)

To obtain πBC(z), we denote γ as the service completion time point of the last IC during the
busy period, and Γγ as the number of BCs that arrive during time length ΦN,D. Then the PGF, first
and second moments of Γγ are respectively given by

Γγ(z) = ΦN,D(p̄+ pz), E[Γγ ] = pE[ΦN,D], E[Γγ(Γγ − 1)] = p2E[ΦN,D(ΦN,D − 1)]. (21)

Now, note that the queue length process after γ during a busy period can be regarded as that
starts with Γγ BCs during a busy period of the classical Geo/G/1 queue. So, according to the well-
known decomposition property of the Geo/G/1 queue with generalized vacations (see Takagi (1993)),
we get

πBC(z) = πGeo/G/1(z)Γ̃γ(z), (22)

where πGeo/G/1(z) = (1−ρ)(1−z)S(p̄+pz)
S(p̄+pz)−z is the steady-state queue length PGF at a departure epoch

in the classical Geo/G/1 queue, and Γ̃γ(z) =
1−Γγ(z)

(1−z)E[Γγ ] is the PGF of the backward recurrence time

of the discrete-time renewal process generated by i.i.d. Γγ ’s.
• The derivation of πIC(z)

Let ∆ (∆) denote the event that an arbitrary IC is (isn’t) the last one that arrives during an idle
period, then when this IC departs, the PGF of system queue length (excluding this departing IC),
πIC(z), can be decomposed as

πIC(z) = πIC(z|∆)Pr{∆}+ πIC(z|∆)Pr{∆}, (23)

For the first term on the right of (23), we have

Pr{∆} =
1

E[QN,D]
(24)

πIC(z|∆) = ΦN,D(p̄+ pz). (25)

For the second term on the right of (23), we consider the case that this IC is the kth one
that arrives during an idle period, and the total service time backlog including itself is x, with the
probability

s(k)(x)

E[QN,D]
, k = 1, 2, · · · , N − 1; x = k, k + 1, · · · , D. (26)

In this case, the system queue length left behind by this departing IC, is equal to the sum of the
following two quantities:

(1) the number of the customers that arrive during x;
(2) the number of the customers that arrive during the remaining idle period after the arrival of

this IC, which is exactly equal to the number of customers QN−k,D−x at the start of a busy period
under the (N − k)(D − x)-policy.

Therefore, we get the second term on the right of (23) as

πIC(z|∆)Pr{∆} =
N−1∑
k=1

D∑
x=k

(p̄+ pz)xQN−k,D−x(z)
s(k)(x)

E[QN,D]
, (27)

where QN−k,D−x(z) is determined by (2).
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Putting (24), (25), and (27) into (23) leads to

πIC(z) =
1

E[QN,D]

[
ΦN,D(p̄+ pz) +

N−1∑
k=1

D∑
x=k

s(k)(x)(p̄+ pz)xQN−k,D−x(z)

]
. (28)

Finally, using (21), (22), and (28) in (20), we obtain the PGF of the steady-state queue length
at an arbitrary epoch t+ as

LN,D(z) = ρLGeo/G/1(z) · 1− ΦN,D(p̄+ pz)

pE[ΦN,D](1− z)

+
(1− ρ)

E[QN,D]

[
ΦN,D(p̄+ pz) +

N−1∑
k=1

D∑
x=k

(p̄+ pz)xs(k)(x)QN−k,D−x(z)

]
, (29)

where LGeo/G/1(z) = (1−ρ)(1−z)S(p̄+pz)
S(p̄+pz)−z is the steady-state queue length PGF at any epoch t+ in the

classical Geo/G/1 queue, and QN−k,D−x(z) is determined by (2).

5.2 The mean steady-state queue length at an arbitrary epoch t+

From (19) and (20), the mean steady-state queue length at an arbitrary epoch t+ is given by

E[LN,D] = (1− ρ)E[LIC ] + ρE[LBC ], (30)

where E[LIC ] and E[LBC ] are the mean steady-state queue lengths at the departure epoch of the IC
and the BC, respectively.

It follows from (21), (22), (9), and (10) that

E[LBC ] =
d[πBC(z)]

dz
|z=1= ρ+

p2E[S(S − 1)]

2(1− ρ)
+
pE[ΦN,D(ΦN,D − 1)]

2E[ΦN,D]

= ρ+
p2E[S(S − 1)]

2(1− ρ)
+
p2E[S(S − 1)]

2ρ
+

p
N−1∑
k=1

D∑
n=k

ns(k)(n)

N−1∑
k=0

S(k)(D)

. (31)

Utilizing (28), (3), and (9), we get

E[LIC ] =
d[πIC(z)]

dz
|z=1

= ρ+
1

E[QN,D]

[
p

N−1∑
k=1

D∑
x=k

xs(k)(x) +

N−1∑
k=1

D∑
x=k

s(k)(x)E[QN−k,D−x]

]
. (32)

From (3), we have

N−1∑
k=1

D∑
x=k

s(k)(x)E[QN−k,D−x] =

N−1∑
k=1

N−k−1∑
n=0

D∑
x=k

s(k)(x)S(n)(D − x)

=

N−1∑
k=1

N−k−1∑
n=0

S(n+k)(D) =

N−1∑
k=1

kS(k)(D). (33)

So, inserting (31), (32), and (33) in (30), we get the mean steady-state queue length at an arbitrary
epoch t+ as

E[LN,D] = E[LGeo/G/1] +

p
N−1∑
k=1

D∑
n=k

ns(k)(n) + (1− ρ)
N−1∑
k=1

kS(k)(D)

N−1∑
k=0

S(k)(D)

, (34)
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where E[LGeo/G/1] = ρ+ p2E[S(S−1)]
2(1−ρ) is the mean steady-state queue length at an arbitrary epoch t+

in the classical Geo/G/1 queue.

It is noted that (34) can also be derived from (29) and
d[LN,D(z)]

dz |z=1.

Remark 4

1. Gu et al. (2016) also analyzed the model presented in this paper. But they only dealt with the 
queue length distributions at different epochs t−, t and t+, t = 0, 1, 2, · · · , where t− represents the 
instant immediately before t, and t+ represents the instant immediately after t. They obtained the 
following stochastic decomposition relation of the steady-state queue length PGF π+(z) at an 
arbitrary epoch t+, t = 0, 1, 2, · · · (or see Corollary 4.7 and Remark 4.8 in Gu et al. (2016)):

π+(z) =
(1− ρ)(1− z)S(p̄+ pz)

S(p̄+ pz)− z
·

1 +
min(N,D)−1∑

m=1
Cm(D)zm

1 +
min(N,D)−1∑

m=1
Cm(D)

, 1 ≤ N,D <∞, (35)

and the steady-state mean queue length at an arbitrary epoch t+, t = 0, 1, 2, · · · (or see Corollary 
4.9 in Gu et al. (2016)):

E[L+] = ρ+
p2E[S(S − 1)]

2(1− ρ)
+

min(N,D)−1∑
m=1

mCm(D)

1 +
min(N,D)−1∑

m=1
Cm(D)

, (36)

where min(N,D) represents the smaller of two values N and D, Cm(D) = Pr

{
m∑
i=1

Si < D

}
,

m ≥ 1, C0(D) = 1, and
j∑

m=i

= 0, if i > j.

2. It should be pointed out that the difference between (29) and (35) (or between (34) and (36)) 
resulted from the fact that Gu et al. implemented the pseudo ND-policy. More precisely, they 
did not utilize the genuine D-policy. The reason is that they assumed the service times of the 
customers arriving during an idle period are i.i.d., or, at the start of a busy period, the customers 
arriving during an idle period are all re-arranged same i.i.d. service times as those arriving during a 
busy period. From Remark 2, it is not the genuine ND-policy.
In fact, under the above assumption(the service times of customers arriving during the idle and 
busy periods are i.i.d.), the decomposition property of queue length holds. According to this 
property and the property of BASTA (Bernoulli arrivals see time averages) in the discrete-time 
Geo/G/1 type queues, in the model of Gu et al, the steady-state queue length PGF at an arbitrary 
epoch t+, t = 0, 1, 2, · · · , is given by

π+(z) =
(1− ρ)(1− z)S(p̄+ pz)

S(p̄+ pz)− z
·

1−QpseN,D(z)

(1− z)E[QpseN,D]
, (37)

where
1−QpseN,D(z)

(1−z)E[QpseN,D]
is an additional queue length generated by the above pseudo ND-policy, and

QpseN,D denotes the number of customers at the start of a busy period under the pseudo ND-policy,
with the distribution, PGF, and mean value as follows:

Pr{QpseN,D = k} =


Pr

{
k−1∑
i=1

Si < D ≤
k∑
i=1

Si

}
, k = 1, 2, · · · ,min(N,D)− 1,

Pr

{
k−1∑
i=1

Si < D

}
, k = min(N,D),

=

{
Ck−1(D)− Ck(D), k = 1, 2, · · · ,min(N,D)− 1,
Ck−1(D), k = min(N,D).

(38)
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QpseN,D(z) =

min(N,D)∑
k=1

zkPr{QpseN,D = k} = z − (1− z)
min(N,D)−1∑

k=1

zkCk(D). (39)

E[QpseN,D] =
d[QpseN,D(z)]

dz
|z=1= 1 +

min(N,D)−1∑
k=1

Ck(D). (40)

Substituting (39) and (40) into (37) yields (35).

3. In (38), from Pr{QpseN,D = k} = Pr

{
k−1∑
i=1

Si < D ≤
k∑
i=1

Si

}
, k = 1, 2, · · · ,min(N,D) − 1, we see

that the D-policy is operated when the service time backlog of the Qpse waiting customers isN,D

greater than or equal to D. However, in the model formulation of Gu et al.(see page 4 in Gu et al.
(2016)), it is assumed that the D-policy is operated when the service time backlog of the waiting 
customers exceeds D. This is a flaw in Gu et al. (2016).
Also, it follows from Remark 1 in this paper that in the genuine ND-policy Geo/G/1 queue, the 
ranges for N and D are 1 ≤ N ≤ D + 1, N = 1, 2, 3, · · · ; D = 0, 1, 2, · · · . In this case, it is not 
appropriate to utilize the notation min(N, D) since most values of N are less than or equal to D. 
However, Gu et al. (2016) assumed that the ranges for N and D are both {1, 2, 3, · · · }(see Model 
Formulation on page 4 in Gu et al. (2016)) and used the notation min(N, D). Thus, this is another 
flaw in Gu et al. (2016).

4. Under the pseudo ND-policy implemented by Gu et al.(2016), since the service times of the 
customers arriving during the idle and busy periods are i.i.d., we easily know that: (a) the length
of an idle period(denoted by IpseN,D) is the sum of i.i.d. inter-arrival times τ1, τ2, · · · , τQpseN,D

, i.e.

IpseN,D = τ1 + τ2 + · · · + τQpseN,D
, and τi, i ≥ 1 are independent of QpseN,D; (b) the length of a busy

period(denoted by BpseN,D) can be expressed as BpseN,D = B1 + B2 + · · · + BQpseN,D
, where Bi, i ≥ 1

are i.i.d. and represent the length of the busy period initiating with one customer in the classical
E[S]
1−ρGeo/G/1 queue, with the PGF B(z) = S(¯pz + pzB(z)) and mean E[B] = . Hence, in the

model of Gu et al.(2016), for ρ = pE[S] < 1, we can also obtain the mean lengths of the idle,
busy, and busy cycle periods, which are respectively given by

E[IpseN,D] =
d[QpseN,D(τ(z))]

dz
|z=1=

E[QpseN,D]

p
, (41)

E[BpseN,D] =
d[QpseN,D(B(z))]

dz
|z=1=

E[QpseN,D]E[S]

1− ρ
, (42)

E[CpseN,D] = E[IpseN,D] + E[BpseN,D] =
E[QpseN,D]

p(1− ρ)
, (43)

where τ(z) = pz
1−p̄z is the PGF of inter-arrival time τi, i ≥ 1.

From (41), (42), and (43), it is easy to obtain that under the pseudo ND-policy, the probabilities
that the server is idle and busy, are 1−ρ and ρ, respectively. But the idle period PGF QpseN,D(τ(z))

differs from (12), and the busy period PGF QpseN,D(B(z)) is different from (16).

In Subsect. 9.2, E[IpseN,D], E[BpseN,D], and E[CpseN,D] will be applied to numerically illustrate the flaws

resulted from (36) (or the pseudo ND-policy) in practical application.

6 The steady-state service time backlog at an arbitrary epoch t+

To derive the PGF and mean of the steady-state service time backlog at an arbitrary epoch t+, we

denote U idleN,D(z) and U busyN,D (z) as the PGFs of the steady-state service time backlog at an arbitrary

time epoch t+ during the idle and busy periods, respectively.
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For U idleN,D(z), note that at an arbitrary epoch t+ during the idle period, the probability that there

are k customers in the system and the service time backlog is n, is
1
p s

(k)(n)

E[IN,D] , k = 1, 2, · · · , N − 1, n =

k, k + 1, · · · , D, and the probability that there is no service time backlog, is
1
p

E[IN,D] , so we obtain

U idleN,D(z) =

1
p

E[IN,D]
+

N−1∑
k=1

D∑
n=k

zn
1
ps

(k)(n)

E[IN,D]
=

1

E[QN,D]

[
1 +

N−1∑
k=1

D∑
n=k

zns(k)(n)

]
, (44)

and

E[U idleN,D] =
1

E[QN,D]

N−1∑
k=1

D∑
n=k

ns(k)(n). (45)

For U busyN,D (z), note that the service time backlog at any epoch t+ during the busy period can be
viewed as that during a delay cycle generated by the BCs, with initial delay ΦN,D, in the classi-cal 

Geo/G/1 queue, thus, from the well-known decomposition method of the Geo/G/1 queue with
generalized vacations (see Takagi[p.27, Eq.(2.26b)](1993)), we get

U busyN,D (z) = UGeo/G/1(z)Φ−N,D(z), (46)

where UGeo/G/1(z) is the PGF of the steady-state service time backlog at an arbitrary epoch t+

in the classical Geo/G/1 queue, which is obviously equal to the steady-state waiting time PGF of

an arbitrary customer in the classical Geo/G/1 queue, that is, UGeo/G/1(z) = (1−ρ)(1−z)
(1−z)−p(1−S(z)) , and

Φ−N,D(z) =
1−ΦN,D(z)

(1−z)E[ΦN,D] is the PGF of the forward recurrence time of the discrete-time renewal

process generated by i.i.d. ΦN,D’s.
From (46), (9) and (10), we obtain the mean value of the steady-state service time backlog at an

arbitrary epoch t+ during a busy period as

E[U busyN,D ] =
pE[S(S − 1)]

2(1− ρ)
+

E[ΦN,D(ΦN,D − 1)]

2E[ΦN,D]

=
pE[S(S − 1)]

2ρ(1− ρ)
+

1

E[QN,D]

N−1∑
k=1

D∑
n=k

ns(k)(n). (47)

Therefore, we get the PGF of the steady-state service time backlog at an arbitrary epoch t+ as

UN,D(z) = (1− ρ)U idleN,D(z) + ρU busyN,D (z)

=
(1− ρ)(1− z)

[1− z − p(1− S(z))]E[QN,D]

[
1 +

N−1∑
k=1

D∑
n=k

zns(k)(n)

]
. (48)

From (48), the mean steady-state service time backlog at an arbitrary epoch t+ is

E[UN,D] =
pE[S(S − 1)]

2(1− ρ)
+

1

E[QN,D]

N−1∑
k=1

D∑
n=k

ns(k)(n). (49)

In our system, it is necessary and important for the waiting time distribution to obtain the PGF
and mean of the steady-state service time backlog at an arbitrary epoch t+.
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7 The steady-state waiting time

Denote Wq,IC ,Wq,BC , and Wq,N,D as the waiting times of an arbitrary IC, BC, and customer,
respectively. Then conditioning on the customer type, we get the relation of their PGFs as

Wq,N,D(z) = (1− ρ)Wq,IC(z) + ρWq,BC(z). (50)

• The derivation of Wq,BC(z)
Since the waiting time of an arbitrary BC can be viewed as that of any customer arriving during

a delay cycle generated by the BCs, with initial delay ΦN,D, in the classical Geo/G/1 queue, we get

Wq,BC(z) = WGeo/G/1(z)Φ−N,D(z), (51)

where WGeo/G/1(z) = (1−z)(1−ρ)
1−z−p(1−S(z)) is the waiting time PGF in the classical Geo/G/1 queue, and

Φ−N,D(z) =
1−ΦN,D(z)

(1−z)E[ΦN,D] is the PGF of the forward recurrence time in the renewal process generated

by i.i.d. ΦN,D’s.
From (46), (51), (8), (9) and (44), we obtain

Wq,BC(z) = U busyN,D (z) = WGeo/G/1(z)
1− S(z)

(1− z)E[S]
U idleN,D(z). (52)

• The derivation of Wq,IC(z)
In order to study this we consider the following four different cases:
Case 1. this IC is the first customer arriving during the idle period(with probability 1

E[QN,D] ), and

its service time does not exceed D. In this case, if its service time is x, 1 ≤ x ≤ D, with probability
s(x), then the IC’s waiting time is equal to the sum of QN−1,D−x inter-arrival times (with PGF
QN−1,D−x( pz

1−p̄z )), Thus, in this case, the waiting time PGF of this IC is

W 1
q,IC(z) =

D∑
x=1

1

E[QN,D]
s(x)QN−1,D−x

(
pz

1− p̄z

)
, (53)

where QN−1,D−x(z) is determined by (2).
Case 2. this IC is the first customer arriving during the idle period(with probability 1

E[QN,D] ),

and its service time exceeds D. In this case, if its service time is x, x ≥ D+ 1, with probability s(x),
then the IC’s waiting time is equal to 0 (with PGF z0), Thus, in this case, the waiting time PGF of
this IC is

W 2
q,IC(z) =

∞∑
x=D+1

1

E[QN,D]
s(x)z0. (54)

Case 3. this IC is the (k+1)th customer arriving during the idle period(with probability 1
E[QN,D] ),

and just after its arrival epoch, total service time backlog x(including this IC’s service time) does
not exceed D. In this case, if the service time backlog of the first k, 1 ≤ k ≤ N−1, waiting customers
is y, and this IC’s service time is x − y, k ≤ y < x ≤ D, with probability s(k)(y)s(x − y), then the
IC’s waiting time is equal to the sum of y and QN−(k+1),D−x inter-arrival times, where Q0,D−x = 0,
Thus, in this case, the waiting time PGF of this IC is

W 3
q,IC(z) =

N−1∑
k=1

D∑
x=k+1

x−1∑
y=k

s(k)(y)

E[QN,D]
s(x− y)zyQN−(k+1),D−x

(
pz

1− p̄z

)
, (55)

where QN−(k+1),D−x(z) is determined by (2), and Q0,D−x(z) is interpreted as 1.

Case 4. this IC is the (k+1)th customer arriving during the idle period(with probability 1
E[QN,D] ),

and just after its arrival epoch, total service time backlog x(including this IC’s service time) exceeds
D. In this case, if the service time backlog of the first k, 1 ≤ k ≤ N − 1, waiting customers is
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y, k ≤ y ≤ D, and this IC’s service time is x − y,D + 1 ≤ x, with probability s(k)(y)s(x − y), then
the IC’s waiting time is equal to y, Thus, in this case, the waiting time PGF of this IC is

W 4
q,IC(z) =

N−1∑
k=1

∞∑
x=D+1

D∑
y=k

s(k)(y)

E[QN,D]
s(x− y)zy. (56)

From W i
q,IC(z), i = 1, 2, 3, 4, after substitution and simplification, we get

Wq,IC(z) =

4∑
i=1

W i
q,IC(z) =

1

E[QN,D]

1 +

N−1∑
k=1

D∑
y=k

zys(k)(y)


+
τ(z)− 1

E[QN,D]


N−1∑
n=1

S(n)(D) [τ(z)]
n−1

+

N−2∑
k=1

D−1∑
y=k

N−k−1∑
n=1

S(n)(D − y) [τ(z)]
n−1

s(k)(y)zy

 , (57)

where τ(z) = pz
1−p̄z is the PGF of inter-arrival time τi, i ≥ 1.

Further, putting (52) and (57) into (50) and simplifying, we obtain the waiting time PGF of an
arbitrary customer as

Wq,N,D(z) = UN,D(z) +
(1− ρ) [τ(z)− 1]

E[QN,D]

×


N−1∑
n=1

S(n)(D) [τ(z)]
n−1

+
N−2∑
k=1

D−1∑
y=k

N−k−1∑
n=1

S(n)(D − y) [τ(z)]
n−1

s(k)(y)zy

 ,(58)

and the mean waiting time as

E[Wq,N,D] =
d[Wq,N,D(z)]

dz
|z=1

=
pE[S(S − 1)]

2(1− ρ)
+

1

E[QN,D]

N−1∑
k=1

D∑
n=k

ns(k)(n) +
1− ρ

pE[QN,D]

N−1∑
n=1

nS(n)(D). (59)

8 The steady-state sojourn time

Let WIC , WBC , and WN,D represent the steady-state sojourn times of an arbitrary IC, BC, and 
customer, respectively. Then conditioning on the customer type, we obtain the relation between 
their respective PGF’s:

WN,D(z) = (1− ρ)WIC(z) + ρWBC(z). (60)

Note that an arbitrary BC’s sojourn time WBC is equal to the sum of its waiting time Wq,BC and
service time S, and Wq,BC and S are independent, therefore, the steady-state sojourn time PGF of
an arbitrary BC is WBC(z) = Wq,BC(z)S(z), where Wq,BC(z) was already obtained in (52).

To derive WIC(z), we consider the following two different cases:
Case a. This IC is the last customer arriving during the idle period(with probability 1

E[QN,D] ). In

this case, its sojourn time is the initial backlog at the start of the busy period. Thus, the sojourn

time PGF of this IC is W a
IC(z) =

ΦN,D(z)
E[QN,D] .

Case b. This IC is the kth, 1 ≤ k ≤ N − 1, customer arriving during the idle period(with
probability 1

E[QN,D] ). In this case, if total service time backlog(including this IC’s service time) is x,

with probability s(k)(x), x = k, k + 1, · · · , D, then this IC’s sojourn time is equal to the sum of the
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service time backlog x and the remaining idle period IN−k,D−x. Thus, in this case, the sojourn time
PGF of this IC is

W b
IC(z) =

N−1∑
k=1

D∑
x=k

s(k)(x)

E[QN,D]
zxIN−k,D−x(z), (61)

where IN−k,D−x(z) is determined by (12).
Then, we get

WIC(z) =W a
IC(z) +W b

IC(z) =
ΦN,D(z)

E[QN,D]
+

N−1∑
k=1

D∑
x=k

s(k)(x)

E[QN,D]
zxIN−k,D−x(z). (62)

Putting (52) and (62) into (60), and simplifying, we obtain the steady-state sojourn time PGF
of an arbitrary customer as

WN,D(z) =
1− ρ

E[QN,D]

[
ΦN,D(z) +

pS(z)(1− ΦN,D(z))

1− z − p(1− S(z))
+

N−1∑
k=1

D∑
x=k

zxs(k)(x)IN−k,D−x(z)

]
, (63)

and the mean sojourn time as

E[WN,D] =
d[WN,D(z)]

dz
|z=1

= E[S] +
pE[S(S − 1)]

2(1− ρ)
+

N−1∑
k=1

D∑
n=k

ns(k)(n)

N−1∑
k=0

S(k)(D)

+

(1− ρ)
N−1∑
k=1

kS(k)(D)

p
N−1∑
k=0

S(k)(D)

. (64)

Remark 5 From (34), (59), and (64), we get E[WN,D] = E[Wq,N,D]+E[S], and E[LN,D] = pE[WN,D].
Thus, in our system, the Little’s formula holds.

9 Numerical illustrations and application

In numerical analysis, note that

S(k)(D) = Pr


k∑
j=1

Sj ≤ D

 =
D∑
i=k

Pr


k∑
j=1

Sj = i

 =
D∑
i=k

s(k)(i), k = 1, 2, · · · , D,

Ck(D) = Pr


k∑
j=1

Sj < D

 =
D−1∑
i=k

s(k)(i), k = 1, 2, · · · , D − 1,

S(0)(D) = 1, S(k)(D) = 0, k ≥ D + 1, C0(D) = 1, Ck(D) = 0, k ≥ D.

So, it is not easy for an arbitrary service time distribution to compute the values of S(k)(D), 1 ≤ k ≤
D, and Ck(D), 1 ≤ k ≤ D−1 because the convolution computation of the discrete-time distribution is
complicated. For the convenience of analysis, in numerical experiments of this section, we assume that
the service times of the server follow a common geometrical distribution: s(i) = qq̄i−1, 0 < q < 1, then

S(k)(D) =
∑D
i=k C

k−1
i−1 q

kq̄i−k, k = 1, 2, · · · , D, Ck(D) =
∑D−1
i=k Ck−1

i−1 q
kq̄i−k, k = 1, 2, · · · , D − 1,

and q = p
ρ . In addition, from 0 < q < 1, we know 0 < p < ρ.
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Fig. 1 Mean queue length under the N and ND policies for varying traffic intensity ρ (D = 30, p = 0.25).
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Fig. 2 Mean queue length under the D and ND policies for varying traffic intensity ρ (N = 10, p = 0.25).

9.1 Effects of different parameters on the mean queue length

In our first numerical example, the mean queue lengths under the N, D and ND policies are reported
in Figs. 1-4, in which we fix the arrival rate p = 0.25 in Figs 1 and 2, and the traffic intensity ρ = 0.75
in Figs 3 and 4, respectively. Since 0 < p < ρ, we can select the value of traffic intensity ρ from 0.3
to 1 in Figs 1 and 2, and vary the value of arrival rate p from 0.1 to 0.7 in Figs 3 and 4. Also, the
curves for N = 1 in Figs. 1 and 3 and for D = 0 in Figs. 2 and 4, represent the mean queue length
of the classical Geo/G/1 queue.

From Figs. 1-4 we see that the mean queue length under the ND-policy is invariably less than that 
under either N- or D-policy for any ρ and p. For example, in Fig.1 the mean queue length under the 
ND-policy with N = 20, D = 30 (N = 12, D = 30) is always less than that under the N-policy with N = 
20 (N = 12). Also, the mean queue length for the classical Geo/G/1 queue is least among all policies for 
any ρ and p. These phenomena are as expected because relative to the N-policy or D-policy, the ND-
policy controls the startup of the server according to the number and service time backlog of customers 
at the same time, and the classical Geo/G/1 queue triggers the server with the threshold N = 1 or D = 
0, which can be viewed as the case without threshold policy.

From Fig. 1, we also observe that for the same value of N when the value of ρ is increasing from
small to large, the mean queue length under the ND-policy is first nearly equal to, and then less
than that under the N-policy. The reason is that in increasing process of ρ, for small traffic intensity,
the startup of the server is mainly governed by the N-policy, and when the traffic intensity increases,
the D-policy controls the turn-on of the server gradually. Further, the mean queue length is the
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Fig. 4 Mean queue length under the D and ND policies for varying arrival rate p (N = 10, ρ = 0.75).

increasing function of D and the N-policy can be regarded as the ND-policy with D =∞. In Fig.1,
it can be observed that, for the same value of D, when the value of ρ is large (e.g. ρ=0.92), the mean
queue lengths under the ND-policy with N =12 and 20, are nearly identical. This comes from the
fact that for large traffic intensity, the D-policy controls the turn-on of the server. In Figs.2-4, one
can find similar conclusions and explanations.

9.2 Application to energy consumption optimization of a WSN

As a result of the advances in wireless communication and electronics technology, wireless sensor
network(WSN) has been a promising research domain due to its extensive applications, such as the
habitat or environmental monitoring, disaster management, danger alarm, target tracking, security
surveillance and patient monitoring, and so on. A typical simple WSN is composed of a sink node
and many sensor nodes. The sensor node is both a data packet originator and a packet router. It
possesses the function to transmit data packets. The sink node is responsible for processing packets
transmitted from the sensor nodes. In a sensor node, there is a sensor unit, a radio server, and many
finite-energy batteries. Since the sensor node is very small for little expense and safety reasons, and
is largely utilized in hostile and secretive surroundings, it is difficult or impossible to recharge or
replace its batteries. In addition, for the sensor nodes in different shells of a WSN, the sensor nodes
close to the sink node quickly use up their energies relative to those away from the sink node because
they have very heavy transmission tasks. This case will create huge energy waste and end the lifetime
of a WSN. So, energy saving is a key problem for long lifetime of a WSN.
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In a sensor node, its finite battery energy is largely consumed in the idle and busy server, holding 
date packets and the switching between idle and busy states. More precisely, there are four main 
energy consumptions: (i) the setup energy consumption per busy cycle period. This consumption is 
incurred by the switching from idle state to busy state and vice versa, and is closely bound to the 
number of switch-overs between idle and busy states; (ii) the holding energy consumption for each 
packet present in the node, which carries a hidden penalty for the current congestion; (iii) the energy 
consumption while the radio server is in busy state. It originates from the necessary energy used to 
maintain the active transmitter in the radio server and transmit data packets; (iv) the energy 
consumption while the radio server is in idle state, which is incurred by keeping the receiver of the 
radio server in operation. Typically, cases (i) and (iii) dominate the total energy consumption, and 
whereas the idle state always consumes the minimum energy.

In numerous energy-saving approaches of a WSN, the sleep/wake-up strategy is an effective one. It 
models a sensor node using a threshold-policy queue. In order to efficiently utilize energy during data 
processing and decrease energy waste incurred by the switching from sleep state(idle state) to wake-up 
state(busy state) and vice versa, when there is no data to process, the server goes to the sleep state(idle 
state). It is assumed that the radio server is awakened(begins to transmit data packets) only when 
there is enough packet number (N) or packet transmission backlog (D) to process. How to determine 
the optimal values of N and D so that the total energy consumption is minimized?

In this application example, we first model a sensor node in WSN using the Geo/G/1 queues
with the ND-policy and pseudo ND-policy, respectively. Next, from an energy consumption function
based on the queueing measures, we will numerically find the optimal ND-policy so that the average
energy consumption of a sensor node during a busy cycle period is minimized. Finally, we analyze
the impacts of the ND-policy and pseudo ND-policy on the optimal threshold and minimum energy
consumption, and point out the irrationality and flaws resulted from the pseudo ND-policy.

To establish an energy consumption function, and seek the optimal ND-policy at a minimum
energy consumption, we define the energy consumption elements as follows:

es ≡ setup energy consumption during a busy cycle period,

eh ≡ holding energy consumption for each data packet in sensor node,

ei ≡ energy consumption when the radio server is in idle state,

eb ≡ energy consumption when the radio server is in busy state.

According to the energy consumption function proposed by Jiang et al. (2012), the average energy 
consumption of a sensor node during a busy cycle period, is given by

f(N,D) =
es

E[CN,D]
+ ehE[LN,D] + eb

E[BN,D]

E[CN,D]
+ ei

E[IN,D]

E[CN,D]
, (65)

where E[IN,D],E[BN,D] and E[CN,D] are provided by (13), (17) and (18), respectively, and E[LN,D]
is presented by (34).

After substitution, the above energy consumption function becomes

f(N,D) = ebρ+ ei(1− ρ) +
esp(1− ρ)

1 +
∑N−1
k=1 S(k)(D)

+ eh

[
ρ+

p2E[S(S − 1)]

2(1− ρ)

+
p
∑N−1
k=1

∑D
n=k ns

(k)(n)

1 +
∑N−1
k=1 S(k)(D)

+
(1− ρ)

∑N−1
k=1 kS(k)(D)

1 +
∑N−1
k=1 S(k)(D)

]
, 1 ≤ N ≤ D + 1. (66)

Under the corresponding N and D policies of the ND-policy, we denote by fN (N) and fD(D) the 
average energy consumptions of a sensor node during a busy cycle period, respectively, then from 
Remark 1, we have that fN (N) = f(N, ∞), and fD(D) = f(D + 1, D).
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Table 1 Comparison of the optimal thresholds and minimum energy consumptions for varying arrival rate p
under the ND policy and its corresponding N and D policies (ρ = 0.8, 1 ≤ N ≤ 10, 1 ≤ D ≤ 20).

p = 0.15 p = 0.25 p = 0.35 p = 0.45 p = 0.55 p = 0.65 p = 0.75

N∗
N 3 4 5 5 6 6 7

fN (N∗
N ) 137.5900 138.3625 138.8900 139.2300 139.4717 139.6483 139.7500

D∗
D 11 9 8 8 7 7 6

fD(D∗
D) 137.3273 138.1197 138.6611 139.0573 139.3424 139.5761 139.7217

(N∗, D∗) (5,12) (6,10) (6,9) (7,8) (7,7 ) (7,7) (7,6)
f(N∗, D∗) 137.3217 138.1114 138.6570 139.0505 139.3419 139.5658 139.7217

Likewise, based on the pseudo ND-policy and Remark 4, the average energy consumption of a 
sensor node during a busy cycle period, is given by

fpse(N,D) =
es

E[CpseN,D]
+ ehE[L+] + eb

E[BpseN,D]

E[CpseN,D]
+ ei

E[IpseN,D]

E[CpseN,D]

= ebρ+ ei(1− ρ) +
esp(1− ρ)

1 +
∑min(N,D)−1
k=1 Ck(D)

+ eh

[
ρ+

p2E[S(S − 1)]

2(1− ρ)
+

∑min(N,D)−1
k=1 kCk(D)

1 +
∑min(N,D)−1
k=1 Ck(D)

]
, 1 ≤ N,D <∞. (67)

Under the corresponding N and D policies of the pseudo ND-policy, we denote by fpseN (N) and
fpseD (D) the average energy consumptions of a sensor node during a busy cycle period, respectively,
then from Corollaries 6.1 and 6.2 in Gu et al.(2016), we get fpseN (N) = fpse(N,∞), and fpseD (D) =
fpse(∞, D).

Note that the functions f(N,D) and fpse(N,D) are non-linear, especially the values of S(k)(D),
k = 1, 2, · · · , D and Ck(D), k = 1, 2, · · · , D − 1 are related to the convolution computation of
discrete transmission time distribution. So it is difficult to analytically obtain the optimal solution
of the (pseudo) ND-policy for an arbitrary transmission time distribution. But, in (66), we see that
the two decision parameters N and D can take positive integer values and 1 ≤ N ≤ D+ 1. Hence, if
we assume that the transmission time is geometrically distributed with mean ρ

p , 0 < p < ρ, and give

finite value ranges of N and D, respectively, then from the above property of decision parameters
N and D, a simple direct-search algorithm can be utilized to search for the optimal solution of the
ND-policy. Then we investigate the optimal solution of the pseudo ND-policy.

In order to illustrate the feasibility of our presented approach, we select the values of energy
consumption elements as: es = 245, eh = 1.6, eb = 160, ei = 0.5, and conduct the following two
numerical experiments for the ND-policy and the pseudo ND-policy:

Experiment 1. select ρ = 0.8, p = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, and change the threshold
N from 1 to 10 and the threshold D from 1 to 20;

Experiment 2. select p = 0.2, ρ = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, and change the threshold
N from 1 to 10 and the threshold D from 1 to 15.

For the convenience of analysis, we denote (N∗, D∗), N∗N , and D∗D as the optimal solutions of the
thresholds (N,D), N , and D, respectively.

Tables 1 and 2 include the optimal thresholds and minimum energy consumptions under the ND-
policy and its corresponding N and D policies, where the data in Table i are the results of Experiment 
i, i = 1, 2. It is observed that: (i) the ND-policy has minimum energy consumption among the ND-
policy and its corresponding N and D policies for any value of arrival rate p or traffic intensity ρ. This 
result is as expected because the radio server is awakened to start its transmission mode according to 
the information of packet number and packet backlog; (ii) none of the N and D policies is better than 
the other, and the superiority of the two is determined by the values of p and ρ. These results are 
helpful for network practitioners to design and operate a WSN for its lifetime prolongation.

In Tables 3 and 4, we can see a comparison of the optimal thresholds and minimum energy
consumptions under the pseudo ND policy and its corresponding N and D policies. It is found
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Table 2 Comparison of the optimal thresholds and minimum energy consumptions for varying traffic intensity
ρ under the ND policy and its corresponding N and D policies (p = 0.2, 1 ≤ N ≤ 10, 1 ≤ D ≤ 15).

ρ = 0.25 ρ = 0.35 ρ = 0.45 ρ = 0.55 ρ = 0.65 ρ = 0.75 ρ = 0.85

N∗
N 7 6 6 5 5 4 3

fN (N∗
N ) 50.8517 66.3226 81.8139 97.3994 113.1821 129.4275 147.3783

D∗
D 7 9 11 12 12 11 9

fD(D∗
D) 50.9177 66.3995 81.8467 97.3500 113.0302 129.2073 147.0891

(N∗, D∗) (7,9) (7,11) (6,14) (6,14) (6,13) (6,11) (5,9)
f(N∗, D∗) 50.8480 66.3079 81.7652 97.2945 113.0021 129.2001 147.0877

Table 3 Comparison of the optimal thresholds and minimum energy consumptions for varying arrival rate p
under the pseudo ND policy and its corresponding N and D policies(ρ = 0.8, 1 ≤ N ≤ 10, 1 ≤ D ≤ 20).

p = 0.15 p = 0.25 p = 0.35 p = 0.45 p = 0.55 p = 0.65 p = 0.75

N∗
N 3 4 5 5 6 6 7

fpseN (N∗
N ) 137.5900 138.3625 138.8900 139.2300 139.4717 139.6483 139.7500

D∗
D 11 10 9 8 8 8 7

fpseD (D∗
D) 138.0204 138.7689 139.2211 139.5149 139.6735 139.7802 139.7896

(N∗, D∗) (3,20) (4,20) (5,20) (5,20) (6,20 ) (6,20) (7,20)
fpse(N∗, D∗) 137.6292 138.3708 138.8909 139.2301 139.4717 139.6483 139.7500

Table 4 Comparison of the optimal thresholds and minimum energy consumptions for varying traffic intensity
ρ under the pseudo ND policy and its corresponding N and D policies(p = 0.2, 1 ≤ N ≤ 10, 1 ≤ D ≤ 15).

ρ = 0.25 ρ = 0.35 ρ = 0.45 ρ = 0.55 ρ = 0.65 ρ = 0.75 ρ = 0.85

N∗
N 7 6 6 5 5 4 3

fpseN (N∗
N ) 50.8517 66.3226 81.8139 97.3994 113.1821 129.4275 147.3783

D∗
D 8 10 12 13 13 12 9

fpseD (D∗
D) 50.9856 66.6004 82.1788 97.8055 113.5967 129.8636 147.7837

(N∗, D∗) (7,15) (6,15) (6,15) (5,15) (5,15) (4,15) (3,15)
fpse(N∗, D∗) 50.8517 66.3287 81.8511 97.4771 113.2692 129.5091 147.4232
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Fig. 5 Energy consumptions for p = 0.25, 0.45, 0.65 under the corresponding N policies of two ND policies
(ρ = 0.8).
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Fig. 6 Energy consumptions for p = 0.25, 0.45, 0.65 under the corresponding D policies of two ND policies
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Fig. 7 Energy consumptions for p = 0.25 under two ND policies (ρ = 0.8).

that for any value of arrival rate p or traffic intensity ρ, fpseN (N∗N ) ≤ fpse(N∗, D∗) < fpseD (D∗D),
and for some values of p and ρ, the inequality fpseN (N∗N ) < fpse(N∗, D∗) holds. Obviously, it is an
incorrect result. The reason is that the radio server optimizes its transmission mode by knowing
the information of packet number and packet backlog, but the average energy consumption during
a busy cycle period is not minimized; Moreover, the numerical experiments show that for any given
ranges of N and D, we invariably obtain: (a) N∗N = N∗; (b) the value of D∗ is always equal to the
right boundary value of given range of D. For example, when 1 ≤ D ≤ 20, we have D∗ = 20; For
1 ≤ D ≤ 15, then D∗ = 15. These contradictory numbers are consequences of (36) under the pseudo 
ND-policy.

It is noted that in the second and third rows of Tables 1 and 3(or Tables 2 and 4), the optimal
thresholds and minimum energy consumptions are always equal, respectively. This is caused by
fN (N) = f(N,∞) = fpseN (N) = fpse(N,∞).

To confirm the meaningfulness of the data results, we present several figures(see Figs. 5-7) for
the partial data in Tables 1 and 3.
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10 Conclusions

In this paper, we deal with a discrete-time Geo/G/1 queue under the genuine ND-policy. Under this 
policy, the steady-state performance measures, such as the PGFs of the queue length, service time 
backlog, busy period, waiting time, and so on, are obtained. The distribution of the busy period is 
first studied in the discrete-time Geo/G/1 type queues with the D-policy, and its analytical method 
is applicable for the derivation of the busy period in the M/G/1 type and Geo/G/1 type queues 
with the D-policy. We theoretically analyze the difference between our results and the work of Gu 
et al.(2016), and point out some flaws in Gu et al.(2016). The numerical experiments illustrate the 
effects of system parameters on the mean queue length. A practical application in the real world is 
presented in the energy consumption optimization of a WSN, which indicates the research significance 
of our model. The flaws in Gu et al.(2016) are numerically revealed. In our future work, the analysis 
of the discrete-time queue with the ND-policy and Markovian arrival process or with triadic (N, D, 
T)-policy, and its application, will be interesting and important to explore.
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