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Abstract

This work deals with two mathematical models on the declines of honeybee colonies.
Starting from the model proposed by Khoury, Meyerscough and Barron - KMB model [25],
we kept the eclosion function and changed the recruitment function to design a new model
for social parasitism in honeybees. The KMB model is characterized by the fact that
there exists a critical value of the foragers’ death rate above which there is colony collapse
disorder (CCD) in the sense that the “trivial” equilibrium point is globally asymptotically
stable (GAS). We design a nonstandard finite difference (NSFD) scheme that preserves
this property. It is established that in the social parasitic (SP) model the colony decays
exponentially to zero irrespective of the value of foragers’ death rate. A NSFD scheme
is constructed for the SP model. The faster decline in the SP setting is demonstrated
theoretically for the NSFD scheme. Numerical simulations are provided to confirm that
the colony declines faster in the SP setting than in the KMB model.

Keywords: Colony collapse disorder, Capensis calamity, Dynamical systems, Global sta-
bility, Nonstandard finite difference method

1 Introduction

Honeybees are essential to man-kind and his environment through the direct and indirect
services they render. These include pollination of key crops and hive products as outlined
below.

Honeybees fertilize flowers through pollination as they forage. Pollination is important in
agriculture since it assists in the production of food. Honeybees contribute to approxi-
mately 9.5% of the total global agriculture among other pollinators [22]. Insects, including
honeybees, pollinate about 80% of 300 crops [3] and this value is worth about USD 194
billion per year in agriculture [27]. Both wild and managed honeybees pollinate about
33% of crops [27].
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Besides pollination, humans have partially domesticated honeybees mostly because of
their by-products such as honey, wax, propolis and royal jelly. Humans use of honey
include: medication such as cough drops, wound salves [41], and food nutrients as it
provides a good source of energy [35]. It is therefore not surprising for the demand of
honey to keep increasing globally [24]. In 2016, the total value of natural honey exported
world wide was USD 2.2 billion [51]. While honeybees use the wax they secret to build
comb cells where their brood (young ones) are raised, humans originally used beeswax
to make church candles [15]. Nowadays, beeswax is used in various productions such as
in the pharmaceutical industries for coating pills, production of cosmetics including baby
products and fragrances [35]. Honeybee workers collect sticky resin from trees and other
botanical sources and mix it with beeswax and utilize it as propolis [43]. Honeybees, use
propolis to protect the colony from rain and colds, prevent parasites from entering the
hive and also inhibit fungal and bacterial growth in the colony [43]. Humans use propolis
for medication purposes such as in the cure of dental cavities [35] and to prevent diseases
including cancer, heart ailments and inflammation [8]. A milky-white substance, royal
jelly, which honeybee workers secrete and use as a nutrient to feed larvae in the hive, is
mostly used in anti-aging and wrinkle prevention creams by humans [35]. The long term
consumption of royal jelly by humans improve mental health and formation of red blood
cells [34] and it is said to boost fertility [1].

Honeybees are crucial to the sustenance of our food, and our future as a race would be
miserable without them [48]. There are clear evidences that key pollinators including
managed honeybees are fast declining world wide [25,30]. In the past decades, beekeepers
have witnessed an increase in colony losses through phenomena such as colony collapse
disorder (CCD) and others [25, 47]. Losses credited to CCD are in the range of 1.8 to
85% of total managed honeybee colonies [37]. Apart from the CCD whose cause is not
known [47], pests, diseases, and improper beekeeping management practices are other
factors that hinder international trade of honeybees [37].

South Africa was not an exemption [9] on the 2006 honeybee colony failures that have
been reported globally [25]. In this regards, we mention the so-called Capensis Calamity
(CC) [2], that caused and is still causing great losses (up to 80%) in managed colonies
of the Savannah honeybee (Apis mellifera scutellata) [38]. This was due to moving bees
from the Cape region into the Northern part of South Africa for pollination where a clonal
lineage of cape bee became a facultative social parasite [16]. Without pollinators in South
Africa, it is estimated that about USD 700 billion per year of fruit export industries will
negatively be affected, while in seed production, between USD 5-USD 6 million per year [9]
will decline.

The purpose of this paper is to gain some insight on the honeybee colony
declines. Among mathematical models that deal with the broader question of
honeybee population dynamics, we can mention the following two categories:

• The works that model the colony failure as a contagion by a virus, which
is transmitted by parasitic varroa mites [21,28,39];

• The works that explore the interactions of strategies (such as availability
of food, climate change) and foragers mortality on colony fate [11,18,19,
26,40].

Since this study focuses on colony declines, our point of departure is the mathematical
model proposed by Khoury, Meyerscough and Barron - KMB model [25]. Being relatively
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similar to its extension in [40] and [11], the KMB model offers the opportunity to express
colony failure in a much simpler way. By keeping the eclosion function as in the KMB
model, we develop a model that captures the CCD phenomenon in a social parasite,
SP, scenario, such as the social parasitism by the Cape honeybees into the region of the
Savannah honeybees [4]. We prove that in the SP setting, the colony collapses faster than
in the KMB framework. More precisely, a colony decays exponentially to zero. We design
nonstandard finite difference (NSFD) schemes for the KMB and SP models which are
dynamically consistent with the general and faster decline property.

The rest of the paper is organized as below. In the next section, we summarize the
KMB model and its dynamics. A new model, for social parasitism (SP), is proposed and
analyzed in section 3. Two NSFD schemes that replicate the dynamics of the KMB and SP
models are constructed and studied in section 4. Section 5, that is devoted to numerical
simulations is followed by section 6 where concluding remarks and possible extensions are
provided.

2 Preliminaries

In this section, we recall the mathematical model proposed by Khoury, Meyerscough and
Barron-KMB model [25] and summarize the results which are needed in this paper.

The total population, N, of honeybees being divided into two compartments, H of hive
bees and F of foragers, the KMB model reads

dH

dt
=

L(H + F )

H + F + ω
−
(
α− σ F

H + F

)
H

dF

dt
=
(
α− σ F

H + F

)
H −mF,

(1)

where:

•
E(H,F ) =

L(H + F )

H + F + ω
=

LN

N + ω
,

is the eclosion function in which L represents the queens’ laying rate and ω is the
rate at which eclosion approaches L as N = H+F increases. (Note that ω is also
the number of the bees needed for emergence rate to reach L/2 [28]);

•
R(H,F ) =

(
α− σ F

H + F

)
H

is the recruitment function, in which α is the rate at which hive bees are recruited
to foragers class and σ is the rate at which social inhibition occurs;

• m is the death rate of foragers.

One key assumption that transpires from [25] is that a critical number of
the total individuals consists of foragers. The specific choice, made in [25] is
α = 0.25 and σ = 0.75 so that the number of foragers is less than or equals to
N

3
. We extend this assumption by assuming that

α <
σ

2
. (2)
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Setting

R(H,F ) =
R(H,F )

H
= α− σ F

H + F
,

we will often be interested in the following two extreme situations:

Γ+ := inf
H>0
F>0

R(H,F ) > 0, (3)

which reflects the normal situation when social inhibition occurs, and

Γ− := sup
H>0
F>0

R(H,F ) < 0, (4)

which implies that there is no social inhibition.

The defining equations of an equilibrium point (H,F ) of the system (1) are
L(H + F )

H + F + ω
−
(
α− σ F

H + F

)
H = 0

(
α− σ F

H + F

)
H −mF = 0.

(5)

It is clear that the origin (0,0) is an equilibrium point of the system. It
is equally clear that the system does not have boundary equilibrium points
(HB, 0) and (0, FB) for HB > 0 and FB > 0. For a potential interior equilibrium
point (H∗, F ∗), we follow [11,25] and set

H∗ =
1

J
F ∗. (6)

Simple algebraic manipulations show that

H∗ =
L

Jm
− ω

1 + J
(7)

and

F ∗ =
L

m
− ωJ

1 + J
, (8)

where

J =
1

2

[( α
m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

]
(9)

is the unique positive root of the quadratic equation

J2 −
( α
m
− σ

m
− 1
)
J − α

m
= 0. (10)

Due to the condition (2), we have

J < 1. (11)

Indeed, from (9), we have

2J =
( α
m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m
< 2
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if, and only, if √( α
m
− σ

m
− 1
)2

+ 4
α

m
<
(

1 +
σ − α
m

)
+ 2

if, and only, if(
1 +

σ − α
m

)2
+ 4

α

m
<
(

1 +
σ − α
m

)2
+ 4
(

1 +
σ − α
m

)
+ 4

if, and only, if
2α

m
<
σ

m
+ 2,

which is true because
2α

m
<
σ

m
by (2).

Throughout this work, the following further assumption is made

α− L

ω
> 0. (12)

The qualitative properties of the KMB model are summarized in the following result:

Theorem 2.1.

1. Under the condition (3), the KMB model is a dynamical system in the biological
feasible region:

Ω =
{

(H,F ) ∈ R2
+ : H ≤ L

Γ+
and F ≤ αL

mΓ+

}
.

2. If

m <
L

2ω

(α+ σ) +
√

(α− σ)2 + 4Lσω

α− L
ω

 , (13)

the KMB model (1) has a unique interior equilibrium point, which is globally asymp-
totically stable (GAS).

3. If the condition (13) is not satisfied, then (0,0) is globally asymptotically stable.

Parts 2 and 3 of Theorem 2.1 are announced in [25]. The proof will be provided
in Appendix 1 in the following four main steps: Positivity of F ∗ in (8), Local
asymptotic stability of the equilibrium point, The system (1) has no periodic
solutions, The global asymptotic stability of the equilibrium point.

Under the condition (4), the second equation in (1) leads to a decay inequality
in F. Using this fact and Gronwall inequality, we obtain the next result.

Theorem 2.2. Under the condition (4), we have, for t large enough

H(t) ≤ L

α
if H0 ≤

L

α
and, for all t, F (t) ≤ F0 exp{−mt} for any F0.
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3 Social parasitic model

In this section, we propose a mathematical model for a honeybee colony invaded by social
parasites. We show that the colony declines faster, namely in an exponential manner. The
study is motivated by the so-called “Capensis Calamity”, CC, [2–4,6], in South Africa for
which we give some background.

In social insects, “social parasitism” means benefiting from brood care or resources of the
host colony. It has been shown that honeybee workers can function as social parasites in
colonies of other bees [20].

There are two different sub-species of honeybees in South Africa, namely Savannah honey-
bees, (Apis mellifera scutellata), which are found in the northern part of the country and
the Cape honeybees, (Apis mellifera capensis), that are found in the western region. These
two sub-species are separated by a region of introgression or a buffer zone where hybrids
exist [16]. One main difference between the Cape honeybees and Savannah honeybees, is
that: The Capensis workers lay unfertilized eggs which develop into diploid (female) off-
springs through a process called thelytokous parthenogenesis [16], while Savannah workers
only follow the normal arrhenotokous pathway where workers lay unfertilized haploid eggs
that gives rise to males. Capensis workers fuse their eggs pronuclei with one of their polar
bodies, which in the absence of meiosis produce female offsprings [23]. These clones of
Capensis workers are the basis of the social parasitism in honeybees. If they (clones) enter
the colony of other honeybee races, they mimic the pheromone of the host queen and start
to lay eggs that develop into females [17]. The actively reproductive pseudo queens may
suppress the developments of their clones which will result in dominance hierarchies [23].
Despite the fact that these clones are not reproductive, they do not contribute towards
other activities of the colony such as foraging, since pollen combs and pollen baskets on
their hind legs are suppressed and they receive royal treatments from the host workers [23].

There has been historically reported cases of colonies taken over by the Cape honeybees
when moved into the regions of the Savannah honeybees and other honeybee races. The
most recent invasion began in the 1990s when beekeepers moved some Cape honeybees
into the region of the Savannah honeybees for the purpose of pollination. This migratory
beekeeping resulted in the establishment of a clonal parasitic lineage of the Cape honeybees
that caused and is still causing death of many Savannah honeybee colonies [6]. The social
parasitism by the Cape honeybees is the biological basis for the CC due to subsequent
re-invasion. CC causes serious problems for endemic honeybee populations and threatens
biodiversity as honeybee colonies are lost [4].

For the formulation of the Social Parasitic (SP) model, we consider, as in the KMB model,
the hive and foragers compartments with the same eclosion function. However, we add the
following assumptions to capture the absence of social inhibition and the presence of the
social parasites in the form of clone 1, clone 2 and clone 3 as shown in the flow diagram
(Figure 1):

Assumption 1 Brood diseases on clones and death rate of clones are negligible.
This assumption is motivated by the parasitic nature of clones which are
to take over the colony with time. This makes them not to display
workers’ characteristics such as grooming and trophallaxis that are
known for vertical and horizontal disease transmission within the
colony [14].
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Assumption 2 Host foragers die at the rate m.

Assumption 3 The clones leave the hive compartment at the rate m̃.

Assumption 4 The host workers transit from hive class to foragers class at the rate α
and there is no social inhibition.

Figure 1: The flow diagram of the host (Savannah honeybees) in the presence of social
parasites (Cape honeybees). Clone 1 = clone brood, clone 2 = hive bees that are hatched
from clone brood and clone 3 = effect of clones on foragers.

The assumptions and flow diagram lead to the following model:
dH

dt
=

L(H + F )

H + F + ω
− (α+ m̃)H

dF

dt
= αH −mF.

(14)

Remark 3.1. It should be noted that the impact of the ability of social parasite workers
to mimic the queen’s pheromone [17] is that the rate ω, at which the maximum eclosion
is approached, is large. On the other hand, the number of clones who do not contribute
to foraging but leave the hive class at the rate m̃ after benefiting abusively from the food
produced by the foragers and the number of host workers who are recruited to foragers class
are large. It has been shown biologically that capensis parasites lay multiple eggs resulting
in an increase in parasitic offspring [31, 36] and rapid spread in an apiary [12]. Also
capensis workers need more (at least five) scutellata workers to tender their needs within
the colony [42]. These facts are mathematically reflected by the following condition:

ω > L/min{m, m̃}. (15)

Theorem 3.2.

1. The model (14) is a dynamical system on the biologically feasible region

Ω =
{

(H,F ) ∈ R2
+ : H ≤ L

α+ m̃
and F ≤ αL

m(α+ m̃)

}
.

2. Under the condition (15), the colony decays exponentially to zero.

Proof. It is easy to show by contradiction and intermediate value theorem that all solutions
of (14) corresponding to nonnegative initial conditions are nonnegative at all times.
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1. From the first equation of (14), we have

dH

dt
≤ L− (α+ m̃)H.

By Gronwall inequality, we obtain

H(t) ≤ L

α+ m̃
if H0 ≤

L

α+ m̃
. (16)

Using (16) in the second equation in (14), we have

dF

dt
≤ αL

α+ m̃
−mF.

Once again, Gronwall inequality gives

F (t) ≤ αL

m(α+ m̃)
if F0 ≤

αL

m(α+ m̃)
. (17)

This, combined with the obvious existence of a unique local solution, proves the first
part of the theorem.

2. Regarding the second part of the theorem, it follows by adding the equations in (14)
that

dN

dt
=

LN

N + ω
− m̃H −mF

≤

(
L

ω
−min{m̃,m}

)
N.

This implies that

N(t) ≤ N0e

(L
ω
−min{m,m̃}

)
t
,

which in view of (15), shows that the total population decays exponentially to zero
as time t→∞.

4 Nonstandard finite difference schemes

In this section, we propose reliable numerical methods which are dynamically consistent
with the continuous, KMB and SP, models considered in sections 2 and 3, respectively.
We use the nonstandard finite difference approach [32].

The time t ≥ 0 is discretized into a sequence of (tn)n≥0 where tn := n∆t, and ∆t is the
step size. We denote by Hn and Fn approximations of H(t) and F (t) at t = tn.

We start with the KMB model. Mickens’ method of sub-equations applies
here [7,32]. This means that the full equation is divided into simpler equations
for which exact schemes are known or available useful qualitative information
can be incorporated into the derived scheme.
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In the absence of hive bees, the foragers are governed by the decay equation

dF

dt
= −mF, (18)

which has the exact scheme (see for instance [32])

Fn+1 − Fn
(1− e−m∆t)/m

= −mFn or
Fn+1 − Fn

(e−m∆t − 1)/m
= −mFn+1. (19)

In the absence of foragers, hive bees are governed by the equation

dH

dt
=

LH

H + ω
− αH, (20)

which has both decay equation and Michaelis-Menten, M-M, equation.

In [13] and [33], the term
LH

H + F
in (20) is approximated by using the Lambert

omega function in order to obtain the exact scheme of the M-M equation.
Further approximations used in [13] are related to the forward and backward
Euler methods. Inspired by these works and in order to preserve unconditional
positivity, we propose the following NSFD scheme for Eq (20):

Hn+1 −Hn

φ
=

LHn

Hn + ω
− αHn+1. (21)

Combining the partial schemes in equations (19) and (21), we propose the following NSFD
scheme for the KMB model:

Hn+1 −Hn

φ
=

L(Hn + Fn)

Hn + Fn + ω
− αHn+1 + σ

FnHn+1

Hn+1 + Fn

Fn+1 − Fn
φ

= αHn+1 − σ
FnHn+1

Hn+1 + Fn
−mFn+1.

(22)

Here and after

φ =
1− e−(∆t)Q

Q
(23)

is a complex denominator function where the number Q > 0 to be determined
shortly in different situations is supposed to capture the features of the model.
Note that φ satisfies the asymptotic relation

φ(∆t) = ∆t+ o([∆t]2) (24)

in agreement with Mickens’ first rule for construction of NSFD schemes. Fur-

thermore, Mickens’ second rule is applied, as the nonlinear term
HF

H + F
is

approximated in a nonlocal manner. For the formal definition of the NSFD
schemes, see [7].

The first equation in (22) is quadratic in Hn+1. That is,

AH2
n+1 +BnHn+1 − Cn = 0, (25)
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where

A = 1 + φα > 0

Bn = (1 + φα− φσ)Fn −Hn − φ
LNn

Nn + ω

Cn = HnFn + φ
LNnFn
Nn + ω

.

Assuming that Hn and Fn are nonnegative, so that Cn > 0, there is a unique nonnegative
root of (25), given by

Hn+1 =
−Bn +

√
B2
n + 4ACn

2A
. (26)

Once Hn+1 has been computed from (26), we continue in the Gauss-Seidel type process
to compute Fn+1 as follows:

Fn+1 =

[
φαHn+1 + Fn

(
1− φσ Hn+1

Fn +Hn+1

)]
(

1 +mφ

) . (27)

In order for Fn+1 in (27) to be positive, we assume that

Q ≥ σ so that 0 < φ <
1

σ
. (28)

The root in (26) can also be written in the following implicit equivalent form:

Hn+1 =

[
Hn + φ

L(Hn + Fn)

(Hn + Fn + ω)

]
(

1 + φα− φσ Fn
Hn+1 + Fn

) . (29)

In view of (28) and in order to incorporate essential parameters m and α that
appear in the sub-equations (18)-(19) and (20)-(21), we choose the denomina-
tor function φ in (23) such that

Q ≥ m+ α+ σ. (30)

Theorem 4.1.

1. The NSFD scheme (22) is dynamically consistent with respect to positivity.

2. If α−σ F

H + F
≥ Γ+ > 0, the NSFD scheme (22) is a dynamical system on the same

biologically feasible region Ω as for the continuous system (see Theorem 2.1).

10



3. If α− σ F

H + F
≤ Γ− < 0 then, for n large,

Hn+1 ≤
L

α
if Hn ≤

L

α
and, for all n, Fn+1 ≤

Fn
1 + φm

.

Proof.

1. The positivity is obtained by construction of the NSFD scheme (22).

2. From the first equation of (22), we have

Hn+1 −Hn

φ
≤ L− Γ+Hn+1.

Solving for Hn+1 and assuming that Hn ≤
L

Γ+
, we get

Hn+1 ≤
L

Γ+
. (31)

The second equation of (22) and equation (31) yield

Fn+1 − Fn
φ

≤ αHn+1 −mFn+1 ≤
αL

Γ+
−mFn+1,

which implies that

Fn+1 ≤
αL

mΓ+
if Fn ≤

αL

mΓ+
. (32)

Therefore the NSFD scheme (22) is a dynamical system on Ω.

3. From the second equation in (22), we have

−σFn −mFn+1 ≤
Fn+1 − Fn

φ
≤ −mFn+1,

and thus ( 1− φσ
1 + φm

)
Fn ≤ Fn+1 ≤

( 1

1 + φm

)
Fn. (33)

From (33), we notice that Fn+1 → 0 as n → ∞. Therefore, for n large, the first
equation in (22) gives

Hn+1 −Hn

φ
≤ L− αHn+1.

so that

Hn+1 ≤
L

α
if Hn ≤

L

α
. (34)

Theorem 4.2.

1. The fixed-points of the NSFD scheme (22) are the equilibrium points
of the continuous model (1). Furthermore, they have the same stability
properties whenever for Jc, representing the Jacobian matrix associated
with KMB model (1) at the interior equilibrium point, Q is chosen such
that Q ≥ ||Jc||2/|traceJc| apart from satisfying (30). In other words, there
exists a unique interior fixed point, which is GAS while the “trivial”
fixed-point (0,0) is not attractive under the condition (13).
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2. If the condition (13) is not satisfied, then the fixed point (0, 0) is globally
asymptotically stable.

Proof. We prove the theorem in different steps.

Step 1 A point (H∗, F ∗) is a fixed point of the NSFD scheme (22) if, and only, if
it satisfies the defining equations (5) of the equilibria of the continuous
KMB model (1).

Step 2 We prove the local asymptotic stability of the interior fixed-point. Putting

U = H −H∗ and V = F − F ∗,

the linearized continuous equation (A6) about the equilibrium point (H∗, F ∗)
in terms of the eclosion function E(H,F ) and the recruitment function
R(H,F ) can be re-written as

dU

dt

dV

dt

 = Jc

 U

V


where

Jc =

 EH −RH EF −RF

RH RF −m

 =

 EH EF −RF

0 RF

−
 EH 0

−RH m

 (35)

is the Jacobian matrix at the interior equilibrium point (H∗, F ∗). Here
and after, EH , RH , EF and RF denote the partial derivatives of the
functions E and R at the point (H∗, F ∗).

The NSFD scheme (22), can be re-written in the form
Hn+1 −Hn

φ
= E(Hn, Fn)−R(Hn+1, Fn)

Fn+1 − Fn
φ

= R(Hn+1, Fn)−mFn+1.

(36)

The linearized equation about the interior fixed-point (H∗, F ∗) is
(1 + φRH)Un+1 = (1 + φEH)Un + φ(EF −RF )Vn

φRHUn+1 + (1 + φm)Vn+1 = (1 + φRF )Vn.

(37)

Solving the algebraic system (37) in
(
Un+1, Vn+1

)
, the linearized NSFD

scheme reads  Un+1

Vn+1

 = Jd

 Un

Vn

 (38)
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where

Jd =

 1 + φRH 0

−φRH 1 + φm

−1 1 + φEH φ(EF −RF )

0 1 + φRF



= T

 1 + φEH φ(EF −RF )

0 1 + φRF .

 ; T =


1

1 + φRH
0

φRH
(1 + φRH)(1 + φm)

1

1 + φm

 .

From the expression of Jc in (35) we have

Jd = I + φTJc. (39)

With RH(H∗, F ∗) being positive, the spectral radius of the matrix (T − I)
is less than 1. Therefore, the sequence (T − I)n of matrices converges to
the null matrix. Consequently, the difference system (38) has the same
qualitative behavior as the system Ũn+1

Ṽn+1

 = J̃d

 Ũn

Ṽn

 (40)

where
J̃d = I + φJc. (41)

It is easy to check that µ is an eigenvalue of the matrix J̃d if, and only, if

λ =
µ− 1

φ
is an eigenvalue of Jc. That is

µ = φλ+ 1 = (1 + φλ1) + φλ2.

Furthermore,

|µ|2 =


1− 2φ|λ1|+ φ2|λ|2 if λ1 < 0

1 + 2φ|λ1|+ φ2|λ|2 if λ1 > 0.

Thus |µ| > 1 if λ1 > 0, whereas |µ| < 1 if λ1 < 0 whenever

φ <
2|λ1|
|λ|2

. (42)

The function φ in (23) with Q as specified in the statement of Theorem

4.2 satisfies this condition (42) because φ <
1

Q
and Q ≥ |λ|2

2|λ1|
for each

eigenvalue of Jc, given that |λ| ≥ ||Jc|| and λ1 = traceJc for the 2x2 matrix
Jc. This proves the local asymptotic stability of the fixed-point (H∗, F ∗)
whenever the interior equilibrium point is locally asymptotically stable.
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Step 3 We prove that the interior fixed-point X∗ = (H∗, F ∗) is globally asymp-
totically stable. We denote (H,F ) by X. The fixed-point X∗ being locally
asymptotically stable, there exists δ > 0, such that

||X0 −X∗|| < δ =⇒ lim
n→∞

||Xn −X∗|| = 0. (43)

Since the sequence (Xn) is bounded in R2, it follows from Bolzano-
Weierstrass theorem that there exists a subsequence (Xnk

) of (Xn) that is
convergent and thus

lim
k→∞

||Xnk
−X∗|| = 0, (44)

by the uniqueness of the limit. There exists an integer K > 0 such that

||XnK −X
∗|| < δ. (45)

For any initial guess X0, we have

lim
n→∞

||Xn −X∗|| = lim
n>nK
n→∞

||Xn −X∗|| = 0 by (43).

Step 4 We deal with the trivial fixed-point (0,0).

The case when Γ = Γ− < 0, as given by (4), is straightforward from the
second equation in (22): the solutions tend to (0, 0) irrespective of the con-
dition (13). For Γ = Γ+ > 0, as given by (3), we proceed directly as follows:

Adding the two equations in (22), we obtain the discrete conservation
law

Nn+1 −Nn

φ
=

LNn

Nn + ω
−mFn+1. (46)

Under the condition (13), and using the definition of Ω, we have

Nn+1 −Nn

φ
≥ LNn

2αL

mΓ+
+ ω

−mc
αL

mΓ+
.

Hence

Nn+1 ≥

(
1 + φ

L

2αL

mΓ+
+ ω

)
Nn −mc

αL

mΓ+
.

By Gronwall inequality, the sequence (Nn)n cannot tend to zero.

Since the NSFD scheme (22) is convergent, the discrete conversation
law (46) has the same behaviour as the difference equation

Nn+1 −Nn = φ
L(Nn)

Nn + ω
− φmFn

for n large enough. Consequently, when condition (13) is violated it
follows from the Lyapunov argument used in the continuous setting (see
Appendix 1) that

Nn+1 −Nn < 0 for 0 < Hn ≤ r and 0 < Fn ≤ r.

This shows that the fixed point (0,0) is locally asymptotically stable [49].
The global asymptotic stability of the fixed-point (0,0) is proved as in the
step 3 above.
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We now construct a NSFD scheme for the SP model (14). Using the method of sub-
equations that led to the scheme (22), we propose, for the SP model, the NSFD scheme

Hn+1 −Hn

φ
=

L(Hn + Fn)

Hn + Fn + ω
− (α+ m̃)Hn+1

Fn+1 − Fn
φ

= αHn+1 −mFn+1,

(47)

which is equivalent to 
Hn+1 =

(φL(Hn + Fn)

Hn + Fn + ω
+ Fn

)
1 + α+ m̃

Fn+1 =

(
αφHn+1 + Fn

)
1 + φm

,

(48)

where φ is defined in (23) with Q = α + m̃ + m. In a similar manner to the proof of
Theorem 3.2, we obtain the result below.

Theorem 4.3. The NSFD scheme (47) is a dynamical system in the biological feasible
region Ω defined in Theorem 3.2.

Adding the equations in (47), we have the conservation law

Nn+1 −Nn

φ
=

LNn

Nn + ω
− m̃Hn+1 −mFn+1,

from which it follows that

−(m+ m̃)Nn+1 ≤
Nn+1 −Nn

φ
≤ LNn

ω
−min{m, m̃}Nn+1. (49)

Thus (
1

1 + φ(m+ m̃)

)
Nn ≤ Nn+1 ≤

(
1 + φ

L

ω
1 + φmin{m, m̃}

)
Nn. (50)

We, therefore, have established the following result, which shows the GAS of the “trivial”
fixed point in the more specific way below.

Theorem 4.4. Under the condition (15), the colony declines to zero in a contractive
manner.

5 Numerical simulations

For numerical simulations for the discrete KMB-NSFD scheme (22), we use the parameters
in Table 1 below, which are taken from [25].

Table 1: Basic parameters for simulations

Parameter L α σ ω

Value 2000 0.25 0.75 27000
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The choice of the values α = 0.25 and σ = 0.75 is motivated by the fact that, in the
absence of foragers, new workers become foragers in a minimum of four days, and there
is reversion / social inhibition from foragers class to hive class if more than one third of
the total population are foragers [25]. To Table 1, we add the critical value, mc, of the
foragers death rate obtained from Equation (13) as mc = 0.355. We will therefore use
the quantities below and above the critical value mc namely m = 0.24 and m = 0.4, as
in [25]. Finally, we take ∆t = 2, a large value of step size which shows the power of the
nonstandard approach as this is not permissible in classical numerical schemes [32].

In the KMB setting, Figure 2 illustrates through both the phase plane and the population-
time axes the GAS of the interior equilibrium or fixed point when m = 0.24 in accordance
with Theorem 2.1(2) and Theorem 4.2(1). Furthermore, when m = 0.4, the CCD phe-
nomenon or the GAS of the trivial equilibrium or fixed point occurs according to Theorem
2.1(3) and Theorem 4.2(2), as displayed in Figure 3.

Regarding the SP setting, we still use the values in Table 1 because the laying rate of
the queen remains the same. The rate, m̃, at which parasites leave the hive class is,
for simplicity, taken to be equal to the death rate m = 0.24 of foragers. As predicted
by Theorem 3.2(2) and Theorem 4.4, Figure 4 exhibits the decay to zero of the total
population in the following specific manner, which justifies the terminology “capensis
calamity” [4]:

• The colony collapses in 100 days for the SP model when m = 0.24 (Figure 4b), while
there is no CCD for the KMB model in this case (see Figure 2);

• The colony collapses in 400 days for the KMB model when m = 0.4 (Figure 3b).
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Figure 2: GAS of the interior fixed-point for the KMB-NSFD scheme (22).
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Figure 3: CCD in the KMB-NSFD scheme (22).
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Figure 4: Faster decline of the colony for SP-NSFD scheme (47)

6 Conclusion and discussion

The alarming declines of the population of honeybees constitute a serious threat to ecosys-
tem and honeybee products. The situation is worsen nowadays by an increase in colony
losses world-wide through a phenomenon known as colony collapse disorder (CCD) and
particularly the Capensis Calamity (CC) in South Africa. Both phenomenon are charac-
terised by imminent losses of honeybee colonies, thus resulting in the decline of pollinators.

This work is motivated by the paper [25], in which a mathematical model consisting of
the hive compartment, H, and the foragers compartment, F, with variable recruitment
rate, R = R(H,F ), is proposed. We have constructed a nonstandard finite difference
(NSFD) scheme for this model, KMB, that is dynamically consistent with the decline
property. More precisely, we have theoretically established and numerically illustrated the
result below. There exists a critical value mc of the parameter m, the foragers death rate,
which is a transcritical bifurcation. That is: for m > mc, the trivial fixed point (0, 0) is
globally asymptotically stable (GAS), which means that the CCD phenomenon occurs.
For m < mc, there appears an interior fixed point which is GAS. When recruitment is
negative, we proved that the CCD phenomenon arises irrespective of the value of m.
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Apart from the model in [25], we formulated a model relevant to South Africa (social
parasitic, SP, model). This model is motivated by the CC that arose when some Cape
honeybees (Apis mellifera capensis), parasites, were moved into the region of the Savannah
honeybees (Apis mellifera scutellata), hosts. We have described the parasitic scenario by
a low positive and constant recruitment rate due to the presence of parasites who do not
contribute to foraging but leave the hive compartment at a constant rate after benefiting
abusively from the food produced by the hosts. We have constructed a NSFD scheme for
the SP model and proved theoretically and illustrated numerically the CC phenomenon. In
the SP model, we observed a rapid decline in the total population of the host colony (Figure
4). This means that the SP model indeed represent abandoned brood as a diagnostic of
CCD colonies [25]. In our simulations, it takes about 100 days for the Savannah honeybee
population to reach zero, regardless of the foragers death rate, after the Capensis clones
have entered their colony (Figure 4), whereas it takes about 400 days for a normal honeybee
population, as in the KMB model, to reach zero when the death rate of foragers is above
a certain critical point (Figure 3).

Along the lines of this paper, there arises the following natural question on which we are 
working; which measures and strategies are needed to avoid or at least to reduce honeybee 
colony declines? Since the model proposed in [25], suggests that the colony growth is 
attained when the death rate, m, of the foragers is low, a possible strategy is to make the 
critical value mc of m small. Given the fact that mc is a function of the parameters L, α, σ, 
and ω, it can be seen from (4) how mc can be reduced by appropriate choice of some of these 
parameters. From the biological point of view, growth of colonies can be achieved by 
providing enough resources, either through planting many different flowering plants (bee 
plants) closer to the colonies as this would prevent foragers from undertaking long and risky 
travel [46]. Enactment of legislation that will reduce or ban indiscriminate use of pesticides 
in agriculture could also help in this regard [44]. Regarding the model with social parasites, a 
strategy is to target the parasites and reduce their invading activity [5]. Measures that could 
be taken to reduce the spread of the social parasites in honeybees include, not moving 
honeybees of the different sub-species between regions [45] in South Africa as enshrined by 
the law. This is important since the clone relies heavily on anthropogenic factors to move 
from one region. Obeying enacted laws that prevent migratory beekeeping and enforcement 
of same would help in stopping the spread. In the event that migration is unavoidable, hives 
should be inspected properly after migration for the presence of the parasites and infested 
hives placed in quarantine and destroyed accordingly.

The study can be extended by considering in the model numerous factors responsible for
colony declines. These include: death rate of hive bees and brood [11, 19], pests and
diseases [18] and climate change [19]. It is of interest to investigate further the complex
relation that exists between the number of eggs reared in a colony and the number of bees
in the hive by considering other types of Holing functions. Additional compartments will
be needed to model colony failure as contagious by viruses and other pathogens [21,28,39],
and to investigate the interactions of suitable strategies (e.g food) and forager mortality
on colony fate [26,40].
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7 Appendix 1

Proof of Theorem 2.1

Step 1 We prove that the KMB model (1) is a dynamical system in Ω, in the
sense that for an initial condition (H0, F0) ∈ Ω, there exists a unique global

solution
(
H(t), F (t)

)
∈ Ω for all t ≥ 0.

This is a consequence of the following:

a. The existence of unique local solution, which is trivial.

b. The positivity of any solution corresponding to positive initial con-
ditions, which follows from the intermediate value theorem.

c. The boundedness of any solution, which is established by Gronwall
inequality.

Step 2 We prove that the positivity of the forager component of the equilibrium
point given in Equation (8) is equivalent to condition (see [11] and [29]
for more details):

m <
L

2ω

(α+ σ) +
√

(α− σ)2 + 4Lσω

α− L
ω

 := mc, (A1)

taking into account (12).

The condition

F ∗ =
L

m
− ωJ

1 + J
> 0 (A2)

is, in view of (9), equivalent to

m <
L

ω

[( α
m
− σ

m
+ 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

]
[( α
m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

] . (A3)

Rationalising the denominator, we get

m <
L

2ω

[( α
m

+
σ

m
+ 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

]
α

m

, (A4)

which is equivalent to

mα− L

2ω

(
α+ σ +m

)
<
Lm

2ω

√( α
m
− σ

m
− 1
)2

+ 4
α

m
. (A5)
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From (A5), we deal with the cases when mα − L
2ω

(
α + σ + m

)
> 0 and

mα− L
2ω

(
α+ σ +m

)
≤ 0 separately. In both cases, algebraic manipulation

lead to the condition (A1).

Step 3 We prove the local asymptotic stability of the interior equilibrium point.
We use Hartman-Grobman [10] linearization process. The Jacobian ma-
trix Jc of the right hand side of the model (1) is

Jc =


ωL

(H + F + ω)2
− α+ σ

F 2

(H + F )2

ωL

(H + F + ω)2
+ σ

H2

(H + F )2

α− σ F 2

(H + F )2
−σ H2

(H + F )2
−m

 . (A6)

At the interior equilibrium point (H∗, F ∗) given by (7)-(8), the Jacobian
matrix Jc is

Jc =


ωm2J2

(L(1 + J)2
− α+

σJ2

(1 + J)2

ωm2J2

L(1 + J)2
+

σ

(1 + J)2

α− σJ2

(1 + J)2
− σ

(1 + J)2
−m

 , (A7)

which has trace

trJc = m
( ωmJ2

L(1 + J)2
− 1
)
− α+ σ

J − 1

1 + J
(A8)

and determinant

detJc =
ωm2σJ2

L(1 + J)3
(J − 1)− ωm3J2

L(1 + J)2
+ αm− σmJ2

(1 + J)2
− ωαm2J2

L(1 + J)2
. (A9)

We show that trJc < 0. Since J < 1 as shown in (11), it suffices to show
that

ωmJ2

L(1 + J)2
− 1 < 0.

Now,( ωJ2m

L(1 + J)2
− 1
)
<
(ωJ2L(1 + J)

ωJL(1 + J)2
− 1
)

using (A2) i.e m <
L(1 + J)

ωJ

=
( J

1 + J
− 1
)

< 0.

Next, we show that detJc > 0. From the defining equation of equilibrium
points, (5) and (6), we have

σ =
(
α−mJ

)1 + J

J
. (A10)
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With this, the expression (A9) of detJc simplifies to

detJc = αm
[
1− ωmJ

L(1 + J)2
− J

1 + J

]
+
m2J2

1 + J

[
1− ωmJ

L(1 + J)

]
.

Thus,

detJc > αm
[
1− 1

(1 + J)
− J

(1 + J)

]
+

m2J2

(1 + J)

[
1− 1

]
using m <

L(1 + J)

ωJ

= 0.

Step 4 The local qualitative analysis of the trivial equilibrium (0,0) is studied as
follows: For Γ := Γ− < 0, it is straightforward from the second equation
of (5) that (0,0) is globally attractive regardless of the condition (A1).
When Γ := Γ+ > 0, we consider two cases:

1. The case when condition (A1) is violated so that there is no interior
equilibrium point.
Here we use a Lyapunov argument as in [21], based on the Lyapunov
function

V ≡ V (H,F ) := H + F.

The derivative V ′ along the trajectories is

V ′ =
L(H + F )

H + F + ω
−mF, (A11)

which is the right hand side of the following conservation law obtained
by adding the equations in (1):

dN

dt
=

LN

N + ω
−mF. (A12)

Observe that

∂V ′

∂F
(H, 0) =

Lω

(H + ω)2

≤ L

ω
−m

< 0 by (12) since the death rate is large, i.e m > α.

Thus, there exists r > 0 such that V ′(H,F ) < 0 for 0 < H ≤ r and
0 < F ≤ r. This implies that (0,0) is locally asymptotically stable
[49,50].

2. The case when condition (A1) is satisfied.
We show that (0,0) is not attractive. Using the fact that m <

mc (see (A1)), N ≤ 2αL

mΓ+
and F ≤ αL

mΓ+
(see definition of Ω) we

have from (A12)
LN

2αL

mΓ+
+ ω

−mc
αL

mΓ+
≤ dN

dt
.
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By comparison theorem (Gronwall inequality)

N(t) ≥ N0e
at +

b

a
(1− eat) where a =

L

2αL

mΓ+
+ ω

, b = β
αL

mΓ+
.

It follows that N(t) cannot tend to zero.

Step 5 We prove that the system (1) has no periodic solutions. This follows from
Dulac criterion [10] using the function

β(H,F ) =
1

HF
.

Step 6 Combining step 1 - step 3, it follows from Poincaré-Bendixon theorem [10]
that the interior equilibrium point is globally asymptotically stable when
it exists; otherwise the trivial equilibrium point is globally asymptotically
stable.
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