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Blade Tip Timing is a non-contact method for the measure-
ment of turbomachinery blade vibration. Proximity sensors
are mounted circumferentially around the turbomachine cas-
ing and used to measure the tip displacement of blades dur-
ing operation. The processing of these tip deflections is, how-
ever, riddled with complications such as aliasing, high lev-
els of noise and non-equidistant samples in the time domain.
Specialized BTT algorithms have been developed to extract
as much information as possible from the signals. The util-
ity of these algorithms depend on the circumferential spacing
between the proximity sensors. If the spacing is sub-optimal,
an algorithm can fail to measure dangerous blade vibration.
This article presents a novel method to determine the spacing
between the proximity sensors such that the Blade Tip Timing
system can be used to measure blade vibration as accurately
as possible.

1 Introduction
Blade Tip Timing (BTT) is a non-contact method for

measuring turbomachinery blade vibration during operation
[1–4]. BTT is an alternative to strain gauge systems. Strain
gauge systems are considered the conventional technique for
measuring rotor blade dynamics [3]. Strain gauge technol-
ogy, however, has several drawbacks, such as high cost of
installation, limited lifetime due to harsh operating condi-
tions, and the fact that it can only be installed on a small
number of blades [3, 5]. Faster turbomachine development
cycles and high strain gauge system mortality rates, among
other reasons, have led to decreased use of strain gauges

in favor of a combination of BTT and Finite Element (FE)
models [6]. BTT uses proximity sensors mounted circum-
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Fig. 1: Principle behind BTT. a) A compressor fan row with a
broken out casing is shown with five proximity sensors (num-
bered S1 through S5) above the row, b) the deflected blade tip
arrives earlier than the undeflected tip due to the tip deflec-
tion.

ferentially around a turbomachine rotor stage into the casing
(Fig. 1 a). The Time of Arrival (ToA) of each blade as it
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passes underneath each sensor is then measured. A blade that
is not experiencing any vibration will have an expected ToA
based on the known shaft rotation speed. A vibrating blade
will arrive earlier or later than expected due to its tip deflec-
tion, x (Fig. 1 b). The difference between these two ToAs, ∆t,
is used to calculate the rotor blade tip displacement, usually
with Eq. 1

x = ∆tΩR (1)

where R is the rotor’s outside radius and Ω is the rotor ro-
tational speed. Each time a rotor blade passes underneath a
sensor, the BTT system obtains one measurement. By taking
measurements from several sensors and multiple shaft rota-
tions, one can attempt to infer the blade vibration amplitude
and frequency.

The inference of rotor blade vibration is, however, no-
toriously difficult to perform, especially if the vibration is
an integer multiple, or Engine Order (EO) of the shaft speed
[7, 8]. The frequency of EO excited vibration is calculated
with Eq. 2

f = EOΩ (2)

where f is the excitation frequency in Hertz. The difficulty
in measuring EO vibration is because the BTT system mea-
sures the same part of the blade’s vibration cycle each time it
passes a particular sensor. As such, no substantial informa-
tion is added by measuring for more than one shaft revolu-
tion.

Another factor that contributes to the difficulty of pro-
cessing BTT signals is aliasing [9, 10]. In most other mea-
surement activities, aliasing is caused by a limited data ac-
quisition sampling rate. In BTT however, the sampling rate
is completely determined by the rotational speed of the rotor
and the number and spacing of the sensors in the rotor cas-
ing. Consider, for instance, a rotor turning at a speed of 50
Hz that is surrounded by 8 proximity sensors. The sensors
are installed equidistant from one another around the casing.
This leads to a sampling rate of 400 Hz for each blade (8
measurements taken 50 times per second) and a Nyquist fre-
quency of 200 Hz. Rotor blades often have natural frequen-
cies above 200 Hz, which would make these signals difficult
to process using conventional signal processing techniques.
BTT signals are, in addition to this, extremely noisy and
contain latent signals from shaft torsional vibration and cas-
ing vibration. Specialized BTT signal processing techniques
have therefore been developed to extract as much meaningful
information from the signals as possible [1–4, 7–9, 11–21].

All of these methods require tip displacement measure-
ments of the highest possible quality to maximize the ac-
curacy of the inference. One aspect that greatly influences
a BTT system’s signal quality is the sensor circumferential
configuration. Poorly or inadequately spaced sensors can
lead to signals that are more sensitive to noise and which
contain less information. The machining of sensor mount-
ing holes is financially expensive and the resulting sensor

configuration is permanent. An incorrectly designed sensor
configuration can therefore lead to a BTT system that does
not deliver on its intended goal, or does not deliver at all.
Some methods require sensors spaced in an equidistant man-
ner [1,19] and other methods can use any type of sensor spac-
ing.

This article presents a novel method to determine the
non-equidistant sensor configuration that will maximize the
information in the signals measured by a BTT system. An
approach used by some in industry [22] is described and de-
veloped further into a constrained optimization problem. An
example sensor configuration design is performed on a rotor
with realistic natural frequencies and operational conditions,
thereby illustrating the method.

2 Sensor positioning
Consider three different BTT systems, identical in the

number of sensors but each with a different sensor configu-
ration. Each BTT system has 5 sensors with a configuration
shown in Tab. 1. The BTT systems are installed onto the

Table 1: Sensor positions for the three different BTT sys-
tems. Angles in radians.

BTT System θ1 θ2 θ3 θ4 θ5

1 0.35 1.40 2.44 3.49 4.54

2 0.45 1.81 2.54 3.91 4.64

3 0.55 1.55 3.15 4.45 4.75

same rotor. The rotor has a first natural frequency of 300 Hz
and is rotating at a rate of 50 Hz. The first natural frequency
is excited by an EO 6 disturbance, caused by obstructions in
the working fluid flow path [23,24]. The vibration amplitude
is 200 µm. The measurements taken by each BTT system is
shown in Fig. 2. Figure 2 illustrates the varying quality of tip
deflection measurements one can obtain from BTT systems
with an identical amounts of sensors but different configu-
rations. All the sensors in BTT system 1 measure the blade
vibration at exactly the same location in the rotor blade’s vi-
bration cycle. The value of 50 µm is measured repeatedly. It
would be impossible for an algorithm to calculate the natural
frequency from what is essentially a DC offset signal. This
arrangement is sub-optimal and should be avoided.

BTT system 2 measures two different tip displacements,
-67 µm and -158.3 µm. Although some variability among
the measurements are present, only one direction of vibra-
tion is measured (negative direction). This would also make
accurate inference difficult if not impossible.

BTT system 3 measures unique parts of the vibration
signal which span to both directions of motion. An algo-
rithm has a much better chance of inferring the true natural
frequency and vibration amplitude from this signal as all its
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Fig. 2: Different measurements taken by three different sen-
sor arrangements for an EO 6 vibration of size 200 µm.

values are unique. This arrangement should always be pre-
ferred above the other two.

There is a mathematical approach to evaluate the quality
of BTT sensor configuration. One can express the vibration
signal as an orthogonal sinusoid, as done in Eq.3 below,

xi(t) = Asin(EOθi)+Bcos(EOθi)+C (3)

where A, B and C are the vibration coefficients and θi is the
circumferential position of the ith sensor. A five sensor BTT
system will have five such equations and can be assembled
into a system of the form given in Eq. 4

Φa = b (4)

where Φ is called the design matrix and is given by Eq. 5.

Φ =


sin(EOθ1) cos(EOθ1) 1
sin(EOθ2) cos(EOθ2) 1
sin(EOθ3) cos(EOθ3) 1
sin(EOθ4) cos(EOθ4) 1
sin(EOθ5) cos(EOθ5) 1

 (5)

The condition number, κ, of the design matrix Φ is a
measure of how sensitive the solution to Eq.4 is to permu-
tations in the input values and round off errors during the
computing process [25]. A condition number of 1, the mini-
mum possible number, indicates it is possible to recover the
vector a perfectly. A condition number tending to infinity
indicates the design matrix is singular and cannot be used to
solve the equation. The condition numbers for the three BTT
sensors in Tab.1 are reported below in Tab. 2.

In Tab. 2, θθθ is the shorthand notation for the set of all
sensors. The condition numbers listed in Tab. 2 corroborates
the earlier qualitative assessment of the sensor configurations

Table 2: Condition numbers for the design matrices of three
different BTT systems.

BTT System κ(θθθ,EO = 6)

1 3.64×1016

2 2.61×1015

3 2.95

for the different BTT systems. It is seen that BTT system 3
has the lowest condition number by far, meaning it is more
likely to recover the true solution in the inevitable case of
noise being present in the tip deflection measurements.

The design matrix condition number is therefore a met-
ric that can be minimized to obtain a useful BTT sensor con-
figuration.

3 Optimization problem
When faced with a new BTT installation, the sensor con-

figuration can be designed by formulating and solving an op-
timization problem. The three main steps in formulating the
problem are presented below.

3.1 Establish the number of sensors to be used
A general rule of thumb is that the maximum number of

sensors should be preferred. There are, however, limitations
to the number of sensors one can use. Sensors that operate
long periods of time in harsh conditions tend to be expensive.
The cost of a data acquisition system also scales with the
number of sensors. Furthermore, there may be limited space
for the sensors on the turbomachine. The number of sensors
should be chosen as the maximum allowable amount subject
to the constraints described above. The number of sensors
determine the number of rows in the design matrix.

3.2 Find the EOs of interest
In the previous example of design matrix condition num-

ber calculation, an EO=6 has been used for the calculation.
It is unlikely that the BTT system will be used to measure
blade vibration caused by only one possible EO excitation.
A large number of EOs can be included into the optimiza-
tion problem, say for EOs 1 through 1000. This can how-
ever result in a BTT system optimized to measure vibration
modes that are not damaging (such as highly damped high-
frequency modes) or modes that are unlikely to be excited at
all.

Practically, one can limit the EOs being taken into ac-
count. For instance, suppose an aircraft engine operates be-
tween 3000 RPM (50 Hz) and 6000 RPM (100 Hz) for the
majority of its life. The first four natural frequencies of the
compressor row being monitored have values of 200, 300,
400 and 500 Hz. If one is only interested in measuring the
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first four natural frequencies, one can calculate the mini-
mum EO to be measured by dividing the smallest natural
frequency of interest with the largest operational speed, as
done in Eq. 6.

EOmin =
200
100

= 2 (6)

The maximum natural frequency of interest can be obtained
by dividing the largest natural frequency with the lowest op-
erational speed, as done in Eq. 7.

EOmax =
500
50

= 10 (7)

All EOs between EOmin and EOmax may be excited and the
sensors must be optimized to measure all EOs as accurately
as possible.

In addition to optimizing for all the EOs in this range,
some EOs might be of particular interest. There are many
reasons that an EO might be of particular interest. Possible
reasons are given below:

1. Turbomachines are often operated at set points, or con-
stant shaft speeds, for extended periods of time. A cer-
tain EO excitation at a set point may coincide or near-
coincide with a natural frequency of the machine. Take
the example of an aircraft with a shaft speed of 4000
RPM for one of its prevalent cruising speeds. If the low-
est natural frequency of the first compressor row blades
is approximately 540 Hz, this is fairly close to the 8th
order excitation at 4000 RPM of 533.3 Hz. This nat-
ural frequency might shift downwards to the excitation
frequency because of temperature effects or changes in
boundary conditions at the root attachment.

2. One may know, from simulations or previous experi-
ence, that some modes are more damaging than others
and that some EO excitations, such as the lower ones,
cause more damage than high EO excitation.

3. One may be aware of a particular failure mode that sug-
gests a specific mode of vibration in a narrow shaft speed
range.

A weight factor, wEO, can then be assigned to specific EOs
of interest during optimization to place particular emphasis
on being able to measure those EOs. The size of the weight
must be chosen based on engineering intuition, at least until
further research is conducted.

3.3 Find the smallest sum of squared weighted condi-
tion numbers

The optimal sensor spacing is now defined as the sensor
spacing leading to the minimum sum of squared weighted
condition numbers. This is expressed in Eq. 8.

θopt = argminθ

(
EOmax

∑
EO=EOmin

(wEOκ(θθθ,EO))2

)
(8)

Most of the weights will be one, except for those that have
been identified as particularly important to measure.

3.4 Particle Swarm Optimization
This optimization problem does not have a single local

solution. Consider the case of a three sensor BTT system be-
ing analyzed to determine the sensor configuration. All EOs
between 2 and 10 are of equal importance and the first sensor
is fixed at 0 radians. A heat map of the minimization surface
for the remaining two sensors is shown in Fig. 3. In Figure
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Fig. 3: The error function as a heat map for a three sensor
BTT optimization where θ1 is fixed to 0 radians and the EOs
between 2 and 10 are taken into account. Lighter shades
indicate better solutions. The sensor spacings are constrained
to be monotonically increasing.

3, lighter shades indicate better sensor configurations. It is
seen that there are many local minima and a large amount of
local maxima. It is therefore a global optimization problem.

Particle Swarm Optimization (PSO) is a well known op-
timization technique that can be used to solve global opti-
mization problems. PSO is the preferred optimization tech-
nique used in this article but could be exchanged with other
global optimization techniques.

To determine N sensor positions, the parameter being
optimized is θθθ as shown in Eq. 9 below

θθθ = (θ1,δθ2,δθ3, . . . ,δθN) (9)

where θ1 is the absolute circumferential position of the first
sensor and Eq. 10 can be used to determine the absolute cir-
cumferential positions of the other sensors.

θn = θn−1 +δθn (10)

This form of parameter vector ensures that all sensor angles
are monotonically increasing in their value. All values of θθθ
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are limited to the range 0−0.5π. The maximum distance be-
tween two subsequent sensors is therefore 0.5π. It has been
found that this value leads to the most rapid convergence and
best possible solutions for the PSO algorithm. For all runs
conducted in this article, a particle swarm size of 5000 was
chosen and the optimization ran for 30 iterations.

4 Constraints
There are limitations to the positioning of sensors that

must be taken into account. Two types of constraints are
taken into account below.

4.1 Minimum sensor distance
Sensors are typically mounted by machining tapped

holes into the turbomachine casing. The sensor center dis-
tances therefore need to be a certain minimum distance apart.
A rule of thumb is that the sensor center distances need to be
at least 1.5 hole diameters apart. Additionally, some sensors
such as eddy current sensors need to be spaced a minimum
distance apart so that the sensors do not interfere with one an-
other. For eddy current sensors, a minimum of three sensor
head diameters are usually recommended. One can formu-
late the constraint between any two sensors i and j as done
in Eq. 11.

|∆θi, j|= |θ j−θi| ≥
dmin

R
(11)

where dmin is the minimum length on the arc of the casing
that must separate sensors. Note that the angles here are
mapped into the 0 - 2π range if some are larger than 2π.

4.2 Casing fixtures
Turbomachines are intricate structures with many fix-

tures and components on the casing. It may not be possible
to install sensors on the entire casing circumference. One
should therefore create circumferential areas are is unavail-
able to place the sensors at. Mathematically, this is given by
Eq. 12.

θi 6∈ [θ∗1,min,θ
∗
1,max]∪ [θ∗2,min,θ

∗
2,max] . . .∪ [θ∗M,min,θ

∗
M,max]

(12)
In Equation 12, θ∗m,min and θ∗m,max indicate the minimum and
maximum fixture locations for the mth fixture.

4.3 Implementing constraints
The implementation of the PSO algorithm used [26]

allows for the specification of constraint functions. These
functions return a positive value if the solution is valid and a
negative function if not.

5 Illustrative example
The proposed method is now illustrated with an exam-

ple. BTT sensor configuration for a rotor is determined with
two different sets of EO weights.

5.1 Rotor row
Consider the characteristics of a compressor blade row

in an aircraft engine. The blades have an outside diameter
of 440 mm. The natural frequencies of the rotor blades in-
crease with increased operational speed. The rotor blade’s
first 5 natural frequencies are given in Tab. 3 for rotor speeds
at 6800 RPM, 14500 RPM and 15600 RPM. These frequen-
cies correspond to the frequencies presented in [27] for an
SO-3 engine. The natural frequencies increase as the speed
increases. Suppose further that this engine will operate be-
tween 6800 RPM and 15600 RPM for the majority of its op-
erating hours, and that a BTT system should be installed to
measure the vibrations during this operating range.

Table 3: Natural frequencies for rotor blades at different shaft
speeds. Frequencies in Hertz.

Mode number 6800 RPM 14500 RPM 15600 RPM

1 374.1 489.5 509.2

2 1350.2 1500.5 1527.7

3 1826.4 1856.2 1863.1

4 3058.8 3117.3 3127.8

5 3871.0 4021.0 4051.2

Six microwave sensors are used with a probe diameter
of 14mm. The diameter corresponds to the sensor described
in [28]. These sensors are fixed into the casing and must be
placed 1.5 times the diameter, or 21mm, apart. This leads to
a minimum distance between sensors as calculated in Eq.13.

dmin

R
=

21
400

= 0.0525 radians (13)

The compressor has permanent fixtures around the row to be
monitored. The permanent fixtures are such that no sensors
can be placed at the circumferential locations given in Tab. 4.

Table 4: Minimum and maximum locations of the permanent
fixtures around the compressor casing. Values in degrees.

Fixture number θ∗min θ∗max

1 0 80

2 123 130

3 256 330
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5.2 Possible EOs to be excited
The natural frequencies of the rotor blades increase as

a function of speed. To be conservative, the minimum and
maximum natural frequencies are calculated using the over-
all minimum and maximum frequencies and the overall min-
imum and maximum speeds, i.e.

EOmax =
4051.2

6800/60
= 35.7≈ 35 (14)

EOmin =
374.1

15600/60
= 1.4≈ 2 (15)

When calculating the maximum and minimum EOs and end-
ing with a fraction, the maximum EO is always rounded
down to the nearest integer and the minimum EO is always
rounded up. All the EO weights of the system are taken as 1,
meaning no EO is deemed more important to measure than
any other.

The PSO algorithm is now used along with the con-
straints mentioned in Sec. 4 and Sec. 5.1. As can be seen
from Fig. 3, there are many local solutions. Finding a global
minimum might be an elusive task for problems with many
different EOs and many constraints, such as in this exam-
ple. To demonstrate this point, four PSO optimization runs
are performed and the best solution objective function value
for each iteration is shown in Fig. 4. It is seen that all of
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Fig. 4: Progress of PSO algorithm for 4 different runs for the
same problem.

the runs start out with an objective function value of between
180 and 220 and decrease gradually to a value of between
150 and 165. Because of the random nature of the PSO al-
gorithm and the multitude of global minima, one should not
expect to obtain the same sensor spacing repeatedly. All the
solutions are, however, good choices for the sensor spacing.
It is advisable to perform many different optimization runs
and compare different solutions. The values of the parame-
ter vector for each run is shown in Tab. 5.

It is seen that the first sensor for all four runs are located
between 1.72 and 1.90 radians. All sensor increments are
between 0.1 and 1.2 radians. Recall the limits of the sensor
increments are 0 to 1.57 (or 0.5π) radians. It is seen that no
increment reaches 1.57, which suggests that the maximum
increment limit is reasonable.

It is also possible to visualize the condition numbers re-
sulting from the use of an optimal solution. This reveals in-
herent characteristics of the BTT system and can be used to
sensitize the designer of some EOs that might be more dif-
ficult to pick up than the rest. Figure 5 shows the condition
numbers for EOs 2 to 35 for Run 1, the run with the best
optimization result. It can be seen from Fig. 5 that condition
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Fig. 5: Condition numbers for different EOs for the Run 1
optimal result.

number values are fairly constant, though a general slight in-
crease in condition number can be seen towards the higher
EO values. It can also be seen that the condition number for
EO=8 is significantly higher than for any other EO. This in-
dicates that the BTT system installed according to this sensor
spacing might have more difficulty to measure EO 8 vibra-
tions that any other vibration.

5.3 Weighted EOs
Suppose it has been decided, through an investigation

of the vibration characteristics of the rotor in question, that
blade vibrations below EO=9 are more threatening and dan-
gerous than larger vibrations. These EOs can enjoy more
importance in the optimization routine by setting the condi-
tion number weights, wEO, of all EO values lower than 9 to
a higher value than 1. The weights for EOs 2 through 8 are
here set to 10 while the other weights are kept at 1.

If the PSO algorithm is repeated with this set of weights,
the optimal position is given below in Eq. 16 and the condi-
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Table 5: Parameter vector and objective function optimal values for each PSO run.

Run number θ1 δθ2 δθ3 δθ4 δθ5 δθ6 Objective function value

1 1.90 0.69 0.16 0.14 0.33 0.41 150.50

2 1.80 1.19 0.54 0.16 0.14 0.32 161.57

3 1.72 0.17 0.15 0.34 0.50 0.88 152.92

4 1.79 1.03 0.15 0.14 0.33 0.40 150.89

tion numbers for all EOs are shown in Fig. 6.

θθθ = (1.42,0.32,0.35,0.63,0.65,0.52) (16)

It is seen from Eq. 16 that the first sensor value has a smaller
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Fig. 6: Condition numbers for different EOs when weight-
ing the EO values lower than 8 more then the remaining EO
values.

value, 1.42, than the other optimization results’ values. Fig-
ure 6 shows that the condition numbers for EOs between 2
and 8 are generally low and do not contain any extreme out-
liers. Altering the weights of the condition numbers does not
guarantee the ability to measure those EOs more accurately
but increases the likelihood. If many PSO optimization runs
are performed one ends up with a couple of sensor configu-
rations that meet the requirements of the system.

6 Future Research and Limitations
The method presented in this article takes account of

only one row of sensors. It is possible that multiple sensor
rows will require an amended version of this method and/or
may have different constraints. Also, multimode vibration,

where more than one natural frequency is excited simulta-
neously for each blade, will require an amended version of
design matrix construction and should be developed where
multimodal vibration is expected. The method proposed in
this article should, by definition, not be used where algo-
rithms that require equidistant sensor spacing are going to be
used. This method can however be expanded to accommo-
date equidistant sensor spacing.

7 Conclusion
This article presents a novel method that can be used to

calculate the circumferential positions of BTT sensors that
allows one to measure several blade vibration frequencies
at different EO excitations. The method uses the sum of
weighted design matrix condition numbers as a function that
must be minimized subject to constraints that may be present
in a BTT system installation. It is shown that the optimiza-
tion problem requires a global optimization algorithm as the
problem does not lend itself to local solutions. The method
is demonstrated using an example rotor.
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