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Abstract

A deterministic model for the transmission dynamics of HIV and TV in a human
population is designed and rigorously analysed. The model is shown to exhibit
the phenomenon of backward bifurcation, where a stable disease-free equilibrium
(DFE) co-exists with a stable endemic equilibrium whenever the associated re-
production number is less than unity. This phenomenon can be removed by
assuming that the co-infection of individuals with HIV and TV is negligible.
Furthermore, in the absence of co-infection, the DFE of the model is shown to
be globally-asymptotically stable (GAS) whenever the associated reproduction
number is less than unity. Numerical simulation of the model, using initial and
demographic data, show that increased incidence of TV in a population increases
HIV incidence in the population. It is further shown that control strategies, such
as the treatment, condom-use and counselling of individuals with TV symptoms,
can lead to the effective control or elimination of the HIV in the population if
their effectiveness level is high enough. The time to disease elimination is reduced
if more than one strategy (hybrid strategy) is considered.

Keywords: TV; HIV; equilibria; stability; reproduction number; backward bifurca-
tion; control strategies.
1 Introduction

HIV/AIDS is one of the most severe health problems globally, with over 6.1 million
cases (as of July 2015) [14]. In this study, we consider the co-infection of two sexually
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transmitted infection called Trichomonas Vaginalis (TV) and HIV. TV is an infection
very common in both men and women, it is also the most prevalent non-viral STI
globally [28] with more than 276 million people worldwide being annually affected [30].
Condoms are effective at reducing, but not fully preventing transmission of both HIV
and TV. TV infection is treated and cured with metromidazole (7 days course) or
tinidazole (2 days course) and can clear on its own after 3 months. HIV/AIDS on the
other hand is treated using highly active antiretroviral therapy (HAART).

In women, TV is associated with vaginal itching, vaginal discharge, pain when uri-
nating, e.t.c. [19]. Most males do not show any symptoms related to TV infection,
although some experience swelling of the scrotum, urethral discharge and pain when
urinating [19]. Further complications in women resulting from lack of treatment in-
clude pre-term delivery, low birth weight, and increased mortality, premature rapture
of membranes, cervical cancer e.t.c. [8, 22, 26]. TV is of interest to this study because
of its susceptibility to HIV, it increases the chances of an infected woman acquiring HIV
if she has sexual contact with an infected individual [20, 21, 25, 29]. Also, a woman is
more likely to transmit HIV to her sexual partners if she has TV [9, 15, 16, 22].
Although it is one of the most prevalent non-viral STI’s, it receives the least public
health attention [28]. Few papers have attempted a mathematical model on this topic
[4, 7, 23]. TV requires more attention due to the damage it causes to the vaginal
epithelium which increases a woman’s susceptibility to HIV infection. In addition to
inflammation, the parasite causes lysis of epithelial cells in the area, leading to more
inflammation and disruption of the protective barrier usually provided by the epithe-
lium.

The paper is organized as follows. The new model for the transmission dynamics of
TV and HIV is formulated in Section 2. A sub-model of the full model is analysed for
its dynamical properties in Section 3. Analysis of the full model is presented in Section
4. Numerical simulations as well as an assessment of control strategies of TV and HIV
are presented in Section 5.

2 Model Formulation

A deterministic model for the transmission dynamics of HIV/AIDS and Trichomonas
Vaginalis (TV) is considered and analysed. The total human population at time ¢
given by N(t) is divided into nine mutually exclusive compartments, namely, suscepti-
ble individuals (S(¢)), newly infected individuals unaware of their TV status (I¥(t)),
counselled individuals infected with TV (I(¢)), infected individuals receiving treat-
ment for TV (Tr(t)), individuals infected with HIV with no AIDS symptoms (Ix(t)),
infected individuals with AIDS symptoms (Ag(t)), infected individuals (at both HIV
and AIDS class) receiving treatment (7(t)), as well as individuals infected with both
HIV and TV (I7g(t)) and those with both infections who are receiving treatment for
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TV (Tru(t)), so that
N(t) = S(t) + IZ(t) + IE () + Tr(t) + I (t) + Ap(t) + Tu(t) + Iru(t) + Tru(t).

The susceptible population is increased by the introduction of individuals into the
sexually active population at a rate II. These individuals either acquire TV or HIV
infection, following effective contact with an infected individual in the I¥(¢), IS(t)
and/or Tr(t) class, or the I (t), Ay (t) and T (t) classes at a rate AL or A\, respectively.
Therefore, the force of infection is given by

A =M+ dm
where,

AL Br(1 = er)(IF +mI§ + noTr) _ BuUg +14An +nrTx)
T = and Ay = .
N N
The parameters O and Sy are the effective contact rates (contact capable of leading

to infection) for TV and HIV, respectively. The parameter 0 < € < 1 is the condom

efficacy, and 0 < k < 1 measures compliance in condom use. 7; and 7, are modification
parameters accounting for the reduction in the transmissibility of counselled (/<) and
treated individuals (Tr), in relation to infected non-counselled individuals (I¥). Since
treatment reduces infectiousness of treated individuals, it is plausible to set 0 < 7, < 1.
Similarly it is assumed that counselled individuals modify their risky sexual behaviour
positively, so that 0 < n; < 1. The modification parameters 0 <4 < land 0 < nr < 1
account for the relative risk of infectiousness of individuals with AIDS symptoms and
treated individuals in comparison to those in Iy class, respectively. It is assumed that
individuals in Ay and Ty classes are less infectious than those in Iy class because they
change/reduce their risky sexual behaviour as they are sick and aware of their HIV
status.

The population of susceptible individuals is further decreased by natural death (at a
rate ). It is assumed that natural deaths occur in all human compartments at the
rate u. The susceptible class is increased by the recovery of individuals in T class (at
a rate v). Thus the rate of change of the susceptible population is given by

as

The population of infected individuals unaware of their TV status (non-councelled)
I¥(t) is generated by the infection of susceptible individuals (at the rate Ap). This
population is decreased by the counselling of infected individuals (at a rate &), infection
with HIV (at the rate cAg) and by natural death, so that

dIy

T ApS — odgly — (€ + p)I7.



The population of counselled infected individuals (I$(t)) is increased by the counselling
of individuals infected with TV (at the rate £). This population is decreased by treat-
ment of infected counselled individuals (at a rate 7) and due to natural death, so that
dI¢
d_tT =&l — (7 + w7z
The population of treated individuals is increased by the treatment of counselled TV
infected individuals (at the rate 7). The population is decreased by recovery (at the
rate v) and natural death. The recovered individuals return to the susceptible class.
Thus

Similarly, the population of individuals infected with HIV is generated by the infection
of susceptible individuals (at the rate Ag) and by recovery of individuals from TV in
the Ty class (at a rate ). This population is decreased due to the progression of
HIV infected individuals to AIDS class (Ag) (at a rate «), treatment (at a rate 6) and
natural death. This gives
dl

Individuals infected with HIV progress to AIDS class (Ag) (at the rate «). The
population of individuals in Ag class reduces due to treatment (at a rate ), natural
death and disease-induced death (at a rate d1). So that

dA
d_tH = Oé]H — (’Y+M+51)AH
The population of treated individuals (T%) is increased by the treatment of individuals
infected with HIV in the Iy and Ap classes (at the rates 6 and 7), respectively. This
population is decreased due to natural death and disease-induced death (at a rate dy).
It is assumed that individuals infected with HIV do not fully recover. Thus,

dTy

o Iy +~vAg — (+ 02)Th.

The populations of individuals infected with both TV and HIV is generated by co-
infection of TV infected individuals with HIV (at the rate oAy, where o is the modifi-
cation parameter that accounts for the increase in susceptibility to HIV of TV infected
individual i.e 0 > 1). It is reduced by treatment (at the rate 7) and natural death. So

that

dt
Finally, the population of treated individuals infected with TV and HIV is increased by

= O'/\Hqu — (T—f-,LL)ITH

the treatment of individuals in I7y class (at the rate 7) and decreases due to recovery

4



from TV (and move to Iy class at the rate 1) and natural death. This gives

dIrn
dt

=7lrg — (Y + 1)Try.

Combining the aforementioned assumptions and derivations, it follows that the model
for the transmission dynamics of TV and HIV co-infection is given by the following
system of non-linear differential equations. (A flow chart for the model is illustrated
in Figure 1 and a description of the parameters and variables is given in Tables 7 and
8).

dsS
m =TI +vTr — (A + Ap)S — S,
ﬁ o U _ U
pral ApS — o gly — (E+ p)ly,
dIs
d_tT = &I7 — (1 + )y,
dT
—L =71 — (v + T,
dt
dl
d—f:/\HS+¢TTH—(Oé+9+/L>IH, (1)
dA
d_tH =oalyg — (’Y+M+51)AH,
dT’
d_tH =01y +~vAg — (u+ 02)Tw,
dl
=0l — (7 + W,
dT
(;H =7lrg — (Y + 1) Try.

The Model (1) extends the model for the transmission dynamics of TV and HIV in
[4], and is to the author’s knowledge is the first to incorporate control strategies of TV
and HIV co-infection in a population. In addition, it extends numerous TV models in
the literature such as those in [3, 5] by (inter alia):

1. Allowing for TV transmission by treated individuals (n # 0), this is not consid-
ered in [4],

2. Sub-dividing the infected population with TV into counselled and non-counselled
individuals, this is not considered in [4],

3. Assessing various control strategies for TV (counselling, treatment and condom
use).



2.1 Qualitative Properties of the Model

The model (1) will now be rigorously analysed for it’s dynamical features. This model
monitors human population, therefore it is important that all the variables and param-
eters of the model are non-negative. This is proved below.

2.1.1 Positivity of solutions

Lemma 1 Let the initial data S(0) > 0, I¥(0) > 0, I$(0) > 0, Tr(0) > 0, I(0) > 0,
Ap(0) >0, Tg(0) > 0, Irg(0) > 0 and Trg(0) > 0 then the solutions S(t), IZ(t), I (t),
Tr(t), Iu(t), Ag(t), Tu(t), Iru(t), Tru(t) of the model (1) are positive for all t > 0.

Proof. Suppose S(t) is not positive, then there exists a first time, say t* > 0, such that
S(t) > 0for t € [0,*) and S(¢*) = 0. By inspection of the equation of I¥(t), we obtain

that
aIg (1)

dt
from which one can deduce that I¥(t) > 0 for ¢ € [0,¢*). Thus it is clear from equation
(1) that

> (oA +E+ p)IL(t), fort € [0,t%),

%ff) > (M4 A+ @)S(8), for t € [0, 1),

It follows that S(t*) > 0, which contradicts that S(t*) = 0. Therefore S(t) is positive.
Using a similar approach as that for S(t) it is easy to show that IY(¢) > 0, IS(¢) > 0,
TT(t) > 0, IH(t) > 0, AH<t) > 0, TH(t) > 0, ITH(t) > (0 and TTH<t) >0forallt>0. N

2.1.2 Feasible solution

Lemma 2 : The biologically-feasible region given by

D = {(S,]:/qa]quTTylHyAHyTHajTH,TTH) eR): S+ I+ IS + Tr + Iy + Apg +
Ty + Ity +1ru < %}

18 positively-invariant.

Proof Adding all the differential equations in the model (1) gives

‘”Z_t(t) =11 — uN(t) — 61 Ap(t) — 6:Tu(1).
Thus AN (¢
dt( ) <TII— uN(2), (2)



and so d]zlf—t(t) < 0if N(t) > . Tt follows from (2), and Gronwall’s inequality that
"

N(t) < N(0)e H + %(1 — e M.

Hence, N(t) < % if N(0) < % Therefore, the region D is positively-invariant. Thus,
in the region D the model (1) is well-posed epidemiologically and mathematically and

it is sufficient to consider the dynamics of the flow generated by (1) in D.

3 Analysis of the Sub-Model

In this section we consider a sub-model of Model (1) where we have one compartment for

individuals infected with TV (obtained by combining the non-counselled and counselled

individuals into one compartment) and in the absence of condom use (i.e. condom

compliance x = 0) given by the following deterministic non-linear differential equations
as

E:H+VTT—(/\H+/\T>S—MS,

diy
dt
it
dt
dlg
e AuS +YTry — (o + 6+ p)ly,
! (3)

= ATS — O')\H]T — (T + ,LL)]T,

=7lr — (v+p)Tr,

dA
d—tH =aly — (v + p+01)An,
dT
d_tH =01y +~vAg — (u+ 02)Tw,
drl
dI;H = U)\H[T — (7’ —|— ,LL)[TH,
dT
dTH = T[TH — (¢ + H)TTH
t
where
Ap — Br(Ir +nTr) and My = Bru(lg +nalAn + 77TTH)7
N N
and now

N(t)=S(t)+ Ir(t) + Tp(t) + Ig(t) + Au(t) + Ty (t) + Iru(t) + Tru(t).

3.1 Local Asymptotic Stability of the Disease-free Equilib-
rium (DFE)
The DFE of the model (3) is given by

IT
&= (S 17,17, I, Ay Thyy Iy, Ty ) = <E, 0,0,0,0,0,0,0) .

7



The linear stability of the DFE, &£, can be established using the next generation oper-
ator method (Diekmann et al., 1990 [10]; van den Driessche and Watmough, 2002 [27])
on system (3). 2The basic reproduction number, denoted by R is then given by

Ro = p(FV ') = max{R,, Rs},

where R and R, are the reproduction numbers associated with TV and HIV/AIDS,
respectively, given by

Q:1Q2 Q3Q4Qs5
Wlth Ql :T—i_/vbv QQ - V+/'L7 Q?) :9+Oé+/,b, Q4 :7+M+617Q5 :M+527 and
Q¢ = 1 + p. Thus, applying Theorem 2 of [27], the following result is established.

R =

Lemma 3 The DFE, &, of the model (3) is LAS if Rg < 1 and unstable if Ry > 1.

The threshold quantity, Ry = max{R4, Rs}, is the basic reproduction number [1, 2, 13,
27]. Tt represents the average number of secondary cases generated by a typically TV
or HIV infected individual in a completely susceptible population. The epidemiological
implication of Lemma 3 is that when Ry is less than unity, a small influx of infected
individuals into the community would not generate large outbreaks, and the disease
dies out in time (since the DFE is LAS). However, we show in the next subsection
that the disease may still persist even when Ry < 1 (this is owing to the existence of
backward bifurcation).

3.2 Backward Bifurcation

Theorem 1 The TV-HIV model (3) exhibits backward bifurcation whenever the coef-
ficient a, given by (A.2) (in Appendiz A) is positive.

Proof. The proof, based on using the Center Manifold theorem [6], is given in Appendix
A. |

3.2.1 Non-existence of backward bifurcation for special case

The analysis in this section show that the backward bifurcation property of the TV-
HIV model (3) is caused by the co-infection of HIV with TV in humans. Notice that, in
the absence of co-infection (that is for the case when o = 0), the bifurcation parameter
a < 0. This rules out the existence of backward bifurcation when o = 0. To further
rule out the existence of backward bifurcation, a global stability analysis of the DFE
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when o = 0 is presented below.

dl
First of all notice that by setting ¢ = 0 in (3) the equation of il

— 0 as t — oo,

drT:
thus —— — 0 as ¢ — oo. Hence, it follows that the system (3) is now reduced to

ds

E :H+VTT—()\H+)\T)S—MS,

dI

d_tT = )\TS — (T —|— ,LL)[T,

dT

d_tT =7lp — (v+p)Tr,

dl (5)
=S — (a+0+ p)ly,

dt
dA
d_tH =aly — (v +p+61)An,
dT’

Next define the invariant region
15 = {(S, ]T,TT, ]H, AH,TH) eD:S S S*}
We claim the following result.

Theorem 2 The DFE, &, of the model (3) with o =0 (or equivalently model(5)), is
globally-asymptotically stable (GAS) in D whenever Ro < 1 and unstable if Ry > 1.

Proof. Consider the following Lyapunov function

+
F=Rilr+ @TT + Roly + 5H(UAQ5 77T7) Ay + BHnTTH

Q2 Q4Qs Qs

with Lyapunov derivative given by




x i f : + . .
F =R+ @TT 1+ Roly + Br(naQs + nry) Ay + BHUTTH,
Q2 Q4Q5 Q5

= Ri(ArS — QiI7) + %(T-’T — Q2Tr) + Ro[AuS — Q31 4]

2

_l’_
1 Bu(naQs + nry) oIy — QuAy] + Bunr 01 + v A — QsTal,
Q4Qs Qs
= RiArS — Br(Ir + nTr) + RoAuS — Bu(Ig + nalu + nrTw), (6)

= RiArS — ArN + RoAygS — Ag N,

RS
:ATN{]\II

RyS
—1}+)\HN[ ;{ —1],

<M N*[Ry — 1]+ AgN*[Ry — 1], since S<S* in D and N < N*,

= Br(Ir +nTr)[Ry — 1]+ Bu(Ig + naAn +nrTg)[Re — 1] <0 when Ry < 1.

Since all the parameters and variables of the Model (5) are non-negative (Lemma 1),
it follows that F < 0 for Ry < 1 (ie. Ry <1 and Ry < 1) with F =0 if and only
if It =17 = Ig = Ag = Ty = 0. Hence Fisa Lyapunov function on D. Thus, it
follows by LaSalle’s Invariance Principle [17], that (I7(t), Tr(t), [g(t), Au(t), Tu(t)) —
(0,0,0,0,0) as t — oo. Thus, it follows that every solution of the equations of the
Model (5) with initial conditions in D approaches & as t — oo (whenever Ry < 1). B

The above result shows that in the absence of co-infection, the DFE of the model (3) is
GAS. Therefore, HIV will be effectively controlled or eliminated from the population
if Rp < 1. This result is depicted in Figures 2A and 2B, showing convergence to the
DFE whenever Ry < 1.

3.2.2 Existence and stability analysis of endemic equilibrium

Existence We find an equilibrium where at least one of the infected components
(Lyr, Ty, I, Asr, T4, 1y and T5%,) is non zero. Let the EEP of the model (3) be
denoted by

Ern = (S, 17" Ip" Iy, A T I Tr)-
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Solving the equations in (3) at endemic equilibrium point, in terms of the force of
infection, by setting the right hand sides of the equations in (3) to zero, gives

Q2(Q1 + oI

S** — ,
pQ1Q2 + p(v 4+ Q)N + Qa2[Q1 + o (N5 + X5 + )| \3f
. QA7 I
T puQiQa + p(v + QA + Qa[Q1 + o (N + Aj + )] Ay
T = TAPIL

pQ1Q2 + p(v + Q)N + Q2[Q1 + o (NF 4+ N5 + )| Ay

Q5THQ2Q6 + YToNF + Q1Qo \5)

[** —
T Q1Q3Q6[@Q1Qs + (v + QN + Qa[Q1 + (N5 + N + ) \i]
A — O{)‘*H*H(Q%Q6 + 1/}7—0-)‘;* + QIQGU)‘*H*)
" Q1Q3Q4Q6[11Q1Q2 + p(v + QAT + Qa[Q1 + (AT + A + p)] A7)
. QT + 0Q1) (QFQs + TNy +QiQuo)y)
n Q1Q3Q4Q5Q6[MQ1Q2 + M(V + Q1)>\*T* + Q- [Ql + U()‘*T* + Aif + N)P‘E] 7
[ Q2 N A1
T Qu[p@1Qs + (v + QAT + Qo[Q1 + (A7 + A + )i
ToQa AN NG IT

Tt = 1000 + 10 £ QONy + Ol + o0 3 ] )

Theorem 3 The EEP of the Model (3), is GAS whenever Rg > 1 andnr =v =0 = 0.

The proof, based on using a non-linear Lyapunov function of Goh-Volterra type, is
presented in Appendix B. Functions of such type have been used in mathematical
epidemiology/ecology literature, see for instance [11, 12]. Simulations of the model
showing convergence to EEP when Ry > 1 is depicted in Figures 3A and 3B.

4 Analysis of the Full-Model

The model (1) has a unique DFE obtained by setting the right-hand sides of the
equations in the model (1) to zero, given by

IT
Ey = (S, IV IC* T Iy, A%y Ty, Iy, Tkpy) = (5,0,0,0,0,070,0,0) .
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The linear stability of £ can be established using the next generation operator method
on system (1). Using the notation in [27], the matrices F' (for the new infection terms)
and V' (for the transition terms) are given, respectively, by

pr(1 —ex) Brm(l —ex) Prne(l —ex) 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
r_ 0 0 0 Bu Buna Bunr 0 0
0 0 0 0 0 0 00 |’
0 0 0 0 0 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
Ky 0 0 0 0O 0 O 0
¢ Ky, 00 0 0 0 0
0O —7 K3 0 0 0 0 0
V_ o 0 0 Ky, O 0 0 =9
0 0 0 —a Ky 0 O 0
0 0 0 -0 — Ky 0 0
0O 0 0 0 0 0 Ky O
o o0 o o0 0 0 -1 Ky

Where, K1:€+M, K2:T+M, K3:V+,u, K4:9+Oz+u, K5:")/+,U‘|‘61,
K¢ =p+ 6 and K7 = + pu.

The associated reproduction number, denoted by Ry is then given by
RT = p(FVil) = HlaX{R(]l, Rog},
where Rg; and Ros are the associated reproduction numbers for TV and HIV/AIDS,

respectively, given by

Roi = Br(1 —er)(KoKs + mEKs + neTé) and Rgy = B Ks(Ke + 0nr) + a(naKe + ynr)) .

K1 KyK3 KiK5Kq

Therefore, applying Theorem 2 of [27], the following result is established.

Lemma 4 The DFE, &, of the model (1) is LAS if Rr < 1 and unstable if Ry > 1 .
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4.1 Backward Bifurcation

The TV-HIV model (1) exhibits backward bifurcation under certain conditions. This
can be proved using a similar approach as in the proof of Theorem 1 (presented in

Appendix A).

4.1.1 Non-existence of backward bifurcation for special case

The backward bifurcation property of the TV-HIV model (1) is caused by the co-
infection of HIV with TV in humans. In the absence of co-infection (that is when
o = 0), the existence of backward bifurcation is ruled out. To further rule out the
existence of backward bifurcation for the model (1), a global stability of the DFE when
o = 0 is proven in Appendix C.

4.1.2 Global asymptotic stability of the DFE

Theorem 4 The DFFE of the model (1), is globally-asymptotically stable (GAS) in D,
whenever Ry < 1.

The proof is based on using the following Lyapunov function (see Appendix C for de-
tailed calculations):

K K
Bre(mKs + 7727)]0 Breng TT+ROQIH+5H(77A 6+ NrY) AH+5H77T

F =R ly
N P A Ky K Ks

Ty.

5 Numerical Simulations

The model (1) is simulated using parameter values presented in Table 8 (unless other-
wise stated).

5.1 Effect of TV on dynamics of HIV

The effect of TV on the transmission of HIV by individuals infected with TV is mon-
itored by simulating the model (1), using varying values of the parameter for the
increased likelihood of individuals infected with TV acquiring co-infection with HIV.
The simulation results illustrated in Figure 4 show that the total number of new HIV
infections decreases with decreasing values of 0. That is, a reduction in the TV in-
cidence in the population reduces the HIV incidence in the same population. This
could be due to a woman’s increased susceptibility to HIV by two or three-fold by TV
infection. Furthermore, the singular effect of treatment of individuals infected with
HIV is assessed. The simulation results depicted in Figure 6 shows that an increase in

treatment of individuals infected with HIV results in a decrease in the total number of
individuals infected with HIV.
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5.2 Assessment of Control Strategies of TV

In this section, the main control strategies for TV are considered. This is of interest to
the study since infection with TV increases susceptibility to HIV. The control strategies
considered include:

1. Using condoms by sexually active individuals (condom-only strategy);
2. Counselling of infected individuals (counselling-only strategy);
3. Treatment of infected individuals (treatment-only strategy);

4. Using condoms and receiving different levels of counselling for TV (condom and
counselling strategy);

5. Counselling and treatment of infected individuals who have tested positive for
TV at varying levels (counselling and treatment strategy);

6. Using condoms, receiving counselling and treatment for TV (condom, counselling
and treatment strategy).

5.2.1 Condom-only strategy

Since not all the sexually active individuals in a population are expected to strictly
comply to the use of condoms consistently and correctly during every sexual encounter,
it is therefore informative to determine whether or not the use of condoms as a sole
intervention strategy will offer a beneficial population-level impact. This is done by
setting all the treatment and counselling related parameters and state variables of the
model (1) to zero (ie. IS =Tr=R=Try=(=T7=v=¢ =mn =1y =0), which
produces a reduced model with the following associated reproduction number,

Rcl = ﬁT(l — 6%)7

1
Firstly, the effect of condom use on TV transmission dynamics can be assessed quali-

tatively, by differentiating the expression for R.; partially with respect to x (condom

compliance). This gives
a,Rfcl o ﬂTE <0
ok '

Since R, is a decreasing function of s, an increase in condom compliance (k) results
in a decrease of R.;. This result is depicted in Table 1. Thus, the above analysis shows
that condom use will always have a positive population-level impact (even for small
efficacy and compliance level) by reducing the disease burden. In this study, condom
efficacy is fixed at 0.8, unless otherwise stated.
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Table 1: Reproduction numbers (R.1) of the model (1) for the condom-only strategy.

Compliance Level ‘ R

Low (1 = 0.25) 31.7632
Moderate (k = 0.5) 23.8824
High (x = 0.75) 15.8816

A contour plot of the associated reproduction threshold R.; (as a function of condom
efficacy (€) and compliance (k)), is shown in Figure 7. This figure, generated by using
Pr = 0.045 as well as the set of parameter values in Table 8 (where all parameters
related to counselling and treatment are set to zero), shows a decrease in R, with
increasing € and k. It is clear that significantly high condom efficacy and compliance
is needed to effectively control TV, that is, to attain R.; < 1 so that TV/HIV can be
eliminated as guaranteed by Lemma 4. In particular, even if the condom efficacy level
is 80% (e = 0.8), at least 75% (k = 0.75) of sexually-active individuals would still be
required to use condoms consistently and correctly in order to effectively control the
spread of TV in a population.

5.2.2 Counselling-only strategy

In this case, all the parameters and state variables of the model The model (1) is sim-
ulated using parameter values presented in Table 8 (unless otherwise stated)., related
to condom-use and treatment, are set to zero. This gives a reduced model with the
following associated reproduction number

Br(1 4+ mé)

Rc = >
2 Kl

where K1 =& + .
Differentiating R o partially with respect to the counselling rate & gives,

ORe _ Brmn Br(l+m&) _ Br(pm —1)
o6 K, K2 K2

Thus,6?—52<Osinceo<u<land0<n1<l.
Therefore, counselling individuals infected with TV will reduce the reproduction num-
ber R., and thus reduce the TV burden, if the relative risk of infectiousness of coun-
selled infected individuals (7;) does not exceed unity (that is, if counselled individuals
infected with TV reduce their risky sexual behaviour).

Simulations are carried out to further assess the impact of counselling individuals in-
fected with TV using the following levels of counselling:
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I) Low counselling effectiveness: £ = 0.05 ( i.e., it takes 20 days on average to detect
and counselled individual infected with TV);

IT) Moderate counselling effectiveness: £ = 0.5 ( i.e., it takes 2 days on average to
detect and counselled individual infected with TV);

IIT) High counselling effectiveness: & = 5 ( i.e., it takes 1/5 day on average to detect
and counselled individual infected with TV).

Table 2 shows that an increase in the level of effectiveness for counselling results in a
decrease in the reproduction number. Thus, counselling individuals infected with TV
results in a reduction of the burden of the disease. A high counselling effectiveness
level is enough to get R.o < 1, which is enough to eradicate TV.

Table 2: Reproduction numbers (R.2) of the model (1) for the counselling-only

strategy.
Level ‘ Rea
Low (€ = 0.05) 10.4484
Moderate (£ =0.5) | 1.3691
High (¢ = 5) 0.1413

5.2.3 Treatment-only strategy

The singular effect of treatment of individuals with TV is assessed using the Model (3)
(where counselling and condom-use related variables are not incorporated) by first of
all differentiating the threshold quantity

Br(Q2 +n7)
@Q1Q2

(where 1 = 7+ p and Q2 = v + p), partially with respect to 7 yields,

ORes _ Prn Br(Qa+nm) _ fr(pm — Q2)

Rc?) =

or Q1Q2 Q%Qz B Q%Qz

It follows that % < 0 whenever n < 7., where 7, = %

Therefore, the treatment of non-counselled individuals will reduce the reproduction
number and therefore the TV burden if the relative infectiousness of treated individuals

16



(n) does not exceed the threshold quantity (7,). On the other hand, if n > 7., then
the use of treatment will increase the R.3 and as a result increase the burden of TV.

Lemma 5 The treatment of infected individuals will have a positive population-level
impact if n < ;.

Numerical simulations of the model are carried out to further assess the impact of the
Treatment-only Strategy on TV in a population. The following arbitrarily chosen levels
of treatment effectiveness are considered:

I) Low treatment effectiveness: 7 = 0.5;

IT) Moderate treatment effectiveness: 7 = 2;

IIT) High treatment effectiveness: 7 = 50.
The simulation results depicted in Figure 5 shows that an increase in treatment of
individuals infected with TV results in a decrease in the total number of individuals
infected with TV. Furthermore, Table 3 shows that an increase in the level of effec-
tiveness for treatment of individuals infected with TV results in a reduction of the

reproduction number. Therefore, treating individuals infected with TV results in a
decline of the burden of TV in the community.

Table 3: Reproduction numbers (Res) of the model (3) for the treatment-only strategy.

Level ‘ Res

Low (7 = 0.5) 7.4015
Moderate (7 =2) | 2.1699
High (7 = 50) 0.4367

5.2.4 Condom and counselling strategy

Here, we study the combined impact of condom use and counselling. The following
counselling effectiveness levels will be used:

I) Low counselling effectiveness: ¢ = 0.05 coupled with different condom compli-
ance levels: low (k = 0.25), moderate (k = 0.5) and high (x = 0.75);
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IT) Moderate counselling effectiveness: £ = 0.5 coupled with different condom com-
pliance levels: low (k = 0.25), moderate (k = 0.5) and high (k = 0.75);

IIT) High counselling effectiveness:{ = 5 coupled with different condom compliance
levels: low (k = 0.25), moderate (k = 0.5) and high (x = 0.75).

We first set all the treatment-related parameters and state variables of the Model (1)
to zero, (ie. Tpr =Try=7=v=¢ =1 =0).
The associated reproduction number of the reduced model is given by

w4+ mé

= ]_—
Res = Br( €K) WK,

Table 4 shows a decrease in R4 with increasing condom compliance and counselling ef-
fectiveness. This strategy reduces the burden of the disease (an increase in counselling
and condom use reduces the reproduction number).

Table 4: Reproduction numbers (R.4) of the model (1) for the condom use and
counselling strategy.

Condom Low Moderate High
compliance level counselling counselling counselling
Low (k = 0.25) 8.3587 1.0983 0.1130
Moderate (k = 0.5) | 6.2691 0.8215 0.0848
High (k = 0.75) 4.1794 0.5476 0.0565

5.2.5 Counselling and treatment strategy

Next, we study the combined impact of counselling and treating of individuals infected
with TV.

The following levels of effectiveness will be used:
I) Low counselling and treatment effectiveness: £ = 0.05 and 7 = 0.5;
IT) Moderate counselling and treatment effectiveness: £ = 0.5 and 7 = 2;

IIT) High counselling and treatment effectiveness: £ = 5 and 7 = 50.
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Setting the condom use related parameter values of model (1) to zero (k = € = 0) gives
a reduced model with the following reproduction number,

Br(KaKs +mEKs + 1na7E)
KK K5 ’

where, K1 =&+ pu, Ko =7+ pu, Ks=v+ pu.

RC5 =

Table 5 shows that R, decreases with increasing counselling and treatment effective-
ness. As expected, high levels of treatment and counselling reduces the burden of the
disease in the population.

Table 5: Reproduction numbers (Res) of the model (1) for the counselling and
treatment strateqy.

Treatment Counselling

Low ‘ Moderate ‘ High
Low 10.7007 | 1.6997 0.4825
Moderate 10.5132 | 1.4541 0.2290
High 10.4511 1.3727 0.1450

5.2.6 Condom, counselling and treatment strategy

Finally, we explore the condom, counselling and treatment strategy. The following
levels of effectiveness will be used:

I) Low counselling and treatment effectiveness: ¢ = 0.05 and 7 = 0.5. Coupled
with different condom compliance levels: low (x = 0.25), moderate (x = 0.5) and high
(k = 0.75);

IT) Moderate counselling and treatment effectiveness: ¢ = 0.5 and 7 = 2. Coupled
with different condom compliance levels: low (x = 0.25), moderate (x = 0.5) and high
(k = 0.75);

IIT) High counselling and treatment effectiveness: ¢ = 5 and 7 = 50. Coupled
with different condom compliance levels: low (k = 0.25), moderate (k = 0.5) and high
(k = 0.75).

It follows from Table 6 that using a moderate effective counselling and treatment strat-
egy, together with moderate and high condom compliance (subject to 80 % condom
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efficacy) can reduce the burden of TV in the population. Table 6 also shows a decrease

in the reproduction number R with an increase in counselling and treatment, coupled

with increasing values of condom compliance.

Table 6: Reproduction numbers (Res) of the model (1) for the condom, counselling

and treatment strategy.

Condom Counselling and Treatment

compliance level Low Level ‘ Moderate Level High Level
Low (k = 0.25) 8.5606 1.1632 0.1160
Moderate (k = 0.5) | 6.4204 0.8720 0.0870

High (k = 0.75) 4.2803 0.5816 0.0580

It should also be noted that the best strategy for the eradication of TV in the popu-

lation is the combined (counselling, treatment and condom use) strategy. Here, a low

counselling and treatment effectiveness level coupled with high condom compliance

level is enough to control the disease in the population.

6 Conclusion

A new model for the transmission dynamics of Trichomonas Vaginalis (TV) and HIV/AIDS

co-infection is constructed and analysed. Some of the main theoretical findings of the

study are summarized below:

i) Both the full-model and sub-model undergo phenomenon of backward bifurcation.
It is established that co-infection of TV and HIV is the condition for the emergence of

this phenomenon.

ii) In the absence of co-infection of TV with HIV/AIDS, the DFE of the model (and
the sub-model) is shown to be globally-asymptotically stable whenever the associated

reproduction number is less than unity.

iii) The endemic equilibrium of the sub-model is shown to be globally asymptotically

stable for a special case.

iv) Numerical simulations of the models show the following.

e A reduction in the TV incidence in the population reduces HIV incidence in the

same population.
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e An increase in the treatment effectiveness level of individuals infected with TV
and/or HIV results in a decline in the burden of TV and/or HIV in the commu-
nity.

v) An assessment of control strategies of TV using the full model resulted in the
following results:

e Condom-use has a positive population level impact on TV. This means that an
increase in condom compliance will result in a decline in the burden of TV.

e Counselling has a positive population level impact on TV. Thus, an increase in
counselling of individuals infected with TV will result in a decrease of TV in a
population.

e An increase in the level of treatment effectiveness results in a decline of the
associated reproduction number. The higher the level of treatment of TV in a
population, the lower the burden of the disease.

e [f the aforementioned control strategies are implemented at a high level of effec-
tiveness, the burden of TV will be reduced in the population, thereby result in
the reduction of HIV/AIDS incident in the population.
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Appendix A: Proof of Theorem 1

Proof. The existence of backward bifurcation will be explored using Centre Manifold
Theory [6, 27]. To apply this theory we first carry out the following change of variables.
Let S = a1, I = a9, Tr = 23,1y = x4, Ay = w5, Ty = ¢, Ity = v7, and Try = g
so that N = 21 + 29 + 29 + 23 + 4 + 5 + 26 + 27 + 5. In addition, by using vector
notation X = (1, zo, o, T3, T4, Ts, T, T7, 5)", the TV-HIV model (3) can be written
in the form %X = F(X), with (f1, fa, f3, fa. f5, fo. f7, fs)© as follows,

dt
% = f1 = H"—ng — ()\H + )\T)xl — U1,

ddif = fo = Arx1 — 0Agxo — (T + )2,

ddﬂt‘:f;g:TIQ—(V‘i‘M)Qig,

Lo — [ = Agay + pxs — (a+ 0 + p)as,
(A1)

dzs

= fs=axy — (v +p+6)ws,

dc% = fo = 0xy + yr5 — ()t + 62) s,

dxg

= fr =0 gry — (7 + p)ar,

%:fszﬂé‘?—(iﬂ*'/i)xs;

with the forces of infection given by

o Br(z2 + nxs)
Ay = and
Il+$2+I2+$3+Q?4+$5+I6+$7+I8

B (x4 + naws + nrae)
Ty 4 Ty + Ty + T3 + Ty + T5 + T6 + 27 + T8
Consider the case when Ry = 1 (that is max{R;, R2} = 1). Also suppose that Sy = 5}
is chosen as the bifurcation parameter. Solving for Sy = f}; from Ry =1 in (4) gives

(Q3Q4Qs
Qu4(Qs + 0nr) + a(naQs +ynr)

Ay =

O =

The Jacobian of the system (A.1) evaluated at the DFE &;, with 8y = (}; and denoted
by J*, is given by
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- —=Br  —Brm+v =By —Byma —Bpnr 0 0
0 Br—@ Brn 0 0 0 0 0
0 T -2 0 0 0 0 0
P 0 Bu—Qs Bima  Bynr 0 9
0 0 0 e —Q4 0 0 0 ’
0 0 0 0 v —Qs 0 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 0 T —Q

The Jacobian has a simple zero eigenvalue (with all other eigenvalues having negative
real part), therefore the Centre Manifold Theory can be used to analyse the dynamics
of the system (A.1).

Eigenvectors of J(€3)|,,=p;, For the case when Ry = 1, it can be shown that J has a
left eigenvector (corresponding to the zero eigenvalue), given by v = [vy, v, V3, vy, Vs, Vg, U7, Us],
where

p Br(naQs +~
V1 = 07 Vg > O, V3 = QL:]U27 Vg > O, Vs = H(TIAQ45Q5 nT) O,
V6 = ﬁ}%wm v7 = i Uy vy = iw.
Qs Q1Qs Qs

Similarly, the components of the right eigenvector of J(&3)|s,=p; (corresponding to
the zero eigenvalue), denoted by w = [wy, wy, w3, v, wy, ws, we, wy, ws|* are

1 [<5T(Q2 +n7) — VT) W, + (5}5(@4@5 +naaQs + nroQs + 7]T067)> w }
Qs ? QuQs ok
é’wg, Wy > 07 Wy = iU)4, We = (e%l%ww%

wy = 0, wg = 0.

wy > 0, w3 =

It is worth noting that the free left eigenvalues v, and vy, and right eigenvalues ws and
wy are chosen to be

1 2
Vo = Uy = —, wQZQL, and
2 QQ + BT
QiQ3

, o that

T QB2 Bula(maQZ + Qs + 1y Qa) + 6 Q3]
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the classical requirement of v - w = 1 is satisfied (see for instance [6]). That is

VW = VaWa + U3W3 + V4Wy + VUs5W5 + VeWs

_ @yt Byt Q4G + Bula(na@s + 1yQs + 1ryQa) + nrfQ)
G QA3

VaWy = 1.

Computation of a
For the transformed TV-HIV model (A.1), the associated non-zero partial derivatives
of F' (evaluated at the DFE) are given by

> fi _ 20rp 9 f1 _ w(Br + Brn) O fi _ 1(Br + Br)
(930231:2 II ’ 81’281’3 II ’ 81’281’4 II ’

d° fi :M(5T+5H77A) *f1 :M(BT-FﬁHT)T) d*f1 _ *fi _ By
0x2075 I1 " Ox9076 I1 " 0x90T7  Ox90xg I1

*fr _ 2B *fr _ w(Brn + Bu) 0 fi _ w(Brn + Buna)
8x38x3 I1 ’ 8x38x4 1I ’ 017381'5 I1 ’

*f1 :M(ﬁTU+5HﬁT) d*f1 _ 2*fi :ﬁTUN *fr :251{#
0x307 I1 " Ox30x7 Oxs0vs I~ Ox40z4 Im’

Ph pBu+Buna)  PH pBu+Bunr) PHh PH O Buap

8x48x5 N I1 ’ 8$48[L'6 N 1I ’ 8[E48{E7 N 85(7481’8 B 1I ’
d° fi _ 2Bunap *fr _ w(Bana + Banr)  0*fi _ *f1 _ Bunap
0x501s5 I1 ° Oxs0x6 I1 Oxs0r7  Ors0xs Im’
d” fr _ 28unr i 9 fr _ 9 f1 _ Banri
0x601 II ~ Oxg0r; OxOrs Im ’

Pl 28rp 0*fs  p(Br+Brm)  Pfo  p(Br+oBu)

61‘28562 N I1 ’ 8x26x3 N 11 ’ 61’28I4 N I1 ’
%fs _ pBr+oBuna)  Pfe _ pBrtoBunr)  Pfe _ 0fs _ PBru
0x9075 11 " Ox90x6 I1 " 0x90T7  Ox90x3 Im’
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Pl 28mp Pfh P Ph Ffh  Ph By

6.1336173 N I1 ’ 81736174 N 85E381‘5 n 8[E38$6 N 81'36.177 B afL‘gaZL‘s N 1I ’

Pl Pfa  Pfs Pfr Bup Pfs 2Bup

Ory0xy  Oxs0xy  Ox0r7  Oxy0xs 117 Ox4Oxy Im’

0 f4 _ 0 4 _ 0* f4 _ 0* 4 __ Bunap & fa _ _ (Bu + Buna)
0x90rs  Or30r5  Or50r7  Ox507% II ' Ox,0x5 I1 ’
0 f4 _ 9% f4 _ 9 f4 _ 9 f4 _ _@HUTM 0 fa _ _H(ﬂH + Bunr)
8I48I6 8x38x6 613685(]7 81‘681‘8 1I ’ 8.1748176 1I ’
Pfs _ 2Bumap Pfi _ 2Bunrp Pfs_ p(Buma + Bunr)
(9%581'5 II ’ 81'68.1'6 II ’ 81'5833'6 II ’

Pfr _ofap Pfi _oBumap  Pfr _ oBunrn
81’281‘4 11 ’ 81'281'5 11 ’ 81‘281‘6 II )

Using the expressions above, it follows that

8 an
k
a = Z vkwiwjm(o, 0)
e/

k.i,j

24
= ﬁ[%szﬁHﬂu + V7w BrwsNa + V7w BrWeNT — VoW20 BrwsVeWa0 B — VaWao Brwsna

— VoWoT frwenr — Br(VaWaWs + Vawaws + VoWaWy + VaWoWs + VoWaWe + VawsNwsy + W3V2wW31)
— Br(wavawsnws + wevewsn) — B (Wavswy + Wavawy + Wav4w4 + WrV4W4 + WeV4W,)
— B (wavswsna + wavswsna + WavsWsNA + WsV4W5NA + WeVaW5T A + WaVaWeNT + W3V WENT)

— Bu(wivswenr + wsvswenr + WU WeNT)].
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Which can be simplified to the following,

8 2
a= kawi O I (0,0)

w —
ki I 8%8%
2
= ﬁ[“?wﬂﬁH(W + wsna + wenr) — Voweo B (W + wsna + wenr)

(A.2)

— ﬂT(Ugwg + Ugwgn) (wg + Wws + Wy + Ws + wﬁ)

— Bu(vaws + vawsna + vawenr ) (we + w3 + wa + ws + wg)].

Computation of b
Substituting the vectors v and w and the respective partial derivatives (evaluated at
the DFE) into the expression of b yields,

8

5?2
b= kawiﬁ(oa 0) = vawy + vawsna + vawenr > 0.

kyi,j
Since the coefficient b is automatically positive, it follows that the model (3) will un-
dergo backward bifurcation if the coefficient a given by (A.2), is positive. [

Appendix B: Proof of Theorem 3

Proof. Consider the following non-linear Lyapunov function

S It BrnS™ Ir
F=8—8%—8*In——+ Iy — I} — [}*] Tr — T — T3]
I G A
Iy — I — I In ﬁ+—ﬁf”“ [AH—A;*—Agln—fk],
IH Q4 AH

with Lyapunov derivative
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= O S { Ty } I BumaS* { i }
F=8-2c8+Ip—Lir+ Tr= g Tr| Tl = 3 ol =3 = | Au = 7 An |
S Tt (2 ot S o Ayt
G Iy
== A = ApS = pi§ = == (T = Au§ = ArS = p§) + (ArS = Qulr) = 7-((ArS = Qulr)
T
" Brn |:T[T—Q2TT_ k (tIr —QQTT)} + AgS —Q3ly — H (AgS — Qsly)
Q2 Tr I
S** A**
n Buna [OJH—Q4AH — H(CKIH—Q4AH):| )
Q4 An

Let 3 = ’%“ Applying this and simplifying yields

*k

S

F=T—puS —T— + Br(Ir + nTr)S™ + Bu(Iy + nadAn)S™ + pS™ — QuIr

I** - > S** - > S** T**
T BT(IT + 77TT)S + Qllj*ﬂ* + ﬁTn T[T — BTT]S**TT — ﬁTn T

71y + Brn ST
Ir Q- Oy Ty 1T T AT

koK

I
— Qsly — [H Bua(Ig +naAr)S + Qsl;
H

BunaS™  Am -
0s alyg A + BunaS™ Ay

6~H7]AS**

+—==——aly — BunaS™ Ap —
Q4

It can be shown from the model (3) that at endemic steady-state,

QuIf" = BrIyS™ + BriTyS™,  QuT7 =17l

Q3[I*; = ﬁH[;;kS** + UAA;;S**, QAT = Oé[;i]*.

27



Substituting the above relations gives,

3 3 ) Hok ) Hok Qrkok *ok S ok Y TRk QEk S
—(GrI ™ 4 BT S Gl S+ Fuma Ay S™ 4 pS™) o S — Gl ST
) ST 7 y 7 *k **[ i 7 Kk QU
— BT S™ e + BrIy S™ + BTy S™ — BT S™ — 2= + Brn TS
S IrTy I3 Tr
~ S ~ ST Ay ~ ~
Buly G BunaAi S I An + Buly + BunaAy

) In Ay 2 * QU
= Bunadi ST L + nadjS™,
HAYH

which can be simplified to

*ok _ S** S

S _S**

~ S** S
| s -5 5]

S _S**

+ T g {3_5** LTy SIHTy S I A% sz;;AH]
T

_ . Y ARG |3 - 2 .
S T IrTy S**ITT;*] Py { S T IiAy  SvIgAy

Since the arithmetic mean exceeds the geometric mean, the following inequalities hold

S S
2 - — <0
S g
S Ty ST

S IyAy  SeIgAy

Further, since all the model parameters are non-negative, it follows that F < 0 for
Ro > 1 and F is a Lyapunov function on D.
Now we have that,

tlggo 5@) =57, tliglo [r(t) = Ir', tlgglo Tr(t) =Tr",

lim Iy (t) = I} and lim Ag(t) = Aj.
t—o0 t—o0
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Furthermore, at endemic steady-state, as t — oo,

OIy(t) + Ay O A%

lim Ty (t) = lim ==+ =Ty,
t—00 H<) t—00 Qg, Q5 QE) "
: o OArulr(t) o ATRIF(D)
tliglo Iry(t) = tli>123 0, = 0, = Iy,

. . T[TH(t) . T[F}_I(t)
t—o0 t—o0 QG o QG

_ k%

Appendix C: Proof of Theorem 4

dt

— 0 as t — oco. Hence, it follows that the system and/or HIV can be

First of all notice that by setting ¢ = 0 in (1) the equation of

— 0 as t — oo,

thus dTrn

simplified to

%IH—FVTT_()\H‘F)\T)S_MSa
U s — e+,
UL _ et — (74 .
% =7lp — (v + )T, (C.1)
%:)\HS—(CY—FQ—F,U)]Ha
d;‘_f — aly — (v + p+ 61) An,
d% =0Ty + A — (1 + 62)Thr.

Next define the invariant region
‘15/ = {<S7]7q7I’IQ’TT’IH7AH)TH7ITH7TTH> c D : S S S*}

We claim the following result.
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Theorem 5 The DFE of the model (1) , is globally-asymptotically stable (GAS) in D,
whenever Ry < 1 and unstable if Rr > 1.

Proof. Consider the following Lyapunov function

Bre(mKs +no7) o Brens Br(naKe + nry) Bunr
=Ry IV I Tr+Roal A T
F oidp + e T+ K, T+ Roalg+ e o+ K,
with Lyapunov derivative given by (where ¢ =1 — ex > 0)
: : Bre(mKs +m27) - Brens . Bu(naKe +nry) . Bunr
F=RulY I Tr + Ryl A T
oidp + e T+ @ T+ Koy + e H T e Hs

K.
Bre(m Kz + n21) €1V — KoIC) + Breng

= Rot(A\LS — K IY) + K T
2433 3

(IS — K3Ty)

Bu(naKs +nry) 0Ly — KsAy] + Bunr

Roo[AgS — K4l
+ Roz[An ol + KoK, e

[QIH + ’YAH — K(;TH],

= R A-S — Bre(I + IS + nTr) + RooduS — Bu(Ig + nalm +nrTw),
(C.2)

= Ro1ArS — ApN 4+ RopAuS — AN,

7—\)f018 ROQS 1
N 7

= AN [——1}+)\HN[ N

< MN*[Rot — 1]+ AgN*[Rgy — 1],  since S <S* in D, and N < N*,

= Bre(If + 77115 + nTr)[Ro1 — 1) + Ba(Ig +naly + nrTh)[Roz — 1]
<0 whenever Rpr=max{Ro, Ro} < 1.

Since all the parameters and variables of the Model (1) are non-negative (Lemma
1), it follows that F < 0 for Ry < 1 (le. Ro1 < 1 and Ry < 1) with F =
0 if and only if I¥Y = I§ = Tp = Iy = Ay = Ty = 0. Hence F is a Lya-
punov function on D,. Thus, it follows by LaSalle’s Invariance Principle [17], that
(IZ(t), IG(t), Tr(t), Iu(t), Ag(t), Tu(t)) — (0,0,0,0,0,0) as t — oo. Thus, it follows
that every solution of the equations of the Model (1) with initial conditions in D, ap-
proaches & as t — oo (when Ry < 1). [
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Table 7: Description of Variables and Parameters of the Model (1).

Variables Description

N Total population

S Susceptible individuals

Ir Population of individuals infected TV

Tr Population of individuals receiving treatment for TV

Iy Population of individuals infected with HIV

Ay Population of infected individuals with AIDS symptoms

Ty Population of individuals receiving treatment

Iy Population of individuals infected with TV and HIV

Try Population of individuals receiving treatment for TV

A1 Force of infection for TV

Ay Force of infection for HIV

Parameters Description

II Recruitment rate of humans

W Natural mortality rate of human

Br Effective contact rate for TV transmission

Bu Effective contact rate for HIV transmission

m Modification parameter accounting for the assumed reduction in infectiousness of
counselled individuals, in comparison to infected individuals unaware of their TV status

72 Modification parameter accounting for the assumed reduction in infectiousness of
treated individuals, in comparison to infected individuals unaware of their TV status

NA Modification parameter accounting for the assumed reduction in infectiousness of
individuals at AIDS stage, in comparison to infected individuals with HIV

nr Modification parameter accounting for the assumed reduction in infectiousness of
treated individuals, in comparison to infected individuals with HIV

€ Condom efficacy

K Condom compliance

13 Counselling rate for TV infected individuals

o Co-infection parameter

T Treatment rate of individuals infected with TV

v Recovery rate of individuals infected with TV

P Progression rate of individuals from T g class to Iy class

« Progression rate of individual from Iy class to Ay class

0 Treatment rate of infected individuals in Iy class

v Treatment rate of infected individuals in Ay class

01 Disease-induced mortality rate of individuals in Ay class

0 Disease-induced mortality rate of individuals in Ty class

34



Table 8: Ranges and baseline values for parameters of the model (1).

Parameter | Range (day!) Baseline (day!) | Reference
I (1000, 3000] 2000 Assumed
I [0.00004, 0.00005] 0.000046 (11, 24]
Br 0.5, 0.9] 0.709 [5]

B [0.45, 0.85] 0.65 Assumed
€ (0.5, 1) (dimensionless) | 0.8 [11]

K (0, 1) (dimensionless) | 0.5 [11]

m (0, 1) (dimensionless) | 0.5

72 (0, 1) (dimensionless) | 0.5

nA (0, 1) (dimensionless) | 0.5

nr (0, 1) (dimensionless) | 0.5

13 (0, 5] (dimensionless) | 0.5

o 1, 3] 2 Assumed
T (0, 50] 2 Assumed
Y (0.5, 0.9] 0.7 Assumed
a [0.01, 0.1] 1/33 Assumed
0 (0.5, 0.9] 0.8 Assumed
ol (0.1, 0.8] 0.4 Assumed
o [0.009, 0.04] 0.01 Assumed
) [0.01, 0.07] 0.04 Assumed
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Figure 1: Schematic Diagram of the Model (1)
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Figure 2: Time series plot of the model (3) showing convergence to DFE. Parameter values
used are given in Table 8 with o = 0, By = 0.709, By = 0.65 so that Rg = 0.7298 < 1.
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Figure 3: Time series plot of the model (3) showing convergence to EEP. Parameter values
used are given in Table 8 with o = 0, B = 3.651, By = 1.65 so that Rg = 1.8526 > 1.
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Figure 4: Simulations of the model (1) showing the cumulative number of individuals infected

with HIV/AIDS. Parameter values used are as given in Table 8 with varying values of o.
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Figure 5: Simulations of the model (3) showing the cumulative number of individuals infected

with TV. Parameter values used are as given in Table 8 with varying levels of treatment 7.
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Figure 6: Simulations of the model (1) showing the cumulative number of individuals infected

with HIV/AIDS. Parameter values used are as given in Table 8 with varying values of 6.
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Figure 7: Simulatins of the Model (1) showing a contour plot of Re1. Parameter values used

are as given in Table 8 with o = 0.
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